FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Wang, B Alhassan, SM Pantelides, ST AF Wang, Bin Alhassan, Saeed M. Pantelides, Sokrates T. TI Formation of Large Polysulfide Complexes during the Lithium-Sulfur Battery Discharge SO PHYSICAL REVIEW APPLIED LA English DT Article ID RECHARGEABLE BATTERIES; LIQUID ELECTROLYTE; GRAPHENE; PERFORMANCE; CATHODE; COMPOSITE; MOLECULES; MECHANISM; CAPACITY; HYBRID AB Sulfur cathodes have much larger capacities than transition-metal-oxide cathodes used in commercial lithium-ion batteries but suffer from unsatisfactory capacity retention and long-term cyclability. Capacity degradation originates from soluble lithium polysulfides gradually diffusing into the electrolyte. Understanding of the formation and dynamics of soluble polysulfides during the discharging process at the atomic level remains elusive, which limits further development of lithium-sulfur (Li-S) batteries. Here we report first-principles molecular dynamics simulations and density functional calculations, through which the discharging products of Li-S batteries are studied. We find that, in addition to simple Li2Sn (1 <= n <= 8) clusters generated from single cyclooctasulfur (S-8) rings, large Li-S clusters form by collectively coupling several different rings to minimize the total energy. At high lithium concentration, a Li-S network forms at the sulfur surfaces. The results can explain the formation of the soluble Li-S complex, such as Li2S8, Li2S6, and Li2S4, and the insoluble Li2S2 and Li2S structures. In addition, we show that the presence of oxygen impurities in graphene, particularly oxygen atoms bonded to vacancies and edges, may stabilize the lithium polysulfides that may otherwise diffuse into the electrolyte. C1 [Wang, Bin; Pantelides, Sokrates T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Alhassan, Saeed M.] Petr Inst, Dept Chem Engn, Abu Dhabi, U Arab Emirates. [Pantelides, Sokrates T.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA. [Pantelides, Sokrates T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Wang, B (reprint author), Univ Oklahoma, Sch Chem Biol & Mat Engn, Norman, OK 73019 USA. EM bin.wang@vanderbilt.edu RI Wang, Bin/E-8301-2011; OI Wang, Bin/0000-0001-8246-1422; Alhassan, Saeed/0000-0002-5148-3255 FU Gas Subcommittee Research and Development under Abu Dhabi National Oil Company (ADNOC); Department of Energy Basic Energy Sciences, Materials Science and Engineering; McMinn Endowment at Vanderbilt University FX This work was supported in part by the Gas Subcommittee Research and Development under Abu Dhabi National Oil Company (ADNOC), by the Department of Energy Basic Energy Sciences, Materials Science and Engineering, and by the McMinn Endowment at Vanderbilt University. NR 53 TC 25 Z9 25 U1 15 U2 111 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2331-7019 J9 PHYS REV APPL JI Phys. Rev. Appl. PD SEP 4 PY 2014 VL 2 IS 3 AR 034004 DI 10.1103/PhysRevApplied.2.034004 PG 7 WC Physics, Applied SC Physics GA AS5WT UT WOS:000344338100001 ER PT J AU Chang, TM Dang, LX AF Chang, Tsun-Mei Dang, Liem X. TI Computational Studies of [bmim][PF6]/n-Alcohol Interfaces with Many-Body Potentials SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID TEMPERATURE IONIC LIQUIDS; SUM-FREQUENCY SPECTROSCOPY; MOLECULAR-DYNAMICS; PHYSICAL-CHEMISTRY; X-RAY; SURFACE; WATER; CO2; SEPARATIONS; SIMULATION AB In this paper, we present the results from molecular dynamics simulations of the equilibrium properties of liquid/liquid interfaces of room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([bmirn][PF6]) and simple alcohols (i.e., methanol, 1-butanol, and 1-hexanol) at room temperature. Polarizable potential models are employed to describe the interactions among species. Results from our simulations show stable interfaces between the ionic liquid and n-alcohols, and we found that the interfacial widths decrease from methanol to 1-butanol systems and then increase for 1-hexanol interfaces. Angular distribution analysis reveals that the interface induces a strong orientational order of [bmim] and n-alcohol molecules near the interface, with [bmim] extending its butyl group into the alcohol phase, whereas the alcohol has the OH group pointing into the ionic liquid region, which is consistent with the recent sum-frequency-generation experiments. We found the interface to have a significant influence on the dynamics of ionic liquids and n-alcohols. The orientational autocorrelation functions illustrate that [bmirn] rotates more freely near the interface than in the bulk, whereas the rotation of n-alcohol is hindered at the interface. Additionally, the time scale associated with the diffusion along the interfacial direction is found to be faster for [bmim] but slowed down for n-alcohols approaching the interface. We also calculate the dipole moment of n-alcohols as a function of the distance normal to the interface. We found that, even though methanol and 1-butanol have different dipole moments in bulk phase, they reach a similar value at the interface. C1 [Chang, Tsun-Mei] Univ Wisconsin, Dept Chem, Parkside, WI 53141 USA. [Dang, Liem X.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Chang, TM (reprint author), Univ Wisconsin, Dept Chem, Parkside, WI 53141 USA. FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for the Department of Energy by Battelle. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences. NR 57 TC 2 Z9 2 U1 3 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 4 PY 2014 VL 118 IS 35 BP 7186 EP 7193 DI 10.1021/jp405910k PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AO4UV UT WOS:000341337800002 PM 24063438 ER PT J AU Cave, RJ Newton, MD AF Cave, Robert J. Newton, Marshall D. TI Multistate Treatments of the Electronic Coupling in Donor-Bridge-Acceptor Systems: Insights and Caveats from a Simple Model SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID INTRAMOLECULAR CHARGE-TRANSFER; GENERALIZED MULLIKEN-HUSH; PROTON-TRANSFER REACTIONS; AB-INITIO CALCULATIONS; DNA PI-STACKS; DIABATIC STATES; BLOCK DIAGONALIZATION; TUNNELING CURRENTS; MATRIX-ELEMENTS; CONFIGURATIONAL UNIFORMITY AB We use a simple one-dimensional delta function electronic structure model (dfm) to investigate the results of a pair of multistate diabatization techniques (i.e., based on n states, with n >= 2) for linear DBA and DBBA (donor-bridge-acceptor) electron-transfer systems. In particular, we focus on the physical meaning of the couplings obtained from multistate methods and their relationship to two-state (n = 2) coupling elements. On the basis of the simple dfm approach, which allows exact as well as finite basis set treatment and has no many-electron effects, we conclude that for orthogonal diabatic states, it is difficult to assign clear physical significance to multistate matrix elements for coupling beyond nearest-neighbor contacts. The implications of these results for more complex multistate many-electron treatments are discussed. It is emphasized that physically meaningful coupling elements must involve states that are orthogonal, either explicitly or implicitly. C1 [Cave, Robert J.] Harvey Mudd Coll, Dept Chem, Claremont, CA 91711 USA. [Newton, Marshall D.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Cave, RJ (reprint author), Harvey Mudd Coll, Dept Chem, Claremont, CA 91711 USA. EM Robert_Cave@hmc.edu; Newton@bnl.gov FU National Science Foundation [CHE-0353199]; Harvey Mudd College; The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-98CH10886] FX R.J.C. gratefully acknowledges financial support from the National Science Foundation (CHE-0353199) and from Harvey Mudd College. The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy is gratefully acknowledged for funding the research carried out by M.D.N. through Grant DE-AC02-98CH10886. We are also grateful to the reviewers for careful reading and helpful suggestions that both clarified the manuscript and suggested new avenues for investigation. NR 89 TC 7 Z9 7 U1 0 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 4 PY 2014 VL 118 IS 35 BP 7221 EP 7234 DI 10.1021/jp408913k PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AO4UV UT WOS:000341337800006 PM 24266545 ER PT J AU Alfonso, DR AF Alfonso, Dominic R. TI Kinetic Monte Carlo Simulation of CO Adsorption on Sulfur-Covered Pd(100) SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID SINGLE-CRYSTAL; CARBON-MONOXIDE; ADSORBATE INTERACTIONS; HYDROGEN; SURFACE; DISSOCIATION; PALLADIUM; FUEL; LEED; H-2 AB The use of atomistic Kinetic Monte Carlo method was explored to examine the influence of sulfur poisoning on CO adsorption on Pd(100) surface. The model explicitly incorporates key elementary processes such as CO adsorption and CO desorption including diffusion of surface CO and S species. Relevant energetic and kinetic parameters were derived using information calculated from density functional theory as a starting point. Kinetic Monte Carlo simulation was performed to determine relevant observables such as CO saturation coverage as a function of amount of preadsorbed sulfur and to predict temperature programmed desorption spectra. C1 US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Alfonso, DR (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM alfonso@netl.doe.gov FU United States Government FX Valuable advice by D. Liu and K. Reuter on KMC simulations is strongly acknowledged. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of the author(s) expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 45 TC 1 Z9 1 U1 1 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 4 PY 2014 VL 118 IS 35 BP 7306 EP 7313 DI 10.1021/jp4115817 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AO4UV UT WOS:000341337800017 PM 24494801 ER PT J AU Myshakin, EM Makaremi, M Romanov, VN Jordan, KD Guthrie, GD AF Myshakin, Evgeniy M. Makaremi, Meysam Romanov, Vyacheslav N. Jordan, Kenneth D. Guthrie, George D. TI Molecular Dynamics Simulations of Turbostratic Dry and Hydrated Montmorillonite with Intercalated Carbon Dioxide SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID X-RAY-DIFFRACTION; DENSITY-FUNCTIONAL THEORY; FORCE-FIELD; DIOCTAHEDRAL SMECTITES; ELECTRON-DIFFRACTION; NA-MONTMORILLONITE; CA-MONTMORILLONITE; CO2 SEQUESTRATION; ILLITE SMECTITE; PART I AB Molecular dynamics simulations using classical force fields were carried out to study energetic and structural properties of rotationally disordered clay mineral water CO, systems at pressure and temperature relevant to geological carbon storage. The simulations show that turbostratic stacking of hydrated Na- and Ca-montmorillonite and hydrated montmorillonite with intercalated carbon dioxide is an energetically demanding process accompanied by an increase in the interlayer spacing. On the other hand, rotational disordering of dry or nearly dry smectite systems can be energetically favorable. The distributions of interlayer species are calculated as a function of the rotational angle between adjacent day layers. C1 [Myshakin, Evgeniy M.; Makaremi, Meysam; Romanov, Vyacheslav N.; Jordan, Kenneth D.; Guthrie, George D.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Myshakin, Evgeniy M.] URS Corp, South Pk, PA 15129 USA. [Makaremi, Meysam; Jordan, Kenneth D.] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. RP Myshakin, EM (reprint author), Natl Energy Technol Lab, 626 Cochrans Mill Rd, Pittsburgh, PA 15236 USA. EM Evgeniy.Myshakin@netl.doe.gov RI Romanov, Vyacheslav/C-6467-2008 OI Romanov, Vyacheslav/0000-0002-8850-3539 FU National Energy Technology Laboratory under the RES [4000.4.641.061.002.254, DE-FE0004000]; Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through URS Energy and Construction, Inc. FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in Subtask 4000.4.641.061.002.254 under the RES Contract DE-FE0004000. The simulations were carried put on the NETL High-Performance Computer for Energy and the Environment (HPCEE) and on the computer clusters in the University of Pittsburgh's Center for Simulation and Modeling. This project was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through a support contract with URS Energy and Construction, Inc. Neither the United States Government nor any agency thereof, nor any of their employees, nor URS Energy & Construction, Inc., nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 68 TC 7 Z9 7 U1 1 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 4 PY 2014 VL 118 IS 35 BP 7454 EP 7468 DI 10.1021/jp500221w PG 15 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AO4UV UT WOS:000341337800034 PM 24745358 ER PT J AU Chaka, AM Felmy, AR AF Chaka, Anne M. Felmy, Andrew R. TI Ab Initio Thermodynamic Model for Magnesium Carbonates and Hydrates SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID DENSITY-FUNCTIONAL THEORY; WET SUPERCRITICAL CO2; JANAF THERMOCHEMICAL TABLES; EMPIRICAL DISPERSION TERM; PERIODIC HARTREE-FOCK; RATE THERMAL-ANALYSIS; X-RAY-DIFFRACTION; CRYSTAL-STRUCTURE; INTERACTION ENERGIES; MINERAL CARBONATION AB An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Emzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first-principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O-2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogues of Ca-based hydrated carbonates monohydrocalcite and ikaite, which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation. C1 [Chaka, Anne M.; Felmy, Andrew R.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Chaka, AM (reprint author), Pacific NW Natl Lab, POB 999,MS K8-96, Richland, WA 99352 USA. FU Geosciences Research Program in the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences; U.S. Department of Energy's Office of Biological and Environmental Research FX This work was supported by the Geosciences Research Program in the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. A portion of this research was performed using the computational resources of EMSL, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 133 TC 8 Z9 8 U1 6 U2 70 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 4 PY 2014 VL 118 IS 35 BP 7469 EP 7488 DI 10.1021/jp500271n PG 20 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AO4UV UT WOS:000341337800035 PM 24679248 ER PT J AU Miliordos, E Apra, E Xantheas, SS AF Miliordos, Evangelos Apra, Edoardo Xantheas, Sotiris S. TI Benchmark Theoretical Study of the pi-pi Binding Energy in the Benzene Dimer SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID INTERMOLECULAR INTERACTION ENERGIES; CORRELATED MOLECULAR CALCULATIONS; PLESSET PERTURBATION-THEORY; GAUSSIAN-BASIS SETS; SUPRAMOLECULAR CHEMISTRY; CCSD(T) CALCULATIONS; COUPLED-CLUSTER; WAVE-FUNCTIONS; RECOGNITION; SURFACE AB We establish a new estimate for the binding energy between two benzene molecules in the parallel-displaced (PD) conformation by systematically converging (i) the intra- and intermolecular geometry at the minimum, (ii) the expansion of the orbital basis set, and (iii) the level of electron correlation. The calculations were performed at the second-order Moller-Plesset perturbation (MP2) and the coupled cluster including singles, doubles, and a perturbative estimate of triples replacement [CCSD(T)] levels of electronic structure theory. At both levels of theory, by including results corrected for basis set superposition error (BSSE), we have estimated the complete basis set (CBS) limit by employing the family of Dunning's correlation-consistent polarized valence basis sets. The largest MP2 calculation was performed with the cc-pV6Z basis set (2772 basis functions), whereas the largest CCSD(T) calculation was with the cc-pV5Z basis set (1752 basis functions). The cluster geometries were optimized with basis sets up to quadruple-zeta quality, observing that both its intra- and intermolecular parts have practically converged with the triple-C quality sets. The use of converged geometries was found to play an important role for obtaining accurate estimates for the CBS limits. Our results demonstrate that the binding energies with the families of the plain (cc-pVnZ) and augmented (aug-cc-pVnZ) sets converge [within <0.01 kcal/mol for MP2 and <0.15 kcal/mol for CCSD(T)] to the same CBS limit. In addition, the average of the uncorrected and BSSE-corrected binding energies was found to converge to the same CBS limit much faster than either of the two constituents (uncorrected or BSSE-corrected binding energies). Due to the fact that the family of augmented basis sets (especially for the larger sets) causes serious linear dependency problems, the plain basis sets (for which no linear dependencies were found) are deemed as a more efficient and straightforward path for obtaining an accurate CBS limit. We considered extrapolations of the uncorrected (Delta E) and BSSE-corrected (Delta E-cp) binding energies, their average value (Delta E-ave), as well as the average of the latter over the plain and augmented sets (Delta(E) over tilde (ave)) with the cardinal number of the basis set n. Our best estimate of the CCSD(T)/CBS limit for the pi-pi binding energy in the PD benzene dimer is D-e = -2.65 +/- 0.02 kcal/mol. The best CCSD(T)/cc-pV5Z calculated value is -2.62 kcal/mol, just 0.03 kcal/mol away from the CBS limit. For comparison, the MP2/CBS limit estimate is -5.00 +/- 0.01 kcal/mol, demonstrating a 90% overbinding with respect to CCSD(T). The spin-component-scaled (SCS) MP2 variant was found to closely reproduce the CCSD(T) results for each basis set, while scaled opposite spin (SOS) MP2 yielded results that are too low when compared to CCSD(T). C1 [Miliordos, Evangelos; Xantheas, Sotiris S.] Pacific NW Natl Lab, Phys Sci Div, Richland, WA 99352 USA. [Apra, Edoardo] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Xantheas, SS (reprint author), Pacific NW Natl Lab, Phys Sci Div, 902 Battelle Blvd,POB 999,MS K1-83, Richland, WA 99352 USA. EM sotiris.xantheas@pnnl.gov RI Apra, Edoardo/F-2135-2010; Xantheas, Sotiris/L-1239-2015 OI Apra, Edoardo/0000-0001-5955-0734; FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences; Department of Energy's Office of Biological and Environmental Research; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Dr. Karol Kowalski of PNNL for many helpful discussions and a critical review of the manuscript. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences (E.M. and S.S.X.). Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. A portion of this research was performed using the Molecular Science Computing Facility (MSCF) in EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. This research also used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 61 TC 24 Z9 24 U1 3 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 4 PY 2014 VL 118 IS 35 BP 7568 EP 7578 DI 10.1021/jp5024235 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AO4UV UT WOS:000341337800044 PM 24761749 ER PT J AU Heine, N Yacovitch, TI Schubert, F Brieger, C Neumark, DM Asmis, KR AF Heine, Nadja Yacovitch, Tara I. Schubert, Franziska Brieger, Claudia Neumark, Daniel M. Asmis, Knut R. TI Infrared Photodissociation Spectroscopy of Microhydrated Nitrate-Nitric Acid Clusters NO3-(HNO3)(m)(H2O)(n) SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID HYDROGEN DINITRATE ION; VIBRATIONAL-SPECTRA; HARTREE-FOCK; COMPLEXES; DENSITY; PROTON; HNO3; CONFIGURATION; DECOMPOSITION; DISSOCIATION AB Infrared multiple photon dissociation (IRMPD) spectra of NO3-(HNO3)(m)(H2O) (H-2)(z) with m = 1-3, up to n = 8 and z >= 1, are measured in the fingerprint region (550-1880 cm(-1)), directly probing the NO-stretching modes, as well as bending and other lower frequency modes. The assignment of the spectra is aided by electronic structure calculations. The IRMPD spectrum of the m = 1, n = 0 cluster is distinctly different from all the other measured spectra as a result of strong hydrogen bonding, leading to an equally shared proton in between two nitrate moieties (O2NO-center dot center dot center dot H+center dot center dot center dot ONO2-). It exhibits a strong absorption at 877 cm(-1) and lacks the characteristic NO2-antisymmetric stretching/NOH-bending mode absorption close to 1650 cm(-1). Addition of at least one more nitric acid molecule or two more water molecules weakens the hydrogen bond network, breaking the symmetry of this arrangement and leading to localization of the proton near one of the nitrate cores, effectively forming HNO3 hydrogen-bonded to NO3-. Not all IR active modes are observed in the IRMPD spectra of the bare nitrate-nitric acid clusters. Addition of a water or a hydrogen molecule lowers the dissociation limit of the complexes and relaxes (H2O) or lifts (H-2) this IRMPD transparency. C1 [Heine, Nadja; Schubert, Franziska; Brieger, Claudia; Asmis, Knut R.] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany. [Yacovitch, Tara I.; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Asmis, Knut R.] Univ Leipzig, Wilhelm Ostwald Inst Phys & Theoret Chem, D-04103 Leipzig, Germany. [Neumark, Daniel M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu; knut.asmis@uni-leipzig.de RI Asmis, Knut/N-5408-2014; Heine, Nadja/G-8839-2013; Neumark, Daniel/B-9551-2009; OI Asmis, Knut/0000-0001-6297-5856; Neumark, Daniel/0000-0002-3762-9473; Lentz, Claudia/0000-0002-1876-9331 FU European Community [226716]; Air Force Office of Scientific Research [FA9550-12-1-1060]; National Science and Engineering Research Council of Canada (NSERC) FX We thank the Stichting voor Fundamenteel Onderzoek der Materie (FOM) for granting the required beam time and greatly appreciate the skill and assistance of the FELIX staff. This research is funded by the European Community's Seventh Framework Program (FP7/2007-2013, Grant 226716) and the Air Force Office of Scientific Research (FA9550-12-1-1060). T.I.Y. thanks the National Science and Engineering Research Council of Canada (NSERC) for a postgraduate scholarship. NR 62 TC 10 Z9 10 U1 3 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 4 PY 2014 VL 118 IS 35 BP 7613 EP 7622 DI 10.1021/jp412222q PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AO4UV UT WOS:000341337800048 PM 24666321 ER PT J AU Sassi, M Carter, DJ Uberuaga, BP Stanek, CR Mancera, RL Marks, NA AF Sassi, Michel Carter, Damien J. Uberuaga, Blas P. Stanek, Christopher R. Mancera, Ricardo L. Marks, Nigel A. TI Hydrogen Bond Disruption in DNA Base Pairs from C-14 Transmutation SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; ELECTRON-DENSITIES; SOLID-STATE; REPLICATION; DECAY AB Recent ab initio molecular dynamics simulations have shown that radioactive carbon does not normally fragment DNA bases when it decays. Motivated by this finding, density functional theory and Bader analysis have been used to quantify the effect of C --> N transmutation on hydrogen bonding in DNA base pairs. We find that C-14 decay has the potential to significantly alter hydrogen bonds in a variety of ways including direct proton shuttling (thymine and cytosine), thermally activated proton shuttling (guanine), and hydrogen bond breaking (cytosine). Transmutation substantially modifies both the absolute and relative strengths of the hydrogen bonding pattern, and in two instances (adenine and cytosine), the density at the critical point indicates development of mild covalent character. Since hydrogen bonding is an important component of Watson-Crick pairing, these C-14-induced modifications, while infrequent, may trigger errors in DNA transcription and replication. C1 [Sassi, Michel; Carter, Damien J.] Curtin Univ, Nanochem Res Inst, Perth, WA 6845, Australia. [Sassi, Michel; Carter, Damien J.] Curtin Univ, Dept Chem, Perth, WA 6845, Australia. [Sassi, Michel] Pacific NW Natl Lab, Div Phys Sci, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Uberuaga, Blas P.; Stanek, Christopher R.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Mancera, Ricardo L.] Curtin Univ, CHIRI Biosci, Sch Biomed Sci, Perth, WA 6845, Australia. [Marks, Nigel A.] Curtin Univ, Discipline Phys & Astron, Perth, WA 6845, Australia. RP Marks, NA (reprint author), Curtin Univ, Discipline Phys & Astron, GPO Box U1987, Perth, WA 6845, Australia. EM N.Marks@curtin.edu.au RI Marks, Nigel/F-6084-2010; Sassi, Michel/A-6080-2011; Carter, Damien/H-9768-2012 OI Marks, Nigel/0000-0003-2372-1284; Sassi, Michel/0000-0003-2582-3735; FU Australian Research Council (ARC) [DP1097076]; ARC [FT120100924] FX The project used advanced computational resources provided by the iVEC facility at Murdoch University. The authors thank the Australian Research Council (ARC) for support under Discovery Project DP1097076, and N.A.M. thanks the ARC for a fellowship (FT120100924). NR 38 TC 0 Z9 0 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD SEP 4 PY 2014 VL 118 IS 35 BP 10430 EP 10435 DI 10.1021/jp508118f PG 6 WC Chemistry, Physical SC Chemistry GA AO4US UT WOS:000341337500013 PM 25127298 ER PT J AU Shkrob, IA Marin, TW Wishart, JF Grills, DC AF Shkrob, Ilya A. Marin, Timothy W. Wishart, James F. Grills, David C. TI Radiation Stability of Cations in Ionic Liquids. 5. Task-Specific Ionic Liquids Consisting of Biocompatible Cations and the Puzzle of Radiation Hypersensitivity SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID ELECTRON-SPIN-RESONANCE; CRYSTALLINE CHOLINE CHLORIDE; IRRADIATED SINGLE-CRYSTALS; SOLUBILIZING METAL-OXIDES; DEEP EUTECTIC SOLVENTS; GLYCYL RADICAL ENZYMES; PULSE-RADIOLYSIS; SOLVATION DYNAMICS; IONIZING-RADIATION; 2-PHOTON IONIZATION AB In 1953, an accidental discovery by Melvin Calvin and co-workers provided the first example of a solid (the a-polymorph of choline chloride) showing hypersensitivity to ionizing radiation: under certain conditions, the radiolytic yield of decomposition approached 5 x 10(4) per 100 eV (which is 4 orders of magnitude greater than usual values), suggesting an uncommonly efficient radiation-induced chain reaction. Twenty years later, the still-accepted mechanism for this rare condition was suggested by Martyn Symons, but no validation for this mechanism has been supplied. Meanwhile, ionic liquids and deep eutectic mixtures that are based on choline, betainium, and other derivitized natural amino compounds are presently finding an increasing number of applications as diluents in nuclear separations, where the constituent ions are exposed to ionizing radiation that is emitted by decaying radionuclides. Thus, the systems that are compositionally similar to radiation hypersensitive solids are being considered for use in high radiation fields, where this property is particularly undesirable! In Part 5 of this series on organic cations, we revisit the phenomenon of radiation hypersensitivity and explore mechanistic aspects of radiation-induced reactions involving this class of task-specific, biocompatible, functionalized cations, both in ionic liquids and in reference crystalline compounds. We demonstrate that Symons' mechanism needs certain revisions and rethinking, and suggest its modification. Our reconsideration suggests that there cannot be conditions leading to hypersensitivity in ionic liquids. C1 [Shkrob, Ilya A.; Marin, Timothy W.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Marin, Timothy W.] Benedictine Univ, Dept Chem, Lisle, IL 60532 USA. [Wishart, James F.; Grills, David C.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Shkrob, IA (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM shkrob@anl.gov RI Wishart, James/L-6303-2013; Grills, David/F-7196-2016 OI Wishart, James/0000-0002-0488-7636; Grills, David/0000-0001-8349-9158 FU U.S. Department of Energy Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH11357, DE-AC02-98CH10886]; DOE SISGR grant; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX We thank D. Quigley, S. Chemerisov, Y. Portilla, B. Layne and S. Ramati for technical support. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under Award Numbers DE-AC02-06CH11357 (Argonne) and DE-AC02-98CH10886 (Brookhaven). This research used resources of the LEAF Facility of the Brookhaven Accelerator Center for Energy Research, which is a DOE Office of Science User Facility. Programmatic support via a DOE SISGR grant "An Integrated Basic Research Program for Advanced Nuclear Energy Separations Systems Based on Ionic Liquids" is gratefully acknowledged. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 121 TC 3 Z9 3 U1 6 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD SEP 4 PY 2014 VL 118 IS 35 BP 10477 EP 10492 DI 10.1021/jp5049716 PG 16 WC Chemistry, Physical SC Chemistry GA AO4US UT WOS:000341337500018 PM 25127187 ER PT J AU al-Wahish, A Jalarvo, N Bi, ZH Herwig, KW Bridges, C Paranthaman, MP Mandrus, D AF al-Wahish, Amal Jalarvo, Niina Bi, Zhonghe Herwig, K. W. Bridges, Craig Paranthaman, M. P. Mandrus, D. TI Quasi-Elastic Neutron Scattering Reveals Fast Proton Diffusion in Ca-Doped LaPO4 SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SR-SUBSTITUTED LAPO4; LANTHANUM ORTHOPHOSPHATE; CONDUCTION; SRCE0.95YB0.05H0.02O2.985; VISUALIZATION; PRINCIPLES; MECHANISM; PROSPECTS; DYNAMICS; CRYSTAL AB We have investigated the diffusion dynamics of protons in hydrated 4.2% Ca-doped LaPO4, a candidate electrolyte for proton-conducting intermediate temperature fuel cells. The macroscopic and microscopic dynamics have been studied using electrochemical impedance spectroscopy (EIS) and quasi-elastic neutron scattering (QENS), respectively. The conductivity of the bulk hydrated sample was determined in the temperature range of 500-850 degrees C by EIS and showed a clear signature of proton conductivity with an activation energy of about 1.0 eV. The QENS experiment revealed a fast dynamical process below 500 degrees C that was not observed by EIS. The activation energy of the fast proton diffusion is 0.09 eV in the temperature range from 150 degrees C to 500 degrees C. C1 [al-Wahish, Amal; Mandrus, D.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Jalarvo, Niina] Oak Ridge Natl Lab, Forschungszentrum Julich, JCNS, Outstn Spallat Neutron Source SNS, Oak Ridge, TN 37831 USA. [Bi, Zhonghe; Bridges, Craig; Paranthaman, M. P.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Herwig, K. W.] Oak Ridge Natl Lab, Instrument & Source Design Div, Oak Ridge, TN 37861 USA. [Mandrus, D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Mandrus, D.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Mandrus, D (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM dmandrus@utk.edu RI Paranthaman, Mariappan/N-3866-2015; Jalarvo, Niina/Q-1320-2015 OI Paranthaman, Mariappan/0000-0003-3009-8531; Jalarvo, Niina/0000-0003-0644-6866 FU U.S. Department of Energy (DOE), Basic Energy Sciences (BES) Materials Sciences and Engineering Division; U.S. Department of Energy, Basic Energy Sciences (B.E.S.) Scientific User Facilities Division; Research Centre of Julich; Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. Department of Energy FX This work was supported by the U.S. Department of Energy (DOE), Basic Energy Sciences (BES) Materials Sciences and Engineering Division (A.A.W., Z.B., C.B., M.P.P., and D.M.), by the U.S. Department of Energy, Basic Energy Sciences (B.E.S.) Scientific User Facilities Division (K.W.H.), and by the Research Centre of Julich (N.J.). We would like to thank T. Norby for suggesting that LaPO4 would make a good system for QENS studies. We thank L. Tetard and S. Tang for assistance with the SEM measurements. The SEM work of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored by the Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. Department of Energy. NR 33 TC 5 Z9 5 U1 2 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 4 PY 2014 VL 118 IS 35 BP 20112 EP 20121 DI 10.1021/jp5048425 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AO4UU UT WOS:000341337700008 ER PT J AU Sambasivarao, SV Liu, Y Horan, JL Seifert, S Herring, AM Maupin, CM AF Sambasivarao, Somisetti V. Liu, Yuan Horan, James L. Seifert, Soenke Herring, Andrew M. Maupin, C. Mark TI Enhancing Proton Transport and Membrane Lifetimes in Perfluorosulfonic Acid Proton Exchange Membranes: A Combined Computational and Experimental Evaluation of the Structure and Morphology Changes Due to H3PW12O40 Doping SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; PERFLUORINATED IONOMER MEMBRANES; POLYMER ELECTROLYTE MEMBRANES; FUEL-CELL APPLICATIONS; X-RAY-SCATTERING; COMPOSITE MEMBRANES; HETEROPOLY ACIDS; HYDRATED MORPHOLOGIES; LOW-TEMPERATURE; NAFION AB The impact of loading the heteropoly acid, 12-phosphotungstic acid (HPW), on a perfluorosulfonic acid (PFSA) proton exchange membrane's morphology was evaluated by means of molecular dynamics (MD) simulations and small-angle X-ray scattering (SAXS) experiments. It is found that the addition of HPW significantly modifies the solvent structure and dynamics in the PFSA membrane, which favors the formation of interconnected proton conducting networks. It is hypothesized that these HPW induced solvent modifications account for the enhanced proton conducting characteristics of these doped membranes. Radial distribution functions and water cluster analysis indicate that the HPW organizes the local solvent water and attracts the nearby excess protons thereby creating localized "nodes" of ordered water and hydronium ions. The "nodes" are found to connect surrounding water wires/channels resulting in a more efficient proton conducting network. This redistribution of solvent and hydronium ions upon addition of HPW creates a shift in the hydrophilic cluster size distribution and the overall membrane morphology. Hydrophilic cluster size analysis indicates that a high percentage of small clusters (d < 15 angstrom) exist in low HPW doped systems (i.e., 1%), while larger clusters (d > 15 angstrom) exist for the high HPW doped systems (i.e., 596). At low hydration levels, the water domains are found to be spheroidal inverted micelles embedded in an ionomer matrix, while at high hydration levels the solvent morphology shifts to a parallel spheroidal elongated cylinder. It is also observed that for the high HPW doping levels the SAXS pattern changes intensity at the low q region and Bragg peaks become present, which indicates the presence of crystalline HPW. These morphological changes create a more interconnected pathway through which the hydrated excess protons may transverse thereby enhancing the PFSA membrane's conductivity C1 [Sambasivarao, Somisetti V.; Liu, Yuan; Horan, James L.; Herring, Andrew M.; Maupin, C. Mark] Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA. [Seifert, Soenke] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Herring, AM (reprint author), Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA. EM aherring@mines.edu; cmmaupin@mines.edu OI Herring, Andrew/0000-0001-7318-5999 FU Renewable energy MRSEC - NSF [DMR-0820518]; DOE Office of Science [DE-AC02-06CH11357] FX This research was supported by by the Renewable energy MRSEC funded by the NSF under Grant DMR-0820518. We want to thank 3M for supplying ionomer samples and technical support in addition to the Colorado School of Mines Campus Computing, Communications, and Information Technologies for the computational resources. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 52 TC 6 Z9 6 U1 3 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 4 PY 2014 VL 118 IS 35 BP 20193 EP 20202 DI 10.1021/jp5059325 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AO4UU UT WOS:000341337700016 ER PT J AU Zhou, XW Foster, ME van Swol, FB Martin, JE Wong, BM AF Zhou, X. W. Foster, M. E. van Swol, F. B. Martin, J. E. Wong, Bryan M. TI Analytical Bond-Order Potential for the Cd-Te-Se Ternary System SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID EPITAXIAL-GROWTH; GAAS; OPTIMIZATION; SIMULATION; CRYSTALS; SILICON; SURFACE; ZN AB CdTe/CdSe core/shell structured quantum dots do not suffer from the defects typically seen in lattice-mismatched films and can therefore lead to improved solid-state lighting devices as compared to the multilayered structures (e.g., InxGa1-x,N/GaN). To achieve these devices, however, the quantum dots must be optimized with respect to the structural details at an atomistic level. Molecular dynamics simulations are effective for exploring nano structures at a resolution unattainable by experimental techniques. To enable accurate molecular dynamics simulations of CdTe/CdSe core/shell structures, we have developed a full Cd-Te-Se ternary bond-order potential based on the analytical formalisms derived from quantum mechanical theories by Pettifor et al. A variety of elemental and compound configurations (with coordination varying from 1 to 12) including small dusters, bulk lattices, defects, and surfaces are explicitly considered during potential parametrization. More importantly, enormous iterations are performed to strictly ensure that our potential can simulate the correct crystalline growth of the ground-state structures for Cd, Te, and Se elements as well as CdTe, CdSe, and CdTe1-xSex compounds during molecular dynamics vapor deposition simulations. Extensive test simulation results clearly indicate that our new Cd-Te-Se potential has unique advantages over the existing literature potential involving Cd, Te, and Se elements. C1 [Zhou, X. W.] Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA. [Foster, M. E.] Sandia Natl Labs, Mat Chem Dept, Livermore, CA 94550 USA. [van Swol, F. B.] Sandia Natl Labs, Computat Mat & Data Sci Dept, Albuquerque, NM 87185 USA. [Martin, J. E.] Sandia Natl Labs, Nanoscale Sci Dept, Albuquerque, NM 87185 USA. [Wong, Bryan M.] Univ Calif Riverside, Dept Chem & Environm Engn & Mat Sci, Riverside, CA 92521 USA. RP Zhou, XW (reprint author), Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA. EM xzhou@sandia.gov RI Wong, Bryan/B-1663-2009 OI Wong, Bryan/0000-0002-3477-8043 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work was performed under a Laboratory Directed Research and Development (LDRD) project. NR 46 TC 2 Z9 2 U1 2 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 4 PY 2014 VL 118 IS 35 BP 20661 EP 20679 DI 10.1021/jp505915u PG 19 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AO4UU UT WOS:000341337700069 ER PT J AU Nguyen, SC Lomont, JP Caplins, BW Harris, CB AF Nguyen, Son C. Lomont, Justin P. Caplins, Benjamin W. Harris, Charles B. TI Studying the Dynamics of Photochemical Reactions via Ultrafast Time-Resolved Infrared Spectroscopy of the Local Solvent SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID VIBRATIONAL-ENERGY REDISTRIBUTION; IR-RAMAN SPECTROSCOPY; CIS-STILBENE; POLYATOMIC LIQUIDS; ACETONITRILE; SOLVATION; NANOPARTICLES; RELAXATION; HEXANE; ABSORPTION AB Conventional ultrafast spectroscopic studies on the dynamics of chemical reactions in solution directly probe the solute undergoing the reaction. We provide an alternative method for probing reaction dynamics via monitoring of the surrounding solvent. When the reaction exchanges the energy (in form of heat) with the solvent, the absorption cross sections of the solvent's infrared bands are sensitive to the heat transfer, allowing spectral tracking of the reaction dynamics. This spectroscopic technique was demonstrated to be able to distinguish the differing photoisomerization dynamics of the trans and cis isomers of stilbene in acetonitrile solution. We highlight the potential of this spectroscopic approach for studying the dynamics of chemical reactions or other heat transfer processes when probing the solvent is more experimentally feasible than probing the solute directly. C1 [Harris, Charles B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Harris, CB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM cbharris@berkeley.edu FU NSF [CHE-1213135]; VIED; NSF FX This work was supported by NSF Grant CHE-1213135. S.C.N. acknowledges support through a VIED fellowship. J.P.L. acknowledges support through an NSF graduate research fellowship. NR 37 TC 2 Z9 2 U1 3 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD SEP 4 PY 2014 VL 5 IS 17 BP 2974 EP 2978 DI 10.1021/jz501400t PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AO4UR UT WOS:000341337400009 PM 26278245 ER PT J AU Suich, DE Caplins, BW Shearer, AJ Harris, CB AF Suich, David E. Caplins, Benjamin W. Shearer, Alex J. Harris, Charles B. TI Femtosecond Trapping of Free Electrons in Ultrathin Films of NaCl on Ag(100) SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID ALKALI-HALIDES; THIN-FILMS; DYNAMICS; INTERFACES; LOCALIZATION; SURFACES; DEFECTS; STATES; CELLS AB We report the excited-state electron dynamics for ultrathin films of NaCl on Ag(100). The first three image potential states (IPSs) were initially observed following excitation. The electrons in the spatially delocalized n = 1 IPS decayed on the ultrafast time scale into multiple spatially localized states lower in energy. The localized electronic states are proposed to correspond to electrons trapped at defects in the NaCl islands. Coverage and temperature dependence of the localized states support the assignment to surface trap states existing at the NaCl/vacuum interface. These results highlight the importance of electron trapping in ultrathin insulating layers. C1 [Harris, Charles B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Harris, CB (reprint author), Univ Calif Berkeley, Dept Chem, 419 Latimer Hall, Berkeley, CA 94720 USA. EM cbharris@berkeley.edu FU Office of Science, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy, under contract no. DE-AC02-05CH11231. NR 32 TC 7 Z9 7 U1 2 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD SEP 4 PY 2014 VL 5 IS 17 BP 3073 EP 3077 DI 10.1021/jz501572z PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AO4UR UT WOS:000341337400028 PM 26278263 ER PT J AU Fiksel, G Fox, W Bhattacharjee, A Barnak, DH Chang, PY Germaschewski, K Hu, SX Nilson, PM AF Fiksel, G. Fox, W. Bhattacharjee, A. Barnak, D. H. Chang, P. -Y. Germaschewski, K. Hu, S. X. Nilson, P. M. TI Magnetic Reconnection between Colliding Magnetized Laser-Produced Plasma Plumes SO PHYSICAL REVIEW LETTERS LA English DT Article ID OMEGA AB Observations of magnetic reconnection between colliding plumes of magnetized laser-produced plasma are presented. Two counterpropagating plasma flows are created by irradiating oppositely placed plastic ( CH) targets with 1.8-kJ, 2-ns laser beams on the Omega EP Laser System. The interaction region between the plumes is prefilled with a low-density background plasma and magnetized by an externally applied magnetic field, imposed perpendicular to the plasma flow, and initialized with an X-type null point geometry with B = 0 at the midplane and B = 8 T at the targets. The counterflowing plumes sweep up and compress the background plasma and the magnetic field into a pair of magnetized ribbons, which collide, stagnate, and reconnect at the midplane, allowing the first detailed observations of a stretched current sheet in laser-driven reconnection experiments. The dynamics of current sheet formation are in good agreement with first-principles particle-in-cell simulations that model the experiments. C1 [Fiksel, G.; Barnak, D. H.; Chang, P. -Y.; Hu, S. X.; Nilson, P. M.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Fiksel, G.; Barnak, D. H.; Chang, P. -Y.; Nilson, P. M.] Univ Rochester, Fus Sci Ctr Extreme States Matter, Rochester, NY 14623 USA. [Fox, W.; Bhattacharjee, A.] Dept Astrophys Sci, Princeton, NJ 08543 USA. [Fox, W.; Bhattacharjee, A.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Germaschewski, K.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. RP Fiksel, G (reprint author), Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. EM gfik@lle.rochester.edu RI Hu, Suxing/A-1265-2007; Chang, Po-Yu/L-5745-2016 OI Hu, Suxing/0000-0003-2465-3818; FU U.S. Department of Energy [DE-SC0007168, DE-SC0008655, DE-SC0006670]; National Laser User Facility program; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725] FX This work is supported by the U.S. Department of Energy under Contracts No. DE-SC0007168, No. DE-SC0008655, and No. DE-SC0006670, and the National Laser User Facility program. The particle-in-cell simulations were conducted on the Jaguar and Titan supercomputers through the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research used resources of the Oak Ridge Leadership Computing Facility located in the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 21 TC 18 Z9 18 U1 4 U2 40 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 4 PY 2014 VL 113 IS 10 AR 105003 DI 10.1103/PhysRevLett.113.105003 PG 5 WC Physics, Multidisciplinary SC Physics GA AO3WN UT WOS:000341267800011 PM 25238366 ER PT J AU Takhistov, V Abe, K Haga, Y Hayato, Y Ikeda, M Iyogi, K Kameda, J Kishimoto, Y Miura, M Moriyama, S Nakahata, M Nakano, Y Nakayama, S Sekiya, H Shiozawa, M Suzuki, Y Takeda, A Tanaka, H Tomura, T Ueno, K Wendell, RA Yokozawa, T Irvine, T Kajita, T Kametani, I Kaneyuki, K Lee, KP McLachlan, T Nishimura, Y Richard, E Okumura, K Labarga, L Fernandez, P Berkman, S Tanaka, HA Tobayama, S Gustafson, J Kearns, E Raaf, JL Stone, JL Sulak, LR Goldhaber, M Carminati, G Kropp, WR Mine, S Weatherly, P Renshaw, A Smy, MB Sobel, HW Ganezer, KS Hartfiel, BL Hill, J Keig, WE Hong, N Kim, JY Lim, IT Akiri, T Himmel, A Scholberg, K Walter, CW Wongjirad, T Ishizuka, T Tasaka, S Jang, JS Learned, JG Matsuno, S Smith, SN Hasegawa, T Ishida, T Ishii, T Kobayashi, T Nakadaira, T Nakamura, K Oyama, Y Sakashita, K Sekiguchi, T Tsukamoto, T Suzuki, AT Takeuchi, Y Bronner, C Hirota, S Huang, K Ieki, K Kikawa, T Minamino, A Murakami, A Nakaya, T Suzuki, K Takahashi, S Tateishi, K Fukuda, Y Choi, K Itow, Y Mitsuka, G Mijakowski, P Hignight, J Imber, J Jung, CK Yanagisawa, C Ishino, H Kibayashi, A Koshio, Y Mori, T Sakuda, M Yamaguchi, R Yano, T Kuno, Y Tacik, R Kim, SB Okazawa, H Choi, Y Nishijima, K Koshiba, M Suda, Y Totsuka, Y Yokoyama, M Martens, K Marti, L Vagins, MR Martin, JF de Perio, P Konaka, A Wilking, MJ Chen, S Zhang, Y Connolly, K Wilkes, RJ AF Takhistov, V. Abe, K. Haga, Y. Hayato, Y. Ikeda, M. Iyogi, K. Kameda, J. Kishimoto, Y. Miura, M. Moriyama, S. Nakahata, M. Nakano, Y. Nakayama, S. Sekiya, H. Shiozawa, M. Suzuki, Y. Takeda, A. Tanaka, H. Tomura, T. Ueno, K. Wendell, R. A. Yokozawa, T. Irvine, T. Kajita, T. Kametani, I. Kaneyuki, K. Lee, K. P. McLachlan, T. Nishimura, Y. Richard, E. Okumura, K. Labarga, L. Fernandez, P. Berkman, S. Tanaka, H. A. Tobayama, S. Gustafson, J. Kearns, E. Raaf, J. L. Stone, J. L. Sulak, L. R. Goldhaber, M. Carminati, G. Kropp, W. R. Mine, S. Weatherly, P. Renshaw, A. Smy, M. B. Sobel, H. W. Ganezer, K. S. Hartfiel, B. L. Hill, J. Keig, W. E. Hong, N. Kim, J. Y. Lim, I. T. Akiri, T. Himmel, A. Scholberg, K. Walter, C. W. Wongjirad, T. Ishizuka, T. Tasaka, S. Jang, J. S. Learned, J. G. Matsuno, S. Smith, S. N. Hasegawa, T. Ishida, T. Ishii, T. Kobayashi, T. Nakadaira, T. Nakamura, K. Oyama, Y. Sakashita, K. Sekiguchi, T. Tsukamoto, T. Suzuki, A. T. Takeuchi, Y. Bronner, C. Hirota, S. Huang, K. Ieki, K. Kikawa, T. Minamino, A. Murakami, A. Nakaya, T. Suzuki, K. Takahashi, S. Tateishi, K. Fukuda, Y. Choi, K. Itow, Y. Mitsuka, G. Mijakowski, P. Hignight, J. Imber, J. Jung, C. K. Yanagisawa, C. Ishino, H. Kibayashi, A. Koshio, Y. Mori, T. Sakuda, M. Yamaguchi, R. Yano, T. Kuno, Y. Tacik, R. Kim, S. B. Okazawa, H. Choi, Y. Nishijima, K. Koshiba, M. Suda, Y. Totsuka, Y. Yokoyama, M. Martens, K. Marti, Ll. Vagins, M. R. Martin, J. F. de Perio, P. Konaka, A. Wilking, M. J. Chen, S. Zhang, Y. Connolly, K. Wilkes, R. J. TI Search for Trilepton Nucleon Decay via p -> e(+)vv and p -> mu(+)vv in the Super-Kamiokande Experiment SO PHYSICAL REVIEW LETTERS LA English DT Article ID WATER CHERENKOV DETECTOR; ATMOSPHERIC FLUX; PROTON-DECAY; MODES; LIFETIME; LIMITS; COLOR AB The trilepton nucleon decay modes p -> e(+)nu nu and p -> mu(+)nu nu violate vertical bar Delta(B - L)vertical bar by two units. Using data from a 273.4 kt yr exposure of Super-Kamiokande a search for these decays yields a fit consistent with no signal. Accordingly, lower limits on the partial lifetimes of tau(p -> e+nu nu) > 1.7 x 10(32) years and tau(p ->mu+nu nu) > 2.2 x 10(32) years at a 90% confidence level are obtained. These limits can constrain Grand Unified Theories which allow for such processes. C1 [Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakano, Y.; Nakayama, S.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Tanaka, H.; Tomura, T.; Ueno, K.; Wendell, R. A.; Yokozawa, T.] Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Kamioka, Gifu 5061205, Japan. [Irvine, T.; Kajita, T.; Kametani, I.; Kaneyuki, K.; Lee, K. P.; McLachlan, T.; Nishimura, Y.; Richard, E.; Okumura, K.] Univ Tokyo, Res Ctr Cosm Neutrinos, Inst Cosm Ray Res, Kashiwa, Chiba 2778582, Japan. [Labarga, L.; Fernandez, P.] Univ Autonoma Madrid, Dept Theoret Phys, E-28049 Madrid, Spain. [Gustafson, J.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Berkman, S.; Tanaka, H. A.; Tobayama, S.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6TIZ4, Canada. [Goldhaber, M.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Takhistov, V.; Carminati, G.; Kropp, W. R.; Mine, S.; Weatherly, P.; Renshaw, A.; Smy, M. B.; Sobel, H. W.; Vagins, M. R.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Ganezer, K. S.; Hartfiel, B. L.; Hill, J.; Keig, W. E.] Calif State Univ Dominguez Hills, Dept Phys, Carson, CA 90747 USA. [Hong, N.; Kim, J. Y.; Lim, I. T.] Chonnam Natl Univ, Dept Phys, Kwangju 500757, South Korea. [Akiri, T.; Himmel, A.; Scholberg, K.; Walter, C. W.; Wongjirad, T.] Duke Univ, Dept Phys, Durham, NC 27708 USA. Fukuoka Inst Technol, Jr Coll, Fukuoka 8110295, Japan. [Tasaka, S.] Gifu Univ, Dept Phys, Gifu 5011193, Japan. [Jang, J. S.] Gwangju Inst Sci & Technol, GIST Coll, Kwangju 500712, South Korea. [Learned, J. G.; Matsuno, S.; Smith, S. N.] Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA. [Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Suzuki, A. T.; Takeuchi, Y.] Kobe Univ, Dept Phys, Kobe, Hyogo 6578501, Japan. [Bronner, C.; Hirota, S.; Huang, K.; Ieki, K.; Kikawa, T.; Minamino, A.; Murakami, A.; Nakaya, T.; Suzuki, K.; Takahashi, S.; Tateishi, K.] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Fukuda, Y.] Miyagi Univ Educ, Dept Phys, Sendai, Miyagi 9800845, Japan. [Choi, K.; Itow, Y.; Mitsuka, G.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648602, Japan. [Hignight, J.; Imber, J.; Jung, C. K.; Yanagisawa, C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Ishino, H.; Kibayashi, A.; Koshio, Y.; Mori, T.; Sakuda, M.; Yamaguchi, R.; Yano, T.; Kuno, Y.] Okayama Univ, Dept Phys, Okayama 7008530, Japan. Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan. [Tacik, R.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Kim, S. B.] Seoul Natl Univ, Dept Phys, Seoul 151742, South Korea. [Okazawa, H.] Shizuoka Univ Welf, Dept Informat Social Welf, Shizuoka 4258611, Japan. [Choi, Y.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Nishijima, K.] Tokai Univ, Dept Phys, Hiratsuka, Kanagawa 2591292, Japan. [Koshiba, M.; Suda, Y.; Totsuka, Y.; Yokoyama, M.] Univ Tokyo, Tokyo 1130033, Japan. [Abe, K.; Hayato, Y.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakayama, S.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Tomura, T.; Wendell, R. A.; Kajita, T.; Kaneyuki, K.; Okumura, K.; Kearns, E.; Stone, J. L.; Smy, M. B.; Sobel, H. W.; Scholberg, K.; Walter, C. W.; Nakamura, K.; Nakaya, T.; Yokoyama, M.; Martens, K.; Marti, Ll.; Vagins, M. R.] Univ Tokyo, Kavli Inst Phys & Math Universe WPI, Todai Inst Adv Study, Kashiwa, Chiba 2778582, Japan. [Martin, J. F.; de Perio, P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Konaka, A.; Wilking, M. J.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Chen, S.; Zhang, Y.] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Connolly, K.; Wilkes, R. J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Mijakowski, P.] Nat Ctr Nucl Res, PL-00681 Warsaw, Poland. RP Takhistov, V (reprint author), Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. RI Suzuki, Yoichiro/F-7542-2010; Ishino, Hirokazu/C-1994-2015; Koshio, Yusuke/C-2847-2015; Yokoyama, Masashi/A-4458-2011; Kibayashi, Atsuko/K-7327-2015; Nakano, Yuuki/S-2684-2016 OI Ishino, Hirokazu/0000-0002-8623-4080; Koshio, Yusuke/0000-0003-0437-8505; Yokoyama, Masashi/0000-0003-2742-0251; FU Japanese Ministry of Education, Culture, Sports, Science and Technology; United States Department of Energy; U.S. National Science Foundation; Korean Research Foundation (BK21); National Research Foundation of Korea [NRF-20110024009]; State Committee for Scientific Research in Poland [1757/B/H03/2008/35]; Japan Society for Promotion of Science; National Natural Science Foundation of China [10575056] FX We gratefully acknowledge cooperation of the Kamioka Mining and Smelting Company. The Super-Kamiokande experiment was built and has been operated with funding from the Japanese Ministry of Education, Culture, Sports, Science and Technology, the United States Department of Energy, and the U.S. National Science Foundation. Some of us have been supported by funds from the Korean Research Foundation (BK21), the National Research Foundation of Korea (NRF-20110024009), the State Committee for Scientific Research in Poland (Grant No. 1757/B/H03/2008/35), the Japan Society for Promotion of Science, and the National Natural Science Foundation of China under Grant No. 10575056. NR 30 TC 5 Z9 5 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 4 PY 2014 VL 113 IS 10 AR 101801 DI 10.1103/PhysRevLett.113.101801 PG 6 WC Physics, Multidisciplinary SC Physics GA AO3WN UT WOS:000341267800005 PM 25238348 ER PT J AU Lin, JF Wu, JJ Zhu, J Mao, Z Said, AH Leu, BM Cheng, JG Uwatoko, Y Jin, CQ Zhou, JS AF Lin, Jung-Fu Wu, Junjie Zhu, Jie Mao, Zhu Said, Ayman H. Leu, Bogdan M. Cheng, Jinguang Uwatoko, Yoshiya Jin, Changqing Zhou, Jianshi TI Abnormal Elastic and Vibrational Behaviors of Magnetite at High Pressures SO SCIENTIFIC REPORTS LA English DT Article ID RAY-EMISSION SPECTROSCOPY; VERWEY TRANSITION; FE3O4; PHASE; CRYSTAL; SPIN AB Magnetite exhibits unique electronic, magnetic, and structural properties in extreme conditions that are of great research interest. Previous studies have suggested a number of transitional models, although the nature of magnetite at high pressure remains elusive. We have studied a highly stoichiometric magnetite using inelastic X-ray scattering, X-ray diffraction and emission, and Raman spectroscopies in diamond anvil cells up to, similar to 20 GPa, while complementary electrical conductivity measurements were conducted in a cubic anvil cell up to 8.5 GPa. We have observed an elastic softening in the diagonal elastic constants (C-11 and C-44) and a hardening in the off-diagonal constant (C-12) at similar to 8 GPa where significant elastic anisotropies in longitudinal and transverse acoustic waves occur, especially along the [110] direction. An additional vibrational Raman band between the A(1g) and T-2g modes was also detected at the transition pressure. These abnormal elastic and vibrational behaviors of magnetite are attributed to the occurrence of the octahedrally-coordinated Fe2+-Fe3+-Fe2+ ions charge-ordering along the [110] direction in the inverse spinel structure. We propose a new phase diagram of magnetite in which the temperature for the metal-insulator and distorted structural transitions decreases with increasing pressure while the charge-ordering transition occurs at similar to 8 GPa and room temperature. C1 [Lin, Jung-Fu; Mao, Zhu] Univ Texas Austin, Jackson Sch Geosci, Dept Geol Sci, Austin, TX 78712 USA. [Lin, Jung-Fu; Cheng, Jinguang; Zhou, Jianshi] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA. [Lin, Jung-Fu; Wu, Junjie] Ctr High Pressure Sci & Technol Adv Res HPSTAR, Shanghai, Peoples R China. [Wu, Junjie; Zhu, Jie; Jin, Changqing] Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China. [Mao, Zhu] Univ Sci & Technol China, Sch Earth & Planetary Sci, Lab Seismol & Phys Earths Interior, Hefei 230026, Anhui, Peoples R China. [Said, Ayman H.; Leu, Bogdan M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Cheng, Jinguang; Zhou, Jianshi] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA. [Cheng, Jinguang; Uwatoko, Yoshiya] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan. RP Lin, JF (reprint author), Univ Texas Austin, Jackson Sch Geosci, Dept Geol Sci, Austin, TX 78712 USA. EM afu@jsg.utexas.edu RI Lin, Jung-Fu/B-4917-2011; Mao, Zhu/A-9015-2015 FU DOE-BES [DE-AC02-06CH11357]; U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) [DE-AC02-06CH11357]; National Science Foundation [EAR-0622171]; Department of Energy [DE-AC02-06CH11357, DE-FG02-94ER14466]; DOE-NNSA; DOE-BES; NSF; Energy Frontier Research in Extreme Environments (EFree) Center, HPSTAR; NSF Earth Sciences [EAR-0838221]; NSF [DMR 1122603]; JSPS fellowship for foreign researchers [12F02023]; National Natural Science Foundation of China (NSFC); Ministry of Science and Technology (MOST); Collaborative Innovation Center of Quantum Matter in Beijing, China FX We thank J.B. Goodenough, E. E. Alp, H. K. Mao, and M. Pasternak for fruitful discussions, J. Liu and J. Yang for helping to prepare samples and figures, and Y. Xiang, P. Chow, and V. Prakapenka for their assistance with synchrotron experiments. We acknowledge XOR-30, XOR-3, HPCAT, and GSECARS of the APS, ANL for the use of the synchrotron and laser facilities. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357. Use of the Advanced Photon Source was supported by U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under contract No. DE-AC02-06CH11357. GSECARS was supported by the National Science Foundation (EAR-0622171) and Department of Energy (DE-FG02-94ER14466) under Contract No. DE-AC02-06CH11357. HPCAT is supported by DOE-NNSA, DOE-BES and NSF. J. F. L. acknowledges financial support from Energy Frontier Research in Extreme Environments (EFree) Center, HPSTAR, and NSF Earth Sciences (EAR-0838221), J.S.Z. acknowledges the financial support from NSF (DMR 1122603), and JGC acknowledges the financial support of the JSPS fellowship for foreign researchers (Grant No. 12F02023). Research at the Chinese Academy of Sciences was supported by National Natural Science Foundation of China (NSFC), Ministry of Science and Technology (MOST), and Collaborative Innovation Center of Quantum Matter in Beijing, China through research projects. NR 34 TC 8 Z9 9 U1 5 U2 62 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD SEP 4 PY 2014 VL 4 AR 6282 DI 10.1038/srep06282 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AO6FE UT WOS:000341444400001 PM 25186916 ER PT J AU Cheng, YW Shao, YY Zhang, JG Sprenkle, VL Liu, J Li, GS AF Cheng, Yingwen Shao, Yuyan Ji-Guang Zhang Sprenkle, Vincent L. Liu, Jun Li, Guosheng TI High performance batteries based on hybrid magnesium and lithium chemistry SO CHEMICAL COMMUNICATIONS LA English DT Article ID RECHARGEABLE MG BATTERIES; ELECTROLYTE-SOLUTIONS; ENERGY-STORAGE; CHALLENGE AB This work studied hybrid batteries assembled with a Mg metal anode, a Li+ ion intercalation cathode and a dual-salt electrolyte containing Mg2+ and Li+ ions. We show that such hybrid batteries were able to combine the advantages of Li and Mg electrochemistry. They delivered outstanding rate performance (83% capacity retention at 15 C) with superior safety and stability (similar to 5% fade for 3000 cycles). C1 [Cheng, Yingwen; Shao, Yuyan; Ji-Guang Zhang; Sprenkle, Vincent L.; Liu, Jun; Li, Guosheng] Pacific NW Natl Lab, Energy Proc & Mat Div, Richland, WA 99354 USA. RP Liu, J (reprint author), Pacific NW Natl Lab, Energy Proc & Mat Div, Richland, WA 99354 USA. EM jun.liu@pnnl.gov; guosheng.li@pnnl.gov RI Shao, Yuyan/A-9911-2008; Cheng, Yingwen/B-2202-2012 OI Shao, Yuyan/0000-0001-5735-2670; Cheng, Yingwen/0000-0002-0778-5504 FU U.S. Department of Energy (DOE); PNNL Laboratory Directed Research and Development program; U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability [57558]; Office of Basic Energy Science; Division of Materials Sciences and Engineering [KC020105-FWP12152]; DOE's Office of Biological and Environmental Research and located at PNNL FX The development and understanding of hybrid batteries are supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award KC020105-FWP12152. The electro-chemistry and battery performance works are supported by PNNL Laboratory Directed Research and Development program and the U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability under Contract No. 57558. TEM and SEM characterization was conducted at the Environmental and Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. PNNL is a multiprogramme national laboratory operated for DOE by Battelle under contract DE AC05-76RL01830. NR 20 TC 34 Z9 34 U1 13 U2 141 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PD SEP 4 PY 2014 VL 50 IS 68 BP 9644 EP 9646 DI 10.1039/c4cc03620d PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA AN6KI UT WOS:000340703000004 PM 24964330 ER PT J AU Stone, KH Kortright, JB AF Stone, Kevin H. Kortright, Jeffrey B. TI Molecular anisotropy effects in carbon K-edge scattering: Depolarized diffuse scattering and optical anisotropy SO PHYSICAL REVIEW B LA English DT Article ID X-RAY-SCATTERING; SHELL EXCITATION-SPECTRA; SHORT-RANGE ORDER; ATACTIC POLYSTYRENE; THIN-FILMS; DYNAMICS SIMULATION; ORIENTATION FLUCTUATIONS; NEXAFS SPECTRA; GAS-PHASE; SURFACE AB Some polymer properties, such as conductivity, are very sensitive to short-and intermediate-range orientational and positional ordering of anisotropic molecular functional groups, and yet means to characterize orientational order in disordered systems are very limited. We demonstrate that resonant scattering at the carbon K edge is uniquely sensitive to short-range orientation correlations in polymers through depolarized scattering at high momentum transfers, using atactic polystyrene as a well-characterized test system. Depolarized scattering is found to coexist with unpolarized fluorescence and to exhibit pronounced anisotropy. We also quantify the spatially averaged optical anisotropy from low-angle reflectivity measurements, finding anisotropy consistent with prior visible, x-ray absorption, and theoretical studies. The average anisotropy is much smaller than that in the depolarized scattering and the two have different character. Both measurements exhibit clear spectral signatures from the phenyl rings and the polyethylenelike backbone. Discussion focuses on analysis considerations and prospects for using this depolarized scattering for studies of disorder in soft condensed matter. C1 [Stone, Kevin H.; Kortright, Jeffrey B.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Kortright, JB (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jbkortright@lbl.gov RI Stone, Kevin/N-9311-2016 OI Stone, Kevin/0000-0003-1387-1510 FU US Department of Energy, Office of Science, Materials Sciences and Engineering Division [DE-AC02-05CH1123] FX We acknowledge samples provided by Dr. Chen Zhang and Dr. Keith M. Beers and discussions regarding measurement artifacts with Dr. Brian A. Collins, Professor Harald Ade, and Dr. Anthony Young. Experimental measurements were made under a General User Proposal at beamlines 11.0.1.2 and 8.0.1 at the Advanced Light Source, LBNL. The research and the ALS were supported by the US Department of Energy, Office of Science, Materials Sciences and Engineering Division under Contract No. DE-AC02-05CH1123. NR 70 TC 6 Z9 6 U1 3 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD SEP 4 PY 2014 VL 90 IS 10 AR 104201 DI 10.1103/PhysRevB.90.104201 PG 12 WC Physics, Condensed Matter SC Physics GA AO3UQ UT WOS:000341262200004 ER PT J AU Aad, G Abbott, B Abdallah, J Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Agatonovic-Jovin, T Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimoto, G Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Allbrooke, BMM Allison, LJ Allport, PP Almond, J Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Araque, JP Arce, ATH Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Auerbach, B Augsten, K Aurousseau, M Avolio, G Azuelos, G Azuma, Y Baak, MA Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Baker, S Balek, P Balli, F Banas, E Banerjee, S Bangert, A Bannoura, AAE Bansal, V Bansil, HS Barak, L Baranov, SP Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Bartsch, V Bassalat, A Basye, A Bates, RL Batkova, L Batley, JR Battistin, M Bauer, F Bawa, HS Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, K Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belloni, A Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernard, C Bernat, P Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertolucci, F Bertsche, D Besana, MI Besjes, GJ Bessidskaia, O Bessner, MF Besson, N Betancourt, C Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boek, TT Bogaerts, JA Bogdanchikov, AG Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Branchini, P Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Brendlinger, K Brennan, AJ Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, G Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, K Bulekov, O Bundock, AC Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Bucher, D Bucher, V Bussey, P Buszello, CP Butler, B Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calandri, A Calderini, G Calfayan, P Calkins, R Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, B Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chan, K Chang, P Chapleau, B Chapman, JD Charfeddine, D Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Cheng, HC Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Chouridou, S Chow, BKB Chromek-Burckhart, D Chu, ML Chudoba, J Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Cole, B Cole, S Colijn, AP Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Connell, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Cuciuc, CM Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Daniells, AC Hoffmann, MD Dao, V Darbo, G Darlea, GL Darmora, S Dassoulas, JA Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davignon, O Davison, AR Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD De Zorzi, G Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Degenhardt, J Deigaard, I Del Peso, J Del Prete, T Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Dimitrievska, A Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobos, D Doglioni, C Doherty, T Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudziak, F Duflot, L Duguid, L Durssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Dwuznik, M Dyndal, M Ebke, J Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Engelmann, R Erdmann, J Ereditato, A Eriksson, D Ernis, G Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Perez, SF Ferrag, S Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, J Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Bustos, ACF Flowerdew, MJ Formica, A Forti, A Fortin, D Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Franchino, S Francis, D Franklin, M Franz, S Fraternali, M French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galster, G Gan, KK Gandrajula, RP Gao, J Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giorgi, FM Giraud, PF Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkialas, I Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Glonti, GL Goblirsch-Kolb, M Goddard, JR Godfrey, J Godlewski, J Goeringer, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Gonalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Silva, MLG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gosling, C Gostkin, MI Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Grebenyuk, OG Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Groth-Jensen, J Grout, ZJ Grybel, K Guan, L Guescini, F Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Gunther, J Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guttman, N Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, PF Hartjes, F Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Heisterkamp, S Hejbal, J Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hofmann, JI Hohlfeld, M Holmes, TR Hong, TM van Huysduynen, LH Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Hu, D Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Ivarsson, J Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, KE Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jungst, RM Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kajomovitz, E Kalderon, CW Kama, S Kanaya, N Kaneda, M Kaneti, S Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karastathis, N Karnevskiy, M Karpov, SN Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Kehoe, R Keil, M Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-Zada, F Khandanyan, H Khanov, A Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, HY Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kitamura, T Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, T Kobel, M Kocian, M Kodys, P Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Konig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J La Rosa, A La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laier, H Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, C Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Le, BT Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, CA Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Lehmacher, M Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzen, G Lenzi, B Leone, R Leonhardt, K Leontsinis, S Leroy, C Lester, CG Lester, CM Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, L Li, L Li, S Li, Y Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loevschall-Jensen, AE Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, BA Long, JD Long, RE Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lou, X Lounis, A Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeno, M Maeno, T Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A Andrade, LMD Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, L March, L Marchand, JF Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marques, CN Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Matsushita, T Mattig, P Mattig, S Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazzaferro, L Mc Goldric, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Meade, A Mechnich, J Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitani, T Mitrevski, J Mitsou, VA Mitsui, S Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Moeller, V Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Moraes, A Morange, N Morel, J Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Moritz, S Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, T Mueller, T Muenstermann, D Munwes, Y Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Narayan, R Nattermann, T Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, MI Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Ohshima, T Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petteni, M Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pires, S Pitt, M Pizio, C Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospelov, GE Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Price, D Price, J Price, LE Prieur, D Primavera, M Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Przysiezniak, H Ptacek, E Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Qureshi, A Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Randle-Conde, AS Rangel-Smith, C Rao, K Rauscher, F Rave, TC Ravenscroft, T Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reisin, H Relich, M Rembser, C Ren, H Ren, ZL Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Ridel, M Rieck, P Rieger, J Rijssenbeek, M Rimoldi, A Rinaldi, L Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodrigues, L Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Romeo, G Adam, ER Rompotis, N Roos, L Ros, E Rosati, S Rosbach, K Rose, M Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sacerdoti, S Saddique, A Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Synchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sartisohn, G Sasaki, O Sasaki, Y Sauvage, G Sauvan, E Savard, P Savu, DO Sawyer, C Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, C Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skottowe, HP Skovpen, KY Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, KM Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosebee, M Soualah, R Soueid, P Soukharev, AM South, D Spagnolo, S Spano, F Spearman, WR Spighi, R Spigo, G Spousta, M Spreitzer, T Spurlock, B Denis, RDS Staerz, S Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steele, G Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramania, H Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tamsett, MC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tani, K Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Teoh, JJ Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thoma, S Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomlinson, L Tomoto, M Tompkins, L Toms, K Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Triplett, N Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Cakir, IT Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Urbaniec, D Urquijo, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Der Deijl, PC van der Geer, R van der Graaf, H Van Der Leeuw, R van der Ster, D Van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloso, F Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Virzi, J Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watanabe, I Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weigell, P Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K White, A White, MJ White, R White, S Whiteson, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilkens, HG Will, JZ Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittig, T Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wright, M Wu, M Wu, SL Wu, X Wu, Y Wulf, E Wyatt, TR Wynne, BM Xella, S Xiao, M Xu, D Xu, L Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamaguchi, Y Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, UK Yang, Y Yanush, S Yao, L Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yen, AL Yildirim, E Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Zabinski, B Zaidan, R Zaitsev, AM Zaman, A Zambito, S Zanello, L Zanzi, D Zaytsev, A Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D della Porta, GZ Zhang, D Zhang, F Zhang, H Zhang, J Zhang, L Zhang, X Zhang, Z Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zobernig, G Zoccoli, A Nedden, MZ Zurzolo, G Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Verzini, M. J. Alconada Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Almond, J. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Alvarez Gonzalez, B. Alviggi, M. G. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Araque, J. P. Arce, A. T. H. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Auerbach, B. Augsten, K. Aurousseau, M. Avolio, G. Azuelos, G. Azuma, Y. Baak, M. A. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Baker, S. Balek, P. Balli, F. Banas, E. Banerjee, Sw. Bangert, A. Bannoura, A. A. E. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. Barreiro Guimaraes da Costa, J. Bartoldus, R. Barton, A. E. Bartos, P. Bartsch, V. Bassalat, A. Basye, A. Bates, R. L. Batkova, L. Batley, J. R. Battistin, M. Bauer, F. Bawa, H. S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, K. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belloni, A. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernard, C. Bernat, P. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertolucci, F. Bertsche, D. Besana, M. I. Besjes, G. J. Bessidskaia, O. Bessner, M. F. Besson, N. Betancourt, C. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boek, T. T. Bogaerts, J. A. Bogdanchikov, A. G. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Branchini, P. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Brendlinger, K. Brennan, A. J. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, G. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, K. Bulekov, O. Bundock, A. C. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buecher, D. Buecher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Byszewski, M. Urban, S. Cabrera Caforio, D. Cakir, O. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Cameron, D. Caminada, L. M. Armadans, R. Caminal Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Gimenez, V. Castillo Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chan, K. Chang, P. Chapleau, B. Chapman, J. D. Charfeddine, D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiefari, G. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Chouridou, S. Chow, B. K. B. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Coggeshall, J. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Colon, G. Compostella, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Connell, S. H. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Cuciuc, C. -M. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Daniells, A. C. Hoffmann, M. Dano Dao, V. Darbo, G. Darlea, G. L. Darmora, S. Dassoulas, J. A. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Vivie De Regie, J. B. De Zorzi, G. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Degenhardt, J. Deigaard, I. Del Peso, J. Del Prete, T. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Micco, B. Di Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Dimitrievska, A. Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Do Valle Wemans, A. Doan, T. K. O. Dobos, D. Doglioni, C. Doherty, T. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudziak, F. Duflot, L. Duguid, L. Duerssen, M. Dunford, M. Yildiz, H. Duran Duren, M. Durglishvili, A. Dwuznik, M. Dyndal, M. Ebke, J. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Engelmann, R. Erdmann, J. Ereditato, A. Eriksson, D. Ernis, G. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Perez, S. Fernandez Ferrag, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Bustos, A. C. Florez Flowerdew, M. J. Formica, A. Forti, A. Fortin, D. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Franklin, M. Franz, S. Fraternali, M. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gandrajula, R. P. Gao, J. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Navarro, J. E. Garcia Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gianotti, F. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkialas, I. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Glonti, G. L. Goblirsch-Kolb, M. Goddard, J. R. Godfrey, J. Godlewski, J. Goeringer, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Gonalo, R. Goncalves Pinto Firmino Da Costa, J. Gonella, L. Gonzalez de la Hoz, S. Parra, G. Gonzalez Silva, M. L. Gonzalez Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goesling, C. Gostkin, M. I. Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstrom, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Grebenyuk, O. G. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Groth-Jensen, J. Grout, Z. J. Grybel, K. Guan, L. Guescini, F. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Gunther, J. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guttman, N. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, P. F. Hartjes, F. Hasegawa, S. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Heisterkamp, S. Hejbal, J. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Herbert, G. H. Hernandez Jimenez, Y. Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hofmann, J. I. Hohlfeld, M. Holmes, T. R. Hong, T. M. van Huysduynen, L. Hooft Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Quiles, A. Irles Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Ivarsson, J. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, K. E. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jungst, R. M. Jussel, P. Rozas, A. Juste Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalderon, C. W. Kama, S. Kanaya, N. Kaneda, M. Kaneti, S. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karastathis, N. Karnevskiy, M. Karpov, S. N. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keil, M. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-Zada, F. Khandanyan, H. Khanov, A. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Y. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kitamura, T. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Klok, P. F. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Koenig, A. C. Koenig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. La Rosa, A. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laier, H. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Le, B. T. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leone, R. Leonhardt, K. Leontsinis, S. Leroy, C. Lester, C. G. Lester, C. M. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, Y. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, B. A. Long, J. D. Long, R. E. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lou, X. Lounis, A. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Miguens, J. Machado Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, M. Maeno, T. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaesc, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Manhaes de Andrade Filho, L. Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, L. March, L. Marchand, J. F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marques, C. N. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, H. Martinez, M. Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Matsushita, T. Maettig, P. Maettig, S. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazzaferro, L. Mc Goldric, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitani, T. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miucci, A. Miyagawa, P. S. Mjoernmark, J. U. Moa, T. Mochizuki, K. Moeller, V. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Moraes, A. Morange, N. Morel, J. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Mueller, T. Muenstermann, D. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Narayan, R. Nattermann, T. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, M. I. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Ohshima, T. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Damazio, D. Oliveira Garcia, E. Oliver Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Aranda, C. Padilla Pagacova, M. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedersen, M. Lopez, S. Pedraza Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Garcia-Estan, M. T. Perez Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petteni, M. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pires, S. Pitt, M. Pizio, C. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Pospelov, G. E. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Przysiezniak, H. Ptacek, E. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Qureshi, A. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Randle-Conde, A. S. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reisin, H. Relich, M. Rembser, C. Ren, H. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Ridel, M. Rieck, P. Rieger, J. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodrigues, L. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romeo, G. Adam, E. Romero Rompotis, N. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, M. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sacerdoti, S. Saddique, A. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Synchez, J. Martinez, V. Sanchez Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sartisohn, G. Sasaki, O. Sasaki, Y. Sauvage, G. Sauvan, E. Savard, P. Savu, D. O. Sawyer, C. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skottowe, H. P. Skovpen, K. Yu. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Spagnolo, S. Spano, F. Spearman, W. R. Spighi, R. Spigo, G. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Staerz, S. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steele, G. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramania, Hs. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tamsett, M. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tani, K. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Tavares Delgado, A. Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Teoh, J. J. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thoma, S. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Topilin, N. D. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Triplett, N. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Cakir, I. Turk Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Urbaniec, D. Urquijo, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Valls Ferrer, J. A. Van Der Deijl, P. C. van der Geer, R. van der Graaf, H. Van Der Leeuw, R. van der Ster, D. Van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloso, F. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Virzi, J. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watanabe, I. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weigell, P. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. White, A. White, M. J. White, R. White, S. Whiteson, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilkens, H. G. Will, J. Z. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittig, T. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wright, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wyatt, T. R. Wynne, B. M. Xella, S. Xiao, M. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamaguchi, Y. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, U. K. Yang, Y. Yanush, S. Yao, L. Yao, W-M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yen, A. L. Yildirim, E. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zaytsev, A. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Zevi della Porta, G. Zhang, D. Zhang, F. Zhang, H. Zhang, J. Zhang, L. Zhang, X. Zhang, Z. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zobernig, G. Zoccoli, A. Nedden, M. zur Zurzolo, G. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Search for supersymmetry in events with four or more leptons in root s=8 TeV pp collisions with the ATLAS detector SO PHYSICAL REVIEW D LA English DT Article ID PARITY VIOLATING DECAYS; MISSING TRANSVERSE-MOMENTUM; E(+)E(-) COLLISIONS; HADRON COLLIDERS; SUPERGAUGE TRANSFORMATIONS; PAIR PRODUCTION; MODEL; PARTICLES; ENERGY; BREAKING AB Results from a search for supersymmetry in events with four or more leptons including electrons, muons and taus are presented. The analysis uses a data sample corresponding to 20.3 fb(-1) of proton proton collisions delivered by the Large Hadron Collider at root s = 8 TeV and recorded by the ATLAS detector. Signal regions are designed to target supersymmetric scenarios that can be either enriched in or depleted of events involving the production of a Z boson. No significant deviations are observed in data from standard model predictions and results are used to set upper limits on the event yields from processes beyond the standard model. Exclusion limits at the 95% confidence level on the masses of relevant supersymmetric particles are obtained. In R-parity-violating simplified models with decays of the lightest supersymmetric particle to electrons and muons, limits of 1350 and 750 GeV are placed on gluino and chargino masses, respectively. In R-parity-conserving simplified models with heavy neutralinos decaying to a massless lightest supersymmetric particle, heavy neutralino masses up to 620 GeV are excluded. Limits are also placed on other supersymmetric scenarios. C1 [Jackson, P.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Chan, K.; Czodrowski, P.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Sbrizzi, A.; Subramania, Hs.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Wingerter-Seez, I.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie, Annecy Le Vieux, France. [Auerbach, B.; Feng, E. J.; Goshaw, A. T.; Love, J.; Malon, D.; Nguyen, D. H.; Paramonov, A.; Proudfoot, J.; Ferrando, B. M. Salvachua; Vaniachine, A.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Toggerson, B.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Maeno, M.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Khalil-Zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Fracchia, S.; Fraternali, M.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Marcisovsky, M.; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Negri, A.; Nemecek, S.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Fracchia, S.; Fraternali, M.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Negri, A.; Nemecek, S.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rubbo, F.; Succurro, A.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Patricelli, S.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Cirkovic, P.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Kocian, M.; Liebig, W.; Lipniacka, A.; Latour, B. Martin Dit; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Cerutti, F.; Ciocio, A.; Copic, K.; Einsweiler, K.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Leggett, C.; Ovcharova, A.; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Sood, A.; Virzi, J.; Wang, H.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Cerutti, F.; Ciocio, A.; Copic, K.; Einsweiler, K.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Leggett, C.; Ovcharova, A.; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Sood, A.; Virzi, J.; Wang, H.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Kuutmann, E. Bergeaas; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Wendland, D.; Nedden, M. zur] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Murray, W. J.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Murray, W. J.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Phys, Gaziantep, Turkey. [Alberghi, G. L.; Boscherini, D.; Bruni, A.; Bruni, G.; Caforio, D.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Mengarelli, A.; Polini, A.; Sbarra, C.; Serfon, C.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Milan, Italy. [Alberghi, G. L.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Fraternali, M.; Gabrielli, A.; Grafstrom, P.; Massa, I.; Mengarelli, A.; Piccinini, M.; Romano, M.; Serfon, C.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeck, S.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Liebal, J.; Limbach, C.; Loddenkoetter, T.; Mergelmeyer, S.; Mueller, K.; Nanava, G.; Nattermann, T.; Obermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uchida, K.; Uhlenbrock, M.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Deigaard, I.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Daya-Ishmukhametova, R. K.; Fitzgerald, E. A.; Gozpinar, S.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Coutinho, Y. Amaral; Caloba, L. P.; Cerqueira, A. S.; Maidantchik, C.; Manhaes de Andrade Filho, L.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Federal Univ Juiz de Fora UFJF, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Hu, X.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Schovancova, J.; Snyder, S.; Steinberg, P.; Takai, H.; Triplett, N.; Undrus, A.; Wenaus, T.; Ye, S.; Zaytsev, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexander, G.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Ducu, O. A.; Jinaru, A.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.; Turra, R.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res, Dept Phys, Cluj Napoca, Romania. [Popeneciu, G. A.] Dev Isotop & Mol Technol, Cluj Napoca, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. [Chitan, A.] West Univ Timisoara, Timisoara, Romania. [Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Romeo, G.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Mueller, T.; Parker, M. A.; Robinson, D.; Thomson, M.; Ward, C. P.; Williams, S.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Abreu, R.; Aleksa, M.; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Battistin, M.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Degenhardt, J.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dopke, J.; Dudarev, A.; Duerssen, M.; Ellis, N.; Elsing, M.; Facini, G.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Franchino, S.; Francis, D.; Froidevaux, D.; Garonne, V.; Gianotti, F.; Gillberg, D.; Glatzer, J.; Godlewski, J.; Silva, M. L. Gonzalez; Goossens, L.; Gorini, B.; Gray, H. M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jakobsen, S.; Jansen, H.; Jungst, R. M.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Martin, B.; Marzin, A.; Messina, A.; Meyer, J.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, J.; Pommes, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Rodrigues, L.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schmieden, K.; Serin, L.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; Van Eldik, N.; van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Boveia, A.; Cheng, Y.; Fiascaris, M.; Gardner, R. W.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Feder Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Lu, F.; Ouyang, Q.; Ren, H.; Shan, L. Y.; Sun, X.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guan, L.; Han, L.; Jiang, Y.; Jin, S.; Li, B.; Liu, J. B.; Liu, K.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Li, Y.; Wang, C.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Ge, P.; Ma, L. L.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Cole, B.; Guo, J.; Hu, D.; Hughes, E. W.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Wulf, E.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Mehlhase, S.; Monk, J.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Lab Nazl Frascati, Milan, Italy. [Capua, M.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Bold, T.; Dabrowski, W.; Dwuznik, M.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Adamczyk, L.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hoffman, J.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Selbach, K. E.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Lou, X.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Bessner, M. F.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lange, C.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Hamburg, Germany. [Argyropoulos, S.; Bessner, M. F.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lange, C.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Esch, H.; Goesling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Kobel, M.; Leonhardt, K.; Mader, W. F.; Morgenstern, M.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Pollard, C. S.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Clark, P. J.; Debenedetti, C.; Edwards, N. C.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Seliverstov, D. M.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Prokofiev, K.; Sansoni, A.; Testa, M.; Vilucchi, E.] INFN Lab Nazl Frascati, Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buecher, D.; Consorti, V.; Di Simone, A.; Fehling-Kaschek, M.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Madar, R.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Rave, T. C.; Ruehr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Ungaro, F. C.; Venturi, M.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alexandre, G.; Ancu, L. S.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Toro, R. Camacho; Clark, A.; Dechenaux, B.; Delitzsch, C. M.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Picazio, A.; Pohl, M.; Rosbach, K.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] INFN Sez Genova, Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Buzatu, A.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; Denis, R. D. St.; Steele, G.; Stewart, G. A.; Thompson, A. S.; Wright, M.] Univ Giessen, SUPA Sch Phys & Astron, D-35390 Giessen, Germany. [Belloni, A.; Bierwagen, K.; Bindi, M.; Blumenschein, U.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Hensel, C.; Kawamura, G.; Keil, M.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mchedlidze, G.; Morel, J.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Shabalina, E.; Stolte, P.; Schroeder, T. Vazquez; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Le, B. T.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS, Lab Phys Subatom & Cosmol, IN2P3, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Barreiro Guimaraes da Costa, J.; Belloni, A.; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Yen, A. L.; Zevi della Porta, G.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Brandt, O.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Hanke, P.; Jongmanns, J.; Khomich, A.; Kluge, E. -E.; Laier, H.; Lang, V. S.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Dattagupta, A.; Evans, H.; Franz, S.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Jussel, P.; Kneringer, E.; Lukas, W.; Nagai, K.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Cinca, D.; Gandrajula, R. P.; Mallik, U.; Mandrysch, R.; Morange, N.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Inamaru, Y.; Kishimoto, T.; Kitamura, T.; Kurashige, H.; Kurumida, R.; Matsushita, T.; Ochi, A.; Shimizu, S.; Takeda, H.; Tani, K.; Watanabe, I.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Allison, L. J.; Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] INFN Sez Lecce, Lecce, Italy. [Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Schnellbach, Y. J.; Semprini-Cesari, N.; Vossebeld, J. H.; Waller, P.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Dedovich, D. V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Dedovich, D. V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Salamanna, G.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Cantrill, R.; Connelly, I. A.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Cooper, B. D.; Davison, A. R.; Davison, P.; Falla, R. J.; Gregersen, K.; Gutschow, C.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Korn, A.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, M. I.; Pilkington, A. D.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Bernius, C.; Greenwood, Z. D.; Jana, D. K.; Sawyer, L.; Sircar, A.; Subramaniam, R.; Tamsett, M. C.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaesc, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaesc, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaesc, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Glasman, C.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Arnaez, O.; Blum, W.; Buecher, V.; Caputo, R.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Goeringer, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Huelsing, T. A.; Ji, W.; Karnevskiy, M.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moreno, D.; Moritz, S.; Mueller, T.; Poettgen, R.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Brown, G.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Peters, R. F. Y.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Chen, L.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Gao, J.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Chen, L.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Gao, J.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Bellomo, M.; Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Mantifel, R.; Robertson, S. H.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Jennens, D.; Kubota, T.; Limosani, A.; Hanninger, G. Nunes; Nuti, F.; Petersen, B. A.; Rados, P.; Shao, Q. T.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Urquijo, P.; Volpi, M.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Harper, D.; Levin, D.; Liu, L.; Long, J. D.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Panikashvili, N.; Qian, J.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Xu, L.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Alvarez Gonzalez, B.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Meloni, F.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.] INFN Sez Milano, Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Meloni, F.; Perini, L.; Pizio, C.; Ragusa, F.; Simoniello, R.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Asbah, N.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Inst Phys, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Timoshenko, S.; Vorobev, K.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Biebel, O.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Heller, C.; Hertenberger, R.; Legger, F.; Lorenz, J.; Mann, A.; Meineck, C.; Mitrevski, J.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Schmitt, C.; Vladoiu, D.; Walker, R.; Will, J. Z.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Pospelov, G. E.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Stern, S.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Del Prete, T.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Rossi, E.; Sanchez, A.; Sekula, S. J.; Zurzolo, G.] INFN Sez Napoli, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Croft, V.; Dao, V.; De Groot, N.; Filthaut, F.; Galea, C.; Klok, P. F.; Koenig, A. C.; Salvucci, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Burghgrave, B.; Calkins, R.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL USA. [Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Skovpen, K. Yu.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA. [Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Bousson, N.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Gkialas, I.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Vivie De Regie, J. B.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serkin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Vivie De Regie, J. B.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serkin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Beck, H. P.; Endo, M.; Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, K.; Cameron, D.; Catmore, J. R.; Gjelsten, B. K.; Gramstad, E.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Behr, K.; Boddy, C. R.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Livermore, S. S. A.; Nickerson, R. B.; Pachal, K.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Gaudio, G.; Livan, M.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] INFN Sez Pavia, Pavia, Italy. [Conta, C.; Dondero, P.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Ospanov, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Sellers, G.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Peso, J.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Su, J.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Amorim, A.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Tavares Delgado, A.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Gomes, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Coimbra, Ctr Fis Nucl, Coimbra, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Do Valle Wemans, A.] Univ Nova Lisboa, Dep Fis, Fac Ciencias Tecnol, Caparica, Portugal. [Do Valle Wemans, A.] Univ Nova Lisboa, CEFITEC, Fac Ciencias Tecnol, Caparica, Portugal. [Bohm, J.; Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Gunther, J.; Jakubek, J.; Kohout, Z.; Kral, V.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Ivashin, A. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Di Domenico, A.; Dionisi, C.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vanadia, M.; Vari, R.; Veneziano, S.; Zanello, L.] INFN Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Zorzi, G.; Di Domenico, A.; Dionisi, C.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monzani, S.; Camillocci, E. Solfaroli; Vanadia, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Liberti, B.; Mazzaferro, L.; Paolozzi, L.; Salamon, A.; Santonico, R.] INFN Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Mazzaferro, L.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Branchini, P.; Ceradini, F.; Micco, B. Di; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Stanescu, C.; Trovatelli, M.] INFN Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Micco, B. Di; Orestano, D.; Pastore, F.; Petrucci, F.; Trovatelli, M.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA, Marrakech, Morocco. [El Moursli, R. Cherkaoui; Haddad, N.] Univ Mohammed V Agdal, Fac Sci, Oujda, Morocco. [Abreu, H.; Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Goncalves Pinto Firmino Da Costa, J.; Grabas, H. M. X.; Guyot, C.; Hanna, R.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mal, P.; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J-P.; Mijovic, L.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] CEA Saclay, Commissariat Energie Atom & Energies Alternat, DSM IRFU Inst Rech Lois Fondament Univers, F-91191 Gif Sur Yvette, France. [Grillo, A. A.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; De Bruin, P. H. Sales; Verducci, M.; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Paredes, B. Lopez; Miyagawa, P. S.; Paganis, E.; Suruliz, K.; Takeshita, T.; Tovey, D. R.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Dawe, E.; Godfrey, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; Trottier-McDonald, M.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kagan, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Batkova, L.; Blazek, T.; Federic, P.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dep Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Carrillo-Montoya, G. D.; Chen, X.; Garcia, B. R. Mellado; Ruan, X.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Dept Phys, ZA-2050 Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bessidskaia, O.; Bohm, C.; Clement, C.; Cribbs, W. A.; Eriksson, D.; Gellerstedt, K.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bessidskaia, O.; Bohm, C.; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Sjolin, J.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Bee, C. P.; Campoverde, A.; Chen, K.; della Volpe, D.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bee, C. P.; Campoverde, A.; Chen, K.; della Volpe, D.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; Cerri, A.; Barajas, C. A. Chavez; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Bangert, A.; Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Patel, N. D.; Saavedra, A. F.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, C. A.; Lee, S. C.; Li, B.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Ren, Z. L.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, C.; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexa, C.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Leisos, A.; Nomidis, I.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Ishitsuka, M.; Jinnouchi, O.; Kanno, T.; Kuze, M.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Brelier, B.; Chau, C. C.; Ilic, N.; Keung, J.; Krieger, P.; Mc Goldric, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Thompson, P. D.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Fortin, D.; Gingrich, D. M.; Koutsman, A.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Stelzer-Chilton, O.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Bustos, A. C. Florez; Ramos, J. A. Manjarres; Palacino, G.; Qureshi, A.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Farrell, S.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Shaw, K.; Soualah, R.] INFN Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Cobal, M.; De Sanctis, U.; Quayle, W. B.; Shaw, K.; Soualah, R.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Giordani, M. P.; Pinamonti, M.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; Higon-Rodriguez, E.; Quiles, A. Irles; Lacasta, C.; March, L.; Garcia, E. Oliver; Adam, E. Romero; Ros, E.; Salt, J.; Synchez, J.; Torro Pastor, E.; Valero, A.; Gallego, E. Valladolid; Valls Ferrer, J. A.] Univ Valencia, IFIC, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Synchez, J.; Martinez, V. Sanchez; Soldevila, U.; Torro Pastor, E.; Valero, A.; Gallego, E. Valladolid; Valls Ferrer, J. A.; Perez, M. Villaplana; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Synchez, J.; Martinez, V. Sanchez; Soldevila, U.; Torro Pastor, E.; Valero, A.; Gallego, E. Valladolid; Valls Ferrer, J. A.; Perez, M. Villaplana; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Synchez, J.; Martinez, V. Sanchez; Soldevila, U.; Torro Pastor, E.; Valero, A.; Gallego, E. Valladolid; Valls Ferrer, J. A.; Perez, M. Villaplana; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Synchez, J.; Martinez, V. Sanchez; Soldevila, U.; Torro Pastor, E.; Valero, A.; Gallego, E. Valladolid; Valls Ferrer, J. A.; Perez, M. Villaplana; Vos, M.] CSIC, Valencia, Spain. [Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Loh, C. W.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; David, C.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Kimura, N.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Castillo, L. R. Flores; Hard, A. S.; Hellman, S.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Martin, T. A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Redelbach, A.; Schreyer, M.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Trischuk, W.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Barisonzi, M.; Becker, K.; Beermann, T. A.; Boek, J.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Maettig, P.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich C Phys, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] Inst Natl Phys Nucl & Phys Particules IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Apolle, R.; Davies, E.; Feng, C.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Conventi, F.; Del Prete, T.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Sobie, R.; Teuscher, R. J.] IPP, Toronto, ON, Canada. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Castillo, L. R. Flores] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China. [Gkialas, I.; Papageorgiou, K.] Univ Aegean, Dept Financial & Management Engn, Chios, Greece. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Jenni, P.] CERN, Geneva, Switzerland. [Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Korol, A. A.; Maximov, D. A.; Rezanova, O. L.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Liu, K.] Acad Sinica, Inst Phys, Lab Phys Nucl, Taipei, Taiwan. [Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Tamsett, M. C.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; messina, andrea/C-2753-2013; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Gauzzi, Paolo/D-2615-2009; Fabbri, Laura/H-3442-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Peleganchuk, Sergey/J-6722-2014; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; Li, Liang/O-1107-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; Perrino, Roberto/B-4633-2010; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Olshevskiy, Alexander/I-1580-2016; Snesarev, Andrey/H-5090-2013; Solfaroli Camillocci, Elena/J-1596-2012; BESSON, NATHALIE/L-6250-2015; Vanadia, Marco/K-5870-2016; Shmeleva, Alevtina/M-6199-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; Andreazza, Attilio/E-5642-2011; Carvalho, Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Buttar, Craig/D-3706-2011; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Bosman, Martine/J-9917-2014; Joergensen, Morten/E-6847-2015; Riu, Imma/L-7385-2014; Mir, Lluisa-Maria/G-7212-2015; Marti-Garcia, Salvador/F-3085-2011; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Ciubancan, Liviu Mihai/L-2412-2015; Brooks, William/C-8636-2013; Lei, Xiaowen/O-4348-2014; Di Domenico, Antonio/G-6301-2011; de Groot, Nicolo/A-2675-2009; Wemans, Andre/A-6738-2012; Nemecek, Stanislav/G-5931-2014; Gutierrez, Phillip/C-1161-2011; Ventura, Andrea/A-9544-2015; Livan, Michele/D-7531-2012; De, Kaushik/N-1953-2013; Mitsou, Vasiliki/D-1967-2009; Smirnova, Oxana/A-4401-2013; White, Ryan/E-2979-2015; Lokajicek, Milos/G-7800-2014; Villa, Mauro/C-9883-2009; Alexa, Calin/F-6345-2010; Turra, Ruggero/N-2374-2014; Castro, Nuno/D-5260-2011; Moraes, Arthur/F-6478-2010; Staroba, Pavel/G-8850-2014; Warburton, Andreas/N-8028-2013; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Nepomuceno, Andre/M-9190-2014; Gabrielli, Alessandro/H-4931-2012; Korol, Aleksandr/A-6244-2014; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; Fassi, Farida/F-3571-2016; la rotonda, laura/B-4028-2016; OI Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Gauzzi, Paolo/0000-0003-4841-5822; Fabbri, Laura/0000-0002-4002-8353; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592; Monzani, Simone/0000-0002-0479-2207; Li, Liang/0000-0001-6411-6107; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; Perrino, Roberto/0000-0002-5764-7337; SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672; Olshevskiy, Alexander/0000-0002-8902-1793; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Vanadia, Marco/0000-0003-2684-276X; Tikhomirov, Vladimir/0000-0002-9634-0581; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; Andreazza, Attilio/0000-0001-5161-5759; Carvalho, Joao/0000-0002-3015-7821; Mashinistov, Ruslan/0000-0001-7925-4676; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Bosman, Martine/0000-0002-7290-643X; Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582; Mir, Lluisa-Maria/0000-0002-4276-715X; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Ciubancan, Liviu Mihai/0000-0003-1837-2841; Brooks, William/0000-0001-6161-3570; Lei, Xiaowen/0000-0002-2564-8351; Di Domenico, Antonio/0000-0001-8078-2759; Wemans, Andre/0000-0002-9669-9500; Ventura, Andrea/0000-0002-3368-3413; Livan, Michele/0000-0002-5877-0062; De, Kaushik/0000-0002-5647-4489; Mitsou, Vasiliki/0000-0002-1533-8886; Smirnova, Oxana/0000-0003-2517-531X; White, Ryan/0000-0003-3589-5900; Villa, Mauro/0000-0002-9181-8048; Castro, Nuno/0000-0001-8491-4376; Moraes, Arthur/0000-0002-5157-5686; Warburton, Andreas/0000-0002-2298-7315; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Gabrielli, Alessandro/0000-0001-5346-7841; Salamanna, Giuseppe/0000-0002-0861-0052; Veneziano, Stefano/0000-0002-2598-2659; Price, Darren/0000-0003-2750-9977; Korol, Aleksandr/0000-0001-8448-218X; Giordani, Mario/0000-0002-0792-6039; Capua, Marcella/0000-0002-2443-6525; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Fassi, Farida/0000-0002-6423-7213; la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Giorgi, Filippo Maria/0000-0003-1589-2163; Coccaro, Andrea/0000-0003-2368-4559 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET; ERC; NSRF, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF, I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; NCN, Poland; GRICES, Portugal; FCT, Portugal; MNE/IFA, Romania; MES of Russia; ROSATOM, Russian Federation; JINR; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, USA; NSF, USA FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; and DOE and NSF, USA. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway and Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), and in the Tier-2 facilities NR 112 TC 12 Z9 12 U1 7 U2 103 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD SEP 4 PY 2014 VL 90 IS 5 AR 052001 DI 10.1103/PhysRevD.90.052001 PG 33 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AO3VO UT WOS:000341264900001 ER PT J AU Eldred, J Zwaska, R AF Eldred, Jeffrey Zwaska, Robert TI Dynamical stability of slip-stacking particles SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID PARAMETRIC PENDULUM; RESONANCE; ATOMS AB We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other. C1 [Eldred, Jeffrey] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Eldred, Jeffrey; Zwaska, Robert] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Eldred, J (reprint author), Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. OI Eldred, Jeffrey/0000-0003-4432-072X FU U.S. Department of Energy [DE-FG02-12ER41800]; National Science Foundation [NSF PHY-1205431] FX This work is supported in part by grants from the U.S. Department of Energy under Contract No. DE-FG02-12ER41800 and the National Science Foundation NSF PHY-1205431. Special thanks to S. Y, Lee for providing a crucial mentoring role immediately prior to the beginning of this research. NR 32 TC 0 Z9 0 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD SEP 4 PY 2014 VL 17 IS 9 AR 094001 DI 10.1103/PhysRevSTAB.17.094001 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AO3WQ UT WOS:000341268200001 ER PT J AU Calvin, K Edmonds, J Bakken, B Wise, M Kim, S Luckow, P Patel, P Graabak, I AF Calvin, Katherine Edmonds, Jae Bakken, Bjorn Wise, Marshall Kim, Sonny Luckow, Patrick Patel, Pralit Graabak, Ingeborg TI EU 20-20-20 energy policy as a model for global climate mitigation SO CLIMATE POLICY LA English DT Article DE climate policy; energy policy; emissions mitigation; climate stabilization AB The EU has established an aggressive portfolio with explicit near-term targets for 2020 - to reduce GHG emissions by 20%, rising to 30% if the conditions are right, to increase the share of renewable energy to 20%, and to make a 20% improvement in energy efficiency - intended to be the first step in a long-term strategy to limit climate forcing. The effectiveness and cost of extending these measures in time are considered along with the ambition and propagation to the rest of the world. Numerical results are reported and analysed for the contribution of the portfolio's various elements through a set of sensitivity experiments. It is found that the hypothetical programme leads to very substantial reductions in GHG emissions, dramatic increases in use of electricity, and substantial changes in land-use including reduced deforestation, but at the expense of higher food prices. The GHG emissions reductions are driven primarily by the direct limits. Although the carbon price is lower under the hypothetical protocol than it would be under the emissions cap alone, the economic cost of the portfolio is higher, between 13% and 22%. C1 [Calvin, Katherine; Edmonds, Jae; Wise, Marshall; Kim, Sonny; Patel, Pralit] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Bakken, Bjorn; Graabak, Ingeborg] SINTEF, Div Energy, N-7465 Trondheim, Norway. [Luckow, Patrick] Synapse Energy Econ Inc, Cambridge, MA 02139 USA. RP Edmonds, J (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, 5825 Univ Res Court,Suite 3500, College Pk, MD 20740 USA. EM jae@pnnl.gov OI Calvin, Katherine/0000-0003-2191-4189 NR 14 TC 1 Z9 1 U1 0 U2 13 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1469-3062 EI 1752-7457 J9 CLIM POLICY JI Clim. Policy PD SEP 3 PY 2014 VL 14 IS 5 BP 581 EP 598 DI 10.1080/14693062.2013.879794 PG 18 WC Environmental Studies; Public Administration SC Environmental Sciences & Ecology; Public Administration GA AS3FC UT WOS:000344161100003 ER PT J AU Chinh, NH Kim, N Nguyen-Phan, TD Yoo, IK Shin, E AF Chinh Nguyen-Huy Kim, Nayoung Thuy-Duong Nguyen-Phan Yoo, Ik-Keun Shin, Eun Woo TI Adsorptive interaction of bisphenol A with mesoporous titanosilicate/reduced graphene oxide nanocomposite materials: FT-IR and Raman analyses SO NANOSCALE RESEARCH LETTERS LA English DT Article DE Bisphenol A; Graphene oxide; Mesoporous titanosilicate; Adsorption sites; Interaction ID AQUEOUS-SOLUTION; SILICATE MCM-41; WASTE-WATER; PHOTOCATALYSIS; REMOVAL; NANOMATERIALS; EXPOSURE; ZEOLITE; DYES AB Nanocomposite materials containing graphene oxide have attracted tremendous interest as catalysts and adsorbents for water purification. In this study, mesoporous titanosilicate/reduced graphene oxide composite materials with different Ti contents were employed as adsorbents for removing bisphenol A (BPA) from water systems. The adsorptive interaction between BPA and adsorption sites on the composite materials was investigated by Fourier transform infrared (FT-IR) and Raman spectroscopy. Adsorption capacities of BPA at equilibrium, q (e) (mg/g), decreased with increasing Ti contents, proportional to the surface area of the composite materials. FT-IR observations for fresh and spent adsorbents indicated that BPA adsorbed onto the composite materials by the electrostatic interaction between OH functional groups contained in BPA and on the adsorbents. The electrostatic adsorption sites on the adsorbents were categorized into three hydroxyl groups: Si-OH, Ti-OH, and graphene-OH. In Raman spectra, the intensity ratios of D to G band were decreased after the adsorption of BPA, implying adsorptive interaction of benzene rings of BPA with the sp(2) hybrid structure of the reduced graphene oxide. C1 [Chinh Nguyen-Huy; Kim, Nayoung; Yoo, Ik-Keun; Shin, Eun Woo] Univ Ulsan, Sch Chem Engn, Ulsan 680749, South Korea. [Thuy-Duong Nguyen-Phan] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Shin, E (reprint author), Univ Ulsan, Sch Chem Engn, Daehakro 93, Ulsan 680749, South Korea. EM ewshin@ulsan.ac.kr RI Nguyen Phan, Thuy Duong/C-8751-2014 FU Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Education, Science and Technology [2010-0008810]; Business for Cooperative R&D between Industry, Academy, and Research Institute - Korea Small and Medium Business Administration [C0113499] FX This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2010-0008810) and by Business for Cooperative R&D between Industry, Academy, and Research Institute funded by the Korea Small and Medium Business Administration in 2013 (Grant No. C0113499). NR 33 TC 0 Z9 0 U1 6 U2 79 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1556-276X J9 NANOSCALE RES LETT JI Nanoscale Res. Lett. PD SEP 3 PY 2014 VL 9 AR 462 DI 10.1186/1556-276X-9-462 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA AP6ZB UT WOS:000342226100001 ER PT J AU Polak, MP Scharoch, P Kudrawiec, R Kopaczek, J Winiarski, MJ Linhart, WM Rajpalke, MK Yu, KM Jones, TS Ashwin, MJ Veal, TD AF Polak, M. P. Scharoch, P. Kudrawiec, R. Kopaczek, J. Winiarski, M. J. Linhart, W. M. Rajpalke, M. K. Yu, K. M. Jones, T. S. Ashwin, M. J. Veal, T. D. TI Theoretical and experimental studies of electronic band structure for GaSb1-xBix in the dilute Bi regime SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article DE GaSbBi; electronic structure; ab initio ID AUGMENTED-WAVE METHOD; SPECTROSCOPY; GAAS1-XBIX; ALLOYS; PSEUDOPOTENTIALS; GAP AB Photoreflectance (PR) spectroscopy was applied to study the band gap in GaSb1-xBix alloys with Bi < 5%. Obtained results have been interpreted in the context of ab initio electronic band structure calculations in which the supercell (SC) based calculations are joined with the alchemical mixing (AM) approximation applied to a single atom in the cell. This approach, which we call SC-AM, allows on the one hand to study alloys with a very small Bi content, and on the other hand to avoid limitations characteristic of a pure AM approximation. It has been shown that the pure AM does not reproduce the GaSb1-xBix band gap determined from PR while the agreement between experimental data and the ab initio calculations of the band gap obtained within the SC-AM approach is excellent. These calculations show that the incorporation of Bi atoms into the GaSb host modifies both the conduction and the valence band. The shift rates found in this work are respectively -26.0 meV per % Bi for the conduction band and 9.6 meV per % Bi for the valence band that consequently leads to a reduction in the band gap by 35.6 meV per % Bi. The shifts found for the conduction and valence band give a similar to 27% (73%) valence (conduction) band offset between GaSb1-xBix and GaSb. The rate of the Bi-related shift for the split-off band is -7.0 meV per % Bi and the respective increase in the spin-orbit split-off is 16.6 meV per % Bi. C1 [Polak, M. P.; Scharoch, P.; Kudrawiec, R.; Kopaczek, J.] Wroclaw Univ Technol, Inst Phys, PL-50370 Wroclaw, Poland. [Winiarski, M. J.] Polish Acad Sci, Inst Low Temp & Struct Res, PL-50422 Wroclaw, Poland. [Linhart, W. M.; Rajpalke, M. K.; Veal, T. D.] Univ Liverpool, Sch Phys Sci, Stephenson Inst Renewable Energy, Liverpool, Merseyside, England. [Linhart, W. M.; Rajpalke, M. K.; Veal, T. D.] Univ Liverpool, Sch Phys Sci, Dept Phys, Liverpool, Merseyside, England. [Yu, K. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Jones, T. S.; Ashwin, M. J.] Univ Warwick, Dept Chem, Coventry CV4 7AL, W Midlands, England. RP Polak, MP (reprint author), Wroclaw Univ Technol, Inst Phys, Wybrzeze Wyspianskiego 27, PL-50370 Wroclaw, Poland. EM pawel.scharoch@pwr.edu.pl RI Veal, Tim/A-3872-2010; ashwin, mark/A-2426-2014; OI Veal, Tim/0000-0002-0610-5626; Polak, Maciej/0000-0001-7198-7779; ashwin, mark/0000-0001-8657-8097; Yu, Kin Man/0000-0003-1350-9642 FU NCN the University of Liverpool [2012/07/E/ST3/01742]; Engineering and Physical Sciences Research Council [EP/G004447/2, EP/H021388/1]; MNiSzW FX The authors acknowledge financial support from the NCN (grant no. 2012/07/E/ST3/01742) the University of Liverpool and the Engineering and Physical Sciences Research Council under grants EP/G004447/2 and EP/H021388/1. The ab initio calculations were performed in the Wroclaw Centre for Networking and Supercomputing. In addition, JK acknowledges the support within the 'Diamond grant' from the MNiSzW. NR 48 TC 15 Z9 15 U1 3 U2 35 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 EI 1361-6463 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD SEP 3 PY 2014 VL 47 IS 35 AR 355107 DI 10.1088/0022-3727/47/35/355107 PG 7 WC Physics, Applied SC Physics GA AO5AX UT WOS:000341353800012 ER PT J AU Stenfeldt, C Pacheco, JM Rodriguez, LL Arzt, J AF Stenfeldt, Carolina Pacheco, Juan M. Rodriguez, Luis L. Arzt, Jonathan TI Early Events in the Pathogenesis of Foot-and-Mouth Disease in Pigs; Identification of Oropharyngeal Tonsils as Sites of Primary and Sustained Viral Replication SO PLOS ONE LA English DT Article ID KIDNEY-CELL LINE; NATURAL AEROSOLS; HOST-RANGE; VIRUS; SWINE; CATTLE; TRANSMISSION; INFECTION; ANTIBODY; CONTACT AB A time-course study was performed to elucidate the early events of foot-and-mouth disease virus (FMDV) infection in pigs subsequent to simulated natural, intra-oropharyngeal, inoculation. The earliest detectable event was primary infection in the lingual and paraepiglottic tonsils at 6 hours post inoculation (hpi) characterized by regional localization of viral RNA, viral antigen, and infectious virus. At this time FMDV antigen was localized in cytokeratin-positive epithelial cells and CD172a-expressing leukocytes of the crypt epithelium of the paraepiglottic tonsils. De novo replication of FMDV was first detected in oropharyngeal swab samples at 12 hpi and viremia occurred at 18-24 hpi, approximately 24 hours prior to the appearance of vesicular lesions. From 12 through 78 hpi, microscopic detection of FMDV was consistently localized to cytokeratin-positive cells within morphologically characteristic segments of oropharyngeal tonsil crypt epithelium. During this period, leukocyte populations expressing CD172a, SLA-DQ class II and/or CD8 were found in close proximity to infected epithelial cells, but with little or no co-localization with viral proteins. Similarly, M-cells expressing cytokeratin-18 did not co-localize with FMDV proteins. Intra-epithelial micro-vesicles composed of acantholytic epithelial cells expressing large amounts of structural and non-structural FMDV proteins were present within crypts of the tonsil of the soft palate during peak clinical infection. These findings inculpate the paraepiglottic tonsils as the primary site of FMDV infection in pigs exposed via the gastrointestinal tract. Furthermore, the continuing replication of FMDV in the oropharyngeal tonsils during viremia and peak clinical infection with no concurrent amplification of virus occurring in the lower respiratory tract indicates that these sites are the major source of shedding of FMDV from pigs. C1 [Stenfeldt, Carolina; Pacheco, Juan M.; Rodriguez, Luis L.; Arzt, Jonathan] ARS, Plum Isl Anim Dis Ctr, Foreign Anim Dis Res Unit, USDA, Greenport, NY 11944 USA. [Stenfeldt, Carolina] Oak Ridge Inst Sci & Educ, PIADC Res Participat Program, Oak Ridge, TN USA. RP Arzt, J (reprint author), ARS, Plum Isl Anim Dis Ctr, Foreign Anim Dis Res Unit, USDA, Greenport, NY 11944 USA. EM Jonathan.Arzt@ars.usda.gov OI Pacheco, Juan/0000-0001-5477-0201; Stenfeldt, Carolina/0000-0002-2074-3886; Arzt, Jonathan/0000-0002-7517-7893 FU ARS-CRIS Project [1940-32000-057-00D]; Science and Technology Directorate of the U.S. Department of Homeland Security [HSHQDC-11-X-00189]; Plum Island Animal Disease Center Research Participation Program fellowship; National Pork Board (NPB project) [11-174]; NPB FX This research was funded in part by ARS-CRIS Project 1940-32000-057-00D and an interagency agreement with the Science and Technology Directorate of the U.S. Department of Homeland Security (award number HSHQDC-11-X-00189). CS is a recipient of a Plum Island Animal Disease Center Research Participation Program fellowship, administered by the Oak Ridge Institute for Science and Education (ORISE; www.orau.org) through an interagency agreement with the US Department of Energy. Additional funding was received from the National Pork Board (NPB project identification number: 11-174; www.pork.org), a government-owned corporation that administers a competitive peer-reviewed grants process with the objective to select and fund projects researching areas of importance to the pork industry. None of the contributing authors are employed by NPB, nor professionally evaluated by this entity. The funding received from NPB does not alter our adherence to PLOS ONE policies on sharing data and materials. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 40 TC 4 Z9 4 U1 2 U2 8 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD SEP 3 PY 2014 VL 9 IS 9 AR e106859 DI 10.1371/journal.pone.0106859 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AO3TB UT WOS:000341257700125 PM 25184288 ER PT J AU Zemojtel, T Kohler, S Mackenroth, L Jager, M Hecht, J Krawitz, P Graul-Neumann, L Doelken, S Ehmke, N Spielmann, M Oien, NC Schweiger, MR Kruger, U Frommer, G Fischer, B Kornak, U Flottmann, R Ardeshirdavani, A Moreau, Y Lewis, SE Haendel, M Smedley, D Horn, D Mundlos, S Robinson, PN AF Zemojtel, Tomasz koehler, Sebastian Mackenroth, Luisa Jaeger, Marten Hecht, Jochen Krawitz, Peter Graul-Neumann, Luitgard Doelken, Sandra Ehmke, Nadja Spielmann, Malte Oien, Nancy Christine Schweiger, Michal R. Krueger, Ulrike Frommer, Goetz Fischer, Bjoern Kornak, Uwe Floettmann, Ricarda Ardeshirdavani, Amin Moreau, Yves Lewis, Suzanna E. Haendel, Melissa Smedley, Damian Horn, Denise Mundlos, Stefan Robinson, Peter N. TI Effective diagnosis of genetic disease by computational phenotype analysis of the disease-associated genome SO SCIENCE TRANSLATIONAL MEDICINE LA English DT Article ID MUCOLIPIDOSIS TYPE-IV; INTELLECTUAL DISABILITY; MISSENSE MUTATIONS; ALKALINE-PHOSPHATASE; MENTAL-RETARDATION; DATABASE; HYPOPHOSPHATASIA; DISORDERS; VARIANTS; ONTOLOGY AB Less than half of patients with suspected genetic disease receive a molecular diagnosis. We have therefore integrated next-generation sequencing (NGS), bioinformatics, and clinical data into an effective diagnostic work-flow. We used variants in the 2741 established Mendelian disease genes [the disease-associated genome (DAG)] to develop a targeted enrichment DAG panel (7.1 Mb), which achieves a coverage of 20-fold or better for 98% of bases. Furthermore, we established a computational method [Phenotypic Interpretation of eXomes (PhenIX)] that evaluated and ranked variants based on pathogenicity and semantic similarity of patients' phenotype described by Human Phenotype Ontology (HPO) terms to those of 3991 Mendelian diseases. In computer simulations, ranking genes based on the variant score put the true gene in first place less than 5% of the time; PhenIX placed the correct gene in first place more than 86% of the time. In a retrospective test of PhenIX on 52 patients with previously identified mutations and known diagnoses, the correct gene achieved a mean rank of 2.1. In a prospective study on 40 individuals without a diagnosis, PhenIX analysis enabled a diagnosis in 11 cases (28%, at a mean rank of 2.4). Thus, the NGS of the DAG followed by phenotype-driven bioinformatic analysis allows quick and effective differential diagnostics in medical genetics. C1 [Zemojtel, Tomasz; koehler, Sebastian; Mackenroth, Luisa; Jaeger, Marten; Krawitz, Peter; Graul-Neumann, Luitgard; Doelken, Sandra; Ehmke, Nadja; Spielmann, Malte; Oien, Nancy Christine; Schweiger, Michal R.; Krueger, Ulrike; Fischer, Bjoern; Kornak, Uwe; Floettmann, Ricarda; Horn, Denise; Mundlos, Stefan; Robinson, Peter N.] Charite, Inst Med Genet & Human Genet, D-13353 Berlin, Germany. [Zemojtel, Tomasz] Polish Acad Sci, Inst Bioorgan Chem, PL-61704 Poznan, Poland. [Zemojtel, Tomasz] Lab Berlin Charite Vivantes GmbH, Humangenet, D-13353 Berlin, Germany. [Hecht, Jochen; Krawitz, Peter; Spielmann, Malte; Schweiger, Michal R.; Fischer, Bjoern; Kornak, Uwe; Mundlos, Stefan; Robinson, Peter N.] Max Planck Inst Mol Genet, D-14195 Berlin, Germany. [Hecht, Jochen; Mundlos, Stefan; Robinson, Peter N.] Charite, Berlin Brandenburg Ctr Regenerat Therapies, D-13353 Berlin, Germany. [Oien, Nancy Christine] Max Delbruck Ctr Mol Med, D-13125 Berlin, Germany. [Schweiger, Michal R.] Univ Cologne, Cologne Ctr Genom, D-50931 Cologne, Germany. [Frommer, Goetz] Agilent Technol, D-76337 Waldbronn, Germany. [Ardeshirdavani, Amin; Moreau, Yves] Katholieke Univ Leuven, Dept Elect Engn, STADIUS Ctr Dynam Syst Signal Proc & Data Analyt, B-3001 Leuven, Belgium. [Lewis, Suzanna E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. [Haendel, Melissa] Oregon Hlth & Sci Univ, Univ Lib, Portland, OR 97327 USA. [Haendel, Melissa] Oregon Hlth & Sci Univ, Dept Med Informat & Clin Epidemiol, Portland, OR 97327 USA. [Smedley, Damian] Wellcome Trust Sanger Inst, Mouse Informat Grp, Hinxton CB10 1SA, Cambs, England. [Robinson, Peter N.] Free Univ Berlin, Dept Math & Comp Sci, Inst Bioinformat, D-14195 Berlin, Germany. RP Robinson, PN (reprint author), Charite, Inst Med Genet & Human Genet, Augustenburger Pl 1, D-13353 Berlin, Germany. EM peter.robinson@charite.de RI Fischer-Zirnsak, Bjorn/D-7487-2013; Schweiger, Michal/H-5270-2015; OI Schweiger, Michal/0000-0002-4672-0623; Lewis, Suzanna/0000-0002-8343-612X; Kohler, Sebastian/0000-0002-5316-1399 FU Bundesministerium fur Bildung und Forschung (BMBF) [0313911, 0316065E, 0316190A]; Wellcome Trust; NIH [1R24OD011883-02]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; Volkswagenstiftung; Max Planck Foundation FX Funding: The study was supported by grants from the Bundesministerium fur Bildung und Forschung (BMBF project numbers 0313911, 0316065E, and 0316190A), core infrastructure funding from the Wellcome Trust, NIH 1R24OD011883-02, and by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231, the Volkswagenstiftung (Lichtenberg Program to M. R. S.), and a grant to S. M. by the Max Planck Foundation. Agilent supplied the SureSelect kits at no charge. NR 70 TC 53 Z9 54 U1 2 U2 17 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 1946-6234 EI 1946-6242 J9 SCI TRANSL MED JI Sci. Transl. Med. PD SEP 3 PY 2014 VL 6 IS 252 AR 252ra123 DI 10.1126/scitranslmed.3009262 PG 9 WC Cell Biology; Medicine, Research & Experimental SC Cell Biology; Research & Experimental Medicine GA AO4KD UT WOS:000341305400007 PM 25186178 ER PT J AU Zhao, YX Zhu, K AF Zhao, Yixin Zhu, Kai TI Efficient Planar Perovskite Solar Cells Based on 1.8 eV Band Gap CH3NH3PbI2Br Nanosheets via Thermal Decomposition SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ORGANOMETAL HALIDE PEROVSKITES; LEAD BROMIDE PEROVSKITE; TEMPERATURE; DEPOSITION; TRANSPORT; IODIDE AB Hybrid organometallic halide perovskite CH3NH3PbI2Br (or MAPbI(2)Br) nanosheets with a 1.8 eV band gap were prepared via a thermal decomposition process from a precursor containing PbI2, MABr, and MACI. The planar solar cell based on the compact layer of MAPbI(2)Br nanosheets exhibited 10% efficiency and a single-wavelength conversion efficiency of up to 86%. The crystal phase, optical absorption, film morphology, and thermogravimetric analysis studies indicate that the thermal decomposition process strongly depends on the composition of precursors. We find that MACl functions as a glue or soft template to control the initial formation of a solid solution with the main MAPbI(2)Br precursor components (i.e., PbI2 and MABr). The subsequent thermal decomposition process controls the morphology/surface coverage of perovskite films on the planar substrate and strongly affects the device characteristics. C1 [Zhao, Yixin] Shanghai Jiao Tong Univ, Sch Environm Sci & Engn, Shanghai 200240, Peoples R China. [Zhu, Kai] Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA. RP Zhao, YX (reprint author), Shanghai Jiao Tong Univ, Sch Environm Sci & Engn, 800 Dongchuan Rd, Shanghai 200240, Peoples R China. EM yixin.zhao@sjtu.edu.cn; Kai.Zhu@nrel.gov RI Zhao, Yixin/D-2949-2012 FU NSFC [51372151]; U.S. Department of Energy/National Renewable Energy Laboratory's Laboratory Directed Research and Development (LDRD) program [DE-AC36-08GO28308] FX Y.Z. acknowledges the support of the NSFC (Grant 51372151). K.Z. acknowledges the support by the U.S. Department of Energy/National Renewable Energy Laboratory's Laboratory Directed Research and Development (LDRD) program under Contract No. DE-AC36-08GO28308. NR 29 TC 92 Z9 94 U1 20 U2 386 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 3 PY 2014 VL 136 IS 35 BP 12241 EP 12244 DI 10.1021/ja5071398 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA AO3JR UT WOS:000341226000012 PM 25118565 ER PT J AU Liu, J Meier, KK Tian, SL Zhang, JL Guo, HC Schulz, CE Robinson, H Nilges, MJ Munck, E Lu, Y AF Liu, Jing Meier, Katlyn K. Tian, Shiliang Zhang, Jun-long Guo, Hongchao Schulz, Charles E. Robinson, Howard Nilges, Mark J. Muenck, Eckard Lu, Yi TI Redesigning the Blue Copper Azurin into a Redox-Active Mononuclear Nonheme Iron Protein: Preparation and Study of Fe(II)-M121E Azurin SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ELECTRON-PARAMAGNETIC-RESONANCE; PSEUDOMONAS-AERUGINOSA AZURIN; METAL-BINDING SITES; DE-NOVO DESIGN; SUPEROXIDE REDUCTASE; DESULFOARCULUS-BAARSII; CRYSTAL-STRUCTURE; COMPLEXES; METALLOPROTEINS; ENZYMES AB Much progress has been made in designing heme and dinuclear nonheme iron enzymes. In contrast, engineering mononuclear nonheme iron enzymes is lagging, even though these enzymes belong to a large class that catalyzes quite diverse reactions. Herein we report spectroscopic and X-ray crystallographic studies of Fe(II)-M121E azurin (Az), by replacing the axial Met121 and Cu(II) in wildtype azurin (wtAz) with Glu and Fe(II), respectively. In contrast to the redox inactive Fe(II)-wtAz, the Fe(II)-M121EAz mutant can be readily oxidized by Na2IrCl6, and interestingly, the protein exhibits superoxide scavenging activity. Mossbauer and EPR spectroscopies, along with Xray structural comparisons, revealed similarities and differences between Fe(H)-M121EAz, Fe(II)-wtAz, and superoxide reductase (SOR) and allowed design of the second generation mutant, Fe(II)-M121EM44KAz, that exhibits increased superoxide scavenging activity by 2 orders of magnitude. This finding demonstrates the importance of noncovalent secondary coordination sphere interactions in fine-tuning enzymatic activity. C1 [Liu, Jing; Tian, Shiliang; Zhang, Jun-long; Guo, Hongchao; Nilges, Mark J.; Lu, Yi] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Meier, Katlyn K.; Muenck, Eckard] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA. [Schulz, Charles E.] Knox Coll, Dept Phys, Galesburg, IL 61401 USA. [Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Munck, E (reprint author), Carnegie Mellon Univ, Dept Chem, 4400 5th Ave, Pittsburgh, PA 15213 USA. EM emunck@cmu.edu; yi-lu@illinois.edu RI Lu, Yi/B-5461-2010; Meier, Katlyn/C-4478-2015; Tian, Shiliang/L-2290-2014; Zhang, Jun-Long/E-9906-2013 OI Lu, Yi/0000-0003-1221-6709; Meier, Katlyn/0000-0002-8316-9199; Tian, Shiliang/0000-0002-9830-5480; FU National Science Foundation [CHE1413328, CHE 1305111] FX We wish to thank Ms. Rebecca L. Keller, Professor Carsten Krebs, Professor J. Martin Bollinger, Jr. from The Pennsylvania State University for initial investigations of the protein using Mossbauer spectroscopy, Mr. Yi-Gui Gao from University of Illinois at Urbana-Champaign for initial investigations of the protein crystal structure, and Ms. Parisa Hosseinzadeh from University of Illinois at Urbana-Champaign for help with the CV data collection and analysis. This work was supported by the National Science Foundation under awards CHE1413328 (YL) and CHE 1305111(EM). NR 68 TC 7 Z9 7 U1 9 U2 51 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 3 PY 2014 VL 136 IS 35 BP 12337 EP 12344 DI 10.1021/ja505410u PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA AO3JR UT WOS:000341226000025 PM 25082811 ER PT J AU Chen, B Hrovat, DA West, R Deng, SHM Wang, XB Borden, WT AF Chen, Bo Hrovat, David A. West, Robert Deng, Shihu H. M. Wang, Xue-Bin Borden, Weston Thatcher TI The Negative Ion Photoelectron Spectrum of Cyclopropane-1,2,3-Trione Radical Anion, (CO)(3)(center dot-) - A Joint Experimental and Computational Study SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID TRIPLET GROUND-STATE; MONOXIDE CYCLIC OLIGOMERS; AB-INITIO; CARBON-MONOXIDE; TRANSITION-STATE; POLYATOMIC-MOLECULES; OXOCARBON DIANIONS; RELATIVE ENERGIES; ELECTRONIC STATES; LOWEST SINGLET AB Negative ion photoelectron (NIPE) spectra of the radical anion of cyclopropane-1,2,3-trione, (CO)(3)(center dot-), have been obtained at 20 K, using both 355 and 266 nm lasers for electron photodetachment. The spectra show broadened bands, due to the short lifetimes of both the singlet and triplet states of neutral (CO)(3) and, to a lesser extent, to the vibrational progressions that accompany the photodetaclunent process. The smaller intensity of the band with the lower electron binding energy suggests that the singlet is the ground state of (CO)(3). From the NIPE spectra, the electron affinity (EA) and the singlet-triplet energy gap of (CO)(3) are estimated to be, respectively, EA = 3.1 +/- 0.1 eV and Delta E-ST = -14 +/- 3 kcal/mol. High-level, (U)CCSD(T)/aug-cc-pVQZ// (U)CCSD(T)/aug-cc-pVTZ, calculations give EA = 3.04 eV for the (1)A(1)' ground state of (CO)(3) and Delta E-ST = -13.8 kcal/mol for the energy gap between the (1)A(1)' and (3)A(2) states, in excellent agreement with values from the NIPE spectra. In addition, simulations of the vibrational structures for formation of these states of (CO)(3) from the (2)A(2)" state of (CO)(3)(center dot-) provide a good fit to the shapes of broad bands in the 266 nm NIPE spectrum. The NIPE spectrum of (CO)(3)(center dot-) and the analysis of the spectrum by high-quality electronic structure calculations demonstrate that NIPES can not only access and provide information about transition structures but NIPES can also access and provide information about hilltops on potential energy surfaces. C1 [Chen, Bo; Hrovat, David A.; Borden, Weston Thatcher] Univ N Texas, Dept Chem, Denton, TX 76203 USA. [Chen, Bo; Hrovat, David A.; Borden, Weston Thatcher] Univ N Texas, Ctr Adv Sci Comp & Modeling, Denton, TX 76203 USA. [West, Robert] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. [Deng, Shihu H. M.; Wang, Xue-Bin] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Wang, XB (reprint author), Pacific NW Natl Lab, Div Phys Sci, POB 999,MS K8-88, Richland, WA 99352 USA. EM xuebin.wang@pnnl.gov; weston.borden@unt.edu FU National Science Foundation [CHE-0910527]; Robert A. Welch Foundation [B0027]; U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences; DOE's Office of Biological and Environmental Research FX The calculations at UNT were supported by grant CHE-0910527 from the National Science Foundation and grant B0027 from the Robert A. Welch Foundation. The NIPES research at PNNL was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences (X.-B.W.) and was performed at the EMSL, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 73 TC 6 Z9 6 U1 5 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 3 PY 2014 VL 136 IS 35 BP 12345 EP 12354 DI 10.1021/ja505582k PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA AO3JR UT WOS:000341226000026 PM 25148567 ER PT J AU Kriel, JN Karrasch, C Kehrein, S AF Kriel, J. N. Karrasch, C. Kehrein, S. TI Dynamical quantum phase transitions in the axial next-nearest-neighbor Ising chain SO PHYSICAL REVIEW B LA English DT Article AB We investigate sudden quenches across the critical point in the transverse field Ising chain with a perturbing nonintegrable next-nearest-neighbor interaction. Expressions for the return (Loschmidt) amplitude and associated rate function are derived to linear order in the next-nearest-neighbor coupling. In the thermodynamic limit these quantities exhibit nonanalytic behavior at a set of critical times, a phenomenon referred to as a dynamical quantum phase transition. We quantify the effect of the integrability breaking perturbation on the location and shape of these nonanalyticities. Our results agree with those of earlier numerical studies and offer further support for the assertion that the dynamical quantum phase transitions exhibited by this model are a generic feature of its postquench dynamics and are robust with respect to the inclusion of nonintegrable perturbations. C1 [Kriel, J. N.] Univ Stellenbosch, Inst Theoret Phys, ZA-7600 Stellenbosch, South Africa. [Karrasch, C.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 95720 USA. [Karrasch, C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Kehrein, S.] Univ Gottingen, Inst Theoret Phys, D-37077 Gottingen, Germany. RP Kriel, JN (reprint author), Univ Stellenbosch, Inst Theoret Phys, ZA-7600 Stellenbosch, South Africa. RI Karrasch, Christoph/S-5716-2016 OI Karrasch, Christoph/0000-0002-6475-3584 FU HB MJ Thom trust; Nanostructured Thermoelectrics program of LBNL; Deutsche Forschungsgemeinschaft (DFG) [1073] FX J. N. K. gratefully acknowledges the hospitality of the Institute for Theoretical Physics at the University of Gottingen and the financial support of the HB & MJ Thom trust. C. K. acknowledges the support of the Nanostructured Thermoelectrics program of LBNL. S. K. acknowledges support through SFB Grant No. 1073 of the Deutsche Forschungsgemeinschaft (DFG). NR 29 TC 23 Z9 23 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD SEP 3 PY 2014 VL 90 IS 12 AR 125106 DI 10.1103/PhysRevB.90.125106 PG 9 WC Physics, Condensed Matter SC Physics GA AO3VR UT WOS:000341265300003 ER PT J AU Stroberg, SR Gade, A Tostevin, JA Bader, VM Baugher, T Bazin, D Berryman, JS Brown, BA Campbell, CM Kemper, KW Langer, C Lunderberg, E Lemasson, A Noji, S Recchia, F Walz, C Weisshaar, D Williams, SJ AF Stroberg, S. R. Gade, A. Tostevin, J. A. Bader, V. M. Baugher, T. Bazin, D. Berryman, J. S. Brown, B. A. Campbell, C. M. Kemper, K. W. Langer, C. Lunderberg, E. Lemasson, A. Noji, S. Recchia, F. Walz, C. Weisshaar, D. Williams, S. J. TI Single-particle structure of silicon isotopes approaching Si-42 SO PHYSICAL REVIEW C LA English DT Article ID GAMMA-RAY-SPECTROSCOPY; KNOCKOUT REACTIONS; NUCLEON-TRANSFER; EXOTIC NUCLEI; SHELL CLOSURE; COLLECTIVITY; MOTION; BEAMS; ARRAY AB The structure of the neutron-rich silicon isotopes Si-36,Si-38,Si-40 was studied by one-neutron and one-proton knockout reactions at intermediate beam energies. We construct level schemes for the knockout residues Si-35,Si-37,Si-39 and Al-35,Al-37,Al-39 and compare knockout cross sections to the predictions of an eikonal model in conjunction with large-scale shell-model calculations. The agreement of these calculations with the present experiment lends support to the microscopic explanation of the enhanced collectivity in the region of Si-42. We also present an empirical method for reproducing the observed low-momentum tails in the parallel momentum distributions of knockout residues. C1 [Stroberg, S. R.; Gade, A.; Bader, V. M.; Baugher, T.; Bazin, D.; Berryman, J. S.; Brown, B. A.; Langer, C.; Lunderberg, E.; Lemasson, A.; Noji, S.; Recchia, F.; Walz, C.; Weisshaar, D.; Williams, S. J.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Stroberg, S. R.; Gade, A.; Bader, V. M.; Baugher, T.; Bazin, D.; Brown, B. A.; Lunderberg, E.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Tostevin, J. A.] Univ Surrey, Fac Engn & Phys Sci, Guildford GU2 7XH, Surrey, England. [Campbell, C. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Kemper, K. W.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Langer, C.] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. RP Stroberg, SR (reprint author), Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. RI Gade, Alexandra/A-6850-2008; Langer, Christoph/L-3422-2016 OI Gade, Alexandra/0000-0001-8825-0976; FU Department of Energy National Nuclear Security Administration [DE-NA0000979]; National Science Foundation [PHY-1068217]; U.S. DOE, Office of Science; NSF [PHY-1102511(NSCL)]; DOE [DE-AC02-05CH11231(LBNL)]; Science and Technology Facilities Council (UK) [ST/J000051] FX We thank the staff of the Coupled Cyclotron Facility for the delivery of high-quality beams and Professor L. Riley for the developing and providing the GRETINA simulation code. S.R.S. also thanks Professors F. Nunes and C. Bertulani for helpful discussions of reaction theory and J.K. Smith for discussions concerning neutron-unbound states. This material is based on work supported by the Department of Energy National Nuclear Security Administration under Grant No. DE-NA0000979. This work was also supported by the National Science Foundation under Grant No. PHY-1068217. GRETINA was funded by the U.S. DOE, Office of Science. Operation of the array at NSCL is supported by NSF under Cooperative Agreement No. PHY-1102511(NSCL) and DOE under Grant No. DE-AC02-05CH11231(LBNL). J.A.T. acknowledges support of the Science and Technology Facilities Council (UK) Grant No. ST/J000051. NR 53 TC 13 Z9 13 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD SEP 3 PY 2014 VL 90 IS 3 AR 034301 DI 10.1103/PhysRevC.90.034301 PG 16 WC Physics, Nuclear SC Physics GA AO3WE UT WOS:000341266700002 ER PT J AU Graziani, FR Bauer, JD Murillo, MS AF Graziani, F. R. Bauer, J. D. Murillo, M. S. TI Kinetic theory molecular dynamics and hot dense matter: Theoretical foundations SO PHYSICAL REVIEW E LA English DT Article ID COUPLED HYDROGEN PLASMA; TRANSPORT-COEFFICIENTS; CLASSICAL DYNAMICS; COULOMB-SYSTEMS; LIQUID-METALS; ELECTRON-GAS; SIMULATIONS; EQUILIBRIUM; RELAXATION; VISCOSITY AB Electrons are weakly coupled in hot, dense matter that is created in high-energy-density experiments. They are also mildly quantum mechanical and the ions associated with them are classical and may be strongly coupled. In addition, the dynamical evolution of plasmas under these hot, dense matter conditions involve a variety of transport and energy exchange processes. Quantum kinetic theory is an ideal tool for treating the electrons but it is not adequate for treating the ions. Molecular dynamics is perfectly suited to describe the classical, strongly coupled ions but not the electrons. We develop a method that combines a Wigner kinetic treatment of the electrons with classical molecular dynamics for the ions. We refer to this hybrid method as "kinetic theory molecular dynamics," or KTMD. The purpose of this paper is to derive KTMD from first principles and place it on a firm theoretical foundation. The framework that KTMD provides for simulating plasmas in the hot, dense regime is particularly useful since current computational methods are generally limited by their inability to treat the dynamical quantum evolution of the electronic component. Using the N-body von Neumann equation for the electron-proton plasma, three variations of KTMD are obtained. Each variant is determined by the physical state of the plasma (e.g., collisional versus collisionless). The first variant of KTMD yields a closed set of equations consisting of a mean-field quantum kinetic equation for the electron one-particle distribution function coupled to a classical Liouville equation for the protons. The latter equation includes both proton-proton Coulombic interactions and an effective electron-proton interaction that involves the convolution of the electron density with the electron-proton Coulomb potential. The mean-field approach is then extended to incorporate equilibrium electron-proton correlations through the Singwi-Tosi-Land-Sjolander (STLS) ansatz. This is the second variant of KTMD. The STLS contribution produces an effective electron-proton interaction that involves the electron-proton structure factor, thereby extending the usual mean-field theory to correlated but near equilibrium systems. Finally, a third variant of KTMD is derived. It includes dynamical electrons and their correlations coupled to a MD description for the ions. A set of coupled equations for the one-particle electron Wigner function and the electron-electron and electron-proton correlation functions are coupled to a classical Liouville equation for the protons. This latter variation has both time and momentum dependent correlations. C1 [Graziani, F. R.; Bauer, J. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Murillo, M. S.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Graziani, FR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM graziani1@llnl.gov FU U.S. Department of Energy [DE-AC52-07NA27344, DE-AC52-06NA25396]; Laboratory Directed Research and Development Program at LLNL [09-SI-011] FX F. R. G. wishes to thank M. Bontiz, J. Daligault, J. Dufty, M. Desjarlais, and S. Trickey for many useful and enlightening conversations. F. R. G. and M. S. M. also wish to thank R. Caflisch and C. Ratsch for their warm hospitality during the Institute for Pure and Applied Mathematics (UCLA) Long Program on high-energy-density physics, where portions of this work were discussed and completed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and Los Alamos National Security, LLC. (LANS), operator of the Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 with the U.S. Department of Energy. This work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 09-SI-011. NR 74 TC 4 Z9 4 U1 5 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD SEP 3 PY 2014 VL 90 IS 3 AR 033104 DI 10.1103/PhysRevE.90.033104 PG 13 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA AO3XF UT WOS:000341269900009 PM 25314544 ER PT J AU Chen, YF Qin, N Guo, J Qian, GR Fang, DQ Shi, D Xu, M Yang, FL He, ZL Van Nostrand, JD Yuan, T Deng, Y Zhou, JZ Li, LJ AF Chen, Yanfei Qin, Nan Guo, Jing Qian, Guirong Fang, Daiqiong Shi, Ding Xu, Min Yang, Fengling He, Zhili Van Nostrand, Joy D. Yuan, Tong Deng, Ye Zhou, Jizhong Li, Lanjuan TI Functional gene arrays-based analysis of fecal microbiomes in patients with liver cirrhosis SO BMC GENOMICS LA English DT Article DE End-stage liver disease; Intestines; Microbial communities; Alcohol; Microarray ID HUMAN GUT MICROBIOME; HEPATIC-ENCEPHALOPATHY; BACTERIAL TRANSLOCATION; METAGENOMIC ANALYSIS; COMMUNITY ANALYSIS; COLONIC FUNCTION; MICROARRAYS; ETHANOL; COGNITION; ALCOHOL AB Background: Human gut microbiota plays an important role in the pathogenesis of cirrhosis complications. Although the phylogenetic diversity of intestinal microbiota in patients with liver cirrhosis has been examined in several studies, little is known about their functional composition and structure. Results: To characterize the functional gene diversity of the gut microbiome in cirrhotic patients, we recruited a total of 42 individuals, 12 alcoholic cirrhosis patients, 18 hepatitis B virus (HBV)-related cirrhosis patients, and 12 normal controls. We determined the functional structure of these samples using a specific functional gene array, which is a combination of GeoChip for monitoring biogeochemical processes and HuMiChip specifically designed for analyzing human microbiomes. Our experimental data showed that the microbial community functional composition and structure were dramatically distinctive in the alcoholic cirrhosis. Various microbial functional genes involved in organic remediation, stress response, antibiotic resistance, metal resistance, and virulence were highly enriched in the alcoholic cirrhosis group compared to the control group and HBV-related cirrhosis group. Cirrhosis may have distinct influences on metabolic potential of fecal microbial communities. The abundance of functional genes relevant to nutrient metabolism, including amino acid metabolism, lipid metabolism, nucleotide metabolism, and isoprenoid biosynthesis, were significantly decreased in both alcoholic cirrhosis group and HBV-related cirrhosis group. Significant correlations were observed between functional gene abundances and Child-Pugh scores, such as those encoding aspartate-ammonia ligase, transaldolase, adenylosuccinate synthetase and IMP dehydrogenase. Conclusions: Functional gene array was utilized to study the gut microbiome in alcoholic and HBV-related cirrhosis patients and controls in this study. Our array data indicated that the functional composition of fecal microbiomes was heavily influenced by cirrhosis, especially by alcoholic cirrhosis. This study provides new insights into the functional potentials and activity of gut microbiota in cirrhotic patients with different etiologies. C1 [Chen, Yanfei; Qin, Nan; Guo, Jing; Qian, Guirong; Fang, Daiqiong; Shi, Ding; Xu, Min; Yang, Fengling; Li, Lanjuan] Zhejiang Univ, Affiliated Hosp 1, Collaborat Innovat Ctr Diag & Treatment Infect Di, State Key Lab Diag & Treatment Infect Dis, Hangzhou 310003, Zhejiang, Peoples R China. [He, Zhili; Van Nostrand, Joy D.; Yuan, Tong; Deng, Ye; Zhou, Jizhong] Univ Oklahoma, Dept Microbiol & Plant Biol, Inst Environm Genom, Norman, OK 73019 USA. [Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. [Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Earth Sci Div, Berkeley, CA 94720 USA. RP Zhou, JZ (reprint author), Univ Oklahoma, Dept Microbiol & Plant Biol, Inst Environm Genom, Norman, OK 73019 USA. EM jzhou@ou.edu; ljli@zju.edu.cn RI Van Nostrand, Joy/F-1740-2016; OI Van Nostrand, Joy/0000-0001-9548-6450; ?, ?/0000-0002-7584-0632 FU National Program on Key Basic Research Project (973 Program) [2013CB531404]; Major National S & T Project for Infectious Disease [2008ZX10002-007]; Science Fund for Creative Research Groups of the National Natural Science Foundation of China [81121002]; Oklahoma Applied Research Support (OARS); Oklahoma Center for the Advancement of Science and Technology (OCAST); State of Oklahoma [AR11-035]; ENIGMA (Ecosystems and Networks Integrated with Genes and Molecular Assemblies) through the Office of Science, Office of Biological and Environmental Research; U. S. Department of Energy [DE-AC02-05CH11231]; OBER Biological Systems Research on the Role of Microbial Communities in Carbon Cycling Program [DE-SC0004601]; U.S. National Science Foundation MacroSystems Biology program [NSF EF-1065844] FX We thank Prof. Baoli Zhu in CAS Key Laboratory of Pathogenic Microbiology & Immunology at Chinese Academy of Sciences for his contribution in study design and data interpretation. This work was supported by the National Program on Key Basic Research Project (973 Program) 2013CB531404, the Major National S & T Project for Infectious Disease (11th Five Year) 2008ZX10002-007, the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (NO. 81121002), and the Oklahoma Applied Research Support (OARS), Oklahoma Center for the Advancement of Science and Technology (OCAST), the State of Oklahoma through the Project AR11-035. The development of the GeoChips and associated computational pipelines used in this study were supported by ENIGMA (Ecosystems and Networks Integrated with Genes and Molecular Assemblies) through the Office of Science, Office of Biological and Environmental Research, the U. S. Department of Energy under Contract No. DE-AC02-05CH11231, by the OBER Biological Systems Research on the Role of Microbial Communities in Carbon Cycling Program (DE-SC0004601) and by the U.S. National Science Foundation MacroSystems Biology program under the contract (NSF EF-1065844). NR 49 TC 4 Z9 4 U1 5 U2 43 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD SEP 2 PY 2014 VL 15 AR 753 DI 10.1186/1471-2164-15-753 PG 13 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA AP0XQ UT WOS:000341790200001 PM 25179593 ER PT J AU Kronewitter, SR Marginean, I Cox, JT Zhao, R Hagler, CD Shukla, AK Carlson, TS Adkins, JN Camp, DG Moore, RJ Rodland, KD Smith, RD AF Kronewitter, Scott R. Marginean, Ioan Cox, Jonathan T. Zhao, Rui Hagler, Clay D. Shukla, Anil K. Carlson, Timothy S. Adkins, Joshua N. Camp, David G., II Moore, Ronald J. Rodland, Karin D. Smith, Richard D. TI Polysialylated N-Glycans Identified in Human Serum Through Combined Developments in Sample Preparation, Separations, and Electrospray Ionization-Mass Spectrometry SO ANALYTICAL CHEMISTRY LA English DT Article ID CELL-ADHESION MOLECULE; SUBAMBIENT PRESSURE IONIZATION; OVARIAN-CANCER; SUPRACHIASMATIC NUCLEUS; BIOMARKER DISCOVERY; LINKED GLYCANS; SIALIC-ACID; PSA-NCAM; CHROMATOGRAPHY; GLYCOSYLATION AB The N-glycan diversity of human serum glycoproteins, i.e., the human blood serum N-glycome, is both complex and constrained by the range of glycan structures potentially synthesizable by human glycosylation enzymes. The known glycome, however, has been further limited by methods of sample preparation, available analytical platforms, e.g., based upon electrospray ionization-mass spectrometry (ESI-MS), and software tools for data analysis. In this report several improvements have been implemented in sample preparation and analysis to extend ESI-MS glycan characterization and to include polysialylated N-glycans. Sample preparation improvements included acidified, microwave-accelerated, PNGase F N-glycan release to promote lactonization, and sodium borohydride reduction, that were both optimized to improve quantitative yields and conserve the number of glycoforms detected. Two-stage desalting (during solid phase extraction and on the analytical column) increased sensitivity by reducing analyte signal division between multiple reducing-end-forms or cation adducts. Online separations were improved by using extended length graphitized carbon columns and adding TFA as an acid modifier to a formic acid/reversed phase gradient, providing additional resolving power and significantly improved desorption of both large and heavily sialylated glycans. To improve MS sensitivity and provide gentler ionization conditions at the source-MS interface, subambient pressure ionization with nanoelectrospray (SPIN) was utilized. When these improved methods are combined together with the Glycomics Quintavariate Informed Quantification (GlyQ-IQ) recently described (Kronewitter et al. Anal. Chem. 2014, 86, 6268-6276), we are able to significantly extend glycan detection sensitivity and provide expanded glycan coverage. We demonstrated the application of these advances in the context of the human serum glycome, and for which our initial observations included the detection of a new class of heavily sialylated N-glycans, including polysialylated N-glycans. C1 [Kronewitter, Scott R.; Marginean, Ioan; Cox, Jonathan T.; Zhao, Rui; Hagler, Clay D.; Shukla, Anil K.; Carlson, Timothy S.; Adkins, Joshua N.; Camp, David G., II; Moore, Ronald J.; Rodland, Karin D.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Smith, RD (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA. EM rds@pnnl.gov RI Marginean, Ioan/A-4183-2008; Smith, Richard/J-3664-2012 OI Marginean, Ioan/0000-0002-6693-0361; Smith, Richard/0000-0002-2381-2349 FU Genome Science Program of the U.S. DOE Office of Biological and Environmental Research; NIH [P41 GM103493-11]; DOE [DE-AC05-76RLO 1830] FX Portions of this work were conducted under the Pan-omics project supported by the Genome Science Program of the U.S. DOE Office of Biological and Environmental Research and by NIH Grant P41 GM103493-11 (R.D.S.). Work was performed in the EMSL, a DOE-BER national scientific user facility PNNL. High-performance computing research was performed using PNNL Institutional Computing at Pacific Northwest National Laboratory. PNNL is a multiprogram national laboratory operated by Battelle Memorial Institute for the DOE under Contract DE-AC05-76RLO 1830. NR 62 TC 3 Z9 3 U1 12 U2 57 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD SEP 2 PY 2014 VL 86 IS 17 BP 8700 EP 8710 DI 10.1021/ac501839b PG 11 WC Chemistry, Analytical SC Chemistry GA AO3KX UT WOS:000341229200029 PM 25118826 ER PT J AU Derbin, AV Gironi, L Nagorny, SS Pattavina, L Beeman, JW Bellini, F Biassoni, M Capelli, S Clemenza, M Drachnev, IS Ferri, E Giachero, A Gotti, C Kayunov, AS Maiano, C Maino, M Muratova, VN Pavan, M Pirro, S Semenov, DA Sisti, M Unzhakov, EV AF Derbin, A. V. Gironi, L. Nagorny, S. S. Pattavina, L. Beeman, J. W. Bellini, F. Biassoni, M. Capelli, S. Clemenza, M. Drachnev, I. S. Ferri, E. Giachero, A. Gotti, C. Kayunov, A. S. Maiano, C. Maino, M. Muratova, V. N. Pavan, M. Pirro, S. Semenov, D. A. Sisti, M. Unzhakov, E. V. TI Search for axioelectric effect of solar axions using BGO scintillating bolometer SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID STRONG CP PROBLEM; BEAM-DUMP; PARTICLES; INVARIANCE; DETECTORS; SIGNALS; REDUCTION; NOISE AB A search for axioelectric absorption of solar axions produced in the p + d --> He-3 + gamma (5.5 MeV) reaction has been performed with a BGO detector placed in a low-background setup. A model-independent limit on the combination of axion-nucleon and axion-electron coupling constants has been obtained: vertical bar g(Ae) x g(AN)(3)vertical bar < 1.9 x 10(-10) for 90 % confidence level. The constraint of the axion-electron coupling constant has been obtained for hadronic axion with masses of (0.1-1) MeV: vertical bar g(Ae)vertical bar <= (0.96 - 8.2) x 10(-8). C1 [Derbin, A. V.; Drachnev, I. S.; Kayunov, A. S.; Muratova, V. N.; Semenov, D. A.; Unzhakov, E. V.] St Petersburg Nucl Phys Inst, Gatchina 188350, Russia. [Gironi, L.; Biassoni, M.; Capelli, S.; Clemenza, M.; Ferri, E.; Giachero, A.; Gotti, C.; Maiano, C.; Maino, M.; Pavan, M.; Sisti, M.] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20126 Milan, Italy. [Gironi, L.; Biassoni, M.; Capelli, S.; Clemenza, M.; Ferri, E.; Giachero, A.; Gotti, C.; Maiano, C.; Maino, M.; Pavan, M.; Sisti, M.] Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy. [Nagorny, S. S.; Pattavina, L.; Pirro, S.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, I-67100 Laquila, Italy. [Nagorny, S. S.; Drachnev, I. S.] INFN, Gran Sasso Sci Inst, I-67100 Laquila, AQ, Italy. [Beeman, J. W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Bellini, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Bellini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. RP Derbin, AV (reprint author), St Petersburg Nucl Phys Inst, Gatchina 188350, Russia. EM derbin@pnpi.spb.ru RI Giachero, Andrea/I-1081-2013; Bellini, Fabio/D-1055-2009; Pattavina, Luca/I-7498-2015; Sisti, Monica/B-7550-2013; Ferri, Elena/L-8531-2014; Gironi, Luca/P-2860-2016; capelli, silvia/G-5168-2012; OI Giachero, Andrea/0000-0003-0493-695X; Bellini, Fabio/0000-0002-2936-660X; Drachnev, Ilia/0000-0002-4064-8093; Pattavina, Luca/0000-0003-4192-849X; Sisti, Monica/0000-0003-2517-1909; Ferri, Elena/0000-0003-1425-3669; Gironi, Luca/0000-0003-2019-0967; capelli, silvia/0000-0002-0300-2752; Nahornyi, Serhii/0000-0002-8679-3747; Derbin, Alexander/0000-0002-4351-2255; Unzhakov, Evgeniy/0000-0003-2952-6412; Clemenza, Massimiliano/0000-0002-8064-8936; pavan, maura/0000-0002-9723-7834; Gotti, Claudio/0000-0003-2501-9608 FU RFBR [13-02-01199, 13-02-12140-ofi-m] FX This work was supported by RFBR Grants 13-02-01199 and 13-02-12140-ofi-m. NR 51 TC 1 Z9 1 U1 1 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD SEP 2 PY 2014 VL 74 IS 9 AR 3035 DI 10.1140/epjc/s10052-014-3035-8 PG 6 WC Physics, Particles & Fields SC Physics GA AO8EX UT WOS:000341587300001 ER PT J AU Vogl, US Das, PK Weber, AZ Winter, M Kostecki, R Lux, SF AF Vogl, U. S. Das, P. K. Weber, A. Z. Winter, M. Kostecki, R. Lux, S. F. TI Mechanism of Interactions between CMC Binder and Si Single Crystal Facets SO LANGMUIR LA English DT Article ID LITHIUM-ION-BATTERIES; CARBOXYMETHYL CELLULOSE; HIGH-CAPACITY; ALLOY ANODES; ELECTROCHEMICAL PERFORMANCE; COMPOSITE ELECTRODES; NEGATIVE ELECTRODES; CYCLING STABILITY; SILICON; SURFACE AB Interactions of the active material particles with the binder are crucial in tailoring the properties of composite electrodes used in lithium-ion batteries. The dependency of the protonation degree of the carboxyl group in the carboxymethyl cellulose (CMC) structure on the pH value of the preparation solution was investigated by Fourier transform infrared spectroscopy (FTIR). Three different distinctive chemical states of CMC binder were chosen (protonated, deprotonated, and half-half), and their interactions with different silicon single crystal facets were investigated. The different Si surface orientations display distinct differences of strength of interactions with the CMC binder. The CMC/Si adhesion forces in solution and Si wettability of the silicon are also strongly dependent on the protonation degree of the CMC. This work provides an insight into the nature of these interactions, which determine the electrochemical performance of silicon composite electrodes. C1 [Vogl, U. S.; Winter, M.; Lux, S. F.] Univ Munster, MEET Battery Res Ctr, D-48149 Munster, Germany. [Vogl, U. S.; Das, P. K.; Weber, A. Z.; Kostecki, R.; Lux, S. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Winter, M (reprint author), Univ Munster, MEET Battery Res Ctr, Corrensstr 46, D-48149 Munster, Germany. EM martin.winter@uni-muenster.de; simon.lux@uni-muenster.de OI Das, Prodip/0000-0001-9096-3721 FU Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract DE-AC02-05CH11231. The authors thank Dr. Gao Liu and Dr. Vincent Battaglia for their help with the peel-off force investigations. NR 40 TC 19 Z9 19 U1 7 U2 68 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD SEP 2 PY 2014 VL 30 IS 34 BP 10299 EP 10307 DI 10.1021/la501791q PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AO3LG UT WOS:000341230100020 PM 25109709 ER PT J AU Boughezal, R Focke, C Li, Y Liu, XH AF Boughezal, Radja Focke, Christfried Li, Ye Liu, Xiaohui TI Jet vetoes for Higgs boson production at future hadron colliders SO PHYSICAL REVIEW D LA English DT Article ID TO-LEADING ORDER; LHC; SEARCH; QCD AB We study Higgs boson production in exclusive jet bins at possible future 33 and 100 TeV proton-proton colliders. We compare the cross sections obtained using fixed-order perturbation theory with those obtained by also resumming large logarithms induced by the jet-binning in the gluon-fusion and associated production channels. The central values obtained by the best-available fixed-order predictions differ by 10%-20% from those obtained after including resummation over the majority of phase-space regions considered. Additionally, including the resummation dramatically reduces the residual scale variation in these regions, often by a factor of two or more. We further show that in several new kinematic regimes that can be explored at these high-energy machines, the inclusion of resummation improvement is mandatory. C1 [Boughezal, Radja; Liu, Xiaohui] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Focke, Christfried; Liu, Xiaohui] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Li, Ye] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. RP Boughezal, R (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. EM rboughezal@anl.gov; christfried.focke@gmail.com; yli@slac.stanford.edu; xiaohui.liu@northwestern.edu FU U.S. Department of Energy, Division of High Energy Physics [DE-AC02-06CH11357, DE-FG02-95ER40896, DE-FG02-08ER4153]; U.S. Department of Energy [DE-AC02-76SF00515]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX The work of R. B. was supported by the U.S. Department of Energy, Division of High Energy Physics, under Contract No. DE-AC02-06CH11357. The work of C. F. and X. L. was supported by the U.S. Department of Energy, Division of High Energy Physics, under Contract No. DE-AC02-06CH11357 and Grants No. DE-FG02-95ER40896 and No. DE-FG02-08ER4153. The work of Y. L. was supported by the U.S. Department of Energy under Contract No. DE-AC02-76SF00515. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 51 TC 5 Z9 5 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD SEP 2 PY 2014 VL 90 IS 5 AR 053001 DI 10.1103/PhysRevD.90.053001 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AO3PD UT WOS:000341244100001 ER PT J AU Garbarini, F Boero, R D'Agata, F Bravo, G Mosso, C Cauda, F Duca, S Geminiani, G Sacco, K AF Garbarini, Francesca Boero, Riccardo D'Agata, Federico Bravo, Giangiacomo Mosso, Cristina Cauda, Franco Duca, Sergio Geminiani, Giuliano Sacco, Katiuscia TI Neural Correlates of Gender Differences in Reputation Building SO PLOS ONE LA English DT Article ID SEX-DIFFERENCES; SELF-CONTROL; COOPERATION; SYSTEMS; TRUST; EVOLUTION; STRIATUM; REWARD; MODEL; RISK AB Gender differences in cooperative choices and their neural correlates were investigated in a situation where reputation represented a crucial issue. Males and females were involved in an economic exchange (trust game) where economic and reputational payoffs had to be balanced in order to increase personal welfare. At the behavioral level, females showed a stronger reaction to negative reputation judgments that led to higher cooperation than males, measured by back transfers in the game. The neuroanatomical counterpart of this gender difference was found within the reward network (engaged in producing expectations of positive results) and reputation-related brain networks, such as the self-control network (engaged in strategically resisting the temptation to defect) and the mentalizing network (engaged in thinking about how one is viewed by others), in which the dorsolateral prefrontal cortex (DLPFC) and the medial (M) PFC respectively play a crucial role. Furthermore, both DLPFC and MPFC activity correlated with the amount of back transfer, as well as with the personality dimensions assessed with the Big-Five Questionnaire (BFQ-2). Males, according to their greater DLPFC recruitment and their higher level of the BFQ-2 subscale of Dominance, were more focused on implementing a profit-maximizing strategy, pursuing this target irrespectively of others' judgments. On the contrary, females, according to their greater MPFC activity and their lower level of Dominance, were more focused on the reputation per se and not on the strategic component of reputation building. These findings shed light on the sexual dimorphism related to cooperative behavior and its neural correlates. C1 [Garbarini, Francesca; D'Agata, Federico; Mosso, Cristina; Cauda, Franco; Geminiani, Giuliano; Sacco, Katiuscia] Univ Turin, Dept Psychol, Turin, Italy. [Boero, Riccardo] Los Alamos Natl Lab, Los Alamos, NM USA. [D'Agata, Federico] Univ Turin, Dept Neurosci, Turin, Italy. [D'Agata, Federico; Cauda, Franco; Duca, Sergio; Geminiani, Giuliano; Sacco, Katiuscia] Koelliker Hosp, CCS FMRI, Turin, Italy. [Bravo, Giangiacomo] Linnaeus Univ, Dept Social Studies, Vaxjo, Sweden. [Cauda, Franco; Geminiani, Giuliano; Sacco, Katiuscia] Univ Turin, NIT, Turin, Italy. RP Garbarini, F (reprint author), Univ Turin, Dept Psychol, Turin, Italy. EM fra.garbarini@gmail.com RI Cauda, Franco /G-5021-2010; Mosso, Cristina /J-1422-2016; OI Cauda, Franco /0000-0003-1526-8475; Bravo, Giangiacomo/0000-0003-2837-0137; D'Agata, Federico/0000-0001-9432-0248; Garbarini, Francesca/0000-0003-1210-0175; Boero, Riccardo/0000-0002-7468-9096 FU Regione Piemonte, Human and Social Science "IIINBEMA - INstitutions, BEhaviour and MArkets in Local and Global Settings'' [229/DB1300]; GIRS - The invisible grammar of social relationships FX This study was funded by Regione Piemonte, Human and Social Science 2008 (D.D. n. 229/DB1300), project "IIINBEMA - INstitutions, BEhaviour and MArkets in Local and Global Settings'' and project "GIRS - The invisible grammar of social relationships''. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 43 TC 3 Z9 3 U1 3 U2 19 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD SEP 2 PY 2014 VL 9 IS 9 AR e106285 DI 10.1371/journal.pone.0106285 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AO3LR UT WOS:000341231500069 PM 25180581 ER PT J AU Seal, K Sharoni, A Messman, JM Lokitz, BS Shaw, RW Schuller, IK Snijders, PC Ward, TZ AF Seal, Katyayani Sharoni, Amos Messman, Jamie M. Lokitz, Bradley S. Shaw, Robert W. Schuller, Ivan K. Snijders, Paul C. Ward, Thomas Z. TI Resolving transitions in the mesoscale domain configuration in VO2 using laser speckle pattern analysis SO SCIENTIFIC REPORTS LA English DT Article ID SURFACE-ROUGHNESS; LIGHT-SCATTERING; SPECTROSCOPY; STATISTICS; MAGNETISM; ORDER AB The configuration and evolution of coexisting mesoscopic domains with contrasting material properties are critical in creating novel functionality through emergent physical properties. However, current approaches that map the domain structure involve either spatially resolved but protracted scanning probe experiments without real time information on the domain evolution, or time resolved spectroscopic experiments lacking domain-scale spatial resolution. We demonstrate an elegant experimental technique that bridges these local and global methods, giving access to mesoscale information on domain formation and evolution at time scales orders of magnitude faster than current spatially resolved approaches. Our straightforward analysis of laser speckle patterns across the first order phase transition of VO2 can be generalized to other systems with large scale phase separation and has potential as a powerful method with both spatial and temporal resolution to study phase separation in complex materials. C1 [Seal, Katyayani; Snijders, Paul C.; Ward, Thomas Z.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Seal, Katyayani; Snijders, Paul C.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Sharoni, Amos] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel. [Sharoni, Amos] Bar Ilan Univ, Inst Nanotechnol, IL-52900 Ramat Gan, Israel. [Sharoni, Amos; Schuller, Ivan K.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Sharoni, Amos; Schuller, Ivan K.] Univ Calif San Diego, Ctr Adv Nanosci, La Jolla, CA 92093 USA. [Messman, Jamie M.; Lokitz, Bradley S.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Shaw, Robert W.] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA. RP Snijders, PC (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM snijderspc@ornl.gov; wardtz@ornl.gov RI Lokitz, Bradley/Q-2430-2015; Ward, Thomas/I-6636-2016 OI Lokitz, Bradley/0000-0002-1229-6078; Ward, Thomas/0000-0002-1027-9186 FU US Department of Energy (DOE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division, and Chemical Sciences, Geosciences, and Biosciences Division; Scientific User Facilities Division, Office of BES, US DOE; LDRD Program at ORNL; U.S. Department of Energy; Department of Energy's Office of Basic Energy Science [DE FG03 87ER-45332]; Israel Science Foundation [727/11] FX Research supported by the US Department of Energy (DOE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division, (PCS, TZW) and Chemical Sciences, Geosciences, and Biosciences Division (RWS). Ellipsometry measurements (JMM, BSL) were conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of BES, US DOE. Partial support was also given by LDRD Program at ORNL (KS). Partial support was also given by, U.S. Department of Energy, BES-DMS funded by the Department of Energy's Office of Basic Energy Science, under grant DE FG03 87ER-45332 (IKS). Partial support also given by Israel Science Foundation grant No. 727/11 (AS). NR 25 TC 3 Z9 3 U1 2 U2 31 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD SEP 2 PY 2014 VL 4 AR 6259 DI 10.1038/srep06259 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AO6EO UT WOS:000341442600001 PM 25178929 ER PT J AU Langan, P Sangha, AK Wymore, T Parks, JM Yang, ZMK Hanson, BL Fisher, Z Mason, SA Blakeley, MP Forsyth, VT Glusker, JP Carrell, HL Smith, JC Keen, DA Graham, DE Kovalevsky, A AF Langan, Paul Sangha, Amandeep K. Wymore, Troy Parks, Jerry M. Yang, Zamin Koo Hanson, B. Leif Fisher, Zoe Mason, Sax A. Blakeley, Matthew P. Forsyth, V. Trevor Glusker, Jenny P. Carrell, Horace L. Smith, Jeremy C. Keen, David A. Graham, David E. Kovalevsky, Andrey TI L-Arabinose Binding, Isomerization, and Epimerization by D-Xylose Isomerase: X-Ray/Neutron Crystallographic and Molecular Simulation Study SO STRUCTURE LA English DT Article ID MEDIATED HYDRIDE SHIFT; D-GLUCOSE ISOMERASE; SACCHAROMYCES-CEREVISIAE; L-RIBOSE; STREPTOMYCES-RUBIGINOSUS; NEUTRON-DIFFRACTION; ACTINOPLANES-MISSOURIENSIS; ANOMERIC SPECIFICITY; DIRECTED EVOLUTION; HEXOSE SUGARS AB D-xylose isomerase (XI) is capable of sugar isomerization and slow conversion of some monosaccharides into their C2-epimers. We present X-ray and neutron crystallographic studies to locate H and D atoms during the respective isomerization and epimerization of L-arabinose to L-ribulose and L-ribose, respectively. Neutron structures in complex with cyclic and linear L-arabinose have demonstrated that the mechanism of ring-opening is the same as for the reaction with D-xylose. Structural evidence and QM/MM calculations show that in the reactive Michaelis complex L-arabinose is distorted to the high-energy S-5(1) conformation; this may explain the apparent high Km for this sugar. MD-FEP simulations indicate that amino acid substitutions in a hydrophobic pocket near C5 of L-arabinose can enhance sugar binding. L-ribulose and L-ribose were found in furanose forms when bound to XI. We propose that these complexes containing Ni2+ cofactors are Michaelis-like and the isomerization between these two sugars proceeds via a cis-ene-diol mechanism. C1 [Langan, Paul; Kovalevsky, Andrey] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Sangha, Amandeep K.; Wymore, Troy; Parks, Jerry M.; Smith, Jeremy C.] Oak Ridge Natl Lab, UT ORNL Ctr Mol Biophys, Biosci Div, Oak Ridge, TN 37831 USA. [Yang, Zamin Koo; Graham, David E.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Hanson, B. Leif] Univ Toledo, Dept Chem, Toledo, OH 43606 USA. [Fisher, Zoe] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Mason, Sax A.; Blakeley, Matthew P.; Forsyth, V. Trevor] Inst Max Von Laue Paul Langevin, F-38000 Grenoble, France. [Forsyth, V. Trevor] Keele Univ, EPSAM ISTM, Keele ST5 5BG, Staffs, England. [Glusker, Jenny P.; Carrell, Horace L.] Fox Chase Canc Ctr, Philadelphia, PA 19111 USA. [Smith, Jeremy C.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. [Keen, David A.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. RP Kovalevsky, A (reprint author), Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. EM kovalevskyay@ornl.gov RI Forsyth, V. Trevor/A-9129-2010; Parks, Jerry/B-7488-2009; mason, sax /E-6738-2011; Graham, David/F-8578-2010; Blakeley, Matthew/G-7984-2015; Langan, Paul/N-5237-2015; smith, jeremy/B-7287-2012; Hanson, Bryant Leif/F-8007-2010; OI Forsyth, V. Trevor/0000-0003-0380-3477; Parks, Jerry/0000-0002-3103-9333; Graham, David/0000-0001-8968-7344; Blakeley, Matthew/0000-0002-6412-4358; Langan, Paul/0000-0002-0247-3122; smith, jeremy/0000-0002-2978-3227; Hanson, Bryant Leif/0000-0003-0345-3702; Kovalevsky, Andrey/0000-0003-4459-9142 FU Office of Biological and Environmental Research of the Department of Energy; DOE Office of Basic Energy Sciences; Office of Science of the US Department of Energy [DE-AC02-05CH11231]; Durham University; Keele University; Bath University; ILL (EPSRC grant) [GR/R47950/01]; DOE Office of Biological and Environmental Research; NIH-NIGMS; ORNL; LBNL FX The PCS is funded by the Office of Biological and Environmental Research of the Department of Energy. The PCS is located at the Lujan Center at Los Alamos Neutron Science Center, funded by the DOE Office of Basic Energy Sciences. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under contract no. DE-AC02-05CH11231. The D19 diffractometer was built as part of a collaboration between Durham University, Keele University, Bath University, and ILL (EPSRC grant GR/R47950/01). We gratefully acknowledge the help of John Archer, John Allibon, and the efforts of the ILL detector group. P.L., A.K.S., T.W., J.M.P., Z.K.Y., D.E.G., and A.K. were partly supported by the DOE Office of Biological and Environmental Research. P.L. was partly supported by an NIH-NIGMS funded consortium between ORNL and LBNL to develop computational tools for neutron protein crystallography. NR 57 TC 9 Z9 9 U1 2 U2 45 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 EI 1878-4186 J9 STRUCTURE JI Structure PD SEP 2 PY 2014 VL 22 IS 9 BP 1287 EP 1300 DI 10.1016/j.str.2014.07.002 PG 14 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA AO5NW UT WOS:000341392800010 PM 25132082 ER PT J AU Jing, XM Serpersu, EH AF Jing, Xiaomin Serpersu, Engin H. TI Solvent Reorganization Plays a Temperature-Dependent Role in Antibiotic Selection by a Thermostable Aminoglycoside Nucleotidyltransferase-4 ' SO BIOCHEMISTRY LA English DT Article ID AMINO-ACID-RESIDUES; HEAT-CAPACITY; LIGAND-BINDING; KANAMYCIN NUCLEOTIDYLTRANSFERASE; THERMODYNAMIC PARAMETERS; RESISTANCE ENZYME; AQUEOUS-SOLUTION; PROTEIN; HYDRATION; ENTHALPY AB The aminoglycoside nucleotidyltransferase-4' (ANT) is an enzyme that causes resistance to a large number of aminoglycoside antibiotics by nucleotidylation of the 4'-site on these antibiotics. The effect of solvent reorganization on enzyme-ligand interactions was investigated using a thermophilic variant of the enzyme resulting from a single-site mutation (T130K). Data showed that the binding of aminoglycosides to ANT causes exposure of polar groups to solvent. However, solvent reorganization becomes the major contributor to the enthalpy of the formation of enzyme-aminoglycoside complexes only above 20 degrees C. The change in heat capacity (Delta C-p) shows an aminoglycoside-dependent pattern such that it correlates with the affinity of the ligand for the enzyme. Differences in Delta C-p values determined in H2O and D2O also correlated with the ligand affinity. The temperature-dependent increase in the offset temperature (T-off), the temperature difference required to observe equal enthalpies in both solvents, is also dependent on the binding affinity of the ligand, and the steepest increase was observed with the tightest binding aminoglycoside, neomycin. Overall, these data, together with earlier observations with a different enzyme, the aminoglycoside N3-acetyltransferase-IIIb [Norris, A. L., and Serpersu, E. H. (2011) Biochemistry SO, 9309], show that solvent reorganization or changes in soft vibrational modes of the protein are interchangeable with respect to the role of being the major contributor to complex formation depending on temperature. These data suggest that such effects may more generally apply to enzyme ligand interactions, and studies at a single temperature may provide only a part of the whole picture of thermodynamics of enzyme-ligand interactions. C1 [Jing, Xiaomin; Serpersu, Engin H.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. [Serpersu, Engin H.] Univ Tennessee, Grad Sch Genome Sci & Technol, Knoxville, TN 37996 USA. [Serpersu, Engin H.] Oak Ridge Natl Lab, Knoxville, TN 37996 USA. RP Serpersu, EH (reprint author), Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Walters Life Sci Bldg,M 407, Knoxville, TN 37996 USA. EM serpersu@utk.edu FU National Science Foundation [MCB-0842743]; Dr. Donald L. Akers, Jr., Faculty Enrichment Award FX This work is supported by a grant from the National Science Foundation (MCB-0842743 to E.H.S.) and in part by the Dr. Donald L. Akers, Jr., Faculty Enrichment Award (to E.H.S.). NR 31 TC 0 Z9 0 U1 2 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD SEP 2 PY 2014 VL 53 IS 34 BP 5544 EP 5550 DI 10.1021/bi5006283 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AO3LD UT WOS:000341229800009 PM 25093604 ER PT J AU Watkins, EB Gao, HF Dennison, AJC Chopin, N Struth, B Arnold, T Florent, JC Johannes, L AF Watkins, Erik B. Gao, Haifei Dennison, Andrew J. C. Chopin, Nathalie Struth, Bernd Arnold, Thomas Florent, Jean-Claude Johannes, Ludger TI Carbohydrate Conformation and Lipid Condensation in Mono layers Containing Glycosphingolipid Gb3: Influence of Acyl Chain Structure SO BIOPHYSICAL JOURNAL LA English DT Article ID GRAZING-INCIDENCE DIFFRACTION; GLYCOLIPID RECEPTOR FUNCTION; X-RAY; PHOSPHOLIPID MONOLAYERS; MEMBRANE-SURFACE; CERAMIDE; BILAYER; BINDING; RAFTS; MODEL AB Globotriaosylceramide (Gb3), a glycosphingolipid found in the plasma membrane of animal cells, is the endocytic receptor of the bacterial Shiga toxin. Using x-ray reflectivity (XR) and grazing incidence x-ray diffraction (GIXD), lipid monolayers containing Gb3 were investigated at the air-water interface. XR probed Gb3 carbohydrate conformation normal to the interface, whereas GIXD precisely characterized Gb3's influence on acyl chain in-plane packing and area per molecule (APM). Two phospholipids, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), were used to study Gb3 packing in different lipid environments. Furthermore, the impact on monolayer structure of a naturally extracted Gb3 mixture was compared to synthetic Gb3 species with uniquely defined acyl chain structures. XR results showed that lipid environment and Gb3 acyl chain structure impact carbohydrate conformation with greater solvent accessibility observed for smaller phospholipid headgroups and long Gb3 acyl chains. In general, GIXD showed that Gb3 condensed phospholipid packing resulting in smaller APM than predicted by ideal mixing. Gb3's capacity to condense APM was larger for DSPC monolayers and exhibited different dependencies on acyl chain structure depending on the lipid environment. The interplay between Gb3-induced changes in lipid packing and the lipid environment's impact on carbohydrate conformation has broad implications for glycosphingolipid macromolecule recognition and ligand binding. C1 [Watkins, Erik B.; Dennison, Andrew J. C.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France. [Gao, Haifei; Chopin, Nathalie; Florent, Jean-Claude; Johannes, Ludger] Inst Curie, Ctr Rech, F-75248 Paris 5, France. [Gao, Haifei; Chopin, Nathalie; Florent, Jean-Claude; Johannes, Ludger] CNRS, UMR3666, F-75005 Paris, France. [Gao, Haifei; Chopin, Nathalie; Florent, Jean-Claude; Johannes, Ludger] INSERM, U1143, F-75005 Paris, France. [Dennison, Andrew J. C.] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden. [Struth, Bernd] DESY, HASYLAB, D-22603 Hamburg, Germany. [Arnold, Thomas] Diamond Light Source, Chilton, England. RP Watkins, EB (reprint author), Los Alamos Natl Lab, Lujan Neutron Scattering Ctr, POB 1663, Los Alamos, NM 87545 USA. EM erik.b.watkins@gmail.com OI Dennison, Ashley/0000-0003-0090-503X; Arnold, Thomas/0000-0001-8295-3822 FU Agence Nationale pour la Recherche [ANR-09-BLAN-283, ANR-11 BSV2 014 03]; Marie Curie Actions-Networks for Initial Training; European Research Council [340485]; Swedish Research Council (VR) FX This work was supported by grants from the Agence Nationale pour la Recherche (ANR-09-BLAN-283 and ANR-11 BSV2 014 03), Marie Curie Actions-Networks for Initial Training (FP7-PEOPLE-2010-ITN), and European Research Council advanced grant (project 340485). A.J.C.D. was funded by the Swedish Research Council (VR). NR 34 TC 5 Z9 5 U1 2 U2 19 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 EI 1542-0086 J9 BIOPHYS J JI Biophys. J. PD SEP 2 PY 2014 VL 107 IS 5 BP 1146 EP 1155 DI 10.1016/j.bpj.2014.07.023 PG 10 WC Biophysics SC Biophysics GA AO3ZD UT WOS:000341275100015 PM 25185550 ER PT J AU Sekharan, S Ertem, MZ Zhuang, HY Block, E Matsunami, H Zhang, RN Wei, JN Pan, Y Batista, VS AF Sekharan, Sivakumar Ertem, Mehmed Z. Zhuang, Hanyi Block, Eric Matsunami, Hiroaki Zhang, Ruina Wei, Jennifer N. Pan, Yi Batista, Victor S. TI QM/MM Model of the Mouse Olfactory Receptor MOR244-3 Validated by Site-Directed Mutagenesis Experiments SO BIOPHYSICAL JOURNAL LA English DT Article ID OPTIMIZATION; ODORANTS; KINETICS AB Understanding structure/function relationships of olfactory receptors is challenging due to the lack of x-ray structural models. Here, we introduce a QM/MM model of the mouse olfactory receptor MOR244-3, responsive to organosulfur odorants such as (methylthio)methanethiol. The binding site consists of a copper ion bound to the heteroatoms of amino-acid residues H105, C109, and N202. The model is consistent with site-directed mutagenesis experiments and biochemical measurements of the receptor activation, and thus provides a valuable framework for further studies of the sense of smell at the molecular level. C1 [Sekharan, Sivakumar; Ertem, Mehmed Z.; Wei, Jennifer N.; Batista, Victor S.] Yale Univ, Dept Chem, New Haven, CT 06520 USA. [Ertem, Mehmed Z.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Zhuang, Hanyi; Zhang, Ruina; Pan, Yi] Shanghai Jiao Tong Univ, Sch Med, Chinese Minist Educ, Dept Pathophysiol,Key Lab Cell Differentiat & Apo, Shanghai 200030, Peoples R China. [Zhuang, Hanyi] Chinese Acad Sci, Shanghai Inst Biol Sci, Shanghai Jiao Tong Univ, Inst Hlth Sci,Sch Med, Shanghai, Peoples R China. [Block, Eric] SUNY Albany, Dept Chem, Albany, NY 12222 USA. [Matsunami, Hiroaki] Duke Univ, Dept Mol Genet & Microbiol, Med Ctr, Durham, NC USA. [Matsunami, Hiroaki] Duke Univ, Med Ctr, Dept Neurobiol, Durham, NC 27710 USA. RP Sekharan, S (reprint author), Yale Univ, Dept Chem, New Haven, CT 06520 USA. EM sivakumar.sekharan@yale.edu; nnzertem@bnl.gov; hanyizhuang@sjtu.edu.cn; victor.batista@yale.edu FU National Science Foundation [CHE-0911520, CHE-1265679, CHE-31070972]; 973 Program of China [2012CB910401]; Shanghai Jiao Tong University School of Medicine Doctoral Innovation Grant; Program for Innovative Research Team of Shanghai Municipal Education Commission; Eastern Scholar Program at Shanghai Institutions of Higher Learning [J50201]; National Institutes of Health [DC005782]; Computational Materials and Chemical Sciences project at Brookhaven National Laboratory [DE-AC02-98CH10886]; U.S. Department of Energy FX We acknowledge support from the National Science Foundation (grants No. CHE-0911520, CHE-1265679, and CHE-31070972), the 973 Program of China (grant No. 2012CB910401), the Shanghai Jiao Tong University School of Medicine Doctoral Innovation Grant, the Program for Innovative Research Team of Shanghai Municipal Education Commission, the Eastern Scholar Program at Shanghai Institutions of Higher Learning (grant No. J50201), and the National Institutes of Health grant No. DC005782. M.Z.E. was funded by a Computational Materials and Chemical Sciences project at Brookhaven National Laboratory under contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. NR 18 TC 9 Z9 9 U1 0 U2 12 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 EI 1542-0086 J9 BIOPHYS J JI Biophys. J. PD SEP 2 PY 2014 VL 107 IS 5 BP L05 EP L08 DI 10.1016/j.bpj.2014.07.031 PG 4 WC Biophysics SC Biophysics GA AO3ZD UT WOS:000341275100001 PM 25185561 ER PT J AU Bao, C Wu, HF Li, L Newcomer, D Long, PE Williams, KH AF Bao, Chen Wu, Hongfei Li, Li Newcomer, Darrell Long, Philip E. Williams, Kenneth H. TI Uranium Bioreduction Rates across Scales: Biogeochemical Hot Moments and Hot Spots during a Biostimulation Experiment at Rifle, Colorado SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SULFATE-REDUCING BACTERIA; CRYSTALLINE IRON(III) OXIDES; EMULSIFIED VEGETABLE-OIL; IN-SITU BIOSTIMULATION; MICROBIAL REDUCTION; CONTAMINATED AQUIFER; U(VI) REDUCTION; GEOBACTER-SULFURREDUCENS; MAGNESITE DISSOLUTION; HYDROTHERMAL SYSTEMS AB We aim to understand the scale-dependent evolution of uranium bioreduction during a field experiment at a former uranium mill site near Rifle, Colorado. Acetate was injected to stimulate Fe-reducing bacteria (FeRB) and to immobilize aqueous U(VI) to insoluble U(IV). Bicarbonate was coinjected in half of the domain to mobilize sorbed U(VI). We used reactive transport modeling to integrate hydraulic and geochemical data and to quantify rates at the grid block (0.25 m) and experimental field scale (tens of meters). Although local rates varied by orders of magnitude in conjunction with biostimulation fronts propagating downstream, field-scale rates were dominated by those orders of magnitude higher rates at a few selected hot spots where Fe(III), U(VI), and FeRB were at their maxima in the vicinity of the injection wells. At particular locations, the hot moments with maximum rates negatively corresponded to their distance from the injection wells. Although bicarbonate injection enhanced local rates near the injection wells by a maximum of 39.4%, its effect at the field scale was limited to a maximum of 10.0%. We propose a rate-versus-measurement-length relationship (log R' = -0.63 log L - 2.20, with R' in mu mol/mg cell protein/day and L in meters) for orders-of-magnitude estimation of uranium bioreduction rates across scales. C1 [Bao, Chen; Wu, Hongfei; Li, Li] Penn State Univ, John & Willie Leone Dept Energy & Mineral Engn, University Pk, PA 16802 USA. [Li, Li] Penn State Univ, EMS Energy Inst, University Pk, PA 16802 USA. [Li, Li] Penn State Univ, EESI, University Pk, PA 16802 USA. [Newcomer, Darrell] Pacific NW Natl Lab, Richland, WA 99352 USA. [Long, Philip E.; Williams, Kenneth H.] Lawrence Berkeley Natl Lab, Berkeley, CA 94701 USA. RP Li, L (reprint author), Penn State Univ, John & Willie Leone Dept Energy & Mineral Engn, University Pk, PA 16802 USA. EM lili@eme.psu.edu RI Williams, Kenneth/O-5181-2014; Long, Philip/F-5728-2013; Li, Li/A-6077-2008 OI Williams, Kenneth/0000-0002-3568-1155; Long, Philip/0000-0003-4152-5682; Li, Li/0000-0002-1641-3710 FU U.S. Department of Energy, Office of Sciences, Biological and Environmental Research [DE-AC02-05CH1123] FX Funding was provided by the U.S. Department of Energy, Office of Sciences, Biological and Environmental Research to the LBNL Sustainable Systems Scientific Focus Area under Award Number DE-AC02-05CH1123 and through a subcontract to Penn State University. We acknowledge the Rifle IFRC research team for facilitating collaboration and access to Rifle data. We acknowledge the associate editor Dr. Jorge Gardea-Torresdey for handling this paper and two anonymous reviewers for their diligent and constructive reviews that have significantly improved the paper. NR 83 TC 14 Z9 14 U1 5 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD SEP 2 PY 2014 VL 48 IS 17 BP 10116 EP 10127 DI 10.1021/es501060d PG 12 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA AO3KY UT WOS:000341229300023 PM 25079237 ER PT J AU Lee, HJ Aiona, PK Laskin, A Laskin, J Nizkorodov, SA AF Lee, Hyun Ji (Julie) Aiona, Paige Kuuipo Laskin, Alexander Laskin, Julia Nizkorodov, Sergey A. TI Effect of Solar Radiation on the Optical Properties and Molecular Composition of Laboratory Proxies of Atmospheric Brown Carbon SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SECONDARY ORGANIC AEROSOL; IONIZATION MASS-SPECTROMETRY; RADICAL-INITIATED REACTIONS; LIGHT-ABSORPTION; GAS-PHASE; PHOTOCHEMICAL REDUCTION; AROMATIC-HYDROCARBONS; CLOUD-WATER; NAPHTHALENE; OXIDATION AB Sources, optical properties, and chemical composition of atmospheric brown carbon (BrC) aerosol are uncertain, making it challenging to estimate its contribution to radiative forcing. Furthermore, optical properties of BrC may change significantly during its atmospheric aging. We examined the effect of photolysis on the molecular composition, mass absorption coefficient, and fluorescence of secondary organic aerosol (SOA) prepared by high-NOx photooxidation of naphthalene (NAP SOA). Our experiments were designed to model photolysis processes of NAP SOA compounds dissolved in cloud or fog droplets. Aqueous solutions of NAP SOA were observed to photobleach (i.e., lose their ability to absorb visible radiation) with an effective half-life of similar to 15 h (with sun in its zenith) for the loss of near-UV (300-400 nm) absorbance. The molecular composition of NAP SOA was significantly modified by photolysis, with the average SOA formula changing from C14.1H14.5O5.1N0.085 to C11.8H14.9O4.5N0.023 after 4 h of irradiation. However, the average O/C ratio did not change significantly, suggesting that it is not a good metric for assessing the extent of photolysis-driven aging in NAP SOA (and in BrC in general). In contrast to NAP SOA, the photobleaching of BrC material produced by the reaction of limonene + ozone SOA with ammonia vapor (aged LIM/O-3 SOA) was much faster, but it did not result in a significant change in average molecular composition. The characteristic absorbance of the aged LIM/O-3 SOA in the 450-600 nm range decayed with an effective half-life of <0.5 h. These results emphasize the highly variable and dynamic nature of different types of atmospheric BrC. C1 [Lee, Hyun Ji (Julie); Aiona, Paige Kuuipo; Nizkorodov, Sergey A.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. [Laskin, Alexander] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Laskin, Julia] Pacific NW Natl Lab, Phys Sci Div, Richland, WA 99352 USA. RP Nizkorodov, SA (reprint author), Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. EM nizkorod@uci.edu RI Laskin, Julia/H-9974-2012; Laskin, Alexander/I-2574-2012; Nizkorodov, Sergey/I-4120-2014 OI Laskin, Julia/0000-0002-4533-9644; Laskin, Alexander/0000-0002-7836-8417; Nizkorodov, Sergey/0000-0003-0891-0052 FU U.S. Department of Commerce, National Oceanic and Atmospheric Administration through Climate Program Office's AC4 program [NA13OAR4310066, NA13OAR4310062]; NSF [AGS-1227579]; Office of Biological and Environmental Research of the U.S.; US DOE [DE-AC06-76RL0 1830] FX We acknowledge support by the U.S. Department of Commerce, National Oceanic and Atmospheric Administration through Climate Program Office's AC4 program, awards NA13OAR4310066 (PNNL) and NA13OAR4310062 (UCI). H.J.L. acknowledges support by the NSF grant AGS-1227579. The ESI/HR-MS analysis was performed at the W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL) - a national scientific user facility located at PNNL - and sponsored by the Office of Biological and Environmental Research of the U.S. PNNL is operated for US DOE by Battelle Memorial Institute under Contract No. DE-AC06-76RL0 1830. NR 69 TC 33 Z9 33 U1 10 U2 75 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD SEP 2 PY 2014 VL 48 IS 17 BP 10217 EP 10226 DI 10.1021/es502515r PG 10 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA AO3KY UT WOS:000341229300034 PM 25102050 ER PT J AU Horowitz, HM Jacob, DJ Amos, HM Streets, DG Sunderland, EM AF Horowitz, Hannah M. Jacob, Daniel J. Amos, Helen M. Streets, David G. Sunderland, Elsie M. TI Historical Mercury Releases from Commercial Products: Global Environmental Implications SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID MUNICIPAL SOLID-WASTE; ATMOSPHERIC MERCURY; METHYLMERCURY EXPOSURE; EMISSIONS; DEPOSITION; LANDFILLS; FLUXES; CORES; LAKES; BAY AB The intentional use of mercury (Hg) in products and processes ("commercial Hg") has contributed a large and previously unquantified anthropogenic source of Hg to the global environment over the industrial era, with major implications for Hg accumulation in environmental reservoirs. We present a global inventory of commercial Hg uses and releases to the atmosphere, water, soil, and landfills from 1850 to 2010. Previous inventories of anthropogenic Hg releases have focused almost exclusively on atmospheric emissions from "byproduct" sectors (e.g., fossil fuel combustion). Cumulative anthropogenic atmospheric Hg emissions since 1850 have recently been estimated at 215 Gg (only including commercial Hg releases from chlor-alkali production, waste incineration, and mining). We find that other commercial Hg uses and nonatmospheric releases from chlor-alkali and mining result in an additional 540 Gg of Hg released to the global environment since 1850 (air: 20%; water: 30%; soil: 30%; landfills: 20%). Some of this release has been sequestered in landfills and benthic sediments, but 310 Gg actively cycles among geochemical reservoirs and contributes to elevated present-day environmental Hg concentrations. Commercial Hg use peaked in 1970 and has declined sharply since. We use our inventory of historical environmental releases to force a global biogeochemical model that includes new estimates of the global burial in ocean margin sediments. Accounting for commercial Hg releases improves model consistency with observed atmospheric concentrations and associated historical trends. C1 [Horowitz, Hannah M.; Jacob, Daniel J.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Jacob, Daniel J.; Sunderland, Elsie M.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Streets, David G.] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Amos, Helen M.; Sunderland, Elsie M.] Harvard Univ, Sch Publ Hlth, Dept Environm Hlth, Boston, MA 02115 USA. RP Horowitz, HM (reprint author), Harvard Univ, Dept Earth & Planetary Sci, 20 Oxford St, Cambridge, MA 02138 USA. EM hmhorow@fas.harvard.edu RI Sunderland, Elsie/D-5511-2014 OI Sunderland, Elsie/0000-0003-0386-9548 FU Harvard School of Engineering and Applied Sciences TomKat Fund; Atmospheric Chemistry Program of the National Science Foundation; NSF GRFP FX We acknowledge financial support for this work from the Harvard School of Engineering and Applied Sciences Tom KatFund and the Atmospheric Chemistry Program of the National Science Foundation. H.M.H. acknowledges support from NSF GRFP. We thank the editor and three anonymous reviewers for their thoughtful suggestions. NR 75 TC 39 Z9 41 U1 16 U2 102 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD SEP 2 PY 2014 VL 48 IS 17 BP 10242 EP 10250 DI 10.1021/es501337j PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA AO3KY UT WOS:000341229300037 PM 25127072 ER PT J AU Hase, TPA Brewer, MS Arnalds, UB Ahlberg, M Kapaklis, V Bjoerck, M Bouchenoire, L Thompson, P Haskel, D Choi, Y Lang, J Sanchez-Hanke, C Hjorvarsson, B AF Hase, Thomas P. A. Brewer, Matthew S. Arnalds, Unnar B. Ahlberg, Martina Kapaklis, Vassilios Bjoerck, Matts Bouchenoire, Laurence Thompson, Paul Haskel, Daniel Choi, Yongseong Lang, Jonathan Sanchez-Hanke, Cecilia Hjoervarsson, Bjoergvin TI Proximity effects on dimensionality and magnetic ordering in Pd/Fe/Pd trialyers SO PHYSICAL REVIEW B LA English DT Article ID ULTRATHIN FILMS; FE/PD(100); ALLOYS; PHOTOEMISSION; TRANSITION; MORPHOLOGY; PALLADIUM; BEHAVIOR; CU(111); IRON AB The element-specific magnetization and ordering in trilayers consisting of 0.3-1.4 monolayer (ML) thick Fe layers embedded in Pd(001) has been determined using x-ray resonant magnetic scattering. The proximity to Fe induces a large moment in the Pd which extends similar to 2 nm from the interfaces. The magnetization as a function of temperature is found to differ significantly for the Fe and Pd sublattices: The Pd signal resembles the results obtained by magneto-optical techniques with an apparent three-dimensional (3D) to two-dimensional (2D) transition in spatial dimensionality for Fe thickness below similar to 1 ML. In stark contrast, the Fe data exhibits a 2D behavior. No ferromagnetic signal is obtained from Fe below the 2D percolation limit in Fe coverage (similar to 0.7 ML), while Pd shows a ferromagnetic response for all samples. The results are attributed to the temperature dependence of the susceptibility of Pd and a profound local anisotropy of submonolayered Fe. C1 [Hase, Thomas P. A.; Brewer, Matthew S.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Arnalds, Unnar B.; Ahlberg, Martina; Kapaklis, Vassilios; Bjoerck, Matts; Hjoervarsson, Bjoergvin] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden. [Bouchenoire, Laurence; Thompson, Paul] Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England. [Bouchenoire, Laurence; Thompson, Paul] European Synchrotron Radiat Facil, XMaS Beamline, F-38043 Grenoble, France. [Haskel, Daniel; Choi, Yongseong; Lang, Jonathan] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Sanchez-Hanke, Cecilia] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Hase, TPA (reprint author), Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. RI Arnalds, Unnar/L-9315-2015; OI Arnalds, Unnar/0000-0002-5988-917X; Hjorvarsson, Bjorgvin/0000-0003-1803-9467 FU UK-EPSRC; Swedish Research Council (VR); Knut and Alice Wallenberg Foundation (KAW); Swedish Foundation for International Cooperation in Research and Higher Education (STINT); U.S. DOE, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886, DE-AC02-06CH11357]; EPSRC FX The authors acknowledge the financial support of the UK-EPSRC and the Swedish Research Council (VR) as well as the Knut and Alice Wallenberg Foundation (KAW), the Swedish Foundation for International Cooperation in Research and Higher Education (STINT). Work undertaken at the NSLS and the APS were supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, under Contracts No. DE-AC02-98CH10886 and No. DE-AC02-06CH11357. XMaS is a midrange facility supported by EPSRC. We are indebted to Simon Brown, Oier Bikondoa, Didier Wermeille, Phil Ryan, David Kearney, and Mike McDowell for invaluable support during beamtime. NR 34 TC 5 Z9 5 U1 1 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD SEP 2 PY 2014 VL 90 IS 10 AR 104403 DI 10.1103/PhysRevB.90.104403 PG 6 WC Physics, Condensed Matter SC Physics GA AO3NU UT WOS:000341239100007 ER PT J AU Kennes, DM Meden, V Vasseur, R AF Kennes, D. M. Meden, V. Vasseur, R. TI Universal quench dynamics of interacting quantum impurity systems SO PHYSICAL REVIEW B LA English DT Article ID DIMENSIONAL ELECTRON-GAS; LUTTINGER LIQUID; ORTHOGONALITY CATASTROPHE; RENORMALIZATION-GROUP; INTERFACE DEFECTS; KONDO PROBLEM; ENTANGLEMENT; MODEL; CHAINS; STATES AB The equilibrium physics of quantum impurities frequently involves a universal crossover from weak to strong reservoir-impurity coupling, characterized by single-parameter scaling and an energy scale T-K (Kondo temperature) that breaks scale invariance. For the noninteracting resonant level model, the nonequilibrium time evolution of the Loschmidt echo after a local quantum quench was recently computed explicitly [R. Vasseur, K. Trinh, S. Haas, and H. Saleur, Phys. Rev. Lett. 110, 240601 (2013)]. It shows single-parameter scaling with variable T(K)t. Here, we scrutinize whether similar universal dynamics can be observed in various interacting quantum impurity systems. Using density matrix and functional renormalization group approaches, we analyze the time evolution resulting from abruptly coupling two noninteracting Fermi or interacting Luttinger liquid leads via a quantum dot or a direct link. We also consider the case of a single Luttinger liquid lead suddenly coupled to a quantum dot. We investigate whether the field-theory predictions for the universal scaling as well as for the large-time behavior successfully describe the time evolution of the Loschmidt echo and the entanglement entropy of microscopic models. Our study shows that for the considered local quench protocols the above quantum impurity models fall into a class of problems for which the nonequilibrium dynamics can largely be understood based on the knowledge of the corresponding equilibrium physics. C1 [Kennes, D. M.; Meden, V.] Rhein Westfal TH Aachen, Inst Theorie Stat Phys, D-52056 Aachen, Germany. [Kennes, D. M.; Meden, V.] JARA Fundamentals Future Informat Technol, D-52056 Aachen, Germany. [Vasseur, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Vasseur, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Kennes, DM (reprint author), Rhein Westfal TH Aachen, Inst Theorie Stat Phys, D-52056 Aachen, Germany. FU Quantum Materials program of LBNL; Forschergruppe 723 of the DFG; US Department of Energy [DE-FG03-01ER45908] FX We are grateful to the MPIPKS Dresden for hosting the workshop "Quantum Many Body Systems out of Equilibrium" where this work was initiated. This work was supported by the Quantum Materials program of LBNL (RV) and the Forschergruppe 723 of the DFG (DMK and VM). DMK thanks the University of California, Berkeley for hospitality during his visit in summer 2013. RV also wishes to thank H. Saleur and J.E. Moore for discussions, and the University of Southern California for hospitality and support through the US Department of Energy (Grant No. DE-FG03-01ER45908). NR 70 TC 10 Z9 10 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD SEP 2 PY 2014 VL 90 IS 11 AR 115101 DI 10.1103/PhysRevB.90.115101 PG 13 WC Physics, Condensed Matter SC Physics GA AO3NW UT WOS:000341239300001 ER PT J AU Leiner, J Thampy, V Christianson, AD Abernathy, DL Stone, MB Lumsden, MD Sefat, AS Sales, BC Hu, J Mao, ZQ Bao, W Broholm, C AF Leiner, J. Thampy, V. Christianson, A. D. Abernathy, D. L. Stone, M. B. Lumsden, M. D. Sefat, A. S. Sales, B. C. Hu, Jin Mao, Zhiqiang Bao, Wei Broholm, C. TI Modified magnetism within the coherence volume of superconducting Fe1+delta SexTe1-x SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; SPIN EXCITATIONS; PAIRING MECHANISM; CONDENSATION; RESONANCE; ENERGY AB Neutron scattering is used to probe magnetic interactions as superconductivity develops in optimally doped Fe1+delta SexTe1-x. Applying the first moment sum rule to comprehensive neutron scattering data, we extract the change in magnetic exchange energy Delta[J(R-R')< S-R . S-R'>] in the superconducting state referenced to the normal state. Oscillatory changes are observed for Fe-Fe displacements |Delta R| < xi where xi = 1.3(1) nm is the superconducting coherence length. Dominated by a large reduction in the second nearest neighbor exchange energy [-1.2(2) meV/Fe], the overall reduction in magnetic interaction energy is Delta < H-mag > = -0.31(9) meV/Fe. Comparison to the superconducting condensation energy Delta E-SC = -0.013(1) meV/Fe, which we extract from specific heat data, suggests the modified magnetism we probe drives superconductivity in Fe1+delta SexTe1-x. C1 [Leiner, J.; Christianson, A. D.; Abernathy, D. L.; Stone, M. B.; Lumsden, M. D.; Broholm, C.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Thampy, V.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Thampy, V.; Broholm, C.] Johns Hopkins Univ, Inst Quantum Matter, Baltimore, MD 21218 USA. [Thampy, V.; Broholm, C.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Sefat, A. S.; Sales, B. C.] Oak Ridge Natl Lab, Correlated Electron Mat Grp, Oak Ridge, TN 37831 USA. [Hu, Jin; Mao, Zhiqiang] Tulane Univ, Dept Phys, New Orleans, LA 70118 USA. [Bao, Wei] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. [Broholm, C.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. RP Leiner, J (reprint author), Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. EM leinerjc@ornl.gov RI Stone, Matthew/G-3275-2011; Hu, Jin/C-4141-2014; Bao, Wei/E-9988-2011; Abernathy, Douglas/A-3038-2012; christianson, andrew/A-3277-2016; BL18, ARCS/A-3000-2012; Sefat, Athena/R-5457-2016; Lumsden, Mark/F-5366-2012 OI Stone, Matthew/0000-0001-7884-9715; Hu, Jin/0000-0003-0080-4239; Bao, Wei/0000-0002-2105-461X; Abernathy, Douglas/0000-0002-3533-003X; christianson, andrew/0000-0003-3369-5884; Sefat, Athena/0000-0002-5596-3504; Lumsden, Mark/0000-0002-5472-9660 FU UT-Battelle LDRD [3211-2440]; National Science Foundation [DMR-0944772]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy; NSF [DMR-1205469]; National Basic Research Program of China [2012CB921700, 2011CBA00112]; National Science Foundation of China [11034012, 11190024] FX This project was supported by UT-Battelle LDRD No. 3211-2440. Facilities utilized at NIST were supported in part by the National Science Foundation under Agreement No. DMR-0944772. Research conducted at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. A.S. and B.C.S. were supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy. The work at Tulane is supported by the NSF under Grant No. DMR-1205469. The work at RUC was supported by the National Basic Research Program of China Grants No. 2012CB921700 and No. 2011CBA00112, and by the National Science Foundation of China Grants No. 11034012 and No. 11190024. NR 34 TC 2 Z9 2 U1 1 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD SEP 2 PY 2014 VL 90 IS 10 AR 100501 DI 10.1103/PhysRevB.90.100501 PG 5 WC Physics, Condensed Matter SC Physics GA AO3NU UT WOS:000341239100002 ER PT J AU Ma, J Deng, HX Luo, JW Wei, SH AF Ma, Jie Deng, Hui-Xiong Luo, Jun-Wei Wei, Su-Huai TI Origin of the failed ensemble average rule for the band gaps of disordered nonisovalent semiconductor alloys SO PHYSICAL REVIEW B LA English DT Article ID INITIO MOLECULAR-DYNAMICS; QUASI-RANDOM STRUCTURES; 1ST-PRINCIPLES CALCULATION; METALS; TRANSITION AB Recent calculations show that the band gaps of the nonisovalent random alloys such as Zn0.5Sn0.5P are much smaller than those of their ordered phases; that is, the band gap of the random alloy is not the ensemble averaged value of the ordered structures, in contrast to the trend observed in most isovalent semiconductor alloys and predicted by the cluster expansion theory. We show that this abnormal behavior is caused by the strong wave-function localization of the band-edge states in the nonisovalent alloys. Moreover, we show that although the disordered phase of the isovalent alloys is similar to the random phase, for the nonisovalent alloy, the disordered phase deviates significantly from the random phase and the fully random phase is not achievable under the equilibrium growth conditions. C1 [Ma, Jie; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Deng, Hui-Xiong; Luo, Jun-Wei] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China. RP Ma, J (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM hxdeng@semi.ac.cn; swei@nrel.gov RI LUO, JUNWEI/B-6545-2013 FU U.S. DOE [DE-AC36-08GO28308]; NERSC [DE-AC02-05CH11231]; National Basic Research Program of China (973 Program) [G2009CB929300]; National Natural Science Foundation of China [61121491, 11104264] FX This work was funded by the U.S. DOE (Contract No. DE-AC36-08GO28308), and some of the calculations were carried out using the NERSC supercomputers (Contract No. DE-AC02-05CH11231). The work at IS, CAS was supported by the National Basic Research Program of China (973 Program) Grant No. G2009CB929300 and the National Natural Science Foundation of China under Grants Nos. 61121491 and 11104264. NR 30 TC 3 Z9 3 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD SEP 2 PY 2014 VL 90 IS 11 AR 115201 DI 10.1103/PhysRevB.90.115201 PG 5 WC Physics, Condensed Matter SC Physics GA AO3NW UT WOS:000341239300007 ER PT J AU O'Neal, KR Liu, Z Miller, JS Fishman, RS Musfeldt, JL AF O'Neal, K. R. Liu, Z. Miller, Joel S. Fishman, R. S. Musfeldt, J. L. TI Pressure-driven high-to-low spin transition in the bimetallic quantum magnet [Ru-2(O2CMe)(4)](3)[Cr(CN)(6)] SO PHYSICAL REVIEW B LA English DT Article ID MOLECULE-BASED MAGNETS; PHASE-DIAGRAM; AXIAL LIGANDS; GROUND-STATE; COMPLEXES; SPECTRA; CHEMISTRY; FIELD; SPECTROSCOPY; ELECTRONS AB Synchrotron-based infrared and Raman spectroscopies were brought together with diamond anvil cell techniques and an analysis of the magnetic properties to investigate the pressure-induced high -> low spin transition in [Ru-2(O2CMe)(4)](3)[Cr(CN)(6)]. The extended nature of the diruthenium wave function combined with coupling to chromium-related local lattice distortions changes the relative energies of the pi* and delta* orbitals and drives the high -> low spin transition on the mixed-valence diruthenium complex. This is a rare example of an externally controlled metamagnetic transition in which both spin-orbit and spin-lattice interactions contribute to the mechanism. C1 [O'Neal, K. R.; Musfeldt, J. L.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Liu, Z.] Carnegie Inst Sci, Geophys Lab, Washington, DC USA. [Miller, Joel S.] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA. [Fishman, R. S.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP O'Neal, KR (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. FU National Science Foundation [DMR-1063880, DMR-11063630]; US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; US Department of Energy [DE-AC98-06CH10886]; COMPRES under NSF [EAR 11-57758]; CDAC [DE-FC03-03N00144] FX This research was funded by the National Science Foundation under Grants No. DMR-1063880 (J.L.M.) and No. DMR-11063630 (J.S.M.) as well as by the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division (R.S.F.). Work at the National Synchrotron Light Source at Brookhaven National Laboratory was supported by the US Department of Energy under Contract No. DE-AC98-06CH10886. The use of U2A beamline was supported by COMPRES under NSF Cooperative Agreement EAR 11-57758 and CDAC (DE-FC03-03N00144). NR 63 TC 3 Z9 3 U1 3 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD SEP 2 PY 2014 VL 90 IS 10 AR 104301 DI 10.1103/PhysRevB.90.104301 PG 6 WC Physics, Condensed Matter SC Physics GA AO3NU UT WOS:000341239100004 ER PT J AU Casperson, RJ Burke, JT Scielzo, ND Escher, JE McCleskey, E McCleskey, M Saastamoinen, A Spiridon, A Ratkiewicz, A Blanc, A Kurokawa, M Pizzone, RG AF Casperson, R. J. Burke, J. T. Scielzo, N. D. Escher, J. E. McCleskey, E. McCleskey, M. Saastamoinen, A. Spiridon, A. Ratkiewicz, A. Blanc, A. Kurokawa, M. Pizzone, R. G. TI Measurement of the Am-240(n, f) cross section using the surrogate-ratio method SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR-DATA LIBRARY; ACTINIDE NUCLEI; FISSION; SCIENCE; TECHNOLOGY AB The Am-240(n, f) cross section has been measured for the first time above 4 MeV, using the surrogate-ratio method over the neutron energy range of 200 keV to 14 MeV. The reactions Am-243(p, tf) and U-238(p, tf), which proceed through the fissioning excited nuclei Am-241* and U-236*, were used as surrogates for the desired Am-240(n, f) and U-235(n, f) reactions. The experiment was fielded using the STARLiTeR detector system with a recently commissioned VME-based data acquisition system. The 38.4-MeV proton beam used in these measurements was provided by the K150 cyclotron at the Texas A&M Cyclotron Institute. The measured Am-240(n, f) cross section disagrees with many of the most recent evaluations, and a reevaluation is recommended. C1 [Casperson, R. J.; Burke, J. T.; Scielzo, N. D.; Escher, J. E.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [McCleskey, E.; McCleskey, M.; Saastamoinen, A.; Spiridon, A.] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. [Ratkiewicz, A.] Rutgers State Univ, Dept Phys & Astron, New Brunswick, NJ 08903 USA. [Blanc, A.] Inst Laue Langevin, F-38042 Grenoble 9, France. [Kurokawa, M.] RIKEN, Nishina Ctr, Wako, Saitama 3510198, Japan. [Pizzone, R. G.] Ist Nazl Fis Nucl, Lab Nazl Sud, I-95123 Catania, Italy. RP Casperson, RJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM casperson1@llnl.gov RI Burke, Jason/I-4580-2012; Pizzone, Rosario/I-4527-2015 OI Pizzone, Rosario/0000-0003-2436-6640 FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Department of Energy's NNSA Office of Defense Nuclear Nonproliferation Research Development; Texas A&M Cyclotron Institute from NNSA [DE-FG52-09NA29467]; Texas A&M Cyclotron Institute from DOE Office of Nuclear Physics [DE-FG02-93ER40773] FX We wish to acknowledge the efforts of the Texas A&M Cyclotron Institute's staff for their outstanding efforts on this first STARLiTeR experiment. In particular, we thank George Kim, Fred Abegglen, Erik Yendrey, Henry Clark, and Leigh Gathings. We would also like to thank Frank S. Dietrich (LLNL) for useful discussions. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, the Department of Energy's NNSA Office of Defense Nuclear Nonproliferation Research & Development, and the Texas A&M Cyclotron Institute under Grants No. DE-FG52-09NA29467 from NNSA and No. DE-FG02-93ER40773 from the DOE Office of Nuclear Physics. NR 32 TC 3 Z9 3 U1 0 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD SEP 2 PY 2014 VL 90 IS 3 AR 034601 DI 10.1103/PhysRevC.90.034601 PG 9 WC Physics, Nuclear SC Physics GA AO3OH UT WOS:000341240800002 ER PT J AU St-Onge, DA Sydora, RD AF St-Onge, D. A. Sydora, R. D. TI Kubo conductivity tensor for two- and three-dimensional magnetic nulls SO PHYSICAL REVIEW E LA English DT Article ID PARTICLE-ACCELERATION; GEOMAGNETIC TAIL; COLLISIONLESS CONDUCTIVITY; NEUTRAL POINT; PLASMA SHEET; RECONNECTION; FIELDS; TRANSPORT; MODELS AB The complete Kubo conductivity tensor is computed in two-and three-dimensional linear magnetic null systems using collisionless single-particle simulations. Regions of chaotic charged-particle dynamics are constructed for each case. It is found that stochastic frequency mixing of particle bounce motion, as well as gyromotion, contribute significantly to the conductivity. The conductivity curves are well approximated by power laws over a certain frequency range and the ac conductivity is found to be an order of magnitude smaller than the dc value, leading to enhanced resistivity, particularly near the cyclotron frequency. The ac conductivities must be accounted for in computation of the total dissipation. C1 [St-Onge, D. A.; Sydora, R. D.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada. RP St-Onge, DA (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM dstonge@pppl.gov; rsydora@ualberta.ca FU Natural Science and Engineering Research Council (NSERC) of Canada; NSERC FX This work was supported by the Natural Science and Engineering Research Council (NSERC) of Canada and D.St.O. thanks NSERC for a Postgraduate Research Scholarship. We also thank Westgrid Canada for providing computational resources for this research. NR 33 TC 0 Z9 0 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD SEP 2 PY 2014 VL 90 IS 3 AR 033103 DI 10.1103/PhysRevE.90.033103 PG 12 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA AO3QA UT WOS:000341247200013 PM 25314543 ER PT J AU Aartsen, MG Ackermann, M Adams, J Aguilar, JA Ahlers, M Ahrens, M Altmann, D Anderson, T Arguelles, C Arlen, TC Auffenberg, J Bai, X Barwick, SW Baum, V Beatty, JJ Tjus, JB Becker, KH BenZvi, S Berghaus, P Berley, D Bernardini, E Bernhard, A Besson, DZ Binder, G Bindig, D Bissok, M Blaufuss, E Blumenthal, J Boersma, DJ Bohm, C Bose, D Boser, S Botner, O Brayeur, L Bretz, HP Brown, AM Casey, J Casier, M Chirkin, D Christov, A Christy, B Clark, K Classen, L Clevermann, F Coenders, S Cowen, DF Silva, AHC Danninger, M Daughhetee, J Davis, JC Day, M de Andre, JPAM De Clercq, C De Ridder, S Desiati, P de Vries, KD de With, M DeYoung, T Diaz-Velez, JC Dunkman, M Eagan, R Eberhardt, B Eichmann, B Eisch, J Euler, S Evenson, PA Fadiran, O Fazely, AR Fedynitch, A Feintzeig, J Felde, J Feusels, T Filimonov, K Finley, C Fischer-Wasels, T Flis, S Franckowiak, A Frantzen, K Fuchs, T Gaisser, TK Gallagher, J Gerhardt, L Gier, D Gladstone, L Glusenkamp, T Goldschmidt, A Golup, G Gonzalez, JG Goodman, JA Gora, D Grandmont, DT Grant, D Gretskov, P Groh, JC Gross, A Ha, C Haack, C Ismail, AH Hallen, P Hallgren, A Halzen, F Hanson, K Hebecker, D Heereman, D Heinen, D Helbing, K Hellauer, R Hellwig, D Hickford, S Hill, GC Hoffman, KD Hoffmann, R Homeier, A Hoshina, K Huang, F Huelsnitz, W Hulth, PO Hultqvist, K Hussain, S Ishihara, A Jacobi, E Jacobsen, J Jagielski, K Japaridze, GS Jero, K Jlelati, O Jurkovic, M Kaminsky, B Kappes, A Karg, T Karle, A Kauer, M Kelley, JL Kheirandish, A Kiryluk, J Klas, J Klein, SR Kohne, JH Kohnen, G Kolanoski, H Koob, A Koepke, L Kopper, C Kopper, S Koskinen, DJ Kowalski, M Kriesten, A Krings, K Kroll, G Kunnen, J Kurahashi, N Kuwabara, T Labare, M Larsen, DT Larson, MJ Lesiak-Bzdak, M Leuermann, M Leute, J Luenemann, J Macias, O Madsen, J Maggi, G Maruyama, R Mase, K Matis, HS McNally, F Meagher, K Meli, A Meures, T Miarecki, S Middell, E Middlemas, E Milke, N Miller, J Mohrmann, L Montaruli, T Morse, R Nahnhauer, R Naumann, U Niederhausen, H Nowicki, SC Nygren, DR Obertacke, A Odrowski, S Olivas, A Omairat, A O'Murchadha, A Palczewski, T Paul, L Penek, O Pepper, JA Heros, CPDL Pfendner, C Pieloth, D Pinat, E Posselt, J Price, PB Przybylski, GT Putz, J Quinnan, M Radel, L Rameez, M Rawlins, K Redl, P Rees, I Reimann, R Resconi, E Rhode, W Richman, M Riedel, B Robertson, S Rodrigues, JP Rongen, M Rott, C Ruhe, T Ruzybayev, B Ryckbosch, D Saba, SM Sander, HG Santander, M Sarkar, S Schatto, K Scheriau, F Schmidt, T Schmitz, M Schoenen, S Schoneberg, S Schonwald, A Schukraft, A Schulte, L Schulz, O Seckel, D Sestayo, Y Seunarine, S Shanidze, R Sheremata, C Smith, MWE Soldin, D Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stanisha, NA Stasik, A Stezelberger, T Stokstad, RG Stossl, A Strahler, EA Strom, R Strotjohann, NL Sullivan, GW Taavola, H Taboada, I Tamburro, A Tepe, A Ter-Antonyan, S Terliuk, A Tesic, G Tilav, S Toale, PA Tobin, MN Tosi, D Tselengidou, M Unger, E Usner, M Vallecorsa, S van Eijndhoven, N Vandenbroucke, J van Santen, J Vehring, M Voge, M Vraeghe, M Walck, C Wallraff, M Weaver, C Wellons, M Wendt, C Westerhoff, S Whelan, BJ Whitehorn, N Wichary, C Wiebe, K Wiebusch, CH Williams, DR Wissing, H Wolf, M Wood, TR Woschnagg, K Xu, DL Xu, XW Yanez, JP Yodh, G Yoshida, S Zarzhitsky, P Ziemann, J Zierke, S Zoll, M AF Aartsen, M. G. Ackermann, M. Adams, J. Aguilar, J. A. Ahlers, M. Ahrens, M. Altmann, D. Anderson, T. Arguelles, C. Arlen, T. C. Auffenberg, J. Bai, X. Barwick, S. W. Baum, V. Beatty, J. J. Tjus, J. Becker Becker, K. -H. BenZvi, S. Berghaus, P. Berley, D. Bernardini, E. Bernhard, A. Besson, D. Z. Binder, G. Bindig, D. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. J. Bohm, C. Bose, D. Boeser, S. Botner, O. Brayeur, L. Bretz, H. -P. Brown, A. M. Casey, J. Casier, M. Chirkin, D. Christov, A. Christy, B. Clark, K. Classen, L. Clevermann, F. Coenders, S. Cowen, D. F. Silva, A. H. Cruz Danninger, M. Daughhetee, J. Davis, J. C. Day, M. de Andre, J. P. A. M. De Clercq, C. De Ridder, S. Desiati, P. de Vries, K. D. de With, M. DeYoung, T. Diaz-Velez, J. C. Dunkman, M. Eagan, R. Eberhardt, B. Eichmann, B. Eisch, J. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Fedynitch, A. Feintzeig, J. Felde, J. Feusels, T. Filimonov, K. Finley, C. Fischer-Wasels, T. Flis, S. Franckowiak, A. Frantzen, K. Fuchs, T. Gaisser, T. K. Gallagher, J. Gerhardt, L. Gier, D. Gladstone, L. Gluesenkamp, T. Goldschmidt, A. Golup, G. Gonzalez, J. G. Goodman, J. A. Gora, D. Grandmont, D. T. Grant, D. Gretskov, P. Groh, J. C. Gross, A. Ha, C. Haack, C. Ismail, A. Haj Hallen, P. Hallgren, A. Halzen, F. Hanson, K. Hebecker, D. Heereman, D. Heinen, D. Helbing, K. Hellauer, R. Hellwig, D. Hickford, S. Hill, G. C. Hoffman, K. D. Hoffmann, R. Homeier, A. Hoshina, K. Huang, F. Huelsnitz, W. Hulth, P. O. Hultqvist, K. Hussain, S. Ishihara, A. Jacobi, E. Jacobsen, J. Jagielski, K. Japaridze, G. S. Jero, K. Jlelati, O. Jurkovic, M. Kaminsky, B. Kappes, A. Karg, T. Karle, A. Kauer, M. Kelley, J. L. Kheirandish, A. Kiryluk, J. Klaes, J. Klein, S. R. Koehne, J. -H. Kohnen, G. Kolanoski, H. Koob, A. Koepke, L. Kopper, C. Kopper, S. Koskinen, D. J. Kowalski, M. Kriesten, A. Krings, K. Kroll, G. Kunnen, J. Kurahashi, N. Kuwabara, T. Labare, M. Larsen, D. T. Larson, M. J. Lesiak-Bzdak, M. Leuermann, M. Leute, J. Luenemann, J. Macias, O. Madsen, J. Maggi, G. Maruyama, R. Mase, K. Matis, H. S. McNally, F. Meagher, K. Meli, A. Meures, T. Miarecki, S. Middell, E. Middlemas, E. Milke, N. Miller, J. Mohrmann, L. Montaruli, T. Morse, R. Nahnhauer, R. Naumann, U. Niederhausen, H. Nowicki, S. C. Nygren, D. R. Obertacke, A. Odrowski, S. Olivas, A. Omairat, A. O'Murchadha, A. Palczewski, T. Paul, L. Penek, O. Pepper, J. A. Heros, C. Perez de los Pfendner, C. Pieloth, D. Pinat, E. Posselt, J. Price, P. B. Przybylski, G. T. Puetz, J. Quinnan, M. Raedel, L. Rameez, M. Rawlins, K. Redl, P. Rees, I. Reimann, R. Resconi, E. Rhode, W. Richman, M. Riedel, B. Robertson, S. Rodrigues, J. P. Rongen, M. Rott, C. Ruhe, T. Ruzybayev, B. Ryckbosch, D. Saba, S. M. Sander, H. -G. Santander, M. Sarkar, S. Schatto, K. Scheriau, F. Schmidt, T. Schmitz, M. Schoenen, S. Schoeneberg, S. Schoenwald, A. Schukraft, A. Schulte, L. Schulz, O. Seckel, D. Sestayo, Y. Seunarine, S. Shanidze, R. Sheremata, C. Smith, M. W. E. Soldin, D. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stanisha, N. A. Stasik, A. Stezelberger, T. Stokstad, R. G. Stoessl, A. Strahler, E. A. Strom, R. Strotjohann, N. L. Sullivan, G. W. Taavola, H. Taboada, I. Tamburro, A. Tepe, A. Ter-Antonyan, S. Terliuk, A. Tesic, G. Tilav, S. Toale, P. A. Tobin, M. N. Tosi, D. Tselengidou, M. Unger, E. Usner, M. Vallecorsa, S. van Eijndhoven, N. Vandenbroucke, J. van Santen, J. Vehring, M. Voge, M. Vraeghe, M. Walck, C. Wallraff, M. Weaver, Ch. Wellons, M. Wendt, C. Westerhoff, S. Whelan, B. J. Whitehorn, N. Wichary, C. Wiebe, K. Wiebusch, C. H. Williams, D. R. Wissing, H. Wolf, M. Wood, T. R. Woschnagg, K. Xu, D. L. Xu, X. W. Yanez, J. P. Yodh, G. Yoshida, S. Zarzhitsky, P. Ziemann, J. Zierke, S. Zoll, M. CA IceCube Collaboration TI Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data SO PHYSICAL REVIEW LETTERS LA English DT Article ID GAMMA-RAY BURSTS; ACTIVE GALACTIC NUCLEI; FLUX; SEARCH; TELESCOPE; ASTRONOMY; EMISSION; BLAZARS; LEPTONS; JETS AB A search for high-energy neutrinos interacting within the IceCube detector between 2010 and 2012 provided the first evidence for a high-energy neutrino flux of extraterrestrial origin. Results from an analysis using the same methods with a third year (2012-2013) of data from the complete IceCube detector are consistent with the previously reported astrophysical flux in the 100 TeV-PeV range at the level of 10(-8) GeV cm(-2) s(-1) sr(-1) per flavor and reject a purely atmospheric explanation for the combined three-year data at 5.7 sigma. The data are consistent with expectations for equal fluxes of all three neutrino flavors and with isotropic arrival directions, suggesting either numerous or spatially extended sources. The three-year data set, with a live time of 988 days, contains a total of 37 neutrino candidate events with deposited energies ranging from 30 to 2000 TeV. The 2000-TeV event is the highest-energy neutrino interaction ever observed. C1 [Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gier, D.; Gretskov, P.; Haack, C.; Hallen, P.; Hellwig, D.; Koob, A.; Kriesten, A.; Krings, K.; Leuermann, M.; Paul, L.; Penek, O.; Raedel, L.; Reimann, R.; Rongen, M.; Schoenen, S.; Schukraft, A.; Vehring, M.; Wallraff, M.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Aartsen, M. G.; Hill, G. C.; Robertson, S.; Whelan, B. J.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. [Japaridze, G. S.; Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. [Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Fazely, A. R.; Gerhardt, L.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Binder, G.; Filimonov, K.; Gerhardt, L.; Ha, C.; Klein, S. R.; Miarecki, S.; Price, P. B.; Whitehorn, N.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Binder, G.; Gerhardt, L.; Goldschmidt, A.; Ha, C.; Klein, S. R.; Matis, H. S.; Miarecki, S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [de With, M.; Kolanoski, H.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Tjus, J. Becker; Eichmann, B.; Fedynitch, A.; Saba, S. M.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Boeser, S.; Franckowiak, A.; Hebecker, D.; Homeier, A.; Kowalski, M.; Schulte, L.; Stasik, A.; Strotjohann, N. L.; Usner, M.; Voge, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [de Vries, K. D.; Hanson, K.; Heereman, D.; Meures, T.; O'Murchadha, A.; Pinat, E.] Univ Libre Brussels, Fac Sci, B-1050 Brussels, Belgium. [Brayeur, L.; Casier, M.; De Clercq, C.; Golup, G.; Kunnen, J.; Maggi, G.; Miller, J.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Ishihara, A.; Mase, K.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Adams, J.; Brown, A. M.; Hickford, S.; Macias, O.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Berley, D.; Blaufuss, E.; Christy, B.; Felde, J.; Goodman, J. A.; Hellauer, R.; Hoffmann, R.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Beatty, J. J.; Pfendner, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astro Particle Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Koskinen, D. J.; Larson, M. J.; Sarkar, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Clevermann, F.; Frantzen, K.; Fuchs, T.; Koehne, J. -H.; Milke, N.; Pieloth, D.; Ruhe, T.; Scheriau, F.; Schmitz, M.; Ziemann, J.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Grandmont, D. T.; Grant, D.; Nowicki, S. C.; Odrowski, S.; Sheremata, C.; Wood, T. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada. [Altmann, D.; Classen, L.; Kappes, A.; Tselengidou, M.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Aguilar, J. A.; Ahlers, M.; Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S.] Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland. [De Ridder, S.; Feusels, T.; Ismail, A. Haj; Jlelati, O.; Labare, M.; Meli, A.; Ryckbosch, D.; Vraeghe, M.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Barwick, S. W.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Ahlers, M.; Arguelles, C.; BenZvi, S.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Halzen, F.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; Kopper, C.; Kurahashi, N.; Larsen, D. T.; Luenemann, J.; Maruyama, R.; McNally, F.; Middlemas, E.; Morse, R.; Riedel, B.; Rodrigues, J. P.; Santander, M.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; van Santen, J.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Ahlers, M.; Arguelles, C.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Halzen, F.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; Kroll, G.; Morse, R.; Riedel, B.; Rodrigues, J. P.; Santander, M.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; van Santen, J.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA. [Baum, V.; Koepke, L.; Luenemann, J.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Bernhard, A.; Coenders, S.; Gross, A.; Jurkovic, M.; Leute, J.; Resconi, E.; Sestayo, Y.] Tech Univ Munich, D-85748 Garching, Germany. [Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Hussain, S.; Seckel, D.; Stanev, T.; Tilav, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Bai, X.] South Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA. [Madsen, J.; Seunarine, S.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Ahrens, M.; Danninger, M.; Finley, C.; Flis, S.; Hultqvist, K.; Walck, C.; Zoll, M.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Ahrens, M.; Danninger, M.; Hultqvist, K.; Walck, C.; Zoll, M.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Kiryluk, J.; Lesiak-Bzdak, M.; Niederhausen, H.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bose, D.; Rott, C.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Clark, K.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Palczewski, T.; Pepper, J. A.; Toale, P. A.; Williams, D. R.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Cowen, D. F.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Anderson, T.; Arlen, T. C.; Cowen, D. F.; DeYoung, T.; Dunkman, M.; Eagan, R.; Groh, J. C.; Huang, F.; Quinnan, M.; Smith, M. W. E.; Stanisha, N. A.; Tesic, G.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Boersma, D. J.; Botner, O.; Euler, S.; Hallgren, A.; Heros, C. Perez de los; Strom, R.; Taavola, H.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Becker, K. -H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Omairat, A.; Posselt, J.; Soldin, D.; Tepe, A.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H. -P.; Silva, A. H. Cruz; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Kaminsky, B.; Karg, T.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Shanidze, R.; Spiering, C.; Stoessl, A.; Terliuk, A.; Yanez, J. P.] DESY, D-15735 Zeuthen, Germany. RP Feintzeig, J (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. RI Aguilar Sanchez, Juan Antonio/H-4467-2015; Tjus, Julia/G-8145-2012; Sarkar, Subir/G-5978-2011; Koskinen, David/G-3236-2014; Auffenberg, Jan/D-3954-2014; Beatty, James/D-9310-2011; Wiebusch, Christopher/G-6490-2012; Taavola, Henric/B-4497-2011; Maruyama, Reina/A-1064-2013 OI Groh, John/0000-0001-9880-3634; Larsen, Dag Toppe/0000-0002-9898-2174; Perez de los Heros, Carlos/0000-0002-2084-5866; Strotjohann, Nora Linn/0000-0002-4667-6730; Arguelles Delgado, Carlos/0000-0003-4186-4182; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Sarkar, Subir/0000-0002-3542-858X; Koskinen, David/0000-0002-0514-5917; Auffenberg, Jan/0000-0002-1185-9094; Beatty, James/0000-0003-0481-4952; Wiebusch, Christopher/0000-0002-6418-3008; Rott, Carsten/0000-0002-6958-6033; Taavola, Henric/0000-0002-2604-2810; Ter-Antonyan, Samvel/0000-0002-5788-1369; Schukraft, Anne/0000-0002-9112-5479; Maruyama, Reina/0000-0003-2794-512X FU U.S. National Science Foundation-Office of Polar Programs; U.S. National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; Grid Laboratory of Wisconsin (GLOW) grid infrastructure at the University ofWisconsin-Madison; Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy and National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada; WestGrid and Compute/Calcul Canada; Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); Helmholtz Alliance for Astroparticle Physics (HAP); Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO Odysseus programme; Flanders Institute to Encourage Scientific and Technological Research in Industry (IWT); Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF) FX We acknowledge support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory of Wisconsin (GLOW) grid infrastructure at the University ofWisconsin-Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada, WestGrid and Compute/Calcul Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to Encourage Scientific and Technological Research in Industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF). Some of the results in this paper have been derived using the HEALPix [75] package. We thank R. Laha, J. Beacom, K. Murase, S. Razzaque, and N. Harrington for helpful discussions. NR 74 TC 283 Z9 286 U1 4 U2 40 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 2 PY 2014 VL 113 IS 10 AR 101101 DI 10.1103/PhysRevLett.113.101101 PG 8 WC Physics, Multidisciplinary SC Physics GA AO3QH UT WOS:000341248100003 PM 25238345 ER PT J AU Schenke, B Venugopalan, R AF Schenke, Bjoern Venugopalan, Raju TI Eccentric Protons? Sensitivity of Flow to System Size and Shape in p plus p, p plus Pb, and Pb plus Pb Collisions SO PHYSICAL REVIEW LETTERS LA English DT Article ID ANGULAR-CORRELATIONS; PPB COLLISIONS; LONG-RANGE; MULTIPLICITY; SIDE AB We determine the transverse system size of the initial nonequilibrium Glasma state and of the hydrodynamically evolving fireball as a function of produced charged particles in p + p, p + Pb, and Pb + Pb collisions at the Large Hadron Collider. Our results show features similar to those of recent measurements of Hanbury Brown-Twiss (HBT) radii by the ALICE Collaboration. Azimuthal anisotropy coefficients v(n) generated by combining the early time Glasma dynamics with viscous fluid dynamics in Pb + Pb collisions are in excellent agreement with experimental data for a wide range of centralities. In particular, event-by-event distributions of the vn values agree with the experimental data out to fairly peripheral centrality bins. In striking contrast, our results for p + Pb collisions significantly underestimate the magnitude and do not reproduce the centrality dependence of data for v 2 and v 3 coefficients. We argue that the measured vn data and HBT radii strongly constrain the shapes of initial parton distributions across system sizes that would be compatible with a flow interpretation in p + Pb collisions. Alternately, additional sources of correlations may be required to describe the systematics of long-range rapidity correlations in p + p and p + Pb collisions. C1 [Schenke, Bjoern; Venugopalan, Raju] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Schenke, B (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; DOE [DE-AC02-98CH10886] FX This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. B.P.S. and R. V. are supported under DOE Contract No. DE-AC02-98CH10886. NR 42 TC 39 Z9 39 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 2 PY 2014 VL 113 IS 10 AR 102301 DI 10.1103/PhysRevLett.113.102301 PG 5 WC Physics, Multidisciplinary SC Physics GA AO3QH UT WOS:000341248100004 PM 25238350 ER PT J AU Zhang, J Myatt, JF Short, RW Maximov, AV Vu, HX DuBois, DF Russell, DA AF Zhang, J. Myatt, J. F. Short, R. W. Maximov, A. V. Vu, H. X. DuBois, D. F. Russell, D. A. TI Multiple Beam Two-Plasmon Decay: Linear Threshold to Nonlinear Saturation in Three Dimensions SO PHYSICAL REVIEW LETTERS LA English DT Article ID NATIONAL IGNITION FACILITY; PARAMETRIC-INSTABILITIES; INHOMOGENEOUS-PLASMA; TURBULENCE; SPECTRA AB The linear stability of multiple coherent laser beams with respect to two-plasmon-decay instability in an inhomogeneous plasma in three dimensions has been determined. Cooperation between beams leads to absolute instability of long-wavelength decays, while shorter-wavelength shared waves are shown to saturate convectively. The multibeam, in its absolutely unstable form, has the lowest threshold for most cases considered. Nonlinear calculations using a three-dimensional extended Zakharov model show that Langmuir turbulence created by the absolute instability modifies the convective saturation of the shorter-wavelength modes, which are seen to dominate at late times. C1 [Zhang, J.; Myatt, J. F.; Short, R. W.; Maximov, A. V.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Zhang, J.; Myatt, J. F.; Maximov, A. V.] Univ Rochester, Dept Mech Engn, Rochester, NY 14627 USA. [Vu, H. X.] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. [DuBois, D. F.; Russell, D. A.] Lodestar Res Corp, Boulder, CO 80301 USA. [DuBois, D. F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Zhang, J (reprint author), Univ Rochester, Laser Energet Lab, 250 East River Rd, Rochester, NY 14623 USA. EM jzha@lle.rochester.edu FU U.S. Department of Energy Office of Inertial Confinement Fusion [DE-FC52-08NA28302]; University of Rochester; New York State Energy Research and Development Authority FX This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302, the University of Rochester, and the New York State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this Letter. NR 34 TC 12 Z9 12 U1 6 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 2 PY 2014 VL 113 IS 10 AR 105001 DI 10.1103/PhysRevLett.113.105001 PG 5 WC Physics, Multidisciplinary SC Physics GA AO3QH UT WOS:000341248100006 PM 25238364 ER PT J AU Parameswaran, SA Grover, T Abanin, DA Pesin, DA Vishwanath, A AF Parameswaran, S. A. Grover, T. Abanin, D. A. Pesin, D. A. Vishwanath, A. TI Probing the Chiral Anomaly with Nonlocal Transport in Three-Dimensional Topological Semimetals SO PHYSICAL REVIEW X LA English DT Article ID GRAPHENE; MODEL AB Weyl semimetals are three-dimensional crystalline systems where pairs of bands touch at points in momentum space, termed Weyl nodes, that are characterized by a definite topological charge: the chirality. Consequently, they exhibit the Adler-Bell-Jackiw anomaly, which in this condensed-matter realization implies that the application of parallel electric (E) and magnetic (B) fields pumps electrons between nodes of opposite chirality at a rate proportional to E . B. We argue that this pumping is measurable via nonlocal transport experiments, in the limit of weak internode scattering. Specifically, we show that as a consequence of the anomaly, applying a local magnetic field parallel to an injected current induces a valley imbalance that diffuses over long distances. A probe magnetic field can then convert this imbalance into a measurable voltage drop far from source and drain. Such nonlocal transport vanishes when the injected current and magnetic field are orthogonal and therefore serves as a test of the chiral anomaly. We further demonstrate that a similar effect should also characterize Dirac semimetals-recently reported to have been observed in experiments-where the coexistence of a pair of Weyl nodes at a single point in the Brillouin zone is protected by a crystal symmetry. Since the nodes are analogous to valley degrees of freedom in semiconductors, the existence of the anomaly suggests that valley currents in three-dimensional topological semimetals can be controlled using electric fields, which has potential practical "valleytronic" applications. C1 [Parameswaran, S. A.; Vishwanath, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Parameswaran, S. A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Grover, T.] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Abanin, D. A.] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada. [Abanin, D. A.] Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada. [Pesin, D. A.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Pesin, D. A.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Vishwanath, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Parameswaran, SA (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. FU Simons Foundation; NSF [PHYS-1066293]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; Institute for Quantum Information and Matter, a NSF Physics Frontiers Center; Gordon and Betty Moore Foundation [GBMF1250] FX We thank L. Balents, J. H. Bardarson, A. Burkov, Y.-B. Kim, R. Ilan, N. P. Ong, and B. Z. Spivak for useful discussions on transport; F. de Juan, I. Kimchi, P. Dumitrescu, N. P. Ong, and especially A. Potter for conversations on Dirac semimetals; and an anonymous referee for comments on an earlier version of this manuscript. This work was supported in part by the Simons Foundation (S. A. P.); the NSF under Grant No. PHYS-1066293 and the hospitality of the Aspen Center for Physics (S. A. P. and D. A. P.); the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 (A. V.); and the Institute for Quantum Information and Matter, a NSF Physics Frontiers Center, with support of the Gordon and Betty Moore Foundation through Grant No. GBMF1250 (D. A. P.). NR 39 TC 120 Z9 120 U1 12 U2 79 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2160-3308 J9 PHYS REV X JI Phys. Rev. X PD SEP 2 PY 2014 VL 4 IS 3 AR 031035 DI 10.1103/PhysRevX.4.031035 PG 12 WC Physics, Multidisciplinary SC Physics GA AO3QO UT WOS:000341249000001 ER PT J AU Macintosh, B Graham, JR Ingraham, P Konopacky, Q Marois, C Perrin, M Poyneer, L Bauman, B Barman, T Burrows, AS Cardwell, A Chilcote, J De Rosa, RJ Dillon, D Doyon, R Dunn, J Erikson, D Fitzgerald, MP Gavel, D Goodsell, S Hartung, M Hibon, P Kalas, P Larkin, J Maire, J Marchis, F Marley, MS McBride, J Millar-Blanchaer, M Morzinski, K Norton, A Oppenheimer, BR Palmer, D Patience, J Pueyo, L Rantakyro, F Sadakuni, N Saddlemyer, L Savransky, D Serio, A Soummer, R Sivaramakrishnan, A Song, I Thomas, S Wallace, JK Wiktorowicz, S Wolff, S AF Macintosh, Bruce Graham, James R. Ingraham, Patrick Konopacky, Quinn Marois, Christian Perrin, Marshall Poyneer, Lisa Bauman, Brian Barman, Travis Burrows, Adam S. Cardwell, Andrew Chilcote, Jeffrey De Rosa, Robert J. Dillon, Daren Doyon, Rene Dunn, Jennifer Erikson, Darren Fitzgerald, Michael P. Gavel, Donald Goodsell, Stephen Hartung, Markus Hibon, Pascale Kalas, Paul Larkin, James Maire, Jerome Marchis, Franck Marley, Mark S. McBride, James Millar-Blanchaer, Max Morzinski, Katie Norton, Andrew Oppenheimer, B. R. Palmer, David Patience, Jennifer Pueyo, Laurent Rantakyro, Fredrik Sadakuni, Naru Saddlemyer, Leslie Savransky, Dmitry Serio, Andrew Soummer, Remi Sivaramakrishnan, Anand Song, Inseok Thomas, Sandrine Wallace, J. Kent Wiktorowicz, Sloane Wolff, Schuyler TI First light of the Gemini Planet Imager SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE high-contrast imaging; extreme adaptive optics; debris disks ID ADAPTIVE-OPTICS SYSTEM; POINT-SPREAD FUNCTIONS; BETA-PICTORIS; FINDING CAMPAIGN; FOURIER-TRANSFORM; GIANT PLANETS; DEBRIS DISK; HR 8799; FREQUENCY; EXOPLANET AB The Gemini Planet Imager is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of the Gemini Planet Imager has been tuned for maximum sensitivity to faint planets near bright stars. During first-light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-sigma contrast of 10(6) at 0.75 arcseconds and 10(5) at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, in a single 60-s exposure with minimal postprocessing. Beta Pictoris b is observed at a separation of 434 +/- 6 milliarcseconds (mas) and position angle 211.8 +/- 0.5 degrees. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions. The planet orbits at a semimajor axis of 9.0(-0.4)(+0.8) AU near the 3:2 resonance with the previously known 6-AU asteroidal belt and is aligned with the inner warped disk. The observations give a 4% probability of a transit of the planet in late 2017. C1 [Macintosh, Bruce; Poyneer, Lisa; Bauman, Brian; Palmer, David] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Macintosh, Bruce; Ingraham, Patrick] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Graham, James R.; Kalas, Paul; McBride, James] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Konopacky, Quinn; Maire, Jerome; Millar-Blanchaer, Max] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Marois, Christian; Dunn, Jennifer; Erikson, Darren; Saddlemyer, Leslie] Natl Res Council Canada Herzberg, Victoria, BC V9E 2E7, Canada. [Perrin, Marshall; Pueyo, Laurent; Soummer, Remi; Sivaramakrishnan, Anand] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Barman, Travis] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Burrows, Adam S.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Cardwell, Andrew; Goodsell, Stephen; Hartung, Markus; Hibon, Pascale; Rantakyro, Fredrik; Sadakuni, Naru; Serio, Andrew] Gemini Observ, Hilo, HI 96720 USA. [Chilcote, Jeffrey; Fitzgerald, Michael P.; Larkin, James] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [De Rosa, Robert J.; Patience, Jennifer] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Dillon, Daren; Gavel, Donald; Norton, Andrew; Wiktorowicz, Sloane] Univ Calif Santa Cruz, Univ Calif Observ Lick Observ, Santa Cruz, CA 95064 USA. [Doyon, Rene] Univ Montreal, Observ Mt Megant, Montreal, PQ H3T 1J4, Canada. [Doyon, Rene] Univ Montreal, Dept Phys, Montreal, PQ H3T 1J4, Canada. [Marchis, Franck] Carl Sagan Ctr, SETI Inst, Mountain View, CA 94043 USA. [Marley, Mark S.; Thomas, Sandrine] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Morzinski, Katie] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Oppenheimer, B. R.; Sivaramakrishnan, Anand] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA. [Savransky, Dmitry] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA. [Song, Inseok] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA. [Wallace, J. Kent] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Wolff, Schuyler] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. RP Macintosh, B (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM bmacintosh@stanford.edu RI Marley, Mark/I-4704-2013; Savransky, Dmitry/M-1298-2014; OI Savransky, Dmitry/0000-0002-8711-7206; Marley, Mark/0000-0002-5251-2943; Morzinski, Katie/0000-0002-1384-0063; Fitzgerald, Michael/0000-0002-0176-8973 FU Gemini Observatory; National Science Foundation (NSF) Center for Adaptive Optics at University of California, Santa Cruz; NSF [AST-0909188, AST-1211562]; NASA Origins [NNX11AD21G, NNX10AH31G]; University of California Office of the President [LFRP-118057]; Dunlap Institute, University of Toronto; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; California Institute of Technology Jet Propulsion Laboratory - NASA through the Sagan Fellowship Program FX We thank the international team of engineers and scientists who worked to make GPI a reality. We especially recognize the unique contributions of Gary Sommargren, Steven Varlese, Christopher Lockwood, Russell Makidon, Murray Fletcher, and Vincent Fesquet, who passed away during the course of this project. We acknowledge financial support of the Gemini Observatory, the National Science Foundation (NSF) Center for Adaptive Optics at University of California, Santa Cruz, the NSF (AST-0909188; AST-1211562), NASA Origins (NNX11AD21G and NNX10AH31G), the University of California Office of the President (LFRP-118057), and the Dunlap Institute, University of Toronto. Portions of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and under contract with the California Institute of Technology Jet Propulsion Laboratory funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. NR 51 TC 121 Z9 121 U1 1 U2 4 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 2 PY 2014 VL 111 IS 35 BP 12661 EP 12666 DI 10.1073/pnas.1304215111 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AO3LN UT WOS:000341230800041 PM 24821792 ER PT J AU Frauenfelder, H Fenimore, PW Young, RD AF Frauenfelder, Hans Fenimore, Paul W. Young, Robert D. TI A wave-mechanical model of incoherent quasielastic scattering in complex systems SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE quasielastic neutron scattering; neutron wave packet; protein free-energy landscape ID INELASTIC NEUTRON-SCATTERING; PROTEIN DYNAMICS; MOSSBAUER-SPECTROSCOPY; FLUCTUATIONS; ENERGY; TRANSITION; LANDSCAPES; MYOGLOBIN; RESONANCE; HYDRATION AB Quasielastic incoherent neutron scattering (QENS) is an important tool for the exploration of the dynamics of complex systems such as biomolecules, liquids, and glasses. The dynamics is reflected in the energy spectra of the scattered neutrons. Conventionally these spectra are decomposed into a narrow elastic line and a broad quasielastic band. The band is interpreted as being caused by Doppler broadening due to spatial motion of the target molecules. We propose a quantum-mechanical model in which there is no separate elastic line. The quasielastic band is composed of sharp lines with twice the natural line width, shifted from the center by a random walk of the protein in the free-energy landscape of the target molecule. The walk is driven by vibrations and by external fluctuations. We first explore the model with the Mossbauer effect. In the subsequent application to QENS we treat the incoming neutron as a de Broglie wave packet. While the wave packet passes the protons in the protein and the hydration shell it exchanges energy with the protein during the passage time of about 100 ns. The energy exchange broadens the ensemble spectrum. Because the exchange involves the free-energy landscape of the protein, the QENS not only provides insight into the protein dynamics, but it may also illuminate the free-energy landscape of the protein-solvent system. C1 [Frauenfelder, Hans; Fenimore, Paul W.] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. [Young, Robert D.] Arizona State Univ, Ctr Biol Phys, Tempe, AZ 85287 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Theoret Biol & Biophys Grp, POB 1663, Los Alamos, NM 87545 USA. EM hansfrauenfelder@me.com FU Los Alamos National Laboratory's Directed Research and Development Program under Department of Energy [DE-AC52-06NA25396] FX We have received useful criticism and input from Salvatore Magazu, Benjamin McMahon, Federica Migliardo, Fritz Parak, David Pines, Timothy Sage, Jeremy Smith, and Peter Wolynes. The work has been supported by Los Alamos National Laboratory's Directed Research and Development Program under Department of Energy Contract DE-AC52-06NA25396. NR 46 TC 4 Z9 4 U1 3 U2 30 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 2 PY 2014 VL 111 IS 35 BP 12764 EP 12768 DI 10.1073/pnas.1411781111 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AO3LN UT WOS:000341230800059 PM 25136125 ER PT J AU Sawaya, MR Cascio, D Gingery, M Rodriguez, J Goldschmidt, L Colletier, JP Messerschmidt, MM Boutet, S Koglin, JE Williams, GJ Brewster, AS Nass, K Hattne, J Botha, S Doak, RB Shoeman, RL DePonte, DP Park, HW Federici, BA Sauter, NK Schlichting, I Eisenberg, DS AF Sawaya, Michael R. Cascio, Duilio Gingery, Mari Rodriguez, Jose Goldschmidt, Lukasz Colletier, Jacques-Philippe Messerschmidt, Marc M. Boutet, Sebastien Koglin, Jason E. Williams, Garth J. Brewster, Aaron S. Nass, Karol Hattne, Johan Botha, Sabine Doak, R. Bruce Shoeman, Robert L. DePonte, Daniel P. Park, Hyun-Woo Federici, Brian A. Sauter, Nicholas K. Schlichting, Ilme Eisenberg, David S. TI Protein crystal structure obtained at 2.9 angstrom resolution from injecting bacterial cells into an X-ray free-electron laser beam SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE XFEL; Cry3A insecticidal toxin; serial femtosecond crystallography ID SERIAL FEMTOSECOND CRYSTALLOGRAPHY; THURINGIENSIS VAR TENEBRIONIS; BACILLUS-THURINGIENSIS; ROOM-TEMPERATURE; DELTA-ENDOTOXIN; PHOTOSYSTEM-II; IN-VIVO; NANOCRYSTALLOGRAPHY; DIFFRACTION; REFINEMENT AB It has long been known that toxins produced by Bacillus thuringiensis (Bt) are stored in the bacterial cells in crystalline form. Here we describe the structure determination of the Cry3A toxin found naturally crystallized within Bt cells. When whole Bt cells were streamed into an X-ray free-electron laser beam we found that scattering from other cell components did not obscure diffraction from the crystals. The resolution limits of the best diffraction images collected from cells were the same as from isolated crystals. The integrity of the cells at the moment of diffraction is unclear; however, given the short time (similar to 5 mu s) between exiting the injector to intersecting with the X-ray beam, our result is a 2.9-angstrom-resolution structure of a crystalline protein as it exists in a living cell. The study suggests that authentic in vivo diffraction studies can produce atomic-level structural information. C1 [Sawaya, Michael R.; Cascio, Duilio; Gingery, Mari; Rodriguez, Jose; Goldschmidt, Lukasz; Eisenberg, David S.] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. [Sawaya, Michael R.; Cascio, Duilio; Gingery, Mari; Rodriguez, Jose; Goldschmidt, Lukasz; Eisenberg, David S.] Univ Calif Los Angeles, Dept Biol Chem, Los Angeles, CA 90095 USA. [Eisenberg, David S.] Univ Calif Los Angeles, Howard Hughes Med Inst, Los Angeles, CA 90095 USA. [Colletier, Jacques-Philippe] Univ Grenoble Alpes, F-38044 Grenoble, France. [Colletier, Jacques-Philippe] CNRS, F-38044 Grenoble, France. [Colletier, Jacques-Philippe] Inst Biol Struct, Commissariat Energie Atom, F-38044 Grenoble, France. [Messerschmidt, Marc M.; Boutet, Sebastien; Koglin, Jason E.; Williams, Garth J.] Natl Accelerator Lab, SLAC, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. [Brewster, Aaron S.; Hattne, Johan; Sauter, Nicholas K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Nass, Karol; Doak, R. Bruce; Shoeman, Robert L.; Schlichting, Ilme] Max Planck Inst Med Res, D-69120 Heidelberg, Germany. [Doak, R. Bruce] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Park, Hyun-Woo; Federici, Brian A.] Univ Calif Riverside, Dept Entomol, Riverside, CA 92521 USA. [Federici, Brian A.] Univ Calif Riverside, Grad Program Cell Mol & Dev Biol, Riverside, CA 92521 USA. RP Eisenberg, DS (reprint author), Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. EM david@mbi.ucla.edu RI Messerschmidt, Marc/F-3796-2010; Schlichting, Ilme/I-1339-2013; Sauter, Nicholas/K-3430-2012 OI Messerschmidt, Marc/0000-0002-8641-3302; FU National Center for Research Resources from the National Institutes of Health (NIH) [5P41RR015301-10]; National Institute of General Medical Sciences from the National Institutes of Health (NIH) [8 P41 GM103403-10]; US Department of Energy (DOE) [DE-AC02-06CH11357]; DOE [DE-FC02-02ER63421]; DOE Office of Basic Energy Sciences; Linac Coherent Light Source Ultrafast Science Instruments project; Keck Foundation [2843398]; NIH [AG-029430, GM095887, GM102520, AI45817]; National Science Foundation [MCB 0958111]; Howard Hughes Medical Institute; Max Planck Society FX We thank M. Capel, K. Rajashankar, N. Sukumar, J. Schuermann, I. Kourinov, and F. Murphy [Northeastern Collaborative Access Team Beamline 24-ID at the Advanced Photon Source, which is supported by National Center for Research Resources Grant 5P41RR015301-10 and National Institute of General Medical Sciences Grant 8 P41 GM103403-10 from the National Institutes of Health (NIH)]. Use of the Advanced Photon Source is supported by the US Department of Energy (DOE) under Contract DE-AC02-06CH11357. We also thank Harold Aschmann and the University of California, Los Angeles (UCLA)-DOE X-ray Crystallography Core Facility, which is supported by DOE Grant DE-FC02-02ER63421; and Heather McFarlane and Daniel Anderson at UCLA for help with cell preparation and filtration. Portions of this research were carried out at the Linac Coherent Light Source, a National User Facility operated by Stanford University on behalf of the DOE Office of Basic Energy Sciences. The CXI instrument was funded by the Linac Coherent Light Source Ultrafast Science Instruments project funded by the DOE Office of Basic Energy Sciences. This work was supported by Keck Foundation Grant 2843398, NIH Grant AG-029430, National Science Foundation Grant MCB 0958111, DOE Grant DE-FC02-02ER63421, NIH Grants GM095887 and GM102520 for data-processing methods (to N. K. S.), NIH Grant AI45817 (to B. A. F.), Howard Hughes Medical Institute, and the Max Planck Society. NR 35 TC 37 Z9 38 U1 4 U2 47 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 2 PY 2014 VL 111 IS 35 BP 12769 EP 12774 DI 10.1073/pnas.1413456111 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AO3LN UT WOS:000341230800060 PM 25136092 ER PT J AU Pirbadian, S Barchinger, SE Leung, KM Byun, HS Jangir, Y Bouhenni, RA Reed, SB Romine, MF Saffarini, DA Shi, L Gorby, YA Golbeck, JH El-Naggar, MY AF Pirbadian, Sahand Barchinger, Sarah E. Leung, Kar Man Byun, Hye Suk Jangir, Yamini Bouhenni, Rachida A. Reed, Samantha B. Romine, Margaret F. Saffarini, Daad A. Shi, Liang Gorby, Yuri A. Golbeck, John H. El-Naggar, Mohamed Y. TI Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE extracellular electron transfer; bioelectronics; respiration; membrane cytochromes ID BACTERIAL NANOWIRES; MICROBIAL NANOWIRES; STRAIN MR-1; PLANT-CELLS; CONDUCTIVITY; ENDOCYTOSIS; REDUCTION; PROTEINS; VESICLES; BIOFILMS AB Bacterial nanowires offer an extracellular electron transport (EET) pathway for linking the respiratory chain of bacteria to external surfaces, including oxidized metals in the environment and engineered electrodes in renewable energy devices. Despite the global, environmental, and technological consequences of this biotic-abiotic interaction, the composition, physiological relevance, and electron transport mechanisms of bacterial nanowires remain unclear. We report, to our knowledge, the first in vivo observations of the formation and respiratory impact of nanowires in the model metal-reducing microbe Shewanella oneidensis MR-1. Live fluorescence measurements, immunolabeling, and quantitative gene expression analysis point to S. oneidensis MR-1 nanowires as extensions of the outer membrane and periplasm that include the multiheme cytochromes responsible for EET, rather than pilin-based structures as previously thought. These membrane extensions are associated with outer membrane vesicles, structures ubiquitous in Gram-negative bacteria, and are consistent with bacterial nanowires that mediate long-range EET by the previously proposed multistep redox hopping mechanism. Redox-functionalized membrane and vesicular extensions may represent a general microbial strategy for electron transport and energy distribution. C1 [Pirbadian, Sahand; Leung, Kar Man; Byun, Hye Suk; Jangir, Yamini; El-Naggar, Mohamed Y.] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Barchinger, Sarah E.; Golbeck, John H.] Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA. [Bouhenni, Rachida A.; Saffarini, Daad A.] Univ Wisconsin, Dept Biol Sci, Milwaukee, WI 53211 USA. [Reed, Samantha B.; Romine, Margaret F.; Shi, Liang] Pacific NW Natl Lab, Richland, WA 99354 USA. [Gorby, Yuri A.] Rensselaer Polytech Inst, Dept Civil & Environm Engn, Troy, NY 12180 USA. [Golbeck, John H.] Penn State Univ, Dept Chem, University Pk, PA 16802 USA. [El-Naggar, Mohamed Y.] Univ So Calif, Mol & Computat Biol Sect, Dept Biol Sci, Los Angeles, CA 90089 USA. RP El-Naggar, MY (reprint author), Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA. EM mnaggar@usc.edu OI Romine, Margaret/0000-0002-0968-7641 FU Air Force Office of Scientific Research Young Investigator Research Program Grant [FA9550-10-1-0144]; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy Grant [EF-1104831]; Shewanella Federation consortium - Genomics: Genomes to Life program of the US Department of Energy Office of Biological and Environmental Research FX The pHGE-PtacTorAGFP plasmid was generously provided by Prof. H. Gao (Zhejiang University), and pProbeNT was kindly provided by Dr. Steven Lindow (University of California, Berkeley). Atomic Force and Electron Microscopy were performed at the University of Southern California Centers of Excellence in NanoBioPhysics and Electron Microscopy and Microanalysis. The development of the in vivo imaging platform and chemostat cultivation was funded by Air Force Office of Scientific Research Young Investigator Research Program Grant FA9550-10-1-0144 (to M.Y.E.-N.). Redox sensing measurements, compositional analysis, and the localization of multiheme cytochromes were funded by Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy Grant DE-FG02-13ER16415 (to M.Y.E.-N.). RT-PCR experiments and genetic analyses were funded by National Science Foundation Grant EF-1104831 (to J.H.G.). M.F.R., S.B.R., R.A.B., and D.A.S. were supported under the Shewanella Federation consortium funded by the Genomics: Genomes to Life program of the US Department of Energy Office of Biological and Environmental Research. NR 43 TC 92 Z9 94 U1 22 U2 194 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 2 PY 2014 VL 111 IS 35 BP 12883 EP 12888 DI 10.1073/pnas.1410551111 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AO3LN UT WOS:000341230800079 PM 25143589 ER PT J AU Socha, AM Parthasarathi, R Shi, J Pattathil, S Whyte, D Bergeron, M George, A Tran, K Stavila, V Venkatachalam, S Hahn, MG Simmons, BA Singh, S AF Socha, Aaron M. Parthasarathi, Ramakrishnan Shi, Jian Pattathil, Sivakumar Whyte, Dorian Bergeron, Maxime George, Anthe Tran, Kim Stavila, Vitalie Venkatachalam, Sivasankari Hahn, Michael G. Simmons, Blake A. Singh, Seema TI Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE renewable chemicals; bioenergy; lignocellulose conversion; saccharification; green chemistry ID LIGNOCELLULOSIC BIOMASS; REDUCTIVE AMINATION; WOOD PROPERTIES; CELLULOSE; SWITCHGRASS; ELECTROLYTES; SOLVENT; RECALCITRANCE; REGENERATION; TECHNOLOGIES AB Ionic liquids (ILs), solvents composed entirely of paired ions, have been used in a variety of process chemistry and renewable energy applications. Imidazolium-based ILs effectively dissolve biomass and represent a remarkable platform for biomass pretreatment. Although efficient, imidazolium cations are expensive and thus limited in their large-scale industrial deployment. To replace imidazolium-based ILs with those derived from renewable sources, we synthesized a series of tertiary amine-based ILs from aromatic aldehydes derived from lignin and hemicellulose, the major by-products of lignocellulosic biofuel production. Compositional analysis of switchgrass pretreated with ILs derived from vanillin, p-anisaldehyde, and furfural confirmed their efficacy. Enzymatic hydrolysis of pretreated switchgrass allowed for direct comparison of sugar yields and lignin removal between biomass-derived ILs and 1-ethyl-3-methylimidazolium acetate. Although the rate of cellulose hydrolysis for switchgrass pretreated with biomass-derived ILs was slightly slower than that of 1-ethyl-3-methylimidazolium acetate, 90-95% glucose and 70-75% xylose yields were obtained for these samples after 72-h incubation. Molecular modeling was used to compare IL solvent parameters with experimentally obtained compositional analysis data. Effective pretreatment of lignocellulose was further investigated by powder X-ray diffraction and glycome profiling of switchgrass cell walls. These studies showed different cellulose structural changes and differences in hemicellulose epitopes between switchgrass pretreatments with the aforementioned ILs. Our concept of deriving ILs from lignocellulosic biomass shows significant potential for the realization of a "closed-loop" process for future lignocellulosic biorefineries and has far-reaching economic impacts for other IL-based process technology currently using ILs synthesized from petroleum sources. C1 [Socha, Aaron M.; Parthasarathi, Ramakrishnan; Shi, Jian; Whyte, Dorian; Bergeron, Maxime; George, Anthe; Tran, Kim; Simmons, Blake A.; Singh, Seema] Joint BioEnergy Inst, Deconstruct Div, Emeryville, CA 94608 USA. [Socha, Aaron M.; Whyte, Dorian] CUNY, Bronx Community Coll, Ctr Sustainable Energy, Bronx, NY 10453 USA. [Socha, Aaron M.; Whyte, Dorian] CUNY, Bronx Community Coll, Dept Chem & Chem Technol, Bronx, NY 10453 USA. [Parthasarathi, Ramakrishnan; Shi, Jian; George, Anthe; Tran, Kim; Stavila, Vitalie; Simmons, Blake A.; Singh, Seema] Sandia Natl Labs, Biol & Mat Sci Ctr, Livermore, CA 94551 USA. [Pattathil, Sivakumar; Venkatachalam, Sivasankari; Hahn, Michael G.] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA. [Pattathil, Sivakumar; Hahn, Michael G.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. RP Singh, S (reprint author), Joint BioEnergy Inst, Deconstruct Div, Emeryville, CA 94608 USA. EM seesing@sandia.gov RI Parthasarathi, Ramakrishnan/C-2093-2008; OI Parthasarathi, Ramakrishnan/0000-0001-5417-5867; Hahn, Michael/0000-0003-2136-5191; , Sivakumar Pattathil/0000-0003-3870-4137 FU Office of Science, Office of Biological and Environmental Research, US Department of Energy [DE-AC02-05CH11231]; Research Foundation, City University of New York [65102-00 43]; Office of Biological and Environmental Research, Office of Science, US Department of Energy [DE-AC05-00OR22725]; National Science Foundation Plant Genome Program [DBI-0421683, IOS-0923992] FX We thank Novozymes for their generous donation of Ctec2 and Htec2 enzymes, and Christian Rodriguez [Bronx Community College (BCC)] for his kind assistance with NMR measurements. This work conducted by the Joint BioEnergy Institute was supported by the Office of Science, Office of Biological and Environmental Research, US Department of Energy, under Contract DE-AC02-05CH11231. Additional funding was provided by Research Foundation, City University of New York (65102-00 43). This research used resources of the National Energy Research Scientific Computing Center and BCC. The glycome profiling was supported by the BioEnergy Science Center administered by Oak Ridge National Laboratory and funded by Grant DE-AC05-00OR22725 from the Office of Biological and Environmental Research, Office of Science, US Department of Energy. The generation of the CCRC series of plant cell wall glycan-directed monoclonal antibodies used in this work was supported by the National Science Foundation Plant Genome Program (DBI-0421683 and IOS-0923992). NR 63 TC 39 Z9 40 U1 14 U2 135 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 2 PY 2014 VL 111 IS 35 BP E3587 EP E3595 DI 10.1073/pnas.1405685111 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AO3LN UT WOS:000341230800005 PM 25136131 ER PT J AU Ning, PQ Wang, F Zhang, D AF Ning, Puqi Wang, Fei Zhang, Di TI A High Density 250 degrees C Junction Temperature SiC Power Module Development SO IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS LA English DT Article DE High-temperature techniques; semiconductor device packaging; silicon carbide ID FIN HEAT SINKS; HARMONIC CANCELLATION; GATE DRIVER; DESIGN; CONVERTERS; METHODOLOGY; VOLTAGE; PWM AB A high temperature wirebond-packaged phase-leg power module was designed, developed, and tested. Details of the layout, gate drive, and cooling system designs are described. Continuous power tests confirmed that the designed high-density power module can be successfully operated with 250 degrees C junction temperature. The power module was further utilized in an all-SiC rectifier system that achieves a 2.78 kW/lb power density. C1 [Ning, Puqi] Chinese Acad Sci, Inst Elect Engn, Beijing 100190, Peoples R China. [Wang, Fei] Oak Ridge Natl Lab, Knoxville, TN 37831 USA. [Wang, Fei] Univ Tennessee, Knoxville, TN 37916 USA. [Zhang, Di] GE Co, Global Res Ctr, Power Convers Syst Lab, Niskayuna, NY 12309 USA. RP Ning, PQ (reprint author), Chinese Acad Sci, Inst Elect Engn, Beijing 100190, Peoples R China. EM ning06@vt.edu; fred.wang@utk.edu; zhang@ge.com NR 48 TC 5 Z9 5 U1 1 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2168-6777 J9 IEEE J EM SEL TOP P JI IEEE J. Emerg. Sel. Top. Power Electron. PD SEP PY 2014 VL 2 IS 3 BP 415 EP 424 DI 10.1109/JESTPE.2013.2290054 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA CN7II UT WOS:000358607400007 ER PT J AU Glover, MD Shepherd, P Francis, AM Mudholkar, M Mantooth, HA Ericson, MN Frank, SS Britton, CL Marlino, LD McNutt, TR Barkley, A Whitaker, B Lostetter, AB AF Glover, Michael D. Shepherd, Paul Francis, A. Matt Mudholkar, Mihir Mantooth, Homer Alan Ericson, Milton Nance Frank, S. Shane Britton, Charles L. Marlino, Laura D. McNutt, Ty R. Barkley, Adam Whitaker, Bret Lostetter, Alexander B. TI A UVLO Circuit in SiC Compatible With Power MOSFET Integration SO IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS LA English DT Article DE MOSFET circuits; power MOSFET; silicon carbide (SiC); temperature ID GATE DRIVER; SILICON AB The design and test of the first undervoltage lock-out circuit implemented in a low-voltage 4H silicon carbide process capable of single-chip integration with power MOSFETs is presented. The lock-out circuit, a block of the protection circuitry of a single-chip gate driver topology designed for use in a plug-in hybrid vehicle charger, was demonstrated to have rise/fall times compatible with a MOSFET switching speed of 250 kHz while operating over the targeted operating temperature range between 0 degrees C and 200 degrees C. Captured data show the circuit to be functional over a temperature range from -55 degrees C to 300 degrees C. The design of the circuit and test results is presented. C1 [Glover, Michael D.; Shepherd, Paul; Francis, A. Matt; Mudholkar, Mihir; Mantooth, Homer Alan] Univ Arkansas, Fayetteville, AR 72701 USA. [Ericson, Milton Nance; Frank, S. Shane; Britton, Charles L.; Marlino, Laura D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [McNutt, Ty R.; Barkley, Adam; Whitaker, Bret; Lostetter, Alexander B.] Arkansas Power Elect Int Inc, Fayetteville, AR 72701 USA. RP Glover, MD (reprint author), Univ Arkansas, Fayetteville, AR 72701 USA. EM mglover@uark.edu; pshepher@uark.edu; amfranci@uark.edu; mihir.mudholkar@gmail.com; mantooth@uark.edu; ericsonmn@ornl.gov; frankss@ornl.gov; brittoncl@ornl.gov; marlinold@ornl.gov; tmcnutt@apei.net; abarkle@apei.net; bwhitak@apei.net; alostet@apei.net FU agency of the United States Government FX The authors wish to acknowledge the contributions made by S.-H. Ryu and D. Grider at Cree in fabricating the SiC circuitry tested. The information, data, or work presented herein was funded in part by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 17 TC 5 Z9 5 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2168-6777 J9 IEEE J EM SEL TOP P JI IEEE J. Emerg. Sel. Top. Power Electron. PD SEP PY 2014 VL 2 IS 3 BP 425 EP 433 DI 10.1109/JESTPE.2014.2313119 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA CN7II UT WOS:000358607400008 ER PT J AU Liang, ZX Ning, PQ Wang, F Marlino, L AF Liang, Zhenxian Ning, Puqi Wang, Fred Marlino, Laura TI A Phase-Leg Power Module Packaged With Optimized Planar Interconnections and Integrated Double-Sided Cooling SO IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS LA English DT Article DE Automotive power converter; integrated cooling; power electronics packaging; power module ID SEMICONDUCTOR-DEVICES; VEHICLES; SYSTEM AB A multilayer planar interconnection structure was used for the packaging of liquid-cooled automotive power modules. The power semiconductor switch dies are sandwiched between two symmetric substrates, providing planar electrical interconnections and insulation. Two minicoolers are directly bonded to the outside of these substrates, allowing doublesided, integrated cooling. The power switch dies are orientated in a face-up/face-down 3-D interconnection configuration to form a phase leg. The bonding areas between the dies and substrates, and the substrates and coolers are designed to use identical materials and are formed in one heating process. A special packaging process has been developed so that high-efficiency production can be implemented. Incorporating high-efficiency cooling and low-loss electrical interconnections allows dramatic improvements in systems' cost, and electrical conversion efficiency. These features are demonstrated in a planar bond-packaged prototype of a 200 A/1200 V phase-leg power module made of silicon (Si) insulated gate bipolar transistor and PiN diodes. C1 [Liang, Zhenxian; Ning, Puqi; Marlino, Laura] Oak Ridge Natl Lab, Power Elect & Elect Machinery Grp, Knoxville, TN 37932 USA. [Wang, Fred] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. RP Liang, ZX (reprint author), Oak Ridge Natl Lab, Power Elect & Elect Machinery Grp, Knoxville, TN 37932 USA. EM liangz@ornl.gov; npq@mail.iee.ac.cn; fred.wang@utk.edu; marlinold@ornl.gov FU Advanced Power Electronics and Electric Motors Program; DOE Vehicle Technologies Office through UT Battelle, LLC [DE-AC05-00OR22725] FX This work was supported in part by the Advanced Power Electronics and Electric Motors Program and in part by DOE Vehicle Technologies Office under Contract DE-AC05-00OR22725 through UT Battelle, LLC. Recommended for publication by Associate Editor Alan H. Mantooth. NR 23 TC 2 Z9 2 U1 3 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2168-6777 J9 IEEE J EM SEL TOP P JI IEEE J. Emerg. Sel. Top. Power Electron. PD SEP PY 2014 VL 2 IS 3 BP 443 EP 450 DI 10.1109/JESTPE.2014.2312292 PG 8 WC Engineering, Electrical & Electronic SC Engineering GA CN7II UT WOS:000358607400010 ER PT J AU Ning, PQ Liang, ZX Wang, F AF Ning, Puqi Liang, Zhenxian Wang, Fred TI Power Module and Cooling System Thermal Performance Evaluation for HEV Application SO IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS LA English DT Article DE Electric vehicles; semiconductor device packaging ID IMPEDANCE; IGBTS; MODEL AB To further reduce system costs and package volumes of hybrid electric vehicles, it is important to optimize the power module and associated cooling system. This paper reports the thermal performance evaluation and analysis of three commercial power modules and a proposed planar module with different cooling system. Results show that power electronics can be better merged with the mechanical environment. Experiments and simulations were conducted to help further optimization. C1 [Ning, Puqi; Liang, Zhenxian] Oak Ridge Natl Lab, Power Elect & Elect Machinery Grp, Oak Ridge, TN 37831 USA. [Wang, Fred] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. RP Ning, PQ (reprint author), Chinese Acad Sci, Inst Elect Engn, Lab Power Elect & Power Convers, Beijing 100190, Peoples R China. EM npq@mail.iee.ac.cn; liangz@ornl.gov; fred.wang@utk.edu FU Advanced Power Electronics; Electric Motors Program, DOE Office of Vehicle Technologies, UT Battelle, LLC [DE-AC05-00OR22725] FX This work was supported in part by the Advanced Power Electronics and in part by the Electric Motors Program, DOE Office of Vehicle Technologies, UT Battelle, LLC, under Contract DE-AC05-00OR22725. NR 21 TC 3 Z9 3 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2168-6777 J9 IEEE J EM SEL TOP P JI IEEE J. Emerg. Sel. Top. Power Electron. PD SEP PY 2014 VL 2 IS 3 BP 487 EP 495 DI 10.1109/JESTPE.2014.2303143 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA CN7II UT WOS:000358607400016 ER PT J AU Hoke, A Brissette, A Smith, K Pratt, A Maksimovic, D AF Hoke, Anderson Brissette, Alexander Smith, Kandler Pratt, Annabelle Maksimovic, Dragan TI Accounting for Lithium-Ion Battery Degradation in Electric Vehicle Charging Optimization SO IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS LA English DT Article DE Battery chargers; battery degradation; charge optimization; electric vehicles (EVs); lithium-ion (Li-ion) ID ENERGY-STORAGE SYSTEMS; AUTOMOTIVE APPLICATIONS; AGING MECHANISMS; MODEL; PERSPECTIVE; COST; WEAR; CELL AB This paper presents a method for minimizing the cost of vehicle battery charging given variable electricity costs while also accounting for estimated costs of battery degradation using a simplified lithium-ion battery lifetime model. The simple battery lifetime model, also developed and presented here, estimates both energy capacity fade and power fade and includes effects due to temperature, state of charge profile, and daily depth of discharge. This model has been validated by comparison with a detailed model developed at National Renewable Energy Laboratory, which in turn has been validated through comparison with experimental data. The simple model runs quickly, allowing for iterative numerical minimization of charge cost, implemented on the charger controller. Resulting electric vehicle (EV) charge profiles show a compromise among four trends: 1) charging during low-electricity cost intervals; 2) charging slowly; 3) charging toward the end of the available charge time; and 4) suppression of vehicle-to-grid power exportation. Simulations based on experimental Prius plug-in hybrid EV usage data predict that batteries charged using optimized charging last significantly longer than those charged using typical charging methods, potentially allowing smaller batteries to meet vehicle lifetime requirements. These trends are shown to hold across a wide range of battery sizes and hence are applicable to both EVs and plug-in hybrid EVs. C1 [Hoke, Anderson; Brissette, Alexander; Maksimovic, Dragan] Univ Colorado, Boulder, CO 80309 USA. [Smith, Kandler; Pratt, Annabelle] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Pratt, Annabelle] Intel Labs, Hillsboro, OR 97124 USA. RP Hoke, A (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM anderson.hoke@colorado.edu; alexander.brissette@colorado.edu; kandler.smith@nrel.gov; annabelle.pratt@nrel.gov; maksimov@colorado.edu FU Intel Labs; U.S. DOE Office of Vehicle Technologies Energy Storage Program through the National Renewable Energy Laboratory Battery Life Model FX This work was supported in part by Intel Labs and in part by the U.S. DOE Office of Vehicle Technologies Energy Storage Program through the National Renewable Energy Laboratory Battery Life Model. NR 50 TC 18 Z9 18 U1 3 U2 16 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2168-6777 J9 IEEE J EM SEL TOP P JI IEEE J. Emerg. Sel. Top. Power Electron. PD SEP PY 2014 VL 2 IS 3 BP 691 EP 700 DI 10.1109/JESTPE.2014.2315961 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA CN7II UT WOS:000358607400034 ER PT J AU Jorgensen, MRV Hathwar, VR Bindzus, N Wahlberg, N Chen, YS Overgaard, J Iversen, BB AF Jorgensen, Mads R. V. Hathwar, Venkatesha R. Bindzus, Niels Wahlberg, Nanna Chen, Yu-Sheng Overgaard, Jacob Iversen, Bo B. TI Contemporary X-ray electron-density studies using synchrotron radiation SO IUCRJ LA English DT Article DE electron-density studies; synchrotron radiation; X-ray diffraction ID EXPERIMENTAL CHARGE-DENSITY; MAXIMUM-ENTROPY-METHOD; WEAK INTERMOLECULAR INTERACTIONS; CRITICAL-POINT PROPERTIES; NEUTRON-DIFFRACTION DATA; HUMAN ALDOSE REDUCTASE; POWDER DIFFRACTION; COORDINATION POLYMER; TOPOLOGICAL ANALYSIS; DATA SETS AB Synchrotron radiation has many compelling advantages over conventional radiation sources in the measurement of accurate Bragg diffraction data. The variable photon energy and much higher flux may help to minimize critical systematic effects such as absorption, extinction and anomalous scattering. Based on a survey of selected published results from the last decade, the benefits of using synchrotron radiation in the determination of X-ray electron densities are discussed, and possible future directions of this field are examined. C1 [Jorgensen, Mads R. V.; Hathwar, Venkatesha R.; Bindzus, Niels; Wahlberg, Nanna; Overgaard, Jacob; Iversen, Bo B.] Aarhus Univ, Dept Chem & iNANO, Ctr Mat Crystallog, DK-8000 Aarhus C, Denmark. [Chen, Yu-Sheng] Univ Chicago, Adv Photon Source, ChemMatCARS, Chicago, IL 60637 USA. RP Iversen, BB (reprint author), Aarhus Univ, Dept Chem & iNANO, Ctr Mat Crystallog, Langelandsgade 140, DK-8000 Aarhus C, Denmark. EM bo@chem.au.dk RI Jorgensen, Mads Ry Vogel/C-6109-2017; OI Jorgensen, Mads Ry Vogel/0000-0001-5507-9615; Overgaard, Jacob/0000-0001-6492-7962 FU Danish National Research Foundation [DNRF93]; Danish Council for Nature and Universe (DanScatt) FX This work was supported by the Danish National Research Foundation (DNRF93) and the Danish Council for Nature and Universe (DanScatt). NR 135 TC 8 Z9 8 U1 5 U2 21 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2052-2525 J9 IUCRJ JI IUCrJ PD SEP PY 2014 VL 1 BP 267 EP 280 DI 10.1107/S2052252514018570 PN 5 PG 14 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA CL3QI UT WOS:000356864900004 PM 25295169 ER PT J AU Camilli, L Sutter, E Sutter, P AF Camilli, L. Sutter, E. Sutter, P. TI Growth of two-dimensional materials on non-catalytic substrates: h-BN/Au(111) SO 2D Materials LA English DT Article DE boron nitride; growth; gold; 2D materials; magnetron sputtering ID HEXAGONAL BORON-NITRIDE; B-TRICHLOROBORAZINE (CLBNH)(3); CORRUGATED MONOLAYER; GRAPHENE; NANOMESH; NI(111); HETEROSTRUCTURES; COPPER; FILM AB The growth of two-dimensional (2D) materials is a topic of very high scientific and technological interest. While chemical vapour deposition on catalytic metals has become a well developed approach for the growth of graphene and hexagonal boron nitride (BN), very few alternative approaches for synthesis on non-reactive supports have been explored so far. Here we report the growth of BN on gold, using magnetron sputtering of B in N-2/Ar atmosphere, a scalable method using only non-toxic reagents. Scanning tunnelling microscopy at low coverage shows primarily triangular monolayer BN islands exhibiting two 'magic' orientations on the Au(111) surface. Such rotational alignment of BN on Au (111) is surprising, given the expected weak binding and the high lattice mismatch (similar to 14%) between BN and Au. Our observations are consistent with a strong coupling between the edges of BN flakes and the substrate, which leads to the selection of BN orientations that maximize the orbital overlap between edge atoms and Au surface atoms. Diverse flake morphologies resembling the shape of butterflies, six-apex stars and diamonds, implying alternating B- and N-terminated edges, are observed as well. Our results provide insight into the growth mechanisms of 2D materials on weakly interacting and chemically inert substrates, and provide the basis for integrating other 2D materials with atomically precise graphene nanostructures synthesized from molecular precursors on Au. C1 [Camilli, L.; Sutter, E.; Sutter, P.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Sutter, P (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM psutter@bnl.gov RI Camilli, Luca/C-4785-2016 OI Camilli, Luca/0000-0003-2498-0210 FU US Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Research carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences, under contract no. DE-AC02-98CH10886. NR 29 TC 6 Z9 6 U1 13 U2 65 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2053-1583 J9 2D MATER JI 2D Mater. PD SEP PY 2014 VL 1 IS 2 AR 025003 DI 10.1088/2053-1583/1/2/025003 PG 11 WC Materials Science, Multidisciplinary SC Materials Science GA CG9PZ UT WOS:000353650400008 ER PT J AU Takacs, Z Imredy, JP Bingham, JP Zhorov, BS Moczydlowski, EG AF Takacs, Zoltan Imredy, John P. Bingham, Jon-Paul Zhorov, Boris S. Moczydlowski, Edward G. TI Interaction of the BKCa channel gating ring with dendrotoxins SO CHANNELS LA English DT Article DE Ca2+-activated K+ channel; dendrotoxin; gating; ion channels; K+ channel; subconductance ID PANCREATIC TRYPSIN-INHIBITOR; ACTIVATED POTASSIUM CHANNELS; CA2+-ACTIVATED K+ CHANNELS; SODIUM-CHANNEL; NUCLEIC-ACIDS; FORCE-FIELD; CALCIUM; VOLTAGE; PEPTIDE; INACTIVATION AB Two classes of small homologous basic proteins, mamba snake dendrotoxins (DTX) and bovine pancreatic trypsin inhibitor (BPTI), block the large conductance Ca2+-activated K+ channel (BKCa, KCa1.1) by production of discrete subconductance events when added to the intracellular side of the membrane. This toxin-channel interaction is unlikely to be pharmacologically relevant to the action of mamba venom, but as a fortuitous ligand-protein interaction, it has certain biophysical implications for the mechanism of BKCa channel gating. In this work we examined the subconductance behavior of 9 natural dendrotoxin homologs and 6 charge neutralization mutants of -dendrotoxin in the context of current structural information on the intracellular gating ring domain of the BKCa channel. Calculation of an electrostatic surface map of the BKCa gating ring based on the Poisson-Boltzmann equation reveals a predominantly electronegative surface due to an abundance of solvent-accessible side chains of negatively charged amino acids. Available structure-activity information suggests that cationic DTX/BPTI molecules bind by electrostatic attraction to site(s) on the gating ring located in or near the cytoplasmic side portals where the inactivation ball peptide of the 2 subunit enters to block the channel. Such an interaction may decrease the apparent unitary conductance by altering the dynamic balance of open versus closed states of BKCa channel activation gating. C1 [Takacs, Zoltan] ToxinTech, New York, NY USA. [Imredy, John P.] Merck Res Lab, West Point, PA USA. [Bingham, Jon-Paul] Univ Hawaii, Dept Mol Biosci & Bioengn, Honolulu, HI 96822 USA. [Zhorov, Boris S.] McMaster Univ, Hamilton, ON, Canada. [Zhorov, Boris S.] Russian Acad Med Sci, IM Sechenov Evolutionary Physiol & Biochem Inst, St Petersburg, Russia. [Moczydlowski, Edward G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Moczydlowski, Edward G.] Univ New Mexico, Sch Med, Dept Biochem & Mol Biol, Albuquerque, NM 87131 USA. RP Moczydlowski, EG (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM egmoczy@sandia.gov FU NIH [P01 NS42202]; Sandia National Laboratories; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Natural Sciences and Engineering Research Council of Canada [GRPIN/238773-2009] FX Experimental work was funded by NIH Grant P01 NS42202. EGM was supported by an Early Career LDRD award from Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Electrostatic computations were made possible by the facilities of the Shared Hierarchical Academic Research Computing Network (SHARCNET:www.sharcnet.ca). This part of the work was supported by a grant from the Natural Sciences and Engineering Research Council of Canada to BSZ [Grant GRPIN/238773-2009]. NR 58 TC 1 Z9 1 U1 0 U2 3 PU LANDES BIOSCIENCE PI AUSTIN PA 1806 RIO GRANDE ST, AUSTIN, TX 78702 USA SN 1933-6950 EI 1933-6969 J9 CHANNELS JI Channels PD SEP-OCT PY 2014 VL 8 IS 5 BP 421 EP 432 DI 10.4161/19336950.2014.949186 PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AZ7ER UT WOS:000348382300009 PM 25483585 ER PT J AU Thom, R Southard, S Borde, A AF Thom, Ronald Southard, Susan Borde, Amy TI Climate-linked Mechanisms Driving Spatial and Temporal Variation in Eelgrass (Zostera marina L.) Growth and Assemblage Structure in Pacific Northwest Estuaries, USA SO JOURNAL OF COASTAL RESEARCH LA English DT Article DE Zostera marina; eelgrass growth; estuary climate impacts; Oceanic Nino Index; El Nino-Southern Oscillation ID SEA-LEVEL RISE; COASTAL ECOSYSTEMS; THERMAL-STRESS; STANDING-STOCK; PUGET-SOUND; OPEN-OCEAN; IMPACTS; CARBON; SEAGRASSES; BAY AB Using laboratory experiments on temperature and leaf metabolism, and field data sets from Washington, between 1991 and 2013, we developed lines of evidence showing that variations in water temperature, mean sea level, and desiccation stress appear to drive spatial and temporal variations in eelgrass (Zostera marina). Variations in the Oceanic Nino Index (ONI) and mean sea level (MSL), especially during the strong 1997-2001 El Nino-La Nina event, corresponded with variations in leaf growth rate of an intertidal population. Field studies suggested that this variation was associated with both desiccation period and temperature. Subtidal eelgrass shoot density recorded annually over a 10-year period was lowest during the warm and cool extremes of sea surface temperature. These periods corresponded to the extremes in the ONI. Variations in density of a very low intertidal population in a turbid estuary were explained by both variations in temperature and light reaching the plants during periods of higher MSL. These results show complex interactions between water-level variation, temperature and light as mechanisms regulating variation in eelgrass, which complicates the ability to predict the effects of climate variation and change on this important resource. Because of the extensive wide geographic distribution of eelgrass, its tractability for study, and its responsiveness to climate, this and other seagrass species should be considered useful indicators of the effects of climate variation and change on marine and estuarine ecosystems. C1 [Thom, Ronald; Southard, Susan; Borde, Amy] Pacific NW Natl Lab, Marine Sci Lab, Sequim, WA 98382 USA. RP Thom, R (reprint author), Pacific NW Natl Lab, Marine Sci Lab, 1529 West Sequim Bay Rd, Sequim, WA 98382 USA. EM ron.thom@pnnl.gov FU Washington State Department of Transportation (WSDOT); NOAA's Coastal Ocean Program FX We sincerely appreciate the invitation by DrsWenrui Huang and Scott Hagen to participate in this special issue. Research at Clinton was partially funded by the Washington State Department of Transportation (WSDOT). NOAA's Coastal Ocean Program funded the Willapa Bay research. The U.S. Department of Energy education programs provided support for a number of outstanding students and interns who measured growth rates and assisted in experiments including A. Simpson, K. Rust, K. Steenworthy, B. Van Cleve, R. Moffitt, M. Prinzen, J. Lipfert, E. Fagergren, A. Mullin, Y. Duarte, L. Ward, D. Kennedy, S. Gobert, and W. Pratt. The valued assistance in field data collection by J. Southard, G. Williams, D. Woodruff, H. Diefenderfer, M. Blanton, L. Antrim, W. Gardiner, J. Vavrinec, and S. Rumrill is sincerely appreciated. Based on his observations in San Diego Bay, K. Merkel recommended we consider sea level anomalies. Finally, we thank S. Ennor for editing the manuscript, L. Aston for internal review comments, and two anonymous peer reviewers for their comments. The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy. Report number PNNL-SA-102122. NR 72 TC 3 Z9 3 U1 4 U2 43 PU COASTAL EDUCATION & RESEARCH FOUNDATION PI LAWRENCE PA 810 EAST 10TH STREET, LAWRENCE, KS 66044 USA SN 0749-0208 EI 1551-5036 J9 J COASTAL RES JI J. Coast. Res. PD FAL PY 2014 SI 68 BP 1 EP 11 DI 10.2112/SI68-001.1 PG 11 WC Environmental Sciences; Geography, Physical; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Physical Geography; Geology GA AX8FM UT WOS:000347145600002 ER PT J AU Larrick, JW Parren, PWHI Huston, JS Pluckthun, A Bradbury, A Tomlinson, IM Chester, KA Burton, DR Adams, GP Weiner, LM Scott, JK Alfenito, MR Veldman, T Reichert, JM AF Larrick, James W. Parren, Paul W. H. I. Huston, James S. Plueckthun, Andreas Bradbury, Andrew Tomlinson, Ian M. Chester, Kerry A. Burton, Dennis R. Adams, Gregory P. Weiner, Louis M. Scott, Jamie K. Alfenito, Mark R. Veldman, Trudi Reichert, Janice M. TI Antibody engineering and therapeutics conference The annual meeting of the antibody society, Huntington Beach, CA, December 7-11, 2014 SO MABS LA English DT Article DE antibody-drug conjugate; antibody engineering; bispecific antibody; effector functions; immunocytokine AB The 25th anniversary of the Antibody Engineering & Therapeutics Conference, the Annual Meeting of The Antibody Society, will be held in Huntington Beach, CA, December 7-11, 2014. Organized by IBC Life Sciences, the event will celebrate past successes, educate participants on current activities and offer a vision of future progress in the field. Keynote addresses will be given by academic and industry experts Douglas Lauffenburger (Massachusetts Institute of Technology), Ira Pastan (National Cancer Institute), James Wells (University of California, San Francisco), Ian Tomlinson (GlaxoSmithKline) and Anthony Rees (Rees Consulting AB and Emeritus Professor, University of Bath). These speakers will provide updates of their work, placed in the context of the substantial growth of the industry over the past 25 years. C1 [Larrick, James W.] Panorama Res Inst, San Francisco, CA USA. [Larrick, James W.] Veloc Pharmaceut Dev, San Francisco, CA USA. [Parren, Paul W. H. I.] Genmab, Utrecht, Netherlands. [Huston, James S.] Huston BioConsulting LLC, Boston, MA USA. [Plueckthun, Andreas] Univ Zurich, Inst Biochem, CH-8057 Zurich, Switzerland. [Bradbury, Andrew] Los Alamos Natl Lab, Los Alamos, NM USA. [Tomlinson, Ian M.] GlaxoSmithKline, Stevenage, Herts, England. [Chester, Kerry A.] UCL, London, England. [Burton, Dennis R.] Scripps Res Inst, La Jolla, CA 92037 USA. [Adams, Gregory P.] Fox Chase Canc Ctr, Philadelphia, PA 19111 USA. [Weiner, Louis M.] Georgetown Univ, Med Ctr, Washington, DC 20007 USA. [Scott, Jamie K.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Alfenito, Mark R.] EnGen Bio Inc, San Mateo, CA USA. [Veldman, Trudi] AbbVie, Worcester, MA USA. [Reichert, Janice M.] Reichert Biotechnol Consulting LLC, Framingham, MA 01701 USA. RP Reichert, JM (reprint author), Reichert Biotechnol Consulting LLC, Framingham, MA 01701 USA. EM reichert.biotechconsulting@gmail.com OI Bradbury, Andrew/0000-0002-5567-8172 NR 0 TC 0 Z9 0 U1 0 U2 1 PU LANDES BIOSCIENCE PI AUSTIN PA 1806 RIO GRANDE ST, AUSTIN, TX 78702 USA SN 1942-0862 EI 1942-0870 J9 MABS-AUSTIN JI mAbs PD SEP-OCT PY 2014 VL 6 IS 5 BP 1115 EP 1123 DI 10.4161/19420862.2014.971627 PG 9 WC Medicine, Research & Experimental SC Research & Experimental Medicine GA AX4BG UT WOS:000346878500001 PM 25517297 ER PT J AU Bingert, SR AF Bingert, Sherri R. TI SHERRI R. BINGERT SO INTERNATIONAL JOURNAL OF POWDER METALLURGY LA English DT Editorial Material C1 [Bingert, Sherri R.] Los Alamos Natl Lab, Off RDT&E DOE NNSA, Los Alamos, NM 87545 USA. EM sherri@lanl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER POWDER METALLURGY INST PI PRINCETON PA 105 COLLEGE ROAD EAST, PRINCETON, NJ 08540 USA SN 0888-7462 J9 INT J POWDER METALL JI Int. J. Powder Metall. PD FAL PY 2014 VL 50 IS 4 BP 6 EP 8 PG 3 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA AX4DC UT WOS:000346883100003 ER PT J AU Peisert, S Margulies, J Nicol, DM Khurana, H Sawall, C AF Peisert, Sean Margulies, Jonathan Nicol, David M. Khurana, Himanshu Sawall, Chris TI Designed-in Security for Cyber-Physical Systems SO IEEE SECURITY & PRIVACY LA English DT Editorial Material C1 [Peisert, Sean] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Peisert, Sean] Univ Calif Davis, Davis, CA 95616 USA. [Margulies, Jonathan] Qmulos, Chantilly, VA USA. [Nicol, David M.] Univ Illinois, Chicago, IL 60680 USA. [Khurana, Himanshu] Honeywell, Morristown, NJ USA. [Sawall, Chris] Ameren, St Louis, MO USA. RP Peisert, S (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM sppeisert@lbl.gov; margulies@gmail.com; dmnicol@illinois.edu; himanshu.khurana@honeywell.com; sawall@gmail.com NR 0 TC 0 Z9 0 U1 1 U2 17 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1540-7993 EI 1558-4046 J9 IEEE SECUR PRIV JI IEEE Secur. Priv. PD SEP-OCT PY 2014 VL 12 IS 5 BP 9 EP 12 PG 4 WC Computer Science, Information Systems; Computer Science, Software Engineering SC Computer Science GA AW5MS UT WOS:000346319800003 ER PT J AU Dwyer, DA AF Dwyer, Daniel A. TI The neutrino mixing angle theta(13): Reactor and accelerator experiments SO PHYSICS OF THE DARK UNIVERSE LA English DT Article DE Neutrino oscillation; Neutrino mixing; Neutrino mass hierarchy; Reactor; Accelerator AB Recent measurements of the neutrino mixing angle theta(13) cap a decade of observations which have clearly established the oscillation of neutrino flavor. Measurements of reactor (nu) over bar (e) disappearance over similar to km distances have provided a precise value for this mixing angle. Detection of nu(e) in beams of nu(mu) from particle accelerators also support a non-zero value of theta(13), and comparisons between these two techniques are sensitive to the remaining unknowns of neutrino oscillation. The unexpectedly large value for theta(13) allows for future tests of the neutrino mass hierarchy and CP-violation in neutrino oscillation. Measurement of the energy dependence of reactor (nu) over bar (e) disappearance has been used to determine the larger neutrino mass-squared difference, vertical bar Lambda m(31)(2)vertical bar approximate to vertical bar Lambda m(32)(2)vertical bar. Consistency with observations of accelerator nu(mu) disappearance supports the three-flavor model of neutrino flavor oscillation. (C) 2014 The Author. Published by Elsevier B.V. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Dwyer, DA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM dadwyer@lbl.gov FU DOE OHEP [DE-AC02-05CH11231] FX The author would like to thank the organizers of the 13th International Conference on Topics in Astroparticle and Underground Physics for the opportunity to present this material. This work was supported under DOE OHEP DE-AC02-05CH11231. NR 34 TC 0 Z9 0 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2212-6864 J9 PHYS DARK UNIVERSE JI Phys. Dark Universe PD SEP PY 2014 VL 4 BP 31 EP 35 DI 10.1016/j.dark.2014.05.001 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AW3UJ UT WOS:000346211200008 ER PT J AU Tan, SR Huang, LJ AF Tan, Sirui Huang, Lianjie TI Reducing the computer memory requirement for 3D reverse-time migration with a boundary-wavefield extrapolation method SO GEOPHYSICS LA English DT Article ID INDEPENDENT STABILITY-CRITERIA; DIFFERENCE APPROXIMATIONS; CONSERVATION-LAWS; IMPLEMENTATION; PROPAGATION; INVERSION AB Reverse-time migration (RTM) using the crosscorrelation imaging condition requires that the forward-propagated source wavefield and the backward-propagated receiver wavefield be accessible within the imaging domain at the same time step. There are two categories of methods to balance the computer memory requirement and the computational complexity of RTM: checkpointing methods and source-wavefield reconstruction methods. We have developed a new source-wavefield reconstruction method to improve the balance between the computer memory requirement and the computational complexity of RTM. During the forward simulation of the source wavefield, we stored boundary wavefields only at one or two layers of spatial grid points and reconstructed the back-propagated source wavefield at the same time step as that of the back-propagated receiver wavefield, using a high-order wave-equation extrapolation scheme. One conventional RTM method uses boundary wavefields stored at multiple layers of spatial grid points and a high-order finite-difference (FD) scheme to reconstruct the back-propagated source wavefield. For an FD scheme with the eighth or sixteenth order of accuracy in space, our new method used only 37.5% of the computer memory required by this conventional method to store the boundary wavefields. This reduction of computer memory usage is significant because storing the boundary wavefields consumes most of the computer memory required for 3D migration using reconstructed source wavefields. Moreover, our method maintained the spatial order of accuracy of the FD scheme for the entire imaging domain, whereas some conventional methods reduce the spatial-order accuracy of the FD scheme near the boundaries to back-propagate the source wavefield to decrease the computer memory requirement. We validated our method using synthetic seismic data. Our method produced 2D and 3D migration images of complex subsurface structures as accurate as those yielded using an RTM method without reducing the spatial order of accuracy near the boundaries. C1 [Tan, Sirui; Huang, Lianjie] Los Alamos Natl Lab, Geophys Grp, Los Alamos, NM USA. RP Tan, SR (reprint author), ExxonMobil Upstream Res Co, Houston, TX 77098 USA. EM siruitan@hotmail.com; ljh@lanl.gov RI Tan, Sirui/H-9565-2015 OI Tan, Sirui/0000-0002-8150-3261 FU U.S. Department of Energy [DE-AC52-06NA25396] FX This work was supported by U.S. Department of Energy through contract DE-AC52-06NA25396 to Los Alamos National Laboratory (LANL). The computation was performed using supercomputers of LANL's Institutional Computing Program. We thank the associate editor F. Liu and three anonymous reviewers for their valuable comments. We also thank M. Intrator for her careful review of this paper. NR 31 TC 7 Z9 7 U1 1 U2 6 PU SOC EXPLORATION GEOPHYSICISTS PI TULSA PA 8801 S YALE ST, TULSA, OK 74137 USA SN 0016-8033 EI 1942-2156 J9 GEOPHYSICS JI Geophysics PD SEP-OCT PY 2014 VL 79 IS 5 BP S185 EP S194 DI 10.1190/GEO2014-0075.1 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AU9JA UT WOS:000345907100033 ER PT J AU Tan, SR Huang, LJ AF Tan, Sirui Huang, Lianjie TI Least-squares reverse-time migration with a wavefield-separation imaging condition and updated source wavefields SO GEOPHYSICS LA English DT Article ID REFLECTION DATA; INVERSION AB Directly imaging steeply dipping fault zones is difficult for conventional migration, including reverse-time migration (RTM). We developed a new least-squares RTM (LSRTM) method to directly image steeply dipping fault zones. The method uses a wavefield-separation imaging condition and updated source wavefields during each iteration. Our new imaging method produces horizontal-looking images that show mostly steeply dipping fault zones. Conventional least-squares RTM does not update source wavefields and cannot directly image vertical fault zones. We numerically determined that it is crucial to update source wavefields to image steeply dipping fault zones. Using synthetic seismic data, we proved that our new LSRTM method can directly image steeply dipping fault zones with dipping angles up to 90 degrees. Compared with conventional LSRTM, our LSRTM method was less sensitive to the smoothness and the velocity error of the initial migration velocity model. C1 [Tan, Sirui; Huang, Lianjie] Los Alamos Natl Lab, Geophys Grp, Los Alamos, NM USA. RP Tan, SR (reprint author), ExxonMobil Upstream Res Co, Houston, TX 77098 USA. EM siruitan@hotmail.com; ljh@lanl.gov RI Tan, Sirui/H-9565-2015 OI Tan, Sirui/0000-0002-8150-3261 FU United States Department of Energy [DE-AC52-06NA25396] FX This work was supported by United States Department of Energy through contract no. DE-AC52-06NA25396 to Los Alamos National Laboratory (LANL). The computation was performed using supercomputers at LANL's Institutional Computing Program. We thank J. Queen of Hi-Q Geophysical Inc. for providing the velocity model from Brady's geothermal field containing four steeply dipping fault zones. We thank associate editor F. Liu, reviewer M. Wong, and two anonymous reviewers for their valuable comments. NR 16 TC 9 Z9 10 U1 0 U2 4 PU SOC EXPLORATION GEOPHYSICISTS PI TULSA PA 8801 S YALE ST, TULSA, OK 74137 USA SN 0016-8033 EI 1942-2156 J9 GEOPHYSICS JI Geophysics PD SEP-OCT PY 2014 VL 79 IS 5 BP S195 EP S205 DI 10.1190/GEO2014-0020.1 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AU9JA UT WOS:000345907100034 ER PT J AU Trainor-Guitton, WJ Hoversten, GM Ramirez, A Roberts, J Juliusson, E Key, K Mellors, R AF Trainor-Guitton, Whitney J. Hoversten, G. Michael Ramirez, Abelardo Roberts, Jeffery Juliusson, Egill Key, Kerry Mellors, Robert TI The value of spatial information for determining well placement: A geothermal example SO GEOPHYSICS LA English DT Article ID ELECTRICAL-RESISTIVITY; SEISMIC AMPLITUDE; METHODOLOGY; RESERVOIRS; FIELD AB We have developed a spatial, value of information (VOI) methodology that is designed specifically to include the inaccuracies of multidimensional geophysical inversions. VOI assesses the worth of information in terms of how it can improve the decision maker's likelihood of a higher valued outcome. VOI can be applied to spatial data using an exploration example for hidden geothermal resources. This methodology is applicable for spatial decisions for other exploration decisions (e.g., oil, mining, etc.). This example evaluates how well the magnetotelluric (MT) technique is able to delineate the lateral position of electrically conductive materials that are indicative of a hidden geothermal resource. The conductive structure (referred to as the clay cap) represented where the geothermal alteration occurred. The prior uncertainty of the position of the clay cap (drilling target) is represented with multiple earth models. These prior models are used to numerically simulate the data collection, noise, inversion, and interpretation of the MT technique. MT's ability to delineate the correct lateral location can be quantified by comparing the true location in each prior model to the location that is interpreted from each respective inverted model. Additional complexity in the earth models is included by adding more electrical conductors (not associated with the clay cap) and deeper targets. Both degrade the ability of the MT technique (the signal and inversion) to locate the clay cap thereby decreasing the VOI. The results indicate the ability of the prior uncertainty to increase and decrease the final VOI assessment. The results also demonstrate how VOI depends on whether or not a resource still exists below the clay cap because the clay cap is only a potential indicator of economic temperatures. C1 [Trainor-Guitton, Whitney J.; Ramirez, Abelardo; Roberts, Jeffery; Mellors, Robert] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Ramirez, Abelardo] ChevronTexaco, San Ramon, CA USA. [Juliusson, Egill] Landsvirkjun, Reykjavik, Iceland. [Key, Kerry] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. RP Trainor-Guitton, WJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM trainorguitton@llnl.gov; hovg@chevron.com; ramirez3@llnl.gov; roberts17@llnl.gov; egill.juliusson@landsvirkjun.is; kkey@ucsd.edu; mellors1@llnl.gov RI Mellors, Robert/K-7479-2014; Key, Kerry/B-1092-2008 OI Mellors, Robert/0000-0002-2723-5163; FU Geothermal Program of the Department of Energy; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors would like to thank J. Ziagos for his early contributions to this work, the Geothermal Program of the Department of Energy for funding this research, and for the reviewers who greatly improved the quality of this manuscript, especially the reviewer who offered the notation for the posterior calculation. This research was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract no. DE-AC52-07NA27344. NR 28 TC 2 Z9 2 U1 2 U2 8 PU SOC EXPLORATION GEOPHYSICISTS PI TULSA PA 8801 S YALE ST, TULSA, OK 74137 USA SN 0016-8033 EI 1942-2156 J9 GEOPHYSICS JI Geophysics PD SEP-OCT PY 2014 VL 79 IS 5 BP W27 EP W41 DI 10.1190/GEO2013-0337.1 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AU9JA UT WOS:000345907100047 ER PT J AU Davidovich, RL Tkachev, VV Logvinova, VB Kostin, VI Stavila, V AF Davidovich, R. L. Tkachev, V. V. Logvinova, V. B. Kostin, V. I. Stavila, V. TI Crystal structure of tetramethylammonium fluoridotitanate(IV) with dimeric complex anions of different compositions SO JOURNAL OF STRUCTURAL CHEMISTRY LA English DT Article DE thermodynamics crystal structure; fluoridotitanate(IV); tetramethylammonium; dimeric complex anion; octahedron; tetrahedron ID SALTS AB To the best of our knowledge, this is the first report of the synthesis and characterization of tetramethylammonium fluoridotitanate(IV) [N(CH3)(4)](4)[Ti2F11][Ti2F9(H2O)(2)] with two dimeric complex anions of different compositions. The disordered crystal structure of [N(CH3)(4)](4)[Ti2F11][Ti2F9(H2O)(2)] is formed by dimeric complex anions [Ti2F11](3-) and [Ti2F9(H2O)(2)](-) in a 1:1 ratio and tetramethylammonium cations N(CH3) (4) (+) , each with an occupancy factor of 0.5. The dimeric complex anions, which structurally alternate with an occupancy factor of 0.5, form a pseudodimeric anion {(Ti2F11)(0,5)(Ti2F9(H2O)(2))(0,5)}(2-) whose charge is compensated by the disordered cations N(CH3) (4) (+) . The hydrogen bonds O-Ha <-F link the dimeric complex anions [Ti2F11](3-) and [Ti2F9(H2O)(2)](-) into polymeric ribbons, with the N(CH3) (4) (+) cations being located between the ribbons. C1 [Davidovich, R. L.; Logvinova, V. B.; Kostin, V. I.] Russian Acad Sci, Inst Chem, Far Eastern Branch, Vladivostok 690022, Russia. [Tkachev, V. V.] Russian Acad Sci, Inst Problems Chem Phys, Chernogolovka 142432, Russia. [Stavila, V.] Sandia Natl Labs, Livermore, CA USA. RP Davidovich, RL (reprint author), Russian Acad Sci, Inst Chem, Far Eastern Branch, Vladivostok 690022, Russia. EM davidovich@ich.dvo.ru; vatka@icp.ac.ru; vstavila@gmail.com NR 12 TC 1 Z9 1 U1 0 U2 1 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 0022-4766 EI 1573-8779 J9 J STRUCT CHEM+ JI J. Struct. Chem. PD SEP PY 2014 VL 55 IS 5 BP 923 EP 926 DI 10.1134/S0022476614050199 PG 4 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA AW0GL UT WOS:000345969100019 ER PT J AU Niculaes, C Morreel, K Kim, H Lu, FC Mckee, LS Ivens, B Haustraete, J Vanholme, B De Rycke, R Hertzberg, M Fromm, J Bulone, V Polle, A Ralph, J Boerjan, W AF Niculaes, Claudiu Morreel, Kris Kim, Hoon Lu, Fachuang Mckee, Lauren S. Ivens, Bart Haustraete, Jurgen Vanholme, Bartel De Rycke, Riet Hertzberg, Magnus Fromm, Jorg Bulone, Vincent Polle, Andrea Ralph, John Boerjan, Wout TI Phenylcoumaran Benzylic Ether Reductase Prevents Accumulation of Compounds Formed under Oxidative Conditions in Poplar Xylem SO PLANT CELL LA English DT Article ID TRACHEARY ELEMENT DIFFERENTIATION; PULSED-FIELD GRADIENTS; ZINNIA MESOPHYLL-CELLS; MASS-SPECTROMETRY; STRUCTURAL-CHARACTERIZATION; PINORESINOL-LARICIRESINOL; ISOFLAVONE REDUCTASES; PHENOLIC-COMPOUNDS; LIGNIFICATION; LIGNIN AB Phenylcoumaran benzylic ether reductase (PCBER) is one of the most abundant proteins in poplar (Populus spp) xylem, but its biological role has remained obscure. In this work, metabolite profiling of transgenic poplar trees downregulated in PCBER revealed both the in vivo substrate and product of PCBER. Based on mass spectrometry and NMR data, the substrate was identified as a hexosylated 8-5-coupling product between sinapyl alcohol and guaiacylglycerol, and the product was identified as its benzyl-reduced form. This activity was confirmed in vitro using a purified recombinant PCBER expressed in Escherichia coli. Assays performed on 20 synthetic substrate analogs revealed the enzyme specificity. In addition, the xylem of PCBER-downregulated trees accumulated over 2000-fold higher levels of cysteine adducts of monolignol dimers. These compounds could be generated in vitro by simple oxidative coupling assays involving monolignols and cysteine. Altogether, our data suggest that the function of PCBER is to reduce phenylpropanoid dimers in planta to form antioxidants that protect the plant against oxidative damage. In addition to describing the catalytic activity of one of the most abundant enzymes in wood, we provide experimental evidence for the antioxidant role of a phenylpropanoid coupling product in planta. C1 [Niculaes, Claudiu; Morreel, Kris; Ivens, Bart; Vanholme, Bartel; De Rycke, Riet; Boerjan, Wout] VIB Inst, Dept Plant Syst Biol, B-9052 Ghent, Belgium. [Niculaes, Claudiu; Morreel, Kris; Ivens, Bart; Vanholme, Bartel; De Rycke, Riet; Boerjan, Wout] Univ Ghent, Dept Plant Biotechnol & Bioinformat, B-9052 Ghent, Belgium. [Kim, Hoon; Lu, Fachuang; Ralph, John] Univ Wisconsin, Wisconsin Energy Inst, Dept Biochem, Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA. [Kim, Hoon; Lu, Fachuang; Ralph, John] Univ Wisconsin, Wisconsin Energy Inst, Great Lakes Bioenergy Res Ctr, US Dept Energy, Madison, WI 53726 USA. [Mckee, Lauren S.; Bulone, Vincent] AlbaNova Univ Ctr, Royal Inst Technol, KTH, Div Glycosci,Sch Biotechnol, S-10691 Stockholm, Sweden. [Haustraete, Jurgen] Univ Ghent VIB, Dept Mol Biomed Res, Prot Serv Facil, B-9052 Ghent, Belgium. [Hertzberg, Magnus] SweTree Technol, SE-90403 Umea, Sweden. [Fromm, Jorg] Univ Hamburg, Zentrum Holzwirtschaft, D-21031 Hamburg, Germany. [Polle, Andrea] Univ Gottingen, Busgen Inst, D-37077 Gottingen, Germany. RP Boerjan, W (reprint author), VIB Inst, Dept Plant Syst Biol, B-9052 Ghent, Belgium. EM woboe@psb.vib-ugent.be OI /0000-0002-3372-8773; Boerjan, Wout/0000-0003-1495-510X FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]; Hercules program of Ghent University [AUGE/014]; Flanders Research Foundation (FWO) [G.0637.07N]; European collaborative project ENERGYPOPLAR [FP7-211917] FX NMR experiments on the 600-MHz Bruker microcryoprobe NMR instrument made use of the National Magnetic Resonance Facility at the University of Wisconsin-Madison (http://www.nmrfam.wisc.edu); we thank Mark Anderson for his help with this instrument and Milo Westler for aid with the water suppression experiments. We thank Kristine Vander Mijnsbrugge, Catherine Lapierre, and Brigitte Pollet for various analyses on an earlier set of poplar lines that were less stably downregulated for PCBER and that were generated by antisense technology; Andras Gorzsas for Fourier transform infrared analysis of wood samples and Frederic Leroux for electron microscopy analysis; Frank Van Breusegem and Pavel Kerchev for critical reading of the article; and Eric Messens for helpful discussions. J.R., F.L., and H.K. were funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). We also thank the Hercules program of Ghent University for the Synapt Q-Tof (Grant AUGE/014); the Bijzonder Onderzoeksfonds-Zware Apparatuur of Ghent University for the Fourier transform ion cyclotron resonance mass spectrometer (174PZA05); and the Multidisciplinary Research Partnership Biotechnology for a Sustainable Economy (01MRB510W) of Ghent University. C.N. was funded by Flanders Research Foundation (FWO) Grant G.0637.07N and by the European collaborative project ENERGYPOPLAR (FP7-211917). NR 58 TC 5 Z9 6 U1 1 U2 29 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 1040-4651 EI 1532-298X J9 PLANT CELL JI Plant Cell PD SEP PY 2014 VL 26 IS 9 BP 3775 EP 3791 DI 10.1105/tpc.114.125260 PG 17 WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology GA AU9NF UT WOS:000345919700023 PM 25238751 ER PT J AU Zaborin, A Smith, D Garfield, K Quensen, J Shakhsheer, B Kade, M Tirrell, M Tiedje, J Gilbert, JA Zaborina, O Alverdy, JC AF Zaborin, Alexander Smith, Daniel Garfield, Kevin Quensen, John Shakhsheer, Baddr Kade, Matthew Tirrell, Matthew Tiedje, James Gilbert, Jack A. Zaborina, Olga Alverdy, John C. TI Membership and Behavior of Ultra-Low-Diversity Pathogen Communities Present in the Gut of Humans during Prolonged Critical Illness SO MBIO LA English DT Article ID BACTERIA-HOST COMMUNICATION; BLOOD-STREAM INFECTIONS; GASTROINTESTINAL-TRACT; PSEUDOMONAS-AERUGINOSA; CANDIDA-ALBICANS; ANTIBIOTIC SUSCEPTIBILITY; VIRULENCE EXPRESSION; NEONATAL SEPSIS; GENES; MORPHINE AB We analyzed the 16S rRNA amplicon composition in fecal samples of selected patients during their prolonged stay in an intensive care unit (ICU) and observed the emergence of ultra-low-diversity communities (1 to 4 bacterial taxa) in 30% of the patients. Bacteria associated with the genera Enterococcus and Staphylococcus and the family Enterobacteriaceae comprised the majority of these communities. The composition of cultured species from stool samples correlated to the 16S rRNA analysis and additionally revealed the emergence of Candida albicans and Candida glabrata in similar to 75% of cases. Four of 14 ICU patients harbored 2-member pathogen communities consisting of one Candida taxon and one bacterial taxon. Bacterial members displayed a high degree of resistance to multiple antibiotics. The virulence potential of the 2-member communities was examined in C. elegans during nutrient deprivation and exposure to opioids in order to mimic local conditions in the gut during critical illness. Under conditions of nutrient deprivation, the bacterial members attenuated the virulence of fungal members, leading to a "commensal lifestyle." However, exposure to opioids led to a breakdown in this commensalism in 2 of the ultra-low-diversity communities. Application of a novel antivirulence agent (phosphate-polyethylene glycol [Pi-PEG]) that creates local phosphate abundance prevented opioid-induced virulence among these pathogen communities, thus rescuing the commensal lifestyle. To conclude, the gut microflora in critically ill patients can consist of ultra-low-diversity communities of multidrug-resistant pathogenic microbes. Local environmental conditions in gut may direct pathogen communities to adapt to either a commensal style or a pathogenic style. IMPORTANCE During critical illness, the normal gut microbiota becomes disrupted in response to host physiologic stress and antibiotic treatment. Here we demonstrate that the community structure of the gut microbiota during prolonged critical illness is dramatically changed such that in many cases only two-member pathogen communities remain. Most of these ultra-low-membership communities display low virulence when grouped together (i.e., a commensal lifestyle); individually, however, they can express highly harmful behaviors (i.e., a pathogenic lifestyle). The commensal lifestyle of the whole community can be shifted to a pathogenic one in response to host factors such as opioids that are released during physiologic stress and critical illness. This shift can be prevented by using compounds such as Pi-PEG15-20 that interrupt bacterial virulence expression. Taking the data together, this report characterizes the plasticity seen with respect to the choice between a commensal lifestyle and a pathogenic lifestyle among ultra-low-diversity pathogen communities that predominate in the gut during critical illness and offers novel strategies for prevention of sepsis. C1 [Zaborin, Alexander; Shakhsheer, Baddr; Kade, Matthew; Tirrell, Matthew; Gilbert, Jack A.; Zaborina, Olga; Alverdy, John C.] Univ Chicago, Chicago, IL 60637 USA. [Smith, Daniel; Gilbert, Jack A.] Argonne Natl Lab, Argonne, IL 60439 USA. [Garfield, Kevin; Quensen, John; Tiedje, James] Michigan State Univ, E Lansing, MI 48824 USA. RP Alverdy, JC (reprint author), Univ Chicago, Chicago, IL 60637 USA. EM ozaborin@surgery.bsd.uchicago.edu; jalverdy@surgery.bsd.uchicago.edu FU NIH [RO1 2R01GM062344-13A1]; U.S. Dept. of Energy [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences, and an Engineering Division FX This study was funded by NIH grant RO1 2R01GM062344-13A1 (J.C.A.). This work was supported in part by the U.S. Dept. of Energy under contract DE-AC02-06CH11357 (J.G.) and by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences, and an Engineering Division (M.K. and M.T.). NR 42 TC 36 Z9 36 U1 2 U2 21 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 2150-7511 J9 MBIO JI mBio PD SEP-OCT PY 2014 VL 5 IS 5 AR e01361-14 DI 10.1128/mBio.01361-14 PG 14 WC Microbiology SC Microbiology GA AU2OY UT WOS:000345459000007 PM 25249279 ER PT J AU Funk, C Hoell, A Stone, D AF Funk, Chris Hoell, Andrew Stone, Daithi TI EXAMINING THE CONTRIBUTION OF THE OBSERVED GLOBAL WARMING TREND TO THE CALIFORNIA DROUGHTS OF 2012/13 AND 2013/14 SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article AB Long-term SST warming trends did not contribute substantially to the 2012/13 and 2013/14 California droughts. North Pacific SSTs were exceptionally warm, however; and coupled models indicate more frequent extreme precipitation. C1 [Funk, Chris] US Geol Survey, Santa Barbara, CA USA. [Funk, Chris; Hoell, Andrew] Univ Calif Santa Barbara, Climate Hazard Grp, Santa Barbara, CA 93106 USA. [Stone, Daithi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Funk, C (reprint author), US Geol Survey, Santa Barbara, CA USA. NR 0 TC 23 Z9 24 U1 3 U2 37 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD SEP PY 2014 VL 95 IS 9 SU S BP S11 EP S15 PG 5 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AT3FD UT WOS:000344820500004 ER PT J AU Singh, D Horton, DE Tsiang, M Haugen, M Ashfaq, M Mei, R Rastogi, D Johnson, NC Charland, A Rajaratnam, B Diffenbaugh, NS AF Singh, Deepti Horton, Daniel E. Tsiang, Michael Haugen, Matz Ashfaq, Moetasim Mei, Rui Rastogi, Deeksha Johnson, Nathaniel C. Charland, Allison Rajaratnam, Bala Diffenbaugh, Noah S. TI SEVERE PRECIPITATION IN NORTHERN INDIA IN JUNE 2013: CAUSES, HISTORICAL CONTEXT, AND CHANGES IN PROBABILITY SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article AB Cumulative precipitation in northern India in June 2013 was a century-scale event, and evidence for increased probability in the present climate compared to the preindustrial climate is equivocal. C1 [Singh, Deepti; Horton, Daniel E.; Tsiang, Michael; Haugen, Matz; Charland, Allison; Rajaratnam, Bala; Diffenbaugh, Noah S.] Stanford Univ, Dept Environm Earth Syst Sci, Stanford, CA 94305 USA. [Singh, Deepti; Horton, Daniel E.; Tsiang, Michael; Haugen, Matz; Charland, Allison; Rajaratnam, Bala; Diffenbaugh, Noah S.] Stanford Univ, Woods Inst Environm, Stanford, CA 94305 USA. [Tsiang, Michael; Haugen, Matz; Rajaratnam, Bala] Stanford Univ, Dept Stat, Stanford, CA 94305 USA. [Ashfaq, Moetasim; Mei, Rui; Rastogi, Deeksha] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA. [Johnson, Nathaniel C.] Univ Hawaii Manoa, Int Pacific Res Ctr, Honolulu, HI 96822 USA. [Johnson, Nathaniel C.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. RP Singh, D (reprint author), Stanford Univ, Dept Environm Earth Syst Sci, Stanford, CA 94305 USA. RI Johnson, Nathaniel/L-8045-2015 OI Johnson, Nathaniel/0000-0003-4906-178X NR 0 TC 9 Z9 10 U1 0 U2 2 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD SEP PY 2014 VL 95 IS 9 SU S BP S58 EP S61 PG 4 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AT3FD UT WOS:000344820500017 ER PT J AU Giorgi, EE Stram, DO Taverna, D Turner, SD Schumacher, F Haiman, CA Lum-Jones, A Tirikainen, M Caberto, C Duggan, D Henderson, BE Le Marchand, L Cheng, I AF Giorgi, Elena E. Stram, Daniel O. Taverna, Darin Turner, Stephen D. Schumacher, Fredrick Haiman, Christopher A. Lum-Jones, Annette Tirikainen, Maarit Caberto, Christian Duggan, David Henderson, Brian E. Le Marchand, Loic Cheng, Iona TI Fine-Mapping IGF1 and Prostate Cancer Risk in African Americans: The Multiethnic Cohort Study SO CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION LA English DT Article ID GENOME-WIDE ASSOCIATION; GENETIC-VARIATION; CIRCULATING LEVELS; BREAST-CANCER; IGFBP3 AB Genetic variation at insulin-like growth factor 1 (IGF1) has been linked to prostate cancer risk. However, the specific predisposing variants have not been identified. In this study, we fine-mapped the IGF1 locus for prostate cancer risk in African Americans. We conducted targeted Roche GS-Junior 454 resequencing of a 156-kb region of IGF1 in 80 African American aggressive prostate cancer cases. Three hundred and thirty-four IGF1 SNPs were examined for their association with prostate cancer risk in 1,000 African American prostate cancer cases and 991 controls. The top associated SNP in African Americans, rs148371593, was examined in an additional 3,465 prostate cancer cases and 3,425 controls of non-African American ancestry-European Americans, Japanese Americans, Latinos, and Native Hawaiians. The overall association of 334 IGF1 SNPs and prostate cancer risk was assessed using logistic kernel-machine methods. The association between each SNP and prostate cancer risk was evaluated through unconditional logistic regression. A false discovery rate threshold of q < 0.1 was used to determine statistical significance of associations. We identified 8 novel IGF1 SNPs. The cumulative effect of the 334 IGF1 SNPs was not associated with prostate cancer risk (P = 0.13) in African Americans. Twenty SNPs were nominally associated with prostate cancer at P < 0.05. The top associated SNP among African Americans, rs148371593 [minor allele frequency (MAF) = 0.03; P = 0.0014; q > 0.1], did not reach our criterion of statistical significance. This polymorphism was rare in non-African Americans (MAF < 0.003) and was not associated with prostate cancer risk (P = 0.98). Our findings do not support the role of IGF1 variants and prostate cancer risk among African Americans. (C) 2014 AACR. C1 [Giorgi, Elena E.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87544 USA. [Stram, Daniel O.; Schumacher, Fredrick; Haiman, Christopher A.; Henderson, Brian E.] Univ So Calif, Keck Sch Med, Norris Comprehens Canc Ctr, Dept Prevent Med, Los Angeles, CA 90033 USA. [Taverna, Darin; Duggan, David] Translat Genom Res Inst, Div Genet Basis Human Dis, Phoenix, AZ USA. [Turner, Stephen D.] Univ Virginia, Sch Med, Charlottesville, VA 22908 USA. [Lum-Jones, Annette; Tirikainen, Maarit; Caberto, Christian; Le Marchand, Loic] Univ Hawaii, Ctr Canc, Program Epidemiol, Honolulu, HI 96822 USA. [Cheng, Iona] Canc Prevent Inst Calif, Fremont, CA USA. [Taverna, Darin] Syst Imaginat Inc, Phoenix, AZ USA. RP Giorgi, EE (reprint author), Los Alamos Natl Lab, MS K710, Los Alamos, NM 87544 USA. EM egiorgi@lanl.gov FU Jim Valvano Foundation for Cancer Research; Center for Nonlinear Studies, LANL, through Laboratory Directed Research and Development (LDRD) funds [201110434DR] FX This work was supported by the V Scholar Award (I. Cheng) from the Jim Valvano Foundation for Cancer Research. E.E. Giorgi is supported by the Center for Nonlinear Studies, LANL, through Laboratory Directed Research and Development (LDRD) funds, number 201110434DR. NR 18 TC 2 Z9 2 U1 0 U2 2 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 1055-9965 EI 1538-7755 J9 CANCER EPIDEM BIOMAR JI Cancer Epidemiol. Biomarkers Prev. PD SEP PY 2014 VL 23 IS 9 BP 1928 EP 1932 DI 10.1158/1055-9965.EPI-14-0333 PG 5 WC Oncology; Public, Environmental & Occupational Health SC Oncology; Public, Environmental & Occupational Health GA AT9XC UT WOS:000345276100022 PM 24904019 ER PT J AU Williams, IN Torn, MS Riley, WJ Wehner, MF AF Williams, I. N. Torn, M. S. Riley, W. J. Wehner, M. F. TI Impacts of climate extremes on gross primary production under global warming SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE ecosystem carbon; water stress; climate impacts; climate extremes; soil moisture ID CARBON-CYCLE; DROUGHT; TEMPERATURE; VARIABILITY; REDUCTION; CMIP5; RAIN; PROJECTIONS; ENSEMBLE; FORESTS AB The impacts of historical droughts and heat-waves on ecosystems are often considered indicative of future global warming impacts, under the assumption that water stress sets in above a fixed high temperature threshold. Historical and future (RCP8.5) Earth system model (ESM) climate projections were analyzed in this study to illustrate changes in the temperatures for onset of water stress under global warming. The ESMs examined here predict sharp declines in gross primary production (GPP) at warm temperature extremes in historical climates, similar to the observed correlations between GPP and temperature during historical heat-waves and droughts. However, soil moisture increases at the warm end of the temperature range, and the temperature at which soil moisture declines with temperature shifts to a higher temperature. The temperature for onset of water stress thus increases under global warming and is associated with a shift in the temperature for maximum GPP to warmer temperatures. Despite the shift in this local temperature optimum, the impacts of warm extremes on GPP are approximately invariant when extremes are defined relative to the optimal temperature within each climate period. The GPP sensitivity to these relative temperature extremes therefore remains similar between future and present climates, suggesting that the heat- and drought-induced GPP reductions seen recently can be expected to be similar in the future, and may be underestimates of future impacts given model projections of increased frequency and persistence of heat-waves and droughts. The local temperature optimum can be understood as the temperature at which the combination of water stress and light limitations is minimized, and this concept gives insights into how GPP responds to climate extremes in both historical and future climate periods. Both cold (temperature and light-limited) and warm (water-limited) relative temperature extremes become more persistent in future climate projections, and the time taken to return to locally optimal climates for GPP following climate extremes increases by more than 25% over many land regions. C1 [Williams, I. N.; Torn, M. S.; Riley, W. J.] Natl Lab, Climate Sci Dept, Div Earth Sci, Berkeley, CA 94720 USA. [Wehner, M. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Williams, IN (reprint author), Natl Lab, Climate Sci Dept, Div Earth Sci, Berkeley, CA 94720 USA. EM inwilliams@lbl.gov RI Williams, Ian/G-3256-2015; Riley, William/D-3345-2015; Torn, Margaret/D-2305-2015 OI Williams, Ian/0000-0003-0355-1310; Riley, William/0000-0002-4615-2304; FU Office of Science, Office of Biological and Environmental Research of the US Department of Energy, Atmospheric System Research and Regional and Global Climate Modeling (RGCM) Programs [DE-AC02-05CH11231] FX This research was supported by the Director, Office of Science, Office of Biological and Environmental Research of the US Department of Energy under Contract No. DE-AC02-05CH11231 as part of the Atmospheric System Research and Regional and Global Climate Modeling (RGCM) Programs. We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in table S1 of this paper) for producing and making available their model output. For CMIP the US Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. NR 39 TC 7 Z9 7 U1 5 U2 40 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD SEP PY 2014 VL 9 IS 9 AR 094011 DI 10.1088/1748-9326/9/9/094011 PG 10 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA AT5DK UT WOS:000344963500016 ER PT J AU Goldstein, J De Pascuale, S Kletzing, C Kurth, W Genestreti, KJ Skoug, RM Larsen, BA Kistler, LM Mouikis, C Spence, H AF Goldstein, J. De Pascuale, S. Kletzing, C. Kurth, W. Genestreti, K. J. Skoug, R. M. Larsen, B. A. Kistler, L. M. Mouikis, C. Spence, H. TI Simulation of Van Allen Probes plasmapause encounters SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID MAGNETOSPHERIC ELECTRIC-FIELDS; PLASMASPHERIC DRAINAGE PLUMES; EXTREME-ULTRAVIOLET IMAGER; RELATIVISTIC ELECTRONS; ART.; DYNAMICS; BELT; STORM; EVOLUTION; CLUSTER AB We use an E x B-driven plasmapause test particle (PTP) simulation to provide global contextual information for in situ measurements by the Van Allen Probes (Radiation Belt Storm Probes (RBSP)) during 15-20 January 2013. During 120 h of simulation time beginning on 15 January, geomagnetic activity produced three plumes. The third and largest simulated plume formed during enhanced convection on 17 January, and survived as a rotating, wrapped, residual plume for tens of hours. To validate the simulation, we compare its output with RBSP data. Virtual RBSP satellites recorded 28 virtual plasmapause encounters during 15-19 January. For 26 of 28 (92%) virtual crossings, there were corresponding actual RBSP encounters with plasmapause density gradients. The mean difference in encounter time between model and data is 36 min. The mean model-data difference in radial location is 0.40 +/- 0.05 R-E. The model-data agreement is better for strong convection than for quiet or weakly disturbed conditions. On 18 January, both RBSP spacecraft crossed a tenuous, detached plasma feature at approximately the same time and nightside location as a wrapped residual plume, predicted by the model to have formed 32 h earlier on 17 January. The agreement between simulation and data indicates that the model-provided global information is adequate to correctly interpret the RBSP density observations. C1 [Goldstein, J.; Genestreti, K. J.] SW Res Inst, Space Sci & Engn Div, San Antonio, TX 78284 USA. [Goldstein, J.; Genestreti, K. J.] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX USA. [De Pascuale, S.; Kletzing, C.; Kurth, W.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Skoug, R. M.; Larsen, B. A.] Los Alamos Natl Lab, Los Alamos, NM USA. [Kistler, L. M.; Mouikis, C.; Spence, H.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. RP Goldstein, J (reprint author), SW Res Inst, Space Sci & Engn Div, San Antonio, TX 78284 USA. EM jgoldstein@swri.edu RI Larsen, Brian/A-7822-2011; OI Larsen, Brian/0000-0003-4515-0208; De Pascuale, Sebastian/0000-0001-7142-0246; Kletzing, Craig/0000-0002-4136-3348; Kurth, William/0000-0002-5471-6202 FU NASA Van Allen Probes mission's RBSP-ECT project; NASA Heliophysics Guest Investigator program [NNX07AG48G]; NSF Geospace Environment Modeling program [ATM0902591] FX This work was supported by the NASA Van Allen Probes mission's RBSP-ECT project, the NASA Heliophysics Guest Investigator program under NNX07AG48G, and the NSF Geospace Environment Modeling program under ATM0902591. OMNI 5 min data, provided by J.H. King, N. Patatashvilli at AdnetSystems, NASA GSFC, and CDAWeb, were derived from ACE data provided by N. Ness at Bartol Research Institute and D.J. McComas at Southwest Research Institute. NR 65 TC 16 Z9 16 U1 1 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD SEP PY 2014 VL 119 IS 9 DI 10.1002/2014JA020252 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AT3BN UT WOS:000344810200031 ER PT J AU Simms, LE Pilipenko, V Engebretson, MJ Reeves, GD Smith, AJ Clilverd, M AF Simms, Laura E. Pilipenko, Viacheslav Engebretson, Mark J. Reeves, Geoffrey D. Smith, A. J. Clilverd, Mark TI Prediction of relativistic electron flux at geostationary orbit following storms: Multiple regression analysis SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID RADIATION-BELT ELECTRONS; VAN ALLEN PROBES; SOLAR-WIND; GEOSYNCHRONOUS ORBIT; MAGNETIC STORMS; ULF WAVES; ENERGETIC ELECTRONS; GEOMAGNETIC STORMS; CHORUS WAVES; ACCELERATION AB Many solar wind and magnetosphere parameters correlate with relativistic electron flux following storms. These include relativistic electron flux before the storm; seed electron flux; solar wind velocity and number density (and their variation); interplanetary magnetic field B-z, AE and Kp indices; and ultra low frequency (ULF) and very low frequency (VLF) wave power. However, as all these variables are intercorrelated, we use multiple regression analyses to determine which are the most predictive of flux when other variables are controlled. Using 219 storms (1992-2002), we obtained hourly averaged electron fluxes for outer radiation belt relativistic electrons (>1.5 MeV) and seed electrons (100 keV) from Los Alamos National Laboratory spacecraft (geosynchronous orbit). For each storm, we found the log(10) maximum relativistic electron flux 48-120 h after the end of the main phase of each storm. Each predictor variable was averaged over the 12 h before the storm, the main phase, and the 48 h following minimum Dst. High levels of flux following storms are best modeled by a set of variables. In decreasing influence, ULF, seed electron flux, Vsw and its variation, and after-storm B-z were the most significant explanatory variables. Kp can be added to the model, but it adds no further explanatory power. Although we included ground-based VLF power from Halley, Antarctica, it shows little predictive ability. We produced predictive models using the coefficients from the regression models and assessed their effectiveness in predicting novel observations. The correlation between observed values and those predicted by these empirical models ranged from 0.645 to 0.795. C1 [Simms, Laura E.; Engebretson, Mark J.] Augsburg Coll, Dept Phys, Minneapolis, MN 55454 USA. [Pilipenko, Viacheslav] Russian Acad Sci, Inst Phys Earth, Moscow, Russia. [Reeves, Geoffrey D.] Los Alamos Natl Lab, Los Alamos, NM USA. [Smith, A. J.] VLF ELF Radio Res Inst, Bradwell, England. [Clilverd, Mark] British Antarctic Survey, Cambridge CB3 0ET, England. RP Simms, LE (reprint author), Augsburg Coll, Dept Phys, Minneapolis, MN 55454 USA. EM simmsl@augsburg.edu RI Reeves, Geoffrey/E-8101-2011 OI Reeves, Geoffrey/0000-0002-7985-8098 FU National Science Foundation [ATM-0827903] FX Relativistic electron and seed electron flux data were obtained from Los Alamos National Laboratory (LANL) geosynchronous energetic particle instruments (contact G.D. Reeves). Satellite and ground-based ULF indices are available at http://virbo.org/Augsburg/ULF and Halley VLF VELOX data at http://bsauasc.nerc-bas.ac.uk:8080/similar to pdata/velox_summary/. Bz, V, N, P, sigma V, sigma N, and Kp, Dst, and AE indices are available from Goddard Space Flight Center Space Physics Data Facility at the OMNIWeb data website (httpi/omniweb.gsfc.nasa.gov/html/ow_data.html). We thank the referees for their helpful comments. This work was supported by National Science Foundation grant ATM-0827903 to Augsburg College. NR 63 TC 5 Z9 5 U1 0 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD SEP PY 2014 VL 119 IS 9 DI 10.1002/2014JA019955 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AT3BN UT WOS:000344810200021 ER PT J AU Zheng, LH Chan, AA Albert, JM Elkington, SR Koller, J Horne, RB Glauert, SA Meredith, NP AF Zheng, Liheng Chan, Anthony A. Albert, Jay M. Elkington, Scot R. Koller, Josef Horne, Richard B. Glauert, Sarah A. Meredith, Nigel P. TI Three-dimensional stochastic modeling of radiation belts in adiabatic invariant coordinates SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID PART I IMPLICIT; NUMERICAL-SIMULATION; RELATIVISTIC ELECTRONS; SEMIIMPLICIT SCHEMES; DIFFUSION TENSOR; PITCH-ANGLE; RESONANT INTERACTION; GEOMAGNETIC STORMS; DYNAMICS; MAGNETOSPHERE AB A 3-D model for solving the radiation belt diffusion equation in adiabatic invariant coordinates has been developed and tested. The model, named Radbelt Electron Model, obtains a probabilistic solution by solving a set of Ito stochastic differential equations that are mathematically equivalent to the diffusion equation. This method is capable of solving diffusion equations with a full 3-D diffusion tensor, including the radial-local cross diffusion components. The correct form of the boundary condition at equatorial pitch angle alpha(0) = 90 degrees is also derived. The model is applied to a simulation of the October 2002 storm event. At alpha(0) near 90 degrees, our results are quantitatively consistent with GPS observations of phase space density (PSD) increases, suggesting dominance of radial diffusion; at smaller alpha(0), the observed PSD increases are overestimated by the model, possibly due to the alpha(0)-independent radial diffusion coefficients, or to insufficient electron loss in the model, or both. Statistical analysis of the stochastic processes provides further insights into the diffusion processes, showing distinctive electron source distributions with and without local acceleration. C1 [Zheng, Liheng; Chan, Anthony A.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Albert, Jay M.] Air Force Res Lab, Space Vehicles Directorate, Albuquerque, NM USA. [Elkington, Scot R.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Koller, Josef] Los Alamos Natl Lab, Los Alamos, NM USA. [Horne, Richard B.; Glauert, Sarah A.; Meredith, Nigel P.] British Antarctic Survey, Nat Environm Res Council, Cambridge CB3 0ET, England. RP Zheng, LH (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. EM zhengliheng@rice.edu OI Albert, Jay/0000-0001-9494-7630; Horne, Richard/0000-0002-0412-6407; Meredith, Nigel/0000-0001-5032-3463 FU National Aeronautics and Space Administration through the Science Mission Directorate [NNX11AJ38G, NNX10AL02G] FX This material is based upon work supported by the National Aeronautics and Space Administration under grants NNX11AJ38G and NNX10AL02G issued through the Science Mission Directorate. We gratefully acknowledge Los Alamos National Lab for providing phase space density data and Air Force Research Lab and British Antarctic Survey for supplying chorus wave diffusion coefficients. Liheng Zheng wishes to thank Xin Tao for valuable discussions about the SDE method. NR 64 TC 7 Z9 7 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD SEP PY 2014 VL 119 IS 9 DI 10.1002/2014JA020127 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AT3BN UT WOS:000344810200041 ER PT J AU Calafiore, G Koshelev, A Dhuey, S Goltsov, A Sasorov, P Babin, S Yankov, V Cabrini, S Peroz, C AF Calafiore, Giuseppe Koshelev, Alexander Dhuey, Scott Goltsov, Alexander Sasorov, Pavel Babin, Sergey Yankov, Vladimir Cabrini, Stefano Peroz, Christophe TI Holographic planar lightwave circuit for on-chip spectroscopy SO LIGHT-SCIENCE & APPLICATIONS LA English DT Article DE digital planar holograms; integrated optics; nanofabrication; nanophotonics; spectrometer ID WAVE-GUIDES; OPTICAL SPECTROMETER; MICROSPECTROMETER; RESONATORS; DEVICES AB Computer-generated planar holograms are a powerful approach for designing planar lightwave circuits with unique properties. Digital planar holograms in particular can encode any optical transfer function with high customizability and is compatible with semiconductor lithography techniques and nanoimprint lithography. Here, we demonstrate that the integration of multiple holograms on a single device increases the overall spectral range of the spectrometer and offsets any performance decrement resulting from miniaturization. The validation of a high-resolution spectrometer-on-chip based on digital planar holograms shows performance comparable with that of a macrospectrometer. While maintaining the total device footprint below 2 cm(2), the newly developed spectrometer achieved a spectral resolution of 0.15 nm in the red and near infrared range, over a 148 nm spectral range and 926 channels. This approach lays the groundwork for future on-chip spectroscopy and lab-on-chip sensing. C1 [Calafiore, Giuseppe; Babin, Sergey; Peroz, Christophe] aBeam Technol, Hayward, CA 94541 USA. [Calafiore, Giuseppe] Polytech Univ Turin, I-10129 Turin, Italy. [Koshelev, Alexander; Goltsov, Alexander; Sasorov, Pavel; Yankov, Vladimir] Nanoopt Devices, Santa Clara, CA 95054 USA. [Koshelev, Alexander] Moscow Inst Phys & Technol, Moscow 141700, Russia. [Dhuey, Scott; Cabrini, Stefano] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Peroz, C (reprint author), aBeam Technol, Castro Valley, CA 94546 USA. EM cp@abeamtech.com RI Foundry, Molecular/G-9968-2014 FU Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy [DEAC02-05CH11231]; Air Force Office of Scientific Research, Air Force Material Command, USAF [FA9550-12-C-0077] FX The authors would like to thank Professor J Bokor, Professor FC Pirri, Dr A Schwartzberg, Dr B Brough, Dr D Olynick and Dr I Ivonin for their useful discussions. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy under contract DEAC02-05CH11231. This study is supported by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant/contract FA9550-12-C-0077. NR 40 TC 10 Z9 10 U1 2 U2 15 PU CHINESE ACAD SCIENCES, CHANGCHUN INST OPTICS FINE MECHANICS AND PHYSICS PI CHANGCHUN PA 3888, DONGNANHU ROAD, CHANGCHUN, 130033, PEOPLES R CHINA SN 2047-7538 J9 LIGHT-SCI APPL JI Light-Sci. Appl. PD SEP PY 2014 VL 3 AR e203 DI 10.1038/lsa.2014.84 PG 7 WC Optics SC Optics GA AT8MO UT WOS:000345187500001 ER PT J AU Kring, D Boslough, M AF Kring, David Boslough, Mark TI Chelyabinsk: Portrait of an asteroid airburst SO PHYSICS TODAY LA English DT Article ID IMPACT EVENT; HAZARD; EARTH C1 [Kring, David] Lunar & Planetary Inst, Houston, TX 77058 USA. [Kring, David] LPI, Ctr Lunar Sci & Explorat, Houston, TX USA. [Boslough, Mark] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Kring, D (reprint author), Lunar & Planetary Inst, 3303 NASA Rd 1, Houston, TX 77058 USA. NR 15 TC 0 Z9 0 U1 4 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 EI 1945-0699 J9 PHYS TODAY JI Phys. Today PD SEP PY 2014 VL 67 IS 9 BP 32 EP 37 DI 10.1063/PT.3.2515 PG 6 WC Physics, Multidisciplinary SC Physics GA AT5BL UT WOS:000344958600017 ER PT J AU Li, H Wheeler, JC AF Li, Hui Wheeler, J. Craig TI Stirling Auchincloss Colgate obituary SO PHYSICS TODAY LA English DT Biographical-Item C1 [Li, Hui] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Wheeler, J. Craig] Univ Texas Austin, Austin, TX 78712 USA. RP Li, H (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 EI 1945-0699 J9 PHYS TODAY JI Phys. Today PD SEP PY 2014 VL 67 IS 9 BP 54 EP 54 DI 10.1063/PT.3.2523 PG 1 WC Physics, Multidisciplinary SC Physics GA AT5BL UT WOS:000344958600019 ER PT J AU Cheng, BL Castor, J Stone, J AF Cheng, Baolian Castor, John Stone, James TI Dimitri Manuel Mihalas Obituary SO PHYSICS TODAY LA English DT Biographical-Item C1 [Cheng, Baolian] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Castor, John] Lawrence Livermore Natl Lab, Livermore, CA USA. [Stone, James] Princeton Univ, Princeton, NJ 08544 USA. RP Cheng, BL (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA. NR 3 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 EI 1945-0699 J9 PHYS TODAY JI Phys. Today PD SEP PY 2014 VL 67 IS 9 BP 55 EP 55 DI 10.1063/PT.3.2524 PG 1 WC Physics, Multidisciplinary SC Physics GA AT5BL UT WOS:000344958600020 ER PT J AU Hack, JJ Papka, ME AF Hack, James J. Papka, Michael E. TI Advances in Leadership Computing INTRODUCTION SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Editorial Material C1 [Hack, James J.] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. [Papka, Michael E.] No Illinois Univ, Argonne Natl Lab, De Kalb, IL 60115 USA. RP Hack, JJ (reprint author), Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. EM jhack@ornl.gov; papka@anl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 EI 1558-366X J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD SEP-OCT PY 2014 VL 16 IS 5 BP 10 EP 12 PG 3 WC Computer Science, Interdisciplinary Applications SC Computer Science GA AP7ST UT WOS:000342277700002 ER PT J AU Teixeira, J Waliser, D Ferraro, R Gleckler, P Lee, T Potter, G AF Teixeira, Joao Waliser, Duane Ferraro, Robert Gleckler, Peter Lee, Tsengdar Potter, Gerald TI Satellite Observations for CMIP5 The Genesis of Obs4MIPs SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Editorial Material C1 [Teixeira, Joao; Waliser, Duane; Ferraro, Robert] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gleckler, Peter] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA USA. [Lee, Tsengdar] NASA HQ, Washington, DC USA. [Potter, Gerald] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Teixeira, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM joao.teixeira@jpl.nasa.gov NR 8 TC 17 Z9 17 U1 0 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD SEP PY 2014 VL 95 IS 9 BP 1329 EP 1334 DI 10.1175/BAMS-D-12-00204.1 PG 6 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AS7MY UT WOS:000344441200007 ER PT J AU Olive, KA Agashe, K Amsler, C Antonelli, M Arguin, JF Asner, DM Baer, H Band, HR Barnett, RM Basaglia, T Bauer, CW Beatty, JJ Belousov, VI Beringer, J Bernardi, G Bethke, S Bichsel, H Biebel, O Blucher, E Blusk, S Brooijmans, G Buchmueller, O Burkert, V Bychkov, MA Cahn, RN Carena, M Ceccucci, A Cerri, A Chakraborty, D Chen, MC Chivukula, RS Copic, K Cowan, G Dahl, O D'Ambrosio, G Damour, T de Florian, D de Gouvea, A DeGrand, T de Jong, P Dissertori, G Dobrescu, BA Doser, M Drees, M Dreiner, HK Edwards, DA Eidelman, S Erler, J Ezhela, VV Fetscher, W Fields, BD Foster, B Freitas, A Gaisser, TK Gallagher, H Garren, L Gerber, HJ Gerbier, G Gershon, T Gherghetta, T Golwala, S Goodman, M Grab, C Gritsan, AV Grojean, C Groom, DE Grunewald, M Gurtu, A Gutsche, T Haber, HE Hagiwara, K Hanhart, C Hashimoto, S Hayato, Y Hayes, KG Heffner, M Heltsley, B Hernandez-Rey, JJ Hikasa, K Hocker, A Holder, J Holtkamp, A Huston, J Jackson, JD Johnson, KF Junk, T Kado, M Karlen, D Katz, UF Klein, SR Klempt, E Kowalewski, RV Krauss, F Kreps, M Krusche, B Kuyanov, YV Kwon, Y Lahav, O Laiho, J Langacker, P Liddle, A Ligeti, Z Lin, CJ Liss, TM Littenberg, L Lugovsky, KS Lugovsky, SB Maltoni, F Mannel, T Manohar, AV Marciano, WJ Martin, AD Masoni, A Matthews, J Milstead, D Molaro, P Monig, K Moortgat, F Mortonson, MJ Murayama, H Nakamura, K Narain, M Nason, P Navas, S Neubert, M Nevski, P Nir, Y Pape, L Parsons, J Patrignani, C Peacock, JA Pennington, M Petcov, ST Piepke, A Pomarol, A Quadt, A Raby, S Rademacker, J Raffelt, G Ratcliff, BN Richardson, P Ringwald, A Roesler, S Rolli, S Romaniouk, A Rosenberg, LJ Rosner, JL Rybka, G Achrajda, CT Sakai, Y Salam, GP Sarkar, S Sauli, F Schneider, O Scholberg, K Scott, D Sharma, V Sharpe, SR Silari, M Sjostrand, T Skands, P Smith, JG Smoot, GF Spanier, S Spieler, H Spiering, C Stah, A Stanev, T Stone, SL Sumiyoshi, T Sphers, MJ Takahashi, F Tanabashi, M Terning, J Tiator, L Titov, M Tkachenko, NP Tornqvist, NA Tovey, D Valencia, G Venanzoni, G Vincter, MG Vogel, P Vogt, A Wakely, SP Walkowiak, W Walter, CW Ward, DR Weiglein, G Weinberg, DH Weinberg, EJ White, M Wiencke, LR Woh, CC Wofenstein, L Womersley, J Woody, CL Workman, RL Yamamoto, A Yao, WM Zeller, GP Zenin, OV Zhang, J Zhu, RY Zimmermann, F Zyla, PA Harper, G Lugovsky, VS Schaffner, P AF Olive, K. A. Agashe, K. Amsler, C. Antonelli, M. Arguin, J. -F. Asner, D. M. Baer, H. Band, H. R. Barnett, R. M. Basaglia, T. Bauer, C. W. Beatty, J. J. Belousov, V. I. Beringer, J. Bernardi, G. Bethke, S. Bichsel, H. Biebel, O. Blucher, E. Blusk, S. Brooijmans, G. Buchmueller, O. Burkert, V. Bychkov, M. A. Cahn, R. N. Carena, M. Ceccucci, A. Cerri, A. Chakraborty, D. Chen, M. -C. Chivukula, R. S. Copic, K. Cowan, G. Dahl, O. D'Ambrosio, G. Damour, T. de Florian, D. de Gouvea, A. DeGrand, T. de Jong, P. Dissertori, G. Dobrescu, B. A. Doser, M. Drees, M. Dreiner, H. K. Edwards, D. A. Eidelman, S. Erler, J. Ezhela, V. V. Fetscher, W. Fields, B. D. Foster, B. Freitas, A. Gaisser, T. K. Gallagher, H. Garren, L. Gerber, H. -J. Gerbier, G. Gershon, T. Gherghetta, T. Golwala, S. Goodman, M. Grab, C. Gritsan, A. V. Grojean, C. Groom, D. E. Grunewald, M. Gurtu, A. Gutsche, T. Haber, H. E. Hagiwara, K. Hanhart, C. Hashimoto, S. Hayato, Y. Hayes, K. G. Heffner, M. Heltsley, B. Hernandez-Rey, J. J. Hikasa, K. Hoecker, A. Holder, J. Holtkamp, A. Huston, J. Jackson, J. D. Johnson, K. F. Junk, T. Kado, M. Karlen, D. Katz, U. F. Klein, S. R. Klempt, E. Kowalewski, R. V. Krauss, F. Kreps, M. Krusche, B. Kuyanov, Yu. V. Kwon, Y. Lahav, O. Laiho, J. Langacker, P. Liddle, A. Ligeti, Z. Lin, C. -J. Liss, T. M. Littenberg, L. Lugovsky, K. S. Lugovsky, S. B. Maltoni, F. Mannel, T. Manohar, A. V. Marciano, W. J. Martin, A. D. Masoni, A. Matthews, J. Milstead, D. Molaro, P. Moenig, K. Moortgat, F. Mortonson, M. J. Murayama, H. Nakamura, K. Narain, M. Nason, P. Navas, S. Neubert, M. Nevski, P. Nir, Y. Pape, L. Parsons, J. Patrignani, C. Peacock, J. A. Pennington, M. Petcov, S. T. Piepke, A. Pomarol, A. Quadt, A. Raby, S. Rademacker, J. Raffelt, G. Ratcliff, B. N. Richardson, P. Ringwald, A. Roesler, S. Rolli, S. Romaniouk, A. Rosenberg, L. J. Rosner, J. L. Rybka, G. Achrajda, C. T. Sakai, Y. Salam, G. P. Sarkar, S. Sauli, F. Schneider, O. Scholberg, K. Scott, D. Sharma, V. Sharpe, S. R. Silari, M. Sjostrand, T. Skands, P. Smith, J. G. Smoot, G. F. Spanier, S. Spieler, H. Spiering, C. Stah, A. Stanev, T. Stone, S. L. Sumiyoshi, T. Sphers, M. J. Takahashi, F. Tanabashi, M. Terning, J. Tiator, L. Titov, M. Tkachenko, N. P. Tornqvist, N. A. Tovey, D. Valencia, G. Venanzoni, G. Vincter, M. G. Vogel, P. Vogt, A. Wakely, S. P. Walkowiak, W. Walter, C. W. Ward, D. R. Weiglein, G. Weinberg, D. H. Weinberg, E. J. White, M. Wiencke, L. R. Woh, C. C. Wofenstein, L. Womersley, J. Woody, C. L. Workman, R. L. Yamamoto, A. Yao, W. -M. Zeller, G. P. Zenin, O. V. Zhang, J. Zhu, R. -Y. Zimmermann, F. Zyla, P. A. Harper, G. Lugovsky, V. S. Schaffner, P. CA Particle Data Grp TI REVIEW OF PARTICLE PHYSICS Particle Data Group SO CHINESE PHYSICS C LA English DT Review ID DEEP-INELASTIC-SCATTERING; SUPERSYMMETRIC STANDARD MODEL; HIGGS-BOSON PRODUCTION; TO-LEADING-ORDER; GRAND UNIFIED THEORIES; HADRONIC-Z-DECAYS; ELECTROWEAK SYMMETRY-BREAKING; ANOMALOUS MAGNETIC-MOMENT; DOUBLE-BETA-DECAY; CHIRAL PERTURBATION-THEORY AB The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,283 new measurements from 899 Japers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as heavy neutrinos, supersymmetric and technicolor particles, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Supersymmetry, Extra Dimensions, Particle Detectors, Probability, and Statistics. Among the 112 reviews are many that are new or heavily revised including those on: Dark Energy, Higgs Boson Physics, Electroweak Model, Neutrino Cross Section Measurements, Monte Carlo Neutrino Generators, Top Quark, Dark Matter, Dynamical Electroweak Symmetry Breaking, Accelerator Physics of Colliders, High-Energy Collider Parameters, Big Bang Nucleosynthesis, Astrophysical Constants and Cosmological Parameters. C1 [Olive, K. A.; Gherghetta, T.] Univ Minnesota, Sch Phys & Astron, 116 Church St SE, Minneapolis, MN 55455 USA. [Agashe, K.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Amsler, C.] Univ Bern, Albert Einstein Ctr Fundamental Phys, CH-3012 Bern, Switzerland. [Antonelli, M.; Venanzoni, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Rome, Italy. [Arguin, J. -F.] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada. [Asner, D. M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Baer, H.] Univ Oklahoma, Dept Phys & Astron, Norman, OK 73019 USA. [Band, H. R.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Barnett, R. M.; Bauer, C. W.; Beringer, J.; Cahn, R. N.; Copic, K.; Dahl, O.; Groom, D. E.; Haber, H. E.; Jackson, J. D.; Ligeti, Z.; Lin, C. -J.; Mortonson, M. J.; Murayama, H.; Smoot, G. F.; Spieler, H.; White, M.; Woh, C. C.; Yao, W. -M.; Zyla, P. A.; Harper, G.; Schaffner, P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Phys, Berkeley, CA 94720 USA. [Basaglia, T.; Ceccucci, A.; Doser, M.; Gurtu, A.; Hoecker, A.; Holtkamp, A.; Kado, M.; Moortgat, F.; Roesler, S.; Salam, G. P.; Sauli, F.; Silari, M.; Skands, P.; Zimmermann, F.] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland. [Beatty, J. J.; Raby, S.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Belousov, V. I.; Ezhela, V. V.; Kuyanov, Yu. V.; Lugovsky, K. S.; Lugovsky, S. B.; Tkachenko, N. P.; Zenin, O. V.; Lugovsky, V. S.] Inst High Energy Phys, COMPAS Grp, RU-142284 Protvino, Russia. [Bernardi, G.] CNRS, IN2P3, LPNHE, F-75252 Paris, France. [Bernardi, G.] Univ Paris 06, F-75252 Paris, France. [Bernardi, G.] Univ Paris 07, F-75252 Paris, France. [Bethke, S.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Bichsel, H.; Rosenberg, L. J.; Rybka, G.; Sharpe, S. R.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Biebel, O.] Univ Munich, Fak Phys, D-80799 Munich, Germany. [Blucher, E.; Carena, M.; Rosner, J. L.; Wakely, S. P.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Blucher, E.; Carena, M.; Rosner, J. L.; Wakely, S. P.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Blusk, S.; Laiho, J.; Stone, S. L.] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA. [Brooijmans, G.; Parsons, J.; Weinberg, E. J.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Buchmueller, O.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, High Energy Phys Grp, London SW7 2AZ, England. [Burkert, V.; Pennington, M.] Jefferson Lab, Newport News, VA 23606 USA. [Bychkov, M. A.] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. [Carena, M.; Ceccucci, A.; Cerri, A.; Dobrescu, B. A.; Garren, L.; Junk, T.; Zeller, G. P.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carena, M.; Wakely, S. P.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Cerri, A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Chakraborty, D.] Univ Illinois, Dept Phys, De Kalb, IL 60115 USA. [Chen, M. -C.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Chivukula, R. S.; Huston, J.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Cowan, G.] Univ London, Dept Phys, Egham TW20 0EX, Surrey, England. [D'Ambrosio, G.] Complesso Univ Monte St Angelo, INFN Sez Napoli, I-80126 Naples, Italy. [Damour, T.] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France. [de Florian, D.] Univ Buenos Aires, Dept Fis, FCEyN, RA-1428 Buenos Aires, DF, Argentina. [de Gouvea, A.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [DeGrand, T.; Smith, J. G.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [de Jong, P.; Dissertori, G.] NIKHEF H, NL-1009 DB Amsterdam, Netherlands. [Fetscher, W.; Gerber, H. -J.; Grab, C.; Pape, L.] ETH, Inst Particle Phys, CH-8093 Zurich, Switzerland. [Drees, M.; Dreiner, H. K.] Univ Bonn, Phys Inst, D-53115 Bonn, Germany. [Edwards, D. A.; Foster, B.; Ringwald, A.; Weiglein, G.] Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany. [Eidelman, S.] SB RAS, Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Eidelman, S.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Erler, J.] Univ Nacl Autonoma Mexico, Inst Fis, Dept Fis Teor, Mexico City 04510, DF, Mexico. [Erler, J.; Tiator, L.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Fields, B. D.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Fields, B. D.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Foster, B.] Univ Hamburg, D-22607 Hamburg, Germany. [Foster, B.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Freitas, A.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Gaisser, T. K.; Holder, J.; Stanev, T.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Gallagher, H.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Gerbier, G.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Gershon, T.; Kreps, M.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Golwala, S.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Goodman, M.] Argonne Natl Lab, Argonne, IL 60439 USA. [Gritsan, A. V.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Grojean, C.] Inst Fis Altes Energies, Inst Catalana Recerca & Estudis Avancats, E-08193 Bellaterra, Barcelona, Spain. [Grunewald, M.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Grunewald, M.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Gurtu, A.] TIFR, Bombay, Maharashtra, India. [Gutsche, T.] Univ Tubingen, Inst Theoret Phys, D-72076 Tubingen, Germany. [Haber, H. E.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Hagiwara, K.; Hashimoto, S.; Nakamura, K.; Sakai, Y.; Yamamoto, A.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Hanhart, C.] Forschungszentrum Julich, Inst Kernphys, D-52425 Julich, Germany. [Hayato, Y.] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany. [Hayato, Y.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Hayes, K. G.] Hillsdale Coll, Dept Phys, Hillsdale, MI 49242 USA. [Heffner, M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Heltsley, B.] Cornell Univ, Elementary Particle Sci Lab, Ithaca, NY 14853 USA. [Hernandez-Rey, J. J.] Univ Valencia CSIC, IFIC Inst Fis Corpuscular, E-46071 Valencia, Spain. [Hikasa, K.; Takahashi, F.] Tohoku Univ, Dept Phys, Aoba Ku, Sendai, Miyagi 9808578, Japan. [Holder, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Johnson, K. F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kado, M.] CNRS, IN2P3, LAL, F-91898 Orsay, France. [Kado, M.] Univ Paris 11, F-91898 Orsay, France. [Karlen, D.; Kowalewski, R. V.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Katz, U. F.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Klein, S. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Klempt, E.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, Bonn, Germany. [Krauss, F.; Martin, A. D.; Richardson, P.] Univ Durham, Inst Particle Phys Phenomenol, Dept Phys, Durham DH1 3LE, England. [Krusche, B.] Univ Basel, Inst Phys, CH-4056 Basel, Switzerland. [Kwon, Y.] Yonsei Univ, Dept Phys, Seoul 120749, South Korea. [Lahav, O.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Langacker, P.] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA. [Liddle, A.; Peacock, J. A.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Liss, T. M.] CUNY City Coll, Div Sci, New York, NY 10031 USA. [Littenberg, L.; Marciano, W. J.; Nevski, P.; Woody, C. L.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Maltoni, F.] Catholic Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol CP3, B-1348 Louvain, Belgium. [Mannel, T.; Walkowiak, W.] Univ Siegen, Dept Phys, D-57068 Siegen, Germany. [Manohar, A. V.; Sharma, V.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Masoni, A.] INFN Sez Cagliari, I-09042 Monserrato, CA, Italy. [Matthews, J.] Louisana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. Stockholms Univ, AlbaNova Univ Ctr, Fysikum, SE-10691 Stockholm, Sweden. [Molaro, P.] INAF OATS, I-34143 Trieste, Italy. [Moenig, K.; Spiering, C.] DESY, D-15735 Zeuthen, Germany. [Mortonson, M. J.] Univ Calif Berkeley, SSL, Berkeley, CA 94720 USA. [Murayama, H.; Nakamura, K.; Petcov, S. T.] Univ Tokyo, Todai Inst Adv Study, Kavli IPMU WPI, Kashiwa, Chiba 2778583, Japan. [Murayama, H.; Smoot, G. F.; White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Narain, M.] Brown Univ, Dept Phys, Providence, RI 02912 USA. [Nason, P.] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20126 Milan, Italy. [Navas, S.] Univ Granada, Dpto Fis Teor & Cosmos, E-18071 Granada, Spain. [Navas, S.] Univ Granada, CAFPE, E-18071 Granada, Spain. [Neubert, M.] Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, D-55099 Mainz, Germany. [Neubert, M.] Johannes Gutenberg Univ Mainz, Mainz Inst Theoret Phys, D-55099 Mainz, Germany. [Nir, Y.] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-7610001 Rehovot, Israel. [Patrignani, C.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Patrignani, C.] Univ Genoa, Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Petcov, S. T.] SISSA INFN, I-34136 Trieste Ts, Italy. [Petcov, S. T.] Bulgarian Acad Sci, INRNE, BU-1784 Sofia, Bulgaria. [Piepke, A.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Pomarol, A.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Quadt, A.] Univ Gottingen, Phys Inst 2, D-37077 Gottingen, Germany. [Rademacker, J.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Raffelt, G.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Ratcliff, B. N.] SLAG Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Rolli, S.] US DOE, Washington, DC 20585 USA. [Romaniouk, A.] Natl Res Nucl Univ MEPhI, Moscow Engn Phys Inst, Moscow 115409, Russia. [Achrajda, C. T.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Sarkar, S.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England. [Sarkar, S.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Schneider, O.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Scholberg, K.; Walter, C. W.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Sjostrand, T.] Lund Univ, Dept Astron & Theoret Phys, S-22362 Lund, Sweden. [Skands, P.] Monash Univ, Sch Phys, Melbourne, Vic 3800, Australia. [Smoot, G. F.] Univ Paris Diderot, Univ Sorbonne Paris Cite, APC CNRS, Paris Ctr Cosmol Phys, F-75013 Paris, France. [Spanier, S.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Stah, A.] Rhein Westfal TH Aachen, Phys Inst 3, Phys Zentrum, D-52056 Aachen, Germany. [Sumiyoshi, T.] Tokyo Metropolitan Univ, High Energy Phys Lab, Tokyo 1920397, Japan. [Sphers, M. J.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Tanabashi, M.] Nagoya Univ, Kobayashi Maskawa Inst, Chikusa Ku, Nagoya, Aichi 4640028, Japan. [Terning, J.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Titov, M.] CEA Saclay, F-91191 Gif Sur Yvette, France. [Tornqvist, N. A.] Univ Helsinki, Dept Phys, FIN-00014 Helsinki, Finland. [Tovey, D.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Valencia, G.] Iowa State Univ, Dept Phys, Ames, IA 50011 USA. [Vincter, M. G.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Vogel, P.] CALTECH, Kellogg Radiat Lab 106 38, Pasadena, CA 91125 USA. [Vogt, A.] Univ Liverpool, Div Theoret Phys, Dept Math Sci, Liverpool L69 3BX, Merseyside, England. [Ward, D. R.] Cavendish Lab, Cambridge CB3 OHE, England. [Weinberg, D. H.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Weinberg, D. H.] Ohio State Univ, CCAPP, Columbus, OH 43210 USA. [Wiencke, L. R.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Wofenstein, L.] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Womersley, J.] STFC Rutherfprd Appleton Lab, Didcot OX11 0QX, Oxon, England. [Workman, R. L.] George Washington Univ, Dept Phys, Ashburn, VA 20147 USA. [Zhang, J.] Chinese Acad Sci, IHEP, Beijing 100049, Peoples R China. [Zhu, R. -Y.] CALTECH, Pasadena, CA 91125 USA. RP Olive, KA (reprint author), Univ Minnesota, Sch Phys & Astron, 116 Church St SE, Minneapolis, MN 55455 USA. RI Patrignani, Claudia/C-5223-2009; Chivukula, R. Sekhar/C-3367-2012; Waxler, Bob/E-3414-2015; Katz, Uli/E-1925-2013; White, Martin/I-3880-2015; de Florian, Daniel/B-6902-2011; Hernandez-Rey, Juan Jose/N-5955-2014; Navas, Sergio/N-4649-2014; Beatty, James/D-9310-2011; EPFL, Physics/O-6514-2016; Sarkar, Subir/G-5978-2011 OI Patrignani, Claudia/0000-0002-5882-1747; Chivukula, R. Sekhar/0000-0002-4142-1077; Katz, Uli/0000-0002-7063-4418; White, Martin/0000-0001-9912-5070; de Florian, Daniel/0000-0002-3724-0695; Hernandez-Rey, Juan Jose/0000-0002-1527-7200; Navas, Sergio/0000-0003-1688-5758; Beatty, James/0000-0003-0481-4952; Sarkar, Subir/0000-0002-3542-858X FU Office of Science, Office of High Energy Physics of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. National Science Foundation [PHY-0652989]; European Laboratory for Particle Physics (CERN); government of Japan (MEXT: Ministry of Education, Culture, Sports, Science and Technology); government of Japan United States (DOE) on cooperative research and development; Italian National Institute of Nuclear Physics (INFN) FX The publication of the Review of Particle Physics is supported by the Director, Office of Science, Office of High Energy Physics of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231; by the U.S. National Science Foundation under Agreement No. PHY-0652989; by the European Laboratory for Particle Physics (CERN); by an implementing arrangement between the governments of Japan (MEXT: Ministry of Education, Culture, Sports, Science and Technology) and the United States (DOE) on cooperative research and development; and by the Italian National Institute of Nuclear Physics (INFN). NR 7176 TC 3812 Z9 3854 U1 110 U2 527 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1674-1137 J9 CHINESE PHYS C JI Chin. Phys. C PD SEP PY 2014 VL 38 IS 9 AR UNSP 090001 DI 10.1088/1674-1137/38/9/090001 PG 1658 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AS2UY UT WOS:000344135900001 ER PT J AU Gerhardt, L Velez, JCD Klein, SR AF Gerhardt, Lisa Diaz Velez, Juan Carlos Klein, Spencer R. TI Adventures in Antarctic Computing, or How I Learned to Stop Worrying and Love the Neutrino SO COMPUTER LA English DT Article ID ICECUBE AB IceCube-a neutrino telescope that encompasses a cubic kilometer of Antarctic ice at the South Pole, collecting and processing data from 5,160 optical sensors buried a mile deep in the icecap-presents considerable challenges, from overcoming power and bandwidth limitations to simulating the complexities of Antarctic ice, which continue to stretch computing technology. C1 [Gerhardt, Lisa] Lawrence Berkeley Natl Lab, Natl Energy Res Sci Comp Ctr NERSC, Berkeley, CA 94720 USA. [Diaz Velez, Juan Carlos] Univ Wisconsin Madison, Wisconsin IceCube Particle & Astrophys Ctr, Madison, WI USA. [Klein, Spencer R.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Klein, Spencer R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Gerhardt, L (reprint author), Lawrence Berkeley Natl Lab, Natl Energy Res Sci Comp Ctr NERSC, Berkeley, CA 94720 USA. EM lgerhardt@lbl.gov; juancarlos.diazvelez@icecube.wisc.edu; srklein@lbl.gov FU National Science Foundation [1307472]; Department of Energy [DE-AC-76SF00098] FX This work was supported in part by the National Science Foundation under grant 1307472 and the Department of Energy under contract number DE-AC-76SF00098. NR 7 TC 0 Z9 0 U1 0 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0018-9162 EI 1558-0814 J9 COMPUTER JI Computer PD SEP PY 2014 VL 47 IS 9 BP 56 EP 61 PG 6 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering SC Computer Science GA AS8CO UT WOS:000344478100022 ER PT J AU Bielicki, JK Hafiane, A Azhar, S Johansson, J Bittner, S Tabassum, J Genest, J AF Bielicki, J. K. Hafiane, A. Azhar, S. Johansson, J. Bittner, S. Tabassum, J. Genest, J. TI The ABCA1 agonist CS-6253 generates functional nascent HDL particles resulting in efficient cholesterol SR-BI delivery to hepatic cells and shows macrophage specific cholesterol mobilization and ather SO EUROPEAN HEART JOURNAL LA English DT Meeting Abstract CT Congress of the European-Society-of-Cardiology (ESC) CY AUG 30-SEP 03, 2014 CL Barcelona, SPAIN SP European Soc Cardiol C1 [Bielicki, J. K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Donner Lab, Berkeley, CA 94720 USA. [Hafiane, A.; Genest, J.] McGill Univ, Div Cardiol, Cardiovasc Genet Lab, Montreal, PQ, Canada. [Azhar, S.; Bittner, S.; Tabassum, J.] Stanford Univ, VA PAIRE, Geriatr Res Educ & Clin Ctr, Palo Alto, CA 94304 USA. [Johansson, J.] ARTERY Therapeut Inc, San Ramon, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0195-668X EI 1522-9645 J9 EUR HEART J JI Eur. Heart J. PD SEP 1 PY 2014 VL 35 SU 1 MA P2106 BP 371 EP 371 PG 1 WC Cardiac & Cardiovascular Systems SC Cardiovascular System & Cardiology GA AQ7MG UT WOS:000343001302170 ER PT J AU Micheletti, R Pezzuto, I Sheta, R Nemir, M Gonzales, C Blow, M May, D Pennacchio, L Ounzain, S Pedrazzini, T AF Micheletti, R. Pezzuto, I. Sheta, R. Nemir, M. Gonzales, C. Blow, M. May, D. Pennacchio, L. Ounzain, S. Pedrazzini, T. TI Functional importance of cardiac enhancer-associated noncoding RNAs during cardiac development and disease SO EUROPEAN HEART JOURNAL LA English DT Meeting Abstract CT Congress of the European-Society-of-Cardiology (ESC) CY AUG 30-SEP 03, 2014 CL Barcelona, SPAIN SP European Soc Cardiol C1 [Micheletti, R.; Pezzuto, I.; Sheta, R.; Nemir, M.; Gonzales, C.; Ounzain, S.; Pedrazzini, T.] Univ Hosp Ctr Vaudois CHUV, Dept Med, Lausanne, Switzerland. [Blow, M.; May, D.; Pennacchio, L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0195-668X EI 1522-9645 J9 EUR HEART J JI Eur. Heart J. PD SEP 1 PY 2014 VL 35 SU 1 MA 4083 BP 716 EP 716 PG 1 WC Cardiac & Cardiovascular Systems SC Cardiovascular System & Cardiology GA AQ7MG UT WOS:000343001304248 ER PT J AU Zhang, W Krishnan, KM AF Zhang, Wei Krishnan, Kannan M. TI Epitaxial patterning of thin-films: conventional lithographies and beyond SO JOURNAL OF MICROMECHANICS AND MICROENGINEERING LA English DT Review DE epitaxial patterning; magnetic thin films; nanoimprint lithography; nanomagnetism ID ATOMIC-FORCE MICROSCOPY; ELECTRON-BEAM LITHOGRAPHY; PULSED-LASER DEPOSITION; SCANNING PROBE LITHOGRAPHY; SELF-ASSEMBLED MONOLAYERS; UV-NANOIMPRINT LITHOGRAPHY; TIP-INDUCED ANODIZATION; MOLYBDENUM LIFT-OFF; LOCAL-OXIDATION; NANODOT ARRAYS AB Thin-film based novel magnetic and electronic devices have entered a new era in which the film crystallography, structural coherence, and epitaxy play important roles in determining their functional properties. The capabilities of controlling such structural and functional properties are being continuously developed by various physical deposition technologies. Epitaxial patterning strategies further allow the miniaturization of such novel devices, which incorporates thin-film components into nanoscale architectures while keeping their functional properties unmodified from their ideal single-crystal values. In the past decade, epitaxial patterning methods on the laboratory scale have been reported to meet distinct scientific inquires, in which the techniques and processes used differ from one to the other. In this review we summarize many of these pioneering endeavors in epitaxial patterning of thin-film devices that use both conventional and novel lithography techniques. These methods demonstrate epitaxial patterning for a broad range of materials (metals, oxides, and semiconductors) and cover common device length scales from micrometer to sub-hundred nanometer. Whilst we have been motivated by magnetic materials and devices, we present our outlook on developing systematic-strategies for epitaxial patterning of functional materials which will pave the road for the design, discovery and industrialization of next-generation advanced magnetic and electronic nano-devices. C1 [Zhang, Wei; Krishnan, Kannan M.] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. RP Zhang, W (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM zwei@anl.gov; kannanmk@uw.edu RI Zhang, Wei/G-1523-2012; Foundry, Molecular/G-9968-2014 OI Zhang, Wei/0000-0002-5878-3090; FU NSF-DMR [1063489] FX WZ is very grateful for the early mentorship on lithography from Dr Dirk Weiss. WZ would like to thank Dr Weilun Chao and Dr Deirdre Olynick for their hospitality during his stay at the Molecular Foundry, Berkeley. We thank Professor Karl Bohringer, Dr Yufeng Hou and Zheng Li for insightful discussions. This work was supported by NSF-DMR under grant #1063489. We also acknowledge use of the UW Microfabrication Facility, a member of the National Nanotechnology Infrastructure Network. NR 140 TC 9 Z9 9 U1 2 U2 38 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0960-1317 EI 1361-6439 J9 J MICROMECH MICROENG JI J. Micromech. Microeng. PD SEP PY 2014 VL 24 IS 9 AR 093001 DI 10.1088/0960-1317/24/9/093001 PG 23 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Applied SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA AS8TT UT WOS:000344521600001 ER PT J AU Tsao, JY Crawford, MH Coltrin, ME Fischer, AJ Koleske, DD Subramania, GS Wang, GT Wierer, JJ Karlicek, RF AF Tsao, Jeffrey Y. Crawford, Mary H. Coltrin, Michael E. Fischer, Arthur J. Koleske, Daniel D. Subramania, Ganapathi S. Wang, G. T. Wierer, Jonathan J. Karlicek, Robert F., Jr. TI Toward Smart and Ultra-efficient Solid-State Lighting SO ADVANCED OPTICAL MATERIALS LA English DT Article ID VAPOR-PHASE EPITAXY; INGAN QUANTUM-WELLS; EMITTING-DIODES; NANOWIRE HETEROSTRUCTURES; CRYSTALLINE-QUALITY; PHOTONIC CRYSTALS; THERMAL-STABILITY; GAN LAYERS; COLOR; TEMPERATURE AB Solid-state lighting has made tremendous progress this past decade, with the potential to make much more progress over the coming decade. In this article, the current status of solid-state lighting relative to its ultimate potential to be "smart" and ultra-efficient is reviewed. Smart, ultra-efficient solid-state lighting would enable both very high "effective" efficiencies and potentially large increases in human performance. To achieve ultra-efficiency, phosphors must give way to multi-color semiconductor electroluminescence: some of the technological challenges associated with such electroluminescence at the semiconductor level are reviewed. To achieve smartness, additional characteristics such as control of light flux and spectra in time and space will be important: some of the technological challenges associated with achieving these characteristics at the lamp level are also reviewed. It is important to emphasise that smart and ultra-efficient are not either/or, and few compromises need to be made between them. The ultimate route to ultra-efficiency brings with it the potential for smartness, the ultimate route to smartness brings with it the potential for ultra-efficiency, and the long-term ultimate route to both might well be color-mixed RYGB lasers. C1 [Tsao, Jeffrey Y.; Crawford, Mary H.; Coltrin, Michael E.; Fischer, Arthur J.; Koleske, Daniel D.; Subramania, Ganapathi S.; Wang, G. T.; Wierer, Jonathan J.] Sandia Natl Labs, Energy Frontier Res Ctr Solid State Lighting Sci, POB 5800, Albuquerque, NM 87185 USA. [Karlicek, Robert F., Jr.] Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, Smart Lighting Engn Res Ctr, Troy, NY 12181 USA. RP Tsao, JY (reprint author), Sandia Natl Labs, Energy Frontier Res Ctr Solid State Lighting Sci, POB 5800, Albuquerque, NM 87185 USA. EM jytsao@sandia.gov RI Wierer, Jonathan/G-1594-2013 OI Wierer, Jonathan/0000-0001-6971-4835 FU Sandia's Solid-State-Lighting Science Energy Frontier Research Center - U.S. Department of Energy, Office of Basic Energy Sciences; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; National Science Foundation [EEC-0812056]; New York State under NYSTAR [C090145] FX Work at Sandia National Laboratories was supported by Sandia's Solid-State-Lighting Science Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Basic Energy Sciences. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Work at Rensselaer Polytechnic Institute was performed at the Smart Lighting Engineering Research Center and was supported by the National Science Foundation under cooperative agreement EEC-0812056 and by New York State under NYSTAR contract C090145. NR 173 TC 58 Z9 58 U1 8 U2 66 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 2195-1071 J9 ADV OPT MATER JI Adv. Opt. Mater. PD SEP PY 2014 VL 2 IS 9 BP 809 EP 836 DI 10.1002/adom.201400131 PG 28 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA AS3IX UT WOS:000344171800001 ER PT J AU Rosado, PJ Faulkner, D Sullivan, DP Levinson, R AF Rosado, Pablo J. Faulkner, David Sullivan, Douglas P. Levinson, Ronnen TI Measured temperature reductions and energy savings from a cool tile roof on a central California home SO ENERGY AND BUILDINGS LA English DT Article DE Cool roof; Energy savings; Solar reflectance; Thermal mass; Above-sheathing ventilation; Residential building; Temperature reduction; Ceiling heat flow; Asphalt shingle; Concrete tile ID SOLAR REFLECTANCE; HEAT-ISLAND; MITIGATION; BUILDINGS; COMFORT AB To assess cool-roof benefits, the temperatures, heat flows, and energy uses in two similar single-family, single-story homes built side by side in Fresno, California were measured for a year. The "cool" house had a reflective cool concrete tile roof (initial albedo 0.51) with above-sheathing ventilation, and nearly twice the thermal capacitance of the standard dark asphalt shingle roof (initial albedo 0.07) on the "standard" house. Cool-roof energy savings in the cooling and heating seasons were computed two ways. Method A divides by HVAC efficiency the difference (standard cool) in ceiling + duct heat gain. Method B measures the difference in HVAC energy use, corrected for differences in plug and window heat gains. Based on the more conservative Method B, annual cooling (compressor + fan), heating fuel, and heating fan site energy savings per unit ceiling area were 2.82 kWh/m(2) (26%), 1.13 kWh/m(2) (4%), and 0.0294 kWh/m(2) (3%), respectively. Annual space conditioning (heating + cooling) source energy savings were 10.7 kWh/m(2) (15%); annual energy cost savings were $0.886/m(2) (20%). Annual conditioning CO2, NOx, and SO2 emission reductions were 1.63 kg/m(2) (15%), 0.621 g/m(2) (10%), and 0.0462 g/m(2) (22%). Peak-hour cooling power demand reduction was 0.88 W/m(2) (37%). (C) 2014 Elsevier B.V. All rights reserved. C1 [Rosado, Pablo J.; Faulkner, David; Sullivan, Douglas P.; Levinson, Ronnen] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Levinson, R (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM RML27@cornell.edu FU California Energy Commission (CEC) through its Public Interest Energy Research Program (PIER); Office of Building Technology, State, and Community Programs, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the California Energy Commission (CEC) through its Public Interest Energy Research Program (PIER). It was also supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State, and Community Programs, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We wish to thank Michael Spears, Woody Delp, and Charlie Curcija (Lawrence Berkeley National Laboratory); Victor Gonzalez, Tony Seaton, Terry Anderson, Darius Assemi, Mike Bergeron, and Karl Gosswiller (Granville Homes Inc.); Ming Shiao and Richard Snyder (CertainTeed Corp.); Annette Sindar and Greg Peterson (Eagle Roofing Products); Danny Parker (Florida Solar Energy Center); and Hashem Akbari (Concordia University). NR 47 TC 10 Z9 11 U1 1 U2 9 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD SEP PY 2014 VL 80 BP 57 EP 71 DI 10.1016/j.enbuild.2014.04.024 PG 15 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA AS0DU UT WOS:000343949400007 ER PT J AU Mills, E Bourassa, NJ Rainer, LI Homan, G Merket, N Parker, D Dickey, G Glickman, J AF Mills, Evan Bourassa, Norman J. Rainer, Leo I. Homan, Gregory Merket, Noel Parker, Danny Dickey, Glenn Glickman, Joan TI Asset rating with the home energy scoring tool SO ENERGY AND BUILDINGS LA English DT Article DE Residential; Home rating; Validation AB In 2010, as one of many energy initiatives within a broader economic stimulus program, the U.S. Department of Energy (DOE) and Lawrence Berkeley National Laboratory (LBNL) initiated development of a new web-based computer tool and method for providing an energy rating of existing single-family homes. The resulting Home Energy Scoring Tool is a key component of the DOE's Home Energy Score Program for residential building energy labeling, a voluntary national asset rating method that employs a simplified and standardized energy assessment process. The tool-development component of the program has been designed to support the energy audit marketplace by providing a substantially lower-cost, entry-level assessment method analogous to the fuel-economy ratings associated with vehicles. Averaged over a well-characterized sample of homes, the Home Energy Scoring tool is accurate to within 1% of mean weather-normalized energy bills (with 82% of homes having an absolute error of 25% or less), significantly better than two other popular methods known as SIMPLE and REM/Rate. This article presents technical details of the Home Energy Scoring Tool, and how it has evolved over time, including the calculation methodology, accuracy validation, and the web services feature that allows any qualified third-party software developer to integrate the methodology into their own web-based applications and market delivery strategy. As of April 2014, approximately 200 individuals had been qualified to deliver the assessments and had rated 10,600 homes in cooperation with 23 partner organizations across the United States. (C) 2014 Elsevier B.V. All rights reserved. C1 [Mills, Evan; Bourassa, Norman J.; Rainer, Leo I.; Homan, Gregory] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Merket, Noel] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Parker, Danny] Florida Solar Energy Ctr, Cocoa, FL 32922 USA. [Dickey, Glenn] SRA Int, Rockville, MD 20852 USA. [Glickman, Joan] US DOE, Washington, DC 20585 USA. RP Mills, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM EMills@lbl.gov; NJbourassa@lbl.gov; LIRainer@lbl.gov; GKHoman@lbl.gov; Noel.Merket@nrel.gov; dparker@fsec.ucf.edu; Glenn_Dickey@sra.com; Joan.Glickman@ee.doe.gov FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy and the Building Technologies Program, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The Home Energy Saver and Home Energy Scoring Tool core team also includes software engineers from Bighead Technologies. Helpful comments were provided by Lain Walker and two anonymous reviewers. NR 25 TC 5 Z9 5 U1 2 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD SEP PY 2014 VL 80 BP 441 EP 450 DI 10.1016/j.enbuild.2014.05.044 PG 10 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA AS0DU UT WOS:000343949400042 ER PT J AU Goldstein, K Blasnik, M Heaney, M Polly, B Christensen, C Norford, L AF Goldstein, Kate Blasnik, Michael Heaney, Michael Polly, Ben Christensen, Craig Norford, Les TI Developing a pre-retrofit energy consumption metric to model post-retrofit energy savings: Phase one of a three-phase research initiative SO ENERGY AND BUILDINGS LA English DT Article DE Single family residential; Energy efficiency; Data; Retrofit; Utility programs ID PRISM AB This paper details the process and results from the first step of a three-step research process. This first step looks to identify the most predictive pre-retrofit metric of energy consumption to utilize in a model to predict the energy savings post retrofit. The ultimate goal of this research is to predict candidacy for retrofit using only a combination of demographic and home-characteristics data that is available for the entirety of the U.S. residential housing stock. This is important, as utility data is almost always protected for privacy and thus unavailable to assist in targeting where energy efficiency retrofits will be successful. It is found that the best metric is the simplest, total energy consumption divided by total floor area. In addition to evaluating which pre-use metric is most indicative of post retrofit savings, the paper evaluates the endogenous component of pre-use to post use and a potential method to alleviate this endogeneity. The research finds that by removing the year that is used to calculate the savings as the baseline pre-use year removes a portion of the endogeneity. It is also found that one year before the savings base year is the best year to utilize as the base. (C) 2014 Elsevier B.V. All rights reserved. C1 [Goldstein, Kate; Norford, Les] MIT, Cambridge, MA 02139 USA. [Blasnik, Michael] Michael Blasnik & Associates, Roslindale, MA 02131 USA. [Heaney, Michael; Polly, Ben; Christensen, Craig] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Heaney, M (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Michael.Heaney@nrel.gov NR 6 TC 2 Z9 2 U1 1 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD SEP PY 2014 VL 80 BP 556 EP 561 DI 10.1016/j.enbuild.2014.03.068 PG 6 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA AS0DU UT WOS:000343949400052 ER PT J AU Johnston, S Zaunbrecher, K Ahrenkiel, R Kuciauskas, D Albin, D Metzger, W AF Johnston, Steve Zaunbrecher, Katherine Ahrenkiel, Richard Kuciauskas, Darius Albin, David Metzger, Wyatt TI Simultaneous Measurement of Minority-Carrier Lifetime in Single-Crystal CdTe Using Three Transient Decay Techniques SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Cadmium compounds; charge carrier lifetime; infrared detectors; microwave bands; photoconductivity; photoluminescence; photovoltaic cells; tellurium ID SEMICONDUCTORS; DEPENDENCE; ABSORPTION AB Minority-carrier lifetimes have simultaneously been measured on a single-crystal CdTe sample using three transient decay techniques. These measurements are microwave-reflection photoconductive decay (mu-PCD), time-resolved photoluminescence (TRPL), and transient free-carrier absorption (TFCA). The sample is a 0.8-mm-thick single-crystal CdTe sample from JX Nippon Mining & Metals USA, Inc., which is nominally undoped but has a hole concentration of about 2 - 3 x 10(14) cm(-3). Excess carriers are generated using a Nd:YAG laser with similar to 5-ns pulses, and lifetimes are measured at room temperature. Using 532-nm excitation, the decay curves show an initial short-lifetime component, as carriers are generated near the unpassivated front surface. While TRPL shows a short lifetime of similar to 7 ns, both mu-PCD and TFCA have relatively long single-exponential decays after the initial 100 ns response. These decay times, which are more dominated by the bulk lifetime after the initial surface recombination, are similar to 190 ns for both mu-PCD and TFCA. Simultaneous measurements using two-photon (1064 nm) excitation show bulk-dominated recombination for all three techniques. Lifetimes for both mu-PCD and TFCA are 270 ns, while the TRPL lifetime, which still shows some surface-limited initial decay, is 160 ns. C1 [Johnston, Steve; Zaunbrecher, Katherine; Ahrenkiel, Richard; Kuciauskas, Darius; Albin, David; Metzger, Wyatt] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Zaunbrecher, Katherine] Colorado State Univ, Ft Collins, CO 80523 USA. [Ahrenkiel, Richard] Lakewood Semicond, Lakewood, CO 80232 USA. RP Johnston, S (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM steve.johnston@nrel.gov; katherine.zaunbrecher@nrel.gov; colodick@me.com; darius.kuciauskas@nrel.gov; David.albin@nrel.gov; wyatt.metzger@nrel.gov FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory, in part by the Non-Proprietary Partnering Program; American Recovery and Reinvestment Act FX This work was supported by the U.S. Department of Energy under Contract DE-AC36-08-GO28308 with the National Renewable Energy Laboratory, in part by the Non-Proprietary Partnering Program, and by the American Recovery and Reinvestment Act. NR 19 TC 6 Z9 6 U1 2 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD SEP PY 2014 VL 4 IS 5 BP 1295 EP 1300 DI 10.1109/JPHOTOV.2014.2339491 PG 6 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA AS9DD UT WOS:000344542500017 ER PT J AU Lei, HM Huang, MY Leung, LR Yang, DW Shi, XY Mao, JF Hayes, DJ Schwalm, CR Wei, YX Liu, SS AF Lei, Huimin Huang, Maoyi Leung, L. Ruby Yang, Dawen Shi, Xiaoying Mao, Jiafu Hayes, Daniel J. Schwalm, Christopher R. Wei, Yaxing Liu, Shishi TI Sensitivity of global terrestrial gross primary production to hydrologic states simulated by the Community Land Model using two runoff parameterizations SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS LA English DT Article ID GENERAL-CIRCULATION MODELS; SURFACE SCHEME; CLIMATE MODELS; PART I; CARBON; WATER; TRANSFERABILITY; PROJECT; BASINS; FLOW AB Soil moisture plays an important role in the coupled water, energy, and carbon cycles. In addition to surface processes such as evapotranspiration, the boundary fluxes that influence soil moisture are closely related to surface or subsurface runoff. To elucidate how uncertainties in representing surface and subsurface hydrology may influence simulations of the carbon cycle, numerical experiments were performed using version 4 of the Community Land Model with two widely adopted runoff generation parameterizations from the TOPMODEL and Variable Infiltration Capacity (VIC) model under the same protocol. The results showed that differences in the runoff generation schemes caused a relative difference of 36% and 34% in global mean total runoff and soil moisture, respectively, with substantial differences in their spatial distribution and seasonal variability. Changes in the simulated gross primary production (GPP) were found to correlate well with changes in soil moisture through its effects on leaf photosynthesis (A(n)) and leaf area index (LAI), which are the two dominant components determining GPP. Soil temperature, which is influenced by soil moisture, also affects LAI and GPP for the seasonal-deciduous and stress-deciduous plant functional types that dominate in cold regions. Consequently, the simulated global mean GPP differs by 20.4% as a result of differences in soil moisture and soil temperature simulated between the two models. Our study highlights the significant interactions among the water, energy, and carbon cycles and the need for reducing uncertainty in the hydrologic parameterization of land surface models to better constrain carbon cycle modeling. C1 [Lei, Huimin; Yang, Dawen] Tsinghua Univ, Dept Hydraul Engn, Beijing 100084, Peoples R China. [Lei, Huimin; Huang, Maoyi; Leung, L. Ruby] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Shi, Xiaoying; Mao, Jiafu; Hayes, Daniel J.; Wei, Yaxing; Liu, Shishi] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA. [Shi, Xiaoying; Mao, Jiafu; Hayes, Daniel J.; Wei, Yaxing; Liu, Shishi] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Schwalm, Christopher R.] No Arizona Univ, Sch Earth Sci & Environm Sustainabil, Flagstaff, AZ 86011 USA. RP Huang, MY (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. EM maoyi.huang@pnnl.gov RI Huang, Maoyi/I-8599-2012; Lei, Huimin/H-9596-2015; Mao, Jiafu/B-9689-2012 OI Huang, Maoyi/0000-0001-9154-9485; Lei, Huimin/0000-0002-1175-2334; Mao, Jiafu/0000-0002-2050-7373 FU Office of Science of the U.S. Department of Energy; National Aeronautics and Space Administration (NASA) [NNX11AO08A, NNH10AN68I]; DOE's Office of Biological and Environmental Research; BATTELLE Memorial Institute [DE-AC05-76RLO1830]; UT-BATTELLE for DOE [DE-AC05-00OR22725]; National Natural Science Funds for Distinguished Young Scholar [51025931]; National Natural Science Foundation of China [51209117, 51139002] FX This study was supported by the Office of Science of the U.S. Department of Energy through the Earth System Modeling program, and in part by National Aeronautics and Space Administration (NASA) under grants NNX11AO08A and NNH10AN68I as a contribution to the North American Carbon Program. CLM4VIC simulations were performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. PNNL is operated for the US DOE by BATTELLE Memorial Institute under contract DE-AC05-76RLO1830. The MsTMIP CLM4 simulations were supported by the US Department of Energy (DOE), Office of Science, Biological, and Environmental Research. Oak Ridge National Laboratory is managed by UT-BATTELLE for DOE under contract DE-AC05-00OR22725. Huimin Lei was funded by the National Natural Science Funds for Distinguished Young Scholar (Project 51025931) and the National Natural Science Foundation of China (Projects 51209117 and 51139002) during his visit at PNNL. We thank Hongyi Li and Nathalie Voisin for their suggestions and comments. NR 80 TC 8 Z9 8 U1 6 U2 26 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD SEP PY 2014 VL 6 IS 3 BP 658 EP 679 DI 10.1002/2013MS000252 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AS6QP UT WOS:000344387900011 ER PT J AU Wang, MH Liu, XH Zhang, K Comstock, JM AF Wang, Minghuai Liu, Xiaohong Zhang, Kai Comstock, Jennifer M. TI Aerosol effects on cirrus through ice nucleation in the Community Atmosphere Model CAM5 with a statistical cirrus scheme SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS LA English DT Article ID TROPICAL TROPOPAUSE LAYER; MESOSCALE TEMPERATURE-FLUCTUATIONS; STRATIFORM CLOUD MICROPHYSICS; GLOBAL CLIMATE MODEL; RELATIVE-HUMIDITY; UPPER TROPOSPHERE; VERSION-3 CAM3; PART I; NUCLEI; PARAMETERIZATION AB A statistical cirrus scheme that tracks ice saturation ratio in the clear-sky and cloudy portion of a grid box separately has been implemented into the Community Atmosphere Model CAM5 to provide a consistent treatment of ice nucleation and cloud formation. Simulated ice supersaturation and ice crystal number concentrations strongly depend on the number concentrations of heterogeneous ice nuclei (IN), subgrid temperature formulas, and the number concentration of sulfate particles participating in homogeneous freezing, while simulated ice water content is insensitive to these perturbations. Allowing 1-10% of dust particles to serve as heterogeneous IN is found to produce ice supersaturation in better agreement with observations. Introducing a subgrid temperature perturbation based on long-term aircraft observations produces a better hemispheric contrast in ice supersaturation compared to observations. Heterogeneous IN from dust particles alter the net radiative fluxes at the top of atmosphere (TOA) (-0.24 to -1.59 W m(-2)) with a significant clear-sky longwave component (0.01 to -0.55 W m(-2)). Different cirrus treatments significantly perturb the net TOA anthropogenic aerosol forcing from -1.21 W m(-2) to -1.54 W m(-2), with a standard deviation of 0.10 W m(-2). Aerosol effects on cirrus exert an even larger impact on the atmospheric component of the radiative fluxes (2 or 3 times the changes in the TOA radiative fluxes) and therefore through the fast atmosphere response on the hydrological cycle. This points to the urgent need to quantify aerosol effects on cirrus through ice nucleation and how these further affect the hydrological cycle. C1 [Wang, Minghuai; Liu, Xiaohong; Zhang, Kai; Comstock, Jennifer M.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Liu, Xiaohong] Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA. RP Wang, MH (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. EM Minghuai.Wang@pnnl.gov RI Wang, Minghuai/E-5390-2011; Liu, Xiaohong/E-9304-2011; Zhang, Kai/F-8415-2010 OI Wang, Minghuai/0000-0002-9179-228X; Liu, Xiaohong/0000-0002-3994-5955; Zhang, Kai/0000-0003-0457-6368 FU DOE Atmospheric System Research (ASR) Program; Battelle Memorial Institute [DE-AC06-76RLO 1830] FX This study was supported by the DOE Atmospheric System Research (ASR) Program. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. We are grateful to Anna Luebke for providing IWC observational data used in Figures 6 and 7. We are also grateful to Larry Berg and Heng Xiao for their constructive comments. All model output is stored on a local linux cluster at the Pacific Northwest National Laboratory and is available upon request. NR 74 TC 10 Z9 10 U1 2 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD SEP PY 2014 VL 6 IS 3 BP 756 EP 776 DI 10.1002/2014MS000339 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AS6QP UT WOS:000344387900016 ER PT J AU Guo, Z Wang, MH Qian, Y Larson, VE Ghan, S Ovchinnikov, M Bogenschutz, PA Zhao, C Lin, G Zhou, TJ AF Guo, Zhun Wang, Minghuai Qian, Yun Larson, Vincent E. Ghan, Steven Ovchinnikov, Mikhail Bogenschutz, Peter A. Zhao, Chun Lin, Guang Zhou, Tianjun TI A sensitivity analysis of cloud properties to CLUBB parameters in the single-column Community Atmosphere Model (SCAM5) SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS LA English DT Article ID PROBABILITY DENSITY-FUNCTIONS; BOUNDARY-LAYER CLOUDS; PDF-BASED MODEL; UNCERTAINTY QUANTIFICATION; CLIMATE SIMULATIONS; SHALLOW CUMULUS; PART II; CONVECTION; MICROPHYSICS; IMPACT AB In this study, we investigate the sensitivity of simulated shallow cumulus and stratocumulus to selected tunable parameters of Cloud Layers Unified by Binormals (CLUBB) in the single-column version of Community Atmosphere Model version 5 (SCAM5). A quasi-Monte Carlo (QMC) sampling approach is adopted to effectively explore the high-dimensional parameter space and a generalized linear model is adopted to study the responses of simulated cloud fields to tunable parameters. One stratocumulus and two shallow cumulus cases are configured at both coarse and fine vertical resolutions in this study. Our results show that most of the variance in simulated cloud fields can be explained by a small number of tunable parameters. The parameters related to Newtonian and buoyancy-damping terms of total water flux are found to be the most influential parameters for stratocumulus. For shallow cumulus, the most influential parameters are those related to skewness of vertical velocity, reflecting the strong coupling between cloud properties and dynamics in this regime. The influential parameters in the stratocumulus case are sensitive to the vertical resolution while little sensitivity is found for the shallow cumulus cases, as eddy mixing length (or dissipation time scale) plays a more important role and depends more strongly on the vertical resolution in stratocumulus than in shallow convections. The influential parameters remain almost unchanged when the number of tunable parameters increases from 16 to 35. This study improves understanding of the CLUBB behavior associated with parameter uncertainties and provides valuable insights for other high-order turbulence closure schemes. C1 [Guo, Zhun; Wang, Minghuai; Qian, Yun; Ghan, Steven; Ovchinnikov, Mikhail; Zhao, Chun; Lin, Guang] Pacific NW Natl Lab, Atmosphere Sci & Global Change Div, Richland, WA 99352 USA. [Guo, Zhun; Zhou, Tianjun] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing, Peoples R China. [Guo, Zhun; Zhou, Tianjun] Chinese Acad Sci, Climate Change Res Ctr, Beijing, Peoples R China. [Larson, Vincent E.] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53201 USA. [Bogenschutz, Peter A.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. RP Wang, MH (reprint author), Pacific NW Natl Lab, Atmosphere Sci & Global Change Div, Richland, WA 99352 USA. EM Zhun.Guo@pnnl.gov; Minghuai.Wang@pnnl.gov RI qian, yun/E-1845-2011; Wang, Minghuai/E-5390-2011; Zhao, Chun/A-2581-2012; Ghan, Steven/H-4301-2011; ZHOU, Tianjun/C-3195-2012 OI Wang, Minghuai/0000-0002-9179-228X; Zhao, Chun/0000-0003-4693-7213; Ghan, Steven/0000-0001-8355-8699; ZHOU, Tianjun/0000-0002-5829-7279 FU U.S. Department of Energy's Office of Science through Advanced Computing Program; Battelle Memorial Institute [DE-AC05-76RL01830]; Office of Science (BER), U.S. Department of Energy [DE-SC0008323]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This study was supported by the U.S. Department of Energy's Office of Science as part of the Scientific Discoveries through Advanced Computing Program. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. V. Larson gratefully acknowledges support from the Office of Science (BER), U.S. Department of Energy, Grant DE-SC0008323. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. All SCAM5 results are stored on a local PNNL cluster and are available upon request. NR 37 TC 10 Z9 10 U1 1 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD SEP PY 2014 VL 6 IS 3 BP 829 EP 858 DI 10.1002/2014MS000315 PG 30 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AS6QP UT WOS:000344387900019 ER PT J AU Evans, KJ Mahajan, S Branstetter, M McClean, JL Caron, J Maltrud, ME Hack, JJ Bader, DC Neale, R Leifeld, JK AF Evans, Katherine J. Mahajan, Salil Branstetter, Marcia McClean, Julie L. Caron, Julie Maltrud, Matthew E. Hack, James J. Bader, David C. Neale, Richard Leifeld, Juliann K. TI A spectral transform dynamical core option within the Community Atmosphere Model (CAM4) SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS LA English DT Article ID GLOBAL PRECIPITATION; CLIMATE MODEL; SYSTEM MODEL; REANALYSIS; RESOLUTION; CCSM3; UNCERTAINTY; PERFORMANCE; SIMULATION; RADIATION AB An ensemble of simulations covering the present day observational period using forced sea surface temperatures and prescribed sea-ice extent is configured with an 85 truncation resolution spectral transform dynamical core (T85) within the Community Atmosphere Model (CAM), version 4 and is evaluated relative to observed and model derived data sets and the one degree finite volume (FV) dynamical core. The spectral option provides a well-known base within the climate model community to assess climate behavior and statistics, and its relative computational efficiency for smaller computing platforms allows it to be extended to perform high-resolution climate length simulations. Overall, the quality of the T85 ensemble is similar to FV. Analyzing specific features of the T85 simulations show notable improvements to the representation of wintertime Arctic sea level pressure and summer precipitation over the Western Indian subcontinent. The mean and spatial patterns of the land surface temperature trends over the AMIP period are generally well simulated with the T85 ensemble relative to observations, however the model is not able to capture the extent nor magnitude of changes in temperature extremes over the boreal summer, where the changes are most dramatic. Biases in the wintertime Arctic surface temperature and annual mean surface stress fields persist with T85 as with the CAM3 version of T85, as compared to FV. An experiment to identify the source of differences between dycores has revealed that the longwave cloud forcing is sensitive to the choice of dycore, which has implications for tuning strategies of the physics parameter settings. C1 [Evans, Katherine J.; Mahajan, Salil; Branstetter, Marcia; Hack, James J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [McClean, Julie L.] Scripps Inst Oceanog, San Diego, CA USA. [Caron, Julie; Neale, Richard] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Maltrud, Matthew E.] Los Alamos Natl Lab, Los Alamos, NM USA. [Bader, David C.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Leifeld, Juliann K.] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA. RP Evans, KJ (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM evanskj@ornl.gov RI Bader, David/H-6189-2011; OI Bader, David/0000-0003-3210-339X; Mahajan, Salil/0000-0001-5767-8590; Evans, Katherine/0000-0001-8174-6450 FU Office of Science of the U.S. Department of Energy; National Science Foundation; U.S. Department of Energy Office of Biological and Environmental Research (BER) project; U.S. Department of Energy [DE-AC05-00OR22725] FX We would like to thank J. Truesdale and M. Vertenstein for help configuring the spectral option with CESM/CAM, Rick Archibald for verifying the sensitivity of the physics parameters, and the thoughtful comments from two anonymous reviewers. The CESM project is supported by the Office of Science of the U.S. Department of Energy and the National Science Foundation. NCAR is supported by the National Science Foundation. Evans, Mahajan, Branstetter, McClean, Maltrud, Hack, and Bader were funded through the U.S. Department of Energy Office of Biological and Environmental Research (BER) project, "Ultra High Resolution Global Climate Simulation to Explore and Quantify Predictive Skill for Climate Means, Variability and Extremes." The simulation data used for the analysis are available upon request. This research used the NCAR Command Language software [NCL, 2012] for some the plots and used the resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 53 TC 2 Z9 2 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD SEP PY 2014 VL 6 IS 3 BP 902 EP 922 DI 10.1002/2014MS000329 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AS6QP UT WOS:000344387900022 ER PT J AU Hagos, S Feng, Z Landu, K Long, CN AF Hagos, Samson Feng, Zhe Landu, Kiranmayi Long, Charles N. TI Advection, moistening, and shallow-to-deep convection transitions during the initiation and propagation of Madden-Julian Oscillation SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS LA English DT Article ID TROPICAL CONVECTION; CLOUD; RADAR; MODEL; SIMULATION; CONGESTUS; RAINFALL AB Using observations from the 2011 AMIE/DYNAMO field campaign over the Indian Ocean and a high-resolution regional model simulation, the processes that lead to the rapid shallow-to-deep convection transitions associated with the initiation and eastward propagation of the Madden-Julian Oscillation (MJO) are examined. By tracking the evolution of the depth of several thousand individual model simulated precipitation features, the role of and the processes that control the observed midtropospheric moisture buildup ahead of the detection of deep convection are quantified at large and convection scales. The frequency of shallow-to-deep convection transitions is found to be sensitive to this midlevel moisture and large-scale uplift. This uplift along with the decline of large-scale drying by equator-ward advection causes the moisture buildup leading to the initiation of the MJO. Convection scale moisture variability and uplift, and large-scale zonal advection play secondary roles. C1 [Hagos, Samson; Feng, Zhe; Long, Charles N.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Landu, Kiranmayi] Indian Inst Technol, Bhubaneswar, Orissa, India. RP Hagos, S (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM samson.hagos@pnnl.gov RI Feng, Zhe/E-1877-2015 OI Feng, Zhe/0000-0002-7540-9017 FU U.S. Department of Energy, Office of Science, Biological and Environmental Research under the Atmospheric System Research Program; Regional and Global Climate Modeling Program; U.S. Department of Energy [DE-AC06-76RLO1830] FX The authors thank two anonymous reviewers for their constructive comments that improved the quality of the paper. This research is based on work supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research under the Atmospheric System Research Program, and the Regional and Global Climate Modeling Program. Computing resources for the simulations are provided by the Oak Ridge Leadership Computing Facility (OLCF) through the INCITE Climate End Station project and National Energy Research Scientific Computing Center (NERSC). Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under contract DE-AC06-76RLO1830. Data collected on Gan Island during the AMIE field campaign, including radar, lidar, surface MET, and sounding data, are obtained from the U.S. Department of Energy as part of the Atmospheric Radiation Measurement (ARM) Climate Research Facility. The DYNAMO field campaign data used in this paper is available at NCAR's Earth Observing Laboratory's DYNAMO Data Catalogue https://www.eol.ucar.edu/field_projects/dynamo. NR 29 TC 18 Z9 18 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD SEP PY 2014 VL 6 IS 3 BP 938 EP 949 DI 10.1002/2014MS000335 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AS6QP UT WOS:000344387900024 ER PT J AU Basunia, MS AF Basunia, M. Shamsuzzoha TI Nuclear Data Sheets for A=210 SO NUCLEAR DATA SHEETS LA English DT Article ID HIGH-SPIN STATES; ALPHA-DECAY PROPERTIES; ATOMIC MASS EVALUATION; CORE-EXCITED-STATES; 2-NUCLEON TRANSFER-REACTIONS; NEUTRON-DEFICIENT FRANCIUM; FILLED RECOIL SEPARATOR; L-SUBSHELL FLUORESCENCE; GAMMA-RAY SPECTROSCOPY; SQUARE CHARGE RADII AB Evaluated spectroscopic data for Au-210, Hg-210, Tl-210, Pb-210, Bi-210, Po-210., At-210, Rn-210, Fr-210, Ra-210, Ac-210, and Th-210 and corresponding level schemes from radioactive decay and reaction studies are presented. This evaluation supersedes the previous evaluation by E. Browne (2003Br13). Highlights of this publication are the identification of new us isomers of Hg-210 by 2013Go10 and measurement of an excited level energy at 1709 keV 30 of Rn-210 from Rn-214 alpha decay: : 68.6 mu s by 2006Ku26 denoted as x+1664.6 in the Adopted Levels. Earlier experimental limits for x <= 50 keV was proposed in 1979Po19 and 1982Po03 - (Hl,xn gamma). C1 Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Basunia, MS (reprint author), Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. FU Office of Basic Energy Sciences, US Department of Energy [DE-AC02-05CH11231]; Office of Energy Research, Office of High Energy and Nuclear Physics, Nuclear Physics Division of the US Department of Energy [DE-AC03-76SF00098] FX Research sponsored by Office of Basic Energy Sciences, US Department of Energy, under contract DE-AC02-05CH11231.; This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Nuclear Physics Division of the US Department of Energy under contract DE-AC03-76SF00098. NR 410 TC 8 Z9 8 U1 2 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD SEP-OCT PY 2014 VL 121 BP 561 EP 693 DI 10.1016/j.nds.2014.09.004 PG 133 WC Physics, Nuclear SC Physics GA AS0KR UT WOS:000343966600004 ER PT J AU Nesaraja, CD McCutchan, EA AF Nesaraja, C. D. McCutchan, E. A. TI Nuclear Data Sheets for A=243 SO NUCLEAR DATA SHEETS LA English DT Article ID SPONTANEOUSLY FISSIONING ISOMERS; NEUTRON-INDUCED FISSION; ALPHA-DECAY PROPERTIES; ODD-MASS NUCLEI; CAPTURE CROSS-SECTION; QUASI-PARTICLE STATES; PARTIAL HALF-LIVES; N-GAMMA-F; ACTINIDE NUCLEI; GROUND-STATE AB Available information pertaining to the nuclear structure of all nuclei with mass numbers A=243 is presented. Various decay and reaction data are evaluated and compared. Adopted data, levels, spin, parity and configuration assignments are given. When there are insufficient data, expected values from systematics of nuclear properties or/and theoretical calculations are quoted. Unexpected or discrepant experimental results are also noted. A summary and compilation of the discovery of various isotopes in this mass region is given in 2013Fr02 (Np-243, Pu-243, Am-243, Cm-243, Bk-243, and Cf-243, 2011Me01 (Es-243), and 2013Th02 (Fm-243). C1 [Nesaraja, C. D.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [McCutchan, E. A.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. RP Nesaraja, CD (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. OI Nesaraja, Caroline/0000-0001-5571-8341 FU Office of Nuclear Physics, Office of Science, US Department of Energy [DE-AC02-98CH10946, DE-AC05-000R22725] FX Research sponsored by Office of Nuclear Physics, Office of Science, US Department of Energy, under contract DE-AC02-98CH10946 (EM.), DE-AC05-000R22725 (C.N.). NR 235 TC 3 Z9 3 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD SEP-OCT PY 2014 VL 121 BP 695 EP 748 DI 10.1016/j.nds.2014.09.005 PG 54 WC Physics, Nuclear SC Physics GA AS0KR UT WOS:000343966600005 ER PT J AU Blom, DA Vogt, T Allard, LF Buttrey, DJ AF Blom, Douglas A. Vogt, Thomas Allard, Larry F. Buttrey, Douglas J. TI Observation of Sublattice Disordering of the Catalytic Sites in a Complex Mo-V-Nb-Te-O Oxidation Catalyst Using High Temperature STEM Imaging SO TOPICS IN CATALYSIS LA English DT Article DE MoVNbTeO catalyst; M1 phase; Selective oxidation; Ammoxidation; Sublattice disorder; Active site; STEM imaging ID M1 PHASE; SELECTIVE OXIDATION; OXIDE CATALYSTS; ACTIVE-CENTERS; PROPANE; SURFACE; AMMOXIDATION; M2; (AMM)OXIDATION; MULTIFUNCTIONALITY AB A Mo-V-Nb-Te-O oxidation catalyst has been imaged using scanning transmission electron microscopy at 780 K, which is slightly above its operating temperature. We observe a sublattice disordering of the corner-sharing octahedra forming the catalytic sites containing V5+ while the edge-sharing pentagonal bipyramidal {Nb(Mo-5)} sublattice remains structurally more rigid and thereby maintains the overall structural integrity of the catalyst. Imaging the termination of the edges of the [001] basal zones at room temperature reveal a preference for presence of a closed network of secondary structural {Nb(Mo)(5)} units providing further evidence of the stability of this sublattice structure. We propose that sublattice disordering of catalytic sites enables structural flexibility to accommodate different oxidation states during multistep chemical reactions within a more rigid superstructure and presents a new paradigm for compositionally and structurally complex catalysts. C1 [Blom, Douglas A.; Vogt, Thomas] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. [Blom, Douglas A.; Vogt, Thomas] Univ S Carolina, Nano Ctr, Columbia, SC 29208 USA. [Allard, Larry F.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Buttrey, Douglas J.] Univ Delaware, Dept Chem & Biomol Engn, Ctr Catalyt Sci & Technol, Newark, DE 19716 USA. RP Buttrey, DJ (reprint author), Univ Delaware, Dept Chem & Biomol Engn, Ctr Catalyt Sci & Technol, Newark, DE 19716 USA. EM dbuttrey@udel.edu FU USC NanoCenter; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program, Propulsion Materials Program FX We thank the USC NanoCenter for financial support for beam time on the JEOL 2100 F and travel support to ORNL. We also thank A. F. Volpe Jr., C. G. Lugmair, and R. K. Grasselli for providing the M1 specimen used in this study. Microscopy research at the Oak Ridge National Laboratory was sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program, as part of the Propulsion Materials Program. NR 24 TC 7 Z9 7 U1 1 U2 21 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD SEP PY 2014 VL 57 IS 14-16 BP 1138 EP 1144 DI 10.1007/s11244-014-0278-4 PG 7 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA AS3DY UT WOS:000344157900004 ER PT J AU Alexandrov, BS Vesselinov, VV AF Alexandrov, Boian S. Vesselinov, Velimir V. TI Blind source separation for groundwater pressure analysis based on nonnegative matrix factorization SO WATER RESOURCES RESEARCH LA English DT Article DE inversion; source identification; blind source separation; k-means analysis; non-negative matrix factorization ID INDEPENDENT COMPONENT ANALYSIS; CROSS-HOLE TESTS; 3-DIMENSIONAL NUMERICAL INVERSION; HYDRAULIC TOMOGRAPHY; MUTATIONAL PROCESSES; HUMAN CANCER; WATER; FLUCTUATIONS; SIGNATURES; ALGORITHM AB The identification of the physical sources causing spatial and temporal fluctuations of aquifer water levels is a challenging, yet a very important hydrogeological task. The fluctuations can be caused by variations in natural and anthropogenic sources such as pumping, recharge, barometric pressures, etc. The source identification can be crucial for conceptualization of the hydrogeological conditions and characterization of aquifer properties. We propose a new computational framework for model-free inverse analysis of pressure transients based on Nonnegative Matrix Factorization (NMF) method for Blind Source Separation (BSS) coupled with k-means clustering algorithm, which we call NMFk. NMFk is capable of identifying a set of unique sources from a set of experimentally measured mixed signals, without any information about the sources, their transients, and the physical mechanisms and properties controlling the signal propagation through the subsurface flow medium. Our analysis only requires information about pressure transients at a number of observation points, m, where mr, and r is the number of unknown unique sources causing the observed fluctuations. We apply this new analysis on a data set from the Los Alamos National Laboratory site. We demonstrate that the sources identified by NMFk have real physical origins: barometric pressure and water-supply pumping effects. We also estimate the barometric pressure efficiency of the monitoring wells. The possible applications of the NMFk algorithm are not limited to hydrogeology problems; NMFk can be applied to any problem where temporal system behavior is observed at multiple locations and an unknown number of physical sources are causing these fluctuations. C1 [Alexandrov, Boian S.] Los Alamos Natl Lab, Div Theoret, Phys & Chem Mat Grp, Los Alamos, NM USA. [Vesselinov, Velimir V.] Los Alamos Natl Lab, Div Earth & Environm Sci, Computat Earth Sci Grp, Los Alamos, NM 87545 USA. RP Vesselinov, VV (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Computat Earth Sci Grp, Los Alamos, NM 87545 USA. EM vvv@lanl.gov RI Vesselinov, Velimir/P-4724-2016; OI Vesselinov, Velimir/0000-0002-6222-0530; Alexandrov, Boian/0000-0001-8636-4603 FU Environmental Programs Directorate of the Los Alamos National Laboratory FX The authors wish to thank the associated editor and three anonymous reviewers for comments that substantially improved the manuscript. This research was funded by the Environmental Programs Directorate of the Los Alamos National Laboratory. NR 48 TC 1 Z9 1 U1 1 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD SEP PY 2014 VL 50 IS 9 BP 7332 EP 7347 DI 10.1002/2013WR015037 PG 16 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA AR9YK UT WOS:000343933400016 ER PT J AU Niu, J Shen, CP Li, SG Phanikumar, MS AF Niu, Jie Shen, Chaopeng Li, Shu-Guang Phanikumar, Mantha S. TI Quantifying storage changes in regional Great Lakes watersheds using a coupled subsurface-land surface process model and GRACE, MODIS products SO WATER RESOURCES RESEARCH LA English DT Article DE water budgets; storage; Great Lakes; watershed ID EVAPOTRANSPIRATION ALGORITHM; DATA ASSIMILATION; HYDROLOGIC-CYCLE; BUDGET; CLASSIFICATION; COMPUTATIONS; GROUNDWATER; BASINS; SYSTEM AB As a direct measure of watershed resilience, watershed storage is important for understanding climate change impacts on water resources. In this paper we quantify water budget components and storage changes for two of the largest watersheds in the State of Michigan, USA (the Grand River and the Saginaw Bay watersheds) using remotely sensed data and a process-based hydrologic model (PAWS) that includes detailed representations of subsurface and land surface processes. Model performance is evaluated using ground-based observations (streamflows, groundwater heads, soil moisture, and soil temperature) as well as satellite-based estimates of evapotranspiration (Moderate-resolution Imaging Spectroradiometer, MODIS) and watershed storage changes (Gravity Recovery and Climate Experiment, GRACE). We use the model to compute annual-average fluxes due to evapotranspiration, surface runoff, recharge and groundwater contribution to streams and analyze the impacts of land use and land cover (LULC) and soil types on annual hydrologic budgets using correlation analysis. Watershed storage changes based on GRACE data and model results showed similar patterns. Storage was dominated by subsurface components and showed an increasing trend over the past decade. This work provides new estimates of water budgets and storage changes in Great Lakes watersheds and the results are expected to aid in the analysis and interpretation of the current trend of declining lake levels, in understanding projected future impacts of climate change as well as in identifying appropriate climate adaptation strategies. C1 [Niu, Jie; Li, Shu-Guang; Phanikumar, Mantha S.] Michigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA. [Niu, Jie] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Shen, Chaopeng] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA. RP Niu, J (reprint author), Michigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA. EM jniu@lbl.gov OI Shen, Chaopeng/0000-0002-0685-1901 FU NOAA [3002283555] FX This research was funded by a NOAA grant to the last author (award 3002283555). We thank Han Qiu for his assistance with data compilation, model runs, and postprocessing. Data sets used as model inputs or for model testing are owned by several agencies including the USGS, USDA, NOAA, NASA/JPL, the Michigan Department of Natural Resources (MDNR) and MAWN (Michigan Automated Weather Network or Enviro-Weather) and details of these sources (with web links where available) are provided in the paper. We acknowledge AGU's data policy; however, we are not in a position to share these publicly available data sets, as we do not have ownership of the data. NR 66 TC 14 Z9 14 U1 5 U2 46 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD SEP PY 2014 VL 50 IS 9 BP 7359 EP 7377 DI 10.1002/2014WR015589 PG 19 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA AR9YK UT WOS:000343933400018 ER PT J AU Riding, R Liang, L Braga, JC AF Riding, R. Liang, L. Braga, J. C. TI Millennial-scale ocean acidification and late Quaternary decline of cryptic bacterial crusts in tropical reefs SO GEOBIOLOGY LA English DT Article ID SULFATE-REDUCING BACTERIA; GREAT-BARRIER-REEF; ATMOSPHERIC CARBON-DIOXIDE; LAST GLACIAL MAXIMUM; MODERN MARINE STROMATOLITES; LITHIFIED MICRITIC LAMINAE; PERMIAN MASS EXTINCTION; SOLAR LAKE SINAI; FOSSIL-FUEL CO2; SEA-LEVEL RISE AB Ocean acidification by atmospheric carbon dioxide has increased almost continuously since the last glacial maximum (LGM), 21 000 years ago. It is expected to impair tropical reef development, but effects on reefs at the present day and in the recent past have proved difficult to evaluate. We present evidence that acidification has already significantly reduced the formation of calcified bacterial crusts in tropical reefs. Unlike major reef builders such as coralline algae and corals that more closely control their calcification, bacterial calcification is very sensitive to ambient changes in carbonate chemistry. Bacterial crusts in reef cavities have declined in thickness over the past 14 000 years with largest reduction occurring 12 00010 000 years ago. We interpret this as an early effect of deglacial ocean acidification on reef calcification and infer that similar crusts were likely to have been thicker when seawater carbonate saturation was increased during earlier glacial intervals, and thinner during interglacials. These changes in crust thickness could have substantially affected reef development over glacial cycles, as rigid crusts significantly strengthen framework and their reduction would have increased the susceptibility of reefs to biological and physical erosion. Bacterial crust decline reveals previously unrecognized millennial-scale acidification effects on tropical reefs. This directs attention to the role of crusts in reef formation and the ability of bioinduced calcification to reflect changes in seawater chemistry. It also provides a long-term context for assessing anticipated anthropogenic effects. C1 [Riding, R.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Liang, L.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Braga, J. C.] Univ Granada, Dept Estratigrafia & Paleontol, Granada, Spain. RP Riding, R (reprint author), Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. EM rriding@utk.edu RI Liang, Liyuan/O-7213-2014 OI Liang, Liyuan/0000-0003-1338-0324 FU NSF; Japan's Ministry of Education, Culture, Sports, Science and Technology; European Consortium for Ocean Drilling Research; People's Republic of China, Ministry of Science and Technology; U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research to Oak Ridge National Laboratory (ORNL); UT Battelle, LLC, for the U. S. Department of Energy [DE-AC05-00OR22725] FX This research used samples provided by the Integrated Ocean Drilling Program (IODP). IODP is supported by NSF; Japan's Ministry of Education, Culture, Sports, Science and Technology; the European Consortium for Ocean Drilling Research; and the People's Republic of China, Ministry of Science and Technology. LL acknowledges scientific support by the U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research to Oak Ridge National Laboratory (ORNL). ORNL is managed by UT Battelle, LLC, for the U. S. Department of Energy under contract DE-AC05-00OR22725. We thank anonymous reviewers, including four for Geobiology, whose very helpful suggestions improved this work. We are grateful to Mariia del Mar Rueda for statistical help, Fabio Tosti for assistance with figure drafting, and Kurt Konhauser for editorial guidance. NR 226 TC 12 Z9 12 U1 2 U2 31 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1472-4677 EI 1472-4669 J9 GEOBIOLOGY JI Geobiology PD SEP PY 2014 VL 12 IS 5 BP 387 EP 405 DI 10.1111/gbi.12097 PG 19 WC Biology; Environmental Sciences; Geosciences, Multidisciplinary SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Geology GA AR9BO UT WOS:000343866300002 PM 25040070 ER PT J AU Bolin, TB AF Bolin, Trudy B. TI S-XANES analysis of thermal iron sulfide transformations in a suite of Argonne Premium Coals: A study of particle size effects during pyrolysis SO INTERNATIONAL JOURNAL OF COAL GEOLOGY LA English DT Article DE Pyrite; Marcasite; Argonne Premium Coals; Pyrrhotite; Troilite; Shrinking core model ID X-RAY; ABSORPTION-SPECTROSCOPY; PETROLEUM ASPHALTENES; SAMPLE PROGRAM; SULFUR FORMS; PYRITE; MARCASITE; DECOMPOSITION; TEMPERATURE; REDUCTION AB A suite of four bituminous Argonne Premium Coal Samples, namely Pittsburgh#8 (P8), Blind Canyon (BC), Upper Freeport (UF), and Illinois #6 (IL6), were pyrolyzed according to the Easy R-o kinetic model (Burnham and Sweeney, 1989) to R-o = 4.3 and iron sulfide thermal transformations were tracked by the use of S-XANES (Sulfur X-ray Absorption Near Edge Structure.) It was shown that the pyrite transformed first to pyrrhotite by R-o = 1.5, and then started to transform to troilite by R-o = 2.4. Some Argonne Coals displayed evidence of structural instability. In addition, particle size effects were examined. Pyrolysis was performed on not-ground (large-particled) coal samples, which were subsequently ground to micron-size particles before data collection. S-XANES was also collected for the not-ground post-pyrolysis IL6 coal to show the effect of the extent of reaction on the surface of the particles as opposed to the bulk. It was found that the pyrite-to-pyrrhotite transformation in large particles of IL6 coal proceeded from the surface of the particle and progress inward, consistent with the shrinking core model. A scheme for determining particle size based on organic sulfur content was also developed for a coal model consisting of a 50/50 mol% mixture of pyrite and Maya petroleum vacuum resid asphaltene for a range of known particle sizes. Lastly, the behavior of both marcasite (a polymorph of pyrite) and pyrite in a coal model was investigated for large (similar to 100 mu m) and small (similar to 5 mu m) particles. The marcasite proved to be less structurally stable than pyrite for the large particles, with an abrupt transformation to a mixture of pyrrhotite and troilite, and an abrupt drop in aliphatic sulfur content, indicating consequent H2S generation at R-o = 2.4. This transformation is much less pronounced for pyrite at the same point in pyrolysis. (C) 2014 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Bolin, TB (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. FU U.S. DOE [DE-AC02-06CH11357] FX The author would like to heartily thank Simon Kelemen, Clifford Walters, and Michael Sansone for their very helpful guidance, and also Matthew Suchomel and Lynn Ribaud for their assistance with powder diffraction at 11-BM. The author would also like to thank Darren Locke for assistance with SEM. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 38 TC 2 Z9 2 U1 7 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0166-5162 EI 1872-7840 J9 INT J COAL GEOL JI Int. J. Coal Geol. PD SEP 1 PY 2014 VL 131 BP 200 EP 213 DI 10.1016/j.coal.2014.06.015 PG 14 WC Energy & Fuels; Geosciences, Multidisciplinary SC Energy & Fuels; Geology GA AR8RS UT WOS:000343842800018 ER PT J AU Perego, M Price, S Stadler, G AF Perego, Mauro Price, Stephen Stadler, Georg TI Optimal initial conditions for coupling ice sheet models to Earth system models SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE LA English DT Article DE ice sheet modeling; ice sheet model optimization; coupled ice sheet and climate modeling ID FUTURE SEA-LEVEL; SURFACE MASS-BALANCE; HIGHER-ORDER; DATA ASSIMILATION; GREENLAND; RISE; FLOW; IMPLEMENTATION; SENSITIVITY; PROJECTIONS AB We address complications in the coupling of a dynamic ice sheet model (ISM) and forcing from an Earth system model (ESM), which arise because of the unknown ISM initial conditions. Unless explicitly accounted for during ISM initialization, the ice sheet is far from thermomechanical equilibrium with the surface mass balance forcing from the ESM. Upon coupling to ESM forcing, the result is a shock and unphysical and undesirable transients in ice geometry and other state variables. Under the assumption of thermomechanical equilibrium, we present an approach for finding ISM initial conditionscharacterized by optimization of the basal sliding coefficient and basal topography fieldsthat balance a best fit to surface velocity and basal topography observations against the minimization of unphysical transients when coupling to surface mass balance forcing. A quasi-Newton method is used to solve the resulting large-scale, partial differential equation-constrained optimization problem, where the cost function gradients with respect to the parameter fields are computed using adjoints. After studying properties of our approach on a synthetic test problem, we apply the method toward obtaining optimal initial conditions for a model of the Greenland ice sheet. Our results show that, in the presence of uncertainties in the basal topography, ice thickness should also be treated as an optimization variable. While the focus here is on the coupling between an ISM and ESM-derived surface mass balance, the method is easily extended to include optimal coupling to forcing from an ocean model through submarine melt rates. C1 [Perego, Mauro] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Price, Stephen] Los Alamos Natl Lab, Fluid Dynam & Solid Mech Grp, Los Alamos, NM USA. [Stadler, Georg] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA. RP Perego, M (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mperego@sandia.gov RI Price, Stephen /E-1568-2013 OI Price, Stephen /0000-0001-6878-2553 FU Scientific Discovery through Advanced Computing (SciDAC) program - U.S. Department of Energy (DOE), Office of Science, Advanced Scientific Computing Research, and Biological and Environmental Research; U.S. Department of Energy Office of Science, Advanced Scientific Computing Research, and Biological and Environmental Research programs [DE-SC0009286, DE-SC000665, DE-11018096]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank M. Gunzburger, A. Salinger, O. Ghattas, N. Petra, and T. Isaac for helpful discussions, and D. Kouri and D. Ridzal for help with coupling ROL and LifeV and setting the options for the optimization solver. Support for M.P. and S.P. was provided through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy (DOE), Office of Science, Advanced Scientific Computing Research, and Biological and Environmental Research. Support for G.S. was provided by the U.S. Department of Energy Office of Science, Advanced Scientific Computing Research, and Biological and Environmental Research programs under grants DE-SC0009286, DE-SC000665, and DE-11018096. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH11231. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Data will be made available upon request to the authors. NR 55 TC 10 Z9 10 U1 2 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9003 EI 2169-9011 J9 J GEOPHYS RES-EARTH JI J. Geophys. Res.-Earth Surf. PD SEP PY 2014 VL 119 IS 9 BP 1894 EP 1917 DI 10.1002/2014JF003181 PG 24 WC Geosciences, Multidisciplinary SC Geology GA AR9EY UT WOS:000343876500007 ER PT J AU Jeffery, N Hunke, EC AF Jeffery, N. Hunke, E. C. TI Modeling the winter-spring transition of first-year ice in the western Weddell Sea SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article DE sea ice; halodynamics; numerical modeling; Weddell Sea; desalination; salinity ID POROUS-MEDIA; SALINITY PROFILE; GRAVITY DRAINAGE; THICKNESS; SUMMER; ISPOL; SIMULATIONS; DISPERSION; DYNAMICS; SYSTEM AB A new halodynamic scheme is coupled with the Los Alamos sea ice model to simulate western Weddell Sea ice during the winter-spring transition. One-dimensional temperature and salinity profiles are consistent with the warming and melt stages exhibited in first-year ice cores from the 2004 Ice Station POLarstern (ISPOL) expedition. Results are highly sensitive to snowfall. Simulations which use reanalysis precipitation data do not retain a snow cover beyond mid-December, and the warming transition occurs too rapidly. Model performance is greatly improved by prescribing a snowfall rate based on reported snow thicknesses. During ice growth prior to ISPOL, simulations indicate a period of thick snow and upper ice salinity enrichment. Gravity drainage model parameters impact the simulation immediately, while effects from the flushing parameter (snow porosity at the ice top) appear as the freeboard becomes negative. Simulations using a snow porosity of 0.3, consistent with that of wet snow, agree with salinity observations. The model does not include lateral sources of sea-water flooding, but vertical transport processes account for the high upper-ice salinities observed in ice cores at the start of the expedition. As the ice warms, a fresh upper-ice layer forms, and the high salinity layer migrates downward. This pattern is consistent with the early spring development stages of high-porosity layers observed in Antarctic sea ice that are associated with rich biological production. Future extensions of the model may be valuable in Antarctic ice-biogeochemical applications. C1 [Jeffery, N.] Los Alamos Natl Lab, Dept Comp & Computat Sci, Los Alamos, NM 87545 USA. [Hunke, E. C.] Los Alamos Natl Lab, Dept Fluid Dynam & Solid Mech, Los Alamos, NM USA. RP Jeffery, N (reprint author), Los Alamos Natl Lab, Dept Comp & Computat Sci, POB 1663, Los Alamos, NM 87545 USA. EM njeffery@lanl.gov FU U.S. Department of Energy Cloud-Cryosphere Project; U.S. Department of Energy Biological and Environmental Research (BER) Climate Change Prediction Program FX The authors thank two anonymous reviewers, whose thoughtful critiques led to a substantially improved manuscript. We also thank Mathew Maltrud, Cecilia Bitz, Scott Elliott, Adrian Turner, Chris Jeffery, and Jean-Francois Lamarque for many helpful and insightful discussions. The data used in this paper are available upon request. This research was supported by the U.S. Department of Energy Cloud-Cryosphere Project and the U.S. Department of Energy Biological and Environmental Research (BER) Climate Change Prediction Program. NR 58 TC 1 Z9 1 U1 2 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD SEP PY 2014 VL 119 IS 9 BP 5891 EP 5920 DI 10.1002/2013JC009634 PG 30 WC Oceanography SC Oceanography GA AR9FW UT WOS:000343879200018 ER PT J AU Renaud, G Riviere, J Larmat, C Rutledge, JT Lee, RC Guyer, RA Stokoe, K Johnson, PA AF Renaud, G. Riviere, J. Larmat, C. Rutledge, J. T. Lee, R. C. Guyer, R. A. Stokoe, K. Johnson, P. A. TI In situ characterization of shallow elastic nonlinear parameters with Dynamic Acoustoelastic Testing SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article DE nonlinear elasticity; in situ measurement; acoustoelasticity; soil; nonlinear wave interaction; nonlinear site response ID 1994 NORTHRIDGE EARTHQUAKE; OKI-EARTHQUAKE; GROUND-MOTION; PROPAGATION; RESONANCE; SEDIMENTS; SIGNALS; SOLIDS; ROCK AB In situ measurement of the elastic nonlinear site response is advantageous to provide optimal information for prediction of strong ground motion at a site. We report the first implementation of a technique known as Dynamic Acoustoelastic Testing (DAET) in situ with the ultimate goal of developing a new approach for site characterization. DAET has shown promising results at the laboratory scale for the study of nonlinear elasticity of Earth materials, detailing the full nonlinear elastic properties of the studied sample. We demonstrate the feasibility of DAET in situ and compare it to other methods (nonlinear resonance spectroscopy, wave amplitude dependence of propagation velocity, and wave distortion). Nonlinear elastic properties are characterized by DAET with the advantage of providing a local assessment compared to other methods, here at a depth of 4 m to 5 m. A vertical dynamic strain amplitude of 5 x10(-5) produces a relative change in compressional wave modulus of 6%. We measure an effective parameter of quadratic elastic nonlinearity of order -10(3), the same order of magnitude measured at the laboratory scale in rocks and in packs of unconsolidated glass beads. Hysteresis is observed in the variation in soil elasticity as a function of the instantaneous dynamic strain that evolves as the dynamic strain amplitude is increased from 9 x10(-7) to 5 x10(-5). C1 [Renaud, G.] Erasmus MC, Dept Biomed Engn, Rotterdam, Netherlands. [Renaud, G.] Univ Paris 06, Lab Imagerie Biomed, Sorbonne Univ, Paris, France. [Riviere, J.; Larmat, C.; Lee, R. C.; Guyer, R. A.; Johnson, P. A.] Los Alamos Natl Lab, Los Alamos, NM USA. [Rutledge, J. T.] Schlumberger, Houston, TX USA. [Guyer, R. A.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Stokoe, K.] Univ Texas Austin, Dept Civil Engn, Austin, TX 78712 USA. RP Renaud, G (reprint author), Erasmus MC, Dept Biomed Engn, Rotterdam, Netherlands. EM renaud_gu@yahoo.fr OI Larmat, Carene S/0000-0002-3607-7558 FU U.S. Department of Energy, Office of Basic Energy Research; Terry Rust and Larry Goen of Los Alamos National Laboratory FX We gratefully acknowledge the support of the U.S. Department of Energy, Office of Basic Energy Research and the funding for the experiment by Terry Rust and Larry Goen of Los Alamos National Laboratory. We thank Farn-Yuh Menq (University of Texas) for data acquisition support. Thanks to Bruce Redpath for the design and installation of the high-frequency sources and receivers. We also thank Major Matthew LeBlanc and Captain Allen Branco (University of Texas) for assistance on installation of sensors and their field support during the course of the experiment. Finally, we thank Didier Cassereau for his help with SimSonic simulations. NR 49 TC 6 Z9 6 U1 0 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD SEP PY 2014 VL 119 IS 9 BP 6907 EP 6923 DI 10.1002/2013JB010625 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AR9EI UT WOS:000343874600011 ER PT J AU Walker, A Mehta, P Koller, J AF Walker, Andrew Mehta, Piyush Koller, Josef TI Different Implementations of Diffuse Reflection with Incomplete Accommodation for Drag Coefficient Modeling SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article ID GAS-SURFACE INTERACTIONS AB Diffuse reflection with incomplete accommodation is the favored gas-surface interaction model for calculating the drag coefficient of satellites in low Earth orbit, where drag is the largest source of uncertainty in the orbital trajectory of satellites. Closed-form solutions have incorporated the variation of the energy accommodation coefficient through equating the total energy of the incident and reflected flows; however, this leads to an incorrect reflected velocity distribution for incomplete accommodation. The problem is highlighted by investigating the velocity distribution functions for a gas reflected from a flat plate at zero accommodation. A physically accurate implementation for diffuse reflection with incomplete accommodation based on the Cercignani-Lampis-Lord gas-surface interaction model is compared with the closed-form solutions that equate the incident and reflected energy of the flow. The Cercignani-Lampis-Lord gas-surface interaction model shows the conservation of energy on a molecule-by-molecule basis for zero accommodation, as expected, whereas the closed-form method only conserves energy on average. The macroscopic effect of the different velocity distributions manifests in differences of similar to 1.8-2.5% in the drag coefficient of a flat plate, sphere, and the GRACE satellite at zero accommodation and differences larger than 1% for energy accommodation coefficients less than 0.90. C1 [Walker, Andrew; Mehta, Piyush] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Koller, Josef] Los Alamos Natl Lab, IMPACT Project, Los Alamos, NM 87545 USA. RP Walker, A (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. OI Walker, Andrew/0000-0002-7890-1779 FU U.S. Department of Energy through the Los Alamos National Laboratory/Laboratory Directed Research and Development program as part of the Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking project FX Funding for this work was provided by the U.S. Department of Energy through the Los Alamos National Laboratory/Laboratory Directed Research and Development program as part of the Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking project. NR 19 TC 1 Z9 1 U1 0 U2 6 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 EI 1533-6794 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD SEP-OCT PY 2014 VL 51 IS 5 BP 1522 EP 1532 DI 10.2514/1.A32668 PG 11 WC Engineering, Aerospace SC Engineering GA AR8AH UT WOS:000343797500012 ER PT J AU Walker, A Mehta, P Koller, J AF Walker, Andrew Mehta, Piyush Koller, Josef TI Drag Coefficient Model Using the Cercignani-Lampis-Lord Gas-Surface Interaction Model SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article ID ENERGY-ACCOMMODATION COEFFICIENTS; MONTE-CARLO METHOD; ATMOSPHERIC DENSITY; BOLTZMANN-EQUATION; SATELLITE; SCATTERING; ADSORPTION; SPHERE; WINDS AB Drag coefficient calculations using the Cercignani-Lampis-Lord quasi-specular gas-surface interaction model have been used to derive modified closed-form solutions for several simple geometries. The key component of the modified closed-form solutions is a relation between the normal energy and normal momentum accommodation coefficients, which is valid within similar to 0.5% over the global parameter space. The modified closed-form solutions are made self-consistent by relating the effective energy accommodation to the partial pressure of atomic oxygen through a Langmuir isotherm. The modified closed-form solutions are compared to fitted drag coefficients and drag coefficients computed using two other gas-surface interaction models: diffuse reflection with incomplete accommodation and Maxwell's model. Comparison during solar maximum conditions shows that both the diffuse reflection with incomplete accommodation and Cercignani-Lampis-Lord models agree with fitted drag coefficients within similar to 2% below similar to 500 km altitude. Further comparison shows that solar minimum drag coefficients are up to similar to 24% higher than those at solar maximum based on global ionosphere-thermosphere model atmospheric properties. Drag coefficients computed with atmospheric properties from the Naval Research Laboratory mass spectrometer incoherent scatter extended model and the global ionosphere-thermosphere model agree within similar to 2% at solar maximum but disagree by up to similar to 11% at solar minimum. C1 [Walker, Andrew; Mehta, Piyush] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Koller, Josef] Los Alamos Natl Lab, IMPACT Project, Los Alamos, NM 87544 USA. RP Walker, A (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. OI Walker, Andrew/0000-0002-7890-1779 FU U.S. Department of Energy through the Los Alamos National Laboratory/Laboratory Directed Research and Development program as part of the Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking project FX Funding for this work was provided by the U.S. Department of Energy through the Los Alamos National Laboratory/Laboratory Directed Research and Development program as part of the Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking project. Computations were performed with Los Alamos National Laboratory high-performance computing systems. NR 54 TC 3 Z9 3 U1 1 U2 10 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 EI 1533-6794 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD SEP-OCT PY 2014 VL 51 IS 5 BP 1544 EP 1563 DI 10.2514/1.A32677 PG 20 WC Engineering, Aerospace SC Engineering GA AR8AH UT WOS:000343797500014 ER PT J AU Kohler, M Habart, E Arab, H Bernard-Salas, J Ayasso, H Abergel, A Zavagno, A Polehampton, E van der Wiel, MHD Naylor, DA Makiwa, G Dassas, K Joblin, C Pilleri, P Berne, O Fuente, A Gerin, M Goicoechea, JR Teyssier, D AF Koehler, M. Habart, E. Arab, H. Bernard-Salas, J. Ayasso, H. Abergel, A. Zavagno, A. Polehampton, E. van der Wiel, M. H. D. Naylor, D. A. Makiwa, G. Dassas, K. Joblin, C. Pilleri, P. Berne, O. Fuente, A. Gerin, M. Goicoechea, J. R. Teyssier, D. TI Physical structure of the photodissociation regions in NGC 7023 Observations of gas and dust emission with Herschel SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE infrared: ISM; submillimeter: ISM; ISM: lines and bands; ISM: molecules; ISM: clouds; dust, extinction ID FOURIER-TRANSFORM SPECTROMETER; H-II REGIONS; POLYCYCLIC AROMATIC-HYDROCARBONS; EXTENDED RED EMISSION; INTERSTELLAR-MEDIUM; STAR HD-200775; SPIRE INSTRUMENT; MASSIVE STAR; SMALL GRAINS; EVOLUTION AB Context. The determination of the physical conditions in molecular clouds is a key step towards our understanding of their formation and evolution of associated star formation. We investigate the density, temperature, and column density of both dust and gas in the photodissociation regions (PDRs) located at the interface between the atomic and cold molecular gas of the NGC 7023 reflection nebula. We study how young stars affect the gas and dust in their environment. Aims. Several Herschel Space Telescope programs provide a wealth of spatial and spectral information of dust and gas in the heart of PDRs. We focus our study on Spectral and Photometric Image Receiver (SPIRE) Fourier-Transform Spectrometer (FTS) fully sampled maps that allow us for the first time to study the bulk of cool/warm dust and warm molecular gas (CO) together. In particular, we investigate if these populations spatially coincide, if and how the medium is structured, and if strong density and temperature gradients occur, within the limits of the spatial resolution obtained with Herschel. Methods. The SPIRE FTS fully sampled maps at different wavelengths are analysed towards the northwest (NW) and the east (E) PDRs in NGC 7023. We study the spatial and spectral energy distribution of a wealth of intermediate rotational (CO)-C-12 4 <= J(u) <= 13 and (CO)-C-13 5 <= J(u) <= 10 lines. A radiative transfer code is used to assess the gas kinetic temperature, density, and column density at different positions in the cloud. The dust continuum emission including Spitzer, the Photoconductor Array Camera and Spectrometer (PACS), and SPIRE photometric and the Institute for Radio Astronomy in the Millimeter Range (IRAM) telescope data is also analysed. Using a single modified black body and a radiative transfer model, we derive the dust temperature, density, and column density. Results. The cloud is highly inhomogeneous, containing several irradiated dense structures. Excited (CO)-C-12 and (CO)-C-13 lines and warm dust grains localised at the edge of the dense structures reveal high column densities of warm/cool dense matter. Both tracers give a good agreement in the local density, column density, and physical extent, leading to the conclusion that they trace the same regions. The derived density profiles show a steep gradient at the cloud edge reaching a maximum gas density of 10(5) -10(6) cm(-3) in the PDR NGC 7023 NW and 10(4)-10(5) cm(-3) in the PDR NGC 7023 E and a subsequent decrease inside the cloud. Close to the PDR edges, the dust temperature (30 K and 20 K for the NW and E PDRs, respectively) is lower than the gas temperature derived from CO lines (65-130 K and 45-55 K, respectively). Further inside the cloud, the dust and gas temperatures are similar. The derived thermal pressure is about 10 times higher in NGC 7023 NW than in NGC 7023 E. Comparing the physical conditions to the positions of known young stellar object candidates in NGC 7023 NW, we find that protostars seem to be spatially correlated with the dense structures. Conclusions. Our approach combining both dust and gas delivers strong constraints on the physical conditions of the PDRs. We find dense and warm molecular gas of high column density in the PDRs. C1 [Koehler, M.; Habart, E.; Arab, H.; Bernard-Salas, J.; Ayasso, H.; Abergel, A.; Dassas, K.] Univ Paris 11, IAS, F-91405 Orsay, France. [Koehler, M.; Habart, E.; Arab, H.; Bernard-Salas, J.; Ayasso, H.; Abergel, A.; Dassas, K.] CNRS, F-91405 Orsay, France. [Bernard-Salas, J.] Open Univ, Dept Phys Sci, Milton Keynes MK7 6AA, Bucks, England. [Zavagno, A.] CNRS, Lab Astrophys Marseille, UMR 6110, F-13388 Marseille 13, France. [Zavagno, A.] Univ Aix Marseille 1, F-13388 Marseille 13, France. [Polehampton, E.] Rutherford Appleton Lab, RAL Space, Didcot OX11 0QX, Oxon, England. [Polehampton, E.; van der Wiel, M. H. D.; Naylor, D. A.; Makiwa, G.] Univ Lethbridge, Dept Phys & Astron, Inst Space Imaging Sci, Lethbridge, AB T1K 3M4, Canada. [Joblin, C.; Berne, O.] Univ Toulouse, UPS OMP, IRAP, F-31400 Toulouse, France. [Joblin, C.; Berne, O.] CNRS, IRAP, F-31028 Toulouse 4, France. [Pilleri, P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fuente, A.] OAN, IGN, Alcala De Henares 28803, Spain. [Gerin, M.] Observ Paris, LERMA, F-75014 Paris, France. [Goicoechea, J. R.] CSIC INTA, Ctr Astrobiol, Dept Astrofis, Madrid 28850, Spain. [Teyssier, D.] ESAC, Madrid 28691, Spain. RP Kohler, M (reprint author), Univ Paris 11, IAS, Bat 121, F-91405 Orsay, France. EM mkoehler@ias.u-psud.fr RI van der Wiel, Matthijs/M-4531-2014; Fuente, Asuncion/G-1468-2016 OI van der Wiel, Matthijs/0000-0002-4325-3011; Fuente, Asuncion/0000-0001-6317-6343 FU Herschel SPIRE Guaranteed Time Key project Evolution of Interstellar Dust; CSA (Canada); NAOC (China); CEA (France); CNES (France); CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); NASA (USA); Spanish MINECO [CSD2009-00038, AYA2012-32032] FX We thank the anonymous referee for very helpful suggestions and comments. This research acknowledges the support of the Herschel SPIRE Guaranteed Time Key project Evolution of Interstellar Dust. SPIRE has been developed by a consortium of institutes led by Cardiff Univ. (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC (UK); and NASA (USA). AF and JRG thanks the Spanish MINECO for funding support from grants CSD2009-00038 and AYA2012-32032. NR 64 TC 5 Z9 5 U1 0 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP PY 2014 VL 569 AR A109 DI 10.1051/0004-6361/201322711 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AQ8PZ UT WOS:000343092100016 ER PT J AU Trevino-Morales, SP Pilleri, P Fuente, A Kramer, C Roueff, E Gonzalez-Garcia, M Cernicharo, J Gerin, M Goicoechea, JR Pety, J Berne, O Ossenkopf, V Ginard, D Garcia-Burillo, S Rizzo, JR Viti, S AF Trevino-Morales, S. P. Pilleri, P. Fuente, A. Kramer, C. Roueff, E. Gonzalez-Garcia, M. Cernicharo, J. Gerin, M. Goicoechea, J. R. Pety, J. Berne, O. Ossenkopf, V. Ginard, D. Garcia-Burillo, S. Rizzo, J. R. Viti, S. TI Deuteration around the ultracompact HII region Monoceros R2 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE astrochemistry; HII regions; photon-dominated region (PDR); radio lines: ISM ID DENSE INTERSTELLAR CLOUDS; GRAIN SURFACE-CHEMISTRY; DEUTERIUM FRACTIONATION; LOW-TEMPERATURE; DARK CLOUDS; PHOTODISSOCIATION REGIONS; MOLECULAR-SPECTROSCOPY; EVOLUTIONARY TRACER; PHYSICAL CONDITIONS; SMALL HYDROCARBONS AB Context. The massive star-forming region Monoceros R2 (Mon R2) hosts the closest ultra-compact HII region, where the photon-dominated region (PDR) between the ionized and molecular gas can be spatially resolved with current single-dish telescopes. Aims. We aim at studying the chemistry of deuterated molecules toward Mon R2 to determine the deuterium fractions around a high-UV irradiated PDR and investigate the chemistry of these species. Methods. We used the IRAM-30 m telescope to carry out an unbiased spectral survey toward two important positions (namely IF and MP2) in Mon R2 at 1, 2, and 3 mm. This spectral survey is the observational basis of our study of the deuteration in this massive star-forming region. Our high spectral resolution observations (similar to 0.25-0.65 km s(-1)) allowed us to resolve the line profiles of the different species detected. Results. We found a rich chemistry of deuterated species at both positions of Mon R2, with detections of C2D, DCN, DNC, DCO+, D2CO, HDCO, NH2D, and N2D+ and their corresponding hydrogenated species and rarer isotopologs. The high spectral resolution of our observations allowed us to resolve three velocity components: the component at 10 km s(-1) is detected at both positions and seems associated with the layer most exposed to the UV radiation from IRS 1; the component at 12 km s(-1) is found toward the IF position and seems related to the foreground molecular gas; finally, a component at 8.5 km s(-1) is only detected toward the MP2 position, most likely related to a low-UV irradiated PDR. We derived the column density of the deuterated species (together with their hydrogenated counterparts), and determined the deuterium fractions as D-frac = [XD]/[XH]. The values of Dfrac are around 0.01 for all the observed species, except for HCO+ and N2H+, which have values 10 times lower. The values found in Mon R2 are similar to those measured in the Orion Bar, and are well explained with a pseudo-time-dependent gas-phase model in which deuteration occurs mainly via ion-molecule reactions with H2D+, CH2D+ and C2HD+. Finally, the [(HCN)-C-13]/[(HNC)-C-13] ratio is very high (similar to 11) for the 10 km s(-1) component, which also agree with our model predictions for an age of similar to 0.01 to a few 0.1 Myr. Conclusions. The deuterium chemistry is a good tool for studying the low-mass and high-mass star-forming regions. However, while low-mass star-forming regions seem well characterized with D-frac(N2H+) or D-frac(HCO+), a more complete chemical modeling is required to date massive star-forming regions. This is due to the higher gas temperature together with the rapid evolution of massive protostars. C1 [Trevino-Morales, S. P.; Kramer, C.; Gonzalez-Garcia, M.] Inst Radioastron Milimetr IRAM Spain, Granada 18012 20, Spain. [Pilleri, P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Pilleri, P.; Fuente, A.; Ginard, D.; Garcia-Burillo, S.] Observ Astron Nacl, Madrid 28803, Spain. [Pilleri, P.; Cernicharo, J.; Goicoechea, J. R.; Rizzo, J. R.] Ctr Astrobiol INTA CSIC, Dept Astrofis, Torrejon De Ardoz 28850, Spain. [Roueff, E.] CNRS, LUTH UMR 8102, F-92195 Meudon, France. [Roueff, E.] Observ Paris, F-92195 Meudon, France. [Gerin, M.] CNRS, UMR 8112, LERMA, F-75014 Paris, France. [Gerin, M.] Observ Paris, F-75014 Paris, France. [Pety, J.] IRAM, F-38406 St Martin Dheres, France. [Pety, J.] Observ Paris, UMR 8112, LERMA LRA, F-75231 Paris, France. [Pety, J.] Ecole Normale Super, F-75231 Paris, France. [Berne, O.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse, France. [Berne, O.] CNRS, IRAP, F-31028 Toulouse 4, France. [Ossenkopf, V.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. [Viti, S.] UCL, Dept Phys & Astron, London, England. RP Trevino-Morales, SP (reprint author), Inst Radioastron Milimetr IRAM Spain, Ave Div Pastora 7, Granada 18012 20, Spain. EM trevino@iram.es RI Rizzo, J. Ricardo/N-5879-2014; Fuente, Asuncion/G-1468-2016; OI Rizzo, J. Ricardo/0000-0002-8443-6631; Fuente, Asuncion/0000-0001-6317-6343; PETY, Jerome/0000-0003-3061-6546; Garcia-Burillo, Santiago/0000-0003-0444-6897; Ginard Pariente, David/0000-0003-0471-0926 FU Spanish MINECO [CSD2009-00038, AYA2009-07304, AYA2012-32032] FX We acknowledge A. Sanchez-Monge for useful comments and suggestions. We also thank J. A. Toala for a critical reading of the manuscript. We thank the anonymous referee for his/her comments. We thank the Spanish MINECO for funding support from grants CSD2009-00038, AYA2009-07304, and AYA2012-32032. NR 74 TC 3 Z9 3 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP PY 2014 VL 569 AR A19 DI 10.1051/0004-6361/201423407 PG 30 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AQ8PZ UT WOS:000343092100040 ER PT J AU Winter, W Tjus, JB Klein, SR AF Winter, W. Tjus, J. Becker Klein, S. R. TI Impact of secondary acceleration on the neutrino spectra in gamma-ray bursts SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE acceleration of particles; neutrinos; astroparticle physics; gamma-ray burst: general ID HIGH-ENERGY NEUTRINOS; COSMIC NEUTRINOS; MUON NEUTRINOS; EMISSION; ICECUBE; DETECTOR; SEARCH; MODELS; SIMULATIONS; VARIABILITY AB Context. The observation of charged cosmic rays with energies up to 10(20) eV shows that particle acceleration must occur in astrophysical sources. Acceleration of secondary particles like muons and pions, produced in cosmic ray interactions, are usually neglected, however, when calculating the flux of neutrinos from cosmic ray interactions. Aims. Here, we discuss the acceleration of secondary muons, pions, and kaons in gamma-ray bursts (GRBs) within the internal shock scenario, and their impact on the neutrino fluxes. Methods. We introduce a two-zone model consisting of an acceleration zone (the shocks) and a radiation zone (the plasma downstream the shocks). The acceleration in the shocks, which is an unavoidable consequence of efficient proton acceleration, requires efficient transport from the radiation back to the acceleration zone. On the other hand, stochastic acceleration in the radiation zone can enhance the secondary spectra of muons and kaons significantly if there is a sufficiently large turbulent region. Results. Overall, it is plausible that neutrino spectra can be enhanced by up to a factor of two at the peak by stochastic acceleration, that an additional spectral peak appears from shock acceleration of the secondary muons and pions, and that the neutrino production from kaon decays is enhanced. Conclusions. Depending on the GRB parameters, the general conclusions concerning the limits to the internal shock scenario obtained by recent IceCube and ANTARES analyses may be affected by up to a factor of two by secondary acceleration. Most of the changes occur at energies above 10(7) GeV, so the effects for next-generation radio-detection experiments will be more pronounced. In the future, however, if GRBs are detected as high-energy neutrino sources, the detection of one or several pronounced peaks around 10(6) GeV or higher energies could help to derive the basic properties of the magnetic field strength in the GRB. C1 [Winter, W.] DESY, D-15738 Zeuthen, Germany. [Tjus, J. Becker] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Klein, S. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Klein, S. R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Winter, W (reprint author), DESY, Platanenallee 6, D-15738 Zeuthen, Germany. EM walter.winter@desy.de; julia.tjus@rub.de; srklein@lbl.gov RI Tjus, Julia/G-8145-2012 FU DFG [WI 2639/3-1, WI 2639/4-1]; FP7 Invisibles network (Marie Curie Actions) [PITN-GA-2011-289442]; "Helmholtz Alliance for Astroparticle Physics HAP" - Initiative and Networking fund of the Helmholtz association; Research Department of Plasmas with Complex Interactions (Bochum); MERCUR Project [Pr-2012-0008]; US National Science Foundation [PHY-1307472]; US Department of Energy [DE-AC-76SF00098] FX W.W. acknowledges support from DFG grants WI 2639/3-1 and WI 2639/4-1, the FP7 Invisibles network (Marie Curie Actions, PITN-GA-2011-289442), and the "Helmholtz Alliance for Astroparticle Physics HAP", funded by the Initiative and Networking fund of the Helmholtz association. J.B.T. acknowledges support from the Research Department of Plasmas with Complex Interactions (Bochum) and from the MERCUR Project Pr-2012-0008. The work of S.K. was supported in part by US National Science Foundation under grant PHY-1307472 and the US Department of Energy under contract number DE-AC-76SF00098. We are grateful to P. Baerwald, M. Reynoso, R. Tarkeshian, and E. Waxman for useful discussions. We thank members of the IceCube collaboration for useful discussions. NR 54 TC 8 Z9 8 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP PY 2014 VL 569 AR A58 DI 10.1051/0004-6361/201423745 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AQ8PZ UT WOS:000343092100059 ER PT J AU Iyer, G Hultman, N Fetter, S Kim, SH AF Iyer, Gokul Hultman, Nathan Fetter, Steve Kim, Son H. TI Implications of small modular reactors for climate change mitigation SO ENERGY ECONOMICS LA English DT Article DE Small modular reactor; Climate change; Nuclear Integrated assessment model ID NUCLEAR-POWER; TECHNOLOGICAL-CHANGE; ENERGY TECHNOLOGIES; INTEGRATED ASSESSMENT; ENVIRONMENTAL-POLICY; SAFETY FEATURES; PUBLIC-OPINION; PERCEIVED RISK; LOCK-IN; FUTURE AB Achieving climate policy targets will require large-scale deployment of low-carbon energy technologies, including nuclear power. The small modular reactor (SMR) is viewed as a possible solution to the problems of energy security as well as climate change. In this paper, we use an integrated assessment model (IAM) to investigate the evolution of a global energy portfolio with SMRs under a stringent climate policy. Technology selection in the model is based on costs; we use results from previous expert elicitation studies of SMR costs. We find that the costs of achieving a 2 C target are lower with SMRs than without. The costs are higher when large reactors do not compete for market share compared to a world in which they can compete freely. When both SMRs and large reactors compete for market share, reduction in mitigation cost is achieved only under advanced assumptions about SMR technology costs and future cost improvements. While the availability of SMRs could lower mitigation costs by a moderate amount, actual realization of these benefits would depend on the rapid up-scaling of SMRs in the near term. Such rapid deployment could be limited by several social, institutional and behavioral obstacles. (C)2014 Elsevier B.V. All rights reserved. C1 [Iyer, Gokul; Hultman, Nathan; Fetter, Steve] Univ Maryland, Sch Publ Policy, College Pk, MD 20742 USA. [Iyer, Gokul; Hultman, Nathan; Kim, Son H.] Joint Global Change Res Inst, Pacific NW Natl Lab, College Pk, MD 20740 USA. [Iyer, Gokul; Hultman, Nathan; Kim, Son H.] Univ Maryland, College Pk, MD 20740 USA. RP Iyer, G (reprint author), Joint Global Change Res Inst, 5825 Univ Res Court,Suite 3500, College Pk, MD 20740 USA. NR 91 TC 3 Z9 3 U1 4 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0140-9883 EI 1873-6181 J9 ENERG ECON JI Energy Econ. PD SEP PY 2014 VL 45 BP 144 EP 154 DI 10.1016/j.eneco2014.06.023 PG 11 WC Economics SC Business & Economics GA AR5GQ UT WOS:000343613500012 ER PT J AU Harvey, W Park, IH Rubel, O Pascucci, V Bremer, PT Li, CL Wang, YS AF Harvey, William Park, In-Hee Ruebel, Oliver Pascucci, Valerio Bremer, Peer-Timo Li, Chenglong Wang, Yusu TI A collaborative visual analytics suite for protein folding research SO JOURNAL OF MOLECULAR GRAPHICS & MODELLING LA English DT Article DE Molecular simulation data; Visualization tool ID NONLINEAR DIMENSIONALITY REDUCTION; POTENTIAL-ENERGY SURFACES; LANDSCAPE; CRYSTALLINS; TOPOLOGY; PEPTIDE; VISUALIZATION; SIMULATIONS; EIGENMAPS; DYNAMICS AB Molecular dynamics (MD) simulation is a crucial tool for understanding principles behind important biochemical processes such as protein folding and molecular interaction. With the rapidly increasing power of modern computers, large-scale MD simulation experiments can be performed regularly, generating huge amounts of MD data. An important question is how to analyze and interpret such massive and complex data. One of the (many) challenges involved in analyzing MD simulation data computationally is the high-dimensionality of such data. Given a massive collection of molecular conformations, researchers typically need to rely on their expertise and prior domain knowledge in order to retrieve certain conformations of interest. It is not easy to make and test hypotheses as the data set as a whole is somewhat "invisible" due to its high dimensionality. In other words, it is hard to directly access and examine individual conformations from a sea of molecular structures, and to further explore the entire data set. There is also no easy and convenient way to obtain a global view of the data or its various modalities of biochemical information. To this end, we present an interactive, collaborative visual analytics tool for exploring massive, high-dimensional molecular dynamics simulation data sets. The most important utility of our tool is to provide a platform where researchers can easily and effectively navigate through the otherwise "invisible" simulation data sets, exploring and examining molecular conformations both as a whole and at individual levels. The visualization is based on the concept of a topological landscape, which is a 2D terrain metaphor preserving certain topological and geometric properties of the high dimensional protein energy landscape. In addition to facilitating easy exploration of conformations, this 2D terrain metaphor also provides a platform where researchers can visualize and analyze various properties (such as contact density) overlayed on the top of the 20 terrain. Finally, the software provides a collaborative environment where multiple researchers can assemble observations and biochemical events into storyboards and share them in real time over the Internet via a client-server architecture. The software is written in Scala and runs on the cross-platform Java Virtual Machine. Binaries and source code are available at http://www.aylasoftware.org and have been released under the GNU General Public License. (C) 2014 Elsevier Inc. All rights reserved. C1 [Harvey, William; Wang, Yusu] Ohio State Univ, Dept Comp Sci & Engn, Columbus, OH 43210 USA. [Park, In-Hee; Li, Chenglong] Ohio State Univ, Chem Phys Program, Columbus, OH 43210 USA. [Ruebel, Oliver] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Visualizat Grp, Berkeley, CA 94720 USA. [Pascucci, Valerio] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT USA. [Bremer, Peer-Timo] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA USA. [Li, Chenglong] Ohio State Univ, Coll Pharm, Columbus, OH 43210 USA. RP Harvey, W (reprint author), Ohio State Univ, Dept Comp Sci & Engn, Columbus, OH 43210 USA. EM harveywi@cse.ohio-state.edu; yusu@cse.ohio-state.edu RI Li, Chenglong/E-7182-2010 OI Li, Chenglong/0000-0003-3174-8719 FU National Science Foundation [DBI-0750891, CCF-1319406] FX We would like to thank anonymous reviewers for helpful comments. And we thank the Ohio Supercomputer Center for generous computing resources. This work is partially supported by National Science Foundation under projects DBI-0750891 and CCF-1319406. NR 52 TC 0 Z9 0 U1 1 U2 11 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1093-3263 EI 1873-4243 J9 J MOL GRAPH MODEL JI J. Mol. Graph. PD SEP PY 2014 VL 53 BP 59 EP 71 DI 10.1016/j.jmgm.2014.06.003 PG 13 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Computer Science, Interdisciplinary Applications; Crystallography; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Computer Science; Crystallography; Mathematical & Computational Biology GA AR5NS UT WOS:000343631800006 PM 25068440 ER PT J AU Romero-Severson, E Skar, H Bulla, I Albert, J Leitner, T AF Romero-Severson, Ethan Skar, Helena Bulla, Ingo Albert, Jan Leitner, Thomas TI Timing and Order of Transmission Events Is Not Directly Reflected in a Pathogen Phylogeny SO MOLECULAR BIOLOGY AND EVOLUTION LA English DT Article DE HIV; within-host dynamics; molecular epidemiology; phylodynamics; transmission reconstruction; coalescent ID IMMUNODEFICIENCY-VIRUS TYPE-1; LIKELY GENE TREES; SPECIES TREES; PRIMARY INFECTION; GENERATION TIME; DRUG-USERS; IN-VIVO; HIV-1; EVOLUTION; POPULATION AB Pathogen phylogenies are often used to infer spread among hosts. There is, however, not an exact match between the pathogen phylogeny and the host transmission history. Here, we examine in detail the limitations of this relationship. First, all splits in a pathogen phylogeny of more than 1 host occur within hosts, not at the moment of transmission, predating the transmission events as described by the pretransmission interval. Second, the order in which nodes in a phylogeny occur may be reflective of the within-host dynamics rather than epidemiologic relationships. To investigate these phenomena, motivated by within-host diversity patterns, we developed a two-phase coalescent model that includes a transmission bottleneck followed by linear outgrowth to a maximum population size followed by either stabilization or decline of the population. The model predicts that the pretransmission interval shrinks compared with predictions based on constant population size or a simple transmission bottleneck. Because lineages coalesce faster in a small population, the probability of a pathogen phylogeny to resemble the transmission history depends on when after infection a donor transmits to a new host. We also show that the probability of inferring the incorrect order of multiple transmissions from the same host is high. Finally, we compare time of HIV-1 infection informed by genetic distances in phylogenies to independent biomarker data, and show that, indeed, the pretransmission interval biases phylogeny-based estimates of when transmissions occurred. We describe situations where caution is needed not to misinterpret which parts of a phylogeny that may indicate outbreaks and tight transmission clusters. C1 [Romero-Severson, Ethan; Skar, Helena; Bulla, Ingo; Leitner, Thomas] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. [Albert, Jan] Karolinska Inst, Dept Microbiol Tumor & Cell Biol, Stockholm, Sweden. [Albert, Jan] Karolinska Univ Hosp, Dept Clin Microbiol, Stockholm, Sweden. RP Leitner, T (reprint author), Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. EM tkl@lanl.gov FU National Institutes of Health [R01AI087520]; Vetenskapsradet [623-2011-1100, K2008-56X-09935-17-3]; Deutsche Forschungsgemeinschaft [BU 2685/4-1]; EU project SPREAD [QLK2-CT-2001-01344]; EU project CHAIN FX This work was supported by National Institutes of Health (grant number R01AI087520), Vetenskapsradet (fellowship 623-2011-1100), Deutsche Forschungsgemeinschaft (fellowship BU 2685/4-1), Vetenskapsradet (grant number K2008-56X-09935-17-3), and EU projects SPREAD (QLK2-CT-2001-01344), and CHAIN (FP7/2007-2013). NR 56 TC 19 Z9 19 U1 1 U2 11 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0737-4038 EI 1537-1719 J9 MOL BIOL EVOL JI Mol. Biol. Evol. PD SEP PY 2014 VL 31 IS 9 BP 2472 EP 2482 DI 10.1093/molbev/msu179 PG 11 WC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity GA AR2GF UT WOS:000343401100018 PM 24874208 ER PT J AU Pierson, FB Williams, CJ Kormos, PR Al-Hamdan, OZ AF Pierson, Frederick B. Williams, C. Jason Kormos, Patrick R. Al-Hamdan, Osama Z. TI Short-Term Effects of Tree Removal on Infiltration, Runoff, and Erosion in Woodland-Encroached Sagebrush Steppe SO RANGELAND ECOLOGY & MANAGEMENT LA English DT Article DE aggregate stability; hydrophobicity; juniper; pinon; prescribed fire; rangeland; restoration; soil water repellency; tree mastication ID SOIL-WATER REPELLENCY; PINYON-JUNIPER WOODLAND; WESTERN JUNIPER; PRESCRIBED-FIRE; BROMUS-TECTORUM; AGGREGATE STABILITY; RANGELAND HYDROLOGY; TRANSITION MODELS; SEMIARID WOODLAND; CENTRAL OREGON AB Land owners and managers across the western United States are increasingly searching for methods to evaluate and mitigate the effects of woodland encroachment on sagebrush steppe ecosystems. We used small-plot scale (0.5 m(2)) rainfall simulations and measures of vegetation, ground cover, and soils to investigate woodland response to tree removal (prescribed fire and mastication) at two late-succession woodlands. We also evaluated the effects of burning on soil water repellency and effectiveness of aggregate stability indices to detect changes in erosion potential. Plots were located in interspaces between tree and shrub canopies and on undercanopy tree and shrub microsites. Erosion from untreated interspaces in the two woodlands differed more than 6-fold, and erosion responses to prescribed burning differed by woodland site. High-intensity rainfall (102 mm . h(-1)) on the less erodible woodland generated amplified runoff and erosion from tree microsites postfire, but erosion (45-75 g . m(-2)) was minor relative to the 3-13-fold fire-induced increase in erosion on tree microsites at the highly erodible site (240 295 g . m(-2)). Burning the highly erodible woodland also generated a 7-fold increase in erosion from shrub microsites (220-230 g .m(-2)) and 280-350 g . m(-2) erosion from interspaces. High levels of runoff (40-45 mm) and soil erosion (230-275 g . m(-2)) on unburned interspaces at the more erodible site were reduced 4-5-fold (10 mm and 50 g . m(-2)) by masticated tree material. The results demonstrate that similarly degraded conditions at woodland-encroached sites may elicit differing hydrologic and erosion responses to treatment and that treatment decisions should consider inherent site-specific erodibility when evaluating tree-removal alternatives. Strong soil water repellency was detected from 0 cm to 3 cm soil depth underneath unburned tree canopies at both woodlands and its strength was not altered by burning. However, fire removal of litter exacerbated repellency effects on infiltration, runoff generation, and erosion. The aggregate stability index method detected differences in relative soil stability between areas underneath trees and in the intercanopy at both sites, but failed to provide any indication of between-site differences in erodibility or the effects of burning on soil erosion potential. C1 [Pierson, Frederick B.; Williams, C. Jason; Al-Hamdan, Osama Z.] ARS, Northwest Watershed Res Ctr, USDA, Boise, ID 83712 USA. [Kormos, Patrick R.] US Forest Serv, Rocky Mt Res Stn, USDA, Boise, ID 83702 USA. [Kormos, Patrick R.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. [Al-Hamdan, Osama Z.] Univ Idaho, Dept Biol & Agr Engn, Moscow, ID 83844 USA. RP Pierson, FB (reprint author), ARS, Northwest Watershed Res Ctr, USDA, 800 Pk Blvd,Suite 105, Boise, ID 83712 USA. EM fred.pierson@ars.usda.gov OI Kormos, Patrick/0000-0003-1874-9215; Williams, Jason/0000-0002-6289-4789 FU US Joint Fire Science Program; National Interagency Fire Center; Great Northern Landscape Conservation Cooperative; Bureau of Land Management FX The authors thank Jaime Calderon and Mathew Frisby for assistance with data collection. We also thank two anonymous reviewers whose comments and suggestions improved the manuscript. This is Contribution Number 89 of the Sagebrush Steppe Treatment Evaluation Project (SageSTEP), funded by the US Joint Fire Science Program, the Bureau of Land Management, the National Interagency Fire Center, and the Great Northern Landscape Conservation Cooperative. NR 99 TC 11 Z9 12 U1 3 U2 37 PU SOC RANGE MANAGEMENT PI LAKEWOOD PA 445 UNION BLVD, STE 230, LAKEWOOD, CO 80228-1259 USA SN 1550-7424 EI 1551-5028 J9 RANGELAND ECOL MANAG JI Rangel. Ecol. Manag. PD SEP PY 2014 VL 67 IS 5 BP 522 EP 538 DI 10.2111/REM-D-13-00033.1 PG 17 WC Ecology; Environmental Sciences SC Environmental Sciences & Ecology GA AR3ZY UT WOS:000343529000008 ER PT J AU Wagle, P Xiao, XM Torn, MS Cook, DR Matamala, R Fischer, ML Jin, C Dong, JW Biradar, C AF Wagle, Pradeep Xiao, Xiangming Torn, Margaret S. Cook, David R. Matamala, Roser Fischer, Marc L. Jin, Cui Dong, Jinwei Biradar, Chandrashekhar TI Sensitivity of vegetation indices and gross primary production of tallgrass prairie to severe drought SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Drought; Gross primary production; Light use efficiency; MODIS; Vegetation Photosynthesis Model (VPM) ID NET PRIMARY PRODUCTIVITY; EVERGREEN NEEDLELEAF FOREST; LIGHT-USE EFFICIENCY; CARBON-DIOXIDE; CLIMATE DATA; ECOSYSTEM EXCHANGE; WATER-VAPOR; NORTHEASTERN CHINA; PROCESS MODEL; MODIS DATA AB Drought affects vegetation photosynthesis and growth. Many studies have used the normalized difference vegetation index (NDVI), which is calculated as the normalized ratio between near infrared and red spectral bands in satellite images, to evaluate the response of vegetation to drought. In this study, we examined the impacts of drought on three vegetation indices (NDVI, enhanced vegetation index, EVI, and land surface water index, LSWI) and CO2 flux from three tallgrass prairie eddy flux tower sites in the U.S. Gross primary production (GPP) was also modeled using a satellite-based Vegetation Photosynthesis Model (VPM), and the modeled GPP (GPP(VPM)) was compared with the GPP (GPP(EC)) derived from eddy covariance measurements. Precipitation at two sites in Oklahoma was 30% below the historical mean in both years of the study period (2005-2006), while the site in Illinois did not experience drought in the 2005-2007 study period. The EVI explained the seasonal dynamics of GPP better than did NDVI. The LSWI dropped below zero during severe droughts in the growing season, showing its potential to track drought. The result shows that GPP was more sensitive to drought than were vegetation indices, and EVI and LSWI were more sensitive than NDVI. We developed a modified function (Wsailar), calculated as a function of LSWI, to account for the effect of severe droughts on GPP in VPM. The GPP(VPM) from the modified VPM accounted for the rapid reduction in GPP during severe droughts and the seasonal dynamics of GPPvpm agreed reasonably well with GPP(EC). Our analysis shows that 8-day averaged values (temperature, vapor-pressure deficit) do not reflect the short-term extreme climate events well, suggesting that satellitebased models may need to be run at daily or hourly scales, especially under unfavorable climatic conditions. (C) 2014 Elsevier Inc. All rights reserved. C1 [Wagle, Pradeep; Xiao, Xiangming; Jin, Cui; Dong, Jinwei] Univ Oklahoma, Ctr Spatial Anal, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Torn, Margaret S.; Fischer, Marc L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Atmospher Sci, Berkeley, CA 94720 USA. [Cook, David R.; Matamala, Roser] Argonne Natl Lab, Argonne, IL 60439 USA. [Biradar, Chandrashekhar] ICARDA, Amman, Jordan. RP Xiao, XM (reprint author), Univ Oklahoma, Ctr Spatial Anal, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. EM xiangming.xiao@ou.edu RI Dong, Jinwei/C-4949-2009; Torn, Margaret/D-2305-2015; OI Dong, Jinwei/0000-0001-5687-803X; Wagle, Pradeep/0000-0001-7444-0461 FU USDA National Institute for Food and Agriculture (NIFA)'s Agriculture and Food Research Initiative (AFRI), Regional Approaches for Adaptation to and Mitigation of Climate Variability and Change [2012-02355]; National Science Foundation EPSCoR [IIA-1301789] FX This study was supported in part by a research grant (Project No. 2012-02355) through the USDA National Institute for Food and Agriculture (NIFA)'s Agriculture and Food Research Initiative (AFRI), Regional Approaches for Adaptation to and Mitigation of Climate Variability and Change, and a research grant from the National Science Foundation EPSCoR (IIA-1301789). We would also like to thank Melissa L. Scott and Dan Hawkes for the English correction and manuscript editing. We thank two reviewers for their critiques and suggestions on the earlier version of the manuscript. NR 59 TC 22 Z9 23 U1 9 U2 60 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD SEP PY 2014 VL 152 BP 1 EP 14 DI 10.1016/j.rse.2014.05.010 PG 14 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA AR2CW UT WOS:000343392200001 ER PT J AU Joiner, J Yoshida, Y Vasilkov, A Schaefer, K Jung, M Guanter, L Zhang, Y Garrity, S Middleton, EM Huemmrich, KF Gu, L Marchesini, LB AF Joiner, J. Yoshida, Y. Vasilkov, Ap. Schaefer, K. Jung, M. Guanter, L. Zhang, Y. Garrity, S. Middleton, E. M. Huemmrich, K. F. Gu, L. Marchesini, L. Belelli TI The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Fluorescence; Vegetation; Fluorescence; Chlorophyll; GOME-2; Gross primary productivity; Light-use efficiency; Flux tower; Growing season; Carbon uptake period; Phenology ID GROSS PRIMARY PRODUCTION; LIGHT-USE EFFICIENCY; DECIDUOUS BROADLEAF FOREST; EDDY-COVARIANCE; UNITED-STATES; MODIS DATA; PHOTOSYNTHETIC EFFICIENCY; RESPONSE PARAMETERS; TOWER MEASUREMENTS; FLUX MEASUREMENTS AB Mapping of terrestrial chlorophyll fluorescence from space has shown potential for providing global measurements related to gross primary productivity (GPP). In particular, space-based fluorescence may provide information on the length of the carbon uptake period. Here, for the first time we test the ability of satellite fluorescence retrievals to track seasonal cycle of photosynthesis as estimated from a diverse set of tower gas exchange measurements from around the world. The satellite fluorescence retrievals are obtained using new observations near the 740 nm emission feature from the Global Ozone Monitoring Experiment 2 (GOME-2) instrument offering the highest temporal and spatial resolution of available global measurements. Because GOME-2 has a large ground footprint (similar to 40 x 80 km(2)) as compared with that of the flux towers and the GOME-2 data require averaging to reduce random errors, we additionally compare with seasonal cycles of upscaled GPP estimated from a machine learning approach averaged over the same temporal and spatial domain as the satellite data surrounding the tower locations. We also examine the seasonality of absorbed photosynthetically-active radiation (AFAR) estimated from satellite measurements. Finally, to assess whether global vegetation models may benefit from the satellite fluorescence retrievals through validation or additional constraints, we examine seasonal cycles of GPP as produced from an ensemble of vegetation models. Several of the data-driven models rely on satellite reflectance-based vegetation parameters to derive estimates of APAR that are used to compute GPP. For forested (especially deciduous broadleaf and mixed forests) and cropland sites, the GOME-2 fluorescence data track the spring onset and autumn shutoff of photosynthesis as delineated by the upscaled GPP estimates. In contrast the reflectance-based indicators and many of the models, particularly those driven by data, tend to overestimate the length of the photosynthetically-active period for these biomes. Satellite fluorescence measurements therefore show potential for improving the seasonal dependence of photosynthesis simulated by global models at similar spatial scales. (C) 2014 Elsevier Inc All rights reserved. C1 [Joiner, J.; Middleton, E. M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Yoshida, Y.; Vasilkov, Ap.] Sci Syst & Applicat Inc, Lanham, MD USA. [Schaefer, K.] Univ Colorado, Natl Snow & Ice Data Ctr, Boulder, CO 80309 USA. [Jung, M.] Max Planck Inst Biogeochem, D-07745 Jena, Germany. [Guanter, L.; Zhang, Y.] Free Univ Berlin, Berlin, Germany. [Garrity, S.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Huemmrich, K. F.] Univ Maryland Baltimore Cty, JCET, Baltimore, MD 21228 USA. [Gu, L.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Marchesini, L. Belelli] Vrije Univ Amsterdam, Amsterdam, Netherlands. RP Garrity, S (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA. EM Joanna.joiner@nasa.gov RI Guanter, Luis/I-1588-2015; Belelli Marchesini, Luca/M-3554-2014; Gu, Lianhong/H-8241-2014; OI Guanter, Luis/0000-0002-8389-5764; Belelli Marchesini, Luca/0000-0001-8408-4675; Gu, Lianhong/0000-0001-5756-8738; Zhang, Yongguang/0000-0001-8286-300X FU NASA Carbon Cycle Science program [NNH1ODA001N]; U.S. Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program [DEFG0204ER63917, DEFG0204ER63911]; CFCAS; NSERC; BIOCAP; Environment Canada; NRCan; CarboEuropeIP; FAOGTOSTCO; iLEAPS; Max Planck Institute for Biogeochemistry; National Science Foundation; University of Tuscia; Wageningen University CALM Group; Universit Laval; U.S. Department of Energy; National Science Foundation (NSF); U.S. Department of Agriculture (USDA); U.S. Department of Energy (DOE); Biological and Environmental Research Program (BER); U.S. DOE, through the Midwestern Center of the National Institute for Global Environmental Change (NIGEC) [DE-FC03-90ER61010]; BER [DE FG02-03ER63624, DE-FG03-01ER63278]; NOAA [NA09OAR4310063]; NASA [NNX10AR63G, NNX11A008A]; NASA Terrestrial Ecology Program [NNX08AI77G]; NSF Biocomplexity Program [EAR-0120630]; Australian Research Council FT [FT1110602]; [DP130101566] FX Funding for this work was provided in part by the NASA Carbon Cycle Science program (NNH1ODA001N). The authors gratefully acknowledge EUMETSAT and the MODIS data processing team for making available the GOME-2 and MODIS data sets, respectively, used here as well as the algorithm development teams. We also thank James Collatz, Randy Kawa, William Cook, Yen-Ben Cheng, Larry Corp, Petya Campbell, Qingyuan Zhang, and Arlindo da Silva for helpful discussions. We are indebted to Philip Durbin for assistance with the GOME-2 satellite data set. We also thank Joshua Fisher and an anonymous reviewer for helpful comments that helped to improve the paper.; This study uses eddy covariance data acquired by the FLUXNET community and in particular by the following networks: AmeriFlux (U.S. Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program (DEFG0204ER63917 and DEFG0204ER63911)) AfriFlux, CarboAfrica, CarboEuropelP, CarboItaly, CarboMont, FluxnetCanada (supported by the CFCAS, NSERC, BIOCAP, Environment Canada, and NRCan), GreenGrass, KoFlux, LBA, NECC, OzFlux, and USCCC. We acknowledge the financial support to the eddy covariance data harmonization provided by the CarboEuropeIP, FAOGTOSTCO, iLEAPS, Max Planck Institute for Biogeochemistry, National Science Foundation, University of Tuscia, Wageningen University CALM Group (Climate change and Adaptive Land and Water Management), Universit Laval and Environment Canada and U.S. Department of Energy and the database development and technical support from the Berkeley Water Center, Lawrence Berkeley National Laboratory, Microsoft Research eScience, Oak Ridge National Laboratory, University of California Berkeley, University of Virginia, and South Dakota State University. Sites in the U.S. also acknowledge support from the National Science Foundation (NSF), U.S. Department of Agriculture (USDA), and the U.S. Department of Energy (DOE). Funding for this research was also provided by the Biological and Environmental Research Program (BER), U.S. DOE, through the Midwestern Center of the National Institute for Global Environmental Change (NIGEC) under Cooperative Agreements DE-FC03-90ER61010, and from the BER under Cooperative Agreements DE FG02-03ER63624 and DE-FG03-01ER63278, NOAA grant NA09OAR4310063, and NASA grants NNX10AR63G and NNX11A008A. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the DOE. Access to the MMSF AmeriFlux site is provided by the Indiana Department of Natural Resources, Division of Forestry. The ZA-Kru site was supported by the NASA Terrestrial Ecology Program (Grant # NNX08AI77G) and NSF Biocomplexity Program (Grant # EAR-0120630) through grants to NPH. The OzFlux sites (AU-Wac, AU-Fog, AI-How) were provided by Jason Beringer who was funded under an Australian Research Council FT (FT1110602) and project support from DP130101566. Support for collection and archiving was provided through the Australia Terrestrial Ecosystem Research Network (TERN) (http://www.tem.org.au). NR 123 TC 38 Z9 38 U1 14 U2 81 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD SEP PY 2014 VL 152 BP 375 EP 391 DI 10.1016/j.rse.2014.06.022 PG 17 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA AR2CW UT WOS:000343392200030 ER PT J AU Kassianov, E Barnard, J Flynn, C Riihimaki, L Michalsky, J Hodges, G AF Kassianov, Evgueni Barnard, James Flynn, Connor Riihimaki, Laura Michalsky, Joseph Hodges, Gary TI Areal-Averaged Spectral Surface Albedo from Ground-Based Transmission Data Alone: Toward an Operational Retrieval SO ATMOSPHERE LA English DT Article DE Multi-Filter Rotating Shadowband Radiometer (MFRSR); tower-based measurements; Moderate Resolution Imaging Spectroradiometer (MODIS) observations; atmospheric transmission; areal-averaged and local surface albedo; spectral and seasonal variability; ARM Southern Great Plains (SGP) site; NOAA Table Mountain site ID CLOUD OPTICAL-THICKNESS; SGP CENTRAL FACILITY; RADIATIVE PROPERTIES; WATER CLOUDS; IN-SITU; MODIS; REFLECTANCE; MODELS; PARAMETERIZATION; DEPTH AB We present here a simple retrieval of the areal-averaged spectral surface albedo using only ground-based measurements of atmospheric transmission under fully overcast conditions. Our retrieval is based on a one-line equation. The feasibility of our retrieval for routine determinations of albedo is demonstrated for different landscapes with various degrees of heterogeneity using three sets of measurements: (1) spectral atmospheric transmission from the Multi-Filter Rotating Shadowband Radiometer (MFRSR) at five wavelengths (415, 500, 615, 673, and 870 nm); (2) tower-based measurements of local surface albedo at the same wavelengths; and (3) areal-averaged surface albedo at four wavelengths (470, 560, 670 and 860 nm) from collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) observations. These integrated datasets cover both temporally long (2008-2013) and short (April-May 2010) periods at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site and the National Oceanic and Atmospheric Administration (NOAA) Table Mountain site, respectively. The calculated root mean square error (RMSE), defined here as the root mean squared difference between the MODIS-derived surface albedo and the retrieved areal-averaged albedo, is quite small (RMSE <= 0.015) and comparable with that obtained previously by other investigators for the shortwave broadband albedo. Good agreement between tower-based measurements of daily-averaged surface albedo for completely overcast and non-overcast conditions is also demonstrated. C1 [Kassianov, Evgueni; Barnard, James; Flynn, Connor; Riihimaki, Laura] Pacific NW Natl Lab, Richland, WA 99352 USA. [Michalsky, Joseph] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. [Hodges, Gary] Univ Colorado, CIRES, Boulder, CO 80309 USA. RP Kassianov, E (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Evgueni.Kassianov@pnnl.gov; James.Barnard@pnnl.gov; Connor.Flynn@pnnl.gov; Laura.Riihimaki@pnnl.gov; Joseph.Michalsky@noaa.gov; Gary.Hodges@noaa.gov FU Office of Biological and Environmental Research (OBER) of the US Department of Energy (DOE); DOE [DE-A06-76RLO 1830] FX This work has been supported by the Office of Biological and Environmental Research (OBER) of the US Department of Energy (DOE) as part of the Atmospheric Radiation Measurement (ARM) Program. The Pacific Northwest National Laboratory (PNNL) is operated by Battelle for the DOE under contract DE-A06-76RLO 1830. The MODIS surface albedo data, with product designation MCD43B3 (https://lpdaac.usgs.gov/products/modis_products_table/mcd43b3; 1-km resolution), are downloaded from the MODIS Reprojection Tool Web Interface (MRTWeb) site (https://mrtweb.cr.usgs.gov/). We greatly appreciate that these data have been made available to us. The image of the Atmospheric Radiation Measurement (ARM) Southern Great Plains Central Facility 60-meter tower is provided courtesy of the U.S. Department of Energy ARM Climate Research Facility. We are grateful to Allison McComiskey and three anonymous reviewers for thoughtful comments. NR 41 TC 5 Z9 5 U1 0 U2 7 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2073-4433 J9 ATMOSPHERE-BASEL JI Atmosphere PD SEP PY 2014 VL 5 IS 3 BP 597 EP 621 DI 10.3390/atmos5030597 PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AQ8UZ UT WOS:000343111900007 ER PT J AU Srinivasan, B Tang, XZ AF Srinivasan, Bhuvana Tang, Xian-Zhu TI Mitigating hydrodynamic mix at the gas-ice interface with a combination of magnetic, ablative, and viscous stabilization SO EPL LA English DT Article ID RAYLEIGH-TAYLOR INSTABILITY; DECELERATION-PHASE; FUSION IMPLOSIONS AB Mix reduction is an important ingredient in yield performance in inertial confinement fusion (ICF). In an ignition-grade target design, shell adiabat shaping can mitigate hydrodynamic mix at the outer ablator surface via a high adiabat like that in the high-foot design, but the high Atwood number at the gas-ice interface associated with a low-adiabat ice, which is desirable for achieving high convergence ratio for a given laser system, still provides a robust drive for hydrodynamic instability during the deceleration phase of the implosion. The results presented here show that combined magnetic, viscous, and ablative stabilization can complement each other for adequate mix mitigation at the gas-ice interface in a range of magnetic-field strengths that are experimentally accessible. Copyright (C) EPLA, 2014 C1 [Srinivasan, Bhuvana; Tang, Xian-Zhu] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Srinivasan, Bhuvana] Virginia Tech, Dept Aerosp & Ocean Engn, Blacksburg, VA 24061 USA. RP Srinivasan, B (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. FU U.S. Department of Energy at Los Alamos National Laboratory FX This research was supported by the U.S. Department of Energy at Los Alamos National Laboratory. The authors wish to acknowledge the use of the WARPX code which was developed at the University of Washington. All simulations in this paper were performed using the Los Alamos National Laboratory Institutional Computing and Turquoise network clusters. NR 34 TC 2 Z9 2 U1 1 U2 5 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD SEP PY 2014 VL 107 IS 6 AR 65001 DI 10.1209/0295-5075/107/65001 PG 6 WC Physics, Multidisciplinary SC Physics GA AQ8YD UT WOS:000343125400012 ER PT J AU Wohlbach, DJ Rovinskiy, N Lewis, JA Sardi, M Schackwitz, WS Martin, JA Deshpande, S Daum, CG Lipzen, A Sato, TK Gasch, AP AF Wohlbach, Dana J. Rovinskiy, Nikolay Lewis, Jeffrey A. Sardi, Maria Schackwitz, Wendy S. Martin, Joel A. Deshpande, Shweta Daum, Christopher G. Lipzen, Anna Sato, Trey K. Gasch, Audrey P. TI Comparative Genomics of Saccharomyces cerevisiae Natural Isolates for Bioenergy Production SO GENOME BIOLOGY AND EVOLUTION LA English DT Article DE bioenergy; genomics; transcriptomics; environmental stress ID AMMONIA FIBER EXPANSION; POPULATION-STRUCTURE; GENE-EXPRESSION; ETHANOL STRESS; TRADE-OFFS; LABORATORY EVOLUTION; WIDE IDENTIFICATION; MICROARRAY DATA; OPEN SOFTWARE; SAKE YEAST AB Lignocellulosic plant material is a viable source of biomass to produce alternative energy including ethanol and other biofuels. However, several factors-including toxic byproducts from biomass pretreatment and poor fermentation of xylose and other pentose sugars-currently limit the efficiency of microbial biofuel production. To begin to understand the genetic basis of desirable traits, we characterized three strains of Saccharomyces cerevisiae with robust growth in a pretreated lignocellulosic hydrolysate or tolerance to stress conditions relevant to industrial biofuel production, through genome and transcriptome sequencing analysis. All stress resistant strains were highly mosaic, suggesting that genetic admixture may contribute to novel allele combinations underlying these phenotypes. Strain-specific gene sets not found in the lab strain were functionally linked to the tolerances of particular strains. Furthermore, genes with signatures of evolutionary selection were enriched for functional categories important for stress resistance and included stress-responsive signaling factors. Comparison of the strains' transcriptomic responses to heat and ethanol treatment-two stresses relevant to industrial bioethanol production-pointed to physiological processes that were related to particular stress resistance profiles. Many of the genotype-by-environment expression responses occurred at targets of transcription factors with signatures of positive selection, suggesting that these strains have undergone positive selection for stress tolerance. Our results generate new insights into potential mechanisms of tolerance to stresses relevant to biofuel production, including ethanol and heat, present a backdrop for further engineering, and provide glimpses into the natural variation of stress tolerance in wild yeast strains. C1 [Wohlbach, Dana J.; Rovinskiy, Nikolay; Lewis, Jeffrey A.; Sardi, Maria; Gasch, Audrey P.] Univ Wisconsin, Genet Lab, Madison, WI 53706 USA. [Wohlbach, Dana J.; Rovinskiy, Nikolay; Lewis, Jeffrey A.; Sardi, Maria; Sato, Trey K.; Gasch, Audrey P.] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Schackwitz, Wendy S.; Martin, Joel A.; Deshpande, Shweta; Daum, Christopher G.; Lipzen, Anna] US DOE, Joint Genome Inst, Walnut Creek, CA USA. RP Gasch, AP (reprint author), Univ Wisconsin, Genet Lab, Madison, WI 53706 USA. EM agasch@wisc.edu FU DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER) [DE-FC02-07ER64494]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF Graduate Research Fellowship FX The authors thank Cletus Kurtzman, Justin Fay, and the Saccharomyces Genome Resequencing Project for yeast strains and sequences; Yaoping Zhang for AFEX hydrolysate; and Christa Pennachio for coordination of sequencing. This work was funded in part by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494). The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. M.S. is supported by an NSF Graduate Research Fellowship. The authors declare that they have no competing interests. NR 77 TC 17 Z9 17 U1 2 U2 31 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1759-6653 J9 GENOME BIOL EVOL JI Genome Biol. Evol. PD SEP PY 2014 VL 6 IS 9 BP 2557 EP 2566 DI 10.1093/gbe/evu199 PG 10 WC Evolutionary Biology; Genetics & Heredity SC Evolutionary Biology; Genetics & Heredity GA AR0GP UT WOS:000343249300030 PM 25364804 ER PT J AU Aad, G Abbott, B Abdallah, J Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaitia, Y Acharya, BS Adamczyka, L Adams, DL Adelman, J Adomeit, S Adye, T Agatonovic-Jovin, T Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimoto, G Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Allbrooke, BMM Allison, LJ Allport, PP Almond, J Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduag, XS Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Araque, JP Arce, ATH Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asmana, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Auerbach, B Augsten, K Aurousseau, M Avolio, G Azuelos, G Azuma, Y Baak, MA Baas, A Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Balek, P Balli, F Banas, E Banerjee, S Bannoura, AAE Bansal, V Bansil, HS Barak, L Baranov, SP Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Bartsch, V Bassalat, A Basye, A Bates, RL Batkova, L Batley, JR Battaglia, M Battistin, M Bauer, F Bawa, HS Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bedikian, S Bednyakov, A Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, K Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernat, P Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, D Besana, MI Besjes, GJ Bessidskaia, O Bessner, MF Besson, N Betancourt, C Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Bingulc, SBA Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boddy, CR Boehler, M Boek, TT Bogaerts, JA Bogdanchikov, AG Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Brendlinger, K Brennan, AJ Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bundock, AC Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Buszello, CP Butler, B Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calandri, A Calderini, G Calfayan, P Calkins, R Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, B Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chang, P Chapleau, B Chapman, JD Charfeddine, D Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Cheng, HC Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Chouridou, S Chow, BKB Chromek-Burckhart, D Chu, ML Chudoba, J Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Cole, B Cole, S Colijn, AP Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Connell, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Cuciuc, CM Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M De Sousaa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Daniells, AC Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, JA Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davignon, O Davison, AR Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Dias, FA Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Dimitrievska, A Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, ADV Doan, TKO Dobos, D Doglioni, C Doherty, T Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova Doyle, AT Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudziak, F Duflot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Dwuznik, M Dyndal, M Ebke, J Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Engelmann, R Erdmann, J Ereditato, A Eriksson, D Ernis, G Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassie, F Fassnacht, P Fassouliotis, D Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feigl, S Feligioni, L Fengd, C Feng, EJ Feng, H Fenyuk, AB Perez, SF Ferrag, S Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, J Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Bustos, ACF Flowerdew, MJ Formica, A Forti, A Fortin, D Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Franchino, S Francis, D Franklin, M Franz, S Fraternali, M French, T Friedrich, C Friedrich, F Froidevaux Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galster, G Gan, KK Gandrajula, RP Gao, J Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, L Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giorgi, FM Giraud, PF Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Glonti, GL Goblirsch-Kolb, M Goddard, JR Godfrey, J Godlewski, J Goeringer, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Grebenyuk, OG Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grohsjean, A Gross, E Grosse-Knetter, J Grossia, GC Groth-Jensen, J Grout, ZJ Guan, L Guescini, F Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Gunther, J Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guttman, N Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hanna, R Hansen, B Hansen, JD Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, PF Hartjes, F Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Heng, Y Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hofmann, JI Hohlfeld, M Holmes, TR Hong, TM van Huysduynen, LH Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, K Jansen, E Jansen, H Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, KE Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jungst, RM Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneda, M Kaneti, S Kantserov, A Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karastathis, N Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Kehoe, R Keil, M Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-zada, F Khandanyan, H Khanov, A Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, HY Kim, H Kim, SH Kimura, N Kind, O King, TB King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Konig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, V Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, Z Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J La Rosa, A La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laier, H Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Le, BT Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, CA Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Lehmacher, M Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzen, G Lenzi, B Leone, R Leone, S Leonhardt, K Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Lester, CM Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, L Li, L Li, S Li, Y Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, E Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loevschall-Jensen, AE Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, BA Long, JD Long, RE Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lou, X Lounis, A Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Mad, LL Maccarrone, G Macchiolo, A Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeno, M Maeno, T Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Maiani, C Maidantchik, C Maier, AA Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, L March, L Marchand, JF Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marques, CN Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazzaferro, L Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Meade, A Mechnich, J Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitani, T Mitrevski, J Mitsou, A Mitsui, S Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Moraes, A Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Moritz, S Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidzeb, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, T Mueller, T Muenstermann, D Munwes, Y Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Narayan, R Nattermann, T Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, MI Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Ohshima, T Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pires, S Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Price, D Price, J Price, LE Prieur, D Primavera, M Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Przysiezniak, H Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Qureshi, A Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Randle-Conde, AS Rangel-Smith, C Rao, K Rauscher, F Rave, TC Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reisin, H Relich, M Rembser, C Ren, H Ren, ZL Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Ridel, M Rieck, P Rieger, J Rijssenbeek, M Rimoldi, A Rinaldi, L Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodrigues, L Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Adam, ER Rompotis, N Roos, L Ros, E Rosati, S Rosbach, K Rose, M Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sacerdoti, S Saddique, A Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval Sandoval Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sartisohn, G Sasaki, O Sasaki, Y Sauvage, G Sauvan, E Savard, P Savu, DO Sawyer, C Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, C Schmitt, S Schneider, B Schnellbach, J Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, N Sivoklokov, SY Sjolin, J Sjursen, TB Skottowe, HP Skovpen, KY Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, KM Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Camillocci, ES Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosebee, M Soualah, R Soueid, P Soukharev, M South, D Spagnolo, S Spano, F Spearman, WR Spettel, F Spighi, R Spigo, G Spousta, M Spreitzer, T Spurlock, B Denis, RDS Staerz, S Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramania, HS Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tannenwald, BB Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Teoh, JJ Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomlinson, L Tomoto, M Tompkins, L Toms, K Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Triplett, N Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Cakir, IT Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Urbaniec, D Urquijo, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Den Wollenberg, W Van Der Deijl, PC van der Geer, R van der Graaf, H Van Der Leeuw, R van der Ster, D van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloso, F Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Virzi, J Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weigell, P Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K White, A White, MJ White, R White, S Whiteson, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilkens, HG Will, JZ Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittig, T Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wright, M Wu, M Wu, SL Wu, X Wu, Y Wulf, E Wyatt, TR Wynne, BM Xella, S Xiao, M Xu, D Xu, L Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamaguchi, Y Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, UK Yang, Y Yanush, S Yao, L Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yen, AL Yildirim, E Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D della Porta, GZ Zhang, D Zhang, F Zhang, H Zhang, J Zhang, L Zhang, X Zhang, Z Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zobernig, G Zoccoli, A Nedden, MZ Zurzolo, G Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaitia, Y. Acharya, B. S. Adamczyka, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Verzini, M. J. Alconada Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Almond, J. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Amaral Coutinho, Y. Amelung, C. Amidei, D. Dos Santos, S. P. Amor Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduag, X. S. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Araque, J. P. Arce, A. T. H. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asmana, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Auerbach, B. Augsten, K. Aurousseau, M. Avolio, G. Azuelos, G. Azuma, Y. Baak, M. A. Baas, A. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Balek, P. Balli, F. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Bartsch, V. Bassalat, A. Basye, A. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, M. Battistin, M. Bauer, F. Bawa, H. S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, K. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernat, P. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, D. Besana, M. I. Besjes, G. J. Bessidskaia, O. Bessner, M. F. Besson, N. Betancourt, C. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boddy, C. R. Boehler, M. Boek, T. T. Bogaerts, J. A. Bogdanchikov, A. G. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Brendlinger, K. Brennan, A. J. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bundock, A. C. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buscher, D. Buscher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Byszewski, M. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Cameron, D. Caminada, L. M. Armadans, R. Caminal Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Castillo Gimenez, V. Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chang, P. Chapleau, B. Chapman, J. D. Charfeddine, D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiefari, G. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Chouridou, S. Chow, B. K. B. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Coggeshall, J. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Colon, G. Compostella, G. Muino, P. Conde Coniavitis, E. Conidi, M. C. Connell, S. H. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Cuciuc, C. -M. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Daniells, A. C. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. A. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Dimitrievska, A. Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobos, D. Doglioni, C. Doherty, T. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudziak, F. Duflot, L. Duguid, L. Duhrssen, M. Dunford, M. Yildiz, H. Duran Duren, M. Durglishvili, A. Dwuznik, M. Dyndal, M. Ebke, J. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Engelmann, R. Erdmann, J. Ereditato, A. Eriksson, D. Ernis, G. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassie, F. Fassnacht, P. Fassouliotis, D. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feigl, S. Feligioni, L. Fengd, C. Feng, E. J. Feng, H. Fenyuk, A. B. Perez, S. Fernandez Ferrag, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Bustos, A. C. Florez Flowerdew, M. J. Formica, A. Forti, A. Fortin, D. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Franklin, M. Franz, S. Fraternali, M. French, T. Friedrich, C. Friedrich, F. Froidevaux Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gandrajula, R. P. Gao, J. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gianotti, F. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Glonti, G. L. Goblirsch-Kolb, M. Goddard, J. R. Godfrey, J. Godlewski, J. Goeringer, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonzalez de la Hoz, S. Parra, G. Gonzalez Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Gossling, C. Gostkin, M. I. Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstrom, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Grebenyuk, O. G. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossia, G. C. Groth-Jensen, J. Grout, Z. J. Guan, L. Guescini, F. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Gunther, J. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guttman, N. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hagebock, S. Hajduk, Z. Hakobyan, H. Haleem, M. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hanna, R. Hansen, B. Hansen, J. D. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, P. F. Hartjes, F. Hasegawa, S. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Herbert, G. H. Hernandez Jimenez, Y. Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hofmann, J. I. Hohlfeld, M. Holmes, T. R. Hong, T. M. van Huysduynen, L. Hooft Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Hulsing, T. A. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Quiles, A. Irles Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, K. Jansen, E. Jansen, H. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, K. E. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jungst, R. M. Jussel, P. Juste Rozas, A. Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneda, M. Kaneti, S. Kantserov, A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karastathis, N. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keil, M. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Y. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Klok, P. F. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koneke, K. Konig, A. C. Konig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Kopke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Kruger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. La Rosa, A. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laier, H. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Le, B. T. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leone, R. Leone, S. Leonhardt, K. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Lester, C. M. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, Y. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, B. A. Long, J. D. Long, R. E. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lou, X. Lounis, A. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Mad, L. L. Maccarrone, G. Macchiolo, A. Miguens, J. Machado Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, M. Maeno, T. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Maiani, C. Maidantchik, C. Maier, A. A. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. de Andrade Filho, L. Manhaes Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, L. March, L. Marchand, J. F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marques, C. N. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin dit Martinez, H. Martinez, M. Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Mattig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazzaferro, L. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitani, T. Mitrevski, J. Mitsou, A. Mitsui, S. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Monig, K. Monini, C. Monk, J. Monnier, E. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Moraes, A. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidzeb, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Mueller, T. Muenstermann, D. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Narayan, R. Nattermann, T. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, M. I. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Ohshima, T. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Damazio, D. Oliveira Garcia, E. Oliver Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Garzon, G. Otero y Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Aranda, C. Padilla Pagacova, M. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedersen, M. Lopez, S. Pedraza Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Garcia-Estan, M. T. Perez Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pires, S. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Przysiezniak, H. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Qureshi, A. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Randle-Conde, A. S. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reisin, H. Relich, M. Rembser, C. Ren, H. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Ridel, M. Rieck, P. Rieger, J. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodrigues, L. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Adam, E. Romero Rompotis, N. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, M. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruhr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sacerdoti, S. Saddique, A. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Martinez, V. Sanchez Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval Sandoval Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sartisohn, G. Sasaki, O. Sasaki, Y. Sauvage, G. Sauvan, E. Savard, P. Savu, D. O. Sawyer, C. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaepe, S. Schaetzel, S. Schafer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skottowe, H. P. Skovpen, K. Yu. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosebee, M. Soualah, R. Soueid, P. Soukharev, M. South, D. Spagnolo, S. Spano, F. Spearman, W. R. Spettel, F. Spighi, R. Spigo, G. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Staerz, S. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Strohmer, R. Strom, D. M. Stroynowski, R. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramania, H. S. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tannenwald, B. B. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Teoh, J. J. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Topilin, N. D. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Triplett, N. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Cakir, I. Turk Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Urbaniec, D. Urquijo, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls Van Den Wollenberg, W. Van Der Deijl, P. C. van der Geer, R. van der Graaf, H. Van Der Leeuw, R. van der Ster, D. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloso, F. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Virzi, J. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weigell, P. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. White, A. White, M. J. White, R. White, S. Whiteson, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilkens, H. G. Will, J. Z. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittig, T. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wright, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wyatt, T. R. Wynne, B. M. Xella, S. Xiao, M. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamaguchi, Y. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, U. K. Yang, Y. Yanush, S. Yao, L. Yao, W-M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yen, A. L. Yildirim, E. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, F. Zhang, H. Zhang, J. Zhang, L. Zhang, X. Zhang, Z. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zobernig, G. Zoccoli, A. Nedden, M. zur Zurzolo, G. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI A neural network clustering algorithm for the ATLAS silicon pixel detector SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Particle tracking detectors; Particle tracking detectors (Solid-state detectors) AB A novel technique to identify and split clusters created by multiple charged particles in the ATLAS pixel detector using a set of artificial neural networks is presented. Such merged clusters are a common feature of tracks originating from highly energetic objects, such as jets. Neural networks are trained using Monte Carlo samples produced with a detailed detector simulation. This technique replaces the former clustering approach based on a connected component analysis and charge interpolation. The performance of the neural network splitting technique is quantified using data from proton-proton collisions at the LHC collected by the ATLAS detector in 2011 and from Monte Carlo simulations. This technique reduces the number of clusters shared between tracks in highly energetic jets by up to a factor of three. It also provides more precise position and error estimates of the clusters in both the transverse and longitudinal impact parameter resolution. C1 [Jackson, P.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Sbrizzi, A.; Subramania, H. S.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Marshall, Z.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] IN2P3, CNRS, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Marshall, Z.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Toggerson, B.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Cote, D.; Darmora, S.; De, K.; Facini, G.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Maeno, M.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Azuelos, G.; Gingrich, D. M.; Khalil-zada, F.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Bosman, M.; Armadans, R. Caminal; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Bueso, X. Portell; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Cirkovic, P.; Gauzzi, P.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Latour, B. Martin dit; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.; Zaman, A.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Javurek, T.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Wilson, J. A.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Javurek, T.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Wilson, J. A.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Kuutmann, E. Bergeaas; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Wendland, D.; Nedden, M. zur] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Meloni, F.; Rossetti, V.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Bechtle, P.; Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Alberghi, G. L.; Bellagamba, L.; Boscherini, D.; Bruni, G.; Bruschi, M.; Caforio, D.; Conta, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Dondero, P.; Fabbri, L.; Ferrari, R.; Franchini, M.; Fraternali, M.; Gabrielli, A.; Gaudio, G.; Giacobbe, B.; Giorgi, F. M.; Grafstrom, P.; Livan, M.; Massa, I.; Mengarelli, A.; Negri, A.; Negrini, M.; Piccinini, M.; Polesello, G.; Polini, A.; Rebuzzi, D. M.; Rimoldi, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Semprini-Cesari, N.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Vercesi, V.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Alberghi, G. L.; Bruni, A.; Caforio, D.; Conta, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Massa, I.; Mengarelli, A.; Piccinini, M.; Polini, A.; Romano, M.; Semprini-Cesari, N.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartmento Fis & Astron, Bologna, Italy. [Arslan, O.; Brock, R.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hagebock, S.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V.; Kraus, J. K.; Kroseberg, J.; Kruger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Liebal, J.; Limbach, C.; Loddenkoetter, T.; Mergelmeyer, S.; Mijovic, L.; Mueller, K.; Nanava, G.; Obermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uchida, K.; Uhlenbrock, M.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Physikal Inst, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Fitzgerald, E. A.; Gozpinar, S.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Amaral Coutinho, Y.; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; de Andrade Filho, L. Manhaes] Univ Fed Juiz de Fora, Juiz De Fora, Brazil. [do Vale, M. A. B.] Univ Fed Sao Joao del Rei, Sao Joao Del Rei, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Hu, X.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Okawa, H.; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Schovancova, J.; Snyder, S.; Steinberg, P.; Triplett, N.; Undrus, A.; Wenaus, T.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Ducu, O. A.; Jinaru, A.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, 26c, Bucharest, Romania. West Univ Timisoara, 26d, Timisoara, Romania. [Garzon, G. Otero y; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Sandoval; Takai, H.; Thomson, M.; Ward, C. P.; Williams, S.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Abreu, R.; Aleksa, M.; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Battistin, M.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Casolino, M.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duhrssen, M.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Franchino, S.; Francis, D.; Froidevaux; Garonne, V.; Gianotti, F.; Gillberg, D.; Glatzer, J.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jakobsen, S.; Jansen, H.; Jungst, R. M.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Martin, B.; Marzin, A.; Messina, A.; Meyer, J.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Rodrigues, L.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Solar, M.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Boveia, A.; Cheng, Y.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.; White, S.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ren, H.; Sun, X.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhu, J.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guan, L.; Han, L.; Jiang, Y.; Liu, J. B.; Liu, K.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Hefei, Anhui, Peoples R China. [Chen, S.; Li, Y.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Fengd, C.; Ge, P.; Mad, L. L.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Li, L.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Cole, B.; Guo, J.; Hu, D.; Hughes, E. W.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Wulf, E.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Dam, M.; Galster, G.; Hansen, B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN, Grp Collegato Cosenza, Lab Nazl Frascati, Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyka, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, Z.; Kuhl, A.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hoffman, J.; Kama, S.; Kehoe, R.; Miyagawa, P. S.; Randle-Conde, A. S.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Lou, X.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Dallas, TX 75230 USA. [Argyropoulos, S.; Asbah, N.; Bessner, M. F.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Monig, K.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Hamburg, Germany. [Argyropoulos, S.; Asbah, N.; Bessner, M. F.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Gaur, B.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Monig, K.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Esch, H.; Gossling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Friedrich, F.; Gumpert, C.; Kobel, M.; Leonhardt, K.; Mader, W. F.; Morgenstern, M.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Pollard, C. S.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA, Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Chevalier, L.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Prokofiev, K.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buscher, D.; Coniavitis, E.; Consorti, V.; Di Simone, A.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Jenni, P.; Kiss, F.; Koneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Madar, R.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Rave, T. C.; Ruhr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alexandre, G.; Ancu, L. S.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Toro, R. Camacho; Clark, A.; Delitzsch, C. M.; della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Li, H.; Mermod, P.; Miucci, A.; Muenstermann, D.; Nektarijevic, S.; Nikolics, K.; Picazio, A.; Pohl, M.; Rosbach, K.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidzeb, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Duren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; Denis, R. D. St.; Stewart, G. A.; Thompson, A. S.; Wright, M.] Univ Glasgow, SUPA, Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Bindi, M.; Blumenschein, U.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Hensel, C.; Kawamura, G.; Keil, M.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Stolte, P.; Schroeder, T. Vazquez; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Le, B. T.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A.; Brandt, O.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Hanke, P.; Hofmann, J. I.; Jongmanns, J.; Khomich, A.; Kluge, E. -E.; Laier, H.; Lang, V. S.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Franz, S.; Jussel, P.; Kneringer, E.; Lukas, W.; Nagai, K.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Gandrajula, R. P.; Mallik, U.; Mandrysch, R.; Morange, N.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Shrestha, S.; Tsukerman, I. I.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Mitani, T.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, N.; Soloshenko, A.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimine, N. I.] Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] Natl Lab High Energy Phys, KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 305, Japan. [Inamaru, Y.; Kishimoto, T.; Kurashige, H.; Kurumida, R.; Ochi, A.; Shimizu, S.; Takeda, H.; Yamazaki, Y.; Yoshida, R.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Verzini, M. J. Alconada; Alonso, F.; Anduag, X. S.; Dova; Monticelli, F.; Wahlberg, H.] Natl Univ La Plata, Inst Fis La Plata, RA-1900 La Plata, Argentina. [Verzini, M. J. Alconada; Alonso, F.; Anduag, X. S.; Dova; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Argentina. [Allison, L. J.; Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Chouridou, S.; Dearnaley, W. J.; Fox, H.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Readioff, N. P.; Schnellbach, J.; Sellers, G.; Vossebeld, J. H.; Waller, P.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Boisvert, V.; Brooks, T.; Cantrill, R.; Connelly, I. A.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Chislett, R. T.; Cooper, B. D.; Davison, A. R.; Davison, P.; Falla, R. J.; Gregersen, K.; Gutschow, C.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Korn, A.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, M. I.; Pilkington, A. D.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Bernius, C.; Greenwood, Z. D.; Jana, K.; Sawyer, L.; Sircar, A.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France. [Aad, G.; Alio, L.; Barbero, M.; Beau, T.; Bertella, C.; Bomben, M.; Calderini, G.; Chen, L.; Clemens, J. C.; Coadou, Y.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Diglio, S.; Djama, F.; Feligioni, L.; Francavilla, P.; Gao, J.; Hoffmann, D.; Hubaut, F.; Hulsing, T. A.; Knoops, E. B. F. G.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Le Guirriec, E.; Lefebvre, G.; Li, B.; Liu, K.; Madaffari, D.; Malaescu, B.; Marchiori, G.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Pralavorio, P.; Ridel, M.; Roos, L.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Trincaz-Duvoid, S.; Ughetto, M.; Vacavant, L.; Vannucci, F.; Varouchas, D.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Meirose, B.; Smirnova, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Blum, W.; Buscher, V.; Caputo, R.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Goeringer, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Ji, W.; Karnevskiy, M.; Kleinknecht, K.; Konig, S.; Kopke, L.; Lin, T. H.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moreno, D.; Moritz, S.; Mueller, T.; Poettgen, R.; Sander, H. G.; Schafer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Peters, R. F. Y.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Chen, L.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Gao, J.; Hoffmann, D.; Hubaut, F.; Hulsing, T. A.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Bellomo, M.; Brau, B.; Colon, G.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Mantifel, R.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Jennens, D.; Kubota, T.; Limosani, A.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Urquijo, P.; Volpi, M.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Harper, D.; Levin, D.; Liu, L.; Long, J. D.; Mc Kee, S. P.; McCarn, A.; Palmer, J. D.; Panikashvili, N.; Qian, J.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, I.; Bromberg, C.; Caughron, S.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Perini, L.; Pizio, C.; Ragusa, F.; Simoniello, R.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Gavrilenko, L.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] PN Lebedev Phys Inst, Acad Sci, Moscow 117924, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, A.; Khodinov, A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Timoshenko, S.; Vorobev, K.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Heller, C.; Hertenberger, R.; Legger, F.; Lorenz, J.; Mann, A.; Mehlhase, S.; Meineck, C.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Schmitt, C.; Vladoiu, D.; Walker, R.; Will, J. Z.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Spettel, F.; Stern, S.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.] Werner Heisenberg Inst Phys, Max Planck Inst Phys, Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Chiefari, G.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Croft, V.; Dao, V.; De Groot, N.; Filthaut, F.; Galea, C.; Klok, P. F.; Konig, A. C.; Nef, P. D.; Salvucci, A.] Radboud Univ Nijmegen, NIKHEF H, Inst Math Astrophys & Particle Phys, NL-6525 ED Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] NIKHEF H, Natl Inst Subat Phys, NL-1009 DB Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] Univ Amsterdam, Amsterdam, Netherlands. [Burghgrave, B.; Calkins, R.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] Univ Illinois, Dept Phys, De Kalb, IL USA. [Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Skovpen, K. Yu.; Soukharev, M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Mitrevski, J.; Nemethy, P.; Nevski, P.] NYU, Dept Phys, New York, NY 10003 USA. [Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Macchiolo, A.; Merritt, H.; Moss, J.; Nagarkar, A.; Nakamura, T.; Pignotti, D. T.; Tannenwald, B. B.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Bousson, N.; Gauzzi, P.; Khanov, A.; Rizatdinova, F.; Sidorov, D.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Majewski, S.; Nef, P. D.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Endo, M.; Hanagaki, K.; Lee, J. S. H.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Apolle, R.; Barr, A. J.; Behr, K.; Boddy, C. R.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Livermore, S. S. A.; Nickerson, R. B.; Pachal, K.; Pinder, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Ospanov, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Ezhilov, A.; Fedin, O. L.; Fedorko, W.; Gratchev, V.; Grebenyuk, O. G.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Su, J.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Dos Santos, S. P. Amor; Amorim, A.; Anjos, N.; Araque, J. P.; Carvalho, J.; Casado, M. P.; Castro, N. F.; Muino, P. Conde; Wemans, A. Do Valle; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Maio, A.; Maneira, J.; Marques, C. N.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIPO, Lisbon, Portugal. [Amorim, A.; Muino, P. Conde; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Dos Santos, S. P. Amor; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal. Univ Minho, Dept Fis, 125E, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Wemans, A. Do Valle] Univ Nova Lisboa, Dept Fis, Caparica, Portugal. [Wemans, A. Do Valle] Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal. [Bohm, J.; Chudoba, J.; Havranek, M.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Gunther, J.; Jakubek, J.; Kohout, Z.; Kral, V.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Mirabelli, G.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Giordano, R.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Dionisi, C.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Mjornmark, J. U.; Monini, C.; Monzani, S.; Nisati, A.; Ouyang, Q.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Dionisi, C.; Gabrielli, A.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monini, C.; Monzani, S.; Camillocci, E. Solfaroli; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Cardarelli, R.; Cattani, G.; Corso-Radu, A.; Di Ciaccio, A.; Grossia, G. C.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Paolozzi, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Cattani, G.; Di Ciaccio, A.; Grossia, G. C.; Iuppa, R.; Mazzaferro, L.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Stanescu, C.; Taccini, C.; Trovatelli, M.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Taccini, C.; Trovatelli, M.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA Marrakech, Marrakech, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Fassie, F.; Haddad, N.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Cheu, E.; Hoffmann, M. Dano; Deliot, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Grabas, H. M. X.; Guyot, C.; Hanna, R.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mal, P.; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Rothberg, J.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Battaglia, M.; Debenedetti, C.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; De Bruin, P. H. Sales; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Paredes, B. Lopez; Paganis, E.; Suruliz, K.; Tovey, D. R.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Dawe, E.; Godfrey, J.; O'Neil, D. C.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; Trottier-McDonald, M.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kagan, M.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nef, P. D.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Batkova, L.; Blazek, T.; Federic, P.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Bruncko, D.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Bristow, K.; Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bronner, J.; Carrillo-Montoya, G. D.; Chen, X.; Hsu, C.; Garcia, B. R. Mellado; Ruan, X.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg 2050, South Africa. [Abulaitia, Y.; Akerstedt, H.; Asmana, B.; Bendtz, K.; Bertoli, G.; Bessidskaia, O.; Bohm, C.; Clement, C.; Cribbs, W. A.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaitia, Y.; Akerstedt, H.; Asmana, B.; Bendtz, K.; Bertoli, G.; Bessidskaia, O.; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Lindquist, E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys Astron & Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; Cerri, A.; Barajas, C. A. Chavez; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, C. A.; Lee, S. C.; Li, B.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Ren, Z. L.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, C.; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, E.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Leisos, A.; Nomidis, I.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.; Sidiropoulou, O.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yang, H.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yang, H.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Brendlinger, K.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Brelier, B.; Chau, C. C.; Ilic, N.; Keung, J.; Krieger, P.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Terashi, K.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Koutsman, A.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Bustos, A. C. Florez; Ramos, J. A. Manjarres; Palacino, G.; Qureshi, A.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Sandoval] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Farrell, S.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, L.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Shaw, K.; Soualah, R.] INFN, Grp Collegato Udine, Udine, Italy. [Acharya, B. S.; De Sanctis, U.; Quayle, W. B.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Cabrera Urban, S.; Casadei, D.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Cabrera Urban, S.; Casadei, D.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Cabrera Urban, S.; Casadei, D.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn & Elect, Valencia, Spain. [Cabrera Urban, S.; Casadei, D.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, IMB CNM, Valencia, Spain. [Fehling-Kaschek, M.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Loh, C. W.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; David, C.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Kimura, N.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Redelbach, A.; Siragusa, G.; Strohmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Barisonzi, M.; Becker, K.; Beermann, T. A.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Enari, Y.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Mattig, P.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Schreyer, M.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Bawa, H. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Chelkov, G. A.; Turchikhin, S.] Tomsk State Univ, Tomsk 634050, Russia. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys IPP, Toronto, ON, Canada. [Fedin, O. L.; Fedorko, W.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Castillo, L. R. Flores] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China. [Gkialas, I.; Papageorgiou, K.] Univ Aegean, Dept Financial & Management Engn, Chios, Greece. [Greenwood, Z. D.; Sawyer, L.; Yacoob, S.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Juste Rozas, A.; Martinez, M.] ICREA, Barcelona, Spain. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Jenni, P.] CERN, Geneva, Switzerland. [Jenni, P.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Korol, A. A.; Maximov, D. A.; Rezanova, O. L.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Pinamonti, M.] SISSA, Int Sch Adv Studies, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Smirnova, L. N.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Toth, J.] Inst Particle & Nucl Phys, Wigner Res Ctr Phys, Budapest, Hungary. [Wang, C.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Xu, L.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI Ferrer, Antonio/H-2942-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Ciubancan, Liviu Mihai/L-2412-2015; Zhukov, Konstantin/M-6027-2015; Shmeleva, Alevtina/M-6199-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Warburton, Andreas/N-8028-2013; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; Smirnova, Oxana/A-4401-2013; Moraes, Arthur/F-6478-2010; Villa, Mauro/C-9883-2009; Bosman, Martine/J-9917-2014; Joergensen, Morten/E-6847-2015; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Marti-Garcia, Salvador/F-3085-2011; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Brooks, William/C-8636-2013; de Groot, Nicolo/A-2675-2009; Wemans, Andre/A-6738-2012; Castro, Nuno/D-5260-2011; Nemecek, Stanislav/G-5931-2014; Gutierrez, Phillip/C-1161-2011; Ventura, Andrea/A-9544-2015; Livan, Michele/D-7531-2012; De, Kaushik/N-1953-2013; Lei, Xiaowen/O-4348-2014; Boyko, Igor/J-3659-2013; Doyle, Anthony/C-5889-2009; Di Domenico, Antonio/G-6301-2011; Fassi, Farida/F-3571-2016; Grinstein, Sebastian/N-3988-2014; la rotonda, laura/B-4028-2016; Juste, Aurelio/I-2531-2015; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; Zaitsev, Alexandre/B-8989-2017; Peleganchuk, Sergey/J-6722-2014; Monzani, Simone/D-6328-2017; Li, Liang/O-1107-2015; Fullana Torregrosa, Esteban/A-7305-2016; Korol, Aleksandr/A-6244-2014; Olshevskiy, Alexander/I-1580-2016; Snesarev, Andrey/H-5090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; messina, andrea/C-2753-2013; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Staroba, Pavel/G-8850-2014; Goncalo, Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; Solodkov, Alexander/B-8623-2017; Carvalho, Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Buttar, Craig/D-3706-2011; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; Perrino, Roberto/B-4633-2010; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; OI Haas, Andrew/0000-0002-4832-0455; Galhardo, Bruno/0000-0003-0641-301X; Arratia, Miguel/0000-0001-6877-3315; Della Volpe, Domenico/0000-0001-8530-7447; Pina, Joao /0000-0001-8959-5044; Hays, Chris/0000-0003-2371-9723; Ferrer, Antonio/0000-0003-0532-711X; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Ciubancan, Liviu Mihai/0000-0003-1837-2841; Tikhomirov, Vladimir/0000-0002-9634-0581; Warburton, Andreas/0000-0002-2298-7315; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; Smirnova, Oxana/0000-0003-2517-531X; Moraes, Arthur/0000-0002-5157-5686; Villa, Mauro/0000-0002-9181-8048; Bosman, Martine/0000-0002-7290-643X; Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Brooks, William/0000-0001-6161-3570; Wemans, Andre/0000-0002-9669-9500; Castro, Nuno/0000-0001-8491-4376; Ventura, Andrea/0000-0002-3368-3413; Livan, Michele/0000-0002-5877-0062; De, Kaushik/0000-0002-5647-4489; Lei, Xiaowen/0000-0002-2564-8351; Boyko, Igor/0000-0002-3355-4662; Doyle, Anthony/0000-0001-6322-6195; Di Domenico, Antonio/0000-0001-8078-2759; Fassi, Farida/0000-0002-6423-7213; Grinstein, Sebastian/0000-0002-6460-8694; la rotonda, laura/0000-0002-6780-5829; Leonidopoulos, Christos/0000-0002-7241-2114; Osculati, Bianca Maria/0000-0002-7246-060X; Giorgi, Filippo Maria/0000-0003-1589-2163; Coccaro, Andrea/0000-0003-2368-4559; Cristinziani, Markus/0000-0003-3893-9171; Chromek-Burckhart, Doris/0000-0003-4243-3288; Qian, Jianming/0000-0003-4813-8167; Giordani, Mario/0000-0002-0792-6039; Juste, Aurelio/0000-0002-1558-3291; Begel, Michael/0000-0002-1634-4399; Capua, Marcella/0000-0002-2443-6525; Vari, Riccardo/0000-0002-2814-1337; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Nisati, Aleandro/0000-0002-5080-2293; Gray, Heather/0000-0002-5293-4716; Mincer, Allen/0000-0002-6307-1418; Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592; Monzani, Simone/0000-0002-0479-2207; Li, Liang/0000-0001-6411-6107; Troncon, Clara/0000-0002-7997-8524; Fullana Torregrosa, Esteban/0000-0003-3082-621X; Dell'Asta, Lidia/0000-0002-9601-4225; Chen, Hucheng/0000-0002-9936-0115; Sawyer, Lee/0000-0001-8295-0605; Korol, Aleksandr/0000-0001-8448-218X; Olshevskiy, Alexander/0000-0002-8902-1793; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Gauzzi, Paolo/0000-0003-4841-5822; Solodkov, Alexander/0000-0002-2737-8674; Carvalho, Joao/0000-0002-3015-7821; Mashinistov, Ruslan/0000-0001-7925-4676; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; Perrino, Roberto/0000-0002-5764-7337; SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672; Vazquez Schroeder, Tamara/0000-0002-9780-099X; Chen, Chunhui /0000-0003-1589-9955; Price, Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247; Terzo, Stefano/0000-0003-3388-3906; Smirnov, Sergei/0000-0002-6778-073X; Belanger-Champagne, Camille/0000-0003-2368-2617; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Weber, Michele/0000-0002-2770-9031; Wang, Kuhan/0000-0002-6151-0034; Grohsjean, Alexander/0000-0003-0748-8494; La Rosa, Alessandro/0000-0001-6291-2142; Beck, Hans Peter/0000-0001-7212-1096; Prokofiev, Kirill/0000-0002-2177-6401; Veneziano, Stefano/0000-0002-2598-2659; Lacasta, Carlos/0000-0002-2623-6252 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET, European Union; ERC, European Union; NSRF, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; NCN, Poland; GRICES, Portugal; FCT, Portugal; MNE/IFA, Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 17 TC 3 Z9 3 U1 5 U2 68 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD SEP PY 2014 VL 9 AR P09009 DI 10.1088/1748-0221/9/09/P09009 PG 34 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AR0SJ UT WOS:000343281300046 ER PT J AU Abba, A Bedeschi, F Citterio, M Caponio, F Cusimano, A Geraci, A Marino, P Morello, MJ Neri, N Punzi, G Piucci, A Ristori, L Spinella, F Stracka, S Tonelli, D AF Abba, A. Bedeschi, F. Citterio, M. Caponio, F. Cusimano, A. Geraci, A. Marino, P. Morello, M. J. Neri, N. Punzi, G. Piucci, A. Ristori, L. Spinella, F. Stracka, S. Tonelli, D. TI A specialized processor for track reconstruction at the LHC crossing rate SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT International Conference on Instrumentation for Colliding Beam Physics CY FEB 24-MAR 01, 2014 CL Budker Inst Nucl Phys, Novosibirsk, RUSSIA HO Budker Inst Nucl Phys DE Trigger concepts and systems (hardware and software); Data acquisition concepts; Digital electronic circuits AB We present the results of an R&D study of a specialized processor capable of precisely reconstructing events with hundreds of charged-particle tracks in pixel detectors at 40 MHz, thus suitable for processing LHC events at the full crossing frequency. For this purpose we design and test a massively parallel pattern-recognition algorithm, inspired by studies of the processing of visual images by the brain as it happens in nature. We find that high-quality tracking in large detectors is possible with sub-mu s latencies when this algorithm is implemented in modern, highspeed, high-bandwidth FPGA devices. This opens a possibility of making track reconstruction happen transparently as part of the detector readout. C1 [Tonelli, D.] CERN, Geneva, Switzerland. [Abba, A.; Citterio, M.; Caponio, F.; Cusimano, A.; Geraci, A.; Neri, N.] Politecn Milan, I-20133 Milan, Italy. [Abba, A.; Citterio, M.; Caponio, F.; Cusimano, A.; Geraci, A.; Neri, N.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Bedeschi, F.; Marino, P.; Morello, M. J.; Punzi, G.; Piucci, A.; Ristori, L.; Spinella, F.; Stracka, S.] Univ Pisa, Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Bedeschi, F.; Marino, P.; Morello, M. J.; Punzi, G.; Piucci, A.; Ristori, L.; Spinella, F.; Stracka, S.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Ristori, L.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Punzi, G (reprint author), Univ Pisa, Scuola Normale Super Pisa, Lgo Pontecorvo 3, I-56127 Pisa, Italy. EM giovanni.punzi@pi.infn.it RI Marino, Pietro/N-7030-2015; Stracka, Simone/M-3931-2015 OI Marino, Pietro/0000-0003-0554-3066; Stracka, Simone/0000-0003-0013-4714 NR 7 TC 1 Z9 1 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD SEP PY 2014 VL 9 AR C09001 DI 10.1088/1748-0221/9/09/C09001 PG 12 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AR0SJ UT WOS:000343281300001 ER PT J AU Asaadi, J Conrad, JM Gollapinni, S Jones, BJP Jostlein, H John, JMS Strauss, T Wolbers, S Zennamo, J AF Asaadi, J. Conrad, J. M. Gollapinni, S. Jones, B. J. P. Jostlein, H. John, J. M. St. Strauss, T. Wolbers, S. Zennamo, J. TI Testing of high voltage surge protection devices for use in liquid argon TPC detectors SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Voltage distributions; Noble liquid detectors (scintillation, ionization, double-phase); Cryogenic detectors AB In this paper we demonstrate the capability of high voltage varistors and gas discharge tube arrestors for use as surge protection devices in liquid argon time projection chamber detectors. The insulating and clamping behavior of each type of device is characterized in air (room temperature), and liquid argon (90 K), and their robustness under high voltage and high energy surges in cryogenic conditions is verified. The protection of vulnerable components in liquid argon during a 150 kV high voltage discharge is also demonstrated. Each device is tested for argon contamination and light emission effects, and both are constrained to levels where no significant impact upon liquid argon time projection chamber functionality is expected. Both devices investigated are shown to be suitable for HV surge protection applications in cryogenic detectors. C1 [Asaadi, J.] Syracuse Univ, Syracuse, NY 13244 USA. [Conrad, J. M.; Jones, B. J. P.] MIT, Cambridge, MA 02139 USA. [Gollapinni, S.] Kansas State Univ, Manhattan, KS 66506 USA. [Jostlein, H.; Wolbers, S.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [John, J. M. St.] Univ Cincinnati, Cincinnati, OH 45220 USA. [Strauss, T.] Univ Bern, LHEP, Albert Einstein Ctr, CH-3012 Bern, Switzerland. [Zennamo, J.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. RP Jones, BJP (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM bjpjones@mit.edu FU Fermi National Accelerator Laboratory; United States Department of Energy [De-AC02-07CH11359]; National Science Foundation [PHY-1205175, PHY-1068553]; Department of Energy [DE-FG03-99ER41093, DE-SC0011784]; Swiss National Science Foundation; University of Chicago FX This work was supported by the Fermi National Accelerator Laboratory, which is operated by the Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. The surge protection components under test, and the work by BJPJ and JMC, were funded by the National Science Foundation grant PHY-1205175. JA is supported by National Science Foundation grant PHY-1068553. SG is supported by the Department of Energy through grant DE-FG03-99ER41093 and JMSJ through grant DE-SC0011784. TS acknowledges the support of the Swiss National Science Foundation. JZ is supported by the University of Chicago. NR 34 TC 3 Z9 3 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD SEP PY 2014 VL 9 AR P09002 DI 10.1088/1748-0221/9/09/P09002 PG 23 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AR0SJ UT WOS:000343281300039 ER PT J AU Cook, N Tresca, O Lefferts, R AF Cook, N. Tresca, O. Lefferts, R. TI Scintillator diagnostics for the detection of laser accelerated ion beams SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators); Scintillators and scintillating fibres and light guides; Interaction of radiation with matter; Beam-line instrumentation (beam position and profile monitors; beam-intensity monitors; bunch length monitors) ID ORGANIC SCINTILLATORS; PLASTIC SCINTILLATOR; TECHNOLOGY; PROTONS; SCREEN; CR-39 AB Laser plasma interaction with ultraintense pulses present exciting schemes for accelerating ions. One of the advantages conferred by using a gaseous laser and target is the potential for a fast (several Hz) repetition rate. This requires diagnostics which are not only suited for a single shot configuration, but also for repeated use. We consider several scintillators as candidates for an imaging diagnostic for protons accelerated to MeV energies by a CO2 laser focused on a gas jet target. We have measured the response of chromium-doped alumina (chromox) and polyvinyl toluene (PVT) screens to protons in the 2-8MeV range. We have calibrated the luminescent yield in terms of photons emitted per incident proton for each scintillator. We also discuss how light scattering and material properties affect detector resolution. Furthermore, we consider material damage and the presence of an afterglow under intense exposures. Our analysis reveals a near order of magnitude greater yield from chromox in response to proton beams at >8MeV energies, while scattering effects favor PVT-based scintillators at lower energies. C1 [Cook, N.; Lefferts, R.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Tresca, O.] Brookhaven Natl Lab, Accelerator Test Facil, Upton, NY 11973 USA. RP Cook, N (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. EM ncook@bnl.gov FU Brookhaven Science Associates, LLC [DE-AC02-98CH10886]; U.S. Department of Energy; BNL/LDRD [12-032] FX Many thanks are due to M. Babzien, M. Polyanskiy, K. Kusche, A. Lipski, J. Green, N. Dover and V. Yakimenko for their contributions to this work. Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy and BNL/LDRD No. 12-032. NR 25 TC 1 Z9 1 U1 2 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD SEP PY 2014 VL 9 AR P09004 DI 10.1088/1748-0221/9/09/P09004 PG 12 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AR0SJ UT WOS:000343281300041 ER PT J AU Repond, J AF Repond, J. CA CALICE Collaboration TI Resistive Plate Chambers for imaging calorimetry - The DHCAL SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT 12th Workshop on Resistive Plate Chambers and Related Detectors CY FEB 23-28, 2014 CL Tsinghua Univ, Beijing, PEOPLES R CHINA HO Tsinghua Univ DE Resistive-plate chambers; Particle tracking detectors; Calorimeters AB The DHCAL-the Digital Hadron Calorimeter-is a prototype calorimeter based on Resistive Plate Chambers (RPCs). The design emphasizes the imaging capabilities of the detector in an effort to optimize the calorimeter for the application of Particle Flow Algorithms (PFAs) to the reconstruction of hadronic jet energies in a colliding beam environment. The readout of the chambers is segmented into 1 X 1 cm(2) pads, each read out with a 1-bit (single threshold) resolution. The prototype with approximately 500,000 readout channels underwent extensive testing in both the Fermilab and CERN test beams. This talk presents preliminary findings from the analysis of data collected at the test beams. C1 [Repond, J.; CALICE Collaboration] Argonne Natl Lab, Argonne, IL 60439 USA. RP Repond, J (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM repond@anl.gov NR 5 TC 2 Z9 2 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD SEP PY 2014 VL 9 AR C09034 DI 10.1088/1748-0221/9/09/C09034 PG 10 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AR0SJ UT WOS:000343281300034 ER PT J AU Zastrau, U Forster, E AF Zastrau, U. Foerster, E. TI Integrated reflectivity measurements of hydrogen phthalate crystals for high-resolution soft x-ray spectroscopy SO JOURNAL OF INSTRUMENTATION LA English DT Article DE X-ray monochromators; Plasma diagnostics - interferometry, spectroscopy and imaging ID PLASMA; LASER; FLAT AB The integrated x-ray reflectivity of Potassium Hydrogen Phthalate (KAP) and Rubidium Hydrogen Phthalate (RAP) crystals is studied at a photon energy of (1740 +/- 14) eV using a double-crystal setup. The absolute measured reflectivities are in < 5% agreement with the values predicted by the dynamic diffraction theory for perfect crystals when absorption is included. Within 4% experimental error margins, specimen that were exposed to ambient conditions over many years show identical reflectivity as specimen that were cleaved just before the measurement. No differences are observed between cleaving off a 10 mu m surface layer and splitting the entire crystal bulk of 2mm thickness. We conclude that at 1.7 keV photon energy the penetration depth of similar to 1 mu m is large compared to a potentially deteriorated surface layer of a few 10 nm. C1 [Zastrau, U.; Foerster, E.] Univ Jena, Ins Opt & Quantenelekt, D-07743 Jena, Germany. [Zastrau, U.] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Foerster, E.] Helmholtz Inst Jena, D-07743 Jena, Germany. RP Zastrau, U (reprint author), Univ Jena, Ins Opt & Quantenelekt, Max Wien Pl 1, D-07743 Jena, Germany. EM ulf.zastrau@uni-jena.de FU VolkswagenStiftung; German Helmholtz association via Helmholtz Institute Jena; German Federal Ministry for Education and Research (BMBF) [FSP 302] FX We would like to thank I. Uschmann and O. Wehrhan for fruitful discussions about cleaving crystals, and R. Loetzsch for help with the LabView program. UZ is further grateful to the VolkswagenStiftung for his Peter-Paul-Ewald Fellowship. This work was partially funded by the German Helmholtz association via the Helmholtz Institute Jena, and the German Federal Ministry for Education and Research (BMBF) via priority programme FSP 302. NR 18 TC 0 Z9 0 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD SEP PY 2014 VL 9 AR P09008 DI 10.1088/1748-0221/9/09/P09008 PG 9 WC Instruments & Instrumentation SC Instruments & Instrumentation GA AR0SJ UT WOS:000343281300045 ER PT J AU Liu, F Huang, L Davis, RF Porter, LM Schreiber, DK Kuchibatla, SVNT Shutthanandan, V Thevuthasan, S Preble, EA Paskova, T Evans, KR AF Liu, Fang Huang, Li Davis, Robert F. Porter, Lisa M. Schreiber, Daniel K. Kuchibatla, Satyanarayana V. N. T. Shutthanandan, Vaithiyalingam Thevuthasan, Suntharampillai Preble, Edward A. Paskova, Tania Evans, Keith R. TI Composition and interface analysis of InGaN/GaN multiquantum-wells on GaN substrates using atom probe tomography SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID QUANTUM-WELLS AB In0.20Ga0.80N/GaN multiquantum wells (MQWs) grown on [0001]-oriented GaN substrates with and without an InGaN buffer layer were characterized using three-dimensional atom probe tomography. In all samples, the upper interfaces of the QWs were slightly more diffuse than the lower interfaces. The buffer layers did not affect the roughness of the interfaces within the quantum well structure, a result attributed to planarization of the surface of the first GaN barrier layer, which had an average root-mean-square roughness of 0.18 nm. The In and Ga distributions within the MQWs followed the expected distributions for a random alloy with no indications of In clustering. High resolution Rutherford backscattering characterizations showed the ability to resolve the MQWs, and the resulting compositions and widths corroborated those determined from the atom probe analyses. (C) 2014 American Vacuum Society. C1 [Liu, Fang; Huang, Li; Davis, Robert F.; Porter, Lisa M.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. [Schreiber, Daniel K.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Kuchibatla, Satyanarayana V. N. T.; Shutthanandan, Vaithiyalingam; Thevuthasan, Suntharampillai] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Preble, Edward A.; Paskova, Tania; Evans, Keith R.] Kyma Technol Inc, Raleigh, NC 27617 USA. RP Liu, F (reprint author), Carnegie Mellon Univ, Dept Mat Sci & Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA. EM fangliu009@gmail.com RI Davis, Robert/A-9376-2011 OI Davis, Robert/0000-0002-4437-0885 FU Department of Energy [DOE DEFC2607NT43229]; Department of Energy's Office of Biological and Environmental Research; PNNL FX The authors thank the Department of Energy for financial support under project DOE DEFC2607NT43229. A portion of the research was performed at the Environmental Molecular Science Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). An Alternate Sponsored Fellowship at PNNL awarded to one of the authors (F.L.) was particularly helpful in completing this research. The authors also wish to thank Bruce Arey at EMSL for his help with sample preparation. NR 23 TC 5 Z9 5 U1 1 U2 15 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD SEP PY 2014 VL 32 IS 5 AR 051209 DI 10.1116/1.4893976 PG 7 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA AQ7ND UT WOS:000343003600011 ER PT J AU Liu, L Xi, YY Ahn, S Ren, F Gila, BP Pearton, SJ Kravohenko, II AF Liu, Lu Xi, Yuyin Ahn, Shihyun Ren, Fan Gila, Brent P. Pearton, Stephen J. Kravohenko, Ivan I. TI Characteristics of gate leakage current and breakdown voltage of AlGaN/GaN high electron mobility transistors after postprocess annealing SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID FIELD-EFFECT TRANSISTORS; SURFACE PASSIVATION; HEMTS; GAN; HETEROSTRUCTURES; PERFORMANCE; DISPERSION; GANHEMTS; EPITAXY; IMPACT AB The effects of postprocess annealing on the gate leakage current and breakdown voltage characteristics of AlGaN/GaN high electron mobility transistors (HEMTs) was investigated. The fabricated AlGaN/GaN HEMTs were postannealed at 250, 300, 350, 400, or 450 degrees C under a nitrogen (N-2) atmosphere by using rapid thermal annealing, and both direct current (dc) and pulsed measurements were performed to characterize the changes in device performance. The reverse gate leakage current (I-G) at V-G = -10V was reduced by one order of magnitude and the off-state drain breakdown voltage (V-off) increased by over three-fold after postprocess annealing at 450 degrees C. The reverse gate leakage current was found to be independent of gate-to-drain potential after annealing. The gate pulse measurements revealed the activation of deep traps during the postannealing at elevated temperatures. (C) 2014 American Vacuum Society. C1 [Liu, Lu; Xi, Yuyin; Ahn, Shihyun; Ren, Fan] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. [Gila, Brent P.; Pearton, Stephen J.] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. [Kravohenko, Ivan I.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. RP Liu, L (reprint author), Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. EM fren@che.ufl.edu RI Kravchenko, Ivan/K-3022-2015 OI Kravchenko, Ivan/0000-0003-4999-5822 FU U.S. DOD HDTRA [1-11-1-0020]; Office of Basic Energy Sciences, U.S, Department of Energy FX The work performed at UP was supported by an U.S. DOD HDTRA Grant No. 1-11-1-0020 monitored by James Reed. A portion of this research was conducted at the Center for Nariophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S, Department of Energy. NR 31 TC 5 Z9 5 U1 1 U2 13 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD SEP PY 2014 VL 32 IS 5 AR 052201 DI 10.1116/1.4891168 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA AQ7ND UT WOS:000343003600027 ER PT J AU Liu, KH Zhang, LM Cao, T Jin, CH Qiu, DA Zhou, Q Zettl, A Yang, PD Louie, SG Wang, F AF Liu, Kaihui Zhang, Liming Cao, Ting Jin, Chenhao Qiu, Diana Zhou, Qin Zettl, Alex Yang, Peidong Louie, Steve G. Wang, Feng TI Evolution of interlayer coupling in twisted molybdenum disulfide bilayers SO NATURE COMMUNICATIONS LA English DT Article ID MONOLAYER MOS2; VALLEY POLARIZATION; DIRAC FERMIONS; ATOMIC LAYERS; GRAPHENE; SUPERLATTICES; ELECTRONS; PHASE AB Van der Waals coupling is emerging as a powerful method to engineer physical properties of atomically thin two-dimensional materials. In coupled graphene-graphene and graphene-boron nitride layers, interesting physical phenomena ranging from Fermi velocity renormalization to Hofstadter's butterfly pattern have been demonstrated. Atomically thin transition metal dichalcogenides, another family of two-dimensional-layered semiconductors, can show distinct coupling phenomena. Here we demonstrate the evolution of interlayer coupling with twist angles in as-grown molybdenum disulfide bilayers. We find that the indirect bandgap size varies appreciably with the stacking configuration: it shows the largest redshift for AA- and AB-stacked bilayers, and a significantly smaller but constant redshift for all other twist angles. Our observations, together with ab initio calculations, reveal that this evolution of interlayer coupling originates from the repulsive steric effects that leads to different interlayer separations between the two molybdenum disulfide layers in different stacking configurations. C1 [Liu, Kaihui; Cao, Ting; Jin, Chenhao; Qiu, Diana; Zettl, Alex; Louie, Steve G.; Wang, Feng] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Liu, Kaihui] Peking Univ, State Key Lab Mesoscop Phys, Sch Phys, Beijing 100871, Peoples R China. [Liu, Kaihui] Peking Univ, Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China. [Zhang, Liming; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Cao, Ting; Qiu, Diana; Zhou, Qin; Zettl, Alex; Louie, Steve G.; Wang, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zettl, Alex; Yang, Peidong; Wang, Feng] Univ Calif Berkeley, Kavli Energy NanoSci, Berkeley, CA 94720 USA. [Zettl, Alex; Yang, Peidong; Wang, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Yang, Peidong] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Wang, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM fengwang76@berkeley.edu RI Liu, Kaihui/A-9938-2014; Zettl, Alex/O-4925-2016; wang, Feng/I-5727-2015 OI Zettl, Alex/0000-0001-6330-136X; FU Office of Basic Energy Sciences, US Department of Energy (DOE) [DE-SC0003949, DE-AC02-05CH11231]; Theory Program at Lawrence Berkeley National Laboratory through Office of Basic Energy Sciences, US DOE [DE-AC02-05CH11231]; National Science Foundation [DMR10-1006184]; Simons Foundation Fellowship in Theoretical Physics; DOE; National Program for Thousand Young Talents; NSFC of China [11474006] FX This study was supported by Office of Basic Energy Sciences, US Department of Energy (DOE) under contract nos. DE-SC0003949 (Early Career Award) and DE-AC02-05CH11231 (Materials Science Division). Research supported in part by the Theory Program at Lawrence Berkeley National Laboratory through the Office of Basic Energy Sciences, US DOE under contract no. DE-AC02-05CH11231 that provided code developments and simulations, and by the National Science Foundation under grant no. DMR10-1006184 that provided structural study and analysis of interlayer coupling. S.G.L. acknowledges support of a Simons Foundation Fellowship in Theoretical Physics. Computation resources at National Energy Research Scientific Computing Center (NERSC) funded by DOE are used. K. L. acknowledges support from National Program for Thousand Young Talents and NSFC (No. 11474006) of China. NR 34 TC 73 Z9 73 U1 32 U2 194 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2014 VL 5 AR 4966 DI 10.1038/ncomms5966 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AQ7HZ UT WOS:000342984800022 PM 25233054 ER PT J AU Peterson, EJ Delariva, AT Lin, S Johnson, RS Guo, H Miller, JT Kwak, JH Peden, CHF Kiefer, B Allard, LF Ribeiro, FH Datye, AK AF Peterson, Eric J. Delariva, Andrew T. Lin, Sen Johnson, Ryan S. Guo, Hua Miller, Jeffrey T. Kwak, Ja Hun Peden, Charles H. F. Kiefer, Boris Allard, Lawrence F. Ribeiro, Fabio H. Datye, Abhaya K. TI Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina SO NATURE COMMUNICATIONS LA English DT Article ID RAY PHOTOELECTRON-SPECTROSCOPY; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; GAMMA-ALUMINA; CO OXIDATION; THETA-AL2O3(010) SURFACE; SINGLE; ATOMS; PD; ABSORPTION AB Catalysis by single isolated atoms of precious metals has attracted much recent interest, as it promises the ultimate in atom efficiency. Most previous reports are on reducible oxide supports. Here we show that isolated palladium atoms can be catalytically active on industrially relevant g-alumina supports. The addition of lanthanum oxide to the alumina, long known for its ability to improve alumina stability, is found to also help in the stabilization of isolated palladium atoms. Aberration-corrected scanning transmission electron microscopy and operando X-ray absorption spectroscopy confirm the presence of intermingled palladium and lanthanum on the gamma-alumina surface. Carbon monoxide oxidation reactivity measurements show onset of catalytic activity at 40 degrees C. The catalyst activity can be regenerated by oxidation at 700 degrees C in air. The high-temperature stability and regenerability of these ionic palladium species make this catalyst system of potential interest for low-temperature exhaust treatment catalysts. C1 [Peterson, Eric J.; Delariva, Andrew T.; Datye, Abhaya K.] Univ New Mexico, Dept Chem & Biol Engn, Albuquerque, NM 87131 USA. [Peterson, Eric J.; Delariva, Andrew T.; Datye, Abhaya K.] Univ New Mexico, Ctr Microengineered Mat, Albuquerque, NM 87131 USA. [Lin, Sen] Fuzhou Univ, Res Inst Photocatalysis, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350002, Peoples R China. [Johnson, Ryan S.; Guo, Hua] Univ New Mexico, Dept Chem & Biol Chem, Albuquerque, NM 87131 USA. [Miller, Jeffrey T.] Argonne Natl Lab, Argonne, IL 60439 USA. [Kwak, Ja Hun; Peden, Charles H. F.] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Kiefer, Boris] New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA. [Allard, Lawrence F.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Ribeiro, Fabio H.] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. RP Datye, AK (reprint author), Univ New Mexico, Dept Chem & Biol Engn, MSC 01-1120, Albuquerque, NM 87131 USA. EM datye@unm.edu RI Guo, Hua/J-2685-2014 OI Guo, Hua/0000-0001-9901-053X FU U.S. DOE, Office of Science [DE-FG02-05ER15712]; National Natural Science Foundation of China [21203026]; US National Science Foundation [CHE-0910828]; Office of Basic Energy Sciences of the U.S. DOE [W-31-109-Eng-38]; DOE, EERE Office of Vehicle Technologies; U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences [DE-AC-02-06CH11357]; Department of Energy, Office of Basic Energy Sciences, Chemical Sciences [DE-FG02-03ER15408]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences; U.S. Department of Energy's Office of Biological and Environmental Research FX We gratefully acknowledge funding for this work provided by the U.S. DOE, Office of Science grant DE-FG02-05ER15712. S.L. thanks the National Natural Science Foundation of China (21203026). R.S.J. and H.G. thank the US National Science Foundation (CHE-0910828). Use of the Advanced Photon Source is supported by the Office of Basic Energy Sciences of the U.S. DOE under contract number W-31-109-Eng-38. Materials Research Collaborative Access Team (MRCAT, Sector 10 ID-B) operations are supported by the Department of Energy and the MRCAT member institutions. STEM imaging was performed at the High Temperature Materials Laboratory, operated by Oak Ridge National Laboratory and supported by DOE, EERE Office of Vehicle Technologies. J.T.M. was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences under contract DE-AC-02-06CH11357. F.H.R. acknowledges support from the Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, under Grant DE-FG02-03ER15408. C.H.F.P. and J.H.K. were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Their studies were performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. E.J.P. thanks Bruce Ravel and Anatoly Frenkel for discussion and guidance with regard to the XAS analysis. NR 37 TC 72 Z9 72 U1 33 U2 250 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2014 VL 5 AR 4885 DI 10.1038/ncomms5885 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AQ7HM UT WOS:000342983300012 PM 25222116 ER PT J AU Sutter, E Jungjohann, K Bliznakov, S Courty, A Maisonhaute, E Tenney, S Sutter, P AF Sutter, E. Jungjohann, K. Bliznakov, S. Courty, A. Maisonhaute, E. Tenney, S. Sutter, P. TI In situ liquid-cell electron microscopy of silver-palladium galvanic replacement reactions on silver nanoparticles SO NATURE COMMUNICATIONS LA English DT Article ID OXYGEN REDUCTION; AQUEOUS-SOLUTION; METAL NANOSTRUCTURES; METHANOL OXIDATION; GOLD NANOCAGES; GLASSY-CARBON; PHOTOACOUSTIC TOMOGRAPHY; CATALYTIC-PROPERTIES; OPTICAL-PROPERTIES; CONTRAST AGENT AB Galvanic replacement reactions provide an elegant way of transforming solid nanoparticles into complex hollow morphologies. Conventionally, galvanic replacement is studied by stopping the reaction at different stages and characterizing the products ex situ. In situ observations by liquid-cell electron microscopy can provide insight into mechanisms, rates and possible modifications of galvanic replacement reactions in the native solution environment. Here we use liquid-cell electron microscopy to investigate galvanic replacement reactions between silver nanoparticle templates and aqueous palladium salt solutions. Our in situ observations follow the transformation of the silver nanoparticles into hollow silver-palladium nanostructures. While the silver-palladium nanocages have morphologies similar to those obtained in ex situ control experiments the reaction rates are much higher, indicating that the electron beam strongly affects the galvanic-type process in the liquid-cell. By using scavengers added to the aqueous solution we identify the role of radicals generated via radiolysis by high-energy electrons in modifying galvanic reactions. C1 [Sutter, E.; Jungjohann, K.; Tenney, S.; Sutter, P.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Bliznakov, S.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Courty, A.] Univ Paris 06, Sorbonne Univ, Lab Monaris, CNRS,UMR 8233, F-75005 Paris, France. [Maisonhaute, E.] Univ Paris 06, Sorbonne Univ, Lab Interfaces & Syst Electrochim, UMR 8235, F-75005 Paris, France. RP Sutter, E (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM esutter@bnl.gov FU US Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; LabEx MiChem part of French state funds [ANR-11-IDEX-0004-02] FX This research has been carried out at the Center for Functional Nanomaterials, the Brookhaven National Laboratory, which is supported by the US Department of Energy, the Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. This work was supported in part (AC and EM) by the LabEx MiChem part of French state funds managed by the ANR within the Investissements d'Avenir programme under reference ANR-11-IDEX-0004-02. NR 63 TC 41 Z9 43 U1 14 U2 121 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2014 VL 5 AR 4946 DI 10.1038/ncomms5946 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AQ7HZ UT WOS:000342984800002 PM 25208691 ER PT J AU Vasudevan, RK Matsumoto, Y Cheng, X Imai, A Maruyama, S Xin, HL Okatan, MB Jesse, S Kalinin, SV Nagarajan, V AF Vasudevan, R. K. Matsumoto, Y. Cheng, Xuan Imai, A. Maruyama, S. Xin, H. L. Okatan, M. B. Jesse, S. Kalinin, S. V. Nagarajan, V. TI Deterministic arbitrary switching of polarization in a ferroelectric thin film SO NATURE COMMUNICATIONS LA English DT Article ID SOLID-SOLUTIONS; MEMRISTOR; ROTATION; PHASES AB Ferroelectrics have been used as memory storage devices, with an upper bound on the total possible memory levels generally dictated by the number of degenerate states allowed by the symmetry of the ferroelectric phase. Here, we introduce a new concept for storage wherein the polarization can be rotated arbitrarily, effectively decoupling it from the crystallographic symmetry of the ferroelectric phase on the mesoscale. By using a Bi5Ti3FeO15-CoFe2O4 film and via Band-Excitation Piezoresponse Force Microscopy, we show the ability to arbitrarily rotate polarization, create a spectrum of switched states, and suggest the reason for polarization rotation is an abundance of sub-50 nm nanodomains. Transmission electron microscopy-based strain mapping confirms significant local strain undulations imparted on the matrix by the CoFe2O4 inclusions, which causes significant local disorder. These experiments point to controlled tuning of polarization rotation in a standard ferroelectric, and hence the potential to greatly extend the attainable densities for ferroelectric memories. C1 [Vasudevan, R. K.; Okatan, M. B.; Jesse, S.; Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Matsumoto, Y.; Maruyama, S.] Tohoku Univ, Dept Appl Chem, Sch Engn, Aoba Ku, Sendai, Miyagi 9808579, Japan. [Matsumoto, Y.; Imai, A.] Tokyo Inst Technol, Mat & Struct Lab, Midori Ku, Yokohama, Kanagawa 2268503, Japan. [Cheng, Xuan; Imai, A.; Nagarajan, V.] Univ New S Wales, Sch Mat Sci & Engn, Kensington, NSW 2052, Australia. [Xin, H. L.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Nagarajan, V (reprint author), Univ New S Wales, Sch Mat Sci & Engn, Kensington, NSW 2052, Australia. EM nagarajan@unsw.edu.au RI Matsumoto, Yuji/H-2056-2011; valanoor, nagarajan/B-4159-2012; Vasudevan, Rama/Q-2530-2015; Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016; Okatan, M. Baris/E-1913-2016; Xin, Huolin/E-2747-2010 OI Vasudevan, Rama/0000-0003-4692-8579; Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483; Okatan, M. Baris/0000-0002-9421-7846; Xin, Huolin/0000-0002-6521-868X FU Division of Materials Sciences and Engineering of BES, DOE; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; New Energy and Industrial Technology Development Organization (NEDO) of Japan; Integrated Doctoral Education Program at Tokyo Tech; Sumitomo Foundation; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This research was sponsored by the Division of Materials Sciences and Engineering (R.K.V., S.V.K.) of BES, DOE. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. V.N., X. C. and A. I. thank the Australian Research Council Discovery and LIEF projects. We also acknowledge funding partly by Industrial Technology Research Grant Program in 2007 from New Energy and Industrial Technology Development Organization (NEDO) of Japan, the Integrated Doctoral Education Program at Tokyo Tech, and Sumitomo Foundation. Image processing made use of capabilities at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 31 TC 7 Z9 7 U1 8 U2 96 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2014 VL 5 AR 4971 DI 10.1038/ncomms5971 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AQ7HZ UT WOS:000342984800027 PM 25233288 ER PT J AU Zhang, Q Li, GY Liu, XF Qian, F Li, Y Sum, TC Lieber, CM Xiong, QH AF Zhang, Qing Li, Guangyuan Liu, Xinfeng Qian, Fang Li, Yat Sum, Tze Chien Lieber, Charles M. Xiong, Qihua TI A room temperature low-threshold ultraviolet plasmonic nanolaser SO NATURE COMMUNICATIONS LA English DT Article ID NANOWIRE LASERS; WAVE-GUIDES; GAIN AB Constrained by large ohmic and radiation losses, plasmonic nanolasers operated at visible regime are usually achieved either with a high threshold (10(2)-10(4) MW cm(-2)) or at cryogenic temperatures (4-120 K). Particularly, the bending-back effect of surface plasmon (SP) dispersion at high energy makes the SP lasing below 450 nm more challenging. Here we demonstrate the first strong room temperature ultraviolet (similar to 370 nm) SP polariton laser with an extremely low threshold (similar to 3.5 MW cm(-2)). We find that a closed-contact planar semiconductor-insulator-metal interface greatly lessens the scattering loss, and more importantly, efficiently promotes the exciton-SP energy transfer thus furnishes adequate optical gain to compensate the loss. An excitation polarization-dependent lasing action is observed and interpreted with a microscopic energy-transfer process from excitons to SPs. Our work advances the fundamental understanding of hybrid plasmonic waveguide laser and provides a solution of realizing room temperature UV nanolasers for biological applications and information technologies. C1 [Zhang, Qing; Li, Guangyuan; Liu, Xinfeng; Sum, Tze Chien; Xiong, Qihua] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore. [Qian, Fang] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Li, Yat] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. [Sum, Tze Chien] Singapore Berkeley Res Initiat Sustainable Energy, Singapore 138602, Singapore. [Lieber, Charles M.] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. [Xiong, Qihua] Nanyang Technol Univ, Sch Elect & Elect Engn, NOVITAS, Nanoelect Ctr Excellence, Singapore 639798, Singapore. RP Lieber, CM (reprint author), Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. EM cml@cmliris.harvard.edu; Qihua@ntu.edu.sg RI Xiong, Qihua/A-4979-2011; Liu, Xinfeng/G-2063-2015; Zhang, Qing/N-6703-2014; OI Xiong, Qihua/0000-0002-2555-4363; Liu, Xinfeng/0000-0003-1759-9796; Zhang, Qing/0000-0002-5811-1761; Li, Yat/0000-0002-8058-2084 FU Singapore Ministry of Education [MOE2011-T2-2-051]; Singapore National Research Foundation [NRF-RF2009-06, NRF-CRP-6-2010-2]; Nanyang Technological University [M58110061, M58110100]; National Security Science and Engineering Faculty Fellow (NSSEFF) award, Department of Defense; United States NSF [DMR-0847786]; NTU [M4080514]; SPMS collaborative Research Award [M4080536]; Singapore-Berkeley Research Initiative for Sustainable Energy (Sin-BeRISE) CREATE Programme FX This work was mainly supported by Singapore Ministry of Education via an AcRF Tier2 grant (MOE2011-T2-2-051). In addition, Q. X. thanks the strong support from Singapore National Research Foundation through a Fellowship grant (NRF-RF2009-06) and a Competitive Research Program (NRF-CRP-6-2010-2), and support from Nanyang Technological University via start-up grant (M58110061) and New Initiative Fund (M58110100). Q. X. thanks Nanyang Nanofabrication Center for the help in e-beam evaporation. C. M. L. acknowledges support from a National Security Science and Engineering Faculty Fellow (NSSEFF) award from the Department of Defense. Y.L. thanks the financial support from United States NSF (DMR-0847786). T. C. S. acknowledges the financial support NTU start-up grant M4080514, SPMS collaborative Research Award M4080536 and the Singapore-Berkeley Research Initiative for Sustainable Energy (Sin-BeRISE) CREATE Programme. NR 50 TC 46 Z9 46 U1 22 U2 203 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2014 VL 5 AR 4953 DI 10.1038/ncomms5953 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AQ7HZ UT WOS:000342984800009 PM 25247634 ER PT J AU Zhang, WT Hwang, C Smallwood, CL Miller, TL Affeldt, G Kurashima, K Jozwiak, C Eisaki, H Adachi, T Koike, Y Lee, DH Lanzara, A AF Zhang, Wentao Hwang, Choongyu Smallwood, Christopher L. Miller, Tristan L. Affeldt, Gregory Kurashima, Koshi Jozwiak, Chris Eisaki, Hiroshi Adachi, Tadashi Koike, Yoji Lee, Dung-Hai Lanzara, Alessandra TI Ultrafast quenching of electron-boson interaction and superconducting gap in a cuprate superconductor SO NATURE COMMUNICATIONS LA English DT Article ID ANGLE-RESOLVED PHOTOEMISSION; T-C; ENERGY; TRANSITION; SPECTROSCOPY; DISPERSION; DYNAMICS AB Ultrafast spectroscopy is an emerging technique with great promise in the study of quantum materials, as it makes it possible to track similarities and correlations that are not evident near equilibrium. Thus far, however, the way in which these processes modify the electron self-energy-a fundamental quantity describing many-body interactions in a material-has been little discussed. Here we use time-and angle-resolved photoemission to directly measure the ultrafast response of self-energy to near-infrared photoexcitation in high-temperature cuprate superconductor. Below the critical temperature of the superconductor, ultrafast excitations trigger a synchronous decrease of electron self-energy and superconducting gap, culminating in a saturation in the weakening of electron-boson coupling when the superconducting gap is fully quenched. In contrast, electron-boson coupling is unresponsive to ultrafast excitations above the critical temperature of the superconductor and in the metallic state of a related material. These findings open a new pathway for studying transient self-energy and correlation effects in solids. C1 [Zhang, Wentao; Hwang, Choongyu; Smallwood, Christopher L.; Miller, Tristan L.; Affeldt, Gregory; Lanzara, Alessandra] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zhang, Wentao; Smallwood, Christopher L.; Miller, Tristan L.; Affeldt, Gregory; Lee, Dung-Hai; Lanzara, Alessandra] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Hwang, Choongyu] Pusan Natl Univ, Dept Phys, Pusan 609735, South Korea. [Kurashima, Koshi; Adachi, Tadashi; Koike, Yoji] Tohoku Univ, Dept Appl Phys, Sendai, Miyagi 9808579, Japan. [Jozwiak, Chris] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Eisaki, Hiroshi] Natl Inst Adv Ind Sci & Technol, Elect & Photon Res Inst, Tsukuba, Ibaraki 3058568, Japan. [Adachi, Tadashi] Sophia Univ, Dept Engn & Appl Sci, Tokyo 1028554, Japan. RP Lanzara, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM alanzara@lbl.gov RI ZHANG, Wentao/B-3626-2011; Smallwood, Christopher/D-4925-2011 OI Smallwood, Christopher/0000-0002-4103-8748 FU Berkeley Lab's programs on "Quantum Materials'' and "Ultrafast Materials'' - US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-05CH11231] FX This work was supported by Berkeley Lab's programs on "Quantum Materials'' and "Ultrafast Materials'' funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under contract no. DE-AC02-05CH11231. NR 48 TC 18 Z9 18 U1 5 U2 34 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2014 VL 5 AR 4959 DI 10.1038/ncomms5959 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AQ7HZ UT WOS:000342984800015 PM 25222844 ER PT J AU Shiltsev, V Eseev, M AF Shiltsev, Vladimir Eseev, Marat TI Scientific Arkhangelsk and Pomorie: A Walk Through Centuries and Thousands of Miles SO PHYSICS IN PERSPECTIVE LA English DT Article DE Arkhangelsk; Russian science; Mikhail Lomonosov; Solovetsky Monastery; Kholmogory; North Arctic Federal University; Archbishop Afanasy; Ivan Meshchersky; Boris Rosing; Arkhangelsk Scientific Center ID LOMONOSOV AB Even by Russian standards, the country's northwestern territories contouring the White and Barents seas are vast, remote, and sparsely populated. Yet for seven centuries that faraway province has served as a nursery of religious and intellectual freedom and as a primary entry point for Western civilization and trade, containing several scientific landmarks of interest to the physical tourist. This article is intended as a concise guide to the scientifically relevant attractions in the city of Arkhangelsk and in relatively "nearby" locations that can be reached within reasonable time and with reasonable convenience; these include Mikhail Lomonosov's birthplace on Kholmogory and the Solovetsky islands. We will also briefly mention relevant facts for the somewhat more remote-but still within 1000 km-territories of Kola peninsula and the Novaya Zemlya islands. C1 [Shiltsev, Vladimir] Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, Batavia, IL 60510 USA. [Eseev, Marat] Northern Arctic Fed Univ, Arkhangelsk 163002, Russia. RP Shiltsev, V (reprint author), Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, POB 500, Batavia, IL 60510 USA. EM shiltsev@fnal.gov RI Eseev, Marat/A-3887-2013 OI Eseev, Marat/0000-0003-1101-4689 NR 13 TC 0 Z9 0 U1 1 U2 3 PU SPRINGER BASEL AG PI BASEL PA PICASSOPLATZ 4, BASEL, 4052, SWITZERLAND SN 1422-6944 EI 1422-6960 J9 PHYS PERSPECT JI Phys. Perspect. PD SEP PY 2014 VL 16 IS 3 BP 390 EP 405 DI 10.1007/s00016-014-0140-x PG 16 WC History & Philosophy Of Science SC History & Philosophy of Science GA AQ8DF UT WOS:000343052800005 ER PT J AU Behlow, H Saini, D Oliveira, L Durham, L Simpson, J Serkiz, SM Skove, MJ Rao, AM AF Behlow, H. Saini, D. Oliveira, L. Durham, L. Simpson, J. Serkiz, S. M. Skove, M. J. Rao, A. M. TI Direct measurement of shear properties of microfibers SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID CARBON-FIBER; ENERGY-STORAGE; MODULUS; DEFORMATION; PROSTHESES; STRESS; KEVLAR; STRAIN AB As novel fibers with enhanced mechanical properties continue to be synthesized and developed, the ability to easily and accurately characterize these materials becomes increasingly important. Here we present a design for an inexpensive tabletop instrument to measure shear modulus (G) and other longitudinal shear properties of a micrometer-sized monofilament fiber sample, such as nonlinearities and hysteresis. This automated system applies twist to the sample and measures the resulting torque using a sensitive optical detector that tracks a torsion reference. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers, for which G is well known. Two industrially important fibers, IM7 carbon fiber and Kevlar (R) 119, were also characterized with this system and were found to have G = 16.5 +/- 2.1 and 2.42 +/- 0.32 GPa, respectively. (C) 2014 AIP Publishing LLC. C1 [Behlow, H.; Saini, D.; Durham, L.; Simpson, J.; Serkiz, S. M.; Skove, M. J.; Rao, A. M.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. [Behlow, H.; Saini, D.; Durham, L.; Simpson, J.; Serkiz, S. M.; Skove, M. J.; Rao, A. M.] Clemson Univ, Clemson Nanomat Ctr, Clemson, SC 29634 USA. [Oliveira, L.] Clemson Univ, Sch Mat Sci & Engn, Clemson, SC 29634 USA. [Serkiz, S. M.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Behlow, H (reprint author), Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. FU Clemson University TIGER grant FX Special thanks to Garold J. Goodale, Jr. for helpful discussion during instrument development. The authors thank the reviewers for their constructive comments and suggestions that helped improve the quality of the paper. The authors are grateful to DuPont for providing samples of Kevlar (R) 119 fiber. The authors acknowledge financial support from the Clemson University TIGER grant. NR 20 TC 4 Z9 4 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD SEP PY 2014 VL 85 IS 9 AR 095118 DI 10.1063/1.4895679 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AQ6HE UT WOS:000342910500084 PM 25273783 ER PT J AU Flippo, KA Kline, JL Doss, FW Loomis, EN Emerich, M Devolder, B Murphy, TJ Fournier, KB Kalantar, DH Regan, SP Barrios, MA Merritt, EC Perry, TS Tregillis, IL Welser-Sherrill, L Fincke, JR AF Flippo, K. A. Kline, J. L. Doss, F. W. Loomis, E. N. Emerich, M. Devolder, B. Murphy, T. J. Fournier, K. B. Kalantar, D. H. Regan, S. P. Barrios, M. A. Merritt, E. C. Perry, T. S. Tregillis, I. L. Welser-Sherrill, L. Fincke, J. R. TI Development of a Big Area BackLighter for high energy density experiments SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID NATIONAL-IGNITION-FACILITY; TARGETS; RADIOGRAPHY; RESOLUTION; PLASMAS AB A very large area (7.5 mm(2)) laser-driven x-ray backlighter, termed the Big Area BackLighter (BABL) has been developed for the National Ignition Facility (NIF) to support high energy density experiments. The BABL provides an alternative to Pinhole-Apertured point-projection Backlighting (PABL) for a large field of view. This bypasses the challenges for PABL in the equatorial plane of the NIF target chamber where space is limited because of the unconverted laser light that threatens the diagnostic aperture, the backlighter foil, and the pinhole substrate. A transmission experiment using 132 kJ of NIF laser energy at a maximum intensity of 8.52 x 10(14) W/cm(2) illuminating the BABL demonstrated good conversion efficiency of >3.5% into K-shell emission producing similar to 4.6 kJ of high energy x rays, while yielding high contrast images with a highly uniform background that agree well with 2D simulated spectra and spatial profiles. (c) 2014 AIP Publishing LLC. C1 [Flippo, K. A.; Kline, J. L.; Doss, F. W.; Loomis, E. N.; Devolder, B.; Murphy, T. J.; Merritt, E. C.; Perry, T. S.; Tregillis, I. L.; Welser-Sherrill, L.; Fincke, J. R.] Los Alamos Natl Lab, Los Alamos, NM 87507 USA. [Emerich, M.] Gen Atom Co, San Diego, CA 92121 USA. [Fournier, K. B.; Kalantar, D. H.; Barrios, M. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Regan, S. P.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. RP Flippo, KA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87507 USA. RI Perry, Theodore/K-3333-2014; Flippo, Kirk/C-6872-2009; Murphy, Thomas/F-3101-2014; OI Perry, Theodore/0000-0002-8832-2033; Flippo, Kirk/0000-0002-4752-5141; Murphy, Thomas/0000-0002-6137-9873; Kline, John/0000-0002-2271-9919 FU LANL; U.S. Department of Energy [DE-AC52-06NA25396]; U.S. Department of Energy - Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors would like to thank the NIF laser crew, diagnostics support and target support, as well as LANL target fabrication: J. Williams, D. Capelli, C. Blada, K. Obrey, and D. W. Schmidt. K. A. F. would like to thank S. A. Gaillard and O. L. Landen for proof-reading and technical comments. This work was supported by LANL, operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. NIF facility and experimental data shown or discussed reflect facility development and operations performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 37 TC 6 Z9 6 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD SEP PY 2014 VL 85 IS 9 AR 093501 DI 10.1063/1.4893349 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AQ6HE UT WOS:000342910500021 PM 25273720 ER PT J AU Fournier, KB Brown, CG May, MJ Compton, S Walton, OR Shingleton, N Kane, JO Holtmeier, G Loey, H Mirkarimi, PB Dunlop, WH Guyton, RL Huffman, E AF Fournier, K. B. Brown, C. G., Jr. May, M. J. Compton, S. Walton, O. R. Shingleton, N. Kane, J. O. Holtmeier, G. Loey, H. Mirkarimi, P. B. Dunlop, W. H. Guyton, R. L. Huffman, E. TI A geophysical shock and air blast simulator at the National Ignition Facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID HALFRAUM TARGETS; EXPLOSIONS; CALIBRATION AB The energy partitioning energy coupling experiments at the National Ignition Facility (NIF) have been designed to measure simultaneously the coupling of energy from a laser-driven target into both ground shock and air blast overpressure to nearby media. The source target for the experiment is positioned at a known height above the ground-surface simulant and is heated by four beams from the NIF. The resulting target energy density and specific energy are equal to those of a low-yield nuclear device. The ground-shock stress waves and atmospheric overpressure waveforms that result in our test system are hydrodynamically scaled analogs of full-scale seismic and air blast phenomena. This report summarizes the development of the platform, the simulations, and calculations that underpin the physics measurements that are being made, and finally the data that were measured. Agreement between the data and simulation of the order of a factor of two to three is seen for air blast quantities such as peak overpressure. Historical underground test data for seismic phenomena measured sensor displacements; we measure the stresses generated in our ground-surrogate medium. We find factors-of-a-few agreement between our measured peak stresses and predictions with modern geophysical computer codes. (C) 2014 AIP Publishing LLC. C1 [Fournier, K. B.; Brown, C. G., Jr.; May, M. J.; Compton, S.; Walton, O. R.; Shingleton, N.; Kane, J. O.; Holtmeier, G.; Loey, H.; Mirkarimi, P. B.; Dunlop, W. H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Guyton, R. L.; Huffman, E.] Natl Secur Technol, Livermore, CA 94551 USA. RP Fournier, KB (reprint author), Lawrence Livermore Natl Lab, POB 808,L-481, Livermore, CA 94550 USA. FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Office of Defense Nuclear Nonproliferation Research and Development within the U.S. Department of Energy's National Nuclear Security Administration FX The EPEC team would like to thank Eric Smith, Dan Kalantar, Tom McCarville, Chockalingam Kumar, Jim Emig, Reg Wood, George Zimmerman, and Peter Anninos for excellent technical contributions to this project. This work was done under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. This work was funded by the Office of Defense Nuclear Nonproliferation Research and Development within the U.S. Department of Energy's National Nuclear Security Administration. We thank Tom Kiess at NNSA for his steady support of this project. NR 35 TC 0 Z9 0 U1 0 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD SEP PY 2014 VL 85 IS 9 AR 095119 DI 10.1063/1.4896119 PG 18 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AQ6HE UT WOS:000342910500085 PM 25273784 ER PT J AU Lambert, PK Hustedt, CJ Vecchio, KS Huskins, EL Casem, DT Gruner, SM Tate, MW Philipp, HT Woll, AR Purohit, P Weiss, JT Kannan, V Ramesh, KT Kenesei, P Okasinski, JS Almer, J Zhao, M Ananiadis, AG Hufnagel, TC AF Lambert, P. K. Hustedt, C. J. Vecchio, K. S. Huskins, E. L. Casem, D. T. Gruner, S. M. Tate, M. W. Philipp, H. T. Woll, A. R. Purohit, P. Weiss, J. T. Kannan, V. Ramesh, K. T. Kenesei, P. Okasinski, J. S. Almer, J. Zhao, M. Ananiadis, A. G. Hufnagel, T. C. TI Time-resolved x-ray diffraction techniques for bulk polycrystalline materials under dynamic loading SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID DEFORMATION; COMPRESSION; TITANIUM; DETECTOR; STRAINS AB We have developed two techniques for time-resolved x-ray diffraction from bulk polycrystalline materials during dynamic loading. In the first technique, we synchronize a fast detector with loading of samples at strain rates of similar to 10(3)-10(4) s(-1) in a compression Kolsky bar (split Hopkinson pressure bar) apparatus to obtain in situ diffraction patterns with exposures as short as 70 ns. This approach employs moderate x-ray energies (10-20 keV) and is well suited to weakly absorbing materials such as magnesium alloys. The second technique is useful for more strongly absorbing materials, and uses high-energy x-rays (86 keV) and a fast shutter synchronized with the Kolsky bar to produce short (similar to 40 mu s) pulses timed with the arrival of the strain pulse at the specimen, recording the diffraction pattern on a large-format amorphous silicon detector. For both techniques we present sample data demonstrating the ability of these techniques to characterize elastic strains and polycrystalline texture as a function of time during high-rate deformation. (C) 2014 AIP Publishing LLC. C1 [Lambert, P. K.; Hustedt, C. J.; Zhao, M.; Ananiadis, A. G.; Hufnagel, T. C.] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA. [Vecchio, K. S.] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA. [Huskins, E. L.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37830 USA. [Huskins, E. L.; Casem, D. T.] US Army Res Lab, Aberdeen, MD 21005 USA. [Gruner, S. M.; Tate, M. W.; Philipp, H. T.; Purohit, P.; Weiss, J. T.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Gruner, S. M.; Woll, A. R.] Cornell Univ, CHESS, Ithaca, NY 14853 USA. [Gruner, S. M.] Cornell Univ, Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA. [Kannan, V.; Ramesh, K. T.] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA. [Kenesei, P.; Okasinski, J. S.; Almer, J.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Lambert, PK (reprint author), Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA. RI Hufnagel, Todd/A-3309-2010 OI Hufnagel, Todd/0000-0002-6373-9377 FU Army Research Laboratory; US Navy under MURI Program [ONR MURI N00014-61007-1-0740]; U.S. DOE [DE-AC02-06CH11357]; OSD-T& E (Office of Secretary Defense-Test and Evaluation), Defense-Wide National Defense Education Program (NDEP)/BA-1, Basic Research [PE0601120D8Z]; DOE [DE-FG02-10ER46693]; Keck Foundation; CHESS; NSF; NIH-NIGMS under NSF [DMR-0936384]; [W911NF-12-2-0022] FX The authors would like to acknowledge A. Mashayekhi, L. Zhou, and K. Goetze for their contributions to this work. This work was sponsored in part by the Army Research Laboratory and was accomplished under Cooperative Agreement No. W911NF-12-2-0022. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for government purposes notwithstanding any copyright notation herein. Financial support for this work was also provided by the US Navy under the MURI Program (Grant ONR MURI N00014-61007-1-0740). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. P. K. L. would like to acknowledge OSD-T& E (Office of Secretary Defense-Test and Evaluation), Defense-Wide/PE0601120D8Z National Defense Education Program (NDEP)/BA-1, Basic Research, for their support. Detector development at Cornell is supported by the DOE Grant No. DE-FG02-10ER46693, the Keck Foundation, and CHESS. CHESS is supported by the NSF and NIH-NIGMS under NSF Grant No. DMR-0936384. NR 28 TC 6 Z9 6 U1 14 U2 49 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD SEP PY 2014 VL 85 IS 9 AR 093901 DI 10.1063/1.4893881 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AQ6HE UT WOS:000342910500034 PM 25273733 ER PT J AU Selby, NS Crawford, M Tracy, L Reno, JL Pan, W AF Selby, N. S. Crawford, M. Tracy, L. Reno, J. L. Pan, W. TI In situ biaxial rotation at low-temperatures in high magnetic fields SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID HIGH LANDAU-LEVELS; TRANSPORT; STATE AB We report the design, construction, and characterization of a biaxial sample rotation stage for use in a cryogenic system for orientation-dependent studies of anisotropic electronic transport phenomena at low temperatures and high magnetic fields. Our apparatus allows for continuous rotation of a sample about two axes, both independently and simultaneously. (C) 2014 AIP Publishing LLC. C1 [Selby, N. S.; Crawford, M.; Tracy, L.; Reno, J. L.; Pan, W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Selby, N. S.] Georgia Inst Technol, Atlanta, GA 30332 USA. [Crawford, M.] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. RP Selby, NS (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM nselby3@gatech.edu FU Department of Energy, the Office of Basic Energy Science, Division of Material Science and Technology; Sandia Student Internship Program; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Department of Energy, the Office of Basic Energy Science, Division of Material Science and Technology. N.S.S. was supported by Sandia Student Internship Program. The authors would like to thank D. Barton, D. Huang, B. Vaandrager, X. Shi, and T. Coley for their help. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 10 TC 0 Z9 0 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD SEP PY 2014 VL 85 IS 9 AR 095116 DI 10.1063/1.4896100 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AQ6HE UT WOS:000342910500082 PM 25273781 ER PT J AU Shavorskiy, A Neppl, S Slaughter, DS Cryan, JP Siefermann, KR Weise, F Lin, MF Bacellar, C Ziemkiewicz, MP Zegkinoglou, I Fraund, MW Khurmi, C Hertlein, MP Wright, TW Huse, N Schoenlein, RW Tyliszczak, T Coslovich, G Robinson, J Kaindl, RA Rude, BS Olsner, A Mahl, S Bluhm, H Gessner, O AF Shavorskiy, Andrey Neppl, Stefan Slaughter, Daniel S. Cryan, James P. Siefermann, Katrin R. Weise, Fabian Lin, Ming-Fu Bacellar, Camila Ziemkiewicz, Michael P. Zegkinoglou, Ioannis Fraund, Matthew W. Khurmi, Champak Hertlein, Marcus P. Wright, Travis W. Huse, Nils Schoenlein, Robert W. Tyliszczak, Tolek Coslovich, Giacomo Robinson, Joseph Kaindl, Robert A. Rude, Bruce S. Oelsner, Andreas Maehl, Sven Bluhm, Hendrik Gessner, Oliver TI Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID FREE-ELECTRON LASER; SURFACE PHOTOVOLTAGE TRANSIENTS; ABSORPTION-SPECTROSCOPY; SYNCHROTRON-RADIATION; PHOTOEMISSION; DYNAMICS; CELL; MICROSCOPY; INTERFACES; OPERATION AB An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with similar to 0.1 mm spatial resolution and similar to 150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pumpprobe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution of (780 +/- 20) ps (FWHM) is demonstrated for a hemisphere pass energy E-p = 150 eV and an electron kinetic energy range KE = 503-508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between similar to 9 ns at a pass energy of 50 eV and similar to 1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular spread with the retarding ratio can be well approximated by applying Liouville's theorem of constant emittance to the electron trajectories inside the lens system. The performance of the setup is demonstrated by characterizing the laser fluence-dependent transient surface photovoltage response of a laser-excited Si(100) sample. (c) 2014 AIP Publishing LLC. C1 [Shavorskiy, Andrey; Slaughter, Daniel S.; Zegkinoglou, Ioannis; Rude, Bruce S.; Bluhm, Hendrik] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Neppl, Stefan; Cryan, James P.; Siefermann, Katrin R.; Weise, Fabian; Lin, Ming-Fu; Bacellar, Camila; Ziemkiewicz, Michael P.; Fraund, Matthew W.; Khurmi, Champak; Wright, Travis W.; Huse, Nils; Schoenlein, Robert W.; Gessner, Oliver] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA. [Hertlein, Marcus P.; Tyliszczak, Tolek] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Huse, Nils] Univ Hamburg, Dept Phys, D-22761 Hamburg, Germany. [Huse, Nils] Max Planck Inst Struct & Dynam Matter, D-22761 Hamburg, Germany. [Coslovich, Giacomo; Robinson, Joseph; Kaindl, Robert A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Robinson, Joseph] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Oelsner, Andreas] Surface Concept GmbH, D-55124 Mainz, Germany. [Maehl, Sven] SPECS Surface Nano Anal GmbH, D-13355 Berlin, Germany. RP Gessner, O (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA. EM ogessner@lbl.gov RI Zegkinoglou, Ioannis/H-2343-2013; Huse, Nils/A-5712-2017 OI Huse, Nils/0000-0002-3281-7600 FU U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Department of Energy Office of Science Early Career Research Program FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division, through Contract No. DE-AC02-05CH11231. G. C., J.R., and R. A. K were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under the same contract. O.G., S.N., and M. W. F. were supported by the Department of Energy Office of Science Early Career Research Program. The authors would like to thank Alan Fry and Wayne Polzin from SLAC National Accelerator Laboratory for their laser support. NR 38 TC 5 Z9 5 U1 6 U2 35 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD SEP PY 2014 VL 85 IS 9 AR 093102 DI 10.1063/1.4894208 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AQ6HE UT WOS:000342910500003 PM 25273702 ER PT J AU Stevenson, BA Knowlton, SF Hartwell, GJ Hanson, JD Maurer, DA AF Stevenson, B. A. Knowlton, S. F. Hartwell, G. J. Hanson, J. D. Maurer, D. A. TI Hall probe measurements of the poloidal magnetic field in Compact Toroidal Hybrid plasmas SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID TOKAMAK; STOCHASTICITY; ARRAY AB A linear array of 16 Hall effect sensors has been developed to directly measure the poloidal magnetic field inside the boundary of a non-axisymmetric hybrid torsatron/tokamak plasma. The array consists of miniature gallium arsenide Hall sensor elements mounted 8 mm apart on a narrow, rotatable printed circuit board inserted into a re-entrant stainless steel tube sheathed in boron nitride. The sensors are calibrated on the bench and in situ to provide accurate local measurements of the magnetic field to aid in reconstructing the equilibrium plasma current density profiles in fully three-dimensional plasmas. Calibrations show that the sensor sensitivities agree with the nominal manufacturers specifications of 1.46 V/T. Poloidal fields measured with the Hall sensor array are found to be within 5% of poloidal fields modeled with a Biot-Savart code. (c) 2014 AIP Publishing LLC. C1 [Stevenson, B. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Knowlton, S. F.; Hartwell, G. J.; Hanson, J. D.; Maurer, D. A.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Stevenson, B. A.] Auburn Univ, Auburn, AL 36849 USA. RP Stevenson, BA (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM hartwell@physics.auburn.edu OI Stevenson, Benjamin/0000-0001-9918-1240 FU (U.S.) Department of Energy (DOE) [DE-FG02-00ER54610] FX Discussions with M. Bongard of the Pegasus group at the University of Wisconsin are gratefully acknowledged. We also thank John Dawson for his technical assistance with this project. This work is supported by (U.S.) Department of Energy (DOE) Grant No. DE-FG02-00ER54610. NR 13 TC 0 Z9 0 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD SEP PY 2014 VL 85 IS 9 AR 093502 DI 10.1063/1.4894209 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AQ6HE UT WOS:000342910500022 PM 25273721 ER PT J AU Twelker, K Kravitz, S Diez, MM Gratta, G Fairbank, W Albert, JB Auty, DJ Barbeau, PS Beck, D Benitez-Medina, C Breidenbach, M Brunner, T Cao, GF Chambers, C Cleveland, B Coon, M Craycraft, A Daniels, T Daugherty, SJ Davis, CG Devoe, R Delaquis, S Didberidze, T Dilling, J Dolinski, MJ Dunford, M Fabris, L Farine, J Feldmeier, W Fierlinger, P Fudenberg, D Giroux, G Gornea, R Graham, K Hall, C Heffner, M Herrin, S Hughes, M Jiang, XS Johnson, TN Johnston, S Karelin, A Kaufman, LJ Killick, R Koffas, T Kruecken, R Kuchenkov, A Kumar, KS Leonard, DS Leonard, F Licciardi, C Lin, YH MacLellan, R Marino, MG Mong, B Moore, D Odian, A Ostrovskiy, I Ouellet, C Piepke, A Pocar, A Retiere, F Rowson, PC Rozo, MP Schubert, A Sinclair, D Smith, E Stekhanov, V Tarka, M Tolba, T Tosi, D Vuilleumier, JL Walton, J Walton, T Weber, M Wen, LJ Wichoski, U Yang, L Yen, YR Zhao, YB AF Twelker, K. Kravitz, S. Montero Diez, M. Gratta, G. Fairbank, W., Jr. Albert, J. B. Auty, D. J. Barbeau, P. S. Beck, D. Benitez-Medina, C. Breidenbach, M. Brunner, T. Cao, G. F. Chambers, C. Cleveland, B. Coon, M. Craycraft, A. Daniels, T. Daugherty, S. J. Davis, C. G. Devoe, R. Delaquis, S. Didberidze, T. Dilling, J. Dolinski, M. J. Dunford, M. Fabris, L. Farine, J. Feldmeier, W. Fierlinger, P. Fudenberg, D. Giroux, G. Gornea, R. Graham, K. Hall, C. Heffner, M. Herrin, S. Hughes, M. Jiang, X. S. Johnson, T. N. Johnston, S. Karelin, A. Kaufman, L. J. Killick, R. Koffas, T. Kruecken, R. Kuchenkov, A. Kumar, K. S. Leonard, D. S. Leonard, F. Licciardi, C. Lin, Y. H. MacLellan, R. Marino, M. G. Mong, B. Moore, D. Odian, A. Ostrovskiy, I. Ouellet, C. Piepke, A. Pocar, A. Retiere, F. Rowson, P. C. Rozo, M. P. Schubert, A. Sinclair, D. Smith, E. Stekhanov, V. Tarka, M. Tolba, T. Tosi, D. Vuilleumier, J. -L. Walton, J. Walton, T. Weber, M. Wen, L. J. Wichoski, U. Yang, L. Yen, Y. -R. Zhao, Y. B. TI An apparatus to manipulate and identify individual Ba ions from bulk liquid Xe SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID DOUBLE-BETA DECAY; MAJORANA NEUTRINOS; SPECTROSCOPY; PHASE AB We describe a system to transport and identify barium ions produced in liquid xenon, as part of R&D towards the second phase of a double beta decay experiment, nEXO. The goal is to identify the Ba ion resulting from an extremely rare nuclear decay of the isotope Xe-136, hence providing a confirmation of the occurrence of the decay. This is achieved through Resonance Ionization Spectroscopy (RIS). In the test setup described here, Ba ions can be produced in liquid xenon or vacuum and collected on a clean substrate. This substrate is then removed to an analysis chamber under vacuum, where laser-induced thermal desorption and RIS are used with time-of-flight mass spectroscopy for positive identification of the barium decay product. (C) 2014 AIP Publishing LLC. C1 [Twelker, K.; Kravitz, S.; Montero Diez, M.; Gratta, G.; Brunner, T.; Devoe, R.; Fudenberg, D.; Moore, D.; Ostrovskiy, I.; Schubert, A.; Tosi, D.; Weber, M.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Fairbank, W., Jr.; Benitez-Medina, C.; Chambers, C.; Craycraft, A.; Walton, T.] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. [Albert, J. B.; Daugherty, S. J.; Johnson, T. N.; Kaufman, L. J.] Indiana Univ, Phys Dept, Bloomington, IN 47405 USA. [Albert, J. B.; Daugherty, S. J.; Johnson, T. N.; Kaufman, L. J.] Indiana Univ, CEEM, Bloomington, IN 47405 USA. [Auty, D. J.; Didberidze, T.; Hughes, M.; Piepke, A.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Barbeau, P. S.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Barbeau, P. S.] TUNL, Durham, NC 27708 USA. [Beck, D.; Coon, M.; Tarka, M.; Walton, J.; Yang, L.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Breidenbach, M.; Herrin, S.; MacLellan, R.; Odian, A.; Rowson, P. C.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Cao, G. F.; Jiang, X. S.; Wen, L. J.; Zhao, Y. B.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Cleveland, B.; Farine, J.; Mong, B.; Wichoski, U.] Laurentian Univ, Dept Phys, Sudbury, ON P3E 2C6, Canada. [Daniels, T.; Johnston, S.; Kumar, K. S.; Pocar, A.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Davis, C. G.; Hall, C.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Delaquis, S.; Giroux, G.; Gornea, R.; Tolba, T.; Vuilleumier, J. -L.] Univ Bern, LHEP, Albert Einstein Ctr, Bern, Switzerland. [Dilling, J.; Kruecken, R.; Retiere, F.; Sinclair, D.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Dolinski, M. J.; Lin, Y. H.; Smith, E.; Yen, Y. -R.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Dunford, M.; Graham, K.; Killick, R.; Koffas, T.; Leonard, F.; Licciardi, C.; Ouellet, C.; Rozo, M. P.; Sinclair, D.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Fabris, L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Feldmeier, W.; Fierlinger, P.; Marino, M. G.] Tech Univ Munich, Dept Phys, Garching, Germany. [Feldmeier, W.; Fierlinger, P.; Marino, M. G.] Tech Univ Munich, Excellence Cluster Universe, Garching, Germany. [Heffner, M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Karelin, A.; Kuchenkov, A.; Stekhanov, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Leonard, D. S.] Univ Seoul, Dept Phys, Seoul, South Korea. RP Twelker, K (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RI Fabris, Lorenzo/E-4653-2013; Kruecken, Reiner/A-1640-2013; OI Fabris, Lorenzo/0000-0001-5605-5615; Kruecken, Reiner/0000-0002-2755-8042; Ostrovskiy, Igor/0000-0003-4939-0225; Brunner, Thomas/0000-0002-3131-8148 FU National Science Foundation [PHY-1132382-001] FX This work is supported by the National Science Foundation, Award No. PHY-1132382-001. We thank R. Conley (SLAC), K. Merkle, and the Stanford Physics Machine shop for their help in constructing of the apparatus. We thank H. Manoharan (Stanford), J. Schwede (Stanford), and P. Vogel (Caltech) for many useful discussions. NR 22 TC 3 Z9 3 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD SEP PY 2014 VL 85 IS 9 AR 095114 DI 10.1063/1.4895646 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AQ6HE UT WOS:000342910500080 PM 25273779 ER PT J AU Yoder, J Malone, MW Espy, MA Sevanto, S AF Yoder, Jacob Malone, Michael W. Espy, Michelle A. Sevanto, Sanna TI Low-field nuclear magnetic resonance for the in vivo study of water content in trees SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID STEM DIAMETER VARIATIONS; SAP FLOW; XYLEM; MRI; PHLOEM; WOOD; DYNAMICS; DROUGHT; TOMATO; PLANTS AB Nuclear magnetic resonance (NMR) and magnetic resonance imaging have long been used to study water content in plants. Approaches have been primarily based on systems using large magnetic fields (similar to 1 T) to obtain NMR signals with good signal-to-noise. This is because the NMR signal scales approximately with the magnetic field strength squared. However, there are also limits to this approach in terms of realistic physiological configuration or those imposed by the size and cost of the magnet. Here we have taken a different approach - keeping the magnetic field low to produce a very light and inexpensive system, suitable for bulk water measurements on trees less than 5 cm in diameter, which could easily be duplicated to measure on many trees or from multiple parts of the same tree. Using this system we have shown sensitivity to water content in trees and their cuttings and observed a diurnal signal variation in tree water content in a greenhouse. We also demonstrate that, with calibration and modeling of the thermal polarization, the system is reliable under significant temperature variation. (C) 2014 AIP Publishing LLC. C1 [Yoder, Jacob; Malone, Michael W.; Espy, Michelle A.; Sevanto, Sanna] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Yoder, J (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM jlyoder@lanl.gov FU LDRD program [20130442ER] FX The authors wish to thank the LDRD program for its generous support via Grant No. 20130442ER, as well as Igor Savukov for the loan of most of the equipment used in the in vivo system, Jesse Resnick for his initial prototyping and investigations, and Nathan McDowell for many beneficial conversations. NR 24 TC 1 Z9 1 U1 3 U2 31 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD SEP PY 2014 VL 85 IS 9 AR 095110 DI 10.1063/1.4895648 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA AQ6HE UT WOS:000342910500076 PM 25273775 ER PT J AU Kuhn, JH Andersen, KG Bao, YM Bavari, S Becker, S Bennett, RS Bergman, NH Blinkova, O Bradfute, S Brister, JR Bukreyev, A Chandran, K Chepurnov, AA Davey, RA Dietzgen, RG Doggett, NA Dolnik, O Dye, JM Enterlein, S Fenimore, PW Formenty, P Freiberg, AN Garry, RF Garza, NL Gire, SK Gonzalez, JP Griffiths, A Happi, CT Hensley, LE Herbert, AS Hevey, MC Hoenen, T Honko, AN Ignatyev, GM Jahrling, PB Johnson, JC Johnson, KM Kindrachuk, J Klenk, HD Kobinger, G Kochel, TJ Lackemeyer, MG Lackner, DF Leroy, EM Lever, MS Muhlberger, E Netesov, SV Olinger, GG Omilabu, SA Palacios, G Panchal, RG Park, DJ Patterson, JL Paweska, JT Peters, CJ Pettitt, J Pitt, L Radoshitzky, SR Ryabchikova, EI Saphire, EO Sabeti, PC Sealfon, R Shestopalov, AM Smither, SJ Sullivan, NJ Swanepoel, R Takada, A Towner, JS van der Groen, G Volchkov, VE Volchkova, VA Wahl-Jensen, V Warren, TK Warfield, KL Weidmann, M Nichol, ST AF Kuhn, Jens H. Andersen, Kristian G. Bao, Yiming Bavari, Sina Becker, Stephan Bennett, Richard S. Bergman, Nicholas H. Blinkova, Olga Bradfute, Steven Brister, J. Rodney Bukreyev, Alexander Chandran, Kartik Chepurnov, Alexander A. Davey, Robert A. Dietzgen, Ralf G. Doggett, Norman A. Dolnik, Olga Dye, John M. Enterlein, Sven Fenimore, Paul W. Formenty, Pierre Freiberg, Alexander N. Garry, Robert F. Garza, Nicole L. Gire, Stephen K. Gonzalez, Jean-Paul Griffiths, Anthony Happi, Christian T. Hensley, Lisa E. Herbert, Andrew S. Hevey, Michael C. Hoenen, Thomas Honko, Anna N. Ignatyev, Georgy M. Jahrling, Peter B. Johnson, Joshua C. Johnson, Karl M. Kindrachuk, Jason Klenk, Hans-Dieter Kobinger, Gary Kochel, Tadeusz J. Lackemeyer, Matthew G. Lackner, Daniel F. Leroy, Eric M. Lever, Mark S. Muehlberger, Elke Netesov, Sergey V. Olinger, Gene G. Omilabu, Sunday A. Palacios, Gustavo Panchal, Rekha G. Park, Daniel J. Patterson, Jean L. Paweska, Janusz T. Peters, Clarence J. Pettitt, James Pitt, Louise Radoshitzky, Sheli R. Ryabchikova, Elena I. Saphire, Erica Ollmann Sabeti, Pardis C. Sealfon, Rachel Shestopalov, Aleksandr M. Smither, Sophie J. Sullivan, Nancy J. Swanepoel, Robert Takada, Ayato Towner, Jonathan S. van der Groen, Guido Volchkov, Viktor E. Volchkova, Valentina A. Wahl-Jensen, Victoria Warren, Travis K. Warfield, Kelly L. Weidmann, Manfred Nichol, Stuart T. TI Filovirus RefSeq Entries: Evaluation and Selection of Filovirus Type Variants, Type Sequences, and Names SO VIRUSES-BASEL LA English DT Letter DE Bundibugyo virus; cDNA clone; cuevavirus; Ebola; Ebola virus; ebolavirus; filovirid; Filoviridae; filovirus; genome annotation; ICTV; International Committee on Taxonomy of Viruses; Lloviu virus; Marburg virus; marburgvirus; mononegavirad; Mononegavirales; mononegavirus; Ravn virus; RefSeq; Reston virus; reverse genetics; Sudan virus; Tai Forest virus; virus classification; virus isolate; virus nomenclature; virus strain; virus taxonomy; virus variant ID INTERFERON INHIBITORY DOMAIN; DOUBLE-STRANDED-RNA; C-TERMINAL DOMAIN; EBOLA-VIRUS VP35; STANDARDIZED NOMENCLATURE; FAMILY FILOVIRIDAE; SPECIES LEVEL; INTERNATIONAL COMMITTEE; ENVELOPE GLYCOPROTEIN; TAXONOMIC PROPOSALS AB Sequence determination of complete or coding-complete genomes of viruses is becoming common practice for supporting the work of epidemiologists, ecologists, virologists, and taxonomists. Sequencing duration and costs are rapidly decreasing, sequencing hardware is under modification for use by non-experts, and software is constantly being improved to simplify sequence data management and analysis. Thus, analysis of virus disease outbreaks on the molecular level is now feasible, including characterization of the evolution of individual virus populations in single patients over time. The increasing accumulation of sequencing data creates a management problem for the curators of commonly used sequence databases and an entry retrieval problem for end users. Therefore, utilizing the data to their fullest potential will require setting nomenclature and annotation standards for virus isolates and associated genomic sequences. The National Center for Biotechnology Information's (NCBI's) RefSeq is a non-redundant, curated database for reference (or type) nucleotide sequence records that supplies source data to numerous other databases. Building on recently proposed templates for filovirus variant naming [ ()////-], we report consensus decisions from a majority of past and currently active filovirus experts on the eight filovirus type variants and isolates to be represented in RefSeq, their final designations, and their associated sequences. C1 [Kuhn, Jens H.; Hensley, Lisa E.; Honko, Anna N.; Jahrling, Peter B.; Johnson, Joshua C.; Kindrachuk, Jason; Lackemeyer, Matthew G.; Olinger, Gene G.; Pettitt, James] NIAID, Integrated Res Facil Ft Detrick, NIH, Frederick, MD 21702 USA. [Andersen, Kristian G.; Gire, Stephen K.; Sabeti, Pardis C.] Harvard Univ, FAS Ctr Syst Biol, Cambridge, MA 02138 USA. [Bao, Yiming; Blinkova, Olga; Brister, J. Rodney] Natl Lib Med, Informat Engn Branch, Natl Ctr Biotechnol Informat, NIH, Bethesda, MD 20894 USA. [Bavari, Sina; Dye, John M.; Garza, Nicole L.; Herbert, Andrew S.; Palacios, Gustavo; Panchal, Rekha G.; Pitt, Louise; Radoshitzky, Sheli R.; Warren, Travis K.] US Army, Med Res Inst Infect Dis, Frederick, MD 21702 USA. [Becker, Stephan; Dolnik, Olga; Klenk, Hans-Dieter] Univ Marburg, Inst Virol, D-35043 Marburg, Germany. [Bennett, Richard S.; Bergman, Nicholas H.; Hevey, Michael C.; Kochel, Tadeusz J.; Lackner, Daniel F.; Wahl-Jensen, Victoria] Natl Biodef Anal & Countermeasures Ctr, Frederick, MD 21702 USA. [Bradfute, Steven] Univ New Mexico, Albuquerque, NM 87131 USA. [Bukreyev, Alexander; Freiberg, Alexander N.; Peters, Clarence J.] Univ Texas Med Branch, Dept Pathol, Galveston, TX 77555 USA. [Bukreyev, Alexander; Freiberg, Alexander N.; Peters, Clarence J.] Univ Texas Med Branch, Galveston Natl Lab, Galveston, TX 77555 USA. [Chandran, Kartik] Albert Einstein Coll Med, Dept Microbiol & Immunol, Bronx, NY 10461 USA. [Chepurnov, Alexander A.] Russian Acad Sci, Siberian Branch, Inst Clin Immunol, Novosibirsk 630091, Novosibirsk Obl, Russia. [Davey, Robert A.; Griffiths, Anthony; Patterson, Jean L.] Texas Biomed Res Inst, Dept Virol & Immunol, San Antonio, TX 78227 USA. [Dietzgen, Ralf G.] Univ Queensland, Queensland Alliance Agr & Food Innovat, St Lucia, Qld 4072, Australia. [Doggett, Norman A.; Fenimore, Paul W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Enterlein, Sven] Integrated BioTherapeut Inc, Gaithersburg, MD 20878 USA. [Formenty, Pierre] WHO, CH-1211 Geneva, Switzerland. [Gonzalez, Jean-Paul] Metabiota Inc, San Francisco, CA 94104 USA. [Garry, Robert F.] Tulane Univ, Sch Med, Dept Microbiol & Immunol, New Orleans, LA 70112 USA. [Happi, Christian T.] Redeemers Univ, Dept Biol Sci, Coll Nat Sci, Lagos, Ogun State, Nigeria. [Happi, Christian T.] Redeemers Univ, African Ctr Excellence Genom Infect Dis, Lagos, Ogun State, Nigeria. [Hoenen, Thomas] NIAID, Virol Lab, Div Intramural Res, NIH, Hamilton, MT 59840 USA. [Ignatyev, Georgy M.] Minist Hlth Russian Federat, Microgen Sci Ind Co Immunobiol Med, Fed State Unitary Co, Moscow 115088, Russia. [Kobinger, Gary] Publ Hlth Agcy Canada, Natl Microbiol Lab, Special Pathogens Program, Winnipeg, MB R3E 3R2, Canada. [Leroy, Eric M.] Ctr Int Rech Med Franceville, Franceville, Gabon. [Lever, Mark S.; Smither, Sophie J.] Dstl, Dept Biomed Sci, Salisbury SP4 0JQ, Wilts, England. [Muehlberger, Elke] Boston Univ, Sch Med, Dept Microbiol, Boston, MA 02118 USA. [Muehlberger, Elke] Boston Univ, Sch Med, Natl Emerging Infect Dis Lab, Boston, MA 02118 USA. [Netesov, Sergey V.; Shestopalov, Aleksandr M.] Novosibirsk State Univ, Novosibirsk 630090, Novosibirsk Reg, Russia. [Omilabu, Sunday A.] Univ Lagos, Coll Med, Dept Med Microbiol & Parasitol, Lagos, Nigeria. [Park, Daniel J.] Broad Inst, Cambridge, MA 02142 USA. [Paweska, Janusz T.] Natl Hlth Lab Serv, Ctr Emerging & Zoonot Dis, Natl Inst Communicable Dis, ZA-2192 Sandringham Johannesburg, Gauteng, South Africa. [Ryabchikova, Elena I.] Russian Acad Sci, Siberian Branch, Inst Chem Biol & Fundamental Med, Novosibirsk 630090, Novosibirsk Reg, Russia. [Saphire, Erica Ollmann] Scripps Res Inst, Dept Immunol & Microbial Sci, La Jolla, CA 92037 USA. [Saphire, Erica Ollmann] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA. [Sealfon, Rachel] MIT, Cambridge, MA 02139 USA. [Sealfon, Rachel] MIT, Artificial Intelligence Lab, Cambridge, MA 02139 USA. [Sullivan, Nancy J.] NIAID, Vaccine Res Ctr, NIH, Bethesda, MD 20892 USA. [Swanepoel, Robert] Univ Pretoria, Zoonoses Res Unit, ZA-0028 Pretoria, South Africa. [Takada, Ayato] Hokkaido Univ, Res Ctr Zoonosis Control, Div Global Epidemiol, Kita Ku, Sapporo, Hokkaido, Japan. [Towner, Jonathan S.; Nichol, Stuart T.] Ctr Dis Control & Prevent, Viral Special Pathogens Branch, Div High Consequence Pathogens Pathol, Natl Ctr Emerging & Zoonot Infect Dis, Atlanta, GA 30333 USA. [van der Groen, Guido] Prins Leopold Inst Trop Geneeskunde, B-2000 Antwerp, Belgium. [Volchkov, Viktor E.; Volchkova, Valentina A.] Univ Lyon 1, INSERM, U1111, Lab Mol Basis Viral Pathogen,CIRI,Ecole Normale S, F-69365 Lyon 07, France. [Warfield, Kelly L.] Unither Virol LLC, Silver Spring, MD 20910 USA. [Weidmann, Manfred] Univ Stirling, Inst Aquaculture, Stirling FK9 4LA, Scotland. RP Kuhn, JH (reprint author), NIAID, Integrated Res Facil Ft Detrick, NIH, Frederick, MD 21702 USA. EM kuhnjens@mail.nih.gov; kandersen@oeb.harvard.edu; bao@ncbi.nlm.nih.gov; sina.bavari.civ@mail.mil; becker@staff.uni-marburg.de; richard.bennett@nbacc.dhs.gov; nicholas.bergman@nbacc.dhs.gov; olga.blinkova@nih.gov; steven_bradfute@yahoo.com; jamesbr@ncbi.nlm.nih.gov; alexander.bukreyev@utmb.edu; kartik.chandran@einstein.yu.edu; alexa.che.purnov@gmail.com; rdavey@txbiomed.org; r.dietzgen@uq.edu.au; doggett@lanl.gov; Dolnik@staff.uni-marburg.de; john.m.dye1.civ@mail.mil; sven.enterlein@gmail.com; paulf@lanl.gov; formentyp@who.int; anfreibe@utmb.edu; rfgarry@tulane.edu; Nicole.l.lackemeyer.ctr@mail.mil; sgire@oeb.harvard.edu; jpgonzalez@metabiota.com; agriffiths@txbiomed.org; chappi@hsph.harvard.edu; lisa.hensley@nih.gov; anderw.s.herbert.ctr@mail.mil; michael.hevey@nbacc.dhs.gov; thomas.hoenen@nih.gov; anna.honko@nih.gov; g.m.ignatyev@microgen.ru; jahrlingp@niaid.nih.gov; joshua.johnson@nih.gov; microcaddis@gmail.com; kindrachuk.kenneth@nih.gov; klenk@mailer.uni-marburg.de; gary.kobinger@phac-aspc.gc.ca; tadeusz.kochel@nbacc.dhs.gov; matthew.lackemeyer@nih.gov; daniel.lackner@nbacc.dhs.gov; eric.leroy@ird.fr; mslever@mail.dstl.gov.uk; muehlber@bu.edu; nauka@nsu.ru; gene.olinger@nih.gov; omilabusa@yahoo.com; gustavo.f.palacios.ctr@us.army.mil; rekha.g.panchal.civ@mail.mil; dpark@broadinstitute.org; jpatters@txbiomed.org; januszp@nicd.ac.za; cjpeters@UTMB.EDU; james.pettitt@nih.gov; louise.pitt@us.army.mil; sheli.r.radoshitzky.ctr@mail.mil; lenryab@yandex.com; erica@scripps.edu; pardis@broadinstitute.org; sealfon@gmail.com; shestopalov2@mail.ru; SJSMITHER@mail.dstl.gov.uk; njsull@mail.nih.gov; bobswanepoel@gmail.com; atakada@czc.hokudai.ac.jp; jit8@cdc.gov; gvdgroen@scarlet.be; viktor.volchkov@inserm.fr; valentina.volchkova@inserm.fr; victoria.jensen@nbacc.dhs.gov; travis.k.warren.ctr@mail.mil; kellylynwarfield@gmail.com; m.w.weidmann@stir.ac.uk; stn1@cdc.gov RI Weidmann, Manfred/G-1817-2015; LEROY, Eric/I-4347-2016; Volchkov, Viktor/M-7846-2014; Kuhn, Jens H./B-7615-2011; Ryabchikova, Elena /G-3089-2013; Netesov, Sergey/A-3751-2013; Becker, Stephan/A-1065-2010; Palacios, Gustavo/I-7773-2015 OI Honko, Anna/0000-0001-9165-148X; Bennett, Richard/0000-0002-7227-4831; Weidmann, Manfred/0000-0002-7063-7491; Johnson, Joshua/0000-0002-5677-3841; LEROY, Eric/0000-0003-0022-0890; Volchkov, Viktor/0000-0001-7896-8706; Kindrachuk, Jason/0000-0002-3305-7084; Hoenen, Thomas/0000-0002-5829-6305; Kuhn, Jens H./0000-0002-7800-6045; Ryabchikova, Elena /0000-0003-4714-1524; Netesov, Sergey/0000-0002-7786-2464; Becker, Stephan/0000-0002-2794-5659; Palacios, Gustavo/0000-0001-5062-1938 FU Intramural NIH HHS; NIAID NIH HHS [U19 AI115589, HHSN272200700016I, R01 AI104621, UC7 AI094660]; World Health Organization [001] NR 49 TC 20 Z9 20 U1 3 U2 33 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1999-4915 J9 VIRUSES-BASEL JI Viruses-Basel PD SEP PY 2014 VL 6 IS 9 BP 3663 EP 3682 DI 10.3390/v6093663 PG 20 WC Virology SC Virology GA AQ8TW UT WOS:000343107100020 PM 25256396 ER PT J AU Nishitani, J Detert, D Beeman, J Yu, KM Walukiewicz, W AF Nishitani, Junichi Detert, Douglas Beeman, Jeffrey Yu, Kin Man Walukiewicz, Wladek TI Surface hole accumulation and Fermi level stabilization energy in SnTe SO APPLIED PHYSICS EXPRESS LA English DT Article ID TOPOLOGICAL CRYSTALLINE INSULATOR; VALENCE-BAND STRUCTURE; ELECTRONIC-PROPERTIES; NATIVE DEFECTS; SEMICONDUCTORS; PBTE; LASERS; GETE AB SnTe films were deposited by RF magnetron sputtering. The thickness dependence of the sheet hole concentration indicated the presence of a high hole density surface accumulation layer. Irradiation of SnTe by Ne+ ions led to the saturation of the hole concentration corresponding to a Fermi energy that is 0.5 eV below the valence band edge. The stabilized Fermi energy on the surface and in the heavily damaged bulk is in agreement with the amphoteric native defect model. These results show that SnTe is a unique semiconductor with an extremely high valence band edge located at 4.4 eV below the vacuum level. (C) 2014 The Japan Society of Applied Physics C1 [Nishitani, Junichi] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan. [Nishitani, Junichi; Detert, Douglas; Beeman, Jeffrey; Yu, Kin Man; Walukiewicz, Wladek] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Detert, Douglas] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Nishitani, J (reprint author), Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan. EM jnishitani@issp.u-tokyo.ac.jp OI Yu, Kin Man/0000-0003-1350-9642 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; Murata Science Foundation FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. J. Nishitani acknowledges the support of The Murata Science Foundation. NR 35 TC 4 Z9 4 U1 4 U2 38 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1882-0778 EI 1882-0786 J9 APPL PHYS EXPRESS JI Appl. Phys. Express PD SEP PY 2014 VL 7 IS 9 AR 091201 DI 10.7567/APEX.7.091201 PG 3 WC Physics, Applied SC Physics GA AQ5QK UT WOS:000342863500004 ER PT J AU Tyson, TA Yu, T Croft, M Scofield, ME Bobb-Semple, D Tao, J Jaye, C Fischer, D Wong, SS AF Tyson, Trevor A. Yu, Tian Croft, Mark Scofield, Megan E. Bobb-Semple, Dara Tao, Jing Jaye, Cherno Fischer, Daniel Wong, Stanislaus S. TI Polar state in freestanding strontium titanate nanoparticles SO APPLIED PHYSICS LETTERS LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; SRTIO3 THIN-FILMS; X-RAY; RAMAN-SPECTROSCOPY; PHASE-TRANSITION; FINE-STRUCTURE; PEROVSKITE; FERROELECTRICITY; DISORDER; SILICON AB Monodispersed strontium titanate nanoparticles were prepared and studied in detail. It is found that similar to 10 nm as-prepared stoichiometric nanoparticles are in a polar structural state (possibly with ferroelectric properties) over a broad temperature range. A tetragonal structure, with possible reduction of the electronic hybridization, is found as the particle size is reduced. In the 10 nm particles, no change in the local Ti-off centering is seen between 20 and 300 K. The results indicate that nanoscale motifs of SrTiO3 may be utilized in data storage as assembled nano-particle arrays in applications where chemical stability, temperature stability, and low toxicity are critical issues. (C) 2014 AIP Publishing LLC. C1 [Tyson, Trevor A.; Yu, Tian] New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA. [Croft, Mark] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Scofield, Megan E.; Bobb-Semple, Dara; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Tao, Jing; Wong, Stanislaus S.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Jaye, Cherno; Fischer, Daniel] Natl Inst Stand & Technol, Mat Sci & Engn Lab, Gaithersburg, MD 20899 USA. RP Tyson, TA (reprint author), New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA. EM tyson@njit.edu; sswong@bnl.gov FU U.S. Department of Energy (DOE) [DE-FG02-07ER46402]; DOE, Basic Energy Sciences [DE-AC02-98CH10886]; DOE FX This work is supported in part by U.S. Department of Energy (DOE) Grant DE-FG02-07ER46402 (TAT, TY) and research by MES and SSW was supported by the DOE, Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Synchrotron powder x-ray diffraction and spectroscopy data acquisition was performed at Brookhaven National Laboratory's National Synchrotron Light Source which is funded by DOE. We thank Dr. Yuqin Zhang (NJIT) for conducting the Raman measurements on the samples. NR 56 TC 1 Z9 1 U1 3 U2 37 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 1 PY 2014 VL 105 IS 9 AR 091901 DI 10.1063/1.4894253 PG 5 WC Physics, Applied SC Physics GA AQ4FX UT WOS:000342749800015 ER PT J AU Wu, SM Hoffman, J Pearson, JE Bhattacharya, A AF Wu, Stephen M. Hoffman, Jason Pearson, John E. Bhattacharya, Anand TI Unambiguous separation of the inverse spin Hall and anomalous Nernst effects within a ferromagnetic metal using the spin Seebeck effect SO APPLIED PHYSICS LETTERS LA English DT Article AB The longitudinal spin Seebeck effect is measured on the ferromagnetic insulator Fe3O4 with the ferromagnetic metal Co0.2Fe0.6B0.2 (CoFeB) as the spin detector. By using a non-magnetic spacer material between the two materials (Ti), it is possible to decouple the two ferromagnetic materials and directly observe pure spin flow from Fe3O4 into CoFeB. It is shown that in a single ferromagnetic metal, the inverse spin Hall effect (ISHE) and anomalous Nernst effect (ANE) can occur simultaneously with opposite polarity. Using this and the large difference in the coercive fields between the two magnets, it is possible to unambiguously separate the contributions of the spin Seebeck effect from the ANE and observe the degree to which each effect contributes to the total response. These experiments show conclusively that the ISHE and ANE in CoFeB are separate phenomena with different origins and can coexist in the same material with opposite response to a thermal gradient. (C) 2014 AIP Publishing LLC. C1 [Wu, Stephen M.; Hoffman, Jason; Pearson, John E.; Bhattacharya, Anand] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Wu, SM (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM swu@anl.gov RI Bhattacharya, Anand/G-1645-2011 OI Bhattacharya, Anand/0000-0002-6839-6860 FU U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division; U.S. DOE, BES [DE-AC02-06CH11357] FX All authors acknowledge support of the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division. The use of facilities at the Center for Nanoscale Materials was supported by the U.S. DOE, BES under Contract No. DE-AC02-06CH11357. The authors also thank Axel Hoffmann for valuable discussion and insight. NR 24 TC 13 Z9 13 U1 4 U2 44 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 1 PY 2014 VL 105 IS 9 AR 092409 DI 10.1063/1.4895034 PG 4 WC Physics, Applied SC Physics GA AQ4FX UT WOS:000342749800036 ER PT J AU Oates, CJ Dondelinger, F Bayani, N Korkola, J Gray, JW Mukherjee, S AF Oates, Chris J. Dondelinger, Frank Bayani, Nora Korkola, James Gray, Joe W. Mukherjee, Sach TI Causal network inference using biochemical kinetics SO BIOINFORMATICS LA English DT Article; Proceedings Paper CT 13th European Conference on Computational Biology (ECCB) CY SEP 07-10, 2014 CL Strasbourg, FRANCE SP BioBase, Sbv IMPROVER, Koriscale, Totalinux, Genom, Proteom & Bioinformat ID GENE REGULATORY NETWORKS; BAYESIAN-INFERENCE; GAUSSIAN MODELS; COMPOUND-MODE; DYNAMICS; OUTPUT; TIME AB Motivation: Networks are widely used as structural summaries of biochemical systems. Statistical estimation of networks is usually based on linear or discrete models. However, the dynamics of biochemical systems are generally non-linear, suggesting that suitable non-linear formulations may offer gains with respect to causal network inference and aid in associated prediction problems. Results: We present a general framework for network inference and dynamical prediction using time course data that is rooted in nonlinear biochemical kinetics. This is achieved by considering a dynamical system based on a chemical reaction graph with associated kinetic parameters. Both the graph and kinetic parameters are treated as unknown; inference is carried out within a Bayesian framework. This allows prediction of dynamical behavior even when the underlying reaction graph itself is unknown or uncertain. Results, based on (i) data simulated from a mechanistic model of mitogen-activated protein kinase signaling and (ii) phosphoproteomic data from cancer cell lines, demonstrate that non-linear formulations can yield gains in causal network inference and permit dynamical prediction and uncertainty quantification in the challenging setting where the reaction graph is unknown. C1 [Oates, Chris J.] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England. [Dondelinger, Frank; Mukherjee, Sach] MRC, Biostat Unit, Cambridge CB2 0SR, England. [Bayani, Nora] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94710 USA. [Korkola, James; Gray, Joe W.] Oregon Hlth & Sci Univ, Knight Canc Inst, Dept Biomed Engn, Portland, OR 97239 USA. [Mukherjee, Sach] Univ Cambridge, Sch Clin Med, Cambridge CB2 0SP, England. RP Mukherjee, S (reprint author), MRC, Biostat Unit, Cambridge CB2 0SR, England. FU US Department of Energy [DE-AC02-05CH11231]; US National Institute of Health, National Cancer Institute [U54 CA 112970, P50 CA 58207]; UK Engineering and Physical Sciences Research Council [EP/E501311/1]; Netherlands Organisation for Scientific Research [Cancer Systems Biology Center] FX US Department of Energy (DE-AC02-05CH11231); US National Institute of Health, National Cancer Institute (U54 CA 112970, P50 CA 58207); UK Engineering and Physical Sciences Research Council (EP/E501311/1); and Netherlands Organisation for Scientific Research [Cancer Systems Biology Center]. NR 35 TC 5 Z9 5 U1 0 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 EI 1460-2059 J9 BIOINFORMATICS JI Bioinformatics PD SEP 1 PY 2014 VL 30 IS 17 BP I468 EP I474 DI 10.1093/bioinformatics/btu452 PG 7 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA AQ6HW UT WOS:000342912400018 PM 25161235 ER PT J AU O'Neill, BJ Miller, JT Dietrich, PJ Sollberger, FG Ribeiro, FH Dumesic, JA AF O'Neill, Brandon J. Miller, Jeffrey T. Dietrich, Paul J. Sollberger, Fred G. Ribeiro, Fabio H. Dumesic, James A. TI Operando X-ray Absorption Spectroscopy Studies of Sintering for Supported Copper Catalysts during Liquid-phase Reaction SO CHEMCATCHEM LA English DT Article DE atomic layer deposition; biomass; catalyst stability; copper; operando X-ray absorption spectroscopy ID ATOMIC LAYER DEPOSITION; STABILIZATION; NANOPARTICLES; HYDROGENATION; CHEMICALS; SIZE AB Operando X-ray absorption spectroscopy is used to measure simultaneous changes in catalyst structure and changes in catalytic activity versus time during the liquid phase hydrogenation of furfural over supported copper catalysts. This approach allows the size of the copper nanoparticles to be monitored continuously versus time-on-stream, such that these changes in dispersion can be accounted for in the calculation of turnover frequency. It is shown that sintering of the copper nanoparticles is the predominant mode of catalyst deactivation for a Cu/-Al2O3 catalyst throughout its time-on-stream, leading to irreversible loss of catalytic activity. In contrast, this mode of deactivation is eliminated by atomic layer deposition of an alumina overcoat; however, deposition of carbonaceous deposits in the small pores of the overcoat leads to deactivation that is reversible upon calcination of the catalyst. C1 [O'Neill, Brandon J.; Dumesic, James A.] Univ Wisconsin Madison, Madison, WI 53705 USA. [Miller, Jeffrey T.] Argonne Natl Lab, Argonne, IL 60439 USA. [Dietrich, Paul J.; Sollberger, Fred G.; Ribeiro, Fabio H.] Purdue Univ, W Lafayette, IN 47907 USA. RP Dumesic, JA (reprint author), Univ Wisconsin Madison, Madison, WI 53705 USA. EM dumesic@engr.wisc.edu FU Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center - U.S. DOE, Office of Science, Office of Basic Energy Sciences; U. S. DOE [DE-AC02-06CH11357] FX This material is based upon work supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. DOE, Office of Science, Office of Basic Energy Sciences. Use of the Advanced Photon Source was supported by the U. S. DOE under Contract No. DE-AC02-06CH11357. MRCAT operations are supported by U.S. DOE and the MRCAT member institutions. NR 16 TC 7 Z9 7 U1 6 U2 53 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1867-3880 EI 1867-3899 J9 CHEMCATCHEM JI ChemCatChem PD SEP PY 2014 VL 6 IS 9 BP 2493 EP 2496 DI 10.1002/cctc.201402356 PG 4 WC Chemistry, Physical SC Chemistry GA AQ4CR UT WOS:000342740300006 ER PT J AU Chen, WF Schneider, JM Sasaki, K Wang, CH Schneider, J Iyer, S Iyer, S Zhu, YM Muckerman, JT Fujita, E AF Chen, Wei-Fu Schneider, Jonathan M. Sasaki, Kotaro Wang, Chiu-Hui Schneider, Jacob Iyer, Shilpa Iyer, Shweta Zhu, Yimei Muckerman, James T. Fujita, Etsuko TI Tungsten Carbide-Nitride on Graphene Nanoplatelets as a Durable Hydrogen Evolution Electrocatalyst SO CHEMSUSCHEM LA English DT Article DE carbides; electrochemistry; graphene; hydrogen evolution; nitrides ID TRANSITION-METAL CARBIDES; EFFICIENT; NANOPARTICLES; WATER; COCATALYSTS; NANOSHEETS; CATALYSTS; PHOSPHIDE; MOS2; WC AB Alternatives to platinum-based catalysts are required to sustainably produce hydrogen from water at low overpotentials. Progress has been made in utilizing tungsten carbide-based catalysts, however, their performance is currently limited by the density and reactivity of active sites, and insufficient stability in acidic electrolytes. We report highly active graphene nanoplatelet-supported tungsten carbide-nitride nanocomposites prepared via an in situ solid-state approach. This nano-composite catalyzes the hydrogen evolution reaction with very low overpotential and is stable operating for at least 300 h in harsh acidic conditions. The synthetic approach offers a great advantage in terms of structural control and kinetics improvement. C1 [Chen, Wei-Fu; Schneider, Jonathan M.; Sasaki, Kotaro; Wang, Chiu-Hui; Schneider, Jacob; Iyer, Shilpa; Iyer, Shweta; Muckerman, James T.; Fujita, Etsuko] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Zhu, Yimei] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Chen, WF (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM wfchen@bnl.gov; ksasaki@bnl.gov; fujita@bnl.gov FU U.S. Department of Energy (DOE) [DE-AC02-98CH10886]; Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences; BNL Technology Maturation Funding [TM 12-008]; DOE Science Undergraduate Laboratory Internships Program; Synchrotron Catalysis Consortium, US Department of Energy [DE-FG02-05ER15688] FX This work was carried out at Brookhaven National Laboratory (BNL) with the U.S. Department of Energy (DOE) under contract number DE-AC02-98CH10886 and supported by its Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences. J.M.S., C.H.W., and K.S. acknowledge support by BNL Technology Maturation Funding TM 12-008. J.M.S. acknowledges support by the DOE Science Undergraduate Laboratory Internships Program. Beamline X18B at the NSLS is supported in part by the Synchrotron Catalysis Consortium, US Department of Energy Grant No DE-FG02-05ER15688. NR 37 TC 20 Z9 20 U1 24 U2 165 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD SEP PY 2014 VL 7 IS 9 BP 2414 EP 2418 DI 10.1002/cssc.201402454 PG 5 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA AQ5AE UT WOS:000342813300003 PM 25059477 ER PT J AU Cao, RG Walter, ED Xu, W Nasybulin, EN Bhattacharya, P Bowden, ME Engelhard, MH Zhang, JG AF Cao, Ruiguo Walter, Eric D. Xu, Wu Nasybulin, Eduard N. Bhattacharya, Priyanka Bowden, Mark E. Engelhard, Mark H. Zhang, Ji-Guang TI The Mechanisms of Oxygen Reduction and Evolution Reactions in Nonaqueous Lithium-Oxygen Batteries SO CHEMSUSCHEM LA English DT Article DE batteries; electrochemistry; lithium; oxygen; radicals ID METAL-AIR BATTERIES; LI-O-2 BATTERIES; LI-AIR; KINETIC OVERPOTENTIALS; DISCHARGE PRODUCT; ORGANIC-SOLVENTS; X-RAY; ELECTROLYTE; ELECTROCHEMISTRY; CATALYSTS AB A fundamental understanding of the mechanisms of both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in nonaqueous lithium-oxygen (Li-O-2) batteries is essential for the further development of these batteries. In this work, we systematically investigate the mechanisms of the ORR/OER reactions in nonaqueous Li-O-2 batteries by using electron paramagnetic resonance (EPR) spectroscopy, using 5,5-dimethyl-pyrroline N-oxide as a spin trap. The study provides direct verification of the formation of the superoxide radical anion (O-2(center dot-)) as an intermediate in the ORR during the discharge process, while no O2(center dot-) was detected in the OER during the charge process. These findings provide insight into, and an understanding of, the fundamental reaction mechanisms involving oxygen and guide the further development of this field. C1 [Cao, Ruiguo; Xu, Wu; Nasybulin, Eduard N.; Bhattacharya, Priyanka; Zhang, Ji-Guang] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. [Walter, Eric D.; Bowden, Mark E.; Engelhard, Mark H.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. RP Xu, W (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. EM wu.xu@pnnl.gov; jiguang.zhang@pnnl.gov RI Bhattacharya, Priyanka/E-1652-2011; Cao, Ruiguo/O-7354-2016; Walter, Eric/P-9329-2016; OI Bhattacharya, Priyanka/0000-0003-0368-8480; Engelhard, Mark/0000-0002-5543-0812; Xu, Wu/0000-0002-2685-8684 FU Joint Center for Energy Storage Research, an Energy Innovation Hub - U.S. Department of Energy, Office of Science, Basic Energy Sciences; U.S. Department of Energy's Office of Biological and Environmental Research; Linus Pauling Distinguished Postdoctoral Fellowship at PNNL FX This work was supported by the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. The EPR, micro-XRD, XPS, and SEM analyses were performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). P.B. is grateful for support from a Linus Pauling Distinguished Postdoctoral Fellowship at PNNL. NR 43 TC 20 Z9 21 U1 12 U2 146 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD SEP PY 2014 VL 7 IS 9 BP 2436 EP 2440 DI 10.1002/cssc.201402315 PG 5 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA AQ5AE UT WOS:000342813300008 PM 25045007 ER PT J AU Sreekumar, S Baer, ZC Gross, E Padmanaban, S Goulas, K Gunbas, G Alayoglu, S Blanch, HW Clark, DS Toste, FD AF Sreekumar, Sanil Baer, Zachary C. Gross, Elad Padmanaban, Sasisanker Goulas, Konstantinos Gunbas, Gorkem Alayoglu, Selim Blanch, Harvey W. Clark, Douglas S. Toste, F. Dean TI Chemocatalytic Upgrading of Tailored Fermentation Products Toward Biodiesel SO CHEMSUSCHEM LA English DT Article DE acetone-butanol-ethanol; biodiesel; biomass; Clostridium beijerinckii; hydrotalcite; isopropanol-butanol-ethanol ID CLOSTRIDIUM-ACETOBUTYLICUM; EXTRACTIVE FERMENTATION; ETHANOL FERMENTATION; HIGHER ALCOHOLS; BIOMASS; BUTANOL; CATALYST; HYDROTALCITE; HYDROCARBONS; PATHWAY AB Biological and chemocatalytic processes are tailored in order to maximize the production of sustainable biodiesel from lignocellulosic sugar. Thus, the combination of hydrotalcite-supported copper(II) and palladium(0) catalysts with a modification of the fermentation from acetone-butanol-ethanol to isopropanol-butanol-ethanol predictably produces higher concentrations of diesel-range components in the alkylation reaction. C1 [Sreekumar, Sanil; Gunbas, Gorkem; Toste, F. Dean] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Sreekumar, Sanil; Baer, Zachary C.; Padmanaban, Sasisanker; Goulas, Konstantinos; Blanch, Harvey W.; Clark, Douglas S.; Toste, F. Dean] Univ Calif Berkeley, Energy Biosci Inst, Berkeley, CA 94720 USA. [Baer, Zachary C.; Goulas, Konstantinos; Gunbas, Gorkem; Blanch, Harvey W.; Clark, Douglas S.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Gross, Elad; Alayoglu, Selim] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Div Chem Sci, Berkeley, CA 94720 USA. RP Goulas, K (reprint author), Univ Calif Berkeley, Energy Biosci Inst, Berkeley, CA 94720 USA. EM blanch@berkeley.edu; clark@berkeley.edu; fdtoste@berkeley.edu RI gunbas, gorkem/I-8975-2016; Padmanabhan, Sasisanker/E-8502-2012; OI Padmanabhan, Sasisanker/0000-0003-2292-889X; Goulas, Konstantinos/0000-0001-8306-2888; Toste, F. Dean/0000-0001-8018-2198 FU Energy Biosciences Institute (EBI) FX This work was financially supported by Energy Biosciences Institute (EBI). NR 25 TC 23 Z9 23 U1 5 U2 33 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD SEP PY 2014 VL 7 IS 9 BP 2445 EP 2448 DI 10.1002/cssc.201402244 PG 4 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA AQ5AE UT WOS:000342813300010 PM 25044817 ER PT J AU Xu, R Zhang, XF Yu, C Ren, Y Li, JCM Belharouak, I AF Xu, Rui Zhang, Xiaofeng Yu, Cun Ren, Yang Li, James C. M. Belharouak, Ilias TI Paving the Way for Using Li2S Batteries SO CHEMSUSCHEM LA English DT Article DE electrolyte; energy storage; lithium disulfide; lithium polysulfide; lithium sulfur batteries ID RECHARGEABLE LITHIUM BATTERIES; CATHODE MATERIALS; SULFUR BATTERIES; ION BATTERIES; ELECTRODE; PERFORMANCE; ENERGY; COMPOSITES; PARTICLES; CELL AB In this work, a novel lithium-sulfur battery was developed comprising Li2S as the cathode, lithium metal as the anode and polysulfide-based solution as the electrolyte. The electrochemical performances of these Li2S-based cells strongly depended upon the nature of the electrolytes. In the presence of the conventional electrolyte that consisted of lithium bis(trifluoromethanesulfonyl)- imide (LiTFSI) salt dissolved in a solvent combination of dimethoxyethane (DME)/1,3-dioxolane (DOL), the Li/Li2S cells showed sluggish kinetics, which translated into poor cycling and capacity retention. However, when using small amounts of polysulfides in the electrolyte along with a shuttle inhibitor the Li2S cathode was efficiently activated in the cell with the generation of over 1000 mAhg(-1) capacity and good cycle life. C1 [Xu, Rui; Zhang, Xiaofeng; Belharouak, Ilias] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Belharouak, Ilias] Qatar Fdn, Qatar Environm & Energy Res Inst, Doha, Qatar. [Xu, Rui; Li, James C. M.] Univ Rochester, Dept Mech Engn, Mat Sci Program, Rochester, NY 14627 USA. [Yu, Cun; Ren, Yang] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Belharouak, I (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ibelharouak@qf.org.qa OI Belharouak, Ilias/0000-0002-3985-0278; Yu, Cun/0000-0003-0084-6746 FU U.S. Department of Energy; Freedom CAR; Vehicle Technologies Office; Electron Microscopy Center for Materials Research at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357] FX This research was funded by the U.S. Department of Energy, Freedom CAR, and Vehicle Technologies Office. The electron microscopy was accomplished at the Electron Microscopy Center for Materials Research at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC. NR 28 TC 11 Z9 11 U1 8 U2 69 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD SEP PY 2014 VL 7 IS 9 BP 2457 EP 2460 DI 10.1002/cssc.201402177 PG 4 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA AQ5AE UT WOS:000342813300013 PM 25044568 ER PT J AU Archambault-Leger, V Shao, XJ Lynd, LR AF Archambault-Leger, Veronique Shao, Xiongjun Lynd, Lee R. TI Simulated Performance of Reactor Configurations for Hot-Water Pretreatment of Sugarcane Bagasse SO CHEMSUSCHEM LA English DT Article DE biomass; computational chemistry; energy conversion; kinetics; renewable resources ID DILUTE SULFURIC-ACID; TOTAL MASS REMOVAL; CORN STOVER; HEMICELLULOSE HYDROLYSIS; ENZYMATIC DIGESTIBILITY; LIGNOCELLULOSIC BIOMASS; CANE BAGASSE; WHEAT-STRAW; FLOW-RATE; LIGNIN AB During the pretreatment of cellulosic biomass for subsequent microbial or enzymatic processing, the fiber reactivity typically increases with increasing severity but so does sugar degradation. Experimental results with sugarcane bagasse show that this tradeoff can be mitigated substantially by pretreatment in a flow-through (FT) mode. A model that incorporates both kinetics and mass transfer was developed to simulate the performance of pretreatment in plug flow, counter-current flow, cross flow, discrete counter-current and partial FT configurations. The simulated results compare well to the literature for bagasse pretreated in both batch and FT configurations. A variety of FT configurations result in sugar degradation that is very low (1-5%) and 5-20-fold less than a conventional plug flow configuration. The performance exhibits strong sensitivity to the extent of hemicellulose solubilization, particularly for a conventional plug flow configuration. C1 [Archambault-Leger, Veronique; Shao, Xiongjun; Lynd, Lee R.] Dartmouth Coll, Hanover, NH 03755 USA. [Archambault-Leger, Veronique; Shao, Xiongjun; Lynd, Lee R.] Oak Ridge Natl Lab, DOE BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Lynd, Lee R.] Mascoma Corp, Lebanon, NH 03766 USA. RP Lynd, LR (reprint author), Dartmouth Coll, Hanover, NH 03755 USA. EM Lee.R.Lynd@Dartmouth.edu FU Link Energy Foundation; BioEnergy Science Center (BESC), a U.S. Department of Energy (DOE) Research Center by Office of Biological and Environmental Research in the DOE Office of Science, Oak Ridge National Laboratory; Mascoma Corporation; Department of Energy [DE-AC05-00OR22725] FX The authors are grateful for the support provided by funding grants from the Link Energy Foundation, the BioEnergy Science Center (BESC), a U.S. Department of Energy (DOE) Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science, Oak Ridge National Laboratory, and Mascoma Corporation. Oak Ridge National Laboratory is managed by University of Tennessee UT-Battelle LLC for the Department of Energy under Contract No. DE-AC05-00OR22725. NR 34 TC 1 Z9 1 U1 0 U2 12 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD SEP PY 2014 VL 7 IS 9 BP 2721 EP 2727 DI 10.1002/cssc.201402087 PG 7 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA AQ5AE UT WOS:000342813300047 PM 25088298 ER PT J AU Fu, L Zhang, Y Wei, ZH Wang, HF AF Fu, Li Zhang, Yun Wei, Zhe-Hao Wang, Hong-Fei TI Intrinsic Chirality and Prochirality at Air/R-(+)- and S-(-)-Limonene Interfaces: Spectral Signatures With Interference Chiral Sum-Frequency Generation Vibrational Spectroscopy SO CHIRALITY LA English DT Article DE intrinsic chirality; prochirality; limonene interfaces; spectral signatures ID MOLECULAR CHIRALITY; OPTICAL-ACTIVITY; IN-SITU; SFG-VS; SURFACE CHIRALITY; UNIFIED TREATMENT; NONLINEAR OPTICS; PROBE; ORIENTATION; SENSITIVITY AB We report in this work detailed measurements of the chiral and achiral sum-frequency vibrational spectra in the C-H stretching vibration region (2800-3050 cm(-1)) of the air/liquid interfaces of R-(+)-limonene and S-(-)-limonene, using the recently developed high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The achiral SFG spectra of R-limonene and S-limonene, as well as the RS racemic mixture (50/50 equal amount mixture), show that the corresponding molecular groups of the R and S enantiomers are with the same interfacial orientations. The interference chiral SFG spectra of the limonene enantiomers exhibit a spectral signature from the chiral response of the C alpha-H stretching mode, and a spectral signature from the prochiral response of the CH2 asymmetric stretching mode, respectively. The chiral spectral feature of the C alpha-H stretching mode changes sign from R-(+)-limonene to S-(-)-limonene surfaces, and disappears for the RS racemic mixture surface. While the prochiral spectral feature of the CH2 asymmetric stretching mode is the same for R-(+)-limonene and S-(-)-limonene surfaces, and also surprisingly remains the same for the RS racemic mixture surface. Therefore, the structures of the R-(+)-limonene and the S-(-)-limonene at the liquid interfaces are nevertheless not mirror images to each other, even though the corresponding groups have the same tilt angle from the interfacial normal, i. e., the R-(+)-limonene and the S-(-)-limonene at the surface are diastereomeric instead of enantiomeric. These results provide detailed information in understanding the structure and chirality of molecular interfaces and demonstrate the sensitivity and potential of SFG-VS as a unique spectroscopic tool or chirality characterization and chiral recognition at the molecular interface. (C) 2014 Wiley Periodicals, Inc. C1 [Fu, Li; Zhang, Yun; Wei, Zhe-Hao; Wang, Hong-Fei] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Wang, HF (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, POB 999, Richland, WA 99352 USA. EM hongfei.wang@pnnl.gov RI Wang, Hongfei/B-1263-2010; Wei, Zhehao/L-2801-2013 OI Wang, Hongfei/0000-0001-8238-1641; Wei, Zhehao/0000-0002-9670-4752 FU Department of Energy's Office of Biological and Environmental Research (DOE-BER); PNNL FX H.F.W. thanks Garth J. Simpson for invaluable discussion and suggestions, especially in clarifying the theoretical framework of chiral SFG. L. F. thanks Luis Velarde and Patrick El-Khoury for their help with the SFG experiment laser setup and discussion. This work was conducted at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility located at the Pacific Northwest National Laboratory (PNNL) and sponsored by the Department of Energy's Office of Biological and Environmental Research (DOE-BER). Y.Z. is an Alternate Sponsored Fellow at PNNL and a graduate student from Beijing Institute of Technology. Z.H.W. is a graduate intern at EMSL and a graduate student from Washington State University. NR 63 TC 10 Z9 10 U1 11 U2 44 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0899-0042 EI 1520-636X J9 CHIRALITY JI Chirality PD SEP PY 2014 VL 26 IS 9 SI SI BP 509 EP 520 DI 10.1002/chir.22337 PG 12 WC Chemistry, Medicinal; Chemistry, Analytical; Chemistry, Organic; Pharmacology & Pharmacy SC Pharmacology & Pharmacy; Chemistry GA AR0WY UT WOS:000343295600013 PM 24895322 ER PT J AU Wu, YQ Allahar, KN Burns, J Jaques, B Charit, I Butt, DP Cole, JI AF Wu, Y. Q. Allahar, K. N. Burns, J. Jaques, B. Charit, I. Butt, D. P. Cole, J. I. TI Fe-Cr-Mo based ODS alloys via spark plasma sintering: A combinational characterization study by TEM and APT SO CRYSTAL RESEARCH AND TECHNOLOGY LA English DT Article DE ODS; segregation; TEM; APT; SPS ID FERRITIC ALLOYS; STEELS; MICROSTRUCTURE; IRRADIATION; PARTICLES AB Nanoscale oxides play an important role in oxide dispersion strengthened (ODS) alloys for improved high temperature creep resistance and enhanced radiation damage tolerance. In this study, transmission electron microscopy (TEM) and atom probe tomography (APT) were combined to investigate two novel Fe-16Cr-3Mo (wt.%) based ODS alloys. Spark plasma sintering (SPS) was used to consolidate the ODS alloys from powders that were milled with 0.5 wt.% Y2O3 powder only or with Y2O3 powder and 1 wt.% Ti. TEM characterization revealed that both alloys have a bimodal structure of nanometer-size (similar to 100 - 500 nm) and micron-size grains with nanostructured oxide precipitates formed along and close to grain boundaries with diameters ranging from five to tens of nanometers. APT provides further quantitative analyses of the oxide precipitates, and also reveals Mo segregation at grain boundaries next to oxide precipitates. The alloys with and without Ti are compared based on their microstructures. C1 [Wu, Y. Q.; Allahar, K. N.; Burns, J.; Jaques, B.; Butt, D. P.] Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83725 USA. [Wu, Y. Q.; Allahar, K. N.; Burns, J.; Charit, I.; Butt, D. P.; Cole, J. I.] Ctr Adv Energy Studies, Idaho Falls, ID 83401 USA. [Charit, I.] Univ Idaho, Dept Chem & Mat Engn, Moscow, ID 83844 USA. [Cole, J. I.] Idaho Natl Lab, ATR Natl Sci User Facil, Idaho Falls, ID 83415 USA. RP Wu, YQ (reprint author), Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83725 USA. EM yaqiaowu@boisestate.edu OI Cole, James/0000-0003-1178-5846; Jaques, Brian/0000-0002-5324-555X FU Laboratory Directed Research and Development Office of the Idaho National Laboratory; US Government under DOE [DE-AC07-05ID14517] FX The authors gratefully acknowledge financial support from the Laboratory Directed Research and Development Office of the Idaho National Laboratory. This submitted manuscript was authored by a contractor of the US Government under DOE Contract No. DE-AC07-05ID14517. NR 21 TC 4 Z9 4 U1 2 U2 38 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0232-1300 EI 1521-4079 J9 CRYST RES TECHNOL JI Cryst. Res. Technol. PD SEP PY 2014 VL 49 IS 9 SI SI BP 645 EP 652 DI 10.1002/crat.201300173 PG 8 WC Crystallography SC Crystallography GA AQ4MK UT WOS:000342771300002 ER PT J AU Moeck, P York, BW Browning, ND AF Moeck, Peter York, Bryant W. Browning, Nigel D. TI Symmetries of migration-related segments of all [001] coincidence site lattice tilt boundaries in (001) projection for all holohedral cubic materials SO CRYSTAL RESEARCH AND TECHNOLOGY LA English DT Article DE grain boundaries; frieze symmetries; projected layer symmetries; bicrystallography ID GRAIN-BOUNDARIES; ATOMIC-STRUCTURE; INTERFACES AB Utilizing bicrystallography in two dimensions (2D), the symmetries of migration related segments of Coincidence Site Lattice (CSL) boundaries are predicted for projections along their [001] tilt axis in grain boundaries of crystalline materials that possess the holohedral point symmetry of the cubic system (i.e. m (3) over barm). These kinds of "edge-on" projections are typical for atomic resolution imaging of such tilt boundaries with Transmission Electron Microscopes (TEM). Such images from a recently published aberration-corrected Z-contrast scanning TEM investigation [H. Yang et al., Phil. Mag. 93 (2013) 1219] and other studies facilitate the direct visual confirmation of our frieze symmetry predictions with experimental results. C1 [Moeck, Peter] Portland State Univ, Dept Phys, Nanocrystallog Grp, Portland, OR 97207 USA. [York, Bryant W.] Portland State Univ, Dept Comp Sci, Portland, OR 97207 USA. [Browning, Nigel D.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. RP Moeck, P (reprint author), Portland State Univ, Dept Phys, Nanocrystallog Grp, Portland, OR 97207 USA. EM pmoeck@pdx.edu OI Browning, Nigel/0000-0003-0491-251X FU United States Department of Energy (DOE) [DE-FG02-03ER46057]; DOE [DE-AC05-76RL01830]; Department of Energy's Office of Biological and Environmental Research and located at PNNL FX NDB acknowledges support from the United States Department of Energy (DOE), Grant No. DE-FG02-03ER46057. A portion of this work is part of the Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL) under Contract DE-AC05-76RL01830 operated for DOE by Battelle. It was conducted under the Laboratory Directed Research and Development Program at PNNL. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. NR 38 TC 2 Z9 2 U1 0 U2 9 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0232-1300 EI 1521-4079 J9 CRYST RES TECHNOL JI Cryst. Res. Technol. PD SEP PY 2014 VL 49 IS 9 SI SI BP 708 EP 720 DI 10.1002/crat.201400071 PG 13 WC Crystallography SC Crystallography GA AQ4MK UT WOS:000342771300008 ER PT J AU Ibanez, E Magee, T Clement, M Brinkman, G Milligan, M Zagona, E AF Ibanez, Eduardo Magee, Timothy Clement, Mitch Brinkman, Gregory Milligan, Michael Zagona, Edith TI Enhancing hydropower modeling in variable generation integration studies SO ENERGY LA English DT Article; Proceedings Paper CT 26th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS) CY JUL 16-19, 2013 CL Guilin, PEOPLES R CHINA SP Chinese Soc Engn Thermophys DE Hydroelectric power generation; Optimization; Power system modeling; Renewable energy sources; Reservoirs ID WIND POWER-GENERATION; CONGESTION PROBLEMS; SYSTEM; COORDINATION; SIMULATION; OPERATION; AREAS; SPOT AB The integration of large amounts of variable renewable generation can increase the demand on flexible resources in the power system. Conventional hydropower can be an important asset for managing variability and uncertainty in the power system, but multi-purpose reservoirs are often limited by non-power constraints. Previous large-scale variable generation integration studies have simulated the operation of the electric system under different penetration levels but often with simplified representations of hydropower to avoid complex non-power constraints. This paper illustrates the value of bridging the gap between power system models and detailed hydropower models with a demonstration case. The United States Western Interconnection is modeled with PLEXUS, and ten large reservoirs on the Columbia River are modeled with RiverWare. The results show the effect of detailed hydropower modeling on the power system and its benefits to the power system, such as the decrease in overall production cost and the reduction of variable generation curtailment. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Ibanez, Eduardo; Brinkman, Gregory; Milligan, Michael] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Magee, Timothy; Clement, Mitch; Zagona, Edith] Univ Colorado, Ctr Adv Decis Support Water & Environm Syst, Boulder, CO 80309 USA. RP Ibanez, E (reprint author), Natl Renewable Energy Lab, 16253 Denver West Pkwy, Golden, CO 80401 USA. EM eduardo.ibanez@nrel.gov; magee@colorado.edu; mitch.clement@colorado.edu; gregory.brinkman@nrel.gov; michael.milligan@nrel.gov; zagona@colorado.edu NR 37 TC 5 Z9 5 U1 2 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-5442 EI 1873-6785 J9 ENERGY JI Energy PD SEP 1 PY 2014 VL 74 BP 518 EP 528 DI 10.1016/j.energy.2014.07.017 PG 11 WC Thermodynamics; Energy & Fuels SC Thermodynamics; Energy & Fuels GA AQ5PW UT WOS:000342862100056 ER PT J AU Poineau, F Forster, PM Todorova, TK Johnstone, EV Kerlin, WM Gagliardi, L Czerwinski, KR Sattelberger, AP AF Poineau, Frederic Forster, Paul M. Todorova, Tanya K. Johnstone, Erik V. Kerlin, William M. Gagliardi, Laura Czerwinski, Kenneth R. Sattelberger, Alfred P. TI A Decade of Dinuclear Technetium Complexes with Multiple Metal-Metal Bonds SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Review DE Technetium; Metal-metal interactions; Structure elucidation; Electronic structure ID STRUCTURAL-CHARACTERIZATION; ELECTRONIC-STRUCTURE; TERTIARY PHOSPHINES; TRANSITION-METALS; CHEMISTRY; CLUSTERS; DIMERS; BR; TC; CL AB Transition metal complexes with multiple metal-metal bonds exhibit interesting catalytic and biological properties. One element whose metal-metal bond chemistry has been poorly studied is technetium. Currently, only 25 technetium complexes with multiple metal-metal bonds have been structurally characterized. The nature of metal-metal interactions in these complexes, as well as the influence of ligands on the bonding in the Tc-2(n+) unit (n = 6, 5, 4) are not well understood. In order to better understand the influence of ligands on the Tc-Tc bonding, a study of the solid-state and electronic structure of dinuclear complexes with the Tc-2(n+) unit (n = 6, 5, 4) has been performed. Dinuclear technetium complexes (nBu(4)N)(2)Tc2X8, Tc-2(O2CCH3)(4)X-2, Tc-2(O2CCH3)(2)Cl-4, cesium salts of Tc2X83-, and Tc2X4(PMe3)(4) (X = Cl, Br) were synthesized; their molecular and electronic structures, as well as their electronic absorption spectra, were studied by a number of physical and computational techniques. The structure and bonding in these systems have been investigated by using multiconfigurational quantum calculations. For all these complexes, the calculated geometries are in very good agreement with those determined experimentally. Bond order analysis demonstrates that all these complexes exhibit a total bond order of approximately 3. Analysis of individual effective bond order (EBO) components shows that these complexes have similar s components, while the strength of their p components follows the order Tc2X4(PMe3)(4) > Tc2X83- > Tc-2(O2CCH3)(2)Cl-4 > Tc2X82-. Calculations indicate that the delta components are the weakest bond in Tc2X8n- (n = 2, 3) and Tc-2(O2CCH3)(2)Cl-4. Further analysis of Tc2X83- and Tc2X4(PMe3)(4) (X = Cl, Br) indicates that the electronic structure of the Tc-2(5+) and Tc-2(4+) units is insensitive to the nature of the coordinating ligands. The electronic absorption spectra of Tc2X8n- (n = 2, 3), Tc-2(O2CCH3)(2)Cl-4, and Tc2X4(PMe3)(4) (X = Cl, Br) were studied in solution, and assignment of the transitions was performed by multiconfigurational quantum chemical calculations. For the Tc2X8n-(n = 2, 3; X = Cl, Br) anions and Tc-2(O2CCH3)(2)Cl-4, the lowest-energy band is attributed to the delta ->delta* transition. For Tc2X4(PMe3)(4), the assignment of the transitions follow the following order in energy: delta* -> sigma* < delta* -> pi* < delta -> sigma* < delta -> pi*. C1 [Poineau, Frederic; Forster, Paul M.; Johnstone, Erik V.; Kerlin, William M.; Czerwinski, Kenneth R.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Todorova, Tanya K.] Univ Geneva, Dept Phys Chem, CH-1211 Geneva, Switzerland. [Gagliardi, Laura] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. [Gagliardi, Laura] Univ Minnesota, Supercomp Inst, Minneapolis, MN 55455 USA. [Sattelberger, Alfred P.] Argonne Natl Lab, Energy Engn & Syst Anal Directorate, Argonne, IL 60439 USA. RP Poineau, F (reprint author), Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. EM poineauf@unlv.nevada.edu RI Todorova, Tanya/M-1849-2013 OI Todorova, Tanya/0000-0002-7731-6498 FU Nuclear Energy University Programs (NEUP) grant from the U.S. Department of Energy, Office of Nuclear Energy, through INL/BEA, LLC [00129169, DE-AC07-05ID14517]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, Heavy Elements Chemistry Program, U.S. Department of Energy [DE-SC002183] FX Funding for this research was provided by an Nuclear Energy University Programs (NEUP) grant from the U.S. Department of Energy, Office of Nuclear Energy, through INL/BEA, LLC, 00129169, agreement No. DE-AC07-05ID14517. Use of the Advanced Photon Source at Argonne was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The computational part of this study was supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, Heavy Elements Chemistry Program, U.S. Department of Energy, under grant DE-SC002183. The authors thank Dr. Tom O'Dou, Mr. Trevor Low, and Ms. Julie Bertoia for outstanding health physics support. NR 51 TC 1 Z9 1 U1 5 U2 33 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1434-1948 EI 1099-0682 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD SEP PY 2014 IS 27 SI SI BP 4484 EP 4495 DI 10.1002/ejic.201402340 PG 12 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AQ6HB UT WOS:000342910200006 ER PT J AU Das, P Stolley, RM van der Eide, EF Helm, ML AF Das, Parthapratim Stolley, Ryan M. van der Eide, Edwin F. Helm, Monte L. TI A Ni-II-Bis(diphosphine)-Hydride Complex Containing Proton Relays - Structural Characterization and Electrocatalytic Studies SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Article DE Homogeneous catalysis; Hydrogen; Proton transport; Nickel; Diphosphine ID HYDROGEN-PRODUCTION; MOLECULAR ELECTROCATALYSTS; METAL-COMPLEXES; RECENT PROGRESS; PENDANT AMINES; H-2 PRODUCTION; OXIDATION; CATALYSTS; LIGANDS; NI AB The synthesis of the 1,5-diphenyl-3,7-diisopropyl-1,5-diaza3,7- diphosphacyclooctane ligand, (P2N2Ph)-N-iPr, is reported. Two equivalents of the ligand react with [Ni(CH3CN)(6)](BF4)(2) to form the bis(diphosphine)-Ni-II complex [Ni((P2N2Ph)-N-iPr)(2)]-(BF4)(2), which acts as a proton reduction electrocatalyst. In addition to [Ni((P2N2Ph)-N-iPr)(2)](2+), we report the synthesis and structural characterization of the Ni-0 complex Ni((P2N2Ph)-N-iPr)(2) and the Ni-II-hydride complex [HNi((P2N2Ph)-N-iPr)(2)]BF4. The [HNi((P2N2Ph)-N-iPr)(2)]BF4 complex represents the first Ni-II-hydride in the [Ni((P2N2R')-N-R)(2)](2+) family of compounds to be structurally characterized. In addition to the experimental data, the mechanism of electrocatalysis facilitated by [Ni-((P2N2Ph)-N-iPr)(2)](2+) is analyzed by using linear free energy relationships recently established for the [Ni((P2N2R')-N-R)(2)](2+) family. C1 [Das, Parthapratim; Stolley, Ryan M.; van der Eide, Edwin F.; Helm, Monte L.] Pacific NW Natl Lab, Ctr Mol Electrocatalysis, Div Phys Sci, Richland, WA 99352 USA. RP Helm, ML (reprint author), Pacific NW Natl Lab, Ctr Mol Electrocatalysis, Div Phys Sci, POB 999,K2-57, Richland, WA 99352 USA. EM monte.helm@pnnl.com FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Department of Energy's office of Biological and Environmental Research located at Pacific Northwest National Laboratory FX We thank Dr. Aaron Appel, Dr. Simone Raugei and Dr. Eric Wiedner for helpful discussions. This research was supported as part of the work at the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Mass spectrometry was provided at W. R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's office of Biological and Environmental Research located at Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy. NR 27 TC 6 Z9 6 U1 1 U2 12 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1434-1948 EI 1099-0682 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD SEP PY 2014 IS 27 SI SI BP 4611 EP 4618 DI 10.1002/ejic.201402250 PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AQ6HB UT WOS:000342910200020 ER PT J AU McManamay, RA Utz, RM AF McManamay, Ryan A. Utz, Ryan M. TI Open-Access Databases as Unprecedented Resources and Drivers of Cultural Change in Fisheries Science SO FISHERIES LA English DT Article ID FRESH-WATER FISHES; BIODIVERSITY LOSS; UNITED-STATES; BIG DATA; IMPACT; OCEAN AB Open-access databases with utility in fisheries science have grown exponentially in quantity and scope over the past decade, with profound impacts to our discipline. The management, distillation, and sharing of an exponentially growing stream of open-access data represents several fundamental challenges in fisheries science. Many of the currently available open-access resources may not be universally known among fisheries scientists. We therefore introduce many national- and global-scale open-access databases with applications in fisheries science and provide an example of how they can be harnessed to perform valuable analyses without additional field efforts. We also discuss how the development, maintenance, and utilization of open-access data are likely to pose technical, financial, and educational challenges to fisheries scientists. Such cultural implications that will coincide with the rapidly increasing availability of free data should compel the American Fisheries Society to actively address these problems now to help ease the forthcoming cultural transition. RESUMENen la ultima decada, el numero de bases de datos de acceso abierto con utilidad para la ciencia pesquera ha crecido exponencialmente en cantidad y alcance y su impacto ha sido considerado como muy importante en esta disciplina. El manejo, depuracion e intercambio de datos de acceso abierto representa retos fundamentales en la ciencia pesquera. Muchos de los recursos actualmente disponibles de acceso abierto pueden no ser conocidos por los cientificos pesqueros. Por lo tanto, aqui se presentan varias bases de datos a nivel nacional e internacional de libre acceso con aplicacion en las ciencias pesqueras y se da un ejemplo de como pueden ser aprovechadas para realizar valiosos analisis sin hacer esfuerzos adicionales de trabajo de campo. Tambien se discute como el desarrollo, mantenimiento y uso de las base de datos de libre acceso muy posiblemente representaran retos importantes para los cientificos de la pesca en cuanto a las dimensiones tecnica, financiera y educativa. Tales implicaciones culturales, que coincidiran con la disponibilidad cada vez mayor de datos gratuitos, debieran servir de impulso a la Sociedad Americana de Pesquerias a que volcara activamente su atencion sobre estos problemas con el fin de facilitar la transicion cultural que se avecina. C1 [McManamay, Ryan A.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Utz, Ryan M.] Natl Ecol Observ Network, Boulder, CO 80301 USA. RP McManamay, RA (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM utz.ryan@gmail.com FU United States Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy, Wind and Water Power Technologies Program; U.S. Department of Energy [DE-AC05-00OR22725]; National Science Foundation [EF1138160] FX This research was sponsored by the United States Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy, Wind and Water Power Technologies Program. This article has been authored by an employee of Oak Ridge National Laboratory, managed by UT Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. R. Utz is supported by National Science Foundation cooperative agreement # EF1138160. NR 50 TC 3 Z9 3 U1 4 U2 18 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0363-2415 EI 1548-8446 J9 FISHERIES JI Fisheries PD SEP PY 2014 VL 39 IS 9 BP 417 EP 425 DI 10.1080/03632415.2014.946128 PG 9 WC Fisheries SC Fisheries GA AQ6GA UT WOS:000342907000008 ER PT J AU Blaschke, DN AF Blaschke, Daniel N. TI Gauge fields on non-commutative spaces and renormalization SO FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS LA English DT Article; Proceedings Paper CT Workshop on Noncommutative Field Theory and Gravity (CORFU) CY SEP 08-15, 2013 CL GREECE DE Non-commutative geometry; gauge field theory ID MODEL AB Constructing renormalizable models on non-commutative spaces constitutes a big challenge. Only few examples of renormalizable theories are known, such as the scalar Grosse-Wulkenhaar model. Gauge fields are even more difficult, since new renormalization techniques are required which are compatible with the inherently non-local setting on the one hand, and also allow to properly treat the gauge symmetry on the other hand. In this proceeding (which is based on my talk given at the "Workshop on Noncommutative Field Theory and Gravity" in Corfu/Greece, September 8-15, 2013), I focus on this last point and present new extensions to existing renormalization schemes (which are known to work for gauge field theories in commutative space) adapted to non-commutative Moyal space. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Blaschke, DN (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. EM dblaschke@lanl.gov NR 26 TC 0 Z9 0 U1 1 U2 1 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0015-8208 EI 1521-3978 J9 FORTSCHR PHYS JI Fortschritte Phys.-Prog. Phys. PD SEP PY 2014 VL 62 IS 9-10 SI SI BP 820 EP 824 DI 10.1002/prop.201400009 PG 5 WC Physics, Multidisciplinary SC Physics GA AQ4XU UT WOS:000342805600015 ER PT J AU Fardad, M Lin, F Jovanovic, MR AF Fardad, Makan Lin, Fu Jovanovic, Mihailo R. TI Design of Optimal Sparse Interconnection Graphs for Synchronization of Oscillator Networks SO IEEE TRANSACTIONS ON AUTOMATIC CONTROL LA English DT Article DE Consensus; convex relaxation; optimization; oscillator synchronization; reweighted l(1) minimization; semidefinite programming; sparse graph ID SPATIALLY INVARIANT-SYSTEMS; DISTRIBUTED CONTROL DESIGN; KURAMOTO; CONTROLLERS; STABILITY AB We study the optimal design of a conductance network as a means for synchronizing a given set of oscillators. Synchronization is achieved when all oscillator voltages reach consensus, and performance is quantified by the mean-square deviation from the consensus value. We formulate optimization problems that address the tradeoff between synchronization performance and the number and strength of oscillator couplings. We promote the sparsity of the coupling network by penalizing the number of interconnection links. For identical oscillators, we establish convexity of the optimization problem and demonstrate that the design problem can be formulated as a semidefinite program. Finally, for special classes of oscillator networks we derive explicit analytical expressions for the optimal conductance values. C1 [Fardad, Makan] Syracuse Univ, Dept Elect Engn & Comp Sci, Syracuse, NY 13244 USA. [Lin, Fu] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Jovanovic, Mihailo R.] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA. RP Fardad, M (reprint author), Syracuse Univ, Dept Elect Engn & Comp Sci, Syracuse, NY 13244 USA. EM makan@syr.edu; fulin@mcs.anl.gov; mi-hailo@umn.edu FU National Science Foundation [CMMI-0927509, CMMI-0927720, CMMI-0644793] FX This work was supported by the National Science Foundation under awards CMMI-0927509 and CMMI-0927720 and under CAREER Award CMMI-0644793. Recommended by Associate Editor S. Zampieri. NR 32 TC 19 Z9 19 U1 1 U2 13 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9286 EI 1558-2523 J9 IEEE T AUTOMAT CONTR JI IEEE Trans. Autom. Control PD SEP PY 2014 VL 59 IS 9 BP 2457 EP 2462 DI 10.1109/TAC.2014.2301577 PG 6 WC Automation & Control Systems; Engineering, Electrical & Electronic SC Automation & Control Systems; Engineering GA AQ6LO UT WOS:000342924100011 ER PT J AU Sanii, B Martinez-Avila, O Simpliciano, C Zuckermann, RN Habelitz, S AF Sanii, B. Martinez-Avila, O. Simpliciano, C. Zuckermann, R. N. Habelitz, S. TI Matching 4.7-angstrom XRD Spacing in Amelogenin Nanoribbons and Enamel Matrix SO JOURNAL OF DENTAL RESEARCH LA English DT Article DE self-assembly; structure; development; powder diffraction; Fourier transform infrared spectroscopy; secondary protein structure ID X-RAY-DIFFRACTION; BETA-SHEET STRUCTURE; TOOTH ENAMEL; PROTEIN; SPECTROSCOPY; PEPTIDES; FIBRILS; DRIVEN; CD AB The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel. XRD analysis showed that a peak corresponding to 4.7 angstrom is present in nanoribbons of amelogenin. In addition, FTIR analysis showed that amelogenin in the form of nanoribbons was comprised of -sheets by up to 75%, while amelogenin nanospheres had predominantly random-coil structure. The observation of a 4.7-angstrom XRD spacing confirms the presence of -sheets and illustrates structural parallels between the in vitro assemblies and structural motifs in developing enamel. C1 [Sanii, B.; Zuckermann, R. N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Sanii, B.] Claremont Mckenna Coll, Keck Sci Dept, Claremont, CA 91711 USA. [Sanii, B.] Scripps Coll, Keck Sci Dept, Claremont, CA 91711 USA. [Sanii, B.] Pitzer Coll, Keck Sci Dept, Claremont, CA 91711 USA. [Martinez-Avila, O.; Simpliciano, C.; Habelitz, S.] Univ Calif San Francisco, Dept Prevent & Restorat Dent Sci, San Francisco, CA 94143 USA. RP Habelitz, S (reprint author), Univ Calif San Francisco, Dept Prevent & Restorat Dent Sci, San Francisco, CA 94143 USA. EM stefan.habelitz@ucsf.edu RI Foundry, Molecular/G-9968-2014 FU National Institutes of Health (NIH)/National Institute of Dental and Craniofacial Research (NIDCR) grant [R21-023422]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Drs. Feroz Khan and Wu Li (UCSF) for providing us with amelogenin protein rH174, Dr. Sebnem Inceoglu (UCB) for support of FTIR analysis, and James Holton for support of XRD analysis. This study was funded by National Institutes of Health (NIH)/National Institute of Dental and Craniofacial Research (NIDCR) grant R21-023422. Portions of this work were performed at the Molecular Foundry and the Advanced Light Source, both of which are supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors declare no potential conflicts of interest with respect to the authorship and/or publication of this article. NR 30 TC 1 Z9 3 U1 1 U2 6 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0022-0345 EI 1544-0591 J9 J DENT RES JI J. Dent. Res. PD SEP PY 2014 VL 93 IS 9 BP 918 EP 922 DI 10.1177/0022034514544216 PG 5 WC Dentistry, Oral Surgery & Medicine SC Dentistry, Oral Surgery & Medicine GA AQ4MD UT WOS:000342770400013 PM 25048248 ER PT J AU Westphal, AJ Anderson, D Butterworth, AL Frank, DR Lettieri, R Marchant, W Von Korff, J Zevin, D Ardizzone, A Campanile, A Capraro, M Courtney, K Criswell, MN Crumpler, D Cwik, R Gray, FJ Hudson, B Imada, G Karr, J Wah, LLW Mazzucato, M Motta, PG Rigamonti, C Spencer, RC Woodrough, SB Santoni, IC Sperry, G Terry, JN Wordsworth, N Yahnke, T Allen, C Ansari, A Bajt, S Bastien, RK Bassim, N Bechtel, HA Borg, J Brenker, FE Bridges, J Brownlee, DE Burchell, M Burghammer, M Changela, H Cloetens, P Davis, AM Doll, R Floss, C Flynn, G Gainsforth, Z Grun, E Heck, PR Hillier, JK Hoppe, P Huth, J Hvide, B Kearsley, A King, AJ Lai, B Leitner, J Lemelle, L Leroux, H Leonard, A Nittler, LR Ogliore, R Ong, WJ Postberg, F Price, MC Sandford, SA Tresseras, JAS Schmitz, S Schoonjans, T Silversmit, G Simionovici, AS Sole, VA Srama, R Stephan, T Sterken, VJ Stodolna, J Stroud, RM Sutton, S Trieloff, M Tsou, P Tsuchiyama, A Tyliszczak, T Vekemans, B Vincze, L Zolensky, ME AF Westphal, Andrew J. Anderson, David Butterworth, Anna L. Frank, David R. Lettieri, Robert Marchant, William Von Korff, Joshua Zevin, Daniel Ardizzone, Augusto Campanile, Antonella Capraro, Michael Courtney, Kevin Criswell, Mitchell N., III Crumpler, Dixon Cwik, Robert Gray, Fred Jacob Hudson, Bruce Imada, Guy Karr, Joel Wah, Lily Lau Wan Mazzucato, Michele Motta, Pier Giorgio Rigamonti, Carlo Spencer, Ronald C. Woodrough, Stephens B. Santoni, Irene Cimmino Sperry, Gerry Terry, Jean-Noel Wordsworth, Naomi Yahnke, Tom, Sr. Allen, Carlton Ansari, Asna Bajt, Sasa Bastien, Ron K. Bassim, Nabil Bechtel, Hans A. Borg, Janet Brenker, Frank E. Bridges, John Brownlee, Donald E. Burchell, Mark Burghammer, Manfred Changela, Hitesh Cloetens, Peter Davis, Andrew M. Doll, Ryan Floss, Christine Flynn, George Gainsforth, Zack Gruen, Eberhard Heck, Philipp R. Hillier, Jon K. Hoppe, Peter Huth, Joachim Hvide, Brit Kearsley, Anton King, Ashley J. Lai, Barry Leitner, Jan Lemelle, Laurence Leroux, Hugues Leonard, Ariel Nittler, Larry R. Ogliore, Ryan Ong, Wei Ja Postberg, Frank Price, Mark C. Sandford, Scott A. Tresseras, Juan-Angel Sans Schmitz, Sylvia Schoonjans, Tom Silversmit, Geert Simionovici, Alexandre S. Sole, Vicente A. Srama, Ralf Stephan, Thomas Sterken, Veerle J. Stodolna, Julien Stroud, Rhonda M. Sutton, Steven Trieloff, Mario Tsou, Peter Tsuchiyama, Akira Tyliszczak, Tolek Vekemans, Bart Vincze, Laszlo Zolensky, Michael E. TI Stardust Interstellar Preliminary Examination I: Identification of tracks in aerogel SO METEORITICS & PLANETARY SCIENCE LA English DT Article AB Here, we report the identification of 69 tracks in approximately 250 cm(2) of aerogel collectors of the Stardust Interstellar Dust Collector. We identified these tracks through Stardust@home, a distributed internet-based virtual microscope and search engine, in which > 30,000 amateur scientists collectively performed >9 x 10(7) searches on approximately 10(6) fields of view. Using calibration images, we measured individual detection efficiency, and found that the individual detection efficiency for tracks > 2.5 mu m in diameter was >0.6, and was >0.75 for tracks >3 mu m in diameter. Because most fields of view were searched >30 times, these results could be combined to yield a theoretical detection efficiency near unity. The initial expectation was that interstellar dust would be captured at very high speed. The actual tracks discovered in the Stardust collector, however, were due to low-speed impacts, and were morphologically strongly distinct from the calibration images. As a result, the detection efficiency of these tracks was lower than detection efficiency of calibrations presented in training, testing, and ongoing calibration. Nevertheless, as calibration images based on low-speed impacts were added later in the project, detection efficiencies for low-speed tracks rose dramatically. We conclude that a massively distributed, calibrated search, with amateur collaborators, is an effective approach to the challenging problem of identification of tracks of hypervelocity projectiles captured in aerogel. C1 [Westphal, Andrew J.; Anderson, David; Butterworth, Anna L.; Lettieri, Robert; Marchant, William; Von Korff, Joshua; Zevin, Daniel; Gainsforth, Zack; Stodolna, Julien] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Frank, David R.; Bastien, Ron K.] NASA JSC, ESCG, Houston, TX USA. [Ardizzone, Augusto] Red Team, Palermo, Italy. [Campanile, Antonella] Red Team, Reggio Emilia, Italy. [Capraro, Michael] Red Team, Riverview, MI USA. [Courtney, Kevin] Red Team, Ballwin, MO USA. [Criswell, Mitchell N., III] Dog Star Observ, Red Team, Pearce, AZ USA. [Crumpler, Dixon] Red Team, Durham, NC USA. [Cwik, Robert] Red Team, Silver City, NM USA. [Gray, Fred Jacob] Red Team, Hampton, SC USA. [Hudson, Bruce] Red Team, Montreal, PQ, Canada. [Imada, Guy] Red Team, Brookings, OR USA. [Karr, Joel] Red Team, Kansas City, MO USA. [Wah, Lily Lau Wan] Red Team, Singapore, Singapore. [Mazzucato, Michele; Motta, Pier Giorgio] Red Team, Florence, Italy. [Rigamonti, Carlo] Red Team, Moncalieri, Italy. [Spencer, Ronald C.] Red Team, Leominster, MA USA. [Woodrough, Stephens B.] Red Team, St Petersburg, FL USA. [Santoni, Irene Cimmino] Red Team, Upper Saddle River, NJ USA. [Sperry, Gerry] Red Team, Tacoma, WA USA. [Terry, Jean-Noel] Red Team, Tarentaise, France. [Wordsworth, Naomi] Red Team, Wycombe, South Buckingha, England. [Yahnke, Tom, Sr.] Red Team, Louis, MO USA. [Allen, Carlton; Zolensky, Michael E.] NASA JSC, ARES, Houston, TX USA. [Ansari, Asna; Hvide, Brit] Field Museum Nat Hist, Robert A Pritzker Ctr Meteorit & Polar Studies, Chicago, IL 60605 USA. [Bajt, Sasa] DESY, Hamburg, Germany. [Bassim, Nabil; Stroud, Rhonda M.] Naval Res Lab, Mat Sci & Technol Div, Washington, DC USA. [Bechtel, Hans A.; Tyliszczak, Tolek] Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA USA. [Borg, Janet] IAS Orsay, Orsay, France. [Brenker, Frank E.; Schmitz, Sylvia] Goethe Univ, Geosci Inst, Frankfurt, Germany. [Bridges, John] Univ Leicester, Space Res Ctr, Leicester, Leics, England. [Brownlee, Donald E.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Burchell, Mark; Price, Mark C.] Univ Kent, Canterbury, Kent, England. [Burghammer, Manfred; Cloetens, Peter; Tresseras, Juan-Angel Sans; Sole, Vicente A.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Changela, Hitesh] George Washington Univ, Washington, DC 20052 USA. [Davis, Andrew M.; Stephan, Thomas] Univ Chicago, Chicago, IL 60637 USA. [Doll, Ryan; Leonard, Ariel; Nittler, Larry R.; Ong, Wei Ja] Washington Univ, St Louis, MO USA. [Flynn, George] SUNY Coll Plattsburgh, Plattsburgh, NY 12901 USA. [Gruen, Eberhard] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Heck, Philipp R.] Field Museum Nat Hist, Chicago, IL 60605 USA. [Hillier, Jon K.; Postberg, Frank; Trieloff, Mario] Heidelberg Univ, Inst Geowissensch, Heidelberg, Germany. [Hoppe, Peter; Huth, Joachim; Leitner, Jan] Max Planck Inst Chem, D-55128 Mainz, Germany. [Kearsley, Anton] Nat Hist Museum, London SW7 5BD, England. [King, Ashley J.] Univ Chicago, Chicago, IL 60637 USA. [King, Ashley J.] Field Museum Nat Hist, Robert A Pritzker Ctr Meteorit & Polar Studies, Chicago, IL 60605 USA. [Lai, Barry; Sutton, Steven] Argonne Natl Lab, Adv Photon Source, Chicago, IL USA. [Lemelle, Laurence] Ecole Normale Super Lyon, F-69364 Lyon, France. [Leroux, Hugues] Univ Lyon 1, F-69622 Villeurbanne, France. [Nittler, Larry R.] Carnegie Inst Sci, Washington, DC USA. [Ogliore, Ryan] Univ Hawaii Manoa, Honolulu, HI 96822 USA. [Sandford, Scott A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Schoonjans, Tom; Silversmit, Geert; Vekemans, Bart; Vincze, Laszlo] Univ Ghent, B-9000 Ghent, Belgium. [Simionovici, Alexandre S.] Univ Grenoble, Observ Sci, Inst Sci Terre, Grenoble, France. [Srama, Ralf; Sterken, Veerle J.] Univ Stuttgart, IRS, D-70174 Stuttgart, Germany. [Sterken, Veerle J.] TU Braunschweig, IGEP, Braunschweig, Germany. [Sterken, Veerle J.] MPIK, Heidelberg, Germany. [Tsou, Peter] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Tsuchiyama, Akira] Osaka Univ, Osaka, Japan. RP Westphal, AJ (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM westphal@ssl.berkeley.edu RI Leitner, Jan/A-7391-2015; Hoppe, Peter/B-3032-2015; Bajt, Sasa/G-2228-2010; Sans Tresserras, Juan Angel/J-9362-2014; Stroud, Rhonda/C-5503-2008; OI Leitner, Jan/0000-0003-3655-6273; Hoppe, Peter/0000-0003-3681-050X; Sans Tresserras, Juan Angel/0000-0001-9047-3992; Stroud, Rhonda/0000-0001-5242-8015; Burchell, Mark/0000-0002-2680-8943 FU NASA [NNX09AC36G, NNH11AQ61I]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX We thank Sean Brennan and Giles Graham for thoughtful comments, and John Bradley for editorial handling. The ISPE consortium gratefully acknowledges the NASA Discovery Program for Stardust, the fourth NASA Discovery mission. AJW, ALB, ZG, RL, DZ, WM, and JVK were supported by NASA grant NNX09AC36G. We thank Steve Boggs for astrophysical soft X-ray spectra. RMS, HCG, and NDB were supported by NASA grant NNH11AQ61I. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 8 TC 12 Z9 12 U1 4 U2 32 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2014 VL 49 IS 9 SI SI BP 1509 EP 1521 DI 10.1111/maps.12168 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AQ6HT UT WOS:000342912100001 ER PT J AU Frank, DR Westphal, AJ Zolensky, ME Gainsforth, Z Butterworth, AL Bastien, RK Allen, C Anderson, D Ansari, A Bajt, S Bassim, N Bechtel, HA Borg, J Brenker, FE Bridges, J Brownlee, DE Burchell, M Burghammer, M Changela, H Cloetens, P Davis, AM Doll, R Floss, C Flynn, G Grun, E Heck, PR Hillier, JK Hoppe, P Hudson, B Huth, J Hvide, B Kearsley, A King, AJ Lai, B Leitner, J Lemelle, L Leroux, H Leonard, A Lettieri, R Marchant, W Nittler, LR Ogliore, R Ong, WJ Postberg, F Price, MC Sandford, SA Tresseras, JAS Schmitz, S Schoonjans, T Silversmit, G Simionovici, AS Sole, VA Srama, R Stephan, T Sterken, VJ Stodolna, J Stroud, RM Sutton, S Trieloff, M Tsou, P Tsuchiyama, A Tyliszczak, T Vekemans, B Vincze, L Von Korff, J Wordsworth, N Zevin, D AF Frank, David R. Westphal, Andrew J. Zolensky, Michael E. Gainsforth, Zack Butterworth, Anna L. Bastien, Ronald K. Allen, Carlton Anderson, David Ansari, Asna Bajt, Sasa Bassim, Nabil Bechtel, Hans A. Borg, Janet Brenker, Frank E. Bridges, John Brownlee, Donald E. Burchell, Mark Burghammer, Manfred Changela, Hitesh Cloetens, Peter Davis, Andrew M. Doll, Ryan Floss, Christine Flynn, George Gruen, Eberhard Heck, Philipp R. Hillier, Jon K. Hoppe, Peter Hudson, Bruce Huth, Joachim Hvide, Brit Kearsley, Anton King, Ashley J. Lai, Barry Leitner, Jan Lemelle, Laurence Leroux, Hugues Leonard, Ariel Lettieri, Robert Marchant, William Nittler, Larry R. Ogliore, Ryan Ong, Wei Ja Postberg, Frank Price, Mark C. Sandford, Scott A. Tresseras, Juan-Angel Sans Schmitz, Sylvia Schoonjans, Tom Silversmit, Geert Simionovici, Alexandre S. Sole, Vicente A. Srama, Ralf Stephan, Thomas Sterken, Veerle J. Stodolna, Julien Stroud, Rhonda M. Sutton, Steven Trieloff, Mario Tsou, Peter Tsuchiyama, Akira Tyliszczak, Tolek Vekemans, Bart Vincze, Laszlo Von Korff, Joshua Wordsworth, Naomi Zevin, Daniel TI Stardust Interstellar Preliminary Examination II: Curating the interstellar dust collector, picokeystones, and sources of impact tracks SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID IRON-NICKEL SULFIDES; RADIATION PRESSURE; COMETARY DUST; AEROGEL; PARTICLES; MISSION; FEATURES; GRAINS; DISKS; FOIL AB We discuss the inherent difficulties that arise during "ground truth" characterization of the Stardust interstellar dust collector. The challenge of identifying contemporary interstellar dust impact tracks in aerogel is described within the context of background spacecraft secondaries and possible interplanetary dust particles and beta-meteoroids. In addition, the extraction of microscopic dust embedded in aerogel is technically challenging. Specifically, we provide a detailed description of the sample preparation techniques developed to address the unique goals and restrictions of the Interstellar Preliminary Exam. These sample preparation requirements and the scarcity of candidate interstellar impact tracks exacerbate the difficulties. We also illustrate the role of initial optical imaging with critically important examples, and summarize the overall processing of the collection to date. C1 [Frank, David R.; Bastien, Ronald K.] NASA Johnson Space Ctr, ESCG, Houston, TX 77058 USA. [Westphal, Andrew J.; Gainsforth, Zack; Butterworth, Anna L.; Anderson, David; Lettieri, Robert; Marchant, William; Stodolna, Julien; Von Korff, Joshua; Zevin, Daniel] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA USA. [Zolensky, Michael E.; Allen, Carlton] NASA Johnson Space Ctr, ARES, Houston, TX USA. [Ansari, Asna; Davis, Andrew M.; Heck, Philipp R.; Hvide, Brit] Field Museum Nat Hist, Robert A Pritzker Ctr Meteorit & Polar Studies, Chicago, IL 60605 USA. [Bajt, Sasa] DESY, Hamburg, Germany. [Bassim, Nabil; Stroud, Rhonda M.] Naval Res Lab, Mat Sci & Technol Div, Washington, DC USA. [Bechtel, Hans A.; Tyliszczak, Tolek] Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA USA. [Borg, Janet] IAS Orsay, Orsay, France. [Brenker, Frank E.; Schmitz, Sylvia] Goethe Univ Frankfurt, Inst Geosci, Frankfurt, Germany. [Bridges, John] Univ Leicester, Space Res Ctr, Leicester, Leics, England. [Brownlee, Donald E.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Burchell, Mark; Price, Mark C.] Univ Kent, Canterbury CT2 7NZ, Kent, England. [Burghammer, Manfred; Cloetens, Peter; Tresseras, Juan-Angel Sans; Sole, Vicente A.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Changela, Hitesh] George Washington Univ, Washington, DC USA. [Davis, Andrew M.; King, Ashley J.; Stephan, Thomas] Univ Chicago, Chicago, IL 60637 USA. [Doll, Ryan; Floss, Christine; Leonard, Ariel; Ong, Wei Ja] Washington Univ, St Louis, MO USA. [Flynn, George] SUNY Coll Plattsburgh, Plattsburgh, NY 12901 USA. [Gruen, Eberhard; Sterken, Veerle J.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Hillier, Jon K.; Postberg, Frank; Trieloff, Mario] Heidelberg Univ, Inst Geowissensch, Heidelberg, Germany. [Hoppe, Peter; Huth, Joachim; Leitner, Jan] Max Planck Inst Chem, D-55128 Mainz, Germany. [Kearsley, Anton] Nat Hist Museum, London SW7 5BD, England. [Lai, Barry; Sutton, Steven] Argonne Natl Lab, Adv Photon Source, Chicago, IL USA. [Lemelle, Laurence] Ecole Normale Super Lyon, F-69364 Lyon, France. [Leroux, Hugues] Univ Lille 1, Lille, France. [Nittler, Larry R.] Carnegie Inst Sci, Washington, DC USA. [Ogliore, Ryan] Univ Hawaii Manoa, Honolulu, HI 96822 USA. [Sandford, Scott A.] NASA Ames Res Ctr, Moffett Field, CA USA. [Schoonjans, Tom; Silversmit, Geert; Vekemans, Bart; Vincze, Laszlo] Univ Ghent, B-9000 Ghent, Belgium. [Simionovici, Alexandre S.] Univ Grenoble, Observ Sci, Inst Sci Terre, Grenoble, France. [Srama, Ralf] Univ Stuttgart, IRS, D-70174 Stuttgart, Germany. [Sterken, Veerle J.] TU Braunschweig, IGEP, Braunschweig, Germany. [Tsou, Peter] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Tsuchiyama, Akira] Osaka Univ, Osaka, Japan. RP Frank, DR (reprint author), NASA Johnson Space Ctr, ESCG, Houston, TX 77058 USA. EM david.r.frank@nasa.gov RI Bajt, Sasa/G-2228-2010; Stroud, Rhonda/C-5503-2008; Sans Tresserras, Juan Angel/J-9362-2014; Leitner, Jan/A-7391-2015; Hoppe, Peter/B-3032-2015 OI Stroud, Rhonda/0000-0001-5242-8015; Burchell, Mark/0000-0002-2680-8943; Sans Tresserras, Juan Angel/0000-0001-9047-3992; Leitner, Jan/0000-0003-3655-6273; Hoppe, Peter/0000-0003-3681-050X FU NASA [NNX09AC36G, NNH11AQ61I]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX We thank P. Wozniekiewicz and C. Engrand for their thoughtful reviews that greatly improved this manuscript. We also thank the AE John Bradley for his critical input and time and effort spent reviewing the ISPE manuscripts. The ISPE consortium gratefully acknowledges the NASA Discovery Program for Stardust, the fourth NASA Discovery mission. We are thankful for having the privilege of looking after the collection and are gratefully indebted to the 30,000+ dusters who made this possible. AJW, ALB, ZG, RL, DZ, WM and JVK were supported by NASA grant NNX09AC36G. RMS, HCG and NDB were supported by NASA grant NNH11AQ61I. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 40 TC 13 Z9 13 U1 2 U2 19 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2014 VL 49 IS 9 SI SI BP 1522 EP 1547 DI 10.1111/maps.12147 PG 26 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AQ6HT UT WOS:000342912100002 ER PT J AU Bechtel, HA Flynn, GJ Allen, C Anderson, D Ansari, A Bajt, S Bastien, RK Bassim, N Borg, J Brenker, FE Bridges, J Brownlee, DE Burchell, M Burghammer, M Butterworth, AL Changela, H Cloetens, P Davis, AM Doll, R Floss, C Frank, DR Gainsforth, Z Grun, E Heck, PR Hillier, JK Hoppe, P Hudson, B Huth, J Hvide, B Kearsley, A King, AJ Lai, B Leitner, J Lemelle, L Leroux, H Leonard, A Lettieri, R Marchant, W Nittler, LR Ogliore, R Ong, WJ Postberg, F Price, MC Sandford, SA Tresseras, JAS Schmitz, S Schoonjans, T Silversmit, G Simionovici, AS Sole, VA Srama, R Stadermann, FJ Stephan, T Sterken, VJ Stodolna, J Stroud, RM Sutton, S Trieloff, M Tsou, P Tsuchiyama, A Tyliszczak, T Vekemans, B Vincze, L Von Korff, J Westphal, AJ Wordsworth, N Zevin, D Zolensky, ME AF Bechtel, Hans A. Flynn, George J. Allen, Carlton Anderson, David Ansari, Asna Bajt, Sasa Bastien, Ron K. Bassim, Nabil Borg, Janet Brenker, Frank E. Bridges, John Brownlee, Donald E. Burchell, Mark Burghammer, Manfred Butterworth, Anna L. Changela, Hitesh Cloetens, Peter Davis, Andrew M. Doll, Ryan Floss, Christine Frank, David R. Gainsforth, Zack Gruen, Eberhard Heck, Philipp R. Hillier, Jon K. Hoppe, Peter Hudson, Bruce Huth, Joachim Hvide, Brit Kearsley, Anton King, Ashley J. Lai, Barry Leitner, Jan Lemelle, Laurence Leroux, Hugues Leonard, Ariel Lettieri, Robert Marchant, William Nittler, Larry R. Ogliore, Ryan Ong, Wei Ja Postberg, Frank Price, Mark C. Sandford, Scott A. Tresseras, Juan-Angel Sans Schmitz, Sylvia Schoonjans, Tom Silversmit, Geert Simionovici, Alexandre S. Sole, Vicente A. Srama, Ralf Stadermann, Frank J. Stephan, Thomas Sterken, Veerle J. Stodolna, Julien Stroud, Rhonda M. Sutton, Steven Trieloff, Mario Tsou, Peter Tsuchiyama, Akira Tyliszczak, Tolek Vekemans, Bart Vincze, Laszlo Von Korff, Joshua Westphal, Andrew J. Wordsworth, Naomi Zevin, Daniel Zolensky, Michael E. TI Stardust Interstellar Preliminary Examination III: Infrared spectroscopic analysis of interstellar dust candidates SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID COMET 81P/WILD 2; CONSTRAINTS; ORGANICS; RETURN; LIGHT AB Under the auspices of the Stardust Interstellar Preliminary Examination, picokeystones extracted from the Stardust Interstellar Dust Collector were examined with synchrotron Fourier transform infrared (FTIR) microscopy to establish whether they contained extraterrestrial organic material. The picokeystones were found to be contaminated with varying concentrations and speciation of organics in the native aerogel, which hindered the search for organics in the interstellar dust candidates. Furthermore, examination of the picokeystones prior to and post X-ray microprobe analyses yielded evidence of beam damage in the form of organic deposition or modification, particularly with hard X-ray synchrotron X-ray fluorescence. From these results, it is clear that considerable care must be taken to interpret any organics that might be in interstellar dust particles. For the interstellar candidates examined thus far, however, there is no clear evidence of extraterrestrial organics associated with the track and/or terminal particles. However, we detected organic matter associated with the terminal particle in Track 37, likely a secondary impact from the Al-deck of the sample return capsule, demonstrating the ability of synchrotron FTIR to detect organic matter in small particles within picokeystones from the Stardust interstellar dust collector. C1 [Bechtel, Hans A.; Tyliszczak, Tolek] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Flynn, George J.] SUNY Coll Plattsburgh, Plattsburgh, NY 12901 USA. [Allen, Carlton; Zolensky, Michael E.] NASA Johnson Space Ctr, ARES, Houston, TX USA. [Anderson, David; Butterworth, Anna L.; Gainsforth, Zack; Lettieri, Robert; Marchant, William; Stodolna, Julien; Von Korff, Joshua; Westphal, Andrew J.; Zevin, Daniel] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA USA. [Ansari, Asna; Heck, Philipp R.; Hvide, Brit; King, Ashley J.] Field Museum Nat Hist, Robert A Pritzker Ctr Meteorit & Polar Studies, Chicago, IL 60605 USA. [Bajt, Sasa] DESY, Hamburg, Germany. [Bastien, Ron K.; Frank, David R.] NASA Johnson Space Ctr, ESCG, Houston, TX USA. [Bassim, Nabil; Stroud, Rhonda M.] Naval Res Lab, Mat Sci & Technol Div, Washington, DC USA. [Borg, Janet] IAS Orsay, Orsay, France. [Brenker, Frank E.; Schmitz, Sylvia] Goethe Univ Frankfurt, Inst Geosci, Frankfurt, Germany. [Bridges, John] Univ Leicester, Space Res Ctr, Leicester, Leics, England. [Brownlee, Donald E.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Burchell, Mark; Price, Mark C.] Univ Kent, Canterbury, Kent, England. [Burghammer, Manfred; Cloetens, Peter; Tresseras, Juan-Angel Sans; Sole, Vicente A.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Changela, Hitesh] George Washington Univ, Washington, DC USA. [Davis, Andrew M.; King, Ashley J.; Stephan, Thomas] Univ Chicago, Chicago, IL 60637 USA. [Doll, Ryan; Floss, Christine; Leonard, Ariel; Ong, Wei Ja; Stadermann, Frank J.] Washington Univ, St Louis, MO USA. [Gruen, Eberhard; Sterken, Veerle J.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Hillier, Jon K.; Postberg, Frank; Trieloff, Mario] Heidelberg Univ, Inst Geowissensch, Heidelberg, Germany. [Hoppe, Peter; Huth, Joachim; Leitner, Jan] Max Planck Inst Chem, D-55128 Mainz, Germany. [Kearsley, Anton] Nat Hist Museum, London SW7 5BD, England. [Lai, Barry; Sutton, Steven] Argonne Natl Lab, Adv Photon Source, Chicago, IL USA. [Lemelle, Laurence] Ecole Normale Super Lyon, F-69364 Lyon, France. [Leroux, Hugues] Univ Lille 1, Lille 1, France. [Nittler, Larry R.] Carnegie Inst Sci, Washington, DC USA. [Ogliore, Ryan] Univ Hawaii Manoa, Honolulu, HI 96822 USA. [Postberg, Frank; Srama, Ralf; Sterken, Veerle J.] Univ Stuttgart, Inst Raumfahrtsyst, Stuttgart, Germany. [Sandford, Scott A.] NASA Ames Res Ctr, Moffett Field, CA USA. [Schoonjans, Tom; Silversmit, Geert; Vekemans, Bart; Vincze, Laszlo] Univ Ghent, B-9000 Ghent, Belgium. [Simionovici, Alexandre S.] Univ Grenoble, Observ Sci, Inst Sci Terre, Grenoble, France. [Sterken, Veerle J.] TU Braunschweig, Inst Geophys & Extraterrestr Phys, Braunschweig, Germany. [Tsou, Peter] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Tsuchiyama, Akira] Osaka Univ, Osaka, Japan. RP Bechtel, HA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. EM habechtel@lbl.gov RI Bajt, Sasa/G-2228-2010; Stroud, Rhonda/C-5503-2008; Sans Tresserras, Juan Angel/J-9362-2014; Leitner, Jan/A-7391-2015; Hoppe, Peter/B-3032-2015 OI Stroud, Rhonda/0000-0001-5242-8015; Burchell, Mark/0000-0002-2680-8943; Sans Tresserras, Juan Angel/0000-0001-9047-3992; Leitner, Jan/0000-0003-3655-6273; Hoppe, Peter/0000-0003-3681-050X FU NASA Laboratory Analysis of Returned Samples research grant [NNX11AE15G]; NASA [NNX09AC36G, NNH11AQ61I]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX The ISPE consortium gratefully acknowledges the NASA Discovery Program for Stardust, the fourth NASA Discovery mission. GJF was supported by a NASA Laboratory Analysis of Returned Samples research grant NNX11AE15G. AJW, ALB, ZG, RL, DZ, WM, and JVK were supported by NASA grant NNX09AC36G. RMS, HCG, and NDB were supported by NASA grant NNH11AQ61I. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Use of the NSLS, BNL, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 30 TC 6 Z9 6 U1 3 U2 15 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2014 VL 49 IS 9 SI SI BP 1548 EP 1561 DI 10.1111/maps.12125 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AQ6HT UT WOS:000342912100003 ER PT J AU Butterworth, AL Westphal, AJ Tyliszczak, T Gainsforth, Z Stodolna, J Frank, DR Allen, C Anderson, D Ansari, A Bajt, S Bastien, RK Bassim, N Bechtel, HA Borg, J Brenker, FE Bridges, J Brownlee, DE Burchell, M Burghammer, M Changela, H Cloetens, P Davis, AM Doll, R Floss, C Flynn, G Grun, E Heck, PR Hillier, JK Hoppe, P Hudson, B Huth, J Hvide, B Kearsley, A King, AJ Lai, B Leitner, J Lemelle, L Leroux, H Leonard, A Lettieri, R Marchant, W Nittler, LR Ogliore, R Ong, WJ Postberg, F Price, MC Sandford, SA Tresseras, JAS Schmitz, S Schoonjans, T Silversmit, G Simionovici, AS Sole, VA Srama, R Stadermann, FJ Stephan, T Sterken, VJ Stroud, RM Sutton, S Trieloff, M Tsou, P Tsuchiyama, A Vekemans, B Vincze, L Von Korff, J Wordsworth, N Zevin, D Zolensky, ME AF Butterworth, Anna L. Westphal, Andrew J. Tyliszczak, Tolek Gainsforth, Zack Stodolna, Julien Frank, David R. Allen, Carlton Anderson, David Ansari, Asna Bajt, Sasa Bastien, Ron K. Bassim, Nabil Bechtel, Hans A. Borg, Janet Brenker, Frank E. Bridges, John Brownlee, Donald E. Burchell, Mark Burghammer, Manfred Changela, Hitesh Cloetens, Peter Davis, Andrew M. Doll, Ryan Floss, Christine Flynn, George Gruen, Eberhard Heck, Philipp R. Hillier, Jon K. Hoppe, Peter Hudson, Bruce Huth, Joachim Hvide, Brit Kearsley, Anton King, Ashley J. Lai, Barry Leitner, Jan Lemelle, Laurence Leroux, Hugues Leonard, Ariel Lettieri, Robert Marchant, William Nittler, Larry R. Ogliore, Ryan Ong, Wei Ja Postberg, Frank Price, Mark C. Sandford, Scott A. Tresseras, Juan-Angel Sans Schmitz, Sylvia Schoonjans, Tom Silversmit, Geert Simionovici, Alexandre S. Sole, Vicente A. Srama, Ralf Stadermann, Frank J. Stephan, Thomas Sterken, Veerle J. Stroud, Rhonda M. Sutton, Steven Trieloff, Mario Tsou, Peter Tsuchiyama, Akira Vekemans, Bart Vincze, Laszlo Von Korff, Joshua Wordsworth, Naomi Zevin, Daniel Zolensky, Michael E. TI Stardust Interstellar Preliminary Examination IV: Scanning transmission X-ray microscopy analyses of impact features in the Stardust Interstellar Dust Collector SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID NEAR-EDGE STRUCTURE; K-EDGE; ABSORPTION SPECTROSCOPY; MINERALS; AL; XANES; TEMPERATURE; MAGNESIUM; RANGE; MG AB We report the quantitative characterization by synchrotron soft X-ray spectroscopy of 31 potential impact features in the aerogel capture medium of the Stardust Interstellar Dust Collector. Samples were analyzed in aerogel by acquiring high spatial resolution maps and high energy-resolution spectra of major rock-forming elements Mg, Al, Si, Fe, and others. We developed diagnostic screening tests to reject spacecraft secondary ejecta and terrestrial contaminants from further consideration as interstellar dust candidates. The results support an extraterrestrial origin for three interstellar candidates: I1043,1,30 (Orion) is a 3 pg particle with Mg-spinel, forsterite, and an iron-bearing phase. I1047,1,34 (Hylabrook) is a 4 pg particle comprising an olivine core surrounded by low-density, amorphous Mg-silicate and amorphous Fe, Cr, and Mn phases. I1003,1,40 (Sorok) has the track morphology of a high-speed impact, but contains no detectable residue that is convincingly distinguishable from the background aerogel. Twenty-two samples with an anthropogenic origin were rejected, including four secondary ejecta from impacts on the Stardust spacecraft aft solar panels, nine ejecta from secondary impacts on the Stardust Sample Return Capsule, and nine contaminants lacking evidence of an impact. Other samples in the collection included I1029,1,6, which contained surviving solar system impactor material. Four samples remained ambiguous: I1006,2,18, I1044,2,32, and I1092,2,38 were too dense for analysis, and we did not detect an intact projectile in I1044,3,33. We detected no radiation effects from the synchrotron soft X-ray analyses; however, we recorded the effects of synchrotron hard X-ray radiation on I1043,1,30 and I1047,1,34. C1 [Butterworth, Anna L.; Westphal, Andrew J.; Gainsforth, Zack; Stodolna, Julien; Anderson, David; Lettieri, Robert; Marchant, William; Von Korff, Joshua; Zevin, Daniel] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Tyliszczak, Tolek; Bechtel, Hans A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Frank, David R.; Bastien, Ron K.] NASA JSC, ESCG, Houston, TX USA. [Allen, Carlton; Zolensky, Michael E.] NASA JSC, ARES, Houston, TX USA. [Ansari, Asna; Heck, Philipp R.; Hvide, Brit] Field Museum Nat Hist, Robert A Pritzker Ctr Meteorit & Polar Studies, Chicago, IL 60605 USA. [Bajt, Sasa] DESY, Hamburg, Germany. [Bassim, Nabil; Stroud, Rhonda M.] Naval Res Lab, Mat Sci & Technol Div, Washington, DC USA. [Borg, Janet] Inst Astrophys Spatiale, Orsay, France. [Brenker, Frank E.; Schmitz, Sylvia] Goethe Univ Frankfurt, Inst Geosci, Frankfurt, Germany. [Bridges, John] Univ Leicester, Space Res Ctr, Leicester, Leics, England. [Brownlee, Donald E.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Burchell, Mark; Price, Mark C.] Univ Kent, Canterbury, Kent, England. [Burghammer, Manfred; Cloetens, Peter; Tresseras, Juan-Angel Sans; Sole, Vicente A.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Changela, Hitesh] George Washington Univ, Washington, DC USA. [Davis, Andrew M.; King, Ashley J.; Stephan, Thomas] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Doll, Ryan; Floss, Christine; Leonard, Ariel; Ong, Wei Ja; Stadermann, Frank J.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Flynn, George] SUNY Coll Plattsburgh, Dept Phys, Plattsburgh, NY 12901 USA. [Gruen, Eberhard; Sterken, Veerle J.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Hillier, Jon K.; Postberg, Frank; Trieloff, Mario] Heidelberg Univ, Inst Geowissensch, Heidelberg, Germany. [Hoppe, Peter; Huth, Joachim; Leitner, Jan] Max Planck Inst Chem, D-55128 Mainz, Germany. [Kearsley, Anton] Nat Hist Museum, London SW7 5BD, England. [Lai, Barry; Sutton, Steven] Argonne Natl Lab, Adv Photon Source, Chicago, IL USA. [Lemelle, Laurence] Ecole Normale Super Lyon, F-69364 Lyon, France. [Leroux, Hugues] Univ Lille, Lille, France. [Nittler, Larry R.] Carnegie Inst Sci, Washington, DC USA. [Ogliore, Ryan] Univ Hawaii Manoa, Honolulu, HI 96822 USA. [Sandford, Scott A.] NASA Ames Res Ctr, Moffett Field, CA USA. [Schoonjans, Tom; Silversmit, Geert; Vekemans, Bart; Vincze, Laszlo] Univ Ghent, B-9000 Ghent, Belgium. [Simionovici, Alexandre S.] Univ Grenoble, Observ Sci, Inst Sci Terre, Grenoble, France. [Srama, Ralf; Sterken, Veerle J.] Univ Stuttgart, Inst Raumfahrtsyst, D-70174 Stuttgart, Germany. [Sterken, Veerle J.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterrestr Phys, D-38106 Braunschweig, Germany. [Tsou, Peter] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Tsuchiyama, Akira] Osaka Univ, Osaka, Japan. RP Butterworth, AL (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM annab@ssl.berkeley.edu RI Bajt, Sasa/G-2228-2010; Stroud, Rhonda/C-5503-2008; Sans Tresserras, Juan Angel/J-9362-2014; Leitner, Jan/A-7391-2015; Hoppe, Peter/B-3032-2015 OI Stroud, Rhonda/0000-0001-5242-8015; Burchell, Mark/0000-0002-2680-8943; Sans Tresserras, Juan Angel/0000-0001-9047-3992; Leitner, Jan/0000-0003-3655-6273; Hoppe, Peter/0000-0003-3681-050X FU NASA [NNX09AC36G, NNH11AQ61I]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX The ISPE consortium gratefully acknowledges the NASA Discovery Program for Stardust, the fourth NASA Discovery mission. AJW, ALB, ZG, RL, DZ, WM, and JVK were supported by NASA grant NNX09AC36G. RMS, HCG, and NDB were supported by NASA grant NNH11AQ61I. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. We appreciate greatly the thorough reviews by one anonymous reviewer, John Bradley, and associate editor, Christian Koeberl. Their contributions improved the manuscript and helped to clarify key findings. We thank Steve Boggs for helpful discussions regarding X-ray dose estimates in the Interstellar Medium, and for providing diffuse X-ray data. We thank the Natural History Museum, London, for providing most of the standards used for acquiring the XANES spectra library in this work. NR 33 TC 12 Z9 12 U1 0 U2 15 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2014 VL 49 IS 9 SI SI BP 1562 EP 1593 DI 10.1111/maps.12220 PG 32 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AQ6HT UT WOS:000342912100004 ER PT J AU Brenker, FE Westphal, AJ Vincze, L Burghammer, M Schmitz, S Schoonjans, T Silversmit, G Vekemans, B Allen, C Anderson, D Ansari, A Bajt, S Bastien, RK Bassim, N Bechtel, HA Borg, J Bridges, J Brownlee, DE Burchell, M Butterworth, AL Changela, H Cloetens, P Davis, AM Doll, R Floss, C Flynn, G Fougeray, P Frank, DR Gainsforth, Z Grun, E Heck, PR Hillier, JK Hoppe, P Hudson, B Huth, J Hvide, B Kearsley, A King, AJ Lai, B Leitner, J Lemelle, L Leroux, H Leonard, A Lettieri, R Marchant, W Nittler, LR Ogliore, R Ong, WJ Postberg, F Price, MC Sandford, SA Tresseras, JAS Simionovici, AS Sole, VA Srama, R Stadermann, F Stephan, T Sterken, VJ Stodolna, J Stroud, RM Sutton, S Trieloff, M Tsou, P Tsuchiyama, A Tyliszczak, T Von Korff, J Wordsworth, N Zevin, D Zolensky, ME AF Brenker, Frank E. Westphal, Andrew J. Vincze, Laszlo Burghammer, Manfred Schmitz, Sylvia Schoonjans, Tom Silversmit, Geert Vekemans, Bart Allen, Carlton Anderson, David Ansari, Asna Bajt, Sasa Bastien, Ron K. Bassim, Nabil Bechtel, Hans A. Borg, Janet Bridges, John Brownlee, Donald E. Burchell, Mark Butterworth, Anna L. Changela, Hitesh Cloetens, Peter Davis, Andrew M. Doll, Ryan Floss, Christine Flynn, George Fougeray, Patrick Frank, David R. Gainsforth, Zack Gruen, Eberhard Heck, Philipp R. Hillier, Jon K. Hoppe, Peter Hudson, Bruce Huth, Joachim Hvide, Brit Kearsley, Anton King, Ashley J. Lai, Barry Leitner, Jan Lemelle, Laurence Leroux, Hugues Leonard, Ariel Lettieri, Robert Marchant, William Nittler, Larry R. Ogliore, Ryan Ong, Wei Ja Postberg, Frank Price, Mark C. Sandford, Scott A. Tresseras, Juan-Angel Sans Simionovici, Alexandre S. Sole, Vicente A. Srama, Ralf Stadermann, Frank Stephan, Thomas Sterken, Veerle J. Stodolna, Julien Stroud, Rhonda M. Sutton, Steven Trieloff, Mario Tsou, Peter Tsuchiyama, Akira Tyliszczak, Tolek Von Korff, Joshua Wordsworth, Naomi Zevin, Daniel Zolensky, Michael E. TI Stardust Interstellar Preliminary Examination V: XRF analyses of interstellar dust candidates at ESRF ID13 SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID INTERPLANETARY DUST; AEROGEL; OLIVINE AB Here, we report analyses by synchrotron X-ray fluorescence microscopy of the elemental composition of eight candidate impact features extracted from the Stardust Interstellar Dust Collector (SIDC). Six of the features were unambiguous tracks, and two were crater-like features. Five of the tracks are so-called "midnight" tracks-that is, they had trajectories consistent with an origin either in the interstellar dust stream or as secondaries from impacts on the Sample Return Capsule (SRC). In a companion paper reporting synchrotron X-ray diffraction analyses of ISPE candidates, we show that two of these particles contain natural crystalline materials: the terminal particle of track 30 contains olivine and spinel, and the terminal particle of track 34 contains olivine. Here, we show that the terminal particle of track 30, Orion, shows elemental abundances, normalized to Fe, that are close to CI values, and a complex, fine-grained structure. The terminal particle of track 34, Hylabrook, shows abundances that deviate strongly from CI, but shows little fine structure and is nearly homogenous. The terminal particles of other midnight tracks, 29 and 37, had heavy element abundances below detection threshold. A third, track 28, showed a composition inconsistent with an extraterrestrial origin, but also inconsistent with known spacecraft materials. A sixth track, with a trajectory consistent with secondary ejecta from an impact on one of the spacecraft solar panels, contains abundant Ce and Zn. This is consistent with the known composition of the glass covering the solar panel. Neither crater-like feature is likely to be associated with extraterrestrial materials. We also analyzed blank aerogel samples to characterize background and variability between aerogel tiles. We found significant differences in contamination levels and compositions, emphasizing the need for local background subtraction for accurate quantification. C1 [Brenker, Frank E.; Schmitz, Sylvia] Goethe Univ Frankfurt, D-60438 Frankfurt, Germany. [Westphal, Andrew J.; Anderson, David; Butterworth, Anna L.; Gainsforth, Zack; Lettieri, Robert; Marchant, William; Stodolna, Julien; Von Korff, Joshua; Zevin, Daniel] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Vincze, Laszlo; Schoonjans, Tom; Silversmit, Geert; Vekemans, Bart] Univ Ghent, Dept Analyt Chem, B-9000 Ghent, Belgium. [Burghammer, Manfred; Cloetens, Peter; Tresseras, Juan-Angel Sans; Sole, Vicente A.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Ansari, Asna; Hvide, Brit; King, Ashley J.] Field Museum Nat Hist, Robert A Pritzker Ctr Meteorit & Polar Studies, Chicago, IL 60605 USA. [Bajt, Sasa] DESY, D-22607 Hamburg, Germany. [Bastien, Ron K.; Frank, David R.] NASA, Lyndon B Johnson Space Ctr, ESCG, Houston, TX 77058 USA. [Bassim, Nabil; Stroud, Rhonda M.] Naval Res Lab, Nanoscale Mat Sect, Washington, DC 20375 USA. [Bechtel, Hans A.; Tyliszczak, Tolek] Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Borg, Janet] IAS Orsay, Orsay, France. [Bridges, John] Univ Leicester, Space Res Ctr, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Brownlee, Donald E.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Burchell, Mark; Price, Mark C.] Univ Kent, Canterbury CT2 7NR, Kent, England. [Changela, Hitesh] George Washington Univ, Washington, DC 20052 USA. [Davis, Andrew M.; Stephan, Thomas] Univ Chicago, Chicago, IL 60637 USA. [Doll, Ryan; Floss, Christine; Leonard, Ariel; Ong, Wei Ja; Stadermann, Frank] Washington Univ, St Louis, MO 63130 USA. [Flynn, George] SUNY Coll Plattsburgh, Dept Phys, Plattsburgh, NY 12901 USA. [Fougeray, Patrick] Chigy, Burgundy, Chigy, France. [Gruen, Eberhard] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Heck, Philipp R.; Hillier, Jon K.; Postberg, Frank] Inst Geowissensch, D-69120 Heidelberg, Germany. [Hoppe, Peter; Huth, Joachim; Leitner, Jan] Max Planck Inst Chem, D-55128 Mainz, Germany. [Kearsley, Anton] Nat Hist Museum, London SW7 5BD, England. [Lai, Barry; Sutton, Steven] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Lemelle, Laurence] Ecole Normale Super Lyon, F-69364 Lyon, France. [Leroux, Hugues] Univ Lille 1, Unite Mat & Transformat UMR 8207, F-59655 Villeneuve Dascq, France. [Nittler, Larry R.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Ogliore, Ryan] Univ Hawaii Manoa, Sch Ocean & Earth Sci & Technol, Hawaii Inst Geophys & Planetary Sci, Honolulu, HI 96822 USA. [Sandford, Scott A.] NASA, Ames Res Ctr, Astrophys Branch, Moffett Field, CA 94035 USA. [Simionovici, Alexandre S.] Univ Grenoble, Observ Sci, Inst Sci Terre, Grenoble, France. [Srama, Ralf; Sterken, Veerle J.] Univ Stuttgart, Inst Raumfahrtsyst, D-70569 Stuttgart, Germany. [Trieloff, Mario] Inst Geowissensch, D-69120 Heidelberg, Germany. [Tsou, Peter] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Tsuchiyama, Akira] Osaka Univ, Grad Sch Sci, Dept Earth & Planetary Sci, Osaka, Japan. RP Westphal, AJ (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM westphal@ssl.berkeley.edu RI Bajt, Sasa/G-2228-2010; Stroud, Rhonda/C-5503-2008; Sans Tresserras, Juan Angel/J-9362-2014; Leitner, Jan/A-7391-2015; Hoppe, Peter/B-3032-2015 OI Stroud, Rhonda/0000-0001-5242-8015; Burchell, Mark/0000-0002-2680-8943; Sans Tresserras, Juan Angel/0000-0001-9047-3992; Leitner, Jan/0000-0003-3655-6273; Hoppe, Peter/0000-0003-3681-050X FU NASA [NNX09AC36G, NNH11AQ61I]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; German Science Foundation (DFG) FX This manuscript was improved due to the thoughtful comments of John Bradley. The ISPE consortium gratefully acknowledge the NASA Discovery Program for Stardust, the fourth NASA Discovery mission. AJW, ALB, ZG, RL, DZ, WM, and JVK were supported by NASA grant NNX09AC36G. We thank Steve Boggs for astrophysical soft X-ray spectra. RMS, HCG, and NDB were supported by NASA grant NNH11AQ61I. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract no. DE-AC02-98CH10886. We like to thank the ESRF for the allocated beamtime at ID13, instrumental and technical support. FEB and SS were supported by funding of the German Science Foundation (DFG). NR 28 TC 9 Z9 9 U1 1 U2 16 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2014 VL 49 IS 9 SI SI BP 1594 EP 1611 DI 10.1111/maps.12206 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AQ6HT UT WOS:000342912100005 ER PT J AU Simionovici, AS Lemelle, L Cloetens, P Sole, VA Tresseras, JAS Butterworth, AL Westphal, AJ Gainsforth, Z Stodolna, J Allen, C Anderson, D Ansari, A Bajt, S Bassim, N Bastien, RK Bechtel, HA Borg, J Brenker, FE Bridges, J Brownlee, DE Burchell, M Burghammer, M Changela, H Davis, AM Doll, R Floss, C Flynn, G Frank, DR Grun, E Heck, PR Hillier, JK Hoppe, P Hudson, B Huth, J Hvide, B Kearsley, A King, AJ Lai, B Leitner, J Leonard, A Leroux, H Lettieri, R Marchant, W Nittler, LR Ogliore, R Ong, WJ Postberg, F Price, MC Sandford, SA Schmitz, S Schoonjans, T Silversmit, G Srama, R Stadermann, FJ Stephan, T Sterken, VJ Stroud, RM Sutton, S Trieloff, M Tsou, P Tsuchiyama, A Tyliszczak, T Vekemans, B Vincze, L Von Korff, J Wordsworth, N Zevin, D Zolensky, ME AF Simionovici, Alexandre S. Lemelle, Laurence Cloetens, Peter Sole, Vicente A. Tresseras, Juan-Angel Sans Butterworth, Anna L. Westphal, Andrew J. Gainsforth, Zack Stodolna, Julien Allen, Carlton Anderson, David Ansari, Asna Bajt, Sasa Bassim, Nabil Bastien, Ron K. Bechtel, Hans A. Borg, Janet Brenker, Frank E. Bridges, John Brownlee, Donald E. Burchell, Mark Burghammer, Manfred Changela, Hitesh Davis, Andrew M. Doll, Ryan Floss, Christine Flynn, George Frank, David R. Gruen, Eberhard Heck, Philipp R. Hillier, Jon K. Hoppe, Peter Hudson, Bruce Huth, Joachim Hvide, Brit Kearsley, Anton King, Ashley J. Lai, Barry Leitner, Jan Leonard, Ariel Leroux, Hugues Lettieri, Robert Marchant, William Nittler, Larry R. Ogliore, Ryan Ong, Wei Ja Postberg, Frank Price, Mark C. Sandford, Scott A. Schmitz, Sylvia Schoonjans, Tom Silversmit, Geert Srama, Ralf Stadermann, Frank J. Stephan, Thomas Sterken, Veerle J. Stroud, Rhonda M. Sutton, Steven Trieloff, Mario Tsou, Peter Tsuchiyama, Akira Tyliszczak, Tolek Vekemans, Bart Vincze, Laszlo Von Korff, Joshua Wordsworth, Naomi Zevin, Daniel Zolensky, Michael E. TI Stardust Interstellar Preliminary Examination VI: Quantitative elemental analysis by synchrotron X-ray fluorescence nanoimaging of eight impact features in aerogel SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID COMET 81P/WILD-2; SOLAR-SYSTEM; DUST; GRAINS; CLOUD; GAS AB Hard X-ray, quantitative, fluorescence elemental imaging was performed on the ID22NI nanoprobe and ID22 microprobe beam lines of the European Synchrotron Research facility (ESRF) in Grenoble, France, on eight interstellar candidate impact features in the framework of the NASA Stardust Interstellar Preliminary Examination (ISPE). Three features were unambiguous tracks, and the other five were identified as possible, but not definite, impact features. Overall, we produced an absolute quantification of elemental abundances in the 15 <= Z <= 30 range by means of corrections of the beam parameters, reference materials, and fundamental atomic parameters. Seven features were ruled out as interstellar dust candidates (ISDC) based on compositional arguments. One of the three tracks, I1043,1,30,0,0, contained, at the time of our analysis, two physically separated, micrometer-sized terminal particles, the most promising ISDCs, Orion and Sirius. We found that the Sirius particle was a fairly homogenous Ni-bearing particle and contained about 33 fg of distributed high-Z elements (Z > 12). Orion was a highly heterogeneous Fe-bearing particle and contained about 59 fg of heavy elements located in hundred nanometer phases, forming an irregular mantle that surrounded a low-Z core. X-ray diffraction (XRD) measurements revealed Sirius to be amorphous, whereas Orion contained partially crystalline material (Gainsforth et al. 2014). Within the mantle, one grain was relatively Fe-Ni-Mn-rich; other zones were relatively Mn-Cr-Ti-rich and may correspond to different spinel populations. For absolute quantification purposes, Orion was assigned to a mineralogical assemblage of forsterite, spinel, and an unknown Fe-bearing phase, while Sirius was most likely composed of an amorphous Mg-bearing material with minor Ni and Fe. Owing to its nearly chondritic abundances of the nonvolatile elements Ca, Ti, Co, and Ni with respect to Fe, in combination with the presence of olivine and spinel as inferred from XRD measurements, Orion had a high probability of being extraterrestrial in origin. C1 [Simionovici, Alexandre S.] Univ Grenoble, Observ Sci, Inst Sci Terre, Grenoble, France. [Lemelle, Laurence] Ecole Normale Super Lyon, CNRS, LGL LJC, F-69364 Lyon, France. [Cloetens, Peter; Sole, Vicente A.; Tresseras, Juan-Angel Sans; Burghammer, Manfred] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Butterworth, Anna L.; Westphal, Andrew J.; Gainsforth, Zack; Stodolna, Julien; Anderson, David; Lettieri, Robert; Marchant, William; Von Korff, Joshua; Zevin, Daniel] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA USA. [Allen, Carlton; Bastien, Ron K.; Frank, David R.; Zolensky, Michael E.] NASA JSC, ESCG, Houston, TX USA. [Ansari, Asna; Heck, Philipp R.; Hvide, Brit] Field Museum Nat Hist, Robert A Pritzker Ctr Meteorit & Polar Studies, Chicago, IL 60605 USA. [Bajt, Sasa] DESY, Hamburg, Germany. [Bassim, Nabil] Naval Res Lab, Washington, DC USA. [Bechtel, Hans A.; Tyliszczak, Tolek] Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA USA. [Brenker, Frank E.; Schmitz, Sylvia] Goethe Univ Frankfurt, Inst Geosci, Frankfurt, Germany. [Bridges, John] Univ Leicester, Space Res Ctr, Leicester, Leics, England. [Brownlee, Donald E.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Burchell, Mark; Price, Mark C.] Univ Kent, Sch Phys Sci, Canterbury, Kent, England. [Changela, Hitesh] George Washington Univ, Dept Phys, Washington, DC 20052 USA. [Davis, Andrew M.; King, Ashley J.; Stephan, Thomas] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Doll, Ryan; Floss, Christine; Leonard, Ariel; Ong, Wei Ja; Stadermann, Frank J.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Flynn, George] SUNY Coll Plattsburgh, Plattsburgh, NY 12901 USA. [Gruen, Eberhard; Leitner, Jan] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Hillier, Jon K.; Postberg, Frank; Trieloff, Mario] Heidelberg Univ, Inst Geowissensch, Heidelberg, Germany. [Hoppe, Peter; Huth, Joachim; Sterken, Veerle J.] Max Planck Inst Chem, D-55128 Mainz, Germany. [Kearsley, Anton] Nat Hist Museum, London SW7 5BD, England. [Lai, Barry; Sutton, Steven] Argonne Natl Lab, Adv Photon Source, Chicago, IL USA. [Leroux, Hugues] Univ Lille 1, F-59655 Villeneuve Dascq, France. [Nittler, Larry R.] Carnegie Inst Sci, Washington, DC USA. [Ogliore, Ryan] Univ Hawaii Manoa, Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Sandford, Scott A.] NASA Ames Res Ctr, Moffett Field, CA USA. [Schoonjans, Tom; Silversmit, Geert; Vekemans, Bart; Vincze, Laszlo] Univ Ghent, B-9000 Ghent, Belgium. [Srama, Ralf; Sterken, Veerle J.] Univ Stuttgart, Inst Raumfahrtsyst, D-70174 Stuttgart, Germany. [Sterken, Veerle J.] TU Braunschweig, IGEP, Braunschweig, Germany. [Stroud, Rhonda M.] Naval Res Lab, Mat Sci & Technol Div, Washington, DC USA. [Tsou, Peter] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Tsuchiyama, Akira] Osaka Univ, Dept Earth & Space Sci, Osaka, Japan. RP Simionovici, AS (reprint author), Univ Grenoble, Observ Sci, Inst Sci Terre, Grenoble, France. EM Alexandre.Simionovici@ujf-grenoble.fr RI Bajt, Sasa/G-2228-2010; Stroud, Rhonda/C-5503-2008; Sans Tresserras, Juan Angel/J-9362-2014; Leitner, Jan/A-7391-2015; Hoppe, Peter/B-3032-2015 OI Stroud, Rhonda/0000-0001-5242-8015; Burchell, Mark/0000-0002-2680-8943; Sans Tresserras, Juan Angel/0000-0001-9047-3992; Leitner, Jan/0000-0003-3655-6273; Hoppe, Peter/0000-0003-3681-050X FU French "Centre National d'Etudes Spatiales" (CNES); NASA FX A. Simionovici and L. Lemelle acknowledge support from the French "Centre National d'Etudes Spatiales" (CNES). The Stardust mission was supported by NASA as the fourth mission in the Discovery program. NR 29 TC 8 Z9 8 U1 0 U2 18 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2014 VL 49 IS 9 SI SI BP 1612 EP 1625 DI 10.1111/maps.12208 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AQ6HT UT WOS:000342912100006 ER PT J AU Flynn, GJ Sutton, SR Lai, B Wirick, S Allen, C Anderson, D Ansari, A Bajt, S Bastien, RK Bassim, N Bechtel, HA Borg, J Brenker, FE Bridges, J Brownlee, DE Burchell, M Burghammer, M Butterworth, AL Changela, H Cloetens, P Davis, AM Doll, R Floss, C Frank, D Gainsforth, Z Grun, E Heck, PR Hillier, JK Hoppe, P Hudson, B Huth, J Hvide, B Kearsley, A King, AJ Leitner, J Lemelle, L Leroux, H Leonard, A Lettieri, R Marchant, W Nittler, LR Ogliore, R Ong, WJ Postberg, F Price, MC Sandford, SA Tresseras, JAS Schmitz, S Schoonjans, T Silversmit, G Simionovici, A Sole, VA Srama, R Stadermann, FJ Stephan, T Sterken, V Stodolna, J Stroud, RM Trieloff, M Tsou, P Tsuchiyama, A Tyliszczak, T Vekemans, B Vincze, L Von Korff, J Westphal, AJ Wordsworth, N Zevin, D Zolensky, ME AF Flynn, George J. Sutton, Steven R. Lai, Barry Wirick, Sue Allen, Carlton Anderson, David Ansari, Asna Bajt, Sasa Bastien, Ron K. Bassim, Nabil Bechtel, Hans A. Borg, Janet Brenker, Frank E. Bridges, John Brownlee, Donald E. Burchell, Mark Burghammer, Manfred Butterworth, Anna L. Changela, Hitesh Cloetens, Peter Davis, Andrew M. Doll, Ryan Floss, Christine Frank, David Gainsforth, Zack Gruen, Eberhard Heck, Philipp R. Hillier, Jon K. Hoppe, Peter Hudson, Bruce Huth, Joachim Hvide, Brit Kearsley, Anton King, Ashley J. Leitner, Jan Lemelle, Laurence Leroux, Hugues Leonard, Ariel Lettieri, Robert Marchant, William Nittler, Larry R. Ogliore, Ryan Ong, Wei Ja Postberg, Frank Price, Mark C. Sandford, Scott A. Tresseras, Juan-Angel Sans Schmitz, Sylvia Schoonjans, Tom Silversmit, Geert Simionovici, Alexandre Sole, Vicente A. Srama, Ralf Stadermann, Frank J. Stephan, Thomas Sterken, Veerle Stodolna, Julien Stroud, Rhonda M. Trieloff, Mario Tsou, Peter Tsuchiyama, Akira Tyliszczak, Tolek Vekemans, Bart Vincze, Laszlo Von Korff, Joshua Westphal, Andrew J. Wordsworth, Naomi Zevin, Daniel Zolensky, Michael E. TI Stardust Interstellar Preliminary Examination VII: Synchrotron X-ray fluorescence analysis of six Stardust interstellar candidates measured with the Advanced Photon Source 2-ID-D microprobe SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID COMET 81P/WILD-2; SOLAR-SYSTEM; DUST; ABUNDANCES; ELEMENTS AB The NASA Stardust spacecraft exposed an aerogel collector to the interstellar dust passing through the solar system. We performed X-ray fluorescence element mapping and abundance measurements, for elements 19 <= Z <= 30, on six "interstellar candidates," potential interstellar impacts identified by Stardust@Home and extracted for analyses in picokeystones. One, I1044,3,33, showed no element hot-spots within the designated search area. However, we identified a nearby surface feature, consistent with the impact of a weak, high-speed particle having an approximately chondritic (CI) element abundance pattern, except for factor-of-ten enrichments in K and Zn and an S depletion. This hot-spot, containing approximately 10 fg of Fe, corresponds to an approximately 350 nm chondritic particle, small enough to be missed by Stardust@Home, indicating that other techniques may be necessary to identify all interstellar candidates. Only one interstellar candidate, I1004,1,2, showed a track. The terminal particle has large enrichments in S, Ti, Cr, Mn, Ni, Cu, and Zn relative to Fe-normalized CI values. It has high Al/Fe, but does not match the Ni/Fe range measured for samples of Al-deck material from the Stardust sample return capsule, which was within the field-of-view of the interstellar collector. A third interstellar candidate, I1075,1,25, showed an Al-rich surface feature that has a composition generally consistent with the Al-deck material, suggesting that it is a secondary particle. The other three interstellar candidates, I1001,1,16, I1001,2,17, and I1044,2,32, showed no impact features or tracks, but allowed assessment of submicron contamination in this aerogel, including Fe hot-spots having CI-like Ni/Fe ratios, complicating the search for CI-like interstellar/interplanetary dust. C1 [Flynn, George J.] SUNY Coll Plattsburgh, Plattsburgh, NY 12901 USA. [Sutton, Steven R.; Lai, Barry] Argonne Natl Lab, Adv Photon Source, Chicago, IL USA. [Sutton, Steven R.; Wirick, Sue] Univ Chicago, CARS, Chicago, IL 60637 USA. [Allen, Carlton; Bastien, Ron K.; Frank, David; Zolensky, Michael E.] NASA JSC, ARES, Houston, TX USA. [Anderson, David; Butterworth, Anna L.; Gainsforth, Zack; Lettieri, Robert; Marchant, William; Stodolna, Julien; Von Korff, Joshua; Westphal, Andrew J.; Zevin, Daniel] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA USA. [Ansari, Asna; Heck, Philipp R.; Hvide, Brit] Field Museum Nat Hist, Robert A Pritzker Ctr Meteorit & Polar Studies, Chicago, IL 60605 USA. [Bajt, Sasa] DESY, Hamburg, Germany. [Bassim, Nabil] Naval Res Lab, Washington, DC USA. [Bechtel, Hans A.; Tyliszczak, Tolek] Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA USA. [Borg, Janet] IAS Orsay, Orsay, France. [Brenker, Frank E.; Schmitz, Sylvia] Goethe Univ Frankfurt, Inst Geosci, Frankfurt, Germany. [Bridges, John] Univ Leicester, Space Res Ctr, Leicester, Leics, England. [Brownlee, Donald E.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Burchell, Mark; Price, Mark C.] Univ Kent, Canterbury CT2 7NZ, Kent, England. [Burghammer, Manfred; Cloetens, Peter; Tresseras, Juan-Angel Sans; Sole, Vicente A.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Changela, Hitesh] George Washington Univ, Washington, DC USA. [Davis, Andrew M.; Stephan, Thomas] Univ Chicago, Chicago, IL 60637 USA. [Doll, Ryan; Floss, Christine; Leonard, Ariel; Ong, Wei Ja; Stadermann, Frank J.] Washington Univ, St Louis, MO USA. [Gruen, Eberhard] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Hillier, Jon K.; Postberg, Frank; Trieloff, Mario] Heidelberg Univ, Inst Geowissensch, Heidelberg, Germany. [Hoppe, Peter; Huth, Joachim; Leitner, Jan] Max Planck Inst Chem, D-55128 Mainz, Germany. [Kearsley, Anton] Nat Hist Museum, London SW7 5BD, England. [King, Ashley J.] Univ Chicago, Chicago, IL 60637 USA. [King, Ashley J.] Field Museum Nat Hist, Robert A Pritzker Ctr Meteorit & Polar Studies, Chicago, IL 60605 USA. [Lemelle, Laurence] Ecole Normale Super Lyon, F-69364 Lyon, France. [Leroux, Hugues] Univ Lille 1, UMR CNRS 8008, Lab Struct & Proprietes Etat Solide, F-59655 Villeneuve Dascq, France. [Nittler, Larry R.] Carnegie Inst Sci, Washington, DC USA. [Ogliore, Ryan] Univ Hawaii Manoa, Honolulu, HI 96822 USA. [Sandford, Scott A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Schoonjans, Tom; Silversmit, Geert; Vekemans, Bart; Vincze, Laszlo] Univ Ghent, B-9000 Ghent, Belgium. [Simionovici, Alexandre] Univ Grenoble, Observ Sci, Inst Sci Terre, Grenoble, France. [Srama, Ralf] Univ Stuttgart, Inst Raumfahrtsyst, D-70174 Stuttgart, Germany. [Sterken, Veerle] Univ Stuttgart, D-70174 Stuttgart, Germany. [Sterken, Veerle] TU Braunschweig, Inst Geophys & Extraterrestrial Phys, Braunschweig, Germany. [Sterken, Veerle] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Stroud, Rhonda M.] Naval Res Lab, Mat Sci & Technol Div, Washington, DC USA. [Tsou, Peter] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Tsuchiyama, Akira] Osaka Univ, Osaka, Japan. RP Flynn, GJ (reprint author), SUNY Coll Plattsburgh, Plattsburgh, NY 12901 USA. EM flynngj@plattsburgh.edu RI Bajt, Sasa/G-2228-2010; Sans Tresserras, Juan Angel/J-9362-2014; Leitner, Jan/A-7391-2015; Hoppe, Peter/B-3032-2015 OI Burchell, Mark/0000-0002-2680-8943; Sans Tresserras, Juan Angel/0000-0001-9047-3992; Leitner, Jan/0000-0003-3655-6273; Hoppe, Peter/0000-0003-3681-050X FU NASA; NASA Laboratory Analysis of Returned Samples research grant [NNX11AE15G]; U.S. DOE [DE-AC02-06CH11357]; Department of Energy (DOE)-Geosciences [DE-FG02-92ER14244]; DOE [DE-AC02-98CH10886] FX The Stardust interstellar dust collection mission was supported by NASA as the fourth mission in the Discovery program. This analytical work was supported by a NASA Laboratory Analysis of Returned Samples research grant NNX11AE15G (to G. J. F.). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. Portions of this work were performed at Beamline X26A, National Synchrotron Light Source (NSLS), Brookhaven National Laboratory. X26A is supported by the Department of Energy (DOE)-Geosciences (DE-FG02-92ER14244 to The University of Chicago-CARS). Use of the NSLS was supported by DOE under Contract No. DE-AC02-98CH10886. NR 20 TC 9 Z9 9 U1 0 U2 10 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2014 VL 49 IS 9 SI SI BP 1626 EP 1644 DI 10.1111/maps.12144 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AQ6HT UT WOS:000342912100007 ER PT J AU Gainsforth, Z Brenker, FE Simionovici, AS Schmitz, S Burghammer, M Butterworth, AL Cloetens, P Lemelle, L Tresserras, JAS Schoonjans, T Silversmit, G Sole, VA Vekemans, B Vincze, L Westphal, AJ Allen, C Anderson, D Ansari, A Bajt, S Bastien, RK Bassim, N Bechtel, HA Borg, J Bridges, J Brownlee, DE Burchell, M Changela, H Davis, AM Doll, R Floss, C Flynn, G Fougeray, P Frank, D Grun, E Heck, PR Hillier, JK Hoppe, P Hudson, B Huth, J Hvide, B Kearsley, A King, AJ Lai, B Leitner, J Leroux, H Leonard, A Lettieri, R Marchant, W Nittler, LR Ogliore, R Ong, WJ Postberg, F Price, MC Sandford, SA Srama, R Stephan, T Sterken, V Stodolna, J Stroud, RM Sutton, S Trieloff, M Tsou, P Tsuchiyama, A Tyliszczak, T Von Korff, J Zevin, D Zolensky, ME AF Gainsforth, Zack Brenker, Frank E. Simionovici, Alexandre S. Schmitz, Sylvia Burghammer, Manfred Butterworth, Anna L. Cloetens, Peter Lemelle, Laurence Tresserras, Juan-Angel Sans Schoonjans, Tom Silversmit, Geert Sole, Vicente A. Vekemans, Bart Vincze, Laszlo Westphal, Andrew J. Allen, Carlton Anderson, David Ansari, Asna Bajt, Sasa Bastien, Ron K. Bassim, Nabil Bechtel, Hans A. Borg, Janet Bridges, John Brownlee, Donald E. Burchell, Mark Changela, Hitesh Davis, Andrew M. Doll, Ryan Floss, Christine Flynn, George Fougeray, Patrick Frank, David Gruen, Eberhard Heck, Philipp R. Hillier, Jon K. Hoppe, Peter Hudson, Bruce Huth, Joachim Hvide, Brit Kearsley, Anton King, Ashley J. Lai, Barry Leitner, Jan Leroux, Hugues Leonard, Ariel Lettieri, Robert Marchant, William Nittler, Larry R. Ogliore, Ryan Ong, Wei Ja Postberg, Frank Price, Mark C. Sandford, Scott A. Srama, Ralf Stephan, Thomas Sterken, Veerle Stodolna, Julien Stroud, Rhonda M. Sutton, Steven Trieloff, Mario Tsou, Peter Tsuchiyama, Akira Tyliszczak, Tolek Von Korff, Joshua Zevin, Daniel Zolensky, Michael E. TI Stardust Interstellar Preliminary Examination VIII: Identification of crystalline material in two interstellar candidates SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID DUST PARTICLES; ORDER-DISORDER; AEROGEL; DIFFRACTION; GRAINS; DIMENSIONS; COLLECTION; SILICATES; GRAPHITE; OLIVINES AB Using synchrotron-based X-ray diffraction measurements, we identified crystalline material in two particles of extraterrestrial origin extracted from the Stardust Interstellar Dust Collector. The first particle, I1047,1,34 (Hylabrook), consisted of a mosaiced olivine grain approximately 1 mu m in size with internal strain fields up to 0.3%. The unit cell dimensions were a - 4.85 +/- 0.08 angstrom, b - 10.34 +/- 0.16 angstrom, c - 6.08 +/- 0.13 angstrom (2 sigma). The second particle, I1043,1,30 (Orion), contained an olivine grain approximate to 2 mu m in length and > 500 nm in width. It was polycrystalline with both mosaiced domains varying over approximate to 20 degrees and additional unoriented domains, and contained internal strain fields < 1%. The unit cell dimensions of the olivine were a = 4.76 +/- 0.05 angstrom, b = 10.23 +/- 0.10 angstrom, c = 5.99 +/- 0.06 angstrom (2 sigma), which limited the olivine to a forsteritic composition [Fo(65) (2 sigma). Orion also contained abundant spinel nanocrystals of unknown composition, but unit cell dimension a = 8.06 +/- 0.08 angstrom (2 sigma). Two additional crystalline phases were present and remained unidentified. An amorphous component appeared to be present in both these particles based on STXM and XRF results reported elsewhere. C1 [Gainsforth, Zack; Butterworth, Anna L.; Westphal, Andrew J.; Anderson, David; Lettieri, Robert; Marchant, William; Stodolna, Julien; Von Korff, Joshua; Zevin, Daniel] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Brenker, Frank E.; Schmitz, Sylvia] Goethe Univ Frankfurt, Inst Geosci, Frankfurt, Germany. [Simionovici, Alexandre S.] Univ Grenoble, Observ Sci, Inst Sci Terre, Grenoble, France. [Burghammer, Manfred; Cloetens, Peter; Tresserras, Juan-Angel Sans; Sole, Vicente A.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Lemelle, Laurence] Ecole Normale Super Lyon, F-69364 Lyon, France. [Schoonjans, Tom; Silversmit, Geert; Vekemans, Bart; Vincze, Laszlo] Univ Ghent, Dept Analyt Chem, B-9000 Ghent, Belgium. [Allen, Carlton; Zolensky, Michael E.] NASA JSC, ARES, Houston, TX USA. [Ansari, Asna; Heck, Philipp R.; Hvide, Brit] Field Museum Nat Hist, Chicago, IL 60605 USA. [Bajt, Sasa] DESY, Hamburg, Germany. [Bastien, Ron K.; Frank, David] NASA JSC, ESCG, Houston, TX USA. [Bassim, Nabil; Stroud, Rhonda M.] Naval Res Lab, Washington, DC USA. [Bechtel, Hans A.; Tyliszczak, Tolek] Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA USA. [Borg, Janet] IAS Orsay, Orsay, France. [Bridges, John] Univ Leicester, Space Res Ctr, Leicester, Leics, England. [Brownlee, Donald E.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Burchell, Mark; Price, Mark C.] Univ Kent, Sch Phys Sci, Canterbury, Kent, England. [Changela, Hitesh] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. [Davis, Andrew M.; Stephan, Thomas] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Doll, Ryan; Floss, Christine; Leonard, Ariel; Ong, Wei Ja] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Flynn, George; Sterken, Veerle] SUNY Coll Plattsburgh, Plattsburgh, NY 12901 USA. [Fougeray, Patrick] Chigy, Burgundy, France. [Gruen, Eberhard] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Postberg, Frank; Trieloff, Mario] Heidelberg Univ, Inst Geowissensch, Heidelberg, Germany. [Hoppe, Peter; Huth, Joachim; Leitner, Jan] Max Planck Inst Chem, D-55128 Mainz, Germany. [Kearsley, Anton; King, Ashley J.] Nat Hist Museum, London SW7 5BD, England. [Lai, Barry; Sutton, Steven] Argonne Natl Lab, Adv Photon Source, Chicago, IL USA. [Leroux, Hugues] Univ Lille 1, Lille, France. [Nittler, Larry R.] Carnegie Inst Sci, Washington, DC USA. [Ogliore, Ryan] Univ Hawaii Manoa, Honolulu, HI 96822 USA. [Hillier, Jon K.; Sandford, Scott A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Srama, Ralf; Sterken, Veerle] Univ Stuttgart, IRS, D-70174 Stuttgart, Germany. [Sterken, Veerle] TU Braunschweig, IGEP, Braunschweig, Germany. [Tsou, Peter] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Tsuchiyama, Akira] Osaka Univ, Osaka, Japan. RP Gainsforth, Z (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM zackg@ssl.berkeley.edu RI Leitner, Jan/A-7391-2015; Hoppe, Peter/B-3032-2015; Bajt, Sasa/G-2228-2010; Stroud, Rhonda/C-5503-2008; OI Leitner, Jan/0000-0003-3655-6273; Hoppe, Peter/0000-0003-3681-050X; Stroud, Rhonda/0000-0001-5242-8015; Burchell, Mark/0000-0002-2680-8943 FU NASA [NNX09AC36G]; Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231] FX Zack Gainsforth, Andrew J. Westphal, Anna L. Butterworth were supported by NASA grant NNX09AC36G. The operations of the Advanced Light Source at Lawrence Berkeley National Laboratory are supported by the Director, Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy under contract number DE-AC02-05CH11231. NR 54 TC 7 Z9 7 U1 0 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2014 VL 49 IS 9 SI SI BP 1645 EP 1665 DI 10.1111/maps.12148 PG 21 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AQ6HT UT WOS:000342912100008 ER PT J AU Postberg, F Hillier, JK Armes, SP Bugiel, S Butterworth, A Dupin, D Fielding, LA Fujii, S Gainsforth, Z Grun, E Li, YW Srama, R Sterken, V Stodolna, J Trieloff, M Westphal, A Achilles, C Allen, C Ansari, A Bajt, S Bassim, N Bastien, RK Bechtel, HA Borg, J Brenker, F Bridges, J Brownlee, DE Burchell, M Burghammer, M Changela, H Cloetens, P Davis, A Doll, R Floss, C Flynn, G Frank, D Heck, PR Hoppe, P Huss, G Huth, J Kearsley, A King, AJ Lai, B Leitner, J Lemelle, L Leonard, A Leroux, H Lettieri, R Marchant, W Nittler, LR Ogliore, R Ong, WJ Price, MC Sandford, SA Tressaras, JAS Schmitz, S Schoonjans, T Schreiber, K Silversmit, G Simionovici, A Sole, VA Stadermann, F Stephan, T Stroud, RM Sutton, S Tsou, P Tsuchiyama, A Tyliczszak, T Vekemans, B Vincze, L Zevin, D Zolensky, ME AF Postberg, F. Hillier, J. K. Armes, S. P. Bugiel, S. Butterworth, A. Dupin, D. Fielding, L. A. Fujii, S. Gainsforth, Z. Gruen, E. Li, Y. W. Srama, R. Sterken, V. Stodolna, J. Trieloff, M. Westphal, A. Achilles, C. Allen, C. Ansari, A. Bajt, S. Bassim, N. Bastien, R. K. Bechtel, H. A. Borg, J. Brenker, F. Bridges, J. Brownlee, D. E. Burchell, M. Burghammer, M. Changela, H. Cloetens, P. Davis, A. Doll, R. Floss, C. Flynn, G. Frank, D. Heck, P. R. Hoppe, P. Huss, G. Huth, J. Kearsley, A. King, A. J. Lai, B. Leitner, J. Lemelle, L. Leonard, A. Leroux, H. Lettieri, R. Marchant, W. Nittler, L. R. Ogliore, R. Ong, W. J. Price, M. C. Sandford, S. A. Tressaras, J. -A. Sans Schmitz, S. Schoonjans, T. Schreiber, K. Silversmit, G. Simionovici, A. Sole, V. A. Stadermann, F. Stephan, T. Stroud, R. M. Sutton, S. Tsou, P. Tsuchiyama, A. Tyliczszak, T. Vekemans, B. Vincze, L. Zevin, D. Zolensky, M. E. TI Stardust Interstellar Preliminary Examination IX: High-speed interstellar dust analog capture in Stardust flight-spare aerogel SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID COMET 81P/WILD 2; IMPACT FEATURES; MICROPARTICLES; PARTICLES; TRACKS AB The NASA Stardust mission used silica aerogel slabs to slowly decelerate and capture impinging cosmic dust particles for return to Earth. During this process, impact tracks are generated along the trajectory of the particle into the aerogel. It is believed that the morphology and dimensions of these tracks, together with the state of captured grains at track termini, may be linked to the size, velocity, and density of the impacting cosmic dust grain. Here, we present the results of laboratory hypervelocity impact experiments, during which cosmic dust analog particles (diameters of between 0.2 and 0.4 mu m), composed of olivine, orthopyroxene, or an organic polymer, were accelerated onto Stardust flight-spare low-density (approximately 0.01 g cm(-3)) silica aerogel. The impact velocities (3-21 km s(-1)) were chosen to simulate the range of velocities expected during Stardust's interstellar dust (ISD) collection phases. Track lengths and widths, together with the success of particle capture, are analyzed as functions of impact velocity and particle composition, density, and size. Captured terminal particles from low-density organic projectiles become undetectable at lower velocities than those from similarly sized, denser mineral particles, which are still detectable (although substantially altered by the impact process) at 15 km s(-1). The survival of these terminal particles, together with the track dimensions obtained during low impact speed capture of small grains in the laboratory, indicates that two of the three best Stardust candidate extraterrestrial grains were actually captured at speeds much lower than predicted. Track length and diameters are, in general, more sensitive to impact velocities than previously expected, which makes tracks of particles with diameters of 0.4 mu m and below hard to identify at low capture speeds (<10 km s(-1)). Therefore, although captured intact, the majority of the interstellar dust grains returned to Earth by Stardust remain to be found. C1 [Postberg, F.; Bugiel, S.; Li, Y. W.; Srama, R.; Sterken, V.] Univ Stuttgart, Inst Raumfahrtsyst, Stuttgart, Germany. [Postberg, F.; Hillier, J. K.; Trieloff, M.] Heidelberg Univ, Inst Geowissensch, D-69115 Heidelberg, Germany. [Armes, S. P.; Dupin, D.; Fielding, L. A.; Fujii, S.] Univ Sheffield, Dept Chem, Sheffield, S Yorkshire, England. [Bugiel, S.; Gruen, E.; Li, Y. W.; Sterken, V.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Butterworth, A.; Gainsforth, Z.; Stodolna, J.; Westphal, A.; Lettieri, R.; Marchant, W.; Zevin, D.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA USA. [Gruen, E.] Univ Colorado, LASP, Boulder, CO 80309 USA. [Li, Y. W.] Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150006, Peoples R China. [Sterken, V.] Tech Univ Carolo Wilhelmina Braunschweig, IGEP, D-38106 Braunschweig, Germany. [Achilles, C.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Allen, C.; Bastien, R. K.; Frank, D.; Zolensky, M. E.] NASA, Lyndon B Johnson Space Ctr, ARES, Houston, TX 77058 USA. [Ansari, A.; Davis, A.; King, A. J.; Stephan, T.] Univ Chicago, Chicago, IL 60637 USA. [Bajt, S.] DESY, Hamburg, Germany. [Bassim, N.; Changela, H.; Stroud, R. M.] Naval Res Lab, Washington, DC USA. [Bechtel, H. A.; Tyliczszak, T.] Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA USA. [Borg, J.] IAS Orsay, Orsay, France. [Brenker, F.; Schmitz, S.] Univ Frankfurt Main, Inst Geowissensch, Frankfurt, Germany. [Bridges, J.] Univ Leicester, Space Res Ctr, Leicester, Leics, England. [Brownlee, D. E.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Burchell, M.; Price, M. C.] Univ Kent, Sch Phys Sci, Canterbury, Kent, England. [Burghammer, M.; Cloetens, P.; Tressaras, J. -A. Sans; Sole, V. A.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Changela, H.] George Washington Univ, Washington, DC USA. [Doll, R.; Floss, C.; Leonard, A.; Ong, W. J.; Schreiber, K.; Stadermann, F.] Washington Univ, St Louis, MO USA. [Flynn, G.] SUNY Coll Plattsburgh, Plattsburgh, NY 12901 USA. [Heck, P. R.] Field Museum Nat Hist, Robert A Pritzker Ctr Meteorit & Polar Studies, Chicago, IL 60605 USA. [Hoppe, P.; Huth, J.; Leitner, J.] Max Planck Inst Chem, D-55128 Mainz, Germany. [Huss, G.; Ogliore, R.] Univ Hawaii Manoa, Honolulu, HI 96822 USA. [Kearsley, A.] Nat Hist Museum, London SW7 5BD, England. [Lai, B.; Sutton, S.] Argonne Natl Lab, Adv Photon Source, Chicago, IL USA. [Lemelle, L.] Ecole Normale Super Lyon, F-69364 Lyon, France. [Leroux, H.] Univ Lille 1, Lille, France. [Nittler, L. R.] Carnegie Inst Sci, Washington, DC USA. [Sandford, S. A.] NASA Ames Res Ctr, Moffett Field, CA USA. [Schoonjans, T.; Silversmit, G.; Vekemans, B.; Vincze, L.] Univ Ghent, B-9000 Ghent, Belgium. [Simionovici, A.] Univ Grenoble, Observ Sci, Inst Sci Terre, Grenoble, France. [Tsou, P.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Tsuchiyama, A.] Osaka Univ, Osaka, Japan. RP Postberg, F (reprint author), Univ Stuttgart, Inst Raumfahrtsyst, Stuttgart, Germany. EM postberg@irs.uni-stuttgart.de RI Hoppe, Peter/B-3032-2015; Bajt, Sasa/G-2228-2010; Fielding, Lee/B-8440-2011; Stroud, Rhonda/C-5503-2008; Leitner, Jan/A-7391-2015; OI Hoppe, Peter/0000-0003-3681-050X; Fielding, Lee/0000-0002-4958-1155; Stroud, Rhonda/0000-0001-5242-8015; Burchell, Mark/0000-0002-2680-8943; Armes, Steven/0000-0002-8289-6351; Leitner, Jan/0000-0003-3655-6273; Fujii, Syuji/0000-0003-2562-9502; Sans Tresserras, Juan Angel/0000-0001-9047-3992 FU NASA [NNX09AC36G, NNH11AQ61I]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02- 05CH11231]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; DFG [1385]; Klaus Tschira Stiftung GmbH FX The ISPE consortium gratefully acknowledge the NASA Discovery Program for Stardust, the fourth NASA Discovery mission. AJW, ALB, ZG, RL, DZ, WM and JVK were supported by NASA grant NNX09AC36G. We thank Steve Boggs for astrophysical soft x-ray spectra. RMS, HCG and NDB were supported by NASA grant NNH11AQ61I. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.; FP, JKH, RS and MT acknowledge funding by DFG special priority program 1385 "The First 10 Million years of the Solar System" and the support by Klaus Tschira Stiftung GmbH. NR 28 TC 11 Z9 11 U1 2 U2 23 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2014 VL 49 IS 9 SI SI BP 1666 EP 1679 DI 10.1111/maps.12173 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AQ6HT UT WOS:000342912100009 ER PT J AU Sterken, VJ Westphal, AJ Altobelli, N Grun, E Hillier, JK Postberg, F Srama, R Allen, C Anderson, D Ansari, A Bajt, S Bastien, RS Bassim, N Bechtel, HA Borg, J Brenker, FE Bridges, J Brownlee, DE Burchell, M Burghammer, M Butterworth, AL Changela, H Cloetens, P Davis, AM Doll, R Floss, C Flynn, G Frank, D Gainsforth, Z Heck, PR Hoppe, P Hudson, B Huth, J Hvide, B Kearsley, A King, AJ Lai, B Leitner, J Lemelle, L Leroux, H Leonard, A Lettieri, R Marchant, W Nittler, LR Ogliore, R Ong, WJ Price, MC Sandford, SA Tresseras, JAS Schmitz, S Schoonjans, T Silversmit, G Simionovici, A Sole, VA Stephan, T Stodolna, J Stroud, RM Sutton, S Trieloff, M Tsou, P Tsuchiyama, A Tyliszczak, T Vekemans, B Vincze, L Von Korff, J Wordsworth, N Zevin, D Zolensky, ME AF Sterken, Veerle J. Westphal, Andrew J. Altobelli, Nicolas Gruen, Eberhard Hillier, Jon K. Postberg, Frank Srama, Ralf Allen, Carlton Anderson, David Ansari, Asna Bajt, Sasa Bastien, Ron S. Bassim, Nabil Bechtel, Hans A. Borg, Janet Brenker, Frank E. Bridges, John Brownlee, Donald E. Burchell, Mark Burghammer, Manfred Butterworth, Anna L. Changela, Hitesh Cloetens, Peter Davis, Andrew M. Doll, Ryan Floss, Christine Flynn, George Frank, David Gainsforth, Zack Heck, Philipp R. Hoppe, Peter Hudson, Bruce Huth, Joachim Hvide, Brit Kearsley, Anton King, Ashley J. Lai, Barry Leitner, Jan Lemelle, Laurence Leroux, Hugues Leonard, Ariel Lettieri, Robert Marchant, William Nittler, Larry R. Ogliore, Ryan Ong, Wei Ja Price, Mark C. Sandford, S. A. Tresseras, Juan-Angel Sans Schmitz, Sylvia Schoonjans, Tom Silversmit, Geert Simionovici, Alexandre Sole, Vicente A. Stephan, Thomas Stodolna, Julien Stroud, Rhonda M. Sutton, Steven Trieloff, Mario Tsou, Peter Tsuchiyama, Akira Tyliszczak, Tolek Vekemans, Bart Vincze, Laszlo Von Korff, Joshua Wordsworth, Naomi Zevin, Daniel Zolensky, Michael E. TI Stardust Interstellar Preliminary Examination X: Impact speeds and directions of interstellar grains on the Stardust dust collector SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID RADIATION PRESSURE; SIZE DISTRIBUTION; SAMPLE RETURN; EARTH; HELIOSPHERE; PARTICLES; AEROGEL; MATTER; SARIM AB On the basis of an interstellar dust model compatible with Ulysses and Galileo observations, we calculate and predict the trajectories of interstellar dust (ISD) in the solar system and the distribution of the impact speeds, directions, and flux of ISD particles on the Stardust Interstellar Dust Collector during the two collection periods of the mission. We find that the expected impact velocities are generally low (<10 km s(-1)) for particles with the ratio of the solar radiation pressure force to the solar gravitational force beta > 1, and that some of the particles will impact on the cometary side of the collector. If we assume astronomical silicates for particle material and a density of 2 g cm(-3), and use the Ulysses measurements and the ISD trajectory simulations, we conclude that the total number of (detectable) captured ISD particles may be on the order of 50. In companion papers in this volume, we report the discovery of three interstellar dust candidates in the Stardust aerogel tiles. The impact directions and speeds of these candidates are consistent with those calculated from our ISD propagation model, within the uncertainties of the model and of the observations. C1 [Sterken, Veerle J.] Univ Stuttgart, Inst Raumfahrtsyst, D-70569 Stuttgart, Germany. [Sterken, Veerle J.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extreterr Phys, D-38106 Braunschweig, Germany. [Westphal, Andrew J.; Anderson, David; Butterworth, Anna L.; Gainsforth, Zack; Lettieri, Robert; Marchant, William; Stodolna, Julien; Von Korff, Joshua; Zevin, Daniel] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Altobelli, Nicolas] European Space Agcy, Madrid, Spain. [Gruen, Eberhard] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Hillier, Jon K.; Postberg, Frank; Trieloff, Mario] Heidelberg Univ, Inst Geowissensch, Heidelberg, Germany. [Srama, Ralf] Univ Stuttgart, Inst Raumfahrtsyst, D-70174 Stuttgart, Germany. [Allen, Carlton; Zolensky, Michael E.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Ansari, Asna; Hvide, Brit] Field Museum Nat Hist, Robert A Pritzker Ctr Meteorit & Polar Studies, Chicago, IL 60605 USA. [Bajt, Sasa] DESY, Hamburg, Germany. [Bastien, Ron S.; Frank, David] NASA, Lyndon B Johnson Space Ctr, Engn & Sci Contract Grp, Houston, TX 77058 USA. [Bassim, Nabil] Naval Res Lab, Washington, DC USA. [Bechtel, Hans A.; Tyliszczak, Tolek] Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA USA. [Borg, Janet] Inst Astrophys Spatiale, Orsay, France. [Brenker, Frank E.] Goethe Univ Frankfurt, Inst Geosci, Frankfurt, Germany. [Bridges, John] Univ Leicester, Space Res Ctr, Leicester, Leics, England. [Brownlee, Donald E.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Burchell, Mark; Price, Mark C.] Univ Kent, Sch Phys Sci, Canterbury, Kent, England. [Burghammer, Manfred; Cloetens, Peter; Tresseras, Juan-Angel Sans; Sole, Vicente A.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Changela, Hitesh] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. [Davis, Andrew M.; Stephan, Thomas] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Doll, Ryan; Floss, Christine; Leonard, Ariel; Ong, Wei Ja] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Flynn, George] SUNY Coll Plattsburgh, Plattsburgh, NY 12901 USA. [Heck, Philipp R.] Field Museum Nat Hist, Chicago, IL 60605 USA. [Hoppe, Peter; Huth, Joachim; Leitner, Jan] Max Planck Inst Chem, D-55128 Mainz, Germany. [Kearsley, Anton] Nat Hist Museum, London SW7 5BD, England. [King, Ashley J.] Univ Chicago, Chicago, IL 60637 USA. [King, Ashley J.] Field Museum Nat Hist, Robert A Pritzker Ctr Meteorit & Polar Studies, Chicago, IL 60605 USA. [Lai, Barry; Sutton, Steven] Argonne Natl Lab, Adv Photon Source, Chicago, IL USA. [Lemelle, Laurence] Ecole Normale Super Lyon, F-69364 Lyon, France. [Leroux, Hugues] Univ Sci & Tech Lille, Lille, France. [Nittler, Larry R.] Carnegie Inst Sci, Washington, DC USA. [Ogliore, Ryan] Univ Hawaii Manoa, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Sandford, S. A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Schmitz, Sylvia] Univ Frankfurt Main, Inst Geowissensch, Frankfurt, Germany. [Schoonjans, Tom; Silversmit, Geert; Vekemans, Bart; Vincze, Laszlo] Univ Ghent, Dept Analyt Chem, B-9000 Ghent, Belgium. [Simionovici, Alexandre] Univ Grenoble, Observ Sci, Inst Sci Terre, Grenoble, France. [Stroud, Rhonda M.] Naval Res Lab, Mat Sci & Technol Div, Washington, DC USA. [Tsou, Peter] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Tsuchiyama, Akira] Osaka Univ, Dept Earth & Space Sci, Osaka, Japan. RP Sterken, VJ (reprint author), Int Space Sci Inst ISSI, Hallerstr 6, CH-3012 Bern, Switzerland. EM veerle.sterken@issibern.ch RI Stroud, Rhonda/C-5503-2008; Sans Tresserras, Juan Angel/J-9362-2014; Leitner, Jan/A-7391-2015; Hoppe, Peter/B-3032-2015; Bajt, Sasa/G-2228-2010 OI Stroud, Rhonda/0000-0001-5242-8015; Burchell, Mark/0000-0002-2680-8943; Sans Tresserras, Juan Angel/0000-0001-9047-3992; Leitner, Jan/0000-0003-3655-6273; Hoppe, Peter/0000-0003-3681-050X; FU NASA [NNX09AC36G, NNH11AQ61I]; ESA; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX We thank the reviewers and the AE Christian Koeberl, for their thoughtful reviews that greatly improved this manuscript. We also thank the AE John Bradley for his critical input and time and effort spent reviewing the ISPE manuscripts. The ISPE consortium gratefully acknowledge the NASA Discovery Program for Stardust, the fourth NASA Discovery mission. AJW, ALB, ZG, RL, DZ, WM, and JVK were supported by NASA grant NNX09AC36G. RMS, HCG, and NDB were supported by NASA grant NNH11AQ61I. VJS acknowledges support from ESA. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 37 TC 15 Z9 15 U1 0 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2014 VL 49 IS 9 SI SI BP 1680 EP 1697 DI 10.1111/maps.12219 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AQ6HT UT WOS:000342912100010 ER PT J AU Stroud, RM Allen, C Ansari, A Anderson, D Bajt, S Bassim, N Bastien, RS Bechtel, HA Borg, J Brenker, FE Bridges, J Brownlee, DE Burchell, M Burghammer, M Butterworth, AL Changela, H Cloetens, P Davis, AM Doll, R Floss, C Flynn, G Frank, DR Gainsforth, Z Grun, E Heck, PR Hillier, JK Hoppe, P Huth, J Hvide, B Kearsley, A King, AJ Kotula, P Lai, B Leitner, J Lemelle, L Leroux, H Leonard, A Lettieri, R Marchant, W Nittler, LR Ogliore, R Ong, WJ Postberg, F Price, MC Sandford, SA Tresseras, JAS Schmitz, S Schoonjans, T Schreiber, K Silversmit, G Simionovici, AS Sole, VA Srama, R Stephan, T Sterken, VJ Stodolna, J Sutton, S Trieloff, M Tsou, P Tsuchiyama, A Tyliszczak, T Vekemans, B Vincze, L Westphal, AJ Von Korff, J Zevin, D Zolensky, ME AF Stroud, Rhonda M. Allen, Carlton Ansari, Asna Anderson, David Bajt, Sasa Bassim, Nabil Bastien, Ron S. Bechtel, Hans A. Borg, Janet Brenker, Frank E. Bridges, John Brownlee, Donald E. Burchell, Mark Burghammer, Manfred Butterworth, Anna L. Changela, Hitesh Cloetens, Peter Davis, Andrew M. Doll, Ryan Floss, Christine Flynn, George Frank, David R. Gainsforth, Zack Gruen, Eberhard Heck, Philipp R. Hillier, Jon K. Hoppe, Peter Huth, Joachim Hvide, Brit Kearsley, Anton King, Ashley J. Kotula, Paul Lai, Barry Leitner, Jan Lemelle, Laurence Leroux, Hugues Leonard, Ariel Lettieri, Robert Marchant, William Nittler, Larry R. Ogliore, Ryan Ong, Wei Jia Postberg, Frank Price, Mark C. Sandford, Scott A. Tresseras, Juan-Angel Sans Schmitz, Sylvia Schoonjans, Tom Schreiber, Kate Silversmit, Geert Simionovici, Alexandre S. Sole, Vicente A. Srama, Ralf Stephan, Thomas Sterken, Veerle J. Stodolna, Julien Sutton, Steven Trieloff, Mario Tsou, Peter Tsuchiyama, Akira Tyliszczak, Tolek Vekemans, Bart Vincze, Laszlo Westphal, Andrew J. Von Korff, Joshua Zevin, Daniel Zolensky, Michael E. TI Stardust Interstellar Preliminary Examination XI: Identification and elemental analysis of impact craters on Al foils from the Stardust Interstellar Dust Collector SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; COMET 81P/WILD 2; ISOTOPIC COMPOSITIONS; ALUMINUM FOILS; RESIDUES; FEATURES; AEROGEL; MORPHOLOGY; MISSION; MATTER AB The Stardust Interstellar Preliminary Examination team analyzed thirteen Al foils from the NASA Stardust interstellar collector tray in order to locate candidate interstellar dust (ISD) grain impacts. Scanning electron microscope (SEM) images reveal that the foils possess abundant impact crater and crater-like features. Elemental analyses of the crater features, with Auger electron spectroscopy, SEM-based energy dispersive X-ray (EDX) spectroscopy, and scanning transmission electron microscope-based EDX spectroscopy, demonstrate that the majority are either the result of impacting debris fragments from the spacecraft solar panels, or intrinsic defects in the foil. The elemental analyses also reveal that four craters contain residues of a definite extraterrestrial origin, either as interplanetary dust particles or ISD particles. These four craters are designated level 2 interstellar candidates, based on the crater shapes indicative of hypervelocity impacts and the residue compositions inconsistent with spacecraft debris. C1 [Stroud, Rhonda M.; Bassim, Nabil; Changela, Hitesh] Naval Res Lab, Mat Sci & Technol Div, Washington, DC 20375 USA. [Allen, Carlton; Zolensky, Michael E.] NASA, Lyndon B Johnson Space Ctr, ARES, Houston, TX 77058 USA. [Ansari, Asna; Heck, Philipp R.; Hvide, Brit; Marchant, William] Field Museum Nat Hist, Robert A Pritzker Ctr Meteorit & Polar Studies, Chicago, IL 60605 USA. [Anderson, David; Butterworth, Anna L.; Gainsforth, Zack; Lettieri, Robert; Stodolna, Julien; Westphal, Andrew J.; Von Korff, Joshua; Zevin, Daniel] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA USA. [Bajt, Sasa] DESY, Hamburg, Germany. [Bastien, Ron S.; Frank, David R.] NASA, Lyndon B Johnson Space Ctr, JETS, Houston, TX 77058 USA. [Bechtel, Hans A.; Tyliszczak, Tolek] Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA USA. [Borg, Janet] IAS Orsay, Orsay, France. [Brenker, Frank E.; Schmitz, Sylvia] Goethe Univ Frankfurt, Inst Geowissensch, Frankfurt, Germany. [Bridges, John] Univ Leicester, Space Res Ctr, Leicester, Leics, England. [Brownlee, Donald E.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Burchell, Mark; Price, Mark C.] Univ Kent, Canterbury, Kent, England. [Burghammer, Manfred; Cloetens, Peter; Tresseras, Juan-Angel Sans; Sole, Vicente A.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Changela, Hitesh] George Washington Univ, Washington, DC USA. [Davis, Andrew M.; King, Ashley J.; Stephan, Thomas] Univ Chicago, Chicago, IL 60637 USA. [Doll, Ryan; Floss, Christine; Leonard, Ariel; Ong, Wei Jia; Schreiber, Kate] Washington Univ, St Louis, MO USA. [Flynn, George] SUNY Coll Plattsburgh, Plattsburgh, NY 12901 USA. [Gruen, Eberhard; Srama, Ralf] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Hillier, Jon K.; Postberg, Frank; Trieloff, Mario] Heidelberg Univ, Inst Geowissensch, Heidelberg, Germany. [Hoppe, Peter; Huth, Joachim; Leitner, Jan] Max Planck Inst Chem, D-55128 Mainz, Germany. [Kearsley, Anton] Nat Hist Museum, London SW7 5BD, England. [Kotula, Paul] Sandia Natl Labs, Albuquerque, NM USA. [Lai, Barry; Sutton, Steven] Argonne Natl Lab, Adv Photon Source, Chicago, IL USA. [Lemelle, Laurence] ENS, Lyon, France. [Leroux, Hugues] Univ Sci & Techol Lille, Lille, France. [Nittler, Larry R.] Carnegie Inst Sci, Washington, DC USA. [Ogliore, Ryan] Univ Hawaii Manoa, Honolulu, HI 96822 USA. [Sandford, Scott A.; Vincze, Laszlo] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Schoonjans, Tom; Silversmit, Geert; Vekemans, Bart] Univ Ghent, B-9000 Ghent, Belgium. [Simionovici, Alexandre S.] Univ Grenoble, Observ Sci, Inst Sci Terre, Grenoble, France. [Srama, Ralf] TU Braunschweig, IGEP, Braunschweig, Germany. [Sterken, Veerle J.] Univ Stuttgart, IRS, D-70174 Stuttgart, Germany. [Tsou, Peter] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Tsuchiyama, Akira] Osaka Univ, Osaka, Japan. RP Stroud, RM (reprint author), Naval Res Lab, Mat Sci & Technol Div, Washington, DC 20375 USA. EM stroud@nrl.navy.mil RI Sans Tresserras, Juan Angel/J-9362-2014; Kotula, Paul/A-7657-2011; Leitner, Jan/A-7391-2015; Hoppe, Peter/B-3032-2015; Bajt, Sasa/G-2228-2010; Stroud, Rhonda/C-5503-2008; OI Sans Tresserras, Juan Angel/0000-0001-9047-3992; Kotula, Paul/0000-0002-7521-2759; Leitner, Jan/0000-0003-3655-6273; Hoppe, Peter/0000-0003-3681-050X; Stroud, Rhonda/0000-0001-5242-8015; Burchell, Mark/0000-0002-2680-8943 FU NASA [NNH11AQ61I, NNX09AC36G]; NASA Origins of Solar Systems Program; Tawani Foundation; DFG [SPP1385]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX We thank Fred Horz and Martin Lee for constructive reviews. RMS, HCG, and NDB were supported by NASA grant NNH11AQ61I. JW. ALB, ZG, RL, DZ, WM, and JVK were supported by NASA grant NNX09AC36G. SAS acknowledges support from the NASA Origins of Solar Systems Program. PRH, AA, BH were supported by the Tawani Foundation. PH and JL acknowledge support by DFG through SPP1385: the first ten million years of the solar system-a planetary materials approach. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 39 TC 9 Z9 9 U1 2 U2 15 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2014 VL 49 IS 9 SI SI BP 1698 EP 1719 DI 10.1111/maps.12136 PG 22 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AQ6HT UT WOS:000342912100011 ER PT J AU Westphal, AJ Bechtel, HA Brenker, FE Butterworth, AL Flynn, G Frank, DR Gainsforth, Z Hillier, JK Postberg, F Simionovici, AS Sterken, VJ Stroud, RM Allen, C Anderson, D Ansari, A Bajt, S Bastien, RK Bassim, N Borg, J Bridges, J Brownlee, DE Burchell, M Burghammer, M Changela, H Cloetens, P Davis, AM Doll, R Floss, C Grun, E Heck, PR Hoppe, P Hudson, B Huth, J Hvide, B Kearsley, A King, AJ Lai, B Leitner, J Lemelle, L Leroux, H Leonard, A Lettieri, R Marchant, W Nittler, LR Ogliore, R Ong, WJ Price, MC Sandford, SA Tresseras, JAS Schmitz, S Schoonjans, T Silversmit, G Sole, VA Srama, R Stadermann, F Stephan, T Stodolna, J Sutton, S Trieloff, M Tsou, P Tsuchiyama, A Tyliszczak, T Vekemans, B Vincze, L Von Korff, J Wordsworth, N Zevin, D Zolensky, ME AF Westphal, Andrew J. Bechtel, Hans A. Brenker, Frank E. Butterworth, Anna L. Flynn, George Frank, David R. Gainsforth, Zack Hillier, Jon K. Postberg, Frank Simionovici, Alexandre S. Sterken, Veerle J. Stroud, Rhonda M. Allen, Carlton Anderson, David Ansari, Asna Bajt, Sasa Bastien, Ron K. Bassim, Nabil Borg, Janet Bridges, John Brownlee, Donald E. Burchell, Mark Burghammer, Manfred Changela, Hitesh Cloetens, Peter Davis, Andrew M. Doll, Ryan Floss, Christine Gruen, Eberhard Heck, Philipp R. Hoppe, Peter Hudson, Bruce Huth, Joachim Hvide, Brit Kearsley, Anton King, Ashley J. Lai, Barry Leitner, Jan Lemelle, Laurence Leroux, Hugues Leonard, Ariel Lettieri, Robert Marchant, William Nittler, Larry R. Ogliore, Ryan Ong, Wei Ja Price, Mark C. Sandford, Scott A. Tresseras, Juan-Angel Sans Schmitz, Sylvia Schoonjans, Tom Silversmit, Geert Sole, Vicente A. Srama, Ralf Stadermann, Frank Stephan, Thomas Stodolna, Julien Sutton, Steven Trieloff, Mario Tsou, Peter Tsuchiyama, Akira Tyliszczak, Tolek Vekemans, Bart Vincze, Laszlo Von Korff, Joshua Wordsworth, Naomi Zevin, Daniel Zolensky, Michael E. TI Final reports of the Stardust Interstellar Preliminary Examination SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID ULYSSES DUST DATA AB With the discovery of bona fide extraterrestrial materials in the Stardust Interstellar Dust Collector, NASA now has a fundamentally new returned sample collection, after the Apollo, Antarctic meteorite, Cosmic Dust, Genesis, Stardust Cometary, Hayabusa, and Exposed Space Hardware samples. Here, and in companion papers in this volume, we present the results from the Preliminary Examination of this collection, the Stardust Interstellar Preliminary Examination (ISPE). We found extraterrestrial materials in two tracks in aerogel whose trajectories and morphology are consistent with an origin in the interstellar dust stream, and in residues in four impacts in the aluminum foil collectors. While the preponderance of evidence, described in detail in companion papers in this volume, points toward an interstellar origin for some of these particles, alternative origins have not yet been eliminated, and definitive tests through isotopic analyses were not allowed under the terms of the ISPE. In this summary, we answer the central questions of the ISPE: How many tracks in the collector are consistent in their morphology and trajectory with interstellar particles? How many of these potential tracks are consistent with real interstellar particles, based on chemical analysis? Conversely, what fraction of candidates are consistent with either a secondary or interplanetary origin? What is the mass distribution of these particles, and what is their state? Are they particulate or diffuse? Is there any crystalline material? How many detectable impact craters (> 100 nm) are there in the foils, and what is their size distribution? How many of these craters have analyzable residue that is consistent with extraterrestrial material? And finally, can craters from secondaries be recognized through crater morphology (e.g., ellipticity)? C1 [Westphal, Andrew J.; Butterworth, Anna L.; Gainsforth, Zack; Anderson, David; Lettieri, Robert; Marchant, William; Stodolna, Julien; Von Korff, Joshua; Zevin, Daniel] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Bechtel, Hans A.; Tyliszczak, Tolek] Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA USA. [Brenker, Frank E.; Schmitz, Sylvia] Goethe Univ Frankfurt, Inst Geosci, Frankfurt, Germany. [Flynn, George] SUNY Coll Plattsburgh, Plattsburgh, NY 12901 USA. [Frank, David R.; Bastien, Ron K.] NASA JSC, ESCG, Houston, TX USA. [Hillier, Jon K.; Postberg, Frank; Trieloff, Mario] Heidelberg Univ, Inst Geowissensch, Heidelberg, Germany. [Simionovici, Alexandre S.] Univ Grenoble, Observ Sci, Inst Sci Terre, Grenoble, France. [Sterken, Veerle J.] Univ Stuttgart, IRS, D-70174 Stuttgart, Germany. [Sterken, Veerle J.] Tech Univ Carolo Wilhelmina Braunschweig, IGEP, D-38106 Braunschweig, Germany. [Sterken, Veerle J.; Zolensky, Michael E.] MPIK, Heidelberg, Germany. [Stroud, Rhonda M.] Naval Res Lab, Mat Sci & Technol Div, Washington, DC USA. [Allen, Carlton] NASA JSC, ARES, Houston, TX USA. [Ansari, Asna; Hvide, Brit] Field Museum Nat Hist, Robert A Pritzker Ctr Meteorit & Polar Studies, Chicago, IL 60605 USA. [Bajt, Sasa] DESY, Hamburg, Germany. [Bassim, Nabil] Naval Res Lab, Nanoscale Mat Sect, Washington, DC USA. [Borg, Janet] IAS Orsay, Orsay, France. [Bridges, John] Univ Leicester, Space Res Ctr, Leicester, Leics, England. [Brownlee, Donald E.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Burchell, Mark; Price, Mark C.] Univ Kent, Canterbury, Kent, England. [Burghammer, Manfred; Cloetens, Peter; Tresseras, Juan-Angel Sans; Sole, Vicente A.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Changela, Hitesh] George Washington Univ, Washington, DC USA. [Davis, Andrew M.; Stephan, Thomas] Univ Chicago, Chicago, IL 60637 USA. [Doll, Ryan; Floss, Christine; Leonard, Ariel; Ong, Wei Ja; Stadermann, Frank] Washington Univ, St Louis, MO USA. [Gruen, Eberhard] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Heck, Philipp R.] Field Museum Nat Hist, Chicago, IL 60605 USA. [Hoppe, Peter; Huth, Joachim; Leitner, Jan] Max Planck Inst Chem, D-55128 Mainz, Germany. [Kearsley, Anton] Nat Hist Museum, London SW7 5BD, England. [King, Ashley J.] Univ Chicago, Chicago, IL 60637 USA. [King, Ashley J.] Field Museum Nat Hist, Robert A Pritzker Ctr Meteorit & Polar Studies, Chicago, IL 60605 USA. [Lai, Barry; Sutton, Steven] Argonne Natl Lab, Adv Photon Source, Chicago, IL USA. [Lemelle, Laurence] Ecole Normale Super Lyon, F-69364 Lyon, France. [Leroux, Hugues] Univ Lille 1, Lille, France. [Nittler, Larry R.] Carnegie Inst Sci, Washington, DC USA. [Ogliore, Ryan] Univ Hawaii Manoa, Honolulu, HI 96822 USA. [Sandford, Scott A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Schoonjans, Tom; Silversmit, Geert; Vekemans, Bart; Vincze, Laszlo] Univ Ghent, B-9000 Ghent, Belgium. [Srama, Ralf] Univ Stuttgart, IRS, D-70174 Stuttgart, Germany. [Tsou, Peter] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Tsuchiyama, Akira] Osaka Univ, Osaka, Japan. RP Westphal, AJ (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM westphal@ssl.berkeley.edu RI Sans Tresserras, Juan Angel/J-9362-2014; Leitner, Jan/A-7391-2015; Hoppe, Peter/B-3032-2015; Bajt, Sasa/G-2228-2010; Stroud, Rhonda/C-5503-2008; OI Sans Tresserras, Juan Angel/0000-0001-9047-3992; Leitner, Jan/0000-0003-3655-6273; Hoppe, Peter/0000-0003-3681-050X; Stroud, Rhonda/0000-0001-5242-8015; Burchell, Mark/0000-0002-2680-8943 NR 25 TC 12 Z9 12 U1 3 U2 20 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2014 VL 49 IS 9 SI SI BP 1720 EP 1733 DI 10.1111/maps.12221 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AQ6HT UT WOS:000342912100012 ER PT J AU Azizi, A Zou, XL Ercius, P Zhang, ZH Elias, AL Perea-Lopez, N Stone, G Terrones, M Yakobson, BI Alem, N AF Azizi, Amin Zou, Xiaolong Ercius, Peter Zhang, Zhuhua Elias, Ana Laura Perea-Lopez, Nestor Stone, Greg Terrones, Mauricio Yakobson, Boris I. Alem, Nasim TI Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide SO NATURE COMMUNICATIONS LA English DT Article ID MONOLAYER MOLYBDENUM-DISULFIDE; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; BASIS-SET; GRAPHENE; NANOTUBES; ELECTRON; DEFECTS; LAYERS AB Dislocations have a significant effect on mechanical, electronic, magnetic and optical properties of crystals. For a dislocation to migrate in bulk crystals, collective and simultaneous movement of several atoms is needed. In two-dimensional crystals, in contrast, dislocations occur on the surface and can exhibit unique migration dynamics. Dislocation migration has recently been studied in graphene, but no studies have been reported on dislocation dynamics for two-dimensional transition metal dichalcogenides with unique metal-ligand bonding and a three-atom thickness. This study presents dislocation motion, glide and climb, leading to grain boundary migration in a tungsten disulphide monolayer. Direct atomic-scale imaging coupled with atomistic simulations reveals a strikingly low-energy barrier for glide, leading to significant grain boundary reconstruction in tungsten disulphide. The observed dynamics are unique and different from those reported for graphene. Through strain field mapping, we also demonstrate how dislocations introduce considerable strain along the grain boundaries and at the dislocation cores. C1 [Azizi, Amin; Stone, Greg; Terrones, Mauricio; Alem, Nasim] Penn State Univ, Mat Res Inst, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Azizi, Amin; Elias, Ana Laura; Perea-Lopez, Nestor; Terrones, Mauricio; Alem, Nasim] Penn State Univ, Ctr Dimens & Layered Mat 2, University Pk, PA 16802 USA. [Zou, Xiaolong; Zhang, Zhuhua; Yakobson, Boris I.] Rice Univ, Dept Mat Sci & Nano Engn, Houston, TX 77005 USA. [Zou, Xiaolong; Zhang, Zhuhua; Yakobson, Boris I.] Rice Univ, Richard Smalley Inst, Houston, TX 77005 USA. [Ercius, Peter] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Elias, Ana Laura; Perea-Lopez, Nestor; Terrones, Mauricio] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Terrones, Mauricio] Penn State Univ, Dept Chem, University Pk, PA 16802 USA. RP Alem, N (reprint author), Penn State Univ, Mat Res Inst, Dept Mat Sci & Engn, University Pk, PA 16802 USA. EM biy@rice.edu; nua10@psu.edu RI Perea-Lopez, Nestor/A-2683-2010; Foundry, Molecular/G-9968-2014; Zhang, Zhuhua/E-8162-2012 OI Perea-Lopez, Nestor/0000-0002-3197-759X; FU US Army Research Office MURI [W911NF-11-10362]; Penn State Center for Nanoscale Science support through the 2D Layered Materials seed [DMR-0820404]; Robert Welch Foundation [C-1590]; Office of Science, Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-05CH11231]; NSF [OCI-0959097]; NSF under MRSEC [DMR-0820404, DMR-1210588] FX This work is supported by the US Army Research Office MURI grant W911NF-11-1-0362. N.A. and M.T. acknowledge the Penn State Center for Nanoscale Science support through the 2D Layered Materials seed grant DMR-0820404. X.Z. and B.I.Y acknowledge support by the Robert Welch Foundation (C-1590). We are thankful to R. Lv, L. Pulickal Rajukumar, Z. Lin and C. Zhou for technical assistance and helpful discussions. TEM imaging was performed at NCEM, which is supported by the Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-05CH11231. The computations were performed at the Data Analysis and Visualization Cyberinfrastructure funded by NSF under Grant OCI-0959097. G. S. also acknowledges support from NSF under MRSEC grants DMR-0820404 and DMR-1210588. NR 35 TC 26 Z9 27 U1 16 U2 119 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2014 VL 5 AR 4867 DI 10.1038/ncomms5867 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AQ6NL UT WOS:000342930300007 PM 25202857 ER PT J AU Bufford, D Liu, Y Wang, J Wang, H Zhang, X AF Bufford, D. Liu, Y. Wang, J. Wang, H. Zhang, X. TI In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries SO NATURE COMMUNICATIONS LA English DT Article ID NANOCRYSTALLINE ALUMINUM; DISLOCATION NUCLEATION; MAXIMUM STRENGTH; DEFORMATION; METALS; COPPER; CRYSTAL; STRESS; STRAIN; NANOPILLARS AB Nanotwinned metals have been the focus of intense research recently, as twin boundaries may greatly enhance mechanical strength, while maintaining good ductility, electrical conductivity and thermal stability. Most prior studies have focused on low stacking-fault energy nanotwinned metals with coherent twin boundaries. In contrast, the plasticity of twinned high stacking-fault energy metals, such as aluminium with incoherent twin boundaries, has not been investigated. Here we report high work hardening capacity and plasticity in highly twinned aluminium containing abundant Sigma 3{112}incoherent twin boundaries based on in situ nanoindentation studies in a transmission electron microscope and corresponding molecular dynamics simulations. The simulations also reveal drastic differences in deformation mechanisms between nanotwinned copper and twinned aluminium ascribed to stacking-fault energy controlled dislocation-incoherent twin boundary interactions. This study provides new insight into incoherent twin boundary-dominated plasticity in high stacking-fault energy twinned metals. C1 [Bufford, D.; Liu, Y.; Wang, H.; Zhang, X.] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA. [Bufford, D.] Sandia Natl Labs, Radiat Solid Interact Dept, Albuquerque, NM 87185 USA. [Wang, J.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Wang, H.] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. [Zhang, X.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. RP Zhang, X (reprint author), Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA. EM zhangx@tamu.edu RI Liu, Yue/H-4071-2014; Wang, Haiyan/P-3550-2014; Wang, Jian/F-2669-2012; wang, hai/Q-1758-2016 OI Liu, Yue/0000-0001-8518-5734; Wang, Haiyan/0000-0002-7397-1209; Wang, Jian/0000-0001-5130-300X; FU DoE-OBES [DE-SC0010482]; Office of Naval Research [N000141310555]; US Department of Energy, Office of Science, Office of Basic Energy Sciences; Los Alamos National Laboratory Directed Research and Development [LDRD-ER20140450] FX X.Z. acknowledges financial support by DoE-OBES under grant no. DE-SC0010482. H. W. acknowledges the support from the Office of Naval Research (under Dr Lawrence Kabacoff, N000141310555). Access to DoE-Center for Integrated Nanotechnologies (CINT) at Los Alamos and Sandia National Laboratories and the use of microscopes at the Microscopy and Imaging Center at Texas A&M University are also acknowledged. J.W. acknowledges the support provided by the US Department of Energy, Office of Science, Office of Basic Energy Sciences and the Los Alamos National Laboratory Directed Research and Development (LDRD-ER20140450). NR 43 TC 24 Z9 24 U1 17 U2 116 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2014 VL 5 AR 4864 DI 10.1038/ncomms5864 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AQ6NL UT WOS:000342930300004 PM 25204688 ER PT J AU Dholabhai, PP Pilania, G Aguiar, JA Misra, A Uberuaga, BP AF Dholabhai, Pratik P. Pilania, Ghanshyam Aguiar, Jeffery A. Misra, Amit Uberuaga, Blas P. TI Termination chemistry-driven dislocation structure at SrTiO3/MgO heterointerfaces SO NATURE COMMUNICATIONS LA English DT Article ID MISFIT DISLOCATIONS; OXIDE INTERFACES; IONIC-CONDUCTION; NANOCOMPOSITES; AMORPHIZATION; RESISTANCE; STABILITY; ADHESION; YTTRIA AB Exploiting the promise of nanocomposite oxides necessitates a detailed understanding of the dislocation structure at the interfaces, which governs diverse and technologically relevant properties. Here we report atomistic simulations demonstrating a strong dependence of the dislocation structure on the termination chemistry at the SrTiO3/MgO heterointerface. The SrO- and TiO2-terminated interfaces exhibit distinct nearest neighbour arrangements between cations and anions, leading to variations in local electrostatic interactions across the interface that ultimately dictate the dislocation structure. Networks of dislocations with different Burgers vectors and dislocation spacing characterize the two interfaces. These networks in turn influence the overall stability of and the behaviour of oxygen vacancies at the heterointerface, which will dictate vital properties such as mass transport at the interface. To date, the observed correlation between the dislocation structure and the termination chemistry at the interface has not been recognized, and offers novel avenues for fine-tuning oxide nanocomposites with enhanced functionalities. C1 [Dholabhai, Pratik P.; Pilania, Ghanshyam; Aguiar, Jeffery A.; Uberuaga, Blas P.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Misra, Amit] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Dholabhai, PP (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, POB 1663, Los Alamos, NM 87545 USA. EM pdholabhai@lanl.gov RI Dholabhai, Pratik/A-2366-2015; Albe, Karsten/F-1139-2011; Misra, Amit/H-1087-2012; Pilania, Ghanshyam/K-4468-2013 OI Pilania, Ghanshyam/0000-0003-4460-1572 FU Center for Materials at Irradiation and Mechanical Extremes (CMIME); Energy Frontier Research Center - US Department of Energy, Office of Science, Office of Basic Energy Sciences [2008LANL1026]; National Nuclear Security Administration of the US DOE [DE-AC52-06NA25396] FX This work was supported by Center for Materials at Irradiation and Mechanical Extremes (CMIME), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under the Award Number 2008LANL1026. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US DOE under contract DE-AC52-06NA25396. We acknowledge Richard G. Hoagland for stimulating discussions and critical reading of the manuscript. We also acknowledge John P. Hirth for insightful discussions. NR 51 TC 8 Z9 8 U1 3 U2 37 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2014 VL 5 AR 5043 DI 10.1038/ncomms6043 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AQ7WB UT WOS:000343028800001 PM 25247885 ER PT J AU Duris, J Musumeci, P Babzien, M Fedurin, M Kusche, K Li, RK Moody, J Pogorelsky, I Polyanskiy, M Rosenzweig, JB Sakai, Y Swinson, C Threlkeld, E Williams, O Yakimenko, V AF Duris, J. Musumeci, P. Babzien, M. Fedurin, M. Kusche, K. Li, R. K. Moody, J. Pogorelsky, I. Polyanskiy, M. Rosenzweig, J. B. Sakai, Y. Swinson, C. Threlkeld, E. Williams, O. Yakimenko, V. TI High-quality electron beams from a helical inverse free-electron laser accelerator SO NATURE COMMUNICATIONS LA English DT Article ID X-RAYS AB Compact, table-top sized accelerators are key to improving access to high-quality beams for use in industry, medicine and academic research. Among laser-based accelerating schemes, the inverse free-electron laser (IFEL) enjoys unique advantages. By using an undulator magnetic field in combination with a laser, GeVm(-1) gradients may be sustained over metre-scale distances using laser intensities several orders of magnitude less than those used in laser wake-field accelerators. Here we show for the first time the capture and high-gradient acceleration of monoenergetic electron beams from a helical IFEL. Using a modest intensity (similar to 10(13) Wcm(-2)) laser pulse and strongly tapered 0.5m long undulator, we demonstrate >100 MVm(-1) accelerating gradient, 450MeV energy gain and excellent output beam quality. Our results pave the way towards compact, tunable GeV IFEL accelerators for applications such as driving soft X-ray free-electron lasers and producing gamma-rays by inverse Compton scattering. C1 [Duris, J.; Musumeci, P.; Li, R. K.; Moody, J.; Rosenzweig, J. B.; Sakai, Y.; Threlkeld, E.; Williams, O.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Babzien, M.; Fedurin, M.; Kusche, K.; Pogorelsky, I.; Polyanskiy, M.; Swinson, C.] Brookhaven Natl Lab, Accelerator Test Facil, Upton, NY 11973 USA. [Yakimenko, V.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Duris, J (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. EM jduris@physics.ucla.edu RI Polyanskiy, Mikhail/E-8406-2010 FU DOE grant [DE-FG02-92ER40693]; Defense Threat Reduction Agency award [HDTRA1-10-1-0073] FX The authors are greatful to the UCLA and ATF machine shops and technical staff for their amazing help and thankful to Gerard Andonian for suggestions improving the figures. This work was supported by DOE grant DE-FG02-92ER40693 and Defense Threat Reduction Agency award HDTRA1-10-1-0073. NR 21 TC 7 Z9 7 U1 3 U2 13 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2014 VL 5 AR 4928 DI 10.1038/ncomms5928 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AQ7HW UT WOS:000342984400002 PM 25222026 ER PT J AU Fan, Y Iwashita, T Egami, T AF Fan, Yue Iwashita, Takuya Egami, Takeshi TI How thermally activated deformation starts in metallic glass SO NATURE COMMUNICATIONS LA English DT Article ID AMORPHOUS SOLIDS; SUPERCOOLED LIQUIDS; STRUCTURAL DEFECTS; PLASTIC-FLOW; RELAXATION; TRANSITION; DYNAMICS; ALLOYS; MODEL AB The studies on dynamics and deformation in glassy materials are particularly challenging because of their strongly disordered atomic structure. Here, by probing the changes in the atomic displacements and stresses at saddle points of the potential energy landscape, we show that thermally activated deformation is triggered by subnano-scale rearrangements of a small number of atoms, typically less than 10 atoms. The individual triggers are invariant of the cooling history or elastic structure of the system. However, the organizations between different trigger centres can be varied and are related to the overall stability of the system. This finding allows a semi-quantitative construction of the potential energy landscape and brings a new perspective to the study of the mechanical properties of glasses. C1 [Fan, Yue; Egami, Takeshi] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Iwashita, Takuya; Egami, Takeshi] Univ Tennessee, Joint Inst Neutron Sci, Dept Phys & Astron, Knoxville, TN 37996 USA. [Egami, Takeshi] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Fan, Y (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM fany@ornl.gov RI FAN, YUE/H-1737-2011; Iwashita, Takuya/D-2724-2009 FU Eugene P. Wigner Fellowship at the Oak Ridge National Laboratory [DE-AC05-00OR22725]; Department of Energy, Office of Basic Energy Sciences, Materials Science and Engineering Division FX We thank G.M., Stocks, S. Zinkle, J.R. Morris, B. D. Wirth, Y.N. Osetskiy, J.S. Langer, J. Bellissard and Y.Q. Cheng for thoughtful discussions. Y.F. was supported by Eugene P. Wigner Fellowship at the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy under Contract No. DE-AC05-00OR22725. T.I. and T.E. were supported by the Department of Energy, Office of Basic Energy Sciences, Materials Science and Engineering Division. NR 53 TC 32 Z9 32 U1 11 U2 92 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2014 VL 5 AR 5083 DI 10.1038/ncomms6083 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AQ7WM UT WOS:000343029900001 PM 25248915 ER PT J AU Fina, I Marti, X Yi, D Liu, J Chu, JH Rayan-Serrao, C Suresha, S Shick, AB Zelezny, J Jungwirth, T Fontcuberta, J Ramesh, R AF Fina, I. Marti, X. Yi, D. Liu, J. Chu, J. H. Rayan-Serrao, C. Suresha, S. Shick, A. B. Zelezny, J. Jungwirth, T. Fontcuberta, J. Ramesh, R. TI Anisotropic magnetoresistance in an antiferromagnetic semiconductor SO NATURE COMMUNICATIONS LA English DT Article ID SINGLE-ELECTRON-TRANSISTOR; CUMNAS; PHASE AB Recent studies in devices comprising metal antiferromagnets have demonstrated the feasibility of a novel spintronic concept in which spin-dependent phenomena are governed by an antiferromagnet instead of a ferromagnet. Here we report experimental observation of the anisotropic magnetoresistance in an antiferromagnetic semiconductor Sr2IrO4. Based on ab initio calculations, we associate the origin of the phenomenon with large anisotropies in the relativistic electronic structure. The antiferromagnet film is exchange coupled to a ferromagnet, which allows us to reorient the antiferromagnet spin-axis in applied magnetic fields via the exchange spring effect. We demonstrate that the semiconducting nature of our AFM electrode allows us to perform anisotropic magnetoresistance measurements in the current-perpendicular-to-plane geometry without introducing a tunnel barrier into the stack. Temperature-dependent measurements of the resistance and anisotropic magnetoresistance highlight the large, entangled tunabilities of the ordinary charge and spin-dependent transport in a spintronic device utilizing the antiferromagnet semiconductor. C1 [Fina, I.; Fontcuberta, J.] ICMAB CSIC, Inst Ciencia Mat Barcelona, E-08193 Barcelona, Spain. [Fina, I.] Max Planck Inst Microstruct Phys, Expt Dept 2, D-06120 Halle, Germany. [Marti, X.; Yi, D.; Rayan-Serrao, C.; Ramesh, R.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Marti, X.] CSIC ICN, Ctr Invest Nanociencia & Nanotecnol CIN2, Barcelona 08193, Spain. [Marti, X.; Zelezny, J.; Jungwirth, T.] Acad Sci Czech Republic, Inst Phys, Vvi, Dept Spintron & Nanoelect, Prague 16253 6, Czech Republic. [Liu, J.; Chu, J. H.; Ramesh, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Suresha, S.; Ramesh, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Shick, A. B.] Acad Sci Czech Republic, Inst Phys, Dept Condensed Matter Theory, Prague 18221 8, Czech Republic. [Jungwirth, T.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. RP Fina, I (reprint author), ICMAB CSIC, Inst Ciencia Mat Barcelona, Campus UAB, E-08193 Barcelona, Spain. EM ignasifinamartinez@gmail.com; xavi.marti@igsresearch.com RI Fontcuberta, Josep /A-7114-2013; Marti, Xavier/E-1103-2014; Jungwirth, Tomas/G-8952-2014; Shick, Alexander/C-1420-2013; Zelezny, Jakub/G-5276-2014; Fina, Ignasi/G-2210-2011; Liu, Jian/I-6746-2013 OI Fontcuberta, Josep/0000-0002-7955-2320; Marti, Xavier/0000-0003-1653-5619; Jungwirth, Tomas/0000-0002-9910-1674; Shick, Alexander/0000-0003-2700-5517; , claudy/0000-0003-4737-0693; Zelezny, Jakub/0000-0001-9471-0078; Fina, Ignasi/0000-0003-4182-6194; Liu, Jian/0000-0001-7962-2547 FU NSF (Nanosystems Engineering Research Center for Translational Applications of Nanoscale Multiferroic Systems) [EEC-1160504]; US Department of Energy; SRC-FAME programme through UCLA; EU European Research Council (ERC) [268066]; Ministry of Education of the Czech Republic [LM2011026]; Grant Agency of the Czech Republic [14-37427G, P204/11/P339]; Academy of Sciences of the Czech Republic Praemium Academiae; GACR [P204/10/0330]; Spanish Government [MAT2011-29269-C03, CSD2007-00041]; Generalitat de Catalunya [SGR 00376]; Catalan Agency for Management of University and Research Grants (AGAUR-Generalitat de Catalunya) [BP-A 00220] FX We acknowledge the support from the NSF (Nanosystems Engineering Research Center for Translational Applications of Nanoscale Multiferroic Systems, Cooperative Agreement Award EEC-1160504). We acknowledge partial support from the US Department of Energy (J.H.C., S.S. and R.R.) as well as the SRC-FAME programme through UCLA (C.R.-S.). T.J. acknowledges support from the EU European Research Council (ERC) advanced grant no. 268066, from the Ministry of Education of the Czech Republic grant no. LM2011026, from the Grant Agency of the Czech Republic grant no. 14-37427G and from the Academy of Sciences of the Czech Republic Praemium Academiae. X.M. acknowledges the Grant Agency of the Czech Republic No. P204/11/P339. A.B.S. acknowledges the financial support from GACR P204/10/0330. Financial support by the Spanish Government (Projects MAT2011-29269-C03, CSD2007-00041) and Generalitat de Catalunya (2009 SGR 00376) is acknowledged. I.F. acknowledges Beatriu de Pinos postdoctoral scholarship (2011 BP-A 00220) from the Catalan Agency for Management of University and Research Grants (AGAUR-Generalitat de Catalunya). NR 39 TC 27 Z9 27 U1 16 U2 134 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2014 VL 5 AR 4671 DI 10.1038/ncomms5671 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AQ5HH UT WOS:000342837900001 PM 25204755 ER PT J AU He, AB Gu, F Hu, Y Ma, Q Ye, LY Akiyama, JA Visel, A Pennacchio, LA Pu, WT AF He, Aibin Gu, Fei Hu, Yong Ma, Qing Ye, Lillian Yi Akiyama, Jennifer A. Visel, Axel Pennacchio, Len A. Pu, William T. TI Dynamic GATA4 enhancers shape the chromatin landscape central to heart development and disease SO NATURE COMMUNICATIONS LA English DT Article ID TRANSCRIPTION FACTORS; VENTRAL MORPHOGENESIS; CARDIAC-HYPERTROPHY; TRI-METHYLATION; MOTIF DISCOVERY; TUBE FORMATION; HUMAN GENOME; MOUSE HEART; SEQ; EXPRESSION AB How stage-specific enhancer dynamics modulate gene expression patterns essential for organ development, homeostasis and disease is not well understood. Here, we addressed this question by mapping chromatin occupancy of GATA4-a master cardiac transcription factor-in heart development and disease. We find that GATA4 binds and participates in establishing active chromatin regions by stimulating H3K27ac deposition, which facilitates GATA4-driven gene expression. GATA4 chromatin occupancy changes markedly between fetal and adult heart, with a limited binding sites overlap. Cardiac stress restored GATA4 occupancy to a subset of fetal sites, but many stress-associated GATA4 binding sites localized to loci not occupied by GATA4 during normal heart development. Collectively, our data show that dynamic, context-specific transcription factors occupancy underlies stage-specific events in development, homeostasis and disease. C1 [He, Aibin; Gu, Fei; Hu, Yong; Ma, Qing; Ye, Lillian Yi; Pu, William T.] Boston Childrens Hosp, Dept Cardiol, Boston, MA 02115 USA. [He, Aibin] Peking Univ, Peking Tsinghua Ctr Life Sci, Inst Mol Med, Beijing 100871, Peoples R China. [Akiyama, Jennifer A.; Visel, Axel; Pennacchio, Len A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. [Visel, Axel; Pennacchio, Len A.] US Dept Energy Joint Genome Inst, Walnut Creek, CA 94598 USA. [Visel, Axel] Univ Calif, Sch Nat Sci, Merced, CA 95343 USA. [Pu, William T.] Harvard Univ, Harvard Stem Cell Inst, Cambridge, MA 02138 USA. RP He, AB (reprint author), Boston Childrens Hosp, Dept Cardiol, 300 Longwood Ave, Boston, MA 02115 USA. EM ahe@pku.edu.cn; wpu@enders.tch.harvard.edu RI Visel, Axel/A-9398-2009 OI Visel, Axel/0000-0002-4130-7784 FU Cardiovascular Development Consortium [U01HL098166, HL095712]; American Heart Association; Scientist Development Grant from American Heart Association [13SDG14320001]; National Human Genome Research Institute [HG003988, U54HG006997]; Department of Energy [DE-AC02-05CH11231] FX W. T. P. was supported by funding from the Cardiovascular Development Consortium (U01HL098166) and HL095712, by an Established Investigator Award from the American Heart Association, and by charitable donations from Karen Carpenter, Edward Marram and Gail Federici Smith. A. H. was supported by the Scientist Development Grant from American Heart Association (13SDG14320001). L. A. P. and A. V. were supported by grants HG003988 and U54HG006997 funded by National Human Genome Research Institute. The transient transgenic assays were conducted at the E.O. Lawrence Berkeley National Laboratory and performed under Department of Energy Contract DE-AC02-05CH11231, University of California. NR 52 TC 19 Z9 19 U1 1 U2 8 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2014 VL 5 AR 4907 DI 10.1038/ncomms5907 PG 14 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AQ7HT UT WOS:000342984100003 PM 25249388 ER PT J AU Kim, BM Son, SW Min, SK Jeong, JH Kim, SJ Zhang, XD Shim, T Yoon, JH AF Kim, Baek-Min Son, Seok-Woo Min, Seung-Ki Jeong, Jee-Hoon Kim, Seong-Joong Zhang, Xiangdong Shim, Taehyoun Yoon, Jin-Ho TI Weakening of the stratospheric polar vortex by Arctic sea-ice loss SO NATURE COMMUNICATIONS LA English DT Article ID ATMOSPHERIC RESPONSE; SUDDEN WARMINGS; WEATHER REGIMES; CLIMATE MODEL; EARTH SYSTEM; WINTER; VARIABILITY; TROPOSPHERE; TEMPERATURE; PROPAGATION AB Successive cold winters of severely low temperatures in recent years have had critical social and economic impacts on the mid-latitude continents in the Northern Hemisphere. Although these cold winters are thought to be partly driven by dramatic losses of Arctic sea-ice, the mechanism that links sea-ice loss to cold winters remains a subject of debate. Here, by conducting observational analyses and model experiments, we show how Arctic sea-ice loss and cold winters in extra-polar regions are dynamically connected through the polar stratosphere. We find that decreased sea-ice cover during early winter months (November-December), especially over the Barents-Kara seas, enhances the upward propagation of planetary-scale waves with wavenumbers of 1 and 2, subsequently weakening the stratospheric polar vortex in mid-winter (January-February). The weakened polar vortex preferentially induces a negative phase of Arctic Oscillation at the surface, resulting in low temperatures in mid-latitudes. C1 [Kim, Baek-Min; Kim, Seong-Joong] Korea Polar Res Inst, Div Polar Climate Change Res, Inchon 406840, South Korea. [Son, Seok-Woo] Seoul Natl Univ, Sch Earth & Environm Sci, Seoul 151742, South Korea. [Min, Seung-Ki] Pohang Univ Sci & Technol, Sch Environm Sci & Engn, Pohang 790784, South Korea. [Jeong, Jee-Hoon; Shim, Taehyoun] Chonnam Natl Univ, Dept Oceanog, Kwangju 500757, South Korea. [Zhang, Xiangdong] Univ Alaska, Int Arctic Res Ctr, Fairbanks, AK 99775 USA. [Zhang, Xiangdong] Univ Alaska, Dept Atmospher Sci, Fairbanks, AK 99775 USA. [Yoon, Jin-Ho] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Kim, SJ (reprint author), Korea Polar Res Inst, Div Polar Climate Change Res, Inchon 406840, South Korea. EM seongjkim@kopri.re.kr RI Zhang, Xiangdong/A-9711-2009; YOON, JIN-HO/A-1672-2009; Kim, Baek-Min/A-4634-2015; Son, Seok-Woo /A-8797-2013; Jeong, Jee-Hoon/A-4286-2010; Min, Seung-Ki/B-1431-2010 OI Zhang, Xiangdong/0000-0001-5893-2888; YOON, JIN-HO/0000-0002-4939-8078; Jeong, Jee-Hoon/0000-0002-3358-3949; FU Korea Polar Research Institute [PE14010, PN14020, CATER 2012-3061]; Korea Polar Research Institute Polar Academic Program; US National Science Foundation Grant [ARC 1107509]; US Department of Energy Office of Science as part of the Earth System Modeling program; Department of Energy by the Battelle Memorial Institute [DEAC05-76RLO1830]; National Science Foundation; US Department of Energy Office of Science FX We thank S. Cocke and A. Marshall for their insightful comments and suggestions. O. Jung is acknowledged for computing assistance and S.-M. Hong for editorial help. This work was co-funded by two Korea Polar Research Institute projects (PE14010, PN14020 under the CATER 2012-3061 grant). S.-K.M. is supported by the Korea Polar Research Institute Polar Academic Program. X.Z. is supported by US National Science Foundation Grant # ARC 1107509. J.-H.Y. is supported by the US Department of Energy Office of Science as part of the Earth System Modeling program. PNNL is operated for the Department of Energy by the Battelle Memorial Institute under Contract DEAC05-76RLO1830. The CESM project is supported by the National Science Foundation and US Department of Energy Office of Science. NR 49 TC 70 Z9 72 U1 7 U2 43 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2014 VL 5 AR 4646 DI 10.1038/ncomms5646 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AQ4NM UT WOS:000342775000001 PM 25181390 ER PT J AU Li, JD Cao, YX Xia, CJ Kou, BQ Xiao, XH Fezzaa, K Wang, YJ AF Li, Jindong Cao, Yixin Xia, Chengjie Kou, Binquan Xiao, Xianghui Fezzaa, Kamel Wang, Yujie TI Similarity of wet granular packing to gels SO NATURE COMMUNICATIONS LA English DT Article ID GLASS-TRANSITION; SUPERCOOLED LIQUIDS; FRUSTRATION; ORDER; RELAXATION; STABILITY; SPHERES; RANGE; PILE AB To date, there is still no general consensus on the fundamental principle that governs glass transition. Colloidal suspensions are ordinarily utilized as model systems to study the dynamical arrest mechanisms in glass or gels. Here, we tackle the problem using athermal granular particles. Slow dynamics and structural evolution of granular packing upon tapping are monitored by fast X-ray tomography. When the packing are wet and short-range attractive interactions exist, we find a large amount of locally favoured structures with fivefold symmetry, which bear great structural similarity to colloidal gels. In addition, these structures are almost absent in dry packing with similar packing fractions. The study leads strong support for the geometrical frustration mechanism for dynamic arrest in both thermal and athermal systems with attractive interactions. It also suggests nontrivial structural mechanism, if exists, for dynamic arrest in systems with purely repulsive interactions. C1 [Li, Jindong; Cao, Yixin; Xia, Chengjie; Kou, Binquan; Wang, Yujie] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China. [Xiao, Xianghui; Fezzaa, Kamel] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Wang, YJ (reprint author), Shanghai Jiao Tong Univ, Dept Phys & Astron, 800 Dong Chuan Rd, Shanghai 200240, Peoples R China. EM yujiewang@sjtu.edu.cn RI wang, yujie/C-2582-2015; Kou, Binquan/O-8302-2016 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Chinese National Science Foundation [11175121]; National Basic Research Program of China (973 Program) [2010CB834301] FX We thank Bob Leheny and Walter Kob for useful discussions. The use of the Advanced Photon Source is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Some of the preliminary experiments have been carried out at BL13W1 beamline of the Shanghai Synchrotron Radiation Facility. The work is supported by the Chinese National Science Foundation Nos. 11175121, National Basic Research Program of China (973 Program; 2010CB834301). NR 45 TC 4 Z9 4 U1 6 U2 28 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2014 VL 5 AR 5014 DI 10.1038/ncomms6014 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AQ7IK UT WOS:000342985900001 PM 25247441 ER PT J AU Lu, J Cheng, L Lau, KC Tyo, E Luo, XY Wen, JG Miller, D Assary, RS Wang, HH Redfern, P Wu, HM Park, JB Sun, YK Vajda, S Amine, K Curtiss, LA AF Lu, Jun Cheng, Lei Lau, Kah Chun Tyo, Eric Luo, Xiangyi Wen, Jianguo Miller, Dean Assary, Rajeev S. Wang, Hsien-Hau Redfern, Paul Wu, Huiming Park, Jin-Bum Sun, Yang-Kook Vajda, Stefan Amine, Khalil Curtiss, Larry A. TI Effect of the size-selective silver clusters on lithium peroxide morphology in lithium-oxygen batteries SO NATURE COMMUNICATIONS LA English DT Article ID NONAQUEOUS LI-O-2 BATTERIES; OXIDATION ELECTROCATALYSIS; AIR BATTERIES; REDUCTION; ELECTROLYTES; CATALYSTS; EPOXIDATION; MECHANISMS; STABILITY; EVOLUTION AB Lithium-oxygen batteries have the potential needed for long-range electric vehicles, but the charge and discharge chemistries are complex and not well understood. The active sites on cathode surfaces and their role in electrochemical reactions in aprotic lithium-oxygen cells are difficult to ascertain because the exact nature of the sites is unknown. Here we report the deposition of subnanometre silver clusters of exact size and number of atoms on passivated carbon to study the discharge process in lithium-oxygen cells. The results reveal dramatically different morphologies of the electrochemically grown lithium peroxide dependent on the size of the clusters. This dependence is found to be due to the influence of the cluster size on the formation mechanism, which also affects the charge process. The results of this study suggest that precise control of subnanometre surface structure on cathodes can be used as a means to improve the performance of lithium-oxygen cells. C1 [Lu, Jun; Luo, Xiangyi; Redfern, Paul; Wu, Huiming; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. [Cheng, Lei; Lau, Kah Chun; Tyo, Eric; Assary, Rajeev S.; Wang, Hsien-Hau; Vajda, Stefan; Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. [Wen, Jianguo; Miller, Dean] Argonne Natl Lab, Elect Microscopy Ctr, Lemont, IL 60439 USA. [Park, Jin-Bum; Sun, Yang-Kook] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea. [Vajda, Stefan; Curtiss, Larry A.] Argonne Natl Lab, Nanosci & Technol Div, Argonne, IL 60439 USA. [Vajda, Stefan] Yale Univ, Sch Engn, Dept Chem & Environm Engn, New Haven, CT 06520 USA. [Vajda, Stefan] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. RP Vajda, S (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Lemont, IL 60439 USA. EM vajda@anl.gov; amine@anl.gov; curtiss@anl.gov RI Lau, Kah Chun/A-9348-2013; Surendran Assary, Rajeev/E-6833-2012; Luo, Xiangyi/K-6058-2015 OI Lau, Kah Chun/0000-0002-4925-3397; Surendran Assary, Rajeev/0000-0002-9571-3307; Luo, Xiangyi/0000-0002-4817-1461 FU US Department of Energy (DOE) from the Vehicle Technologies Office [DE-AC02-06CH11357]; DOE, Office of Energy Efficiency and Renewable Energy (EERE); Division of Materials Science, Basic Energy Sciences, Department of Energy, Office of Science; DOE, Office of EERE Postdoctoral Research Award under the EERE Vehicles Technology Program; Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning grant - Ministry of Knowledge Economy of the Korean government [20124010203310]; National Research Foundation (NRF) of Korea grant - Korea government (MEST) [2009-0092780]; US DOE, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the US Department of Energy (DOE) under Contract DE-AC02-06CH11357 from the Vehicle Technologies Office, DOE, Office of Energy Efficiency and Renewable Energy (EERE) and Division of Materials Science, Basic Energy Sciences, Department of Energy, Office of Science. J.L. was supported by the DOE, Office of EERE Postdoctoral Research Award under the EERE Vehicles Technology Program administered by the Oak Ridge Institute for Science and Education for the DOE. We acknowledge the financial support from the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning grant funded by the Ministry of Knowledge Economy (No. 20124010203310) of the Korean government and by the National Research Foundation (NRF) of Korea grant funded by the Korea government (MEST) (No. 2009-0092780). We also acknowledge grants of computer time through INCITE awards for BlueGene/Q computer at Argonne National Laboratory and allocations on the CNM Carbon Cluster at Argonne National Laboratory, the ALCF Fusion Cluster at Argonne National Laboratory, and the EMSL Chinook Cluster at Pacific Northwest National Laboratory. Use of the Advanced Photon Source and the Electron Microscopy Center for Materials Research was supported by the US DOE, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. The authors would also like to thank Dr Jeffrey W. Elam of Energy systems division at Argonne National Laboratory for his help on preparing Al2O3-coated carbon via ALD method. NR 42 TC 54 Z9 54 U1 19 U2 169 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2014 VL 5 AR 4895 DI 10.1038/ncomms5895 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AQ7HP UT WOS:000342983700002 PM 25215517 ER PT J AU Ota, H Chen, K Lin, YJ Kiriya, D Shiraki, H Yu, ZB Ha, TJ Javey, A AF Ota, Hiroki Chen, Kevin Lin, Yongjing Kiriya, Daisuke Shiraki, Hiroshi Yu, Zhibin Ha, Tae-Jun Javey, Ali TI Highly deformable liquid-state heterojunction sensors SO NATURE COMMUNICATIONS LA English DT Article ID IONIC LIQUIDS; ELECTRONIC SKIN; ROOM-TEMPERATURE; DOUBLE-LAYER; CONDUCTORS; DISPLAY; DESIGN; CATION; ALLOY; WATER AB Mechanically deformable devices and sensors enable conformal coverage of electronic systems on curved and soft surfaces. Sensors utilizing liquids confined in soft templates as the sensing component present the ideal platform for such applications, as liquids are inherently more deformable than solids. However, to date, liquid-based devices have been limited to metal lines based on a single-liquid component given the difficulty in the fabrication of liquid-based junctions due to intermixing. Here, we demonstrate a robust platform for the fabrication of liquid-liquid 'heterojunction' devices, presenting an important advancement towards the realization of liquid-state electronic systems. The device architecture and fabrication scheme we present are generic for different sensing liquids, enabling demonstration of sensors responsive to different stimuli. As a proof of concept, we demonstrate temperature, humidity and oxygen sensors by using different ionic liquids, exhibiting high sensitivity with excellent mechanical deformability arising from the inherent property of the liquid phase. C1 [Ota, Hiroki; Chen, Kevin; Lin, Yongjing; Kiriya, Daisuke; Shiraki, Hiroshi; Yu, Zhibin; Ha, Tae-Jun; Javey, Ali] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Ota, Hiroki; Chen, Kevin; Lin, Yongjing; Kiriya, Daisuke; Shiraki, Hiroshi; Yu, Zhibin; Ha, Tae-Jun; Javey, Ali] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. [Ota, Hiroki; Chen, Kevin; Lin, Yongjing; Kiriya, Daisuke; Shiraki, Hiroshi; Yu, Zhibin; Ha, Tae-Jun; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Javey, A (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM ajavey@berkeley.edu RI Javey, Ali/B-4818-2013 FU NSF NASCENT Center; Japan Society for the Promotion of Science Fellows FX This work was supported by the NSF NASCENT Center. H.O. and D.K. acknowledge support from the Japan Society for the Promotion of Science Fellows. NR 36 TC 24 Z9 24 U1 10 U2 64 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2014 VL 5 AR 5032 DI 10.1038/ncomms6032 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AQ7VX UT WOS:000343028400003 PM 25262698 ER PT J AU Sharma, V Wang, CC Lorenzini, RG Ma, R Zhu, Q Sinkovits, DW Pilania, G Oganov, AR Kumar, S Sotzing, GA Boggs, SA Ramprasad, R AF Sharma, Vinit Wang, Chenchen Lorenzini, Robert G. Ma, Rui Zhu, Qiang Sinkovits, Daniel W. Pilania, Ghanshyam Oganov, Artem R. Kumar, Sanat Sotzing, Gregory A. Boggs, Steven A. Ramprasad, Rampi TI Rational design of all organic polymer dielectrics SO NATURE COMMUNICATIONS LA English DT Article ID FUNCTIONAL PERTURBATION-THEORY; ELECTRICAL ENERGY DENSITY; WAVE BASIS-SET; STRUCTURE PREDICTION; FERROELECTRIC POLYMERS; PERMITTIVITY; POLYETHYLENE; METHODOLOGY; TRANSISTORS; INSULATION AB To date, trial and error strategies guided by intuition have dominated the identification of materials suitable for a specific application. We are entering a data-rich, modelling-driven era where such Edisonian approaches are gradually being replaced by rational strategies, which couple predictions from advanced computational screening with targeted experimental synthesis and validation. Here, consistent with this emerging paradigm, we propose a strategy of hierarchical modelling with successive downselection stages to accelerate the identification of polymer dielectrics that have the potential to surpass 'standard' materials for a given application. Successful synthesis and testing of some of the most promising identified polymers and the measured attractive dielectric properties (which are in quantitative agreement with predictions) strongly supports the proposed approach to material selection. C1 [Sharma, Vinit; Wang, Chenchen; Ramprasad, Rampi] Univ Connecticut, Dept Mat Sci & Engn, Storrs, CT 06269 USA. [Sharma, Vinit; Wang, Chenchen; Lorenzini, Robert G.; Ma, Rui; Sotzing, Gregory A.; Boggs, Steven A.; Ramprasad, Rampi] Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA. [Lorenzini, Robert G.; Ma, Rui; Sotzing, Gregory A.] Univ Connecticut, Inst Mat Sci, Dept Chem, Storrs, CT 06226 USA. [Zhu, Qiang; Oganov, Artem R.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Zhu, Qiang; Oganov, Artem R.] SUNY Stony Brook, Ctr Mat Design, Stony Brook, NY 11794 USA. [Sinkovits, Daniel W.; Kumar, Sanat] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA. [Pilania, Ghanshyam] Los Alamos Natl Lab, Mat Sci & Technol Div MST 8, Los Alamos, NM 87545 USA. [Oganov, Artem R.] Moscow Inst Phys & Technol, Moscow 141700, Russia. [Oganov, Artem R.] Northwestern Polytech Univ, Xian 710072, Peoples R China. RP Ramprasad, R (reprint author), Univ Connecticut, Dept Mat Sci & Engn, Storrs, CT 06269 USA. EM rampi@ims.uconn.edu RI Zhu, Qiang/H-2268-2014; Oganov, Artem/A-1213-2008; sharma, Vinit/K-3407-2015; Ma, Shilei/A-2421-2016; Pilania, Ghanshyam/K-4468-2013; Ma, Rui/D-3833-2017 OI Oganov, Artem/0000-0001-7082-9728; Pilania, Ghanshyam/0000-0003-4460-1572; FU Multidisciplinary University Research Initiative (MURI) grant from the Office of Naval Research (ONR) [N00014-10-1-0944]; National Science Foundation [EAR-1114313, DMR-1231586]; DARPA [W31P4Q1310005, W31P4Q1210008]; Government of the Russian Federation [14.A12.31.0003]; CRDF Global [UKE2-7034-KV-11] FX This paper is based on the work supported by a Multidisciplinary University Research Initiative (MURI) grant (N00014-10-1-0944) from the Office of Naval Research (ONR). Computational support was provided by the Extreme Science and Engineering Discovery Environment (XSEDE) and the National Energy Research Scientific Computing Center (NERSC). A.R.O. thanks the National Science Foundation (grants EAR-1114313, DMR-1231586), DARPA (Grants No. W31P4Q1310005, and No. W31P4Q1210008), grant of the Government of the Russian Federation (No. 14.A12.31.0003) and CRDF Global (UKE2-7034-KV-11). Ms JoAnne Ronzello and Dr Yang Cao are gratefully acknowledged for assistance with electrical characterization of the polymer samples. Dr Kenny Lipkowitz, Dr Paul Armistead and Ms Patricia Irwin are acknowledged for support, discussions and general guidance. NR 56 TC 51 Z9 51 U1 10 U2 83 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2014 VL 5 AR 4845 DI 10.1038/ncomms5845 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AQ5IO UT WOS:000342841500001 PM 25229753 ER PT J AU Siebecker, M Li, W Khalid, S Sparks, D AF Siebecker, Matthew Li, Wei Khalid, Syed Sparks, Donald TI Real-time QEXAFS spectroscopy measures rapid precipitate formation at the mineral-water interface SO NATURE COMMUNICATIONS LA English DT Article ID X-RAY-ABSORPTION; MULTIPLE-SCATTERING; AQUEOUS-SOLUTION; GAMMA-ALUMINA; EXAFS; SORPTION; PH; IMPREGNATION; DISSOLUTION; ENVIRONMENT AB Reactions at the mineral-water interface are central to numerous geochemical processes and have consequences at local, regional and global scales. They are also important in materials science research. Kinetics greatly influences mineral-water interface reactions; however, there are few kinetic data in real-time and at the molecular scale. Here we report real-time data illustrating the rapid formation of nickel aluminium-layered double hydroxide precipitates at the mineral-water interface in a flow environment in as little as 31-40 min. Layered double hydroxides have a variety of applications in environmental remediation and materials science. The real-time data shown here enhance our fundamental understanding of the kinetics of mineral-water interface processes, such as adsorption, dissolution and precipitation, by illustrating their rapid and simultaneous occurrence in a dynamic environment. Both precipitation and adsorption can occur on the same rapid timescale. C1 [Siebecker, Matthew; Li, Wei; Sparks, Donald] Univ Delaware, Dept Plant & Soil Sci, Newark, DE 19711 USA. [Khalid, Syed] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. RP Siebecker, M (reprint author), Univ Delaware, Sch Marine Sci & Policy, Cannon Lab, 700 Pilottown Rd, Lewes, DE 19958 USA. EM mgs@udel.edu; dlsparks@udel.edu RI Li, Wei/D-6289-2011 OI Li, Wei/0000-0002-0789-0320 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; University of Delaware; National Science Foundation [EPS-0814251] FX We would like to thank Brookhaven National Laboratory and the National Synchrotron Light Source staff, particularly Drs John Hanson, Sung-Leung So and Nebojsa Marinkovic for their assistance. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-98CH10886. The senior author is grateful for University of Delaware graduate and dissertation fellowships and for the Donald L. and Joy G. Sparks graduate fellowship. This research was supported by the National Science Foundation Experimental Program to Stimulate Competitive Research grant number EPS-0814251. NR 42 TC 6 Z9 6 U1 5 U2 46 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2014 VL 5 AR 5003 DI 10.1038/ncomms6003 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AQ7II UT WOS:000342985700007 PM 25233849 ER PT J AU Wang, C Wang, XB Liu, DW Wu, HH Lu, XT Fang, YT Cheng, WX Luo, WT Jiang, P Shi, JS Yin, HQ Zhou, JZ Han, XG Bai, E AF Wang, Chao Wang, Xiaobo Liu, Dongwei Wu, Honghui Lu, Xiaotao Fang, Yunting Cheng, Weixin Luo, Wentao Jiang, Ping Shi, Jason Yin, Huaqun Zhou, Jizhong Han, Xingguo Bai, Edith TI Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands SO NATURE COMMUNICATIONS LA English DT Article ID SOIL MICROBIAL BIOMASS; NORTHERN CHIHUAHUAN DESERT; TERRESTRIAL ECOSYSTEMS; PRECIPITATION GRADIENT; ENVIRONMENTAL CONTROLS; ISOTOPE COMPOSITION; EXTRACTION METHOD; GLOBAL PATTERNS; PLANT NITROGEN; FOREST SOILS AB Higher aridity and more extreme rainfall events in drylands are predicted due to climate change. Yet, it is unclear how changing precipitation regimes may affect nitrogen (N) cycling, especially in areas with extremely high aridity. Here we investigate soil N isotopic values (delta N-15) along a 3,200 km aridity gradient and reveal a hump-shaped relationship between soil delta N-15 and aridity index (AI) with a threshold at AI = 0.32. Variations of foliar delta N-15, the abundance of nitrification and denitrification genes, and metabolic quotient along the gradient provide further evidence for the existence of this threshold. Data support the hypothesis that the increase of gaseous N loss is higher than the increase of net plant N accumulation with increasing AI below AI = 0.32, while the opposite is favoured above this threshold. Our results highlight the importance of N-cycling microbes in extremely dry areas and suggest different controlling factors of N-cycling on either side of the threshold. C1 [Wang, Chao; Wang, Xiaobo; Liu, Dongwei; Wu, Honghui; Lu, Xiaotao; Fang, Yunting; Cheng, Weixin; Luo, Wentao; Jiang, Ping; Han, Xingguo; Bai, Edith] Chinese Acad Sci, Inst Appl Ecol, State Key Lab Forest & Soil Ecol, Shenyang 110164, Peoples R China. [Wang, Chao; Wang, Xiaobo; Liu, Dongwei; Luo, Wentao] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China. [Wang, Xiaobo; Shi, Jason; Yin, Huaqun; Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Cheng, Weixin] Univ Calif Santa Cruz, Dept Environm Studies, Santa Cruz, CA 95064 USA. [Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. RP Han, XG (reprint author), Chinese Acad Sci, Inst Appl Ecol, State Key Lab Forest & Soil Ecol, Shenyang 110164, Peoples R China. EM hanxg@iae.ac.cn; baie@iae.ac.cn RI Fang, Yunting/G-4456-2012; Han, Xingguo/K-7552-2016; Lu (u), Xiao-Tao/B-3905-2008; Cheng, Weixin/F-4968-2011 OI Fang, Yunting/0000-0001-7531-546X; Han, Xingguo/0000-0002-1836-975X; Lu (u), Xiao-Tao/0000-0001-5571-1895; Cheng, Weixin/0000-0003-2964-2376 FU Major State Basic Research Development Program of China (973 Program) [2014CB954400, 2011CB403202]; NSFC [31100326]; Strategic Priority Research Program of the Chinese Academy of Sciences [XDB15010401, XDB15010403]; Office of the Vice President for Research at the University of Oklahoma; Collaborative Innovation Center for Regional Environmental Quality FX This work was supported by Major State Basic Research Development Program of China (973 Program; 2014CB954400 and 2011CB403202), NSFC (31100326), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB15010401 and XDB15010403), and by the Office of the Vice President for Research at the University of Oklahoma and by the Collaborative Innovation Center for Regional Environmental Quality. We gratefully acknowledge Quansheng Chen, Haiyang Zhang, Xiaoguang Wang, Jianfeng Hou, Hui Wang, Bo Peng and Ying Tu for their assistance in data analyses and laboratory work and Fu, Shenglei for comments on the earlier version. We also thank all members of the Shenyang Sampling Campaign Team from the Institute of Applied Ecology, Chinese Academy of Sciences for their assistance during field sampling. NR 53 TC 26 Z9 28 U1 39 U2 217 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2014 VL 5 AR 4799 DI 10.1038/ncomms5799 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AQ6MZ UT WOS:000342928700003 PM 25185641 ER PT J AU Wang, Z Hryc, CF Bammes, B Afonine, PV Jakana, J Chen, DH Liu, XG Baker, ML Kao, C Ludtke, SJ Schmid, MF Adams, PD Chiu, W AF Wang, Zhao Hryc, Corey F. Bammes, Benjamin Afonine, Pavel V. Jakana, Joanita Chen, Dong-Hua Liu, Xiangan Baker, Matthew L. Kao, Cheng Ludtke, Steven J. Schmid, Michael F. Adams, Paul D. Chiu, Wah TI An atomic model of brome mosaic virus using direct electron detection and real-space optimization SO NATURE COMMUNICATIONS LA English DT Article ID PARTICLE CRYOELECTRON MICROSCOPY; DIRECT-DETECTION DEVICE; BEAM-INDUCED MOTION; CRYO-EM STRUCTURE; CRYSTALLOGRAPHIC STRUCTURE; RESOLUTION STRUCTURE; RADIATION-DAMAGE; PROTEIN MODELS; DENSITY MAPS; CRYOMICROSCOPY AB Advances in electron cryo-microscopy have enabled structure determination of macromolecules at near-atomic resolution. However, structure determination, even using de novo methods, remains susceptible to model bias and overfitting. Here we describe a complete workflow for data acquisition, image processing, all-atom modelling and validation of brome mosaic virus, an RNA virus. Data were collected with a direct electron detector in integrating mode and an exposure beyond the traditional radiation damage limit. The final density map has a resolution of 3.8 angstrom as assessed by two independent data sets and maps. We used the map to derive an all-atom model with a newly implemented real-space optimization protocol. The validity of the model was verified by its match with the density map and a previous model from X-ray crystallography, as well as the internal consistency of models from independent maps. This study demonstrates a practical approach to obtain a rigorously validated atomic resolution electron cryo-microscopy structure. C1 [Wang, Zhao; Hryc, Corey F.; Jakana, Joanita; Chen, Dong-Hua; Liu, Xiangan; Baker, Matthew L.; Ludtke, Steven J.; Schmid, Michael F.; Chiu, Wah] Baylor Coll Med, Verna & Marrs McLean Dept Biochem & Mol Biol, Natl Ctr Macromol Imaging, Houston, TX 77030 USA. [Hryc, Corey F.; Ludtke, Steven J.; Schmid, Michael F.; Chiu, Wah] Baylor Coll Med, Grad Program Struct & Computat Biol & Mol Biophys, Houston, TX 77030 USA. [Bammes, Benjamin] Direct Electron LP, San Diego, CA 92128 USA. [Afonine, Pavel V.; Adams, Paul D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Kao, Cheng] Indiana Univ, Dept Mol & Cellular Biochem, Bloomington, IN 47405 USA. [Adams, Paul D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Chiu, W (reprint author), Baylor Coll Med, Verna & Marrs McLean Dept Biochem & Mol Biol, Natl Ctr Macromol Imaging, Houston, TX 77030 USA. EM wah@bcm.edu RI wang, zhao/E-1996-2016; Adams, Paul/A-1977-2013; OI Adams, Paul/0000-0001-9333-8219; Hryc, Corey/0000-0002-7277-5249 FU National Institutes of Health [P41GM103832, R01GM079429, R44GM103417, R01AI090280, R01GM063210]; US Department of Energy [DE-AC02-05CH11231]; NIH pre-doctoral training grant through the Gulf Coast Consortia [T15LM007093]; Robert Welch Foundation [Q1242] FX This work was supported by the National Institutes of Health through grants (P41GM103832 and R01GM079429 to W.C.; R44GM103417 to B.B.; R01AI090280 to C.K. and R01GM063210 to P.D.A.). P.D.A. acknowledges support from the US Department of Energy under Contract number DE-AC02-05CH11231. C.F.H. was supported by an NIH pre-doctoral training grant from T15LM007093 through the Gulf Coast Consortia. W.C. thanks the Robert Welch Foundation (Q1242) for support. NR 45 TC 33 Z9 34 U1 0 U2 17 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2014 VL 5 AR 5808 DI 10.1038/ncomms5808 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AQ6MZ UT WOS:000342928700012 PM 25185801 ER PT J AU Yamada, M Yoo, J Jara-Almonte, J Ji, HT Kulsrud, RM Myers, CE AF Yamada, Masaaki Yoo, Jongsoo Jara-Almonte, Jonathan Ji, Hantao Kulsrud, Russell M. Myers, Clayton E. TI Conversion of magnetic energy in the magnetic reconnection layer of a laboratory plasma SO NATURE COMMUNICATIONS LA English DT Article ID ACCELERATION; REGION AB Magnetic reconnection, in which magnetic field lines break and reconnect to change their topology, occurs throughout the universe. The essential feature of reconnection is that it energizes plasma particles by converting magnetic energy. Despite the long history of reconnection research, how this energy conversion occurs remains a major unresolved problem in plasma physics. Here we report that the energy conversion in a laboratory reconnection layer occurs in a much larger region than previously considered. The mechanisms for energizing plasma particles in the reconnection layer are identified, and a quantitative inventory of the converted energy is presented for the first time in a well-defined reconnection layer; 50% of the magnetic energy is converted to particle energy, 2/3 of which transferred to ions and 1/3 to electrons. Our results are compared with simulations and space measurements, for a key step towards resolving one of the most important problems in plasma physics. C1 [Yamada, Masaaki; Yoo, Jongsoo; Jara-Almonte, Jonathan; Ji, Hantao; Kulsrud, Russell M.; Myers, Clayton E.] Princeton Univ, Princeton Plasma Phys Lab, Ctr Magnet Self Org, Princeton, NJ 08544 USA. RP Yamada, M (reprint author), Princeton Univ, Princeton Plasma Phys Lab, Ctr Magnet Self Org, Princeton, NJ 08544 USA. EM myamada@pppl.gov OI Yoo, Jongsoo/0000-0003-3881-1995; Myers, Clayton/0000-0003-4539-8406 FU Department of Energy; NSF-funded Center for Magnetic Self-Organization FX We appreciate many inputs from W. Daughton for our VPIC simulation and useful discussions with J. Eastwood on space observations. This work is supported by the Department of Energy as well as the NSF-funded Center for Magnetic Self-Organization. NR 30 TC 23 Z9 23 U1 2 U2 18 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2014 VL 5 AR 4774 DI 10.1038/ncomms5774 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AQ5IM UT WOS:000342841300001 PM 25205135 ER PT J AU Lu, LY Xu, T Chen, W Landry, ES Yui, LP AF Lu, Luyao Xu, Tao Chen, Wei Landry, Erik S. Yui, Luping TI Ternary blend polymer solar cells with enhanced power conversion efficiency SO NATURE PHOTONICS LA English DT Article ID CONJUGATED POLYMERS; SPECTRAL RESPONSE; BANDGAP POLYMER; PERFORMANCE; MORPHOLOGY; RECOMBINATION; SENSITIZATION; DEVICES; DESIGN AB The use ternary organic components is currently being pursued to enhance the power conversion efficiency of bulk heterojunction solar cells by expanding the spectral range of light absorption. Here, we report a ternary blend polymer solar cell containing two donor polymers, poly-3-oxothieno[3,4-d]isothiazole-1,1-dioxide/benzodithiophene (PID2), polythieno[3,4-b]-thiophene/benzodithiophene (PTB7) and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) as an acceptor. The resulting ternary solar cell delivered a power conversion efficiency of 822% with a short-circuit current density J(sc) of 16.8 mA cm(-2), an open-circuit voltage V-oc of 0.72 V and a fill factor of 68.7%. In addition to extended light absorption, we show that J(sc) is improved through improved charge separation and transport and decreased charge recombination, resulting from the cascade energy levels and optimized device morphology of the ternary system. This work indicates that ternary blend solar cells have the potential to surpass high-performance binary polymer solar cells after further device engineering and optimization. C1 [Lu, Luyao; Xu, Tao; Yui, Luping] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Lu, Luyao; Xu, Tao; Yui, Luping] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Chen, Wei; Landry, Erik S.] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. [Chen, Wei; Landry, Erik S.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. RP Yui, LP (reprint author), Univ Chicago, Dept Chem, 929 E 57th St, Chicago, IL 60637 USA. EM lupingyu@uchicago.edu RI Chen, Wei/G-6055-2011; Lu, Luyao/J-6553-2015 OI Chen, Wei/0000-0001-8906-4278; FU US National Science Foundation (NSF) [NSF CHE-1229089, DMR-1263006]; Air Force Office of Scientific Research; NSF MRSEC programme at the University of Chicago; DOE via the ANSER Center, an Energy Frontier Research Center - US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001059]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [KC020301, DE-AC02-06CH11357]; Office of Science of the US Department of Energy [DE-AC02-05CH11231]; Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-05CH11231] FX This work is supported by the US National Science Foundation (NSF, grant no. NSF CHE-1229089, DMR-1263006), the Air Force Office of Scientific Research and NSF MRSEC programme at the University of Chicago, the DOE via the ANSER Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (award no. DE-SC0001059). W.C. acknowledges financial support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences (award no. KC020301). The authors thank J. Strzalka and C. Wang for assistance with GISAXS and RSoXS measurements. Use of the Advanced Photon Source (APS) at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (contract no. DE-AC02-06CH11357). The ALS at Lawrence Berkeley National Laboratory is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (contract no. DE-AC02-05CH11231). NR 46 TC 187 Z9 187 U1 17 U2 166 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 EI 1749-4893 J9 NAT PHOTONICS JI Nat. Photonics PD SEP PY 2014 VL 8 IS 9 BP 716 EP 722 DI 10.1038/NPHOTON.2014.172 PG 7 WC Optics; Physics, Applied SC Optics; Physics GA AQ2FB UT WOS:000342600100015 ER PT J AU Chen, HY Babst, BA Nyamdari, B Hu, H Sykes, R Davis, MF Harding, SA Tsai, CJ AF Chen, Han-Yi Babst, Benjamin A. Nyamdari, Batbayar Hu, Hao Sykes, Robert Davis, Mark F. Harding, Scott A. Tsai, Chung-Jui TI Ectopic Expression of a Loblolly Pine Class II 4-Coumarate:CoA Ligase Alters Soluble Phenylpropanoid Metabolism but not Lignin Biosynthesis in Populus SO PLANT AND CELL PHYSIOLOGY LA English DT Article DE Cinnamic acid; Defense; Phenylpropanoid; Pinus; Populus ID PHENYLALANINE AMMONIA-LYASE; COENZYME-A LIGASES; ARABIDOPSIS-THALIANA; GENE FAMILY; 4-COUMARATE-COENZYME-A LIGASE; STILBENE SYNTHASE; DIFFERENTIAL EXPRESSION; FLAVONOID BIOSYNTHESIS; PHYLOGENETIC ANALYSIS; DIVERGENT MEMBERS AB 4-Coumarate: CoA ligase (4CL) catalyzes the formation of hydroxycinnamoyl-CoA esters for phenylpropanoid biosynthesis. Phylogenetically distinct Class I and Class II 4CL isoforms occur in angiosperms, and support lignin and non-lignin phenylpropanoid biosynthesis, respectively. In contrast, the few experimentally characterized gymnosperm 4CLs are associated with lignin biosynthesis and belong to the conifer-specific Class III. Here we report a new Pinus taeda isoform Pinta4CL3 that is phylogenetically more closely related to Class II angiosperm 4CLs than to Class III Pinta4CL1. Like angiosperm Class II 4CLs, Pinta4CL3 transcript levels were detected in foliar and root tissues but were absent in xylem, and recombinant Pinta4CL3 exhibited a substrate preference for 4-coumaric acid. Constitutive expression of Pinta4CL3 in transgenic Populus led to significant increases of hydroxycinnamoyl-quinate esters at the expense of hydroxycinnamoyl-glucose esters in green tissues. In particular, large increases of cinnamoyl-quinate in transgenic leaves suggested in vivo utilization of cinnamic acid by Pinta4CL3. Lignin was unaffected in transgenic Populus, consistent with Pinta4CL3 involvement in biosynthesis of non-structural phenylpropanoids. We discuss the in vivo cinnamic acid utilization activity of Pinta4CL3 and its adaptive significance in conifer defense. Together with phylogenetic inference, our data support an ancient origin of Class II 4CLs that pre-dates the angiosperm-gymnosperm split. C1 [Chen, Han-Yi; Babst, Benjamin A.; Harding, Scott A.; Tsai, Chung-Jui] Michigan Technol Univ, Sch Forest Resources & Environm Sci, Houghton, MI 49931 USA. [Chen, Han-Yi; Babst, Benjamin A.; Nyamdari, Batbayar; Hu, Hao; Harding, Scott A.; Tsai, Chung-Jui] Univ Georgia, Warnell Sch Forestry & Nat Resources, Athens, GA 30602 USA. [Nyamdari, Batbayar; Hu, Hao; Harding, Scott A.; Tsai, Chung-Jui] Univ Georgia, Dept Genet, Athens, GA 30602 USA. [Sykes, Robert; Davis, Mark F.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Tsai, CJ (reprint author), Michigan Technol Univ, Sch Forest Resources & Environm Sci, Houghton, MI 49931 USA. EM cjtsai@uga.edu RI Tsai, CJ/C-2450-2009; OI Tsai, CJ/0000-0002-9282-7704; Babst, Benjamin/0000-0001-5657-0633; davis, mark/0000-0003-4541-9852; Hu, Hao/0000-0003-4986-2034 FU United States Department of Energy via Consortium for Plant Biotechnology Research, Inc. [DEFG3602GO12026] FX This work was supported by the United States Department of Energy via Consortium for Plant Biotechnology Research, Inc. (agreement number DEFG3602GO12026) with matching support from the ArborGen. NR 69 TC 4 Z9 4 U1 4 U2 26 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0032-0781 EI 1471-9053 J9 PLANT CELL PHYSIOL JI Plant Cell Physiol. PD SEP PY 2014 VL 55 IS 9 BP 1669 EP 1678 DI 10.1093/pcp/pcu098 PG 10 WC Plant Sciences; Cell Biology SC Plant Sciences; Cell Biology GA AQ7FP UT WOS:000342978300014 PM 25016610 ER PT J AU Ghosh, A Nilmeier, J Weaver, D Adams, PD Keasling, JD Mukhopadhyay, A Petzold, CJ Martin, HG AF Ghosh, Amit Nilmeier, Jerome Weaver, Daniel Adams, Paul D. Keasling, Jay D. Mukhopadhyay, Aindrila Petzold, Christopher J. Martin, Hector Garcia TI A Peptide-Based Method for C-13 Metabolic Flux Analysis in Microbial Communities SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID BIOLOGICAL PHOSPHORUS REMOVAL; ESCHERICHIA-COLI; FUNCTIONAL-ANALYSIS; AMINO-ACIDS; SCALE; MASS; PATHWAY; DISTRIBUTIONS; PERFORMANCE; PROTEOMICS AB The study of intracellular metabolic fluxes and inter-species metabolite exchange for microbial communities is of crucial importance to understand and predict their behaviour. The most authoritative method of measuring intracellular fluxes, 13 C Metabolic Flux Analysis (C-13 MFA), uses the labeling pattern obtained from metabolites (typically amino acids) during 13 C labeling experiments to derive intracellular fluxes. However, these metabolite labeling patterns cannot easily be obtained for each of the members of the community. Here we propose a new type of C-13 MFA that infers fluxes based on peptide labeling, instead of amino acid labeling. The advantage of this method resides in the fact that the peptide sequence can be used to identify the microbial species it originates from and, simultaneously, the peptide labeling can be used to infer intracellular metabolic fluxes. Peptide identity and labeling patterns can be obtained in a high-throughput manner from modern proteomics techniques. We show that, using this method, it is theoretically possible to recover intracellular metabolic fluxes in the same way as through the standard amino acid based C-13 MFA, and quantify the amount of information lost as a consequence of using peptides instead of amino acids. We show that by using a relatively small number of peptides we can counter this information loss. We computationally tested this method with a well-characterized simple microbial community consisting of two species. C1 [Ghosh, Amit; Nilmeier, Jerome; Weaver, Daniel; Adams, Paul D.; Keasling, Jay D.; Mukhopadhyay, Aindrila; Petzold, Christopher J.; Martin, Hector Garcia] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Ghosh, Amit; Nilmeier, Jerome; Weaver, Daniel; Adams, Paul D.; Keasling, Jay D.; Mukhopadhyay, Aindrila; Petzold, Christopher J.; Martin, Hector Garcia] Joint BioEnergy Inst, Emeryville, CA USA. [Adams, Paul D.; Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Ghosh, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM hgmartin@lbl.gov RI Keasling, Jay/J-9162-2012; Adams, Paul/A-1977-2013; OI Keasling, Jay/0000-0003-4170-6088; Adams, Paul/0000-0001-9333-8219; Garcia Martin, Hector/0000-0002-4556-9685 FU United States Department of Energy via the Lawrence Berkeley National Lab LDRD program [DE-AC02-05CH11231]; Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This study was mostly funded by the United States Department of Energy via the Lawrence Berkeley National Lab LDRD program (DE-AC02-05CH11231) and conducted at the Joint BioEnergy Institute, which is supported by the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 55 TC 17 Z9 17 U1 0 U2 19 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-734X EI 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD SEP PY 2014 VL 10 IS 9 AR e1003827 DI 10.1371/journal.pcbi.1003827 PG 18 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA AQ7PO UT WOS:000343011700027 PM 25188426 ER PT J AU Li, JY Rossetti, G Dreyer, J Raugei, S Ippoliti, E Luscher, B Carloni, P AF Li, Jinyu Rossetti, Giulia Dreyer, Jens Raugei, Simone Ippoliti, Emiliano Luescher, Bernhard Carloni, Paolo TI Molecular Simulation-Based Structural Prediction of Protein Complexes in Mass Spectrometry: The Human Insulin Dimer SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID INTRINSICALLY DISORDERED PROTEIN; ION MOBILITY MEASUREMENTS; COLLISION CROSS-SECTIONS; GAS-PHASE PROTEIN; ELECTROSPRAY-IONIZATION; CHARGE-STATE; FORCE-FIELD; SUBUNIT ARCHITECTURE; ANGSTROM RESOLUTION; POLYATOMIC IONS AB Protein electrospray ionization (ESI) mass spectrometry (MS)-based techniques are widely used to provide insight into structural proteomics under the assumption that non-covalent protein complexes being transferred into the gas phase preserve basically the same intermolecular interactions as in solution. Here we investigate the applicability of this assumption by extending our previous structural prediction protocol for single proteins in ESI-MS to protein complexes. We apply our protocol to the human insulin dimer (hIns(2)) as a test case. Our calculations reproduce the main charge and the collision cross section (CCS) measured in ESI-MS experiments. Molecular dynamics simulations for 0.075 ms show that the complex maximizes intermolecular non-bonded interactions relative to the structure in water, without affecting the cross section. The overall gas-phase structure of hIns(2) does exhibit differences with the one in aqueous solution, not inferable from a comparison with calculated CCS. Hence, care should be exerted when interpreting ESI-MS proteomics data based solely on NMR and/or X-ray structural information. C1 [Li, Jinyu; Rossetti, Giulia; Dreyer, Jens; Ippoliti, Emiliano; Carloni, Paolo] Rhein Westfal TH Aachen, German Res Sch Simulat Sci, Julich, Germany. [Li, Jinyu; Rossetti, Giulia; Dreyer, Jens; Ippoliti, Emiliano; Carloni, Paolo] Forschungszentrum Julich, D-52425 Julich, Germany. [Li, Jinyu; Rossetti, Giulia; Dreyer, Jens; Ippoliti, Emiliano; Carloni, Paolo] Forschungszentrum Julich, Inst Adv Simulat IAS 5, Inst Neurosci & Med INM 9, D-52425 Julich, Germany. [Li, Jinyu] Rhein Westfal TH Aachen, Inst Biochem & Mol Biol, Aachen, Germany. [Rossetti, Giulia] Forschungszentrum Julich, JSC, D-52425 Julich, Germany. [Raugei, Simone] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Li, JY (reprint author), Rhein Westfal TH Aachen, German Res Sch Simulat Sci, Julich, Germany. EM g.rossetti@grs-sim.de OI Ippoliti, Emiliano/0000-0001-5513-8056; Rossetti, Giulia/0000-0002-2032-4630 FU John von Neumann Institute for Computing (NIC) [HGR12] FX Computing time granted by the John von Neumann Institute for Computing (NIC) with grant number HGR12. The URL of the funder: http://webarchiv.fz-juelich.de/nic/Allgemeines/Allgemeines-e.html The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 99 TC 5 Z9 5 U1 4 U2 18 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-734X EI 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD SEP PY 2014 VL 10 IS 9 AR e1003838 DI 10.1371/journal.pcbi.1003838 PG 10 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA AQ7PO UT WOS:000343011700035 PM 25210764 ER PT J AU Wu, H Nord, AS Akiyama, JA Shoukry, M Afzal, V Rubin, EM Pennacchio, LA Visel, A AF Wu, Han Nord, Alex S. Akiyama, Jennifer A. Shoukry, Malak Afzal, Veena Rubin, Edward M. Pennacchio, Len A. Visel, Axel TI Tissue-Specific RNA Expression Marks Distant-Acting Developmental Enhancers SO PLOS GENETICS LA English DT Article ID HUMAN CELL-TYPES; GENE-EXPRESSION; REGULATORY ELEMENTS; DEVELOPING LIMB; MOUSE LIMB; TRANSCRIPTION; GENOME; MACROPHAGE; LANDSCAPE; IDENTIFICATION AB Short non-coding transcripts can be transcribed from distant-acting transcriptional enhancer loci, but the prevalence of such enhancer RNAs (eRNAs) within the transcriptome, and the association of eRNA expression with tissue-specific enhancer activity in vivo remain poorly understood. Here, we investigated the expression dynamics of tissue-specific non-coding RNAs in embryonic mouse tissues via deep RNA sequencing. Overall, approximately 80% of validated in vivo enhancers show tissue-specific RNA expression that correlates with tissue-specific enhancer activity. Globally, we identified thousands of tissue-specifically transcribed non-coding regions (TSTRs) displaying various genomic hallmarks of bona fide enhancers. In transgenic mouse reporter assays, over half of tested TSTRs functioned as enhancers with reproducible activity in the predicted tissue. Together, our results demonstrate that tissue-specific eRNA expression is a common feature of in vivo enhancers, as well as a major source of extragenic transcription, and that eRNA expression signatures can be used to predict tissue-specific enhancers independent of known epigenomic enhancer marks. C1 [Wu, Han; Nord, Alex S.; Akiyama, Jennifer A.; Shoukry, Malak; Afzal, Veena; Rubin, Edward M.; Pennacchio, Len A.; Visel, Axel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Rubin, Edward M.; Pennacchio, Len A.; Visel, Axel] US DOE, Joint Genome Inst, Walnut Creek, CA USA. [Visel, Axel] Univ Calif, Sch Nat Sci, Merced, CA USA. RP Wu, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM avisel@lbl.gov RI Visel, Axel/A-9398-2009 OI Visel, Axel/0000-0002-4130-7784 FU American Heart Association [13POST14720023]; NIH/NIGMS NRSA F32 fellowship [GM105202]; NIH [R01HG003988, U01DE020060]; Department of Energy, University of California [DE-AC02-05CH11231] FX HW was supported by an American Heart Association postdoctoral fellowship 13POST14720023. ASN was supported by NIH/NIGMS NRSA F32 fellowship GM105202. AV and LAP were supported by NIH grants R01HG003988 and U01DE020060. Research was conducted at the E.O. Lawrence Berkeley National Laboratory and performed under Department of Energy Contract DE-AC02-05CH11231, University of California. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 52 TC 21 Z9 21 U1 1 U2 9 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7390 EI 1553-7404 J9 PLOS GENET JI PLoS Genet. PD SEP PY 2014 VL 10 IS 9 AR e1004610 DI 10.1371/journal.pgen.1004610 PG 12 WC Genetics & Heredity SC Genetics & Heredity GA AQ7OY UT WOS:000343009600031 PM 25188404 ER PT J AU Mukome, FND Kilcoyne, ALD Parikh, SJ AF Mukome, Fungai N. D. Kilcoyne, Arthur L. D. Parikh, Sanjai J. TI Alteration of Biochar Carbon Chemistry during Soil Incubations: SR-FTIR and NEXAFS Investigation SO SOIL SCIENCE SOCIETY OF AMERICA JOURNAL LA English DT Article ID X-RAY SPECTROSCOPY; BLACK CARBON; ORGANIC-MATTER; ELECTRON-ACCEPTORS; HUMIC SUBSTANCES; SLOW PYROLYSIS; SPECTROMICROSCOPY; MICROSCOPY; OXIDATION; FEEDSTOCKS AB Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and synchrotron radiation based Fourier-transform infrared (SR-FTIR) microspectroscopy were utilized to systematically study the aging of three biochars under similar controlled conditions by tracking changes in the C chemistry of biochar in the presence and absence of a Typic Xerorthent soil. By utilizing both NEXAFS and SR-FTIR, differences in the initial biochar C functional group composition due to feedstock (aromatic C was greater in walnut shell biochar than softwood feedstock) and pyrolysis temperature (no long-range-ordered C in wood feedstock made at 410 degrees C compared with 510 degrees C) were confirmed. The data provided spectroscopic evidence corroborating both the conceptual biphasic model for biochar degradation and the power model of organic matter continuum mass loss as biochar ages due to a more labile aliphatic biochar portion and an aromatic portion that is oxidized more slowly. Incubations in the presence and absence of soil revealed a decrease in the ratio of the 287.6 eV peak (aliphatic C) relative to the 285.5 eV peak (aromatic C) during the incubations. Binding through functional groups present on the aged biochar surfaces (e.g., quinones, phenols, carbonyls) as well as the physical protection of the biochar by the soil appears to retard biochar surface decomposition. This study provides high-resolution spectroscopic data on discrete points on the biochar in addition to interactions between the soil and the biochar under conditions of minimal sample disturbance and destruction that corroborates current biochar stability and turnover models. C1 [Mukome, Fungai N. D.; Parikh, Sanjai J.] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA. [Kilcoyne, Arthur L. D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Parikh, SJ (reprint author), Univ Calif Davis, Dept Land Air & Water Resources, One Shields Ave, Davis, CA 95616 USA. EM sjparikh@ucdavis.edu RI Parikh, Sanjai /F-3476-2011; Kilcoyne, David/I-1465-2013 OI Parikh, Sanjai /0000-0002-5260-0417; FU Office of Science, Office of Basic Energy Sciences, of the USDOE [DE-AC02-05CH11231]; UC-Davis Agricultural Sustainability Institute (ASI) through David and Lucile Packard Foundation; USDA National Institute of Food and Agriculture (NIFA) [W-2082]; National Institute of Environmental Health Sciences (NIEHS); National Institute of Health (NIH) [5 P42 ES0046599] FX We thank Emma Lee from the UC-Davis School of Medicine, Electron Microscopy Laboratory, for ultramicrotoming of the thin sections and Dr. Hans Betchel and Dr. Michael Martin for support at the Advanced Light Source (ALS) beamline 1.4.4. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the USDOE under Contract no. DE-AC02-05CH11231. We also thank members the UC-Davis Parikh Environmental Chemistry Laboratory for assisting in analysis of samples at ALS. Funding was provided by the UC-Davis Agricultural Sustainability Institute (ASI) through a grant from the David and Lucile Packard Foundation, the USDA National Institute of Food and Agriculture (NIFA) through Hatch Formula Funding and multistate regional project W-2082, and the National Institute of Environmental Health Sciences (NIEHS) and National Institute of Health (NIH) through Grant 5 P42 ES0046599. NR 57 TC 3 Z9 3 U1 7 U2 74 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 0361-5995 EI 1435-0661 J9 SOIL SCI SOC AM J JI Soil Sci. Soc. Am. J. PD SEP-OCT PY 2014 VL 78 IS 5 BP 1632 EP 1640 DI 10.2136/sssaj2014.05.0206 PG 9 WC Soil Science SC Agriculture GA AQ9IK UT WOS:000343164600015 ER PT J AU Dueck, LA Aygoren, D Cameron, KM AF Dueck, Lucy A. Aygoren, Deniz Cameron, Kenneth M. TI A MOLECULAR FRAMEWORK FOR UNDERSTANDING THE PHYLOGENY OF SPIRANTHES (ORCHIDACEAE), A COSMOPOLITAN GENUS WITH A NORTH AMERICAN CENTER OF DIVERSITY SO AMERICAN JOURNAL OF BOTANY LA English DT Article DE chromosome number; DNA sequencing; historical biogeography; ladies'-tresses orchids; molecular phylogeny; phenology; plant disjunction; polyploidy; species delimitation ID ENDANGERED ORCHID; DILUVIALIS ORCHIDACEAE; ALLOPOLYPLOID ORIGIN; NONCODING REGIONS; UNIVERSAL PRIMERS; GENETIC-STRUCTURE; CHLOROPLAST DNA; UNITED-STATES; RARE ORCHID; CONSERVATION AB Premise of the study: Spiranthes is a genus of small terrestrial orchids that are most diverse in North America, yet unusually cosmopolitan, including many of conservation concern. Taxonomy based on morphology alone is problematic, but molecular evidence could help resolve evolutionary relationships within the genus. The phylogeny of Spiranthes was reconstructed to evaluate these patterns, particularly among North American and Old World lineages, determine the systematic value of chromosome numbers and phenology, consider aspects of historical biogeography, and provide evidence for the taxonomic status of vulnerable species. Methods: DNA sequences were produced from 219 samples representing 30 Spiranthes taxa plus one outgroup. Both parsimony and Bayesian inference analyses were applied to individual and combined data matrices generated for nuclear (nrITS) and plastid (trnL, trnS-G, matK) regions. Key results: Two major clades were recovered. One contains primarily summer-blooming species from western North America with haploid chromosome number of n = 22. The other clade (largely n = 15) contains midwestern and eastern North American species varying in phenology, although most autumn-flowering taxa within it are monophyletic. Whereas an Old World subclade is embedded within the tree, derived from New World ancestors, no genetic differentiation was found between trans-Atlantic specimens of S. romanzoffiana. Most species for which multiple individuals were sampled reflect monophyly in the combined gene tree (including S. lucida positioned on an unusually long branch), but some demonstrate dubious taxonomic status. Conclusions: This is the most complete phylogenetic reconstruction of Spiranthes published to date and is likely to influence future taxonomic decisions, with important implications for conservation of several threatened orchids. Our discoveries about species distributed outside North America offer important evidence for repeated long-distance dispersal, often coupled with subsequent speciation-an uncommon phenomenon in Orchidaceae. C1 [Dueck, Lucy A.] Savannah River Ecol Lab, Aiken, SC 29802 USA. [Aygoren, Deniz; Cameron, Kenneth M.] Univ Wisconsin, Dept Bot, Madison, WI 53706 USA. RP Dueck, LA (reprint author), 6018 Peninsula Circle, Athens, TX 75752 USA. EM kmcameron@wisc.edu FU American Orchid Society; Department of Energy [DE-FC09-07SR22506] FX We thank Travis Glenn for use of his laboratory, Cris Hagen for running the early sequences, Jim Fowler for inspiring the project, and the Native Orchid Conference, Inc. We are especially grateful to Charles Sheviak, Paul Martin Brown, and Scott Stewart, and to the collectors listed in Appendix S1, without whose help this project would not have been possible, and to the herbaria (K, MSC, SD, UID) personnel who offered specimens for analysis. We also thank the U.S. Fish & Wildlife Service for permit #TE100419-0 to transport samples of endangered species and the Ohio and South Carolina Departments of Natural Resources for permission to collect samples on their properties. We appreciate suggestions by the editors and reviewers for improving the manuscript. This project was funded, in part, by a research grant to L.A.D. from the American Orchid Society and by sales of native plant brochures; time (partially) and facilities were supported by the Department of Energy under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation. NR 89 TC 2 Z9 2 U1 4 U2 28 PU BOTANICAL SOC AMER INC PI ST LOUIS PA PO BOX 299, ST LOUIS, MO 63166-0299 USA SN 0002-9122 EI 1537-2197 J9 AM J BOT JI Am. J. Bot. PD SEP PY 2014 VL 101 IS 9 BP 1551 EP 1571 DI 10.3732/ajb.1400225 PG 21 WC Plant Sciences SC Plant Sciences GA AQ1IW UT WOS:000342536100015 PM 25253714 ER PT J AU Gilboa, SM Lee, KA Cogswell, ME Traven, FK Botto, LD Riehle-Colarusso, T Correa, A Boyle, CA AF Gilboa, Suzanne M. Lee, Kyung A. Cogswell, Mary E. Traven, Flavia K. Botto, Lorenzo D. Riehle-Colarusso, Tiffany Correa, Adolfo Boyle, Coleen A. CA Natl Birth Defects Prevention TI Maternal Intake of Vitamin E and Birth Defects, National Birth Defects Prevention Study, 1997 to 2005 SO BIRTH DEFECTS RESEARCH PART A-CLINICAL AND MOLECULAR TERATOLOGY LA English DT Article DE birth defects; congenital heart defects; vitamin E ID CONGENITAL HEART-DEFECTS; E SUPPLEMENTATION; PREGNANT-WOMEN; PRETERM BIRTH; MALFORMATIONS; PREECLAMPSIA; RISKS; TRIAL; DIET AB BACKGROUND In a recent study, high maternal periconceptional intake of vitamin E was found to be associated with risk of congenital heart defects (CHDs). To explore this association further, we investigated the association between total daily vitamin E intake and selected birth defects. METHODS: We analyzed data from 4525 controls and 8665 cases from the 1997 to 2005 National Birth Defects Prevention Study. We categorized estimated periconceptional energy-adjusted total daily vitamin E intake from diet and supplements into quartiles (referent, lowest quartile). Associations between quartiles of energy-adjusted vitamin E intake and selected birth defects were adjusted for demographic, lifestyle, and nutritional factors. RESULTS: We observed a statistically significant association with the third quartile of vitamin E intake (odds ratio [OR], 1.17; 95% confidence interval [CI], 1.01-1.35) and all CHDs combined. Among CHD sub-types, we observed associations with left ventricular outflow tract obstruction defects, and its sub-type, coarctation of the aorta and the third quartile of vitamin E intake. Among defects other than CHDs, we observed associations between anorectal atresia and the third quartile of vitamin E intake (OR, 1.66; 95% CI, 1.01-2.72) and hypospadias and the fourth quartile of vitamin E intake (OR, 1.42; 95% CI, 1.09-1.87). CONCLUSION: Selected quartiles of energy-adjusted estimated total daily vitamin E intake were associated with selected birth defects. However, because these few associations did not exhibit exposure-response patterns consistent with increasing risk associated with increasing intake of vitamin E, further studies are warranted to corroborate our findings. (C) 2014 Wiley Periodicals, Inc. C1 [Gilboa, Suzanne M.; Riehle-Colarusso, Tiffany; Boyle, Coleen A.] Ctr Dis Control & Prevent, Div Birth Defects & Dev Disabil, Atlanta, GA 30333 USA. [Lee, Kyung A.] Northrop Grumman Informat Syst, Atlanta, GA USA. [Lee, Kyung A.; Traven, Flavia K.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Cogswell, Mary E.] Ctr Dis Control & Prevent, Div Heart Dis & Stroke Prevent, Atlanta, GA 30333 USA. [Traven, Flavia K.] Emory Univ, Rollins Sch Publ Hlth, Atlanta, GA 30322 USA. [Botto, Lorenzo D.] Univ Utah, Dept Pediat, Salt Lake City, UT USA. [Correa, Adolfo] Univ Mississippi, Med Ctr, Dept Med, Jackson, MS 39216 USA. [Correa, Adolfo] Univ Mississippi, Med Ctr, Dept Pediat, Jackson, MS 39216 USA. RP Gilboa, SM (reprint author), Ctr Dis Control & Prevent, Div Birth Defects & Dev Disabil, Natl Ctr Birth Defects & Dev Disabil, Mailstop E-86,1600 Clifton Rd NE, Atlanta, GA 30333 USA. EM sgilboa@cdc.gov FU Centers for Disease Control and Prevention [PA 96043, PA 02081, FOA DD09-001]; Nutrition Epidemiology Core of the University of North Carolina Clinical Nutrition Research Center [DK56350] FX This work was supported through cooperative agreements under PA 96043, PA 02081 and FOA DD09-001 from the Centers for Disease Control and Prevention to the Centers for Birth Defects Research and Prevention participating in the National Birth Defects Prevention Study. This work was also supported by grant number DK56350 from the Nutrition Epidemiology Core of the University of North Carolina Clinical Nutrition Research Center. Presented at the 16th Annual Meeting of the National Birth Defects Prevention Network, Atlanta, GA, February 25-27, 2013 and the 26th Annual Meeting of the Society for Pediatric and Perinatal Epidemiologic Research, Boston, MA, June 1718, 2013. NR 29 TC 1 Z9 1 U1 4 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1542-0752 EI 1542-0760 J9 BIRTH DEFECTS RES A JI Birth Defects Res. Part A-Clin. Mol. Teratol. PD SEP PY 2014 VL 100 IS 9 BP 647 EP 657 DI 10.1002/bdra.23247 PG 11 WC Developmental Biology; Toxicology SC Developmental Biology; Toxicology GA AQ2OC UT WOS:000342625200001 PM 24740457 ER PT J AU Zheng, YQ Liu, WY Lv, T Luo, M Hu, HF Lu, P Choi, SI Zhang, C Tao, J Zhu, YM Li, ZY Xia, YN AF Zheng, Yiqun Liu, Wenying Lv, Tian Luo, Ming Hu, Hefei Lu, Ping Choi, Sang-Il Zhang, Chao Tao, Jing Zhu, Yimei Li, Zhi-Yuan Xia, Younan TI Seed-Mediated Synthesis of Gold Tetrahedra in High Purity and with Tunable, Well-Controlled Sizes SO CHEMISTRY-AN ASIAN JOURNAL LA English DT Article DE gold; nanocrystals; seeded growth; shape control; tetrahedron ID SHAPE-CONTROLLED SYNTHESIS; SURFACE-PLASMON RESONANCE; NANOPARTICLES; NANOCRYSTALS; EVOLUTION; NANORODS; GROWTH; BIOMEDICINE; TEMPERATURE; ABSORPTION AB We report a facile synthesis of Au tetrahedra in high purity and with tunable, well-controlled sizes via seed-mediated growth. The success of this synthesis relies on the use of single-crystal, spherical Au nanocrystals as the seeds and manipulation of the reaction kinetics to induce an unsymmetrical growth pattern for the seeds. In particular, the dropwise addition of a precursor solution with a syringe pump, assisted by cetyltrimethylammonium chloride and bromide at appropriate concentrations, was found to be critical to the formation of Au tetrahedra in high purity. Their sizes could be readily tuned in the range of 30-60 nm by simply varying the amount of precursor added to the reaction solution. The current strategy not only enables the synthesis of Au tetrahedra with tunable and controlled sizes but also provides a facile and versatile approach to reducing the symmetry of nanocrystals made of a face-centered cubic lattice. C1 [Zheng, Yiqun; Xia, Younan] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Liu, Wenying; Xia, Younan] Georgia Inst Technol, Sch Chem & Bimol Engn, Atlanta, GA 30332 USA. [Lv, Tian; Luo, Ming; Lu, Ping; Choi, Sang-Il; Xia, Younan] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA. [Lv, Tian; Luo, Ming; Lu, Ping; Choi, Sang-Il; Xia, Younan] Emory Univ, Atlanta, GA 30332 USA. [Hu, Hefei; Tao, Jing; Zhu, Yimei] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Zhang, Chao; Li, Zhi-Yuan] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. RP Xia, YN (reprint author), Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. EM younan.xia@bme.gatech.edu RI Xia, Younan/E-8499-2011 FU NSF [DMR-1215034]; startup funds from Georgia Institute of Technology; NSF FX This work was supported in part by the NSF (DMR-1215034) and startup funds from Georgia Institute of Technology. Some work was performed at the facilities of Institute of Electronics and Nanotechnology (IEN) at Georgia Tech, a member of NNIN sponsored by the NSF. NR 47 TC 3 Z9 3 U1 10 U2 106 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1861-4728 EI 1861-471X J9 CHEM-ASIAN J JI Chem.-Asian J. PD SEP PY 2014 VL 9 IS 9 BP 2635 EP 2640 DI 10.1002/asia.201402499 PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA AQ3GC UT WOS:000342677400042 PM 24976486 ER PT J AU Jaskolski, M Dauter, Z Wlodawer, A AF Jaskolski, Mariusz Dauter, Zbigniew Wlodawer, Alexander TI A brief history of macromolecular crystallography, illustrated by a family tree and its Nobel fruits SO FEBS JOURNAL LA English DT Review DE history of crystallography; macromolecular crystallography; nobel prizes; structural biology; structural crystallography ID PHENYLALANINE TRANSFER-RNA; X-RAY-DIFFRACTION; PHOTOSYNTHETIC REACTION-CENTER; MULTIWAVELENGTH ANOMALOUS DIFFRACTION; 3-DIMENSIONAL FOURIER SYNTHESIS; PROTEIN-COUPLED RECEPTOR; TOBACCO-MOSAIC-VIRUS; CRYSTAL-STRUCTURE DETERMINATION; GLYCOGEN PHOSPHORYLASE-A; SYNTHETIC HIV-1 PROTEASE AB As a contribution to the celebration of the year 2014, declared by the United Nations to be 'The International Year of Crystallography', the FEBS Journal is dedicating this issue to papers showcasing the intimate union between macromolecular crystallography and structural biology, both in historical perspective and in current research. Instead of a formal editorial piece, by way of introduction, this review discusses the most important, often iconic, achievements of crystallographers that led to major advances in our understanding of the structure and function of biological macromolecules. We identified at least 42 scientists who received Nobel Prizes in Physics, Chemistry or Medicine for their contributions that included the use of X-rays or neutrons and crystallography, including 24 who made seminal discoveries in macromolecular sciences. Our spotlight is mostly, but not only, on the recipients of this most prestigious scientific honor, presented in approximately chronological order. As a summary of the review, we attempt to construct a genealogy tree of the principal lineages of protein crystallography, leading from the founding members to the present generation. C1 [Jaskolski, Mariusz] Adam Mickiewicz Univ, Fac Chem, Dept Crystallog, PL-60780 Poznan, Poland. [Jaskolski, Mariusz] Polish Acad Sci, Inst Bioorgan Chem, Ctr Biocrystallog Res, Poznan, Poland. [Dauter, Zbigniew] NCI, Synchrotron Radiat Res Sect, Macromol Crystallog Lab, Argonne Natl Lab, Morton, IL USA. [Wlodawer, Alexander] NCI, Prot Struct Sect, Macromol Crystallog Lab, Frederick, MD 21701 USA. RP Wlodawer, A (reprint author), NCI, Macromol Crystallog Lab, Frederick, MD 21701 USA. EM wlodawer@nih.gov FU NIH, National Cancer Institute, Center for Cancer Research FX We would like to thank Hans Deisenhofer, Jenny Glusker, Robert Huber, Michael Levitt, Brian Matthews, Michael Rossmann and Joel Sussman for their valuable comments and suggestions. We thank Richard Frederickson and Joseph Meyer (Scientific Publications, Graphics & Media, Leidos Biomedical Research, Inc.) for devising Fig. 1. Original work in the laboratories of AW and ZD was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. NR 215 TC 12 Z9 12 U1 5 U2 46 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1742-464X EI 1742-4658 J9 FEBS J JI FEBS J. PD SEP PY 2014 VL 281 IS 18 SI SI BP 3985 EP 4009 DI 10.1111/febs.12796 PG 25 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AQ1ZM UT WOS:000342584200002 PM 24698025 ER PT J AU Dauter, Z Jaskolski, M AF Dauter, Zbigniew Jaskolski, Mariusz TI Missed opportunities in crystallography SO FEBS JOURNAL LA English DT Review DE crystals; discoveries; history; structural biology; X-ray crystallography ID 3-DIMENSIONAL FOURIER SYNTHESIS; X-RAY-ANALYSIS; MOLECULAR-STRUCTURE; ICOSAHEDRAL SYMMETRY; QUASI-CRYSTALS; INTERATOMIC DISTANCES; DIFFRACTING POWER; KEPLER CONJECTURE; NUCLEIC-ACIDS; DOUBLE HELIX AB Scrutinized from the perspective of time, the giants in the history of crystallography more than once missed a nearly obvious chance to make another great discovery, or went in the wrong direction. This review analyzes such missed opportunities focusing on macromolecular crystallographers (using Perutz, Pauling, Franklin as examples), although cases of particular historical (Kepler), methodological (Laue, Patterson) or structural (Pauling, Ramachandran) relevance are also described. Linus Pauling, in particular, is presented several times in different circumstances, as a man of vision, oversight, or even blindness. His example underscores the simple truth that also in science incessant creativity is inevitably connected with some probability of fault. C1 [Dauter, Zbigniew] NCI, Synchrotron Radiat Res Sect, Argonne Natl Lab, Argonne, IL 60439 USA. [Jaskolski, Mariusz] Adam Mickiewicz Univ, Fac Chem, Dept Crystallog, PL-60780 Poznan, Poland. [Jaskolski, Mariusz] Polish Acad Sci, Inst Bioorgan Chem, Ctr Biocrystallog Res, Poznan, Poland. RP Dauter, Z (reprint author), NCI, Synchrotron Radiat Res Sect, Argonne Natl Lab, Argonne, IL 60439 USA. EM zdauter@anl.gov; mariuszj@amu.edu.pl NR 84 TC 1 Z9 1 U1 1 U2 15 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1742-464X EI 1742-4658 J9 FEBS J JI FEBS J. PD SEP PY 2014 VL 281 IS 18 SI SI BP 4010 EP 4020 DI 10.1111/febs.12832 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AQ1ZM UT WOS:000342584200003 PM 24814223 ER PT J AU Holton, JM Classen, S Frankel, KA Tainer, JA AF Holton, James M. Classen, Scott Frankel, Kenneth A. Tainer, John A. TI The R-factor gap in macromolecular crystallography: an untapped potential for insights on accurate structures SO FEBS JOURNAL LA English DT Article DE crystallography; R-factor; R-value; simulation; theoretical ID ATOMIC-STRUCTURE FACTOR; RAY-DIFFRACTION DATA; X-RAYS; CRYSTAL-STRUCTURES; PROTEIN CRYSTALS; AREA DETECTORS; REFLECTION; REFINEMENT; SCATTERING; RADIATION AB In macromolecular crystallography, the agreement between observed and predicted structure factors (Rcryst and Rfree) is seldom better than 20%. This is much larger than the estimate of experimental error (Rmerge). The difference between Rcryst and Rmerge is the R-factor gap. There is no such gap in small-molecule crystallography, for which calculated structure factors are generally considered more accurate than the experimental measurements. Perhaps the true noise level of macromolecular data is higher than expected? Or is the gap caused by inaccurate phases that trap refined models in local minima? By generating simulated diffraction patterns using the program MLFSOM, and including every conceivable source of experimental error, we show that neither is the case. Processing our simulated data yielded values that were indistinguishable from those of real data for all crystallographic statistics except the final Rcryst and Rfree. These values decreased to 3.8% and 5.5% for simulated data, suggesting that the reason for high R-factors in macromolecular crystallography is neither experimental error nor phase bias, but rather an underlying inadequacy in the models used to explain our observations. The present inability to accurately represent the entire macromolecule with both its flexibility and its proteinsolvent interface may be improved by synergies between small-angle X-ray scattering, computational chemistry and crystallography. The exciting implication of our finding is that macromolecular data contain substantial hidden and untapped potential to resolve ambiguities in the true nature of the nanoscale, a task that the second century of crystallography promises to fulfill. C1 [Holton, James M.] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA. [Holton, James M.; Classen, Scott; Frankel, Kenneth A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Tainer, John A.] Scripps Res Inst, La Jolla, CA 92037 USA. [Tainer, John A.] Skaggs Inst Chem Biol, La Jolla, CA USA. RP Holton, JM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, MS 6-2100,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jmholton@lbl.gov FU US Department of Energy [DE-AC02-05CH11231]; US Department of Energy Office of Biological and Environmental Research; National Institutes of Health project MINOS [R01-GM105404]; US National Science Foundation; University of California at Berkeley; University of California at San Francisco; W. M. Keck Foundation FX This work was performed at the Advanced Light Source (Berkeley, CA), a national user facility operated by the Lawrence Berkeley National Laboratory on behalf of the US Department of Energy under contract number DE-AC02-05CH11231, Office of Basic Energy Sciences, through the Integrated Diffraction Analysis Technologies program, supported by the US Department of Energy Office of Biological and Environmental Research. Additional support comes from National Institutes of Health project MINOS (R01-GM105404). Beamline 8.3.1 was built by the University of California Campus-Laboratory Collaboration Grant with support from the US National Science Foundation, the University of California at Berkeley, the University of California at San Francisco, the W. M. Keck Foundation and Henry Wheeler. Additional operational support was provided by the National Institutes of Health (GM073210, GM082250 and GM094625), Plexxikon Inc. and the M.D. Anderson Cancer Research Institute. NR 64 TC 10 Z9 10 U1 2 U2 19 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1742-464X EI 1742-4658 J9 FEBS J JI FEBS J. PD SEP PY 2014 VL 281 IS 18 SI SI BP 4046 EP 4060 DI 10.1111/febs.12922 PG 15 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AQ1ZM UT WOS:000342584200006 PM 25040949 ER PT J AU Moriarty, NW Tronrud, DE Adams, PD Karplus, PA AF Moriarty, Nigel W. Tronrud, Dale E. Adams, Paul D. Karplus, P. Andrew TI Conformation-dependent backbone geometry restraints set a new standard for protein crystallographic refinement SO FEBS JOURNAL LA English DT Article DE crystallographic refinement; geometry restraints; ideal geometry; protein structure; structural genomics ID MACROMOLECULAR STRUCTURES; STRUCTURAL PARAMETERS; STRUCTURE VALIDATION; ATOMIC-RESOLUTION; 1ST PRINCIPLES; DATA-BANK; BOND; PREDICTIONS; ACCURATE; ANGLES AB Ideal values of bond angles and lengths used as external restraints are crucial for the successful refinement of protein crystal structures at all but the highest of resolutions. The restraints in common use today have been designed on the assumption that each type of bond or angle has a single ideal value that is independent of context. However, recent work has shown that the ideal values are, in fact, sensitive to local conformation, and, as a first step towards using such information to build more accurate models, ultra-high-resolution protein crystal structures have been used to derive a conformation-dependent library (CDL) of restraints for the protein backbone [Berkholz et al. (2009) Structure 17, 1316-1325]. Here, we report the introduction of this CDL into the PHENIX package and the results of test refinements of thousands of structures across a wide range of resolutions. These tests show that use of the CDL yields models that have substantially better agreement with ideal main-chain bond angles and lengths and, on average, a slightly enhanced fit to the X-ray data. No disadvantages of using the backbone CDL are apparent. In PHENIX, use of the CDL can be selected by simply specifying the cdl = True option. This successful implementation paves the way for further aspects of the context dependence of ideal geometry to be characterized and applied to improve experimental and predictive modeling accuracy. C1 [Moriarty, Nigel W.; Adams, Paul D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Tronrud, Dale E.; Karplus, P. Andrew] Oregon State Univ, Dept Biochem & Biophys, Corvallis, OR 97331 USA. [Adams, Paul D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Karplus, PA (reprint author), Oregon State Univ, Dept Biochem & Biophys, 2011 Agr & Life Sci Bldg, Corvallis, OR 97331 USA. EM karplusp@science.oregonstate.edu RI Adams, Paul/A-1977-2013 OI Adams, Paul/0000-0001-9333-8219 FU National Institutes of Health (NIH) [R01-GM083136]; NIH [1P01 GM063210]; Phenix Industrial Consortium; US Department of Energy [DE-AC02-05CH11231] FX This work was supported in part by National Institutes of Health (NIH) grant R01-GM083136 (to P. A. Karplus), by NIH Project 1P01 GM063210 (to P. D. Adams), and the Phenix Industrial Consortium. This work was further supported in part by the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 51 TC 11 Z9 11 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1742-464X EI 1742-4658 J9 FEBS J JI FEBS J. PD SEP PY 2014 VL 281 IS 18 SI SI BP 4061 EP 4071 DI 10.1111/febs.12860 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AQ1ZM UT WOS:000342584200007 PM 24890778 ER PT J AU Zhang, Z Liu, Q Hendrickson, WA AF Zhang, Zhen Liu, Qun Hendrickson, Wayne A. TI Crystal structures of apparent saccharide sensors from histidine kinase receptors prevalent in a human gut symbiont SO FEBS JOURNAL LA English DT Article DE hybrid two-component system; saccharide sensing; signal transduction beta-propeller domain; beta-sandwich domain ID 2-COMPONENT REGULATORY SYSTEMS; SIGNAL-TRANSDUCTION; ASPARTATE RECEPTOR; BACTEROIDES-THETAIOTAOMICRON; CHEMOTAXIS RECEPTOR; BACTERIAL SYMBIONT; BINDING-PROTEINS; IN-VIVO; DOMAIN; LIGAND AB The adult human gut is a complicated ecosystem in which host-bacterium symbiosis plays an important role. Bacteroides thetaiotaomicron is a predominant member of the gut microflora, providing the human digestive tract with a large number of glycolytic enzymes. Expression of many of these enzymes appears to be controlled by histidine kinase receptors that are fused into unusual hybrid two-component systems that share homologous periplasmic sensor domains. These sensor domains belong to the third most populated (HK3) family based on a previous unpublished bioinformatics analysis of predicted histidine kinase sensors. Here, we present the crystal structures of two sensor domains representative of the HK3 family. Each sensor is folded into three domains: two-seven-bladed beta-propeller domains and one beta-sandwich domain. Both sensors form dimers in crystals, and one sensor appears to be physiologically relevant. The folding characteristics in the individual domains, the domain organization, and the oligomeric architecture are all unique to HK3 sensors. Sequence analysis of the HK3 sensors indicates that these sensor domains are shared among other signaling molecules, implying combinatorial molecular evolution. C1 [Zhang, Zhen; Hendrickson, Wayne A.] Columbia Univ, Dept Biochem & Mol Biophys, New York, NY 10032 USA. [Liu, Qun; Hendrickson, Wayne A.] Brookhaven Natl Lab, New York Struct Biol Ctr, Natl Synchrotron Light Source X4, Upton, NY 11973 USA. [Hendrickson, Wayne A.] Columbia Univ, Dept Physiol & Cellular Biophys, New York, NY USA. RP Hendrickson, WA (reprint author), Columbia Univ, Dept Biochem & Mol Biophys, 630 W 168th St, New York, NY 10032 USA. EM wayne@xtl.cumc.columbia.edu RI Liu, Qun/A-8757-2011 OI Liu, Qun/0000-0002-1179-290X FU National Institutes of Health [GM034102, GM107462]; New York Structural Biology Center FX We thank John Schwanof and Randy Abramowitz (X4 beamlines, National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY, USA) and Igor Kourinov and Frank Murphy (NE-CAT beamlines, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA) for help with synchrotron data collection, Erik Martinez-Hackert and Jonah Cheung for helpful discussions, Goran Ahlsen and Lawrence Shapiro for assistance with the analytical ultracentrifuge experiment, and Jinfeng Liu of the Rost laboratory for the bioinformatics analysis that laid the foundation for this work. We also thank David F. Smith and Jamie Heimburg-Molinaro (Emory University School of Medicine) for performing glycan array screening for potential ligands of the sensors, even though the results were negative. This work was supported in part by National Institutes of Health grants GM034102 and GM107462 (to W. A. H.). Beamline X4A at the National Synchrotron Light Source (Brookhaven National Laboratory) is supported by the New York Structural Biology Center. NR 78 TC 3 Z9 3 U1 1 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1742-464X EI 1742-4658 J9 FEBS J JI FEBS J. PD SEP PY 2014 VL 281 IS 18 SI SI BP 4263 EP 4279 DI 10.1111/febs.12904 PG 17 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AQ1ZM UT WOS:000342584200022 PM 24995510 ER PT J AU Michalska, K Chhor, G Clancy, S Jedrzejczak, R Babnigg, G Winans, SC Joachimiak, A AF Michalska, Karolina Chhor, Gekleng Clancy, Shonda Jedrzejczak, Robert Babnigg, Gyorgy Winans, Stephen C. Joachimiak, Andrzej TI RsaM: a transcriptional regulator of Burkholderia spp. with novel fold SO FEBS JOURNAL LA English DT Article DE bcam1869; BcRsaM; Burkholderia cenocepacia; quorum sensing; TofM ID CEPACIA COMPLEX; CYSTIC-FIBROSIS; SP-NOV.; CENOCEPACIA; PSEUDOMONAS; BINDING; SYSTEM; MODEL; PURIFICATION; 3D AB Burkholderia cepacia complex is a set of closely related bacterial species that are notorious pathogens of cystic fibrosis patients, responsible for life-threatening lung infections. Expression of several virulence factors of Burkholderia cepacia complex is controlled by a mechanism known as quorum sensing (QS). QS is a means of bacterial communication used to coordinate gene expression in a cell-density-dependent manner. The system involves the production of diffusible signaling molecules (N-acyl-L-homoserine lactones, AHLs), that bind to cognate transcriptional regulators and influence their ability to regulate gene expression. One such system that is highly conserved in Burkholderia cepacia complex consists of CepI and CepR. CepI is AHL synthase, whereas CepR is an AHL-dependent transcription factor. In most members of the Burkholderia cepacia complex group, the cepI and cepR genes are divergently transcribed and separated by additional genes. One of them, bcam1869, encodes the BcRsaM protein, which was recently postulated to modulate the abundance or activity of CepI or CepR. Here, we show the crystal structure of BcRsaM from B. cenocepacia J2315. It is a single-domain protein with unique topology and presents a novel fold. The protein is a dimer in the crystal and in solution. This regulator has no known DNA-binding motifs and direct binding of BcRsaM to the cepI promoter could not be detected in in vitro assays. Therefore, we propose that the modulatory action of RsaM might result from interactions with other components of the QS machinery rather than from direct association with the DNA promoter. C1 [Michalska, Karolina; Chhor, Gekleng; Clancy, Shonda; Jedrzejczak, Robert; Babnigg, Gyorgy; Joachimiak, Andrzej] Argonne Natl Lab, Midwest Ctr Struct Genom, Argonne, IL 60439 USA. [Michalska, Karolina; Joachimiak, Andrzej] Argonne Natl Lab, Biosci Div, Struct Biol Ctr, Argonne, IL 60439 USA. [Winans, Stephen C.] Cornell Univ, Dept Microbiol, Ithaca, NY USA. [Joachimiak, Andrzej] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA. RP Joachimiak, A (reprint author), Argonne Natl Lab, Biosci Div, 9700 South Cass Ave,Bldg 202, Argonne, IL 60439 USA. EM andrzejj@anl.gov FU National Institutes of Health [GM094585]; U.S. Department of Energy, Office of Biological and Environmental Research [DE-AC02-06CH11357] FX The authors would like to thank Drs Zbyszek Dauter, Zbyszek Otwinowski and Tom Terwilliger for help with diffraction data analysis and members of the Midwest Center for Structural Genomics and Structural Biology Center for their support. This research has been funded in part by a grant from the National Institutes of Health GM094585 (AJ), and by the U.S. Department of Energy, Office of Biological and Environmental Research, under Contract DE-AC02-06CH11357. NR 61 TC 2 Z9 2 U1 1 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1742-464X EI 1742-4658 J9 FEBS J JI FEBS J. PD SEP PY 2014 VL 281 IS 18 SI SI BP 4293 EP 4306 DI 10.1111/febs.12868 PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AQ1ZM UT WOS:000342584200024 PM 24916958 ER PT J AU Lewis, JA Broman, AT Will, J Gasch, AP AF Lewis, Jeffrey A. Broman, Aimee T. Will, Jessica Gasch, Audrey P. TI Genetic Architecture of Ethanol-Responsive Transcriptome Variation in Saccharomyces cerevisiae Strains SO GENETICS LA English DT Article ID QUANTITATIVE TRAIT LOCI; BY-ENVIRONMENT INTERACTIONS; BUDDING YEAST; REGULATORY ASSOCIATIONS; SEQUENCE-ANALYSIS; NATURAL VARIATION; EXPRESSION; COMPLEX; REVEALS; GENOME AB Natural variation in gene expression is pervasive within and between species, and it likely explains a significant fraction of phenotypic variation between individuals. Phenotypic variation in acute systemic responses can also be leveraged to reveal physiological differences in how individuals perceive and respond to environmental perturbations. We previously found extensive variation in the transcriptomic response to acute ethanol exposure in two wild isolates and a common laboratory strain of Saccharomyces cerevisiae. Many expression differences persisted across several modules of coregulated genes, implicating trans-acting systemic differences in ethanol sensing and/or response. Here, we conducted expression QTL mapping of the ethanol response in two strain crosses to identify the genetic basis for these differences. To understand systemic differences, we focused on "hotspot" loci that affect many transcripts in trans. Candidate causal regulators contained within hotspots implicate upstream regulators as well as downstream effectors of the ethanol response. Overlap in hotspot targets revealed additive genetic effects of trans-acting loci as well as "epihotspots," in which epistatic interactions between two loci affected the same suites of downstream targets. One epi-hotspot implicated interactions between Mkt1p and proteins linked to translational regulation, prompting us to show that Mkt1p localizes to P bodies upon ethanol stress in a strain-specific manner. Our results provide a glimpse into the genetic architecture underlying natural variation in a stress response and present new details on how yeast respond to ethanol stress. C1 [Lewis, Jeffrey A.] Univ Arkansas, Dept Biol Sci, Fayetteville, AR 72701 USA. [Lewis, Jeffrey A.; Will, Jessica; Gasch, Audrey P.] Univ Wisconsin, Genet Lab, Madison, WI 53704 USA. [Lewis, Jeffrey A.; Gasch, Audrey P.] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI 53704 USA. [Broman, Aimee T.] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI 53704 USA. RP Gasch, AP (reprint author), 425 Henry Mall, Madison, WI 53706 USA. EM agasch@wisc.edu FU Department of Energy Great Lakes Bioenergy Research Center [Office of Science DE-FC02-07ER64494]; University of Arkansas; Arkansas Biosciences Institute (Arkansas Settlement Proceeds Act); Clinical and Translational Science Award program, through the National Institutes of Health National Center for Advancing Translational Sciences [UL1TR000427] FX We thank Justin Fay for providing strain panels and Karl Broman, Brian Yandell, Shuyun Ye, and Christina Kendziorski for helpful conversations. This work was supported in part by the Department of Energy Great Lakes Bioenergy Research Center (Office of Science DE-FC02-07ER64494); startup funds provided by the University of Arkansas; the Arkansas Biosciences Institute (Arkansas Settlement Proceeds Act of 2000); and by the Clinical and Translational Science Award program, through the National Institutes of Health National Center for Advancing Translational Sciences, grant UL1TR000427. NR 110 TC 15 Z9 15 U1 1 U2 20 PU GENETICS SOCIETY AMERICA PI BETHESDA PA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA SN 0016-6731 EI 1943-2631 J9 GENETICS JI Genetics PD SEP PY 2014 VL 198 IS 1 BP 369 EP + DI 10.1534/genetics.114.167429 PG 22 WC Genetics & Heredity SC Genetics & Heredity GA AQ1VC UT WOS:000342570300031 PM 24970865 ER PT J AU Woods, DP Ream, TS Minevich, G Hobert, O Amasino, RM AF Woods, Daniel P. Ream, Thomas S. Minevich, Gregory Hobert, Oliver Amasino, Richard M. TI PHYTOCHROME C Is an Essential Light Receptor for Photoperiodic Flowering in the Temperate Grass, Brachypodium distachyon SO GENETICS LA English DT Article ID BARLEY HORDEUM-VULGARE; ARABIDOPSIS CIRCADIAN CLOCK; PSEUDO-RESPONSE-REGULATOR; NATURAL VARIATION; BLUE-LIGHT; TIME GENES; LOCUS-T; WHEAT; VERNALIZATION; MUTANT AB We show that in the temperate grass, Brachypodium distachyon, PHYTOCHROME C (PHYC), is necessary for photoperiodic flowering. In loss-of-function phyC mutants, flowering is extremely delayed in inductive photoperiods. PHYC was identified as the causative locus by utilizing a mapping by sequencing pipeline (Cloudmap) optimized for identification of induced mutations in Brachypodium. In phyC mutants the expression of Brachypodium homologs of key flowering time genes in the photoperiod pathway such as GIGANTEA (GI), PHOTOPERIOD 1 (PPD1/PRR37), CONSTANS (CO), and florigen/FT are greatly attenuated. PHYC also controls the day-length dependence of leaf size as the effect of day length on leaf size is abolished in phyC mutants. The control of genes upstream of florigen production by PHYC was likely to have been a key feature of the evolution of a long-day flowering response in temperate pooid grasses. C1 [Woods, Daniel P.; Amasino, Richard M.] Univ Wisconsin, Genet Lab, Madison, WI 53706 USA. [Woods, Daniel P.; Ream, Thomas S.; Amasino, Richard M.] Univ Wisconsin, US DOE, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Woods, Daniel P.; Ream, Thomas S.; Amasino, Richard M.] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA. [Minevich, Gregory; Hobert, Oliver] Columbia Univ, Med Ctr, Howard Hughes Med Inst, Dept Biochem & Mol Biophys, New York, NY 10032 USA. RP Amasino, RM (reprint author), 433 Babcock Dr,215 Biochem Addit, Madison, WI 53706 USA. EM amasino@biochem.wisc.edu OI Hobert, Oliver/0000-0002-7634-2854; Woods, Daniel/0000-0002-1498-5707 FU National Science Foundation [IOS-1258126]; Great Lakes Bioenergy Research Center (Department of Energy Biological and Environmental Research Office of Science) [DE- FCO2-07ER64494]; National Institutes of Health; Gordon and Betty Moore Foundation; Life Sciences Research Foundation FX We thank Christopher Schwartz, Mark Doyle, and John Sedbrook for providing initial mutagenized seeds for screening Brachypodium mutants and isolating phyC-1. We thank undergraduate students Mary Kojima, Gerald Weiss, Jane Lee, Ka Yeun Jeong, Leah Varner, and Ryland Bednarek for assistance in screen. Additionally we thank Jill Mahoy and Heidi Kaeppler for providing transgenic material in Brachypodium and John Vogel and Sean Gordon for providing access to previously unpublished sequence data from Bd21-3 and Bd3-1 accelerating marker development. This work was funded in part by the National Science Foundation (grant no. IOS-1258126), the Great Lakes Bioenergy Research Center (Department of Energy Biological and Environmental Research Office of Science grant no. DE- FCO2-07ER64494), a National Institutes of Health-sponsored predoctoral training fellowship to the University of Wisconsin Genetics Training Program to Daniel Woods, and the Gordon and Betty Moore Foundation and the Life Sciences Research Foundation for their postdoctoral fellowship support to Thomas Ream. NR 85 TC 11 Z9 11 U1 4 U2 20 PU GENETICS SOCIETY AMERICA PI BETHESDA PA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA SN 0016-6731 EI 1943-2631 J9 GENETICS JI Genetics PD SEP PY 2014 VL 198 IS 1 BP 397 EP + DI 10.1534/genetics.114.166785 PG 19 WC Genetics & Heredity SC Genetics & Heredity GA AQ1VC UT WOS:000342570300033 PM 25023399 ER PT J AU Hirsch, CN Flint-Garcia, SA Beissinger, TM Eichten, SR Deshpande, S Barry, K McMullen, MD Holland, JB Buckler, ES Springer, N Buell, CR de Leon, N Kaeppler, SM AF Hirsch, Candice N. Flint-Garcia, Sherry A. Beissinger, Timothy M. Eichten, Steven R. Deshpande, Shweta Barry, Kerrie McMullen, Michael D. Holland, James B. Buckler, Edward S. Springer, Nathan Buell, C. Robin de Leon, Natalia Kaeppler, Shawn M. TI Insights into the Effects of Long-Term Artificial Selection on Seed Size in Maize SO GENETICS LA English DT Article ID ASSOCIATION MAPPING POPULATION; GENETIC-VARIATION; FLOWERING-TIME; INBRED LINES; HUMAN GENOME; COPY NUMBER; KERNEL SIZE; DNA; TRAIT; ARCHITECTURE AB Grain produced from cereal crops is a primary source of human food and animal feed worldwide. To understand the genetic basis of seed-size variation, a grain yield component, we conducted a genome-wide scan to detect evidence of selection in the maize Krug Yellow Dent long-term divergent seed-size selection experiment. Previous studies have documented significant phenotypic divergence between the populations. Allele frequency estimates for similar to 3 million single nucleotide polymorphisms (SNPs) in the base population and selected populations were estimated from pooled whole-genome resequencing of 48 individuals per population. Using F-ST values across sliding windows, 94 divergent regions with a median of six genes per region were identified. Additionally, 2729 SNPs that reached fixation in both selected populations with opposing fixed alleles were identified, many of which clustered in two regions of the genome. Copy-number variation was highly prevalent between the selected populations, with 532 total regions identified on the basis of read-depth variation and comparative genome hybridization. Regions important for seed weight in natural variation were identified in the maize nested association mapping population. However, the number of regions that overlapped with the long-term selection experiment did not exceed that expected by chance, possibly indicating unique sources of variation between the two populations. The results of this study provide insights into the genetic elements underlying seed-size variation in maize and could also have applications for other cereal crops. C1 [Hirsch, Candice N.] Univ Minnesota, Dept Agron & Plant Genet, St Paul, MN 55108 USA. [Eichten, Steven R.; Springer, Nathan] Univ Minnesota, Dept Plant Biol, St Paul, MN 55108 USA. [Flint-Garcia, Sherry A.; McMullen, Michael D.; Holland, James B.; Buckler, Edward S.] ARS, USDA, Columbia, MO 65211 USA. [Flint-Garcia, Sherry A.; McMullen, Michael D.] Univ Missouri, Div Plant Sci, Columbia, MO 65211 USA. [Beissinger, Timothy M.; de Leon, Natalia; Kaeppler, Shawn M.] Univ Wisconsin, Dept Agron, Madison, WI 53706 USA. [Beissinger, Timothy M.] Univ Wisconsin, Dept Anim Sci, Madison, WI 53706 USA. [de Leon, Natalia; Kaeppler, Shawn M.] Univ Wisconsin, Dept Energy, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Eichten, Steven R.; Springer, Nathan] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Holland, James B.] N Carolina State Univ, Dept Crop Sci, Raleigh, NC 27695 USA. [Buckler, Edward S.] Cornell Univ, Inst Genom Divers, Ithaca, NY 14853 USA. [Buckler, Edward S.] Cornell Univ, Dept Plant Breeding & Genet, Ithaca, NY 14853 USA. [Buell, C. Robin] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Buell, C. Robin] Michigan State Univ, Dept Energy, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. RP Kaeppler, SM (reprint author), Univ Wisconsin, Dept Agron, 1575 Linden Dr, Madison, WI 53706 USA. EM smkaeppl@wisc.edu OI Buckler, Edward/0000-0002-3100-371X; Kaeppler, Shawn/0000-0002-5964-1668; Holland, James/0000-0002-4341-9675 FU UW-Madison; Wisconsin Alumni Research Foundation; National Science Foundation; U.S. Department of Energy's Office of Science; Department of Energy (DOE) Great Lakes Bioenergy Research Center [DOE BER Office of Science DE-FC02-07ER64494]; Office of Science of the U.S. DOE [DE-AC02-05CH11231]; University of Wisconsin Graduate School FX We are grateful to Dupont-Pioneer Hi-Bred International, Inc., for providing SNP data. This research was performed using the computer resources and assistance of the UW-Madison Center For High Throughput Computing (CHTC) in the Department of Computer Sciences. The CHTC is supported by UW-Madison and the Wisconsin Alumni Research Foundation and is an active member of the Open Science Grid, which is supported by the National Science Foundation and the U.S. Department of Energy's Office of Science. This work was funded by the Department of Energy (DOE) Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). The work conducted by the U.S. DOE Joint Genome Institute was supported by the Office of Science of the U.S. DOE under contract no. DE-AC02-05CH11231. T.B. was supported by the University of Wisconsin Graduate School and by a gift to the University of Wisconsin-Madison Plant Breeding and Plant Genetics program from Monsanto. NR 72 TC 14 Z9 14 U1 7 U2 55 PU GENETICS SOCIETY AMERICA PI BETHESDA PA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA SN 0016-6731 EI 1943-2631 J9 GENETICS JI Genetics PD SEP PY 2014 VL 198 IS 1 BP 409 EP + DI 10.1534/genetics.114.167155 PG 45 WC Genetics & Heredity SC Genetics & Heredity GA AQ1VC UT WOS:000342570300034 PM 25037958 ER PT J AU Gao, CX Brandenberger, RH Cai, YF Chen, PS AF Gao, Caixia Brandenberger, Robert H. Cai, Yifu Chen, Pisin TI Cosmological perturbations in unimodular gravity SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE modified gravity; gravity; cosmological perturbation theory. CMBR theory ID CANONICAL QUANTUM-GRAVITY; DARK ENERGY; ACCELERATING UNIVERSE; DENSITY PERTURBATIONS; INFLATIONARY-UNIVERSE; CONSTANT; SUPERNOVAE AB We study cosmological perturbation theory within the framework of unimodular gravity. We show that the Lagrangian constraint on the determinant of the metric required by unimodular gravity leads to an extra constraint on the gauge freedom of the metric perturbations. Although the main equation of motion for the gravitational potential remains the sal-lie, the shift variable, which is gauge artifact in General Relativity, cannot be set to zero in unimodular gravity. This non-vanishing shift variable affects the propagation of photons throughout the cosmological evolution and therefore modifies the Sachs-Wolfe relation between the relativistic gravitational potential and the microwave temperature anisotropies. However, for adiabatic fluctuations the difference between the result in General Relativity and unimodular gravity is suppressed on large angular scales. Thus, no strong constraints on the theory can be derived. C1 [Gao, Caixia] Univ Mississippi, Dept Phys & Astron, University, MS 38677 USA. [Brandenberger, Robert H.; Cai, Yifu] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Chen, Pisin] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. [Chen, Pisin] Natl Taiwan Univ, Grad Inst Astrophys, Taipei 10617, Taiwan. [Chen, Pisin] Natl Taiwan Univ, Leung Ctr Cosmol & Particle Astrophys, Taipei 10617, Taiwan. [Chen, Pisin] Stanford Univ, SLAC, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. RP Gao, CX (reprint author), Univ Mississippi, Dept Phys & Astron, University, MS 38677 USA. EM cgao1@go.olemiss.edu; rhb@hep.physics.mcgill.ca; yifucai@physics.mcgill.ca; chen@slac.stanford.edu RI Cai, Yi-Fu/M-8162-2013 OI Cai, Yi-Fu/0000-0003-0706-8465 FU NSERC; Canada Research Chair program; Taiwan National Science Council [NSC 101-2923-M-002-006-MY3, 101-2628-M-002-006]; Taiwan National Center for Theoretical Sciences (NCTS); US Department of Energy [DE- AC03-76SF00515]; Graduate School of the University of Mississippi FX It is a pleasure to thank Luca Bombelli and Gil Holder for useful discussions. The work of RB and CYF is supported in part by an NSERC Discovery grant and by funds from the Canada Research Chair program. The work of PC is supported in part by the Taiwan National Science Council under Project No. NSC 101-2923-M-002-006-MY3 and 101-2628-M-002-006, by the Taiwan National Center for Theoretical Sciences (NCTS) and by the US Department of Energy under Contract No. DE- AC03-76SF00515. The work of GCX is supported in part by the Summer Research Assistantship from the Graduate School of the University of Mississippi. NR 48 TC 8 Z9 8 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD SEP PY 2014 IS 9 AR 021 DI 10.1088/1475-7516/2014/09/021 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AQ2TP UT WOS:000342642500022 ER PT J AU Donaldson, B Height, J Gill, W Yilmaz, N AF Donaldson, Burl Height, Jonathan Gill, Walt Yilmaz, Nadir TI Evaluation of a new device for simultaneous measurement of heat flux and gas velocity in a diffusion flame SO JOURNAL OF FIRE SCIENCES LA English DT Article DE Flame velocity probe; flame heat flux probe; multi-directional heat flux and velocity probe; non-isothermal boundary layer flow AB This article examines potential use of a new device called multi-directional heat flux and velocity probe for simultaneous measurement of heat flux and flame speed in a diffusion flame. The probe consists of a thin-wall spherical shell with internal insulation to mitigate internal convection. Both pressure and temperature distributions around the sphere are used to indicate local velocity and heat flux. The multi-directional heat flux and velocity probe appears to be a more promising device than the bidirectional velocity probe in the sense that the sphere is a regular geometry with minimum flow separation and should lead to more predictable behavior. However, an outcome of this study is that the device must be used in conjunction with a fire code computational fluid dynamics model because the boundary layer is not isothermal so that the conventional pressure coefficient for a sphere leads to erroneous results. C1 [Donaldson, Burl; Height, Jonathan; Gill, Walt] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Yilmaz, Nadir] New Mexico Inst Min & Technol, Dept Mech Engn, Socorro, NM 87801 USA. RP Yilmaz, N (reprint author), New Mexico Inst Min & Technol, Dept Mech Engn, Socorro, NM 87801 USA. EM yilmaznadir@yahoo.com FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 7 TC 0 Z9 0 U1 1 U2 3 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0734-9041 EI 1530-8049 J9 J FIRE SCI JI J. Fire Sci. PD SEP PY 2014 VL 32 IS 5 BP 448 EP 458 DI 10.1177/0734904114531188 PG 11 WC Engineering, Multidisciplinary; Materials Science, Multidisciplinary SC Engineering; Materials Science GA AQ3GD UT WOS:000342677500005 ER PT J AU Kinzie, CR Hee, SSQ Stich, A Tague, KA Mercer, C Razink, JJ Kennett, DJ DeCarli, PS Bunch, TE Wittke, JH Israde-Alcantara, I Bischoff, JL Goodyear, AC Tankersley, KB Kimbel, DR Culleton, BJ Erlandson, JM Stafford, TW Kloosterman, JB Moore, AMT Firestone, RB Tortosa, JEA Pardo, JFJ West, A Kennett, JP Wolbach, WS AF Kinzie, Charles R. Hee, Shane S. Que Stich, Adrienne Tague, Kevin A. Mercer, Chris Razink, Joshua J. Kennett, Douglas J. DeCarli, Paul S. Bunch, Ted E. Wittke, James H. Israde-Alcantara, Isabel Bischoff, James L. Goodyear, Albert C. Tankersley, Kenneth B. Kimbel, David R. Culleton, Brendan J. Erlandson, Jon M. Stafford, Thomas W. Kloosterman, Johan B. Moore, Andrew M. T. Firestone, Richard B. Aura Tortosa, J. E. Jorda Pardo, J. F. West, Allen Kennett, James P. Wolbach, Wendy S. TI Nanodiamond-Rich Layer across Three Continents Consistent with Major Cosmic Impact at 12,800 Cal BP SO JOURNAL OF GEOLOGY LA English DT Article ID YOUNGER DRYAS IMPACT; GREENLAND ICE-SHEET; EXTRATERRESTRIAL IMPACT; N-DIAMOND; INDEPENDENT EVALUATION; HEXAGONAL DIAMONDS; CRYSTAL-STRUCTURE; SILICON-CARBIDE; MURRAY SPRINGS; CUBIC DIAMOND AB A major cosmic-impact event has been proposed at the onset of the Younger Dryas (YD) cooling episode at0 approximate to 12,800 +/- 150 years before present, forming the YD Boundary (YDB) layer, distributed over >50 million km(2) on four continents. In 24 dated stratigraphic sections in 10 countries of the Northern Hemisphere, the YDB layer contains a clearly defined abundance peak in nanodiamonds (NDs), a major cosmic-impact proxy. Observed ND polytypes include cubic diamonds, lonsdaleite-like crystals, and diamond-like carbon nanoparticles, called n-diamond and i-carbon. The ND abundances in bulk YDB sediments ranged up to; approximate to 500 ppb (mean: 200 ppb) and that in carbon spherules up to; approximate to 3700 ppb (mean: approximate to 750 ppb); 138 of 205 sediment samples (67%) contained no detectable NDs. Isotopic evidence indicates that YDB NDs were produced from terrestrial carbon, as with other impact diamonds, and were not derived from the impactor itself. The YDB layer is also marked by abundance peaks in other impact-related proxies, including cosmic-impact spherules, carbon spherules (some containing NDs), iridium, osmium, platinum, charcoal, aciniform carbon (soot), and high-temperature melt-glass. This contribution reviews the debate about the presence, abundance, and origin of the concentration peak in YDB NDs. We describe an updated protocol for the extraction and concentration of NDs from sediment, carbon spherules, and ice, and we describe the basis for identification and classification of YDB ND polytypes, using nine analytical approaches. The large body of evidence now obtained about YDB NDs is strongly consistent with an origin by cosmic impact at; approximate to 12,800 cal BP and is inconsistent with formation of YDB NDs by natural terrestrial processes, including wildfires, anthropogenesis, and/or influx of cosmic dust. C1 [Kinzie, Charles R.; Stich, Adrienne; Tague, Kevin A.; Wolbach, Wendy S.] De Paul Univ, Dept Chem, Chicago, IL 60614 USA. [Hee, Shane S. Que] Univ Calif Los Angeles, UCLA Ctr Occupat & Environm Hlth, Dept Environm Hlth Sci, Los Angeles, CA 90095 USA. [Mercer, Chris] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan. [Razink, Joshua J.] Univ Oregon, Ctr Adv Mat Characterizat, Eugene, OR 97403 USA. [Kennett, Douglas J.; Culleton, Brendan J.] Penn State Univ, Dept Anthropol, University Pk, PA 16802 USA. [DeCarli, Paul S.] SRI Int, Menlo Pk, CA 94025 USA. [Bunch, Ted E.; Wittke, James H.] No Arizona Univ, Sch Earth Sci & Environm Sustainabil, Geol Program, Flagstaff, AZ 86011 USA. [Israde-Alcantara, Isabel] Univ Michoacana, Inst Ciencias Tierra, Dept Geol & Mineral, Morelia 58060, Michoacan, Mexico. [Bischoff, James L.] US Geol Survey, Menlo Pk, CA 94025 USA. [Goodyear, Albert C.] Univ S Carolina, South Carolina Inst Archaeol & Anthropol, Columbia, SC 29208 USA. [Tankersley, Kenneth B.] Univ Cincinnati, Dept Anthropol & Geol, Cincinnati, OH 45221 USA. [Kimbel, David R.] Kimstar Res, Fayetteville, NC 28312 USA. [Erlandson, Jon M.] Univ Oregon, Museum Nat & Cultural Hist, Eugene, OR 97403 USA. [Stafford, Thomas W.] Univ Aarhus, Dept Phys & Astron, AMS Dating Ctr 14C, Aarhus, Denmark. [Stafford, Thomas W.] Geol Museum, Nat Hist Museum Denmark, Ctr GeoGenet, DK-1350 Copenhagen, Denmark. [Moore, Andrew M. T.] Rochester Inst Technol, Coll Liberal Arts, Rochester, NY 14623 USA. [Firestone, Richard B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Aura Tortosa, J. E.] Univ Valencia, Dept Prehist & Arqueol, E-46010 Valencia, Spain. [Jorda Pardo, J. F.] Univ Nacl Educ Distancia, Fac Geog & Hist, Dept Prehist & Arqueol, E-28040 Madrid, Spain. [West, Allen] GeoSci Consulting, Dewey, AZ 86327 USA. [Kennett, James P.] Univ Calif Santa Barbara, Dept Earth Sci, Santa Barbara, CA 93106 USA. [Kennett, James P.] Univ Calif Santa Barbara, Inst Marine Sci, Santa Barbara, CA 93106 USA. RP West, A (reprint author), GeoSci Consulting, Dewey, AZ 86327 USA. EM allen7633@aol.com RI Kennett, Douglas/I-7613-2015; Jorda, Jesus F./M-9193-2014; OI Kennett, Douglas/0000-0001-5133-9010; Jorda, Jesus F./0000-0002-3937-9199; Wolbach, Wendy/0000-0003-4398-8269; Aura Tortosa, J. Emili/0000-0003-1074-4495; Erlandson, Jon/0000-0002-4705-4319 FU Office of Research; US Department of Energy [DE-AC02-05CH11231]; US National Science Foundation grant [9986999]; US National Science Foundation grants, Marine Geology and Geophysics [ATM-0713769 and OCE-0825322] FX We thank Nick Schryvers, of the University of Antwerp, and several anonymous reviewers for detailed, helpful comments and corrections that led to significant improvements in this contribution. For samples and sampling assistance, we thank James Steele (Watcombe), James Teller (Lake Hind), William Topping (Gainey), and Malcolm LeCompte and Mark Demitroff (Melrose and Newtonville). HRTEM work was conducted at the Center for Advanced Materials Characterization at Oregon (CAMCOR), located at the University of Oregon, with support from the Office of Research. ICP-MS determinations for elements were made possible by NIEHS 1S10 RR017770. This research was supported, in part, for R. B. Firestone by US Department of Energy contract DE-AC02-05CH11231 and US National Science Foundation grant 9986999 and for J. P. Kennett by US National Science Foundation grants ATM-0713769 and OCE-0825322, Marine Geology and Geophysics. NR 83 TC 8 Z9 8 U1 4 U2 27 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0022-1376 EI 1537-5269 J9 J GEOL JI J. Geol. PD SEP PY 2014 VL 122 IS 5 BP 475 EP 505 DI 10.1086/677046 PG 31 WC Geology SC Geology GA AQ0YG UT WOS:000342508000001 ER PT J AU Tuberville, TD Todd, BD Hermann, SM Michener, WK Guyer, C AF Tuberville, Tracey D. Todd, Brian D. Hermann, Sharon M. Michener, William K. Guyer, Craig TI Survival, Demography, and Growth of Gopher Tortoises (Gopherus polyphemus) from Three Study Sites with Different Management Histories SO JOURNAL OF WILDLIFE MANAGEMENT LA English DT Article DE demography; gopher tortoise; Gopherus polyphemus; growth; habitat management; population recovery; survivorship ID TURTLES CHRYSEMYS-PICTA; SLASH PINE PLANTATIONS; LONG-LIVED ORGANISMS; NORTHERN FLORIDA; PAINTED TURTLES; POPULATION-DYNAMICS; BURROW USE; CONSERVATION; PATTERNS; SURVIVORSHIP AB Recovery or sustainable management of wildlife populations often entails management of habitat on which they depend. In this regard, turtles pose unique conservation challenges because of their life histories. The combination of late maturity, low survival when young, and dependence on high adult survival suggests they may be slow to respond demographically to conventional habitat management. Thus, long-term studies are necessary to understand population dynamics and recovery potential in these species. We used 5-11 years of mark-recapture data from 3 populations to evaluate survivorship, demography, and somatic growth of gopher tortoises (Gopherus polyphemus). Green Grove and Wade Tract (southwest GA) are ecological reserves with a history of land management compatible with tortoises. In contrast, Conecuh National Forest (south-central AL) is a closed-canopy pine plantation with prior intensive site preparation but where management intervention improved habitat for tortoises during the study. Apparent survival was high for mature tortoises (87-98%) compared to immature tortoises (70-82%). Adults comprised 57-79% of individuals captured, with Green Grove and Wade Tract populations dominated by larger individuals but Conecuh having a more uniform size distribution. The largest adults captured at Conecuh (297mm maximum carapace length [CL]) were smaller than the largest adults from Green Grove (337mm CL) or Wade Tract (341mm CL), although characteristic growth constants from von Bertalanffy models were similar among sites. We suggest these results indicate a recovering population at Conecuh, where habitat conditions for gopher tortoises have improved despite a legacy of intense predation by humans and reduced habitat quality at the inception of this national forest. Further, we recommend using a combination of short-term and long-term monitoring metrics to assess population recovery in such long-lived species. (c) 2014 The Wildlife Society. C1 [Tuberville, Tracey D.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Todd, Brian D.] Univ Calif Davis, Dept Wildlife Fish & Conservat Biol, Davis, CA 95616 USA. [Hermann, Sharon M.; Guyer, Craig] Auburn Univ, Dept Biol Sci, Auburn, AL 36849 USA. [Michener, William K.] Univ Lib, Albuquerque, NM 87106 USA. RP Tuberville, TD (reprint author), Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. EM tubervil@uga.edu FU Jones Ecological Research Center; Tall Timbers Research Station; United States Forest Service; International Paper Company; National Council for Air and Stream Improvement; Department of Energy [DE-FC09-07SR22506] FX We thank the Jones Ecological Research Center, Tall Timbers Research Station, United States Forest Service, International Paper Company, and National Council for Air and Stream Improvement for funding. Access to the Conecuh National Forest was facilitated by D. Thurmond, G. Taylor, and R. Lint. Fieldwork was performed by V. M. Johnson, W. Wilkerson, E. Lee, R. Birkhead, J. Eubanks, M. Boglioli, A. Sorenson, and H. Waddle. J. Beasley and 2 anonymous reviewers provided helpful comments on an earlier version of this manuscript. B. Metts assisted with manuscript formatting. Manuscript preparation by TDT was partially supported by the Department of Energy under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation. NR 68 TC 5 Z9 5 U1 24 U2 106 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0022-541X EI 1937-2817 J9 J WILDLIFE MANAGE JI J. Wildl. Manage. PD SEP PY 2014 VL 78 IS 7 BP 1151 EP 1160 DI 10.1002/jwmg.773 PG 10 WC Ecology; Zoology SC Environmental Sciences & Ecology; Zoology GA AQ2RF UT WOS:000342635100004 ER PT J AU Volkow, ND Tomasi, D Wang, GJ Logan, J Alexoff, DL Jayne, M Fowler, JS Wong, C Yin, P Du, C AF Volkow, N. D. Tomasi, D. Wang, G-J Logan, J. Alexoff, D. L. Jayne, M. Fowler, J. S. Wong, C. Yin, P. Du, C. TI Stimulant-induced dopamine increases are markedly blunted in active cocaine abusers SO MOLECULAR PSYCHIATRY LA English DT Article ID STRIATAL DOPAMINE; RECEPTOR AVAILABILITY; DORSAL STRIATUM; BRAIN DOPAMINE; HUMANS; RELEASE; METHYLPHENIDATE; DEPENDENCE; REWARD; MICE AB Dopamine signaling in nucleus accumbens is essential for cocaine reward. Interestingly, imaging studies have reported blunted dopamine increases in striatum (assessed as reduced binding of [C-11]raclopride to D-2/D-3 receptors) in detoxified cocaine abusers. Here, we evaluate whether the blunted dopamine response reflected the effects of detoxification and the lack of cocaine-cues during stimulant exposure. For this purpose we studied 62 participants (43 non-detoxified cocaine abusers and 19 controls) using positron emission tomography and [C-11]raclopride (radioligand sensitive to endogenous dopamine) to measure dopamine increases induced by intravenous methylphenidate and in 24 of the cocaine abusers, we also compared dopamine increases when methylphenidate was administered concomitantly with a cocaine cue-video versus a neutral-video. In controls, methylphenidate increased dopamine in dorsal (effect size 1.4; P < 0.001) and ventral striatum (location of accumbens) (effect size 0.89; P < 0.001), but in cocaine abusers methylphenidate's effects did not differ from placebo and were similar whether cocaine-cues were present or not. In cocaine abusers despite the markedly attenuated dopaminergic effects, the methylphenidate-induced changes in ventral striatum were associated with intense drug craving. Our findings are consistent with markedly reduced signaling through D-2 receptors during intoxication in active cocaine abusers regardless of cues exposure, which might contribute to compulsive drug use. C1 [Volkow, N. D.; Tomasi, D.; Jayne, M.; Wong, C.] NIAAA, Bethesda, MD 20892 USA. [Wang, G-J; Logan, J.; Alexoff, D. L.; Fowler, J. S.] Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. [Yin, P.; Du, C.] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA. RP Volkow, ND (reprint author), NIAAA, 6001 Execut Blvd,Room 5274, Bethesda, MD 20892 USA. EM nvolkow@nida.nih.gov RI Tomasi, Dardo/J-2127-2015 FU NIH's Intramural Research Program (NIAAA) FX We thank Paul Vaska, Colleen Shea, Pauline Carter, Wei Zhu, Karen Apelskog and Ruben Baler for their contributions. Research supported by NIH's Intramural Research Program (NIAAA). NR 48 TC 22 Z9 22 U1 1 U2 10 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1359-4184 EI 1476-5578 J9 MOL PSYCHIATR JI Mol. Psychiatr. PD SEP PY 2014 VL 19 IS 9 BP 1037 EP 1043 DI 10.1038/mp.2014.58 PG 7 WC Biochemistry & Molecular Biology; Neurosciences; Psychiatry SC Biochemistry & Molecular Biology; Neurosciences & Neurology; Psychiatry GA AQ4DN UT WOS:000342742700016 PM 24912491 ER PT J AU Casey, DT Smalyuk, VA Tipton, RE Pino, JE Grim, GP Remington, BA Rowley, DP Weber, SV Barrios, M Benedetti, LR Bleuel, DL Bond, EJ Bradley, DK Caggiano, JA Callahan, DA Cerjan, CJ Chen, KC Edgell, DH Edwards, MJ Fittinghoff, D Frenje, JA Gatu-Johnson, M Glebov, VY Glenn, S Guler, N Haan, SW Hamza, A Hatarik, R Herrmann, HW Hoover, D Hsing, WW Izumi, N Kervin, P Khan, S Kilkenny, JD Kline, J Knauer, J Kyrala, G Landen, OL Ma, T MacPhee, AG McNaney, JM Mintz, M Moore, A Nikroo, A Pak, A Parham, T Petrasso, R Rinderknecht, HG Sayre, DB Schneider, M Stoeffl, W Tommasini, R Town, RP Widmann, K Wilson, DC Yeamans, CB AF Casey, D. T. Smalyuk, V. A. Tipton, R. E. Pino, J. E. Grim, G. P. Remington, B. A. Rowley, D. P. Weber, S. V. Barrios, M. Benedetti, L. R. Bleuel, D. L. Bond, E. J. Bradley, D. K. Caggiano, J. A. Callahan, D. A. Cerjan, C. J. Chen, K. C. Edgell, D. H. Edwards, M. J. Fittinghoff, D. Frenje, J. A. Gatu-Johnson, M. Glebov, V. Y. Glenn, S. Guler, N. Haan, S. W. Hamza, A. Hatarik, R. Herrmann, H. W. Hoover, D. Hsing, W. W. Izumi, N. Kervin, P. Khan, S. Kilkenny, J. D. Kline, J. Knauer, J. Kyrala, G. Landen, O. L. Ma, T. MacPhee, A. G. McNaney, J. M. Mintz, M. Moore, A. Nikroo, A. Pak, A. Parham, T. Petrasso, R. Rinderknecht, H. G. Sayre, D. B. Schneider, M. Stoeffl, W. Tommasini, R. Town, R. P. Widmann, K. Wilson, D. C. Yeamans, C. B. TI Development of the CD Symcap platform to study gas-shell mix in implosions at the National Ignition Facility SO PHYSICS OF PLASMAS LA English DT Article ID NEUTRON SPECTRUM; SIMULATIONS; T&T AB Surrogate implosions play an important role at the National Ignition Facility (NIF) for isolating aspects of the complex physical processes associated with fully integrated ignition experiments. The newly developed CD Symcap platform has been designed to study gas-shell mix in indirectly driven, pure T-2-gas filled CH-shell implosions equipped with 4 mu m thick CD layers. This configuration provides a direct nuclear signature of mix as the DT yield (above a characterized D contamination background) is produced by D from the CD layer in the shell, mixing into the T-gas core. The CD layer can be placed at different locations within the CH shell to probe the depth and extent of mix. CD layers placed flush with the gas-shell interface and recessed up to 8 mu m have shown that most of the mix occurs at the inner-shell surface. In addition, time-gated x-ray images of the hotspot show large brightly radiating objects traversing through the hotspot around bang-time, which are likely chunks of CH/CD plastic. This platform is a powerful new capability at the NIF for understanding mix, one of the key performance issues for ignition experiments. (C) 2014 AIP Publishing LLC. C1 [Casey, D. T.; Smalyuk, V. A.; Tipton, R. E.; Pino, J. E.; Remington, B. A.; Rowley, D. P.; Weber, S. V.; Barrios, M.; Benedetti, L. R.; Bleuel, D. L.; Bond, E. J.; Bradley, D. K.; Caggiano, J. A.; Callahan, D. A.; Cerjan, C. J.; Edwards, M. J.; Fittinghoff, D.; Glenn, S.; Haan, S. W.; Hamza, A.; Hatarik, R.; Hsing, W. W.; Izumi, N.; Kervin, P.; Khan, S.; Landen, O. L.; Ma, T.; MacPhee, A. G.; McNaney, J. M.; Mintz, M.; Pak, A.; Parham, T.; Sayre, D. B.; Schneider, M.; Stoeffl, W.; Tommasini, R.; Town, R. P.; Widmann, K.; Yeamans, C. B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Grim, G. P.; Guler, N.; Herrmann, H. W.; Kline, J.; Kyrala, G.; Wilson, D. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Chen, K. C.; Hoover, D.; Kilkenny, J. D.; Nikroo, A.] Gen Atom Co, San Diego, CA 92121 USA. [Edgell, D. H.; Glebov, V. Y.; Knauer, J.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Frenje, J. A.; Gatu-Johnson, M.; Petrasso, R.; Rinderknecht, H. G.] MIT, Cambridge, MA 02139 USA. [Moore, A.] AWE Aldermaston, Reading RG7 4PR, Berks, England. RP Casey, DT (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI IZUMI, Nobuhiko/J-8487-2016; Tommasini, Riccardo/A-8214-2009; OI IZUMI, Nobuhiko/0000-0003-1114-597X; Tommasini, Riccardo/0000-0002-1070-3565; Kline, John/0000-0002-2271-9919; /0000-0003-4969-5571 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 68 TC 11 Z9 11 U1 1 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2014 VL 21 IS 9 AR 092705 DI 10.1063/1.4894215 PG 13 WC Physics, Fluids & Plasmas SC Physics GA AQ4JC UT WOS:000342760900062 ER PT J AU da Fonseca, JD del-Castillo-Negrete, D Caldas, IL AF da Fonseca, J. D. del-Castillo-Negrete, D. Caldas, I. L. TI Area-preserving maps models of gyroaveraged ExB chaotic transport SO PHYSICS OF PLASMAS LA English DT Article ID TEST-PARTICLE-TRANSPORT; REVERSED SHEAR; MAGNETIC-FIELD; NONTWIST MAPS; TOKAMAKS; PLASMA; RECONNECTION; TRANSITION; TURBULENCE; DIFFUSION AB Discrete maps have been extensively used to model 2-dimensional chaotic transport in plasmas and fluids. Here we focus on area-preserving maps describing finite Larmor radius (FLR) effects on E x B chaotic transport in magnetized plasmas with zonal flows perturbed by electrostatic drift waves. FLR effects are included by gyro-averaging the Hamiltonians of the maps which, depending on the zonal flow profile, can have monotonic or non-monotonic frequencies. In the limit of zero Larmor radius, the monotonic frequency map reduces to the standard Chirikov-Taylor map, and in the case of non-monotonic frequency, the map reduces to the standard nontwist map. We show that in both cases FLR leads to chaos suppression, changes in the stability of fixed points, and robustness of transport barriers. FLR effects are also responsible for changes in the phase space topology and zonal flow bifurcations. Dynamical systems methods based on the counting of recurrences times are used to quantify the dependence on the Larmor radius of the threshold for the destruction of transport barriers. (C) 2014 AIP Publishing LLC. C1 [da Fonseca, J. D.; Caldas, I. L.] Univ Sao Paulo, Inst Phys, BR-5315970 Sao Paulo, Brazil. [del-Castillo-Negrete, D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP da Fonseca, JD (reprint author), Univ Sao Paulo, Inst Phys, BR-5315970 Sao Paulo, Brazil. EM jfonseca@if.usp.br; delcastillod@ornl.gov; ibere@if.usp.br RI Caldas, Ibere/D-8546-2012 FU Brazilian research agency FAPESP [2013/00483-1]; Office of Fusion Energy Sciences of the U.S. Department of Energy at Oak Ridge National Laboratory [DE-AC05-00OR22725] FX This work was made possible through financial support from the Brazilian research agency FAPESP under Grant No. 2013/00483-1. The authors would like to acknowledge Celso V. Abud for valuable discussions. DdCN was sponsored by the Office of Fusion Energy Sciences of the U.S. Department of Energy at Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. J.D.F. gratefully acknowledges the hospitality of the Oak Ridge National Laboratory where part of the work was conducted. NR 39 TC 2 Z9 2 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2014 VL 21 IS 9 AR 092310 DI 10.1063/1.4896344 PG 15 WC Physics, Fluids & Plasmas SC Physics GA AQ4JC UT WOS:000342760900039 ER PT J AU Davidovits, S Fisch, NJ AF Davidovits, Seth Fisch, Nathaniel J. TI Fusion utility in the Knudsen layer SO PHYSICS OF PLASMAS LA English DT Article ID DRIVEN PLASMAS; WAVES; ENERGY AB In inertial confinement fusion, the loss of fast ions from the edge of the fusing hot-spot region reduces the reactivity below its Maxwellian value. The loss of fast ions may be pronounced because of the long mean free paths of fast ions, compared with those of thermal ions. We introduce a fusion utility function to demonstrate essential features of this Knudsen layer effect, in both magnetized and unmagnetized cases. The fusion utility concept is also used to evaluate the restoring reactivity in the Knudsen layer by manipulating fast ions in phase space using waves. (C) 2014 AIP Publishing LLC. C1 [Davidovits, Seth; Fisch, Nathaniel J.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08544 USA. RP Davidovits, S (reprint author), Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08544 USA. FU DOE [DE-AC02-09CH1-1466, 67350-9960, DOE DE-NA0001836]; DOE-CSGF program [DE-FG02-97ER25308] FX This work was supported by DOE through Contract Nos. DE-AC02-09CH1-1466 and 67350-9960 (Prime No. DOE DE-NA0001836). Seth Davidovits would like to acknowledge support by the DOE-CSGF program under Grant No. DE-FG02-97ER25308. NR 19 TC 7 Z9 7 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2014 VL 21 IS 9 AR 092114 DI 10.1063/1.4895477 PG 9 WC Physics, Fluids & Plasmas SC Physics GA AQ4JC UT WOS:000342760900021 ER PT J AU Haines, BM Vold, EL Molvig, K Aldrich, C Rauenzahn, R AF Haines, Brian M. Vold, Erik L. Molvig, Kim Aldrich, Charles Rauenzahn, Rick TI The effects of plasma diffusion and viscosity on turbulent instability growth SO PHYSICS OF PLASMAS LA English DT Article ID SIMULATIONS AB We perform two-dimensional simulations of strongly-driven compressible Rayleigh-Taylor and Kelvin-Helmholtz instabilities with and without plasma transport phenomena, modeling plasma species diffusion, and plasma viscosity in order to determine their effects on the growth of the hydrodynamic instabilities. Simulations are performed in hydrodynamically similar boxes of varying sizes, ranging from 1 mu m to 1 cm in order to determine the scale at which plasma effects become important. Our results suggest that these plasma effects become noticeable when the box size is approximately 100 mu m, they become significant in the 10 mu m box, and dominate when the box size is 1 mu m. Results suggest that plasma transport may be important at scales and conditions relevant to inertial confinement fusion, and that a plasma fluid model is capable of representing some of the kinetic transport effects. (C) 2014 AIP Publishing LLC. C1 [Haines, Brian M.; Vold, Erik L.; Molvig, Kim; Aldrich, Charles; Rauenzahn, Rick] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Haines, BM (reprint author), Los Alamos Natl Lab, MS T087, Los Alamos, NM 87545 USA. EM bmhaines@lanl.gov OI Haines, Brian/0000-0002-3889-7074 FU U.S. Department of Energy NNSA [DE-AC52-06NA25396] FX Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the U.S. Department of Energy NNSA under Contract No. DE-AC52-06NA25396. NR 28 TC 10 Z9 10 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2014 VL 21 IS 9 AR 092306 DI 10.1063/1.4895502 PG 8 WC Physics, Fluids & Plasmas SC Physics GA AQ4JC UT WOS:000342760900035 ER PT J AU Liu, ZX Xu, XQ Gao, X Xia, TY Joseph, I Meyer, WH Liu, SC Xu, GS Shao, LM Ding, SY Li, GQ Li, JG AF Liu, Z. X. Xu, X. Q. Gao, X. Xia, T. Y. Joseph, I. Meyer, W. H. Liu, S. C. Xu, G. S. Shao, L. M. Ding, S. Y. Li, G. Q. Li, J. G. TI Three dimensional nonlinear simulations of edge localized modes on the EAST tokamak using BOUT plus plus code SO PHYSICS OF PLASMAS LA English DT Article ID MHD STABILITY; PLASMA AB Experimental measurements of edge localized modes (ELMs) observed on the EAST experiment are compared to linear and nonlinear theoretical simulations of peeling-ballooning modes using the BOUT++ code. Simulations predict that the dominant toroidal mode number of the ELM instability becomes larger for lower current, which is consistent with the mode structure captured with visible light using an optical CCD camera. The poloidal mode number of the simulated pressure perturbation shows good agreement with the filamentary structure observed by the camera. The nonlinear simulation is also consistent with the experimentally measured energy loss during an ELM crash and with the radial speed of ELM effluxes measured using a gas puffing imaging diagnostic. (C) 2014 AIP Publishing LLC. C1 [Liu, Z. X.; Gao, X.; Xia, T. Y.; Liu, S. C.; Xu, G. S.; Shao, L. M.; Ding, S. Y.; Li, G. Q.; Li, J. G.] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. [Liu, Z. X.; Xu, X. Q.; Xia, T. Y.; Joseph, I.; Meyer, W. H.; Liu, S. C.; Ding, S. Y.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Liu, ZX (reprint author), Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. EM zxliu316@ipp.ac.cn FU National Magnetic Confinement Fusion Program of China [2014GB106001, 2014GB106003, 2011GB107001, 2011GB101000]; National Natural Science Foundation of China [11021565, 11275234, 11405213, 11405215, 11405217, 11422546]; U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors wish to acknowledge Dr. Ben Dud-son and Dr. M. V. Umansky for their contribution to the BOUT++ framework, and Dr. Hong Qin, Dr. Andris Dimits, and Mr. P. W. Xi for useful physics discussions. This work was supported by the National Magnetic Confinement Fusion Program of China (Grant Nos. 2014GB106001, 2014GB106003, 2011GB107001, and 2011GB101000), and the National Natural Science Foundation of China (Grant Nos. 11021565, 11275234, 11405213, 11405215, 11405217, and 11422546), and was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. LLNL-JRNL-606728. NR 19 TC 2 Z9 2 U1 3 U2 28 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2014 VL 21 IS 9 AR 090705 DI 10.1063/1.4895799 PG 5 WC Physics, Fluids & Plasmas SC Physics GA AQ4JC UT WOS:000342760900006 ER PT J AU Molvig, K Simakov, AN Vold, EL AF Molvig, Kim Simakov, Andrei N. Vold, Erik L. TI Classical transport equations for burning gas-metal plasmas SO PHYSICS OF PLASMAS LA English DT Article AB Thermonuclear inertial confinement fusion plasmas confined by a heavy metal shell may be subject to the mixing of metal into the gas with a resulting degradation of fusion yield. Classical plasma diffusion driven by a number of gradients can provide a physical mechanism to produce atomic mix, possibly in concert with complex hydrodynamic structures and/or turbulence. This paper gives a derivation of the complete dissipative plasma hydrodynamics equations from kinetic theory, for a binary ionic mixture plasma consisting of electrons, e, a light (hydrogenic gas) ion species, i, and a heavy, high ZI plasma metal species, I. A single mean ionization state for the heavy metal, ZI, is assumed to be provided by some independent thermodynamic model of the heavy metal Z(I) = ZIdni; n(I); T-e. The kinetic equations are solved by a generalized Chapman-Enskog expansion that assumes small Knudsen numbers for all species: N-Ke equivalent to lambda(e)/L << 1; NKi equivalent to lambda(i) L << 1. The small Tlectron to ion mass ratio, m(e) = m(i) 1, is utilized to account for electron-ion temperature separation, Te not equal Ti, and to decouple the electron and ion transport coefficient calculations. This produces a well ordered perturbation theory for the electrons, resulting in the well known " Spitzer" problem of Spitzer and collaborators and solved independently by Braginskii. The formulation in this paper makes clear the inherent symmetry of the transport and gives an analytic solution for all values of the effective charge Z(eff), including Z(eff) < 1. The electron problem also determines the ambipolar electric field and the " thermal forces" on both ion species that are needed for the ion kinetic solution. The ion transport problem makes use of the small mass ratio between ion species, mi= mI similar to 1, to identify an " ion Spitzer problem" that is mathematically identical to that for the electrons but with different thermodynamic forces. The ionic scattering parameter, DI similar to nIZ2 I = ni, replaces the Zeff of the electron problem, but has an extended domain, 0 <= Delta(I) < infinity, to cover all mixture fractions from the pure gas to the pure metal plasma. The extension of the Spitzer problem to include this extended domain is given in this work. The resulting transport equations for the binary gas-metal plasma mixture are complete and accurate through second order. All transport coefficients are provided in analytic form. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Molvig, Kim; Simakov, Andrei N.; Vold, Erik L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Molvig, Kim] MIT, Cambridge, MA 02139 USA. RP Molvig, K (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. OI Simakov, Andrei/0000-0001-7064-9153 FU U.S. Department of Energy [DE-AC52-06NA25396] FX This work was performed under the auspices of the Thermonuclear Burn Initiative at Los Alamos National Laboratory, operated by Los Alamos National Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. We would like to express our appreciation to Los Alamos management, in particular, Bob Webster, Bill Archer, and Jerry Brock, who recognized the potential importance of plasma diffusion (and plasma transport in general) and acted to provide the funding. NR 17 TC 13 Z9 13 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2014 VL 21 IS 9 AR 092709 DI 10.1063/1.4895666 PG 19 WC Physics, Fluids & Plasmas SC Physics GA AQ4JC UT WOS:000342760900066 ER PT J AU Moody, JD Robey, HF Celliers, PM Munro, DH Barker, DA Baker, KL Doppner, T Hash, NL Hopkins, LB LaFortune, K Landen, OL LePape, S MacGowan, BJ Ralph, JE Ross, JS Widmayer, C Nikroo, A Giraldez, E Boehly, T AF Moody, J. D. Robey, H. F. Celliers, P. M. Munro, D. H. Barker, D. A. Baker, K. L. Doeppner, T. Hash, N. L. Hopkins, L. Berzak LaFortune, K. Landen, O. L. LePape, S. MacGowan, B. J. Ralph, J. E. Ross, J. S. Widmayer, C. Nikroo, A. Giraldez, E. Boehly, T. TI Early time implosion symmetry from two-axis shock-timing measurements on indirect drive NIF experiments SO PHYSICS OF PLASMAS LA English DT Article ID NATIONAL-IGNITION-FACILITY; TARGETS AB An innovative technique has been developed and used to measure the shock propagation speed along two orthogonal axes in an inertial confinement fusion indirect drive implosion target. This development builds on an existing target and diagnostic platform for measuring the shock propagation along a single axis. A 0.4mm square aluminum mirror is installed in the ablator capsule which adds a second orthogonal view of the x-ray-driven shock speeds. The new technique adds capability for symmetry control along two directions of the shocks launched in the ablator by the laser-generated hohlraum x-ray flux. Laser power adjustments in four different azimuthal cones based on the results of this measurement can reduce time-dependent symmetry swings during the implosion. Analysis of a large data set provides experimental sensitivities of the shock parameters to the overall laser delivery and in some cases shows the effects of laser asymmetries on the pole and equator shock measurements. (C) 2014 AIP Publishing LLC. C1 [Moody, J. D.; Robey, H. F.; Celliers, P. M.; Munro, D. H.; Barker, D. A.; Baker, K. L.; Doeppner, T.; Hash, N. L.; Hopkins, L. Berzak; LaFortune, K.; Landen, O. L.; LePape, S.; MacGowan, B. J.; Ralph, J. E.; Ross, J. S.; Widmayer, C.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Nikroo, A.; Giraldez, E.] Gen Atom Co, San Diego, CA 92186 USA. [Boehly, T.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. RP Moody, JD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM moody4@llnl.gov RI lepape, sebastien/J-3010-2015 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We acknowledge the excellent help of Dr. Franck Philippe from CEA in France. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 26 TC 5 Z9 5 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2014 VL 21 IS 9 AR 092702 DI 10.1063/1.4893136 PG 12 WC Physics, Fluids & Plasmas SC Physics GA AQ4JC UT WOS:000342760900059 ER PT J AU Peterson, JL Clark, DS Masse, LP Suter, LJ AF Peterson, J. L. Clark, D. S. Masse, L. P. Suter, L. J. TI The effects of early time laser drive on hydrodynamic instability growth in National Ignition Facility implosions SO PHYSICS OF PLASMAS LA English DT Article ID INERTIAL CONFINEMENT FUSION; TAYLOR INSTABILITY; PHYSICS BASIS; FLUIDS AB Defects on inertial confinement fusion capsule surfaces can seed hydrodynamic instability growth and adversely affect capsule performance. The dynamics of shocks launched during the early period of x-ray driven National Ignition Facility (NIF) implosions determine whether perturbations will grow inward or outward at peak implosion velocity and final compression. In particular, the strength of the first shock, launched at the beginning of the laser pulse, plays an important role in determining Richtmyer-Meshkov (RM) oscillations on the ablation front. These surface oscillations can couple to the capsule interior through subsequent shocks before experiencing Rayleigh-Taylor (RT) growth. We compare radiation hydrodynamic simulations of NIF implosions to analytic theories of the ablative RM and RT instabilities to illustrate how early time laser strength can alter peak velocity growth. We develop a model that couples the RM and RT implosion phases and captures key features of full simulations. We also show how three key parameters can control the modal demarcation between outward and inward growth. (C) 2014 AIP Publishing LLC. C1 [Peterson, J. L.; Clark, D. S.; Suter, L. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Masse, L. P.] CEA, DAM, DIF, F-91297 Arpajon, France. RP Peterson, JL (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Masse, Laurent/F-1476-2016 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors would like to thank K. O. Mikaelian and H. F. Robey for useful discussions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 24 TC 23 Z9 23 U1 2 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2014 VL 21 IS 9 AR 092710 DI 10.1063/1.4896708 PG 16 WC Physics, Fluids & Plasmas SC Physics GA AQ4JC UT WOS:000342760900067 ER PT J AU Schmitt, JC Talmadge, JN Anderson, DT Hanson, JD AF Schmitt, J. C. Talmadge, J. N. Anderson, D. T. Hanson, J. D. TI Modeling, measurement, and 3-D equilibrium reconstruction of the bootstrap current in the Helically Symmetric Experiment SO PHYSICS OF PLASMAS LA English DT Article ID RADIAL ELECTRIC-FIELD; TOROIDAL PLASMAS; TRANSPORT-COEFFICIENTS; MAGNETIC DIAGNOSTICS; STELLARATORS; PROFILES; TOKAMAKS; W7-X AB The bootstrap current for three electron cyclotron resonance heated plasma scenarios in a quasihelically symmetric stellarator (the Helically Symmetric Experiment) are analyzed and compared to a neoclassical transport code PENTA. The three conditions correspond to 50kW input power with a resonance that is off-axis, 50kW on-axis heating and 100kW on-axis heating. When the heating location was moved from off-axis to on-axis with 50kW heating power, the stored energy and the extrapolated steady-state current were both observed to increase. When the on-axis heating power was increased from 50kW to 100 kW, the stored energy continued to increase while the bootstrap current slightly decreased. This trend is qualitatively in agreement with the calculations which indicate that a large positive electric field for the 100kW case was driving the current negative in a small region close to the magnetic axis and accounting for the decrease in the total integrated current. This trend in the calculations is only observed to occur when momentum conservation between particle species is included. Without momentum conservation, the calculated bootstrap current increases monotonically. We show that the magnitude of the bootstrap current as calculated by PENTA agrees better with the experiment when momentum conservation between plasma species is included in the calculation. The total current was observed in all cases to flow in a direction to unwind the transform, unlike in a tokamak in which the bootstrap current adds to the transform. The 3-D inductive response of the plasma is simulated to predict the evolution of the current profile during the discharge. The 3-D equilibrium reconstruction code V3FIT is used to reconstruct profiles of the plasma pressure and current constrained by measurements with a set of magnetic diagnostics. The reconstructed profiles are consistent with the measured plasma pressure profile and the simulated current profile when the reconstruction is constrained by the measured data from a diagnostic array that is internal to the vacuum chamber. (C) 2014 AIP Publishing LLC. C1 [Schmitt, J. C.; Talmadge, J. N.; Anderson, D. T.] Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA. [Hanson, J. D.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. RP Schmitt, JC (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU DOE [DE-FG02-93ER54222] FX Much gratitude and good thoughts in memory of Mike Frankowski, who always gave thoughtful advice throughout the years. Special thanks go to Paul Probert for the construction of the prototype external magnetic diagnostic system. This work was supported by DOE Grant DE-FG02-93ER54222. NR 34 TC 5 Z9 5 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2014 VL 21 IS 9 AR 092518 DI 10.1063/1.4895899 PG 12 WC Physics, Fluids & Plasmas SC Physics GA AQ4JC UT WOS:000342760900057 ER PT J AU Seo, J Chang, CS Ku, S Kwon, JM Choe, W Muller, SH AF Seo, Janghoon Chang, C. S. Ku, S. Kwon, J. M. Choe, W. Mueller, Stefan H. TI Intrinsic momentum generation by a combined neoclassical and turbulence mechanism in diverted DIII-D plasma edge SO PHYSICS OF PLASMAS LA English DT Article ID TOKAMAK PLASMA; TRANSPORT AB Fluid Reynolds stress from turbulence has usually been considered to be responsible for the anomalous toroidal momentum transport in tokamak plasma. Experiment by Muller et al. [Phys. Rev. Lett. 106, 115001 (2011)], however, reported that neither the observed edge rotation profile nor the inward momentum transport phenomenon at the edge region of an H-mode plasma could be explained by the fluid Reynolds stress measured with reciprocating Langmuir-probe. The full-function gyrokinetic code XGC1 is used to explain, for the first time, Muller et al.'s experimental observations. It is discovered that, unlike in the plasma core, the fluid Reynolds stress from turbulence is not sufficient for momentum transport physics in plasma edge. The "turbulent neoclassical" physics arising from the interaction between kinetic neoclassical orbit dynamics and plasma turbulence is key in the tokamak edge region across the plasma pedestal into core. (C) 2014 AIP Publishing LLC. C1 [Seo, Janghoon; Choe, W.] Korea Adv Inst Sci & Technol, Taejon 305701, South Korea. [Chang, C. S.; Ku, S.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Kwon, J. M.] Natl Fus Res Inst, Taejon 305806, South Korea. [Mueller, Stefan H.] Max Planck Inst Plasma Phys, D-85748 Garching, Germany. [Mueller, Stefan H.] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA. RP Seo, J (reprint author), Korea Adv Inst Sci & Technol, Taejon 305701, South Korea. RI Choe, Wonho/C-1556-2011; Ku, Seung-Hoe/D-2315-2009 OI Ku, Seung-Hoe/0000-0002-9964-1208 FU US DOE [DE-AC02-09CH11466, DE-FC02-04ER54698]; National Research Foundation of Korea (NRF) [2012-0005925, WCI 2009-001] FX The authors thank the DIII-D program and Dr. R. Maingi for providing the experimental data. The authors also thank Dr. J. Jose and Dr. J. Degrassie for helpful discussions. Work supported by US DOE under DE-AC02-09CH11466 and DE-FC02-04ER54698, and by the National Research Foundation of Korea (NRF) under 2012-0005925 and WCI 2009-001. This research used computing resources of NERSC (ERCAP) and OLCF (INCITE), which are DOE Office of Science user facilities. NR 28 TC 9 Z9 9 U1 3 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2014 VL 21 IS 9 AR 092501 DI 10.1063/1.4894242 PG 8 WC Physics, Fluids & Plasmas SC Physics GA AQ4JC UT WOS:000342760900040 ER PT J AU Shen, W Fu, GY Sheng, ZM Breslau, JA Wang, F AF Shen, Wei Fu, G. Y. Sheng, Zheng-Mao Breslau, J. A. Wang, Feng TI M3D-K simulations of sawteeth and energetic particle transport in tokamak plasmas SO PHYSICS OF PLASMAS LA English DT Article ID FAST-ION TRANSPORT; SAWTOOTH OSCILLATIONS; INTERNAL KINK; NEUTRON EMISSION; SPHERICAL TORI; REDISTRIBUTION; CRASHES; DISCHARGES; MODE; JET AB Nonlinear simulations of sawteeth and related energetic particle transport are carried out using the kinetic/magnetohydrodynamic (MHD) hybrid code M3D-K. MHD simulations show repeated sawtooth cycles for a model tokamak equilibrium. Furthermore, test particle simulations are carried out to study the energetic particle transport due to a sawtooth crash. The results show that energetic particles are redistributed radially in the plasma core, depending on pitch angle and energy. For trapped particles, the redistribution occurs for particle energy below a critical value in agreement with existing theories. For co-passing particles, the redistribution is strong with little dependence on particle energy. In contrast, the redistribution level of counter-passing particles decreases with increasing particle energy. (C) 2014 AIP Publishing LLC. C1 [Shen, Wei; Sheng, Zheng-Mao] Zhejiang Univ, Inst Fus Theory & Simulat, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China. [Fu, G. Y.; Breslau, J. A.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Wang, Feng] Dalian Univ Technol, Sch Phys & Optoelect Engn, Dalian 116024, Peoples R China. RP Shen, W (reprint author), Zhejiang Univ, Inst Fus Theory & Simulat, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China. FU U.S. Department of Energy [DE-AC02-09CH11466]; NSF of China [11075140]; ITER-CN [2013GB104004, 2009GB105005]; Fundamental Research Fund for Chinese Central Universities FX One of authors (Wei Shen) gratefully thanks Professor Liu Chen and Professor Zhiwei Ma for valuable comments. He also thanks Huishan Cai, Deyong Liu, Zhiyong Qiu, Jia Zhu, Sheng Wang, and Zhichen Feng for helpful discussions. This work was supported by U.S. Department of Energy under DE-AC02-09CH11466, the NSF of China under Grants No. 11075140, the ITER-CN under Grant Nos. 2013GB104004 and 2009GB105005, and Fundamental Research Fund for Chinese Central Universities. The simulations were carried out using the supercomputers Hopper and Edison at NERSC. NR 37 TC 3 Z9 3 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2014 VL 21 IS 9 AR 092514 DI 10.1063/1.4896341 PG 11 WC Physics, Fluids & Plasmas SC Physics GA AQ4JC UT WOS:000342760900053 ER PT J AU Yi, SA Simakov, AN Wilson, DC Olson, RE Kline, JL Clark, DS Hammel, BA Milovich, JL Salmonson, JD Kozioziemski, BJ Batha, SH AF Yi, S. A. Simakov, A. N. Wilson, D. C. Olson, R. E. Kline, J. L. Clark, D. S. Hammel, B. A. Milovich, J. L. Salmonson, J. D. Kozioziemski, B. J. Batha, S. H. TI Hydrodynamic instabilities in beryllium targets for the National Ignition Facility SO PHYSICS OF PLASMAS LA English DT Article ID INERTIAL CONFINEMENT FUSION; RAYLEIGH-TAYLOR EXPERIMENTS; PHYSICS BASIS; NIF TARGETS; CAPSULES; DESIGN; PLASMA; GAIN; NOVA; SIMULATIONS AB Beryllium ablators offer higher ablation velocity, rate, and pressure than their carbon-based counterparts, with the potential to increase the probability of achieving ignition at the National Ignition Facility (NIF) [E.I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We present here a detailed hydrodynamic stability analysis of low (NIF Revision 6.1) and high adiabat NIF beryllium target designs. Our targets are optimized to fully utilize the advantages of beryllium in order to suppress the growth of hydrodynamic instabilities. This results in an implosion that resists breakup of the capsule, and simultaneously minimizes the amount of ablator material mixed into the fuel. We quantify the improvement in stability of beryllium targets relative to plastic ones, and show that a low adiabat beryllium capsule can be at least as stable at the ablation front as a high adiabat plastic target. (C) 2014 AIP Publishing LLC. C1 [Yi, S. A.; Simakov, A. N.; Wilson, D. C.; Olson, R. E.; Kline, J. L.; Batha, S. H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Clark, D. S.; Hammel, B. A.; Milovich, J. L.; Salmonson, J. D.; Kozioziemski, B. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Yi, SA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM austinyi@lanl.gov OI Simakov, Andrei/0000-0001-7064-9153; Kline, John/0000-0002-2271-9919 FU U.S. Department of Energy [DE-AC52-06NA25396, DE-AC52-07NA27344] FX We are grateful to D. A. Callahan, S. W. Haan, O. S. Jones, M. M. Marinak, T. R. Dittrich, P. A. Sterne, A. Nikroo, K. P. Youngblood, H. Huang, H. W. Xu, D. Hoover, and others for multiple enlightening discussions. This work was performed at Los Alamos National Laboratory, operated by Los Alamos National Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-06NA25396 and at Lawrence Livermore National Laboratory, operated by Lawrence Livermore National Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344. NR 60 TC 13 Z9 13 U1 2 U2 17 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2014 VL 21 IS 9 AR 092701 DI 10.1063/1.4894112 PG 14 WC Physics, Fluids & Plasmas SC Physics GA AQ4JC UT WOS:000342760900058 ER PT J AU Yin, L Albright, BJ Rose, HA Montgomery, DS Kline, JL Kirkwood, RK Milovich, J Finnegan, SM Bergen, B Bowers, KJ AF Yin, L. Albright, B. J. Rose, H. A. Montgomery, D. S. Kline, J. L. Kirkwood, R. K. Milovich, J. Finnegan, S. M. Bergen, B. Bowers, K. J. TI Stimulated scattering in laser driven fusion and high energy density physics experiments SO PHYSICS OF PLASMAS LA English DT Article ID DECAY INSTABILITY; PLASMA; WAVES AB In laser driven fusion and high energy density physics experiments, one often encounters a kkD range of 0.15< k lambda(D)< 0.5, where stimulated Raman scattering (SRS) is active (k is the initial electron plasma wave number and lambda(D) is the Debye length). Using particle-in-cell simulations, the SRS reflectivity is found to scale as similar to (k lambda(D))(-4) for k lambda(D) >= 0.3 where electron trapping effects dominate SRS saturation; the reflectivity scaling deviates from the above for k lambda(D) < 0.3 when Langmuir decay instability (LDI) is present. The SRS risk is shown to be highest for k lambda(D) between 0.2 and 0.3. SRS re-scattering processes are found to be unimportant under conditions relevant to ignition experiments at the National Ignition Facility (NIF). Large-scale simulations of the hohlraum plasma show that the SRS wavelength spectrum peaks below 600 nm, consistent with most measured NIF spectra, and that nonlinear trapping in the presence of plasma gradients determines the SRS spectral peak. Collisional effects on SRS, stimulated Brillouin scattering (SBS), LDI, and re-scatter, together with three dimensional effects, are examined. Effects of collisions are found to include de-trapping as well as cross-speckle electron temperature variation from collisional heating, the latter of which reduces gain, introduces a positive frequency shift that counters the trapping-induced negative frequency shift, and affects SRS and SBS saturation. Bowing and breakup of ion-acoustic wavefronts saturate SBS and cause a dramatic, sharp decrease in SBS reflectivity. Mitigation of SRS and SBS in the strongly nonlinear trapping regime is discussed. (C) 2014 AIP Publishing LLC. C1 [Yin, L.; Albright, B. J.; Rose, H. A.; Montgomery, D. S.; Kline, J. L.; Finnegan, S. M.; Bergen, B.; Bowers, K. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kirkwood, R. K.; Milovich, J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Yin, L (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM lyin@lanl.gov OI Albright, Brian/0000-0002-7789-6525; Yin, Lin/0000-0002-8978-5320; Kline, John/0000-0002-2271-9919 FU U.S. Deptartment of Energy by the Los Alamos National Security, LLC Los Alamos National Laboratory; DOE NNSA; LANL Directed Research and Development (LDRD) Program; DOE Office of Fusion Energy Science FX This work was performed under the auspices of the U.S. Deptartment of Energy by the Los Alamos National Security, LLC Los Alamos National Laboratory and was supported by DOE NNSA Funding for ICF, by the LANL Directed Research and Development (LDRD) Program, and by the DOE Office of Fusion Energy Science. The authors acknowledge stimulating discussions with Dr. Richard L. Berger. VPIC simulations were run on ASC Roadrunner and Cielo. The authors acknowledge stimulating discussions with B. Afeyan on the STUD pulse technique. NR 49 TC 6 Z9 6 U1 3 U2 19 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2014 VL 21 IS 9 AR 092707 DI 10.1063/1.4895504 PG 17 WC Physics, Fluids & Plasmas SC Physics GA AQ4JC UT WOS:000342760900064 ER PT J AU Zakharov, LE Li, XJ AF Zakharov, Leonid E. Li, Xujing TI Comment on "Velocity boundary conditions at a tokamak resistive wall" [Phys. Plasmas 21, 032506 (2014)] SO PHYSICS OF PLASMAS LA English DT Editorial Material AB The paper gives the derivation of the MHD boundary condition for the plasma flow to the wall during disruptions. (C) 2014 AIP Publishing LLC. C1 [Zakharov, Leonid E.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Li, Xujing] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, Beijing, Peoples R China. RP Zakharov, LE (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 7 TC 2 Z9 2 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2014 VL 21 IS 9 AR 094701 DI 10.1063/1.4894533 PG 2 WC Physics, Fluids & Plasmas SC Physics GA AQ4JC UT WOS:000342760900104 ER PT J AU Thakur, P Van Luik, AE AF Thakur, Punam Van Luik, Abraham E. TI Binary and ternary complexation of NpO2+ with carboxylate and aminocarboxylate ligands SO RADIOCHIMICA ACTA LA English DT Article DE Neptunium; Complexation; Thermodynamics; Carboxylates; Aminocarboxylates ID HIGH IONIC-STRENGTH; NEPTUNIUM(V) COMPLEXATION; VARIABLE TEMPERATURES; DICARBOXYLIC-ACIDS; SOLVENT-EXTRACTION; ORGANIC-LIGANDS; THERMODYNAMICS; NP(V); OXALATE; EDTA AB The complex formation of NpO2+ with carboxylates: oxalic acid (Ox), malonic acid (Mal) succinic acid (Suc); glutaric acid (Glu), methylmalonic acid (Memal), oxydiacetic acid (ODA), TDA (thiodiacetic acid) and citric acid (Cit) and aminocarboxylates: iminodiacetic acid (IDA), methyliminodiacetic acid (MIDA),nitrilotriacetic acid (NTA), 2-hydroxyethylethylenediamine triacetic acid (HEDTA),ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) was studied by solvent extraction in 6.60 m NaClO4 at 25 degrees C. The formation of only the 1 : 1 NpO2+ complex was observed with the ligands under investigation. The complexation of NpO2+ with Ox, IDA, ODA and TDA was also measured at variable temperatures ranging from 25-60 degrees C in 6.60 m NaClO4. Results show that the complexation of NpO2+ with these ligands increases with increasing temperature. The enthalpy and entropy of complexation of NpO2+ were calculated from the temperature dependence of the stability constants using the Van't Hoff equation. Additionally, the formation of an aqueous ternary complex of the form NpO2(X)(L) (X = EDTA or HEDTA; L = Ox or ODA) was identified for NpO2+ at 25 degrees C. Stabilities of these complexes are measured and discussed in term of their structures and basicities. C1 [Thakur, Punam] Florida State Univ, Dept Chem & Biochem, Tallahassee, FL 32306 USA. [Van Luik, Abraham E.] US DOE, Carlsbad Field Off, Carlsbad, NM 88220 USA. RP Thakur, P (reprint author), Carlsbad Environm Monitoring & Res Ctr, 1400 Univ Dr, Carlsbad, NM 88220 USA. EM pthakur@cemrc.org FU USDOE-Office of Basic Energy Sciences FX This research was conducted by the primary author with support from the USDOE-Office of Basic Energy Sciences. NR 53 TC 1 Z9 1 U1 2 U2 11 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0033-8230 J9 RADIOCHIM ACTA JI Radiochim. Acta PD SEP PY 2014 VL 102 IS 9 BP 781 EP 796 DI 10.1515/ract-2013-2205 PG 16 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA AQ3YZ UT WOS:000342730700003 ER PT J AU Rai, D Felmy, AR Moore, DA Kitamura, A Yoshikawa, H Doi, R Yoshida, Y AF Rai, Dhanpat Felmy, Andrew R. Moore, Dean A. Kitamura, Akira Yoshikawa, Hideki Doi, Reisuke Yoshida, Yasushi TI Thermodynamic model for the solubility of BaSeO4(cr) in the aqueous Ba2+-SeO42--Na+-H+-OH--H2O system: Extending to high selenate concentrations SO RADIOCHIMICA ACTA LA English DT Article DE Solubility product; Equilibrium constants; Selenate complexes; Barium; SIT model; Pitzer model ID 25-DEGREES-C; EQUILIBRIUM AB The aqueous solubility of BaSeO4 (cr) was studied at 23 +/- 2 degrees C as a function of Na2SeO4 concentrations (0.0001 to 4.1 mol kg(-1)) and equilibration periods (3 to 596 d). The equilibrium, approached from both the under-and over-saturation directions, in this system was reached rather rapidly (<= 3 d). The SIT and Pitzer's ion-interaction models were used to interpret these data and the predictions based on both of these models agreed closely with the experimental data. Thermodynamic analyses of the data show that BaSeO4 (cr) is the solubility-controlling phase for Na2SeO4 concentrations <0.59 mol kg(-1). The log(10) K-0 value for the BaSeO4 (cr) solubility product (BaSeO4 (cr) Ba2+ + SeO42- calculated by the SIT and Pitzer models were very similar (-7.32 +/- 0.07 with Pitzer and -7.25 +/- 0.11 with SIT). Although the BaSeO4 (cr) solubility product and Ba concentrations as a function of Na2SeO4 concentrations predicted by both the SIT and Pitzer models are similar, the models required different sets of fitting parameters. For examples, 1) interpretations using the SIT model required the inclusion of Ba(SeO4)(2)(2-) species with log(10) K-0 = 3.44 +/- 0.12 for the reaction (Ba2+ + 2SeO(4)(2-) Ba(SeO4)(2)(2-)), whereas these species are not needed for Pitzer model, and 2) at Na2SeO4 concentrations >0.59 mol kg(-1) it was also possible to calculate the value for log(10) K-0 for the solubility product of a proposed double salt (Na2Ba(SeO4)(2)(s) 2Na(+) + Ba2+ + 2SeO(4)(2-)) which for the SIT model is -(8.70 +/- 0.29) whereas for the Pitzer model it is -(9.19 +/- 0.19). The ion-interaction/ion-association parameters hitherto unavailable for both the SIT and Pitzer models required to fit these extensive data extending to as high ionic strengths as 12.3 mol kg(-1) were determined. The model developed in this study is consistent with all of the reliable literature data, which was also used to extend the model to barium concentrations as high as 0.22 mol kg(-1) and pH ranging from 1.4 to 13.8, in addition to selenium concentrations as high as 4.1 mol kg(-1). C1 [Rai, Dhanpat] Rai Envirochem LLC, Yachats, OR 97498 USA. [Felmy, Andrew R.; Moore, Dean A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Kitamura, Akira; Yoshikawa, Hideki; Doi, Reisuke; Yoshida, Yasushi] Japan Atom Energy Agcy, Tokai, Ibaraki, Japan. RP Rai, D (reprint author), Rai Envirochem LLC, Yachats, OR 97498 USA. EM dhan.rai@raienvirochem.com FU Japan Atomic Energy Agency (JAEA) FX The experimental data discussed in this manuscript was obtained at Pacific Northwest National Laboratory. The senior author thanks Japan Atomic Energy Agency (JAEA) for providing him with the funds to interpret the data and prepare this manuscript. NR 26 TC 0 Z9 0 U1 3 U2 7 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0033-8230 J9 RADIOCHIM ACTA JI Radiochim. Acta PD SEP PY 2014 VL 102 IS 9 BP 817 EP 830 DI 10.1515/ract-2013-2206 PG 14 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA AQ3YZ UT WOS:000342730700007 ER PT J AU Windler, GK Pagoria, PF Vollhardt, KPC AF Windler, G. Kenneth Pagoria, Philip F. Vollhardt, K. Peter C. TI Nitroalkynes: A Unique Class of Energetic Materials SO SYNTHESIS-STUTTGART LA English DT Review DE alkynes; cycloaddition; cycloreversion; nitration; elimination; nucleophilic addition; organic explosives ID DIELS-ALDER REACTION; N-OXIDE ONCCNO; NITRILE OXIDES; AB-INITIO; MOLECULAR HYPERPOLARIZABILITY; DISUBSTITUTED ACETYLENES; ANTHRACENE CYCLOADDUCTS; SUBSTITUTED ACETYLENES; DINITROGEN TETROXIDE; NITROACETYLENES AB Forty-five years after their first preparation, nitroalkynes retain interest for their unique chemical behavior and their potential as energetic materials. This review encompasses the physical and spectral properties, synthesis, reactivity, metal complexes, and theoretical studies of nitroalkynes not previously reviewed, and those prepared after 1973. C1 [Windler, G. Kenneth; Vollhardt, K. Peter C.] Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. [Windler, G. Kenneth; Pagoria, Philip F.] Lawrence Livermore Natl Lab, High Explos Applicat Facil, Livermore, CA 94550 USA. RP Windler, GK (reprint author), Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. EM kpcv@berkeley.edu FU NSF [CHE-0907800]; Lawrence Scholars Program; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Lawrence Livermore National Security, LLC [LLNL-JRNL-652977] FX We are indebted to Professor Volker Jager for his gracious correspondence, copies of two student theses, and his help in finding several other dissertations containing otherwise unpublished data. We are also grateful to Dr. Kurt Baum and Dr. Christopher Woltermann for their invaluable input, and Professor Phil Eaton and Dr. Mao-Xi Zhang for their advice and details of unpublished data. Support by the NSF (CHE-0907800, K. P. C. V) and the Lawrence Scholars Program is acknowledged. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344, Lawrence Livermore National Security, LLC, LLNL-JRNL-652977. NR 154 TC 0 Z9 0 U1 4 U2 44 PU GEORG THIEME VERLAG KG PI STUTTGART PA RUDIGERSTR 14, D-70469 STUTTGART, GERMANY SN 0039-7881 EI 1437-210X J9 SYNTHESIS-STUTTGART JI Synthesis PD SEP PY 2014 VL 46 IS 18 BP 2383 EP 2412 DI 10.1055/s-0034-1378662 PG 30 WC Chemistry, Organic SC Chemistry GA AQ1TZ UT WOS:000342565800001 ER PT J AU Henderson, HB Rios, O Bryan, ZL Heitman, CPK Ludtka, GM Mackiewicz-Ludtka, G Melin, AM Manuel, MV AF Henderson, Hunter B. Rios, Orlando Bryan, Zachary L. Heitman, Cody P. K. Ludtka, Gerard M. Mackiewicz-Ludtka, Gail Melin, Alexander M. Manuel, Michele V. TI Magneto-Acoustic Mixing Technology: A Novel Method of Processing Metal-Matrix Nanocomposites SO ADVANCED ENGINEERING MATERIALS LA English DT Article ID HIGH MAGNETIC-FIELDS; ELECTROMAGNETIC VIBRATIONS; ALUMINUM-ALLOYS; MOLTEN ALUMINUM; SOLIDIFICATION; MICROSTRUCTURE; MAGNESIUM; COMPOSITES C1 [Henderson, Hunter B.; Bryan, Zachary L.; Heitman, Cody P. K.; Manuel, Michele V.] Univ Florida, Gainesville, FL 32611 USA. [Rios, Orlando; Ludtka, Gerard M.; Mackiewicz-Ludtka, Gail; Melin, Alexander M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Henderson, HB (reprint author), Univ Florida, 100 Rhines Hall,POB 116400, Gainesville, FL 32611 USA. EM mmanuel@mse.ufl.edu RI Manuel, Michele/A-8795-2009; Rios, Orlando/E-6856-2017 OI Manuel, Michele/0000-0002-3495-7826; Rios, Orlando/0000-0002-1814-7815 FU National Science Foundation [DMR-0845868, IRES-1129412]; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office [DE-AC05-00OR22725]; UT-Battelle, LLC. FX The authors acknowledge the National High Magnetic Field Laboratory, Tallahassee, FL, for the generous use of their DC magnet facilities and the Manufacturing Demonstration Facility at Oak Ridge National Laboratory for providing sample handing and electromagnetic processing apparatus. This material is based upon work supported by the National Science Foundation under grant numbers DMR-0845868 and IRES-1129412. The research sponsored was in part by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. Additionally, the authors acknowledge assistance by Dr. Quadir Zakaria at the Electron Microscopy Unit of the University of New South Wales with their assistance with the EBSD. Additionally, the authors would like to thank Professor Gregory Thompson and the Central Analytical Facility at the University of Alabama-Tuscaloosa in their assistance with TEM (Supporting Information is available online from Wiley Online Library or from the author). NR 35 TC 0 Z9 0 U1 1 U2 19 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1438-1656 EI 1527-2648 J9 ADV ENG MATER JI Adv. Eng. Mater. PD SEP PY 2014 VL 16 IS 9 BP 1078 EP 1082 DI 10.1002/adem.201300534 PG 5 WC Materials Science, Multidisciplinary SC Materials Science GA AP7UI UT WOS:000342282000002 ER PT J AU Breshears, DD Whicker, JJ Saez, AE Field, JP AF Breshears, David D. Whicker, Jeffrey J. Saez, Avelino Eduardo Field, Jason P. TI Introduction to a Special Issue of Aeolian Research Airborne mineral dust contaminants: Impacts on human health and the environment SO AEOLIAN RESEARCH LA English DT Editorial Material ID TRANSPORT; SEDIMENT; DISTURBANCE; OPERATIONS; WIND C1 [Breshears, David D.; Field, Jason P.] Univ Arizona, Sch Nat Resources & Environm, Tucson, AZ 85721 USA. [Breshears, David D.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ USA. [Whicker, Jeffrey J.] Los Alamos Natl Lab, Environm Stewardship Grp, Los Alamos, NM USA. [Saez, Avelino Eduardo] Univ Arizona, Dept Chem & Environm Engn, Tucson, AZ USA. RP Breshears, DD (reprint author), Univ Arizona, Sch Nat Resources & Environm, Tucson, AZ 85721 USA. EM daveb@email.arizona.edu RI Saez, Avelino/K-1136-2016 OI Saez, Avelino/0000-0002-3548-6325 FU NIEHS NIH HHS [P42 ES004940] NR 15 TC 0 Z9 0 U1 0 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1875-9637 EI 2212-1684 J9 AEOLIAN RES JI Aeolian Res. PD SEP PY 2014 VL 14 SI SI BP 1 EP 2 DI 10.1016/j.aeolia.2014.05.001 PG 2 WC Geography, Physical SC Physical Geography GA AP7LZ UT WOS:000342260100001 PM 25598857 ER PT J AU Merino-Martin, L Field, JP Villegas, JC Whicker, JJ Breshears, DD Law, DJ Urgeghe, AM AF Merino-Martin, Luis Field, Jason P. Villegas, Juan Camilo Whicker, Jeffrey J. Breshears, David D. Law, Darin J. Urgeghe, Anna M. TI Aeolian sediment and dust fluxes during predominant "background" wind conditions for unburned and burned semiarid grassland: Interplay between particle size and temporal scale SO AEOLIAN RESEARCH LA English DT Article DE Wind erosion; Dust measurement; Particle size; Aerosol; Soil ID WATER EROSION; UNITED-STATES; EMISSIONS; TRANSPORT; USA; ECOSYSTEMS; MANAGEMENT; VEGETATION; SHRUBLAND; SURFACES AB Monitoring of aeolian transport is needed for assessment and management of human health risks as well as for soil resources. Human health risks are assessed based on duration of exposure as well as concentration. Many aeolian studies focus on periods of high wind speed when concentrations are greatest but few studies focus on "background" conditions when concentrations are likely lower but which represent the most prevalent conditions. Such "background" conditions might be especially important at sites with recent disturbance such as fire. Exposure assessments also require improved understanding relating longer-term (days to weeks) measurements of saltation of larger particles to shorter-term (minutes to hours) measurements of smaller inhalable dust particles. To address these issues, we employed three commonly used instruments for measuring dust emissions for unburned and recently-burned sites: Big Springs Number Eight (BSNE) samplers for larger saltating soil particles (>50 mu m) with weekly to monthly sampling resolution, DustTraks for suspended particles (diameters <10 mu m) with 1-s sampling resolution, and Total Suspended Particulate (TSP) filter samplers for measuring with hourly to daily sampling resolution. Significant differences in concentrations between burned and unburned sites were detectable in either short (1-s maximum) interval DustTrak PM10 measurements, or in longer term (weekly) BSNE horizontal sediment flux measurements, but not in intermediate-term (daily 5-h means) for either DustTrak PM10 or TSP measurements. The results highlight ongoing dust emissions during less windy periods and provide insight into the complex interplay among particle-size dependent measures and typical time scales measured. (C) 2014 Elsevier B.V. All rights reserved. C1 [Merino-Martin, Luis] Kings Pk & Bot Gardens, Bot Gardens & Pk Author, Perth, WA 6005, Australia. [Merino-Martin, Luis] Univ Western Australia, Sch Plant Biol, Nedlands, WA 6009, Australia. [Field, Jason P.; Breshears, David D.; Law, Darin J.] Univ Arizona, Sch Nat Resources & Environm, Tucson, AZ USA. [Villegas, Juan Camilo] Univ Antioquia, Fac Ingn, Escuela Ambiental, Medellin, Colombia. [Whicker, Jeffrey J.] Los Alamos Natl Lab, Environm Stewardship Grp, Los Alamos, NM USA. [Breshears, David D.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ USA. [Urgeghe, Anna M.] Univ Alicante, Dept Ecol, E-03080 Alicante, Spain. RP Merino-Martin, L (reprint author), Univ Western Australia, Sch Plant Biol, Nedlands, WA 6009, Australia. EM luis.merinomartin@bgpa.wa.gov.au RI Merino-Martin, Luis/H-7207-2013 OI Merino-Martin, Luis/0000-0002-0343-0546 FU Universidad de Alcala; National Science Foundation [DEB 0816162]; University of Arizona - Universidad Nacional Autonoma Mexico Consortiuum on Drylands [15]; Los Alamos National Laboratory; Department of Energy [W7405 ENG-36] FX The authors specifically wish to acknowledge Drs. Enrique de la Montana, Miguel Pineros and Mitch McClaran for their help. This work was supported by Universidad de Alcala (LMM), National Science Foundation DEB 0816162, the University of Arizona - Universidad Nacional Autonoma Mexico Consortiuum on Drylands (#15), and Los Alamos National Laboratory with funding from the Department of Energy under contract W7405 ENG-36. NR 41 TC 1 Z9 1 U1 2 U2 20 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1875-9637 EI 2212-1684 J9 AEOLIAN RES JI Aeolian Res. PD SEP PY 2014 VL 14 SI SI BP 97 EP 103 DI 10.1016/j.aeolia.2014.02.004 PG 7 WC Geography, Physical SC Physical Geography GA AP7LZ UT WOS:000342260100009 ER PT J AU Whicker, JJ Breshears, DD Field, JP AF Whicker, Jeffrey J. Breshears, David D. Field, Jason P. TI Progress on relationships between horizontal and vertical dust flux: Mathematical, empirical and risk-based perspectives SO AEOLIAN RESEARCH LA English DT Article DE Contaminant transport; Wind erosion; Risk assessment; Saltation; Suspension; Dust ID MODELING AEOLIAN TRANSPORT; WIND EROSION; MU-M; DISTURBANCE; GRASSLAND; VEGETATION; EMISSION; WILDFIRE; COVER; SOILS AB Aeolian processes driving sediment flux and corresponding erosion are inherently 3-dimensional, but are primarily studied either with respect to the horizontal flux component, or to a lesser extent the vertical component. Understanding the relationship between horizontal flux and the vertical component of sediment and dust is critical to predicting fundamental processes such as erosion, and to assessing human and environmental risks associated with contaminated sediment and dust. Multiple mathematical approaches to calculate vertical flux of dust exist but are limited in their ability to predict vertical flux across a wide variety of landscapes and soil conditions. To address these issues, here we explore the relationship between horizontal and vertical fluxes from three perspectives: mathematical, based on existing equations; empirical, based on existing and new data; and risk-based, based on translating the former two into a risk context. Mathematical derivations suggest, depending on the approach, the two components could either be a constant ratio or that the vertical flux could be more dependent on the shear stress and particle size than horizontal flux. Empirical data highlight a wide range of ratios, varying by more than two orders of magnitude, though the ratios can be relatively similar within a given site and set of conditions. Risk-based assessment indicates the vertical flux component is relatively important in dose calculations, and consequently further improvement in mathematical and empirical relationships is needed. Collectively, these three perspectives expand insights on horizontal and vertical sediment fluxes and could aide future risk assessment from dust contaminants. (C) 2013 Elsevier B.V. All rights reserved. C1 [Whicker, Jeffrey J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Breshears, David D.] Univ Arizona, Sch Nat Resources, Tucson, AZ USA. [Breshears, David D.] Inst Study Planet Earth, Tucson, AZ USA. [Breshears, David D.] Dept Ecol & Evolutionary Biol, Tucson, AZ USA. [Field, Jason P.] Univ Arizona, Sch Nat Resources & Environm, Tucson, AZ USA. RP Whicker, JJ (reprint author), Los Alamos Natl Lab, Mail Stop J978, Los Alamos, NM 87545 USA. EM jjwhicker@lanl.gov FU Department of Energy through Los Alamos National Laboratory [W7405 ENG]; National Science Foundation [NSF-DEB 0816162]; National Science Foundation (Jemez River Basin - Santa Catalina Mountains Critical Zone Observatory) [NSF-EAR-0724958, NSF-EAR-1331408]; Arizona Agricultural Experiment Station FX We would like to thank Erika Michelloti for editorial work on this manuscript. This research was supported partially through the Department of Energy through Los Alamos National Laboratory under contract W7405 ENG. We also acknowledge funding through the National Science Foundation (NSF-DEB 0816162 and the Jemez River Basin - Santa Catalina Mountains Critical Zone Observatory; NSF-EAR-0724958 and NSF-EAR-1331408) and the Arizona Agricultural Experiment Station. NR 46 TC 2 Z9 2 U1 1 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1875-9637 EI 2212-1684 J9 AEOLIAN RES JI Aeolian Res. PD SEP PY 2014 VL 14 SI SI BP 105 EP 111 DI 10.1016/j.aeolia.2013.12.001 PG 7 WC Geography, Physical SC Physical Geography GA AP7LZ UT WOS:000342260100010 ER PT J AU Chen, K Kiriya, D Hettick, M Tosun, M Ha, TJ Madhvapathy, SR Desai, S Sachid, A Javey, A AF Chen, Kevin Kiriya, Daisuke Hettick, Mark Tosun, Mahmut Ha, Tae-Jun Madhvapathy, Surabhi Rao Desai, Sujay Sachid, Angada Javey, Ali TI Air stable n-doping of WSe2 by silicon nitride thin films with tunable fixed charge density SO APL MATERIALS LA English DT Article ID TRANSITION-METAL DICHALCOGENIDES; TEMPERATURE SURFACE PASSIVATION; SOLAR-CELLS; MOS2 TRANSISTORS; MONOLAYER WSE2; CONTACTS; MOBILITY; MOSFETS; DIODES AB Stable n-doping of WSe2 using thin films of SiNx deposited on the surface via plasmaenhanced chemical vapor deposition is presented. Positive fixed charge centers inside SiNx act to dope WSe2 thin flakes n-type via field-induced effect. The electron concentration in WSe2 can be well controlled up to the degenerate limit by simply adjusting the stoichiometry of the SiNx through deposition process parameters. For the high doping limit, the Schottky barrier width at the metal/WSe2 junction is significantly thinned, allowing for efficient electron injection via tunneling. Using this doping scheme, we demonstrate air-stable WSe2 n-MOSFETs with a mobility of 70 cm2/V s. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Javey, Ali] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Javey, A (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM ajavey@eecs.berkeley.edu RI Javey, Ali/B-4818-2013 FU NSF NASCENT Center; Office of Science, Office of Basic Energy Sciences, Material Sciences and Engineering Division, U.S. Department of Energy [DE-AC02-05CH11231]; Center for Low Energy Systems Technology (LEAST) - STARnet phase of the Focus Center Research Program (FCRP); Semiconductor Research Corporation program - MARCO; DARPA FX Deposition of SiNx was funded by the NSF NASCENT Center. Other material processing and characterization was funded by the Director, Office of Science, Office of Basic Energy Sciences, Material Sciences and Engineering Division, U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. Device fabrication was funded by the Center for Low Energy Systems Technology (LEAST), one of six centers supported by the STARnet phase of the Focus Center Research Program (FCRP), a Semiconductor Research Corporation program sponsored by MARCO and DARPA. NR 31 TC 20 Z9 20 U1 2 U2 60 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD SEP PY 2014 VL 2 IS 9 AR 092504 DI 10.1063/1.4891824 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA AQ1UO UT WOS:000342568000007 ER PT J AU Kappera, R Voiry, D Yalcin, SE Jen, W Acerce, M Torrel, S Branch, B Lei, SD Chen, WB Najmaei, S Lou, J Ajayan, PM Gupta, G Mohite, AD Chhowalla, M AF Kappera, Rajesh Voiry, Damien Yalcin, Sibel Ebru Jen, Wesley Acerce, Muharrem Torrel, Sol Branch, Brittany Lei, Sidong Chen, Weibing Najmaei, Sina Lou, Jun Ajayan, Pulickel M. Gupta, Gautam Mohite, Aditya D. Chhowalla, Manish TI Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2 SO APL MATERIALS LA English DT Article ID SINGLE-LAYER MOS2; MONOLAYER MOLYBDENUM-DISULFIDE; HYDROGEN EVOLUTION; ATOMIC LAYERS; CONTACTS; NANOSHEETS; WS2; CHEMISTRY; MECHANISM AB Two dimensional transition metal dichalcogenides (2D TMDs) offer promise as optoelectronic materials due to their direct band gap and reasonably good mobility values. However, most metals form high resistance contacts on semiconducting TMDs such as MoS2. The large contact resistance limits the performance of devices. Unlike bulk materials, low contact resistance cannot be stably achieved in 2D materials by doping. Here we build on our previous work in which we demonstrated that it is possible to achieve low contact resistance electrodes by phase transformation. We show that similar to the previously demonstrated mechanically exfoliated samples, it is possible to decrease the contact resistance and enhance the I-ET performance by locally inducing and patterning the metallic IT phase of MoS2 on chemically vapor deposited material. The device properties are substantially improved with IT phase source/drain electrodes. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported C1 [Kappera, Rajesh; Voiry, Damien; Jen, Wesley; Acerce, Muharrem; Torrel, Sol; Chhowalla, Manish] Rutgers State Univ, Piscataway, NJ 08854 USA. [Yalcin, Sibel Ebru; Branch, Brittany; Gupta, Gautam; Mohite, Aditya D.] Los Alamos Natl Lab, MPA Mat Synth & Integrated Devices 11, Los Alamos, NM 87545 USA. [Lei, Sidong; Chen, Weibing; Najmaei, Sina; Lou, Jun; Ajayan, Pulickel M.] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA. RP Chhowalla, M (reprint author), Rutgers State Univ, 607 Taylor Rd, Piscataway, NJ 08854 USA. EM manish1@rci.rutgers.edu RI Lei, Sidong/A-8600-2016; Voiry, Damien/G-3541-2016; OI Lei, Sidong/0000-0001-9129-2202; Voiry, Damien/0000-0002-1664-2839; Kappera, Rajesh/0000-0003-1792-4405; MOHITE, ADITYA/0000-0001-8865-409X NR 32 TC 27 Z9 27 U1 15 U2 97 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD SEP PY 2014 VL 2 IS 9 AR 092516 DI 10.1063/14896077 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA AQ1UO UT WOS:000342568000019 ER PT J AU Sutter, P Sutter, E AF Sutter, P. Sutter, E. TI Thickness determination of few-layer hexagonal boron nitride films by scanning electron microscopy and Auger electron spectroscopy SO APL MATERIALS LA English DT Article ID FIELD-EFFECT TRANSISTORS; GRAPHENE HETEROSTRUCTURES; MOS2 AB We assess scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) for thickness measurements on few-layer hexagonal boron nitride (h-BN), the layered dielectric of choice for integration with graphene and other two-dimensional materials. Observations on h-BN islands with large, atomically flat terraces show that the secondary electron intensity in SEM reflects monolayer height changes in films up to least 10 atomic layers thickness. From a quantitative analysis of AES data, the energy-dependent electron escape depth in h-BN films is deduced. The results show that AES is suitable for absolute thickness measurements of few-layer h-BN of 1 to 6 layers. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Sutter, P.; Sutter, E.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Sutter, P (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM psutter@bnl.gov FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Research carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 24 TC 4 Z9 4 U1 5 U2 52 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD SEP PY 2014 VL 2 IS 9 AR 092502 DI 10.1063/1.4889815 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA AQ1UO UT WOS:000342568000005 ER PT J AU Hock, K Earle, K AF Hock, Kiel Earle, Keith TI Information Theory Applied to Parameter Inference of Pake Doublet Spectra SO APPLIED MAGNETIC RESONANCE LA English DT Article AB Magnetic resonance absorption lineshapes can have subtle dependencies on the model parameters that specify the lineshape. To quantify how the model parameters influence the lineshape, it is useful to study simple model systems for which analytical expressions are available. We propose that information theory is a useful tool to quantify how well model parameters may be inferred from a noisy signal. Information theory also allows us to assess the importance of missing parameters from an incomplete model. We do this by monitoring the magnitude of a partition function determined from a suitably defined probability mass function as the model parameters are varied. The optimum parameter set makes the partition function a maximum, which establishes a computable criterion for determining the best model parameter set. Given the availability of a partition function, one may define thermodynamic functions such as the entropy. The optimum parameter set in this interpretation corresponds to the state of maximum entropy. In this work, we observe that at sufficiently low signal to noise ratio, the entropy landscape has no clear maximum, while a related quantity, the Fisher information, always has a clear minimum at the optimum parameter set. The qualitative information we are able to gather from the entropy landscapes is also difficult to assess when the parameters are far from their optimum values, at least for the model system studied here. C1 [Hock, Kiel] Brookhaven Natl Lab, Upton, NY 11973 USA. [Earle, Keith] SUNY Albany, Albany, NY 12222 USA. RP Earle, K (reprint author), SUNY Albany, 1400 Washington Ave, Albany, NY 12222 USA. EM kearle@albany.edu FU University at Albany FX We thank Professor Kevin Knuth of the University at Albany Physics Department for his input on the parameter optimization algorithm design and for many fruitful discussions on aspects of Information theory. This work was partially supported by a University at Albany, Faculty Research Award Program grant. K.A.E. also thanks the National Biomedical EPR Center at the Medical College of Wisconsin where part of this work was done for the use of their facilities during a visit supported by the Advanced Visitors Training Program. NR 11 TC 2 Z9 2 U1 2 U2 3 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0937-9347 EI 1613-7507 J9 APPL MAGN RESON JI Appl. Magn. Reson. PD SEP PY 2014 VL 45 IS 9 BP 859 EP 879 DI 10.1007/s00723-014-0566-y PG 21 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA AP9QA UT WOS:000342413100006 ER PT J AU Wang, D Gao, N Gao, F Wang, ZG AF Wang Dong Gao Ning Gao Fei Wang Zhi-Guang TI Cu Segregation at Sigma 5 Symmetrical Grain Boundary in alpha-Fe: Atomic-Level Simulations SO CHINESE PHYSICS LETTERS LA English DT Article AB Cu-rich precipitation is regarded as one of the main issues causing embrittlement of ferritic steels. In the present work, the Cu segregation at Sigma 5 {012} symmetrical grain boundary (GB) in BCC iron is investigated by combining Metropolis Monte Carlo and molecular statics approaches. The segregation driven energies of Cu clusters decrease with increasing the distance from GB and also depend on the cluster size. The length scales associated with Cu segregation at GB are determined. All these results indicate that Cu atoms prefer to segregate at Sigma 5 GB, which may account for the embrittlement of ferritic steels. The present results provide important knowledge to understand the detailed mechanisms of Cu segregation at GB and also the possible effects on mechanical properties of alpha-Fe. C1 [Wang Dong; Gao Ning; Wang Zhi-Guang] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China. [Wang Dong] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. [Gao Fei] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wang, ZG (reprint author), Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China. EM zhgwang@impcas.ac.cn FU National Basic Research Program of China [2010CB832902]; National Natural Science Foundation of China [10835010, 91026002, 11105190, 11375242] FX Supported by the National Basic Research Program of China under Grant No 2010CB832902, and the National Natural Science Foundation of China under Grant Nos 10835010, 91026002, 11105190 and 11375242. NR 14 TC 2 Z9 2 U1 2 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0256-307X EI 1741-3540 J9 CHINESE PHYS LETT JI Chin. Phys. Lett. PD SEP PY 2014 VL 31 IS 9 AR 096801 DI 10.1088/0256-307X/31/9/096801 PG 4 WC Physics, Multidisciplinary SC Physics GA AP9HB UT WOS:000342388500031 ER PT J AU Heitmann, K Habib, S Finkel, H Frontiere, N Pope, A Morozov, V Rangel, S Kovacs, E Kwan, J Li, N Rizzi, S Insley, J Vishwanath, V Peterka, T Daniel, D Fasel, P Zagaris, G AF Heitmann, Katrin Habib, Salman Finkel, Hal Frontiere, Nicholas Pope, Adrian Morozov, Vitali Rangel, Steve Kovacs, Eve Kwan, Juliana Li, Nan Rizzi, Silvio Insley, Joe Vishwanath, Venkatram Peterka, Tom Daniel, David Fasel, Patricia Zagaris, George TI Large-Scale Simulations of Sky Surveys SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Article AB Large-volume sky surveys have accessed the Universe's vast temporal and spatial expanse via a remarkable set of measurements. Interpretation of these cosmological observations requires large-scale numerical simulation and modeling. Addressing analysis workflow complexity is as important as running the underlying extreme-scale simulations. Here, the authors discuss how the Hardware/Hybrid Accelerated Cosmology Code framework addresses these challenges. C1 [Heitmann, Katrin; Morozov, Vitali; Rangel, Steve; Li, Nan; Insley, Joe; Peterka, Tom] Argonne Natl Lab, Argonne, IL 60439 USA. [Habib, Salman; Frontiere, Nicholas; Pope, Adrian; Kovacs, Eve; Kwan, Juliana] Argonne Natl Lab, High Energy Phys Div, Argonne, IL 60439 USA. [Habib, Salman] Argonne Natl Lab, Math & Computat Sci Div, Argonne, IL 60439 USA. [Finkel, Hal; Rizzi, Silvio] Argonne Natl Lab, Leadership Comp Facil, Argonne, IL 60439 USA. [Vishwanath, Venkatram] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. [Daniel, David] Los Alamos Natl Lab, Appl Comp Sci Grp, Los Alamos, NM 87545 USA. [Fasel, Patricia] Los Alamos Natl Lab, Informat Sci Grp, Los Alamos, NM 87545 USA. [Zagaris, George] Kitware, Div Comp Sci, Clifton Pk, NY USA. RP Heitmann, K (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. EM heitmann@anl.gov; habib@anl.gov; hfinkel@anl.gov; nfrontiere@gmail.com; apope@anl.gov; morozov@anl.gov; steverangel@gmail.com; kovacs@anl.gov; jkwan@anl.gov; linan7788626@oddjob.uchicago.edu; srizzi@anl.gov; insley@anl.gov; venkat@anl.gov; tpeterka@mcs.anl.gov; ddd@anl.gov; pkf@anl.gov; george.zagaris@kitware.com FU US Department of Energy, Office of Science [DE-AC02-06CH11357]; DOE/SC [DE-AC02-06CH11357, DE-AC05-00OR22725] FX The authors were supported by the US Department of Energy, Office of Science, under contract DE-AC02-06CH11357. This research used resources of the Argonne Leadership Computing Facility (ALCF), which is supported by DOE/SC under contract DE-AC02-06CH11357 and resources of the Oak Ridge Leadership Computing Facility (OLCF), which is supported by DOE/SC under contract DE-AC05-00OR22725. NR 13 TC 2 Z9 2 U1 0 U2 2 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 EI 1558-366X J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD SEP-OCT PY 2014 VL 16 IS 5 BP 14 EP 23 PG 10 WC Computer Science, Interdisciplinary Applications SC Computer Science GA AP7ST UT WOS:000342277700003 ER PT J AU Petra, CG Schenk, O Anitescu, M AF Petra, Cosmin G. Schenk, Olaf Anitescu, Mihai TI Real-Time Stochastic Optimization of Complex Energy Systems on High-Performance Computers SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Article AB A scalable approach computes in operationally-compatible time the energy dispatch under uncertainty for electrical power grid systems of realistic size and with thousands of scenarios. C1 [Petra, Cosmin G.; Anitescu, Mihai] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. [Schenk, Olaf] Univ Svizzera Italiana, Inst Computat Sci, Dept Informat, Lugano, Switzerland. RP Petra, CG (reprint author), Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. EM petra@mcs.anl.gov; olaf.schenk@usi.ch; anitescu@mcs.anl.gov FU US Department of Energy [DE-AC02-06CH11357]; Swiss National Supercomputing Centre [u3]; Office of Science of the US Department of Energy [DE-AC05-00OR22725] FX This work was supported by the US Department of Energy under contract DE-AC02-06CH11357, and a grant from the Swiss National Supercomputing Centre under project ID u3. Computing time on Titan was provided by the Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory, which is supported by the Office of Science of the US Department of Energy under contract DE-AC05-00OR22725. NR 15 TC 2 Z9 2 U1 1 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 EI 1558-366X J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD SEP-OCT PY 2014 VL 16 IS 5 BP 32 EP 42 PG 11 WC Computer Science, Interdisciplinary Applications SC Computer Science GA AP7ST UT WOS:000342277700005 ER PT J AU Tang, W Wang, B Ethier, S AF Tang, William Wang, Bei Ethier, Stephane TI Scientific Discovery in Fusion Plasma Turbulence Simulations at Extreme Scale SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Article AB Extreme-scale plasma turbulence studies offer new insights on confinement scaling in magnetic fusion systems by using powerful, world-class supercomputers to run simulations with unprecedented resolution and temporal duration. The studies also shed light on how the turbulent transport of heat and particles in the plasma and the associated confinement scale from present-generation devices to much larger ITER-size plasmas. C1 [Tang, William] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08544 USA. [Wang, Bei] Princeton Univ, Princeton, NJ 08544 USA. [Ethier, Stephane] US DOE, Computat Plasma Phys Grp, Princeton Plasma Phys Lab, Washington, DC 20585 USA. RP Tang, W (reprint author), Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08544 USA. EM wtang@princeton.edu; beiwang@princeton.edu; ethier@pppl.gov RI Wang, Bei/G-4605-2014 OI Wang, Bei/0000-0003-4942-9652 FU US National Science Foundation [NSF OCI-1128080]; G8 Research Councils Initiative on Multilateral Research Funding; US Department of Energy [DE-AC02-09CH11466]; Office of Science of the US Department of Energy [DE-AC02-06CH11357, DE-AC05-00OR22725] FX William Tang and Bei Wang's research at Princeton University's Princeton Institute for Computational Science and Engineering (PICSciE) was supported by the US National Science Foundation, contract NSF OCI-1128080, and by the G8 Research Councils Initiative on Multilateral Research Funding. William Tang and Stephane Ethier's research at the Princeton Plasma Physics Laboratory was supported by the US Department of Energy, contract DE-AC02-09CH11466. In addition to the authors, essential contributions came from K. Ibrahim, S. Williams, L. Oliker (LBNL), K. Madduri (Penn State University), Tim Williams (ANL), Bruce Scott (IPP-Garching, Germany), and Scott Klasky (ORNL). The research and development in this paper primarily used the resources of the Argonne Leadership Computing Facility, which was made available by the INCITE program and supported by the Office of Science of the US Department of Energy under contract DE-AC02-06CH11357. It also benefited from the resources of the Oak Ridge Leadership Computing Facility, which is supported by the Office of Science of the US Department of Energy under contract DE-AC05-00OR22725. The authors would like to thank the NNSA for access to the Sequoia system at LLNL. They also extend their gratitude to Takenori Shimosaka, Mitsuhisa Sato, and Taisuke Boku for helping us to obtain the performance data from the Fujitsu K Computer at Riken in Japan. NR 10 TC 1 Z9 1 U1 0 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 EI 1558-366X J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD SEP-OCT PY 2014 VL 16 IS 5 BP 44 EP 52 DI 10.1109/MCSE.2014.54 PG 9 WC Computer Science, Interdisciplinary Applications SC Computer Science GA AP7ST UT WOS:000342277700006 ER PT J AU Schleife, A Draeger, EW Anisimov, VM Correa, AA Kanai, Y AF Schleife, Andre Draeger, Erik W. Anisimov, Victor M. Correa, Alfredo A. Kanai, Yosuke TI Quantum Dynamics Simulation of Electrons in Materials on High-Performance Computers SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Article ID DENSITY-FUNCTIONAL THEORY AB An implementation of Ehrenfest non-adiabatic electron-ion dynamics demonstrates high scalability on two different leadership-class computing architectures. The implementation accurately calculates electronic stopping power, which characterizes the rate of energy transfer from a high-energy particle to electrons in materials. It has the potential to yield other scientific insights using quantum dynamics simulations at the electronic structure level. C1 [Schleife, Andre] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Draeger, Erik W.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Computat Directorate, Livermore, CA USA. [Anisimov, Victor M.] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL USA. [Correa, Alfredo A.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA USA. [Kanai, Yosuke] Univ N Carolina, Dept Chem, Chapel Hill, NC USA. RP Schleife, A (reprint author), Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. EM schleife@illinois.edu; draegerl@llnl.gov; anisimov@illinois.edu; correaa@llnl.gov; ykanai@unc.edu RI Kanai, Yosuke/B-5554-2016 FU National Science Foundation [OCI 07-25070, ACI-1238993]; state of Illinois; US Department of Energy at LLNL [DE-AC52-07A27344] FX This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (award number OCI 07-25070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications. Computing support for this work came from the Lawrence Livermore National Laboratory (LLNL) Institutional Computing Grand Challenge program. Part of this work was performed under the auspices of the US Department of Energy at LLNL under contract DE-AC52-07A27344. NR 13 TC 9 Z9 9 U1 2 U2 13 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 EI 1558-366X J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD SEP-OCT PY 2014 VL 16 IS 5 BP 54 EP 60 PG 7 WC Computer Science, Interdisciplinary Applications SC Computer Science GA AP7ST UT WOS:000342277700007 ER PT J AU Shen, HY Liu, GX Gemmill, J Ward, L AF Shen, Haiying Liu, Guoxin Gemmill, Jill Ward, Lee TI A P2P-Based Infrastructure for Adaptive Trustworthy and Efficient Communication in Wide-Area Distributed Systems SO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS LA English DT Article DE Wide-area distributed systems; peer to peer networks; reputation systems; anonymity; efficiency ID TO-PEER NETWORKS; TRUST; OVERLAY AB Tremendous advances in pervasive networking have enabled wide-area distributed systems to connect distributed resources or users such as corporate data centers and high-performance computing centers. These distributed pervasive systems take advantage of resources and enhance collaborations worldwide. However, due to lack of central management, they are severely threatened by a variety of malicious users in today's Internet. Current reputation-and anonymity-based technologies for node communication enhance system trustworthiness. However, most of these technologies gain trustworthiness at the cost of efficiency degradation. This paper presents a P2P-based infrastructure for trustworthy and efficient node communication in wide-area distributed systems. It jointly addresses trustworthiness and efficiency in its operation in order to meet the high-performance requirements of a diversified wealth of distributed pervasive applications. The infrastructure includes two policies: trust/efficiency-oriented request routing and trust-based adaptive anonymous response forwarding. This infrastructure not only offers a trustworthy environment with anonymous communication but also enhances overall system efficiency through harmonious trustworthiness and efficiency trade-offs. Experimental results from simulations and the real-world PlanetLab testbed show the superior performance of the P2P-based infrastructure in achieving both high trustworthiness and high efficiency in comparison to other related approaches. C1 [Shen, Haiying; Liu, Guoxin; Gemmill, Jill] Clemson Univ, Dept Elect & Comp Engn, Clemson, SC 29634 USA. [Ward, Lee] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Shen, HY (reprint author), Clemson Univ, Dept Elect & Comp Engn, Clemson, SC 29634 USA. EM shenh@clemson.edu; guoxinl@clemson.edu; gemmill@clemson.edu; lee@sandia.gov FU U.S. NSF [IIS-1354123, CNS-1254006, CNS-1249603, CNS-1049947, CNS-0917056, CNS-1025652]; Microsoft Research Faculty Fellowship [8300751]; Sandia National Laboratories [10002282] FX This research was supported in part by U.S. NSF grants IIS-1354123, CNS-1254006, CNS-1249603, CNS-1049947, CNS-0917056 and CNS-1025652, Microsoft Research Faculty Fellowship 8300751, and Sandia National Laboratories grant 10002282. NR 36 TC 1 Z9 2 U1 0 U2 2 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1045-9219 EI 1558-2183 J9 IEEE T PARALL DISTR JI IEEE Trans. Parallel Distrib. Syst. PD SEP PY 2014 VL 25 IS 9 BP 2222 EP 2233 DI 10.1109/TPDS.2013.159 PG 12 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA AP6HT UT WOS:000342179000002 ER PT J AU Mohror, K Moody, A Bronevetsky, G de Supinski, BR AF Mohror, Kathryn Moody, Adam Bronevetsky, Greg de Supinski, Bronis R. TI Detailed Modeling and Evaluation of a Scalable Multilevel Checkpointing System SO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS LA English DT Article DE Fault tolerance; measurement; evaluation; modeling; simulation of multiple-processor systems ID INTERVAL AB High-performance computing (HPC) systems are growing more powerful by utilizing more components. As the system mean time before failure correspondingly drops, applications must checkpoint frequently to make progress. However, at scale, the cost of checkpointing becomes prohibitive. A solution to this problem is multilevel checkpointing, which employs multiple types of checkpoints in a single run. Lightweight checkpoints can handle the most common failure modes, while more expensive checkpoints can handle severe failures. We designed a multilevel checkpointing library, the Scalable Checkpoint/Restart (SCR) library, that writes lightweight checkpoints to node-local storage in addition to the parallel file system. We present probabilistic Markov models of SCR's performance. We show that on future large-scale systems, SCR can lead to a gain in machine efficiency of up to 35 percent, and reduce the load on the parallel file system by a factor of two. Additionally, we predict that checkpoint scavenging, or only writing checkpoints to the parallel file system on application termination, can reduce the load on the parallel file system by 20x on today's systems and still maintain high application efficiency. C1 [Mohror, Kathryn] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA. [Moody, Adam; de Supinski, Bronis R.] Lawrence Livermore Natl Lab, Livermore Comp LC, Livermore, CA USA. [Bronevetsky, Greg] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Mohror, K (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA. EM kathryn@llnl.gov; moody20@llnl.gov; bronevetsky@llnl.gov; bronis@llnl.gov FU LLNL [DE-AC52-07NA27344, LLNL-JRNL-564721-DRAFT] FX Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-JRNL-564721-DRAFT. NR 23 TC 1 Z9 1 U1 0 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1045-9219 EI 1558-2183 J9 IEEE T PARALL DISTR JI IEEE Trans. Parallel Distrib. Syst. PD SEP PY 2014 VL 25 IS 9 BP 2255 EP 2263 DI 10.1109/TPDS.2013.100 PG 9 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA AP6HT UT WOS:000342179000005 ER PT J AU Wang, ZY Chen, BK Wang, JH Kim, JH Begovic, MM AF Wang, Zhaoyu Chen, Bokan Wang, Jianhui Kim, Jinho Begovic, Miroslav M. TI Robust Optimization Based Optimal DG Placement in Microgrids SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Distributed Generator (DG); distribution network; microgrid (MG); mixed integer program (MIP); robust optimization ID DISTRIBUTION NETWORKS; UNIT COMMITMENT; DISTRIBUTED GENERATION; DISTRIBUTION-SYSTEMS; WIND POWER; HYDRO AB This paper proposes a novel Microgrid (MG) planning methodology to decide optimal locations, sizes and mix of dispatchable and intermittent distributed generators (DGs). The long-term costs in the proposed planning model include investment, operation and maintenance (O&M), fuel and emission costs of DGs while the revenue includes payment by MG loads and utility grid. The problem is formulated as a mixed-integer program (MIP) considering the probabilistic nature of DG outputs and load consumption, wherein the costs are minimized and profits are maximized. The model is transformed to be a two-stage robust optimization problem. A column and constraint generation (CCG) framework is used to solve the problem. Compared with conventional MG planning approaches, the proposed model is more practical in that it fully considers the system uncertainties and only requires a deterministic uncertainty set, rather than a probability distribution of uncertain data which is difficult to obtain. Case studies of a MG with wind turbines, photovoltaic generators (PVs) and microturbines (MTs) demonstrate the effectiveness of the proposed methodology. C1 [Wang, Zhaoyu; Begovic, Miroslav M.] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. [Chen, Bokan] Iowa State Univ, Sch Ind & Mfg Syst Engn, Ames, IA 50014 USA. [Wang, Jianhui] Argonne Natl Lab, Lemont, IL 60439 USA. [Kim, Jinho] Gachon Univ, Dept Energy & Informat Technol, Kyunggido 461701, South Korea. RP Wang, ZY (reprint author), Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. EM zhaoyuwang@gatech.edu; bokanc@iastate.edu; jianhui.wang@anl.gov; kimjh@gachon.ac.kr; miroslav@ece.gatech.edu FU U.S. Department of Energy Office of Science laboratory [DE AC02-06CH11357]; U.S. Department of Energy Office of Electricity Delivery and Energy Reliability FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up non-exclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. This work was supported by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability. NR 37 TC 25 Z9 28 U1 1 U2 17 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 EI 1949-3061 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD SEP PY 2014 VL 5 IS 5 BP 2173 EP 2182 DI 10.1109/TSG.2014.2321748 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA AP6BW UT WOS:000342163500001 ER PT J AU Xu, ZJ Diao, RS Lu, S Lian, JM Zhang, Y AF Xu, Zhijie Diao, Ruisheng Lu, Shuai Lian, Jianming Zhang, Yu TI Modeling of Electric Water Heaters for Demand Response: A Baseline PDE Model SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Balancing service; demand response; electric water heater; PDE; modeling AB Demand response (DR) control can effectively relieve balancing and frequency regulation burdens on conventional generators, facilitate integrating more renewable energy, and reduce generation and transmission investments needed to meet peak demands. Electric water heaters (EWHs) have a great potential in implementing DR control strategies because: a) the EWH power consumption has a high correlation with daily load patterns; b) they constitute a significant percentage of domestic electrical load; c) the heating element is a resistor, without reactive power consumption; and d) they can be used as energy storage devices when needed. Accurately modeling the dynamic behavior of EWHs is essential for successfully designing DR controls. In this paper, a new partial differential equation (PDE) physics-based model is developed to capture the detailed temperature profiles at different tank locations, which is validated against field test data for more than 10 days. The developed PDE model is compared with the one-mass and two-mass models, and shows better performance in capturing water thermal dynamics for benchmark testing purposes. C1 [Xu, Zhijie; Diao, Ruisheng; Lu, Shuai; Lian, Jianming; Zhang, Yu] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Xu, ZJ (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM zhijie.xu@pnnl.gov; ruisheng.diao@pnnl.gov; shuai.lu@pnnl.gov; jianming.lian@pnnl.gov; yu.zhang@pnnl.gov RI Xu, Zhijie/A-1627-2009 OI Xu, Zhijie/0000-0003-0459-4531 NR 9 TC 4 Z9 4 U1 2 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD SEP PY 2014 VL 5 IS 5 BP 2203 EP 2210 DI 10.1109/TSG.2014.2317149 PG 8 WC Engineering, Electrical & Electronic SC Engineering GA AP6BW UT WOS:000342163500004 ER PT J AU Wang, ZY Wang, JH Chen, BK Begovic, MM He, YY AF Wang, Zhaoyu Wang, Jianhui Chen, Bokan Begovic, Miroslav M. He, Yanyi TI MPC-Based Voltage/Var Optimization for Distribution Circuits With Distributed Generators and Exponential Load Models SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Distributed generators; exponential load model; mixed-integer program; model predictive control; scenario reduction; voltage/var optimization ID REACTIVE POWER-CONTROL; DISTRIBUTION-SYSTEMS; MULTIOBJECTIVE OPTIMIZATION; PREDICTIVE CONTROL; CAPACITORS; COORDINATION; REDUCTION; ULTC; TRANSFORMER; ALGORITHMS AB This paper proposes a model predictive control (MPC)-based voltage/var optimization (VVO) technique considering the integration of distributed generators and load-to-voltage sensitivities. The paper schedules optimal tap positions of on-load tap changer and switch statuses of capacitor banks based on predictive outputs of wind turbines and photovoltaic generators. Compared with previous efforts on VVO which used constant-power load model, the exponential load model is used to capture the various load behaviors in this paper. Different customer types such as industrial, residential, and commercial loads are also considered. The uncertainties of model prediction errors are taken into account in the proposed model. A scenario reduction technique is applied to enhance a tradeoff between the accuracy of the solution and the computational burden. The MPC-based VVO problem is formulated as a mixed-integer nonlinear program with reduced scenarios. Case studies show the effectiveness of the proposed method. C1 [Wang, Zhaoyu; Begovic, Miroslav M.] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. [Wang, Jianhui] Argonne Natl Lab, Lemont, IL 60439 USA. [Chen, Bokan; He, Yanyi] Iowa State Univ, Sch Ind & Mfg Syst Engn, Ames, IA 50014 USA. RP Wang, ZY (reprint author), Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. EM zhaoyuwang@gatech.edu; jianhui.wang@anl.gov; bokanc@iastate.edu; miroslav@ece.gatech.edu; heyanyi@iastate.edu FU UChicago Argonne, LLC; U.S. Department of Energy Office of Science laboratory [DE AC02-06CH11357]; U.S. Department of Energy Office of Electricity Delivery and Energy Reliability FX This work was supported in part by UChicago Argonne, LLC, Operator of Argonne National Laboratory Argonne, a U.S. Department of Energy Office of Science laboratory under Contract DE AC02-06CH11357, and in part by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. Paper no. TSG-00584-2013. NR 34 TC 8 Z9 10 U1 1 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD SEP PY 2014 VL 5 IS 5 BP 2412 EP 2420 DI 10.1109/TSG.2014.2329842 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA AP6BW UT WOS:000342163500026 ER PT J AU Dempsey, D Kelkar, S Pawar, R AF Dempsey, David Kelkar, Sharad Pawar, Rajesh TI Passive injection: A strategy for mitigating reservoir pressurization, induced seismicity and brine migration in geologic CO2 storage SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE CO2 geologic storage; Passive injection; Geomechanical; Induced seismicity; Brine migration ID DEEP SALINE AQUIFERS; CARBON-DIOXIDE; SEQUESTRATION; EARTHQUAKE; MANAGEMENT; SYSTEMS; CAPROCK; EXTRACTION; DYNAMICS; DISPOSAL AB Many technical, regulatory and public perception challenges remain to be addressed before large-scale deployment of CO2 geologic storage becomes a reality. Two major risks associated with injection of CO2 into the subsurface are the possibility of induced earthquakes compromising long-term seal integrity, and the displacement of saline brines resulting in contamination of shallow groundwater. Both induced seismicity and brine migration are caused by elevated pressures in the storage formation owing to the relative incompressibility of water. Here, we describe a strategy, termed passive injection that can be used to inject large amounts of CO2 in a storage formation with no increase, temporary or long-term, in reservoir pressure. Passive injection relies on the strategic placement of brine production wells to create negative pressure gradients that result in CO2 entering the formation at ambient pressure. Injection occurs at the intersection of pressure-depth profiles for a surface-pressurized, low-density CO2 column and a hydrostatic column of formation fluid. A multi-stage, square-ring well configuration is envisaged, in which brine production wells are repurposed for CO2 injection upon CO2 breakthrough, and the next concentric ring of production wells installed at a greater distance. Numerical simulations of passive injection are presented using the coupled thermo-hydro-mechanical (THM), multi-fluid, multi-phase numerical simulator FEHM. We consider CO2 injection into a 3 km-deep, closed reservoir over a period of 50 years, with up to four stages of injection and production depending on well-spacing and production pressures. Storage rates as high as 4 Mt yr(-1) at 70% utilization of the reservoir pore volume are achieved under optimum conditions. Long-term mass production of brine is approximately 1.7 times that of CO2 sequestered. Geomechanical effects due to reservoir drawdown, cooling near injection wells, and surface subsidence are modeled. The risk of induced seismicity is quantified in terms of the Coulomb Failure Stress (CFS) for an optimally oriented fault in an extensional tectonic regime. Injection and production-induced changes in pressure and CFS confirm that, both during and at the conclusion of injection, (i) reservoir pressure is everywhere less than or equal to its initial value; and (ii) the risk of induced seismicity is everywhere reduced or unchanged. Thus, the primary risks of brine migration outside the primary reservoir and induced seismicity compromising seal integrity are neutralized. Passive injection produces large quantities of brine, the treatment and disposal of which represents an additional economic burden to CO2 geologic storage operations. Unless additional revenue streams or economies of scale can be leveraged, these costs are likely to limit the viability of the proposed scheme to only the most economically favorable sites. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA license (http://creativecommons.orgilicenses/by-nc-sa/3.0/). C1 [Dempsey, David; Kelkar, Sharad; Pawar, Rajesh] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Dempsey, D (reprint author), Los Alamos Natl Lab, EES 16,Mailstop T003, Los Alamos, NM 87545 USA. EM d.dempsey@lanl.gov RI Dempsey, David/B-9115-2015 OI Dempsey, David/0000-0003-2135-5129 FU American Recovery & Reinvestment Act (ARRA); U.S. Department of Energy through its Cross-Cutting Research Effort FX The authors thank George Zyvoloski for technical assistance using FEHM and helpful discussions, and two anonymous reviewers whose comments improved the quality of this manuscript. This study was funded through the American Recovery & Reinvestment Act (ARRA). The work was performed as part of the National Risk Assessment Partnership (NRAP) project. NRAP is supported by U.S. Department of Energy through its Cross-Cutting Research Effort and is managed by National Energy Technology Laboratory (NETL). NR 54 TC 10 Z9 10 U1 0 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD SEP PY 2014 VL 28 BP 96 EP 113 DI 10.1016/j.ijggc.2014.06.002 PG 18 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA AP7ID UT WOS:000342250100010 ER PT J AU Chang, C Zhou, QL Guo, JQ Yu, QC AF Chang, Chun Zhou, Quanlin Guo, Jianqiang Yu, Qingchun TI Supercritical CO2 dissolution and mass transfer in low-permeability sandstone: Effect of concentration difference in water-flood experiments SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE CO2 geologic storage; Core-flood experiment; Residual CO2 saturation; Dissolution; Mass transfer; The Erdos Basin ID NONAQUEOUS PHASE LIQUID; GEOLOGICAL SEQUESTRATION; CO2-H2O MIXTURES; SALINE AQUIFERS; POROUS-MEDIA; STORAGE; CO2/BRINE; SYSTEMS; SCALE; BAR AB Core-flood experiments of supercritical CO2 (scCO(2)) and water were conducted under pressures higher than 10.00 MPa and a temperature of 40 C to investigate scCO(2) dissolution and mass transfer in water and their effects on displacement and imbibition. In these experiments, two representative sandstone cores of low permeability obtained from Shenhua Group CCS site in the Erdos Basin in China were used. On each core sample, five water-flood experiments were performed on the scCO(2)-saturated core by injecting water of a wide range of dissolved CO2 concentration (from CO2-free to CO2-saturated) for 37 h, with a focus on the effect of differential concentration (Delta C) (i.e., the difference between the concentration of solubility and that of injected water) on dissolution and mass transfer, as well as displacement. An additional experiment was conducted on the first sample by water flood using CO2-free injected water into the scCO(2)-flooded core initially saturated by water free of dissolved CO2. In each experiment, the mass flow rate of scCO(2) as a free phase and the net mass rate of dissolved CO2 were measured and calculated for core effluent. For the first sample, the residual CO2 saturation ranges from 0.52 in the case of Delta C= 0-0.67 in the case of Delta C= solubility, after two displacement periods of stable and unstable scCO(2) mass rate. The difference in residual saturation indicates that scCO(2) dissolution during displacement may enhance snap-off, thus trapping more scCO(2). At the end of the four unsaturated experiments, nearly all the residual CO2 mass is dissolved into the injected water through local CO2 dissolution and mass transfer between the dissolved CO2 and displacing water. In each experiment, the measured mass rate of dissolved CO2 decreases significantly over the time from that of AC in period III to more than two orders of magnitude smaller in period V. The dependence on AC of mass flow rate and net effluent concentration in periods III and V indicates that local CO2 dissolution in large pores in period III and in small and fine pores over all the time is at equilibrium as scCO(2) residence time is sufficiently long. In periods IV and V. the overall mass transfer is non-equilibrium, leading to a lengthy depletion process, in comparison to an equilibrium case. The contribution of equilibrium dissolution in small and fine pores is also demonstrated by one order of magnitude reduction in effluent concentration in the additional experiment as these pores are not accessible by scCO(2). The similar behavior of dissolution and mass transfer and their effect on displacement in both samples are obtained. A logistic model developed can reasonably represent the S-shaped function between mass transfer rate and core mass ratio as a function of scaled AC. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Chang, Chun; Yu, Qingchun] China Univ Geosci, Sch Water Resources & Environm, Beijing 100083, Peoples R China. [Chang, Chun; Zhou, Quanlin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Guo, Jianqiang] China Geol Survey, Ctr Hydrogeol & Environm Geol, Baoding 071051, Peoples R China. RP Yu, QC (reprint author), China Univ Geosci, Sch Water Resources & Environm, Beijing 100083, Peoples R China. EM yuqch@cugb.edu.cn RI Zhou, Quanlin/B-2455-2009 OI Zhou, Quanlin/0000-0001-6780-7536 FU Special Fund for Ministry of Land and Resources in the Public Interest [201211063-04]; National Natural Science Foundation of China [41272387, 40772208]; Fundamental Research Funds for the Central Universities [2652013009]; Lawrence Berkeley National Laboratory's Directed Research and Development Project [366192] FX The authors wish to thank Dr. Stefan Bachu, the Associate Editor, and two anonymous reviewers for their constructive suggestions for improving the quality of the manuscript. This work was funded by the Special Fund for Ministry of Land and Resources in the Public Interest (Grant no. 201211063-04), in part by the National Natural Science Foundation of China (Grant nos. 41272387 and 40772208) and by "the Fundamental Research Funds for the Central Universities" (grant no. 2652013009). The contribution by the second co-author was supported by Lawrence Berkeley National Laboratory's Directed Research and Development Project (366192). NR 22 TC 5 Z9 5 U1 1 U2 24 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD SEP PY 2014 VL 28 BP 328 EP 342 DI 10.1016/j.ijggc.2014.07.006 PG 15 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA AP7ID UT WOS:000342250100028 ER PT J AU Welsh, JS DeJongh, F Schulte, R Johnstone, C AF Welsh, J. S. DeJongh, F. Schulte, R. Johnstone, C. TI FFAG Accelerators for Next-Generation Ion Beam Therapy Systems SO INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS LA English DT Meeting Abstract CT 56th Annual Meeting of the American-Society-for-Radiation-Oncology CY SEP 14-17, 2014 CL San Francisco, CA SP Amer Soc Radiat Oncol C1 [Welsh, J. S.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [DeJongh, F.] No Illinois Univ, De Kalb, IL 60115 USA. [Schulte, R.] Loma Linda Univ, Loma Linda, CA 92350 USA. [Johnstone, C.] Particle Accelerator Corp, Batavia, IL USA. NR 0 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0360-3016 EI 1879-355X J9 INT J RADIAT ONCOL JI Int. J. Radiat. Oncol. Biol. Phys. PD SEP 1 PY 2014 VL 90 SU 1 MA 3818 BP S928 EP S928 PG 1 WC Oncology; Radiology, Nuclear Medicine & Medical Imaging SC Oncology; Radiology, Nuclear Medicine & Medical Imaging GA AP8LV UT WOS:000342331403420 ER PT J AU Zhou, QM Dilmore, R Kleit, A Wang, JY AF Zhou, Qiumei Dilmore, Robert Kleit, Andrew Wang, John Yilin TI Evaluating gas production performances in marcellus using data mining technologies SO JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING LA English DT Article DE Gas recovery; Stimulation effectiveness; Data mining; Marcellus Shale AB Shale gas development enabled by the advent of advanced horizontal drilling and hydraulic fracturing technology - has become, over the past several years, a very important energy resource. The estimated ultimate recovery of natural gas from the Marcellus Shale in West Virginia alone has been estimated to be between 98 and 150 trillion cubic feet (Tcf). In 2008, 25 billion cubic feet (Bcf) of natural gas was produced from 41 horizontal wells in West Virginia. By 2012, that gas production reached 301.7 Bcf from 631 horizontal wells. However, the hydraulic fracture stimulation of horizontal wells with multiple stages mechanism, by which that natural gas is produced from shale, is complex. Significant uncertainty about production performance in these unconventional reservoirs represents significant risk for whether resource development will lead to favorable technical and economic performance. The objective of this paper is to use post-hoc analysis techniques to identify correlations between gas production performance of a well and attributes of its completion and geological setting, and to identify those factors most important to predicting gas recovery performance. To accomplish this, the geological attributes of Marcellus Shale in West Virginia were characterized through literature review. Then, the set of 631 wells was down selected to a representative subset of 187 wells for which complete data are available, including well location, completion data, hydraulic fracture treatment data and production data. The wells were classified into four groups based on geological setting. For each geological group, engineering and statistical analyses were applied to study the correlation between well performance and well completion attributes through traditional regression methods. Important factors considered to affect gas production include number of hydraulic fracture stages, lateral length, vertical depth, proppant volume, and fracture fluid volume and treatment rate. The numbers of hydraulic fracture stages and lateral length have relative large influence on well performance. With these analysis results, it was possible to estimate well-scale ultimate natural gas production performance as a function of known geological conditions and completion parameters. The results lead to a better understanding of the trends in Marcellus Formation well performance. These approaches could, in the future, help to optimize stimulation treatments and well completions and improve resource recovery in the Marcellus, and other unconventional hydrocarbon formations. (C) 2014 Elsevier B.V. All rights reserved. C1 [Zhou, Qiumei; Kleit, Andrew; Wang, John Yilin] Penn State Univ, Dept Energy & Mineral Engn, University Pk, PA 16802 USA. [Zhou, Qiumei; Kleit, Andrew; Wang, John Yilin] EMS Energy Inst, Lab Petr Res 3 S, University Pk, PA 16802 USA. [Zhou, Qiumei; Dilmore, Robert; Wang, John Yilin] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Zhou, QM (reprint author), Penn State Univ, Dept Energy & Mineral Engn, 202 Hosler Bldg, University Pk, PA 16802 USA. EM qxz126@psu.edu; robert.dilmore@netl.doe.gov; ank1@psu.edu; john.wang@psu.edu FU RES contract [DE-FE0004000] FX As part of the National Energy Technology Laboratory's Regional University Alliance, a collaborative effort of the NETL, this technical effort was performed under the RES contract DE-FE0004000. NR 15 TC 3 Z9 3 U1 1 U2 24 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1875-5100 EI 2212-3865 J9 J NAT GAS SCI ENG JI J. Nat. Gas Sci. Eng. PD SEP PY 2014 VL 20 BP 109 EP 120 DI 10.1016/j.jngse.2014.06.014 PG 12 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA AP7LF UT WOS:000342258100015 ER PT J AU Carlson, BV Escher, JE Hussein, MS AF Carlson, Brett V. Escher, Jutta E. Hussein, Mahir S. TI Theoretical descriptions of compound-nuclear reactions: open problems and challenges SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article DE compound-nuclear reactions; pre-equilibrium reactions; surrogate reactions ID PRE-EQUILIBRIUM DECAY; R-PROCESS NUCLEOSYNTHESIS; REACTION CROSS-SECTIONS; HOLE STATE DENSITIES; MULTISTEP COMPOUND; INTERMEDIATE-STRUCTURE; STATISTICAL MODEL; PREEQUILIBRIUM REACTIONS; ENERGY DEPENDENCE; STRENGTH FUNCTION AB Compound-nuclear processes play an important role for nuclear physics applications and are crucial for our understanding of the nuclear many-body problem. Despite intensive interest in this area, some of the available theoretical developments have not yet been fully tested and implemented. We revisit the general theory of compound-nuclear reactions, discuss descriptions of pre-equilibrium reactions, and consider extensions that are needed in order to get cross section information from indirect measurements. C1 [Carlson, Brett V.] Inst Tecnol Aeronaut, Dept Fis, BR-12228900 Sao Jose Dos Campos, SP, Brazil. [Escher, Jutta E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hussein, Mahir S.] Univ Sao Paulo, Inst Estudos Avancados, BR-05508970 Sao Paulo, Brazil. [Hussein, Mahir S.] Univ Sao Paulo, Inst Fis, BR-05314970 Sao Paulo, Brazil. RP Carlson, BV (reprint author), Inst Tecnol Aeronaut, Dept Fis, BR-12228900 Sao Jose Dos Campos, SP, Brazil. EM escher1@llnl.gov RI USP, CePOF/J-3608-2015 FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; DOE's topical collaboration TORUS; ASC/PEM program at LLNL; CAPES(Brazil); CNPq(Brazil) [305574/2009-4, 311177/2010-7]; FAPESP(Brazil) [2009/00069-5, 2011/18998-2]; International Atomic Energy Agency [17440] FX JEE thanks FS Dietrich, D Gogny, and AK Kerman for many insightful discussions on the subject of compound-nuclear reactions. Her work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344, with partial support through the DOE's topical collaboration TORUS and the ASC/PEM program at LLNL. BVC acknowledges partial support from CAPES(Brazil), the CNPq(Brazil) under project 305574/2009-4, FAPESP(Brazil) under project 2009/00069-5 and the International Atomic Energy Agency under contract 17440. MSH acknowledges partial support from the CNPq(Brazil) under project 311177/2010-7 and FAPESP(Brazil) under project 2011/18998-2. NR 79 TC 3 Z9 3 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD SEP PY 2014 VL 41 IS 9 AR 094003 DI 10.1088/0954-3899/41/9/094003 PG 21 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AP8VC UT WOS:000342356400005 ER PT J AU Horowitz, CJ Brown, EF Kim, Y Lynch, WG Michaels, R Ono, A Piekarewicz, J Tsang, MB Wolter, HH AF Horowitz, C. J. Brown, E. F. Kim, Y. Lynch, W. G. Michaels, R. Ono, A. Piekarewicz, J. Tsang, M. B. Wolter, H. H. TI A way forward in the study of the symmetry energy: experiment, theory, and observation SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Review DE symmetry energy; neutron stars; heavy-ion collisions ID EQUATION-OF-STATE; X-RAY-BURSTS; VIOLATING ELECTRON-SCATTERING; ACCRETING NEUTRON-STAR; GROUND-STATE; NUCLEAR-STRUCTURE; CHARGE RADII; MASS; PROTON; MATTER AB The symmetry energy describes how the energy of nuclear matter rises as one goes away from equal numbers of neutrons and protons. This is very important to describe neutron rich matter in astrophysics. This article reviews our knowledge of the symmetry energy from theoretical calculations, nuclear structure measurements, heavy-ion collisions, and astronomical observations. We then present a roadmap to make progress in areas of relevance to the symmetry energy that promotes collaboration between the astrophysics and the nuclear physics communities. C1 [Horowitz, C. J.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Horowitz, C. J.] Indiana Univ, Ctr Nucl Theory, Bloomington, IN 47405 USA. [Brown, E. F.; Lynch, W. G.; Tsang, M. B.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Brown, E. F.; Lynch, W. G.; Tsang, M. B.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Kim, Y.] Inst for Basic Sci Korea, Rare Isotope Sci Project, Taejon 305811, South Korea. [Michaels, R.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA USA. [Ono, A.] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan. [Piekarewicz, J.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Wolter, H. H.] Univ Munich, Fak Phys, D-85748 Garching, Germany. RP Horowitz, CJ (reprint author), Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. EM horowit@indiana.edu OI Brown, Edward/0000-0003-3806-5339 FU NSCL/FRIB; JSPS [24105001, 24105008, 2404]; DOE grant [DE-FG02-87ER40365, DE-SC0008808, DE-SC0004835]; NSF AST grant [11-09176]; Rare Isotope Science Project - Ministry of Science, ICT and Future Planning (MSIP); National Research Foundation (NRF) of KOREA; NSF [PHY-0606007]; DOE [FD05-92ER40750]; Excellence Cluster 'Origin and Structure of the Universe' of the German Research Foundation (DFG) FX This work reports results from the first International Collaborations in Nuclear Theory (ICNT) program at NSCL/FRIB during 2013. We acknowledge the generous financial and logistic support from the director of NSCL/FRIB, which made the ICNT program possible. The program was co-hosted by the grants-in-aid for Scientific Research on Innovative Areas (nos. 24105001, 24105008, area no. 2404) from JSPS. CJH acknowledges support from DOE grants DE-FG02-87ER40365 (Indiana University) and DE-SC0008808 (NUCLEI SciDAC Collaboration). EFB acknowledges support from NSF AST grant 11-09176. YK acknowledges support from the Rare Isotope Science Project funded by the Ministry of Science, ICT and Future Planning (MSIP) and National Research Foundation (NRF) of KOREA. MBT and WGL acknowledge the funding of NSF under grant no. PHY-0606007 and DOE grant no. DE-SC0004835. JP acknowledges support from DOE grant no. DE-FD05-92ER40750. HHW acknowledges support from the Excellence Cluster 'Origin and Structure of the Universe' of the German Research Foundation (DFG). NR 135 TC 49 Z9 50 U1 3 U2 29 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD SEP PY 2014 VL 41 IS 9 AR 093001 DI 10.1088/0954-3899/41/9/093001 PG 30 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AP8VC UT WOS:000342356400002 ER PT J AU Thompson, IJ AF Thompson, I. J. TI Computational challenges to the development of modern theories of nuclear reactions SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article DE reaction theory; coupled channels; computational challenges ID REACTION CROSS-SECTIONS; CHANNELS CALCULATIONS; INELASTIC-SCATTERING; ELASTIC-SCATTERING; DEUTERON BREAKUP; PB-208; RANGE; CA-40; SPACE AB Detailed theories of nuclear reactions now lead to and require extensive computations. Only then can their results be used to make verifiable predictions and to contribute to the development of nuclear physics. I focus on low-energy reactions of nucleons and light clusters on heavier nuclei, and discuss the computational challenges in the evaluation of coupled-channel theories of those reactions. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Thompson, IJ (reprint author), Lawrence Livermore Natl Lab, L-414, Livermore, CA 94551 USA. EM I.Thompson@llnl.gov FU US Department of Energy [DE-AC52-07NA27344] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 40 TC 1 Z9 1 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD SEP PY 2014 VL 41 IS 9 AR 094009 DI 10.1088/0954-3899/41/9/094009 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AP8VC UT WOS:000342356400011 ER PT J AU Brumbach, MT Mickel, PR Lohn, AJ Mirabal, AJ Kalan, MA Stevens, JE Marinella, MJ AF Brumbach, Michael T. Mickel, Patrick R. Lohn, Andrew J. Mirabal, Alex J. Kalan, Michael A. Stevens, James E. Marinella, Matthew J. TI Evaluating tantalum oxide stoichiometry and oxidation states for optimal memristor performance SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID RAY PHOTOELECTRON-SPECTROSCOPY; THIN-FILMS; POLYCRYSTALLINE TANTALUM; TA2O5; INTERFACES; PENTOXIDE; XPS; TA AB Tantalum oxide has shown promising electrical switching characteristics for memristor devices. Consequently, a number of reports have investigated the electrical behavior of TaOx thin films. Some effort has been made to characterize the composition of the TaOx films and it is known that there must be an optimal stoichiometry of TaOx where forming and switching behavior are optimized. However, many previous reports lack details on the methodology used for identifying the chemistry of the films. X-ray photoelectron spectroscopy has been the most commonly used technique; however, peak fitting routines vary widely among reports and a native surface oxide of Ta2O5 often confounds the analysis. In this report a series of large area TaOx films were deposited via sputtering with controlled O-2 partial pressures in the sputtering gas, resulting in tunable oxide compositions. Spectra from numerous samples from each wafer spanning a range of oxide stoichiometries were used to develop a highly constrained peak fitting routine. This procedure allowed for the composition of the TaOx films to be identified with greater detail than elemental ratios alone. Additionally, the peak fitting routine was used to evaluate uniformity of deposition across individual wafers. The appearance of a greater contribution of Ta4+ oxidation states in the oxygen starved films are believed to relate to films with optimal forming characteristics. (C) 2014 American Vacuum Society. C1 [Brumbach, Michael T.; Mickel, Patrick R.; Lohn, Andrew J.; Mirabal, Alex J.; Kalan, Michael A.; Stevens, James E.; Marinella, Matthew J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Brumbach, MT (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mtbrumb@sandia.gov OI Mirabal, Alex/0000-0002-4501-7602 FU Sandia National Laboratories Laboratory Directed Research and Development Program; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors thank Robert Bondi, Geoff Brennecka, and Paul Kotula for their support. The authors are grateful for support from Sandia National Laboratories Laboratory Directed Research and Development Program. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 44 TC 5 Z9 5 U1 6 U2 52 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 EI 1520-8559 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD SEP PY 2014 VL 32 IS 5 AR 051403 DI 10.1116/1.4893929 PG 7 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA AP6SR UT WOS:000342208400012 ER PT J AU Weeks, SL Chaukulkar, RP Stradins, P Agarwal, S AF Weeks, Stephen L. Chaukulkar, Rohan P. Stradins, Paul Agarwal, Sumit TI Photoluminescence behavior of plasma synthesized Si nanocrystals oxidized at low temperature in pure O-2 and H2O SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID GAS-PHASE HYDROSILYLATION; CHEMICAL-VAPOR-DEPOSITION; STRONG CONFINEMENT REGIME; SILICON NANOCRYSTALS; POROUS SILICON; QUANTUM DOTS; ELECTRONIC STATES; INFRARED-SPECTROSCOPY; SURFACE VIBRATIONS; OXIDATION AB Low temperature oxidation of plasma-synthesized H-terminated Si nanocrystals (NCs) with O-2 and H2O was studied using in situ surface infrared and photoluminescence (PL) spectroscopy. Surface SiOH groups were generated only during exposure the Si NCs to H2O, and not O-2. The emergence of these surface SiOH groups was accompanied with the appearance of room-temperature PL at similar to 1.65 eV. This emission band decreased in intensity, and ultimately disappeared, as these surface SiOH groups were desorbed. Regeneration of surface SiOH through a second H2O-exposure step led to the reemergence of PL at similar to 1.65 eV, suggesting these surface species play a key role in the PL mechanism from Si NCs. (c) 2014 American Vacuum Society. C1 [Weeks, Stephen L.; Chaukulkar, Rohan P.; Agarwal, Sumit] Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA. [Stradins, Paul] Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA. RP Stradins, P (reprint author), Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA. EM pauls.stradins@nrel.gov; sagarwal@mines.edu RI Agarwal, Sumit/D-8950-2011 FU NSF CAREER program [CBET-0846923] FX The authors gratefully acknowledge support for this research by funding from the NSF CAREER program (Grant No. CBET-0846923). NR 53 TC 3 Z9 3 U1 5 U2 14 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 EI 1520-8559 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD SEP PY 2014 VL 32 IS 5 AR 050604 DI 10.1116/1.4892387 PG 5 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA AP6SR UT WOS:000342208400004 ER PT J AU McCartt, AD Ognibene, TJ Bench, G Turteltaub, KW AF McCartt, A. D. Ognibene, T. J. Bench, G. Turteltaub, K. W. TI Model-based, closed-loop control of PZT creep for cavity ring-down spectroscopy SO MEASUREMENT SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 5th International Conference of the Asian-Society-for-Precision-Engineering-and-Nanotechnology (ASPEN) CY 2013 CL Natl Taiwan Univ, Taipei, TAIWAN SP Asian Soc Precis Engn & Nanotechnol HO Natl Taiwan Univ DE PZT; creep; control; cavity; CRDS; spectroscopy ID PIEZOELECTRIC ACTUATORS; ABSORPTION-SPECTROSCOPY; HCN AB Cavity ring-down spectrometers typically employ a PZT stack to modulate the cavity transmission spectrum. While PZTs ease instrument complexity and aid measurement sensitivity, PZT hysteresis hinders the implementation of cavity-length-stabilized, data-acquisition routines. Once the cavity length is stabilized, the cavity's free spectral range imparts extreme linearity and precision to the measured spectrum's wavelength axis. Methods such as frequency-stabilized cavity ring-down spectroscopy have successfully mitigated PZT hysteresis, but their complexity limits commercial applications. Described herein is a single-laser, model-based, closed-loop method for cavity length control. C1 [McCartt, A. D.] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. [McCartt, A. D.; Ognibene, T. J.; Bench, G.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Turteltaub, K. W.] Lawrence Livermore Natl Lab, Biol & Biotechnol Div, Livermore, CA 94550 USA. RP McCartt, AD (reprint author), Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. EM mccartt@stanford.edu NR 20 TC 2 Z9 2 U1 2 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-0233 EI 1361-6501 J9 MEAS SCI TECHNOL JI Meas. Sci. Technol. PD SEP PY 2014 VL 25 IS 9 AR 095201 DI 10.1088/0957-0233/25/9/095201 PG 6 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA AP8VK UT WOS:000342357200027 ER PT J AU Hirst, E AF Hirst, Eric TI POLLUTION-CONTROL ENERGY COSTS SO MECHANICAL ENGINEERING LA English DT Editorial Material C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Hirst, E (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0025-6501 EI 1943-5649 J9 MECH ENG JI Mech. Eng. PD SEP PY 2014 VL 136 IS 9 BP 24 EP 24 PG 1 WC Engineering, Mechanical SC Engineering GA AQ0PW UT WOS:000342486200014 ER PT J AU Bland, PA Travis, BJ AF Bland, P. A. Travis, B. J. TI MORE MUDBALLS: SIMULATING PRIMORDIAL PLANETESIMALS AS UNCONSOLIDATED MIXTURES OF MUD AND CHONDRULES SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 77th Annual Meeting of the Meteoritical-Society CY SEP 08-13, 2014 CL Casablanca, MOROCCO SP Meteorit Soc ID PARENT BODIES C1 [Bland, P. A.] Curtin Univ, Dept Appl Geol, Perth, WA 6845, Australia. [Travis, B. J.] Los Alamos Natl Lab, Computat Earth Sci Grp, Los Alamos, NM 87545 USA. EM p.a.bland@curtin.edu.au NR 6 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2014 VL 49 SU 1 SI SI BP A44 EP A44 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AP2PA UT WOS:000341914200041 ER PT J AU Brennecka, GA Borg, LE Symes, SJK AF Brennecka, G. A. Borg, L. E. Symes, S. J. K. TI CONSTRAINTS ON THE ACCRETION HISTORY OF MARS. SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 77th Annual Meeting of the Meteoritical-Society CY SEP 08-13, 2014 CL Casablanca, MOROCCO SP Meteorit Soc C1 [Brennecka, G. A.; Borg, L. E.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Symes, S. J. K.] Univ Tennessee Chattanooga, Chattanooga, TN USA. EM brennecka2@llnl.gov NR 10 TC 0 Z9 0 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2014 VL 49 SU 1 SI SI BP A56 EP A56 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AP2PA UT WOS:000341914200053 ER PT J AU Bridges, JC Schwenzer, SP Leveille, R Westall, F Wiens, RC Mangold, N Bristow, T Edwards, P Berger, G AF Bridges, J. C. Schwenzer, S. P. Leveille, R. Westall, F. Wiens, R. C. Mangold, N. Bristow, T. Edwards, P. Berger, G. TI CLAY AND MAGNETITE FORMATION AT YELLOWKNIFE BAY, MARS. SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 77th Annual Meeting of the Meteoritical-Society CY SEP 08-13, 2014 CL Casablanca, MOROCCO SP Meteorit Soc C1 [Bridges, J. C.; Edwards, P.] Univ Leicester, Space Res Ctr, Leicester LE1 7RH, Leics, England. [Schwenzer, S. P.] Open Univ, Milton Keynes MK7 6AA, Bucks, England. [Leveille, R.] McGill Univ, Montreal, PQ, Canada. [Westall, F.] CNRS, Ctr Biophys Mol, F-45071 Orleans, France. [Wiens, R. C.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Mangold, N.] Lab Planetol & Geodynam Nantes, Nantes, France. [Mangold, N.] Univ Nantes, F-44035 Nantes, France. [Bristow, T.] NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94035 USA. [Berger, G.] IRAP Obs Midi Pyrenees, Toulouse, France. EM j.bridges@le.ac.uk RI BERGER, Gilles/F-7118-2016 NR 8 TC 0 Z9 0 U1 0 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2014 VL 49 SU 1 SI SI BP A59 EP A59 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AP2PA UT WOS:000341914200056 ER PT J AU Jacobsen, B Han, JM Matzel, JE Brearley, AJ Hutcheon, ID AF Jacobsen, B. Han, J. M. Matzel, J. E. Brearley, A. J. Hutcheon, I. D. TI OXYGEN ISOTOPE VARIATION IN FINE-GRAINED CAIs IN ALHA 77307: MIXING AND TRANSPORT IN DIVERSE NEBULAR ENVIRONMENTS SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 77th Annual Meeting of the Meteoritical-Society CY SEP 08-13, 2014 CL Casablanca, MOROCCO SP Meteorit Soc C1 [Jacobsen, B.; Matzel, J. E.; Hutcheon, I. D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Han, J. M.; Brearley, A. J.] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. EM jacobsen5@llnl.gov NR 7 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2014 VL 49 SU 1 SI SI BP A186 EP A186 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AP2PA UT WOS:000341914200183 ER PT J AU Kebukawa, Y Zolensky, ME Fries, M Kilcoyne, ALD Rahman, Z Cody, GD AF Kebukawa, Y. Zolensky, M. E. Fries, M. Kilcoyne, A. L. D. Rahman, Z. Cody, G. D. TI DIVERSITY IN C-XANES SPECTRA OBTAINED FROM CARBONACEOUS SOLID INCLUSIONS FROM MONAHANS HALITE. SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 77th Annual Meeting of the Meteoritical-Society CY SEP 08-13, 2014 CL Casablanca, MOROCCO SP Meteorit Soc C1 [Kebukawa, Y.] Yokohama Natl Univ, Fac Engn, Yokohama, Kanagawa, Japan. [Zolensky, M. E.; Fries, M.] NASA Johnson Space Ctr, Houston, TX USA. [Kilcoyne, A. L. D.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA. [Cody, G. D.] Carnegie Inst Sci, Geophys Lab, Washington, DC USA. EM kebukawa@ynu.ac.jp RI Kilcoyne, David/I-1465-2013 NR 3 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2014 VL 49 SU 1 SI SI BP A199 EP A199 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AP2PA UT WOS:000341914200196 ER PT J AU Liu, N Davis, AM Gallino, R Savina, MR Bisterzo, S Gyngard, F Dauphas, N Pellin, MJ AF Liu, N. Davis, A. M. Gallino, R. Savina, M. R. Bisterzo, S. Gyngard, F. Dauphas, N. Pellin, M. J. TI THE CARBON-13 POCKETS IN AGB STARS AND THEIR FINGERPRINTS IN MAINSTREAM SIC GRAINS. SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 77th Annual Meeting of the Meteoritical-Society CY SEP 08-13, 2014 CL Casablanca, MOROCCO SP Meteorit Soc ID GIANT BRANCH STARS; S-PROCESS; NUCLEOSYNTHESIS; CONSTRAINTS; EVOLUTION C1 [Liu, N.; Davis, A. M.; Savina, M. R.; Dauphas, N.; Pellin, M. J.] Univ Chicago, Chicago Ctr Cosmochem, Chicago, IL 60637 USA. [Liu, N.; Davis, A. M.; Savina, M. R.; Dauphas, N.; Pellin, M. J.] Univ Chicago, Chicago Ctr Cosmochem, Chicago, IL 60637 USA. [Liu, N.; Davis, A. M.; Dauphas, N.; Pellin, M. J.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Davis, A. M.; Dauphas, N.; Pellin, M. J.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Gallino, R.; Bisterzo, S.] Univ Turin, Dipartimento Fis, Turin, Italy. [Savina, M. R.; Pellin, M. J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Gyngard, F.] Washington Univ, Space Sci Lab, St Louis, MO USA. EM lnsmil@uchicago.edu RI Pellin, Michael/B-5897-2008 OI Pellin, Michael/0000-0002-8149-9768 NR 8 TC 0 Z9 0 U1 1 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2014 VL 49 SU 1 SI SI BP A239 EP A239 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AP2PA UT WOS:000341914200236 ER PT J AU Ma, C Tschauner, O Beckett, JR Liu, Y Rossman, GR Zuravlev, K Prakapenka, V Dera, P Taylor, LA AF Ma, C. Tschauner, O. Beckett, J. R. Liu, Y. Rossman, G. R. Zuravlev, K. Prakapenka, V. Dera, P. Taylor, L. A. TI TISSINTITE, (Ca,Na,square)AlSi2O6: A SHOCK-INDUCED CLINOPYROXENE IN THE TISSINT METEORITE. SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 77th Annual Meeting of the Meteoritical-Society CY SEP 08-13, 2014 CL Casablanca, MOROCCO SP Meteorit Soc C1 [Ma, C.; Beckett, J. R.; Rossman, G. R.] CALTECH, Pasadena, CA 91125 USA. [Tschauner, O.] Univ Nevada, Las Vegas, NV 89154 USA. [Liu, Y.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Zuravlev, K.; Prakapenka, V.] Argonne Natl Lab, Argonne, IL 60439 USA. [Dera, P.] Univ Hawaii Manoa, Honolulu, HI 96822 USA. [Taylor, L. A.] Univ Tennessee, Knoxville, TN 37996 USA. NR 4 TC 0 Z9 0 U1 2 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2014 VL 49 SU 1 SI SI BP A249 EP A249 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AP2PA UT WOS:000341914200246 ER PT J AU Mane, P Romaniello, SJ Brennecka, GA Williams, CD Wadhwa, M AF Mane, P. Romaniello, S. J. Brennecka, G. A. Williams, C. D. Wadhwa, M. TI Zr ISOTOPE SYSTEMATICS OF ALLENDE CAIs. SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 77th Annual Meeting of the Meteoritical-Society CY SEP 08-13, 2014 CL Casablanca, MOROCCO SP Meteorit Soc C1 [Mane, P.; Romaniello, S. J.; Williams, C. D.; Wadhwa, M.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85281 USA. [Brennecka, G. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM Prajkta.Mane@asu.edu NR 9 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2014 VL 49 SU 1 SI SI BP A258 EP A258 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AP2PA UT WOS:000341914200255 ER PT J AU Sandford, SA Materese, CK Nuevo, M AF Sandford, S. A. Materese, C. K. Nuevo, M. TI FORMATION OF HETEROCYCLES FROM THE UV IRRADIATION OF POLYCYCLIC AROMATIC HYDROCARBONS IN ICES. SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 77th Annual Meeting of the Meteoritical-Society CY SEP 08-13, 2014 CL Casablanca, MOROCCO SP Meteorit Soc ID ULTRAVIOLET PHOTOIRRADIATION; NUCLEOBASES; PYRIMIDINE; PHOTOLYSIS; ANALOGS C1 [Sandford, S. A.; Materese, C. K.; Nuevo, M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Materese, C. K.] Oak Ridge Associated Univ, Oak Ridge, TN USA. [Nuevo, M.] Bay Area Environm Res Inst, Petaluma, CA USA. EM Scott.A.Sandford@nasa.gov NR 7 TC 0 Z9 0 U1 1 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2014 VL 49 SU 1 SI SI BP A353 EP A353 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AP2PA UT WOS:000341914200350 ER PT J AU Sautter, V Fabre, C Toplis, M Cousin, A Wiens, RC Gasnault, O Forni, O Mangold, N AF Sautter, V. Fabre, C. Toplis, M. Cousin, A. Wiens, R. C. Gasnault, O. Forni, O. Mangold, N. TI FELDSPAR_BEARING IGNEOUS ROCKS AT GALE: A CHEMCAM CAMPAIGN SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 77th Annual Meeting of the Meteoritical-Society CY SEP 08-13, 2014 CL Casablanca, MOROCCO SP Meteorit Soc C1 [Sautter, V.] MNHN, IMPMC, Paris, France. [Fabre, C.] G2E, Nancy, France. [Toplis, M.; Gasnault, O.; Forni, O.] IRAP, Toulouse, France. [Cousin, A.; Wiens, R. C.] LANL, Los Alamos, NM USA. [Mangold, N.] LPG, Nantes, France. EM vsautter@mnhn.fr NR 9 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2014 VL 49 SU 1 SI SI BP A355 EP A355 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AP2PA UT WOS:000341914200352 ER PT J AU Steele, A McCubbin, FM Benning, LG Siljestrom, S Cody, GD Goreva, Y Hauri, EH Wang, J Kilcoyne, ALD Grady, M Verchovsky, A Sabbah, H Smith, C Freissinet, C Glavin, DP Burton, AS Fries, MD Blanco, JDR Glamoclija, M Rogers, KL Mikhail, S Zare, RN Wu, Q Ismail, A Dworkin, JP Bhartia, R AF Steele, A. McCubbin, F. M. Benning, L. G. Siljestroem, S. Cody, G. D. Goreva, Y. Hauri, E. H. Wang, J. Kilcoyne, A. L. D. Grady, M. Verchovsky, A. Sabbah, H. Smith, C. Freissinet, C. Glavin, D. P. Burton, A. S. Fries, M. D. Blanco, Rodriguez J. D. Glamoclija, M. Rogers, K. L. Mikhail, S. Zare, R. N. Wu, Q. Ismail, A. Dworkin, J. P. Bhartia, R. TI Hydrothermal Organic Synthesis on Mars: Evidence from the Tissint Meteorite SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 77th Annual Meeting of the Meteoritical-Society CY SEP 08-13, 2014 CL Casablanca, MOROCCO SP Meteorit Soc C1 [Steele, A.; Siljestroem, S.; Cody, G. D.; Glamoclija, M.; Rogers, K. L.] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. [McCubbin, F. M.] Univ New Mexico, Dept Earth & Planetary Sci, Inst Meteorit, Albuquerque, NM 87131 USA. [Benning, L. G.; Blanco, Rodriguez J. D.] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England. [Siljestroem, S.] SP Tech Res Inst Sweden, Dept Chem Mat & Surfaces, Boras, Sweden. [Siljestroem, S.; Goreva, Y.] Smithsonian Inst, Dept Mineral Sci, Washington, DC 20560 USA. [Hauri, E. H.; Wang, J.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Kilcoyne, A. L. D.] Adv Light Source, Berkeley, CA USA. [Grady, M.; Verchovsky, A.] Stanford Univ, Ctr Earth Planetary Space & Astron Res, Stanford, CA 94305 USA. [Sabbah, H.; Zare, R. N.; Wu, Q.; Ismail, A.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Sabbah, H.] Univ Toulouse, Toulouse, France. [Sabbah, H.] CNRS, Toulouse, France. [Smith, C.] Nat Hist Museum, Dept Mineral, London, England. [Freissinet, C.; Glavin, D. P.; Dworkin, J. P.] NASA, Goddard Space Flight Ctr, Houston, TX USA. [Burton, A. S.; Fries, M. D.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Blanco, Rodriguez J. D.] Univ Copenhagen, Dept Chem, Nanosci Ctr, DK-1168 Copenhagen, Denmark. [Glamoclija, M.] Rutgers State Univ, Dept Earth & Planetary Sci, Piscataway, NJ 08855 USA. [Rogers, K. L.] Rensselaer Polytech Inst, Troy, NY 12181 USA. [Mikhail, S.] Univ Edinburgh, Sch Geosci, Edinburgh EH8 9YL, Midlothian, Scotland. [Ismail, A.] King Abdulaziz Univ, Dept Chem, Rabigh, Saudi Arabia. [Bhartia, R.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RI Ismail, Ali/I-7595-2012; Glavin, Daniel/D-6194-2012; Kilcoyne, David/I-1465-2013; Dworkin, Jason/C-9417-2012 OI Ismail, Ali/0000-0001-9556-5140; Glavin, Daniel/0000-0001-7779-7765; Dworkin, Jason/0000-0002-3961-8997 NR 0 TC 1 Z9 1 U1 1 U2 16 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2014 VL 49 SU 1 SI SI BP A376 EP A376 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AP2PA UT WOS:000341914200373 ER PT J AU Stephan, T Davis, AM Pellin, MJ Rost, D Savina, MR Trappitsch, R Liu, N AF Stephan, T. Davis, A. M. Pellin, M. J. Rost, D. Savina, M. R. Trappitsch, R. Liu, N. TI CHILI-THE CHICAGO INSTRUMENT FOR LASER IONIZATION-READY TO GO. SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 77th Annual Meeting of the Meteoritical-Society CY SEP 08-13, 2014 CL Casablanca, MOROCCO SP Meteorit Soc C1 [Stephan, T.; Davis, A. M.; Pellin, M. J.; Rost, D.; Savina, M. R.; Trappitsch, R.; Liu, N.] Univ Chicago, Chicago Ctr Cosmochem, Chicago, IL 60637 USA. [Stephan, T.; Davis, A. M.; Pellin, M. J.; Rost, D.; Trappitsch, R.; Liu, N.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Stephan, T.; Pellin, M. J.; Rost, D.; Savina, M. R.] Argonne Natl Lab, Mat Sci Div, Argonne, IL 60439 USA. [Davis, A. M.; Pellin, M. J.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. EM tstephan@uchicago.edu RI Pellin, Michael/B-5897-2008 OI Pellin, Michael/0000-0002-8149-9768 NR 0 TC 0 Z9 0 U1 0 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2014 VL 49 SU 1 SI SI BP A380 EP A380 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AP2PA UT WOS:000341914200377 ER PT J AU Yabuta, H Uesugi, M Naraoka, H Ito, M Kilcoyne, D Sandford, SA Kitajima, F Mita, H Takano, Y Yada, T Karouji, Y Ishibashi, Y Okada, T Abe, M AF Yabuta, H. Uesugi, M. Naraoka, H. Ito, M. Kilcoyne, D. Sandford, S. A. Kitajima, F. Mita, H. Takano, Y. Yada, T. Karouji, Y. Ishibashi, Y. Okada, T. Abe, M. TI FUNCTIONAL GROUP COMPOSITIONS OF CARBONACEOUS MATERIALS OF HAYABUSA-RETURNED SAMPLES. SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 77th Annual Meeting of the Meteoritical-Society CY SEP 08-13, 2014 CL Casablanca, MOROCCO SP Meteorit Soc C1 [Yabuta, H.] Osaka Univ, Suita, Osaka 565, Japan. [Uesugi, M.; Yada, T.; Karouji, Y.; Ishibashi, Y.; Okada, T.; Abe, M.] JAXA ISAS, Sagamihara, Kanagawa, Japan. [Naraoka, H.; Kitajima, F.] Kyushu Univ, Fukuoka 812, Japan. [Ito, M.; Takano, Y.] JAMSTEC, Yokosuka, Kanagawa, Japan. [Kilcoyne, D.] LBNL, Adv Light Source, Berkeley, CA USA. [Sandford, S. A.] NASA, Ames, IA USA. [Mita, H.] Fukuoka Inst Tech Japan, Fukuoka, Japan. EM hyabuta@ess.sci.osaka-u.ac.jp RI Kilcoyne, David/I-1465-2013 NR 9 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2014 VL 49 SU 1 SI SI BP A443 EP A443 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AP2PA UT WOS:000341914200440 ER PT J AU Kaduk, JA Crowder, CE Zhong, K Fawcett, TG Suchomel, MR AF Kaduk, James A. Crowder, Cyrus E. Zhong, Kai Fawcett, Timothy G. Suchomel, Matthew R. TI Crystal structure of atomoxetine hydrochloride (Strattera), C17H22NOCI SO POWDER DIFFRACTION LA English DT Article DE atomoxetine; hydrochloride; powder diffraction; Rietveld; density functional ID POWDER DIFFRACTION; AB-INITIO; PATTERNS AB Commercial atomoxetine hydrochloride crystallizes in the orthorhombic space group P2(1)2(1)2(1) (#19), with a=7.362 554(12), b=13.340 168(27), c=16.701 887(33) angstrom, V=1640.421(5) angstrom(3), and Z=4. The structure was solved and refined using synchrotron powder diffraction data, and Rietveld and density functional techniques. The most prominent feature of the structure is zigzag chains of N H center dot center dot center dot Cl hydrogen bonds along the a-axis. The powder pattern has been submitted to the ICDD for inclusion in future releases of the Powder Diffraction File (TM). (C) 2014 International Centre for Diffraction Data. C1 [Kaduk, James A.] IIT, Chicago, IL 60616 USA. [Crowder, Cyrus E.; Zhong, Kai; Fawcett, Timothy G.] ICDD, Newtown Sq, PA 19073 USA. [Suchomel, Matthew R.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Kaduk, JA (reprint author), IIT, 3101 S Dearborn St, Chicago, IL 60616 USA. EM kaduk@polycrystallography.com FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; International Centre for Diffraction Data FX Use of the Advanced Photon Source at the Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This work was partially supported by the International Centre for Diffraction Data. We thank Lynn Ribaud for his assistance in data collection, and Silvina Pagola for her participation in the early stages of this project. NR 23 TC 1 Z9 1 U1 5 U2 9 PU J C P D S-INT CENTRE DIFFRACTION DATA PI NEWTOWN SQ PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA SN 0885-7156 EI 1945-7413 J9 POWDER DIFFR JI Powder Diffr. PD SEP PY 2014 VL 29 IS 3 BP 269 EP 273 DI 10.1017/S0885715614000517 PG 5 WC Materials Science, Characterization & Testing SC Materials Science GA AP8LM UT WOS:000342330500009 ER PT J AU Kaduk, JA Crowder, CE Zhong, K Fawcett, TG Suchomel, MR AF Kaduk, James A. Crowder, Cyrus E. Zhong, Kai Fawcett, Timothy G. Suchomel, Matthew R. TI Crystal structure of dutasteride (Avodart), C27H20F6N2O2 SO POWDER DIFFRACTION LA English DT Article DE dutasteride; powder diffraction; Rietveld; density functional ID BENIGN PROSTATIC HYPERPLASIA; POWDER DIFFRACTION; AB-INITIO; DIHYDROTESTOSTERONE; PATTERNS AB Commercial dutasteride crystallizes in the orthorhombic space group P2(1)2(1)2(1) (#19), with a=7.587 44(3), b=9.960 80(5), c=33.500 42(12) angstrom, V=2531.862(17) angstrom(3), and Z=4. The structure was solved and refined using synchrotron powder diffraction data, Rietveld, and density functional techniques. The most prominent feature of the structure is a zigzag chain of strong N-H center dot center dot center dot O=C hydrogen bonds along the a-axis. The powder pattern has been submitted to ICDD for inclusion in future releases of the Powder Diffraction File (TM). (C) 2014 International Centre for Diffraction Data. C1 [Kaduk, James A.] IIT, Chicago, IL 60616 USA. [Crowder, Cyrus E.; Zhong, Kai; Fawcett, Timothy G.] ICDD, Newtown Sq, PA 19073 USA. [Suchomel, Matthew R.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Kaduk, JA (reprint author), IIT, 3101 S Dearborn St, Chicago, IL 60616 USA. EM kaduk@polycrystallography.com OI SUCHOMEL, Matthew/0000-0002-9500-5079 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; International Centre for Diffraction Data FX Use of the Advanced Photon Source at the Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This work was partially supported by the International Centre for Diffraction Data. We thank Lynn Ribaud for his assistance in data collection, and Silvina Pagola for her participation in the early stages of this project. NR 24 TC 0 Z9 0 U1 1 U2 7 PU J C P D S-INT CENTRE DIFFRACTION DATA PI NEWTOWN SQ PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA SN 0885-7156 EI 1945-7413 J9 POWDER DIFFR JI Powder Diffr. PD SEP PY 2014 VL 29 IS 3 BP 274 EP 279 DI 10.1017/S088571561400061X PG 6 WC Materials Science, Characterization & Testing SC Materials Science GA AP8LM UT WOS:000342330500010 ER PT J AU Hagen, G Papenbrock, T Hjorth-Jensen, M Dean, DJ AF Hagen, G. Papenbrock, T. Hjorth-Jensen, M. Dean, D. J. TI Coupled-cluster computations of atomic nuclei SO REPORTS ON PROGRESS IN PHYSICS LA English DT Review DE atomic nuclei; coupled-cluster theory; exotic isotopes; helium; oxygen; calcium ID EFFECTIVE-FIELD-THEORY; BODY PERTURBATION-THEORY; CORE-SHELL-MODEL; OF-MASS MOTION; TRANSLATIONALLY-INVARIANT TREATMENT; 2-COMPONENT FERMI SYSTEMS; MONTE-CARLO CALCULATIONS; INTEGRAL TRANSFORM LIT; NEUTRON-RICH NUCLEI; CHIRAL LAGRANGIANS AB In the past decade, coupled-cluster theory has seen a renaissance in nuclear physics, with computations of neutron-rich and medium-mass nuclei. The method is efficient for nuclei with product-state references, and it describes many aspects of weakly bound and unbound nuclei. This report reviews the technical and conceptual developments of this method in nuclear physics, and the results of coupled-cluster calculations for nucleonic matter, and for exotic isotopes of helium, oxygen, calcium, and some of their neighbors. C1 [Hagen, G.; Papenbrock, T.; Dean, D. J.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Hagen, G.; Papenbrock, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Hjorth-Jensen, M.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Hjorth-Jensen, M.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Hjorth-Jensen, M.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway. [Hjorth-Jensen, M.] Univ Oslo, Ctr Math Applicat, N-0316 Oslo, Norway. RP Hagen, G (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM hageng@ornl.gov; tpapenbr@utk.edu; morten.hjorth-jensen@fys.uio.no; deandj@ornl.gov OI Dean, David/0000-0002-5688-703X; Papenbrock, Thomas/0000-0001-8733-2849 FU U S Department of Energy [DE-FG02-96ER40963, DE-FC02-07ER41457, DE-SC0008499, DEAC05-00OR22725]; Research Council of Norway FX We thank G Baardsen, J Gour, G R Jansen, O Jensen, S Kvaal, K Kowalski, H Nam, P Piecuch, D Pigg, B Velamur Asokan, and M Wloch for their collaboration on the nuclear coupled-cluster project. This work was supported in part by the U S Department of Energy under Grants Nos DE-FG02-96ER40963 (University of Tennessee), DE-FC02-07ER41457 (SciDAC-2 Collaboration UNEDF), DE-SC0008499 (SciDAC-3 Collaboration NUCLEI), DEAC05-00OR22725 (Oak Ridge National Laboratory), and the Research Council of Norway. NR 309 TC 49 Z9 49 U1 3 U2 25 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0034-4885 EI 1361-6633 J9 REP PROG PHYS JI Rep. Prog. Phys. PD SEP PY 2014 VL 77 IS 9 AR 096302 DI 10.1088/0034-4885/77/9/096302 PG 37 WC Physics, Multidisciplinary SC Physics GA AQ1TD UT WOS:000342563200006 PM 25222372 ER PT J AU Blacquiere, JM Pegis, ML Raugei, S Kaminsky, W Forget, A Cook, SA Taguchi, T Mayer, JM AF Blacquiere, Johanna M. Pegis, Michael L. Raugei, Simone Kaminsky, Werner Forget, Amelie Cook, Sarah A. Taguchi, Taketo Mayer, James M. TI Synthesis and Reactivity of Tripodal Complexes Containing Pendant Bases SO INORGANIC CHEMISTRY LA English DT Article ID SECONDARY COORDINATION SPHERE; INTRAMOLECULAR HYDROGEN-BONDS; SINGLE MOLYBDENUM CENTER; CYTOCHROME-C-OXIDASE; METAL-BOUND LIGANDS; PHYSICAL-PROPERTIES; OXYGEN REDUCTION; COBALT(II) COMPLEXES; CATALYTIC-REDUCTION; DIOXYGEN ACTIVATION AB The synthesis of a new tripodal ligand family that contains tertiary amine groups in the second-coordination sphere is reported. The ligands are tris(amido)amine derivatives, with the pendant amines attached via a peptide coupling strategy. They were designed to function as new molecular catalysts for the oxygen reduction reaction (ORB.), in which the pendant acid/base group could improve the catalyst performance. Two members of the ligand family were each metalated with cobalt(II) and zinc(II) to afford trigonal-monopyramidal complexes. The reaction of the cobalt complexes [Co(L)](-) with dioxygen reversibly generates a small amount of a cobalt(III) superoxo species, which was characterized by electron paramagnetic resonance (EPR) spectroscopy. Protonation of the zinc complex Zn[N{CH2CH2NC(O)CH2N(CH2Ph)(2)}(3))](-) ([Zn(TNBn)](-)) with 1 equiv of acid occurs at a primary-coordination-sphere amide moiety rather than at a pendant basic site. The addition of excess acid to any of the complexes [M(L)](-) results in complete proteolysis and formation of the ligands H3L. These undesired reactions limit the use of these complexes as catalysts for the ORR. An alternative ligand with two pyridyl arms was also prepared but could not be metalated. These studies highlight the importance of the stability of the primary-coordination sphere of ORR electrocatalysts to both oxidative and acidic conditions. C1 [Blacquiere, Johanna M.; Pegis, Michael L.; Kaminsky, Werner; Forget, Amelie; Mayer, James M.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. [Blacquiere, Johanna M.] Univ Western Ontario, Dept Chem, London, ON N6A 5B7, Canada. [Raugei, Simone] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. [Cook, Sarah A.; Taguchi, Taketo] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. RP Blacquiere, JM (reprint author), Univ Washington, Dept Chem, Box 351700, Seattle, WA 98195 USA. EM jblacqu2@uwo.ca; james.mayer@yale.edu FU Center for Molecular Electrocatalysis, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; National Science and Engineering Research Council of Canada FX Drs. T. A. Tronic, M. T. Mock, Z. M. Heiden, and C. J. Weiss of the Center for Molecular Electrocatalysis and Dr. A. S. Borovik of the University of California-Irvine are thanked for helpful discussions. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The National Science and Engineering Research Council of Canada is thanked for a PDF award for J.M.B. NR 83 TC 6 Z9 6 U1 7 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD SEP 1 PY 2014 VL 53 IS 17 BP 9242 EP 9253 DI 10.1021/ic5013389 PG 12 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AO3LB UT WOS:000341229600050 PM 25105991 ER PT J AU Libisch, F Huang, C Carter, EA AF Libisch, Florian Huang, Chen Carter, Emily A. TI Embedded Correlated Wavefunction Schemes: Theory and Applications SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID EXCHANGE-CORRELATION POTENTIALS; ELECTRONIC-STRUCTURE; KONDO IMPURITY; EXCITED-STATES; NANOSTRUCTURES; AL(111); SOLIDS; ENERGY; DISSOCIATION; DENSITIES AB CONSPECTUS: Ab initio modeling of matter has become a pillar of chemical research: with ever-increasing computational power, simulations can be used to accurately predict, for example, chemical reaction rates, electronic and mechanical properties of materials, and dynamical properties of liquids. Many competing quantum mechanical methods have been developed over the years that vary in computational cost, accuracy, and scalability: density functional theory (DFT), the workhorse of solid-state electronic structure calculations, features a good compromise between accuracy and speed. However, approximate exchange-correlation functionals limit DFTs ability to treat certain phenomena or states of matter, such as charge-transfer processes or strongly correlated materials. Furthermore, conventional DFT is purely a ground-state theory: electronic excitations are beyond its scope. Excitations in molecules are routinely calculated using time-dependent DFT linear response; however applications to condensed matter are still limited. By contrast, many-electron wavefunction methods aim for a very accurate treatment of electronic exchange and correlation. Unfortunately, the associated computational cost renders treatment of more than a handful of heavy atoms challenging. On the other side of the accuracy spectrum, parametrized approaches like tight-binding can treat millions of atoms. In view of the different (dis-)advantages of each method, the simulation of complex systems seems to force a compromise: one is limited to the most accurate method that can still handle the problem size. For many interesting problems, however, compromise proves insufficient. A possible solution is to break up the system into manageable subsystems that may be treated by different computational methods. The interaction between subsystems may be handled by an embedding formalism. In this Account, we review embedded correlated wavefunction (CW) approaches and some applications. We first discuss our density functional embedding theory, which is formally exact. We show how to determine the embedding potential, which replaces the interaction between subsystems, at the DFT level. CW calculations are performed using a fixed embedding potential, that is, a non-self-consistent embedding scheme. We demonstrate this embedding theory for two challenging electron transfer phenomena: (1) initial oxidation of an aluminum surface and (2) hot-electron-mediated dissociation of hydrogen molecules on a gold surface. In both cases, the interaction between gas molecules and metal surfaces were treated by sophisticated CW techniques, with the remainder of the extended metal surface being treated by DFT. Our embedding approach overcomes the limitations of conventional Kohn-Sham DFT in describing charge transfer, multiconfigurational character, and excited states. From these embedding simulations, we gained important insights into fundamental processes that are crucial aspects of fuel cell catalysis (i.e., O-2 reduction at metal surfaces) and plasmon-mediated photocatalysis by metal nanoparticles. Moreover, our findings agree very well with experimental observations, while offering new views into the chemistry. We finally discuss our recently formulated potential-functional embedding theory that provides a seamless, first-principles way to include back-action onto the environment from the embedded region. C1 [Libisch, Florian] Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria. [Huang, Chen] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Carter, Emily A.] Princeton Univ, Dept Mech & Aerosp Engn, Program Appl & Computat Math, Princeton, NJ 08544 USA. [Carter, Emily A.] Princeton Univ, Andlinger Ctr Energy & Environm, Princeton, NJ 08544 USA. RP Carter, EA (reprint author), Princeton Univ, Dept Mech & Aerosp Engn, Program Appl & Computat Math, Princeton, NJ 08544 USA. EM eac@princeton.edu RI Carter, Emily/P-4075-2014; OI Libisch, Florian/0000-0001-5641-9458 FU U.S. National Science Foundation; [SFB-041 ViCoM] FX F.L. acknowledges support by the SFB-041 ViCoM, and E.A.C. is grateful to the U.S. National Science Foundation for support of this research. NR 57 TC 30 Z9 30 U1 11 U2 70 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 EI 1520-4898 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD SEP PY 2014 VL 47 IS 9 SI SI BP 2768 EP 2775 DI 10.1021/ar500086h PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA AP1BG UT WOS:000341800800008 PM 24873211 ER PT J AU Heins, RA Cheng, XL Nath, S Deng, K Bowen, BP Chivian, DC Datta, S Friedland, GD D'Haeseleer, P Wu, DY Tran-Gyamfi, M Scullin, CS Singh, S Shi, WB Hamilton, MG Bendall, ML Sczyrba, A Thompson, J Feldman, T Guenther, JM Gladden, JM Cheng, JF Adams, PD Rubin, EM Simmons, BA Sale, KL Northen, TR Deutsch, S AF Heins, Richard A. Cheng, Xiaoliang Nath, Sangeeta Deng, Kai Bowen, Benjamin P. Chivian, Dylan C. Datta, Supratim Friedland, Gregory D. D'Haeseleer, Patrik Wu, Dongying Tran-Gyamfi, Mary Scullin, Chessa S. Singh, Seema Shi, Weibing Hamilton, Matthew G. Bendall, Matthew L. Sczyrba, Alexander Thompson, John Feldman, Taya Guenther, Joel M. Gladden, John M. Cheng, Jan-Fang Adams, Paul D. Rubin, Edward M. Simmons, Blake A. Sale, Kenneth L. Northen, Trent R. Deutsch, Samuel TI Phylogenomically Guided Identification of Industrially Relevant GH1 beta-Glucosidases through DNA Synthesis and Nanostructure-Initiator Mass Spectrometry SO ACS CHEMICAL BIOLOGY LA English DT Article ID ENZYME-ACTIVITY ASSAY; CRYSTAL-STRUCTURE; GLYCOSYL HYDROLASES; TRICHODERMA-REESEI; HIGH-THROUGHPUT; INSIGHTS; SUBSTRATE; BACTERIA; TREES AB Harnessing the biotechnological potential of the large number of proteins available in sequence databases requires scalable methods for functional characterization. Here we propose a workflow to address this challenge by combining phylogenomic guided DNA synthesis with high-throughput mass spectrometry and apply it to the systematic characterization of GH1 beta-glucosidases, a family of enzymes necessary for biomass hydrolysis, an important step in the conversion of lignocellulosic feedstocks to fuels and chemicals. We synthesized and expressed 175 GH1s, selected from over 2000 candidate sequences to cover maximum sequence diversity. These enzymes were functionally characterized over a range of temperatures and pHs using nanostructure-initiator mass spectrometry (NIMS), generating over 10,000 data points. When combined with HPLC-based sugar profiling, we observed GH1 enzymes active over a broad temperature range and toward many different beta-linked disaccharides. For some GH1s we also observed activity toward laminarin, a more complex oligosaccharide present as a major component of macroalgae. An area of particular interest was the identification of GH1 enzymes compatible with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([C(2)mim][OAc]), a next-generation biomass pretreatment technology. We thus searched for GH1 enzymes active at 70 C and 20% (v/v) [C(2)mim][OAC] over the course of a 24-h saccharification reaction. Using our unbiased approach, we identified multiple enzymes of different phylogentic origin with such activities. Our approach of characterizing sequence diversity through targeted gene synthesis coupled to high-throughput screening technologies is a broadly applicable paradigm for a wide range of biological problems. C1 [Heins, Richard A.; Cheng, Xiaoliang; Deng, Kai; Chivian, Dylan C.; Datta, Supratim; Friedland, Gregory D.; D'Haeseleer, Patrik; Scullin, Chessa S.; Singh, Seema; Feldman, Taya; Guenther, Joel M.; Gladden, John M.; Simmons, Blake A.; Sale, Kenneth L.; Northen, Trent R.] Joint Bioenergy Inst, Emeryville, CA 94608 USA. [Nath, Sangeeta; Wu, Dongying; Shi, Weibing; Hamilton, Matthew G.; Bendall, Matthew L.; Sczyrba, Alexander; Cheng, Jan-Fang; Rubin, Edward M.; Deutsch, Samuel] Joint Genome Inst, Walnut Creek, CA 94598 USA. [Bowen, Benjamin P.; Adams, Paul D.; Rubin, Edward M.; Northen, Trent R.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Heins, Richard A.; Tran-Gyamfi, Mary; Singh, Seema; Simmons, Blake A.; Sale, Kenneth L.] Sandia Natl Labs, Livermore, CA 94551 USA. [Thompson, John] NIDCR, NIH, Oral Infect & Immun Branch, Bethesda, MD 20892 USA. RP Deutsch, S (reprint author), Joint Genome Inst, 2800 Mitchell Dr, Walnut Creek, CA 94598 USA. EM sdeutsch@lbl.gov RI Adams, Paul/A-1977-2013 OI Adams, Paul/0000-0001-9333-8219 FU Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy [DE-AC02-05CH1123]; Swiss National Science Foundation [PA0033-121414]; National Institute of Dental and Craniofacial Research FX The work conducted by the U.S. Department of Energy Joint Genome Institute and Joint BioEnergy Institute is supported by the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH1123. In addition, this work was supported by the Swiss National Science Foundation [PA0033-121414 to S.D.] and the Intramural Research Program of the National Institute of Dental and Craniofacial Research to J.T. NR 33 TC 12 Z9 12 U1 7 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1554-8929 EI 1554-8937 J9 ACS CHEM BIOL JI ACS Chem. Biol. PD SEP PY 2014 VL 9 IS 9 BP 2082 EP 2091 DI 10.1021/cb500244v PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AP5LR UT WOS:000342121200024 PM 24984213 ER PT J AU Bagriantsev, SN Chatelain, FC Clark, KA Alagem, N Reuveny, E Minor, DL AF Bagriantsev, Sviatoslav N. Chatelain, Franck C. Clark, Kimberly A. Alagem, Noga Reuveny, Eitan Minor, Daniel L., Jr. TI Tethered Protein Display Identifies a Novel Kir3.2 (GIRK2) Regulator from Protein Scaffold Libraries SO ACS CHEMICAL NEUROSCIENCE LA English DT Article DE Randomized libraries; tethered protein display; channel activation; trafficking; inward rectifier; GIRK ID G-BETA-GAMMA; RECTIFYING POTASSIUM CHANNELS; BACTERIAL RECEPTOR DOMAIN; K+ CHANNEL; COMBINATORIAL LIBRARIES; INWARD RECTIFIER; ION CHANNELS; FUNCTIONAL EXPRESSION; THERAPEUTIC TARGETS; TRANSPORT SIGNALS AB Use of randomized peptide libraries to evolve molecules with new functions provides a means for developing novel regulators of protein activity. Despite the demonstrated power of such approaches for soluble targets, application of this strategy to membrane systems, such as ion channels, remains challenging. Here, we have combined libraries of a tethered protein scaffold with functional selection in yeast to develop a novel activator of the G-protein-coupled mammalian inwardly rectifying potassium channel Kir3.2 (GIRK2). We show that the novel regulator, denoted N5, increases Kir3.2 (GIRK2) basal activity by inhibiting clearance of the channel from the cellular surface rather than affecting the core biophysical properties of the channel. These studies establish the tethered protein display strategy as a means to create new channel modulators and highlight the power of approaches that couple randomized libraries with direct selections for functional effects. Our results further underscore the possibility for the development of modulators that influence channel function by altering cell surface expression densities rather than by direct action on channel biophysical parameters. The use of tethered library selection strategies coupled with functional selection bypasses the need for a purified target and is likely to be applicable to a range of membrane protein systems. C1 [Bagriantsev, Sviatoslav N.; Chatelain, Franck C.; Clark, Kimberly A.; Minor, Daniel L., Jr.] Univ Calif San Francisco, Cardiovasc Res Inst, San Francisco, CA 94158 USA. [Minor, Daniel L., Jr.] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94158 USA. [Minor, Daniel L., Jr.] Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA. [Minor, Daniel L., Jr.] Univ Calif San Francisco, Calif Inst Quantitat Biomed Res, San Francisco, CA 94158 USA. [Minor, Daniel L., Jr.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Alagem, Noga; Reuveny, Eitan] Weizmann Inst Sci, Dept Biol Chem, IL-76100 Rehovot, Israel. RP Minor, DL (reprint author), Univ Calif San Francisco, Cardiovasc Res Inst, San Francisco, CA 94158 USA. EM daniel.minor@ucsf.edu OI Bagriantsev, Sviatoslav/0000-0002-6661-3403 FU McKnight Foundation for Neuroscience Technological Innovation Award; NIH-NINDS [R01-NS049272]; NIH-NIMH [R01-MH093603]; Life Sciences Research Foundation; US-Israel Binational Science Foundation [2003209, 2011124] FX This work was supported by grants to D.L.M. from a McKnight Foundation for Neuroscience Technological Innovation Award, NIH-NINDS R01-NS049272, NIH-NIMH R01-MH093603; to S.N.B. from the Life Sciences Research Foundation; and to D.L.M. and E.R. from the US-Israel Binational Science Foundation Grants 2003209 and 2011124. S.N.B. was a Genentech Fellow of the Life Sciences Research Foundation. NR 78 TC 3 Z9 3 U1 1 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7193 J9 ACS CHEM NEUROSCI JI ACS Chem. Neurosci. PD SEP PY 2014 VL 5 IS 9 BP 812 EP 822 DI 10.1021/cn5000698 PG 11 WC Biochemistry & Molecular Biology; Chemistry, Medicinal; Neurosciences SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Neurosciences & Neurology GA AP5KY UT WOS:000342119300009 PM 25028803 ER PT J AU Ahn, SK Carrillo, JMY Han, Y Kim, TH Uhrig, D Pickel, DL Hong, KL Kilbey, SM Sumpter, BG Smith, GS Do, C AF Ahn, Suk-kyun Carrillo, Jan-Michael Y. Han, Youngkyu Kim, Tae-Hwan Uhrig, David Pickel, Deanna L. Hong, Kunlun Kilbey, S. Michael, II Sumpter, Bobby G. Smith, Gregory S. Do, Changwoo TI Structural Evolution of Polylactide Molecular Bottlebrushes: Kinetics Study by Size Exclusion Chromatography, Small Angle Neutron Scattering, and Simulations SO ACS MACRO LETTERS LA English DT Article ID OPENING METATHESIS POLYMERIZATION; FREE-RADICAL POLYMERIZATION; IN-SITU; MACROMOLECULAR ARCHITECTURE; ACRYLIC-ACID; BRUSHES; SPECTROSCOPY; LENGTH; POLY(3-HEXYLTHIOPHENE); TRANSITION AB Structural evolution from poly(lactide) (PLA) macromonomer to resultant PLA molecular bottlebrush during ring opening metathesis polymerization (ROMP) was investigated for the first time by combining size exclusion chromatography (SEC), small-angle neutron scattering (SANS), and coarse-grained molecular dynamics (CG-MD) simulations. Multiple aliquots were collected at various reaction times during ROMP and subsequently analyzed by SEC and SANS. These complementary techniques enable the understanding of systematic changes in conversion, molecular weight and dispersity as well as structural details of PLA molecular bottlebrushes. CG-MD simulation not only predicts the experimental observations, but it also provides further insight into the analysis and interpretation of data obtained in SEC and SANS experiments. We find that PLA molecular bottlebrushes undergo three conformational transitions with increasing conversion (i.e., increasing the backbone length): (1) from an elongated to a globular shape due to longer side chain at low conversion, (2) from a globular to an elongated shape at intermediate conversion caused by excluded volume of PLA side chain, and (3) the saturation of contour length at high conversion due to chain transfer reactions. C1 [Ahn, Suk-kyun; Uhrig, David; Pickel, Deanna L.; Hong, Kunlun; Sumpter, Bobby G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Carrillo, Jan-Michael Y.] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. [Han, Youngkyu; Smith, Gregory S.; Do, Changwoo] Oak Ridge Natl Lab, Neutron Sci Directorate, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Sumpter, Bobby G.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Kilbey, S. Michael, II] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Kilbey, S. Michael, II] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Kim, Tae-Hwan] Korea Atom Energy Res Inst, Dept Reactor Utilizat & Dev, Neutron Sci Div, Taejon, South Korea. RP Ahn, SK (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM ahns1@ornl.gov; carrillojy@ornl.gov; doc1@ornl.gov RI Carrillo, Jan-Michael/K-7170-2013; Sumpter, Bobby/C-9459-2013; Uhrig, David/A-7458-2016; Smith, Gregory/D-1659-2016; Han, Youngkyu/D-2271-2016; Do, Changwoo/A-9670-2011; Hong, Kunlun/E-9787-2015 OI Carrillo, Jan-Michael/0000-0001-8774-697X; Sumpter, Bobby/0000-0001-6341-0355; Uhrig, David/0000-0001-8447-6708; Smith, Gregory/0000-0001-5659-1805; Han, Youngkyu/0000-0002-2021-8520; Do, Changwoo/0000-0001-8358-8417; Hong, Kunlun/0000-0002-2852-5111 FU Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC; HANARO center of Korea Atomic Energy Research Institute; Ministry of Science, ICT and Future Planning (MSIP), Korea government through National Nuclear Technology Program [2012M2A2A6004260]; Sustainable Energy and Education Research Center (SEERC) at Univ. of Tennessee-Knoxville FX Research at Oak Ridge National Laboratory's Spallation Neutron Source and Center for Nanophase Materials Sciences is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. This research used resources of the Leadership Computing Facility at Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. This work was also supported by the HANARO center of Korea Atomic Energy Research Institute and Ministry of Science, ICT and Future Planning (MSIP), Korea government, through its National Nuclear Technology Program (2012M2A2A6004260). S.M.K. acknowledges support from the Sustainable Energy and Education Research Center (SEERC) at Univ. of Tennessee-Knoxville. J.M.C. thanks Prof. A. Dobrynin for his fruitful discussion. NR 37 TC 5 Z9 5 U1 3 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-1653 J9 ACS MACRO LETT JI ACS Macro Lett. PD SEP PY 2014 VL 3 IS 9 BP 862 EP 866 DI 10.1021/mz5003454 PG 5 WC Polymer Science SC Polymer Science GA AP1BF UT WOS:000341800700007 ER PT J AU Hickstein, DD Dollar, F Ellis, JL Schnitzenbaumer, KJ Keister, KE Petrov, GM Ding, CY Palm, BB Gaffney, JA Foord, ME Libby, SB Dukovic, G Jimenez, JL Kapteyn, HC Murnane, MM Xiong, W AF Hickstein, Daniel D. Dollar, Franklin Ellis, Jennifer L. Schnitzenbaumer, Kyle J. Keister, K. Ellen Petrov, George M. Ding, Chengyuan Palm, Brett B. Gaffney, Jim A. Foord, Mark E. Libby, Stephen B. Dukovic, Gordana Jimenez, Jose L. Kapteyn, Henry C. Murnane, Margaret M. Xiong, Wei TI Mapping Nanoscale Absorption of Femtosecond Laser Pulses Using Plasma Explosion Imaging SO ACS NANO LA English DT Article DE plasmonics; local field enhancement; femtosecond lasers; photoion spectroscopy; finite-difference time-domain ID PHOTOELECTRON; NANOPARTICLES; ENHANCEMENT; ELECTRON; SPECTROSCOPY; SYSTEM; ENERGY; LIGHT AB We make direct observations of localized light absorption in a single nanostructure irradiated by a strong femtosecond laser field, by developing and applying a technique that we refer to as plasma explosion imaging. By imaging the photoion momentum distribution resulting from plasma formation in a laser-irradiated nanostructure, we map the spatial location of the highly localized plasma and thereby image the nanoscale light absorption. Our method probes individual, isolated nanoparticles in vacuum, which allows us to observe how small variations in the composition, shape, and orientation of the nanostructures lead to vastly different light absorption. Here, we study four different nanoparticle samples with overall dimensions of similar to 100 nm and find that each sample exhibits distinct light absorption mechanisms despite their similar size. Specifically, we observe subwavelength focusing in single NaCl crystals, symmetric absorption in TiO2 aggregates, surface enhancement in dielectric particles containing a single gold nanoparticle, and interparticle hot spots in dielectric particles containing multiple smaller gold nanoparticles. These observations demonstrate how plasma explosion imaging directly reveals the diverse ways in which nanoparticles respond to strong laser fields, a process that is notoriously challenging to model because of the rapid evolution of materials properties that takes place on the femtosecond time scale as a solid nanostructure is transformed into a dense plasma. C1 [Hickstein, Daniel D.; Dollar, Franklin; Ellis, Jennifer L.; Keister, K. Ellen; Ding, Chengyuan; Kapteyn, Henry C.; Murnane, Margaret M.; Xiong, Wei] Univ Colorado, Joint Inst Lab Astrophys, Boulder, CO 80309 USA. [Hickstein, Daniel D.; Dollar, Franklin; Ellis, Jennifer L.; Keister, K. Ellen; Ding, Chengyuan; Kapteyn, Henry C.; Murnane, Margaret M.; Xiong, Wei] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Schnitzenbaumer, Kyle J.; Palm, Brett B.; Dukovic, Gordana; Jimenez, Jose L.] Univ Colorado, Dept Chem, Boulder, CO 80309 USA. [Petrov, George M.] Naval Res Lab, Div Plasma Phys, Washington, DC 20375 USA. [Palm, Brett B.; Jimenez, Jose L.] CIRES, Boulder, CO 80309 USA. [Foord, Mark E.; Libby, Stephen B.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. RP Hickstein, DD (reprint author), Univ Colorado, Joint Inst Lab Astrophys, Boulder, CO 80309 USA. EM danhickstein@gmail.com RI Jimenez, Jose/A-5294-2008; OI Jimenez, Jose/0000-0001-6203-1847; Gaffney, Jim/0000-0002-2408-0047 FU DOE Office of Fusion Energy Sciences [DE-SC0008803]; NSSEFF Fellowship; DOE [DE-SC0011105]; NOAA [NA13OAR4310063]; DOE Office of Fusion Energy, HED Laboratory Plasmas program [AT5015033]; U.S. Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344]; Naval Research Laboratory 6.1 Base Program; Air Force Office of Scientific Research under AFOSR [FA9550-12-1-0137] FX We thank T. Dimiduk and J. Fung for assistance with preliminary Mie theory calculations and acknowledge insightful conversations with A. Grubisic. We also thank A. Saunders at Nanocomposix for advice regarding gold nanoparticles and J. Phillips for assistance preparing the manuscript. D.D.H., W.X., F.D., C.D., K.E.K., J.L.E., M.M.M., and H.C.K. acknowledge support from the DOE Office of Fusion Energy Sciences DE-SC0008803 and equipment support from an NSSEFF Fellowship. B.B.P. and J.L.J. thank DOE DE-SC0011105 and NOAA NA13OAR4310063 for support. S.B.L., M.E.F, and J.A.G. acknowledge support from the DOE Office of Fusion Energy, HED Laboratory Plasmas program under grant AT5015033. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration, under contract DE-AC52-07NA27344. G.M.P. acknowledges support by the Naval Research Laboratory 6.1 Base Program. K.J.S. and G.D. acknowledge support from the Air Force Office of Scientific Research under AFOSR award no. FA9550-12-1-0137. Dr. Wei Xiong is presently affiliated with the Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States. NR 39 TC 10 Z9 11 U1 0 U2 57 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD SEP PY 2014 VL 8 IS 9 BP 8810 EP 8818 DI 10.1021/nn503199v PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AP6JP UT WOS:000342184400012 PM 25100104 ER PT J AU Silva, RM Doudrick, K Franzi, LM Teesy, C Anderson, DS Wu, ZQ Mitra, S Vu, V Dutrow, G Evans, JE Westerhoff, P Van Winkle, LS Raabe, OG Pinkerton, KE AF Silva, Rona M. Doudrick, Kyle Franzi, Lisa M. TeeSy, Christel Anderson, Donald S. Wu, Zheqiong Mitra, Somenath Vu, Vincent Dutrow, Gavin Evans, James E. Westerhoff, Paul Van Winkle, Laura S. Raabe, Otto G. Pinkerton, Kent E. TI Instillation versus Inhalation of Multiwalled Carbon Nanotubes: Exposure-Related Health Effects, Clearance, and the Role of Particle Characteristics SO ACS NANO LA English DT Article DE pulmonary toxicity; inflammation; engineered nanomaterial; inhalation exposure; multiwalled carbon nanotube (MWCNT) ID NANO GO CONSORTIUM; INTRATRACHEAL INSTILLATION; CELLULAR UPTAKE; IN-VITRO; RAT LUNG; SIDEWALL FUNCTIONALIZATION; INTERLABORATORY EVALUATION; ENGINEERED NANOMATERIALS; INFLAMMATORY RESPONSES; TOXICITY AB Inhaled multiwalled carbon nanotubes (MWCNTs) may cause adverse pulmonary responses due to their nanoscale, fibrous morphology and/or biopersistance. This study tested multiple factors (dose, time, physicochemical characteristics, and administration method) shown to affect MWCNT toxicity with the hypothesis that these factors will influence significantly different responses upon MWCNT exposure. The study is unique in that (1) multiple administration methods were tested using particles from the same stock; (2) bulk MWCNT formulations had few differences (metal content, surface area/functionalization); and (3) MWCNT retention was quantified using a specialized approach for measuring unlabeled MWCNTs in rodent lungs. Male Sprague-Dawley rats were exposed to original (0), purified (P), and carboxylic add functionalized (F) MWCNTs via intratracheal instillation and inhalation. Blood, bronchoalveolar lavage fluid (BALE), and lung tissues were collected at postexposure days 1 and 21 for quantifying biological responses and MWCNTs in lung tissues by programmed thermal analysis. At day 1, MWCNT instillation produced significant BALF neutrophilia and MWCNT-positive macrophages. Instilled 0-and P-MWCNTs produced significant inflammation in lung tissues, which resolved by day 21 despite MWCNT retention. MWCNT inhalation produced no BALF neutrophilia and no significant histopathology past day 1. However, on days 1 and 21 postinhalation of nebulized MWCNTs, significantly increased numbers of MWCNT-positive macrophages were observed in BALF. Results suggest (1) MWCNTs produce transient inflammation if any despite persistence in the lungs; (2) instilled 0-MWCNTs cause more inflammation than P- or F-MWCNTs; and (3) MWCNT suspension media produce strikingly different effects on physicochemical particle characteristic and pulmonary responses. C1 [Silva, Rona M.; TeeSy, Christel; Anderson, Donald S.; Van Winkle, Laura S.; Pinkerton, Kent E.] Univ Calif Davis, Ctr Hlth & Environm, Davis, CA 95616 USA. [Doudrick, Kyle; Westerhoff, Paul] Arizona State Univ, Sch Sustainable Engn & Built Environm, Tempe, AZ 85287 USA. [Franzi, Lisa M.] Univ Calif Davis, Sch Med, Dept Pulm Med, Davis, CA 95616 USA. [Wu, Zheqiong; Mitra, Somenath] New Jersey Inst Technol, Dept Chem & Environm Sci, Newark, NJ 07102 USA. [Vu, Vincent; Dutrow, Gavin; Evans, James E.] Univ Calif Davis, Dept Mol & Cellular Biol, Davis, CA 95616 USA. [Evans, James E.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Raabe, Otto G.] Univ Calif Davis, Sch Vet Med, Dept Mol Biosci, Davis, CA 95616 USA. RP Pinkerton, KE (reprint author), Univ Calif Davis, Ctr Hlth & Environm, Davis, CA 95616 USA. EM kepinkerton@ucdavis.edu RI Doudrick, Kyle/J-4683-2014; OI Doudrick, Kyle/0000-0003-1912-9819; Anderson, Donald/0000-0003-0415-4106 FU University of California, Davis, Atmospheric Aerosols and Health Lead Campus Program; NIEHS [1U01ES020127-01]; U.S. Department of Energy [DE-AC05-76RL01830] FX Support for this research was provided by the University of California, Davis, Atmospheric Aerosols and Health Lead Campus Program (aah.ucdavis.edu), and NIEHS [1U01ES020127-01], Engineered Nanomaterials: Linking Physical and Chemical Properties to Biology. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract Number DE-AC05-76RL01830. The authors wish to thank I. Espiritu, K. Johnson, A. Madl, D. Munshi, L Mut, E. Patchin, J. Peake, L Plummer, V. Seshachellam, D. Uyeminami, E. Andreozzi, Dr. T. Guo, and Dr. A. Louie for their assistance during the course of this study. Special thanks to Dr. L Ashbaugh at Crocker Nuclear Lab of UC Davis, Dr. N. Willits at the UC Davis Statistical Laboratory, F. Hayes at the AMCaT Lab, and S. Smiley-Jewell and the Cellular and Molecular Imaging (CAMI) core facility at the Center for Health and the Environment, UC Davis. NR 76 TC 19 Z9 19 U1 2 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD SEP PY 2014 VL 8 IS 9 BP 8911 EP 8931 DI 10.1021/nn503887r PG 21 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AP6JP UT WOS:000342184400021 PM 25144856 ER PT J AU Crisp, RW Panthani, MG Rance, WL Duenow, JN Parilla, PA Callahan, R Dabney, MS Berry, JJ Talapin, DV Luther, JM AF Crisp, Ryan W. Panthani, Matthew G. Rance, William L. Duenow, Joel N. Parilla, Philip A. Callahan, Rebecca Dabney, Matthew S. Berry, Joseph J. Talapin, Dmitri V. Luther, Joseph M. TI Nanocrystal Grain Growth and Device Architectures for High-Efficiency CdTe Ink-Based Photovoltaics SO ACS NANO LA English DT Article DE CdTe; photovoltaic; nanocrystal; grain growth; device architecture; sintering; solution-processed ID FIELD-EFFECT TRANSISTORS; SOLAR-CELLS; ELECTRICAL-PROPERTIES; CZTS NANOCRYSTALS; PRECURSOR ROUTE; QUANTUM DOTS; THIN-FILMS; LAYER; OXIDE; PERFORMANCE AB We study the use of cadmium telluride (CdTe) nanocrystal colloids as a solution-processable "ink" for large-grain (die absorber layers in solar cells. The resulting grain structure and solar cell performance depend on the initial nanocrystal size, shape, and crystal structure. We find that inks of predominantly wurtzite tetrapod-shaped nanocrystals with arms similar to 5.6 nm in diameter exhibit better device performance compared to inks composed of smaller tetrapods, irregular faceted nanocrystals, or spherical zincblende nanocrystals despite the fact that the final sintered film has a zincblende crystal structure. Five different working device architectures were investigated. The indium tin oxide (ITO)/CdTe/zinc oxide structure leads to our best performing device architecture (with efficiency >11%) compared to others including two structures with a cadmium sulfide (CdS) n-type layer typically used in high efficiency sublimation-grown (die solar cells. Moreover, devices without CdS have improved response at short wavelengths. C1 [Crisp, Ryan W.; Rance, William L.; Duenow, Joel N.; Parilla, Philip A.; Callahan, Rebecca; Dabney, Matthew S.; Berry, Joseph J.; Luther, Joseph M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Crisp, Ryan W.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Callahan, Rebecca] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Panthani, Matthew G.; Talapin, Dmitri V.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. RP Luther, JM (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM dvtalapin@uchicago.edu; joey.luther@nrel.gov FU U.S. Department of Energy (DOE) SunShot program [DE-EE0005312]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001084]; U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX This work is supported by the U.S. Department of Energy (DOE) SunShot program under Award No. DE-EE0005312. Support for the vapor-deposited or sputtered contact materials from the Center for Interface Science: Solar Electric Materials (CISSEM), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0001084 and the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory, is acknowledged. We thank B. To for SEM imaging and R.T. Collins and M.O. Reese for helpful discussions. NR 43 TC 24 Z9 24 U1 11 U2 115 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD SEP PY 2014 VL 8 IS 9 BP 9063 EP 9072 DI 10.1021/nn502442g PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AP6JP UT WOS:000342184400034 PM 25133302 ER PT J AU Kashyap, S Woehl, TJ Liu, XP Mallapragada, SK Prozorov, T AF Kashyap, Sanjay Woehl, Taylor J. Liu, Xunpei Mallapragada, Surya K. Prozorov, Tanya TI Nucleation of Iron Oxide Nanoparticles Mediated by Mms6 Protein in Situ SO ACS NANO LA English DT Article DE recombinant iron-binding protein; protein-mediated particle nucleation; in situ TEM analysis ID TRANSMISSION ELECTRON-MICROSCOPY; SELF-ASSEMBLED MONOLAYERS; MAGNETOTACTIC BACTERIA; MAGNETITE NANOCRYSTALS; MAGNETOSOME MEMBRANE; ORIENTED ATTACHMENT; INORGANIC MATERIALS; CRYSTAL NUCLEATION; PROTEOMIC ANALYSIS; CALCIUM-PHOSPHATE AB Biomineralization proteins are widely used as templating agents in biomimetic synthesis of a variety of organic-inorganic nanostructures. However, the role of the protein in controlling the nucleation and growth of biomimetic particles is not well understood, because the mechanism of the bioinspired reaction is often deduced from at situ analysis of the resultant nanoscale mineral phase. Here we report the direct visualization of biomimetic iron oxide nanoparticle nucleation mediated by an acidic bacterial recombinant protein, Mms6, during an in situ reaction induced by the controlled addition of sodium hydroxide to solution-phase Mms6 protein micelles incubated with ferric chloride. Using in situ liquid cell scanning transmission electron microscopy we observe the liquid iron prenucleation phase and nascent amorphous nanoparticles forming preferentially on the surface of protein micelles. Our results provide insight into the early steps of protein-mediated biomimetic nucleation of iron oxide and point to the importance of an extended protein surface during nanoparticle formation. C1 [Kashyap, Sanjay; Woehl, Taylor J.; Mallapragada, Surya K.; Prozorov, Tanya] US DOE, Ames Lab, Ames, IA 50011 USA. [Liu, Xunpei; Mallapragada, Surya K.] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA. RP Prozorov, T (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM tprozoro@ameslab.gov FU Department of Energy, Office of Science, Early Career Research Award, Biomolecular Materials Program; U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; US. Department of Energy by Iowa State University [DE-AC02-07CH11358] FX T.P. acknowledges support from the Department of Energy, Office of Science, Early Career Research Award, Biomolecular Materials Program. This work was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. The research was performed at the Ames Laboratory, which is operated for the US. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. The authors thank Prof. Marit Nilsen-Hamilton and her laboratory for providing the recombinant biomineralization protein Mms6. NR 104 TC 21 Z9 21 U1 19 U2 126 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD SEP PY 2014 VL 8 IS 9 BP 9097 EP 9106 DI 10.1021/nn502551y PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AP6JP UT WOS:000342184400038 PM 25162493 ER PT J AU Tajon, CA Seo, D Asmussen, J Shah, N Jun, YW Craik, CS AF Tajon, Cheryl A. Seo, Daeha Asmussen, Jennifer Shah, Neil Jun, Young-wook Craik, Charles S. TI Sensitive and Selective Plasmon Ruler Nanosensors for Monitoring the Apoptotic Drug Response in Leukemia SO ACS NANO LA English DT Article DE caspase; gold nanoparticles; plasmon coupling; leukemia; single molecule ID CASPASE-3 ACTIVATION; GOLD NANOPARTICLES; KINETIC-ANALYSIS; CELLS; RESONANCE; PATHWAYS; ENZYMES; ENHANCEMENT; NANOSHELLS; AFFINITY AB Caspases are proteases involved in cell death, where caspase-3 is the chief executioner that produces an irreversible cutting event in downstream protein substrates and whose activity is desired in the management of cancer. To determine such activity in clinically relevant samples with high signal-to-noise, plasmon rulers are ideal because they are sensitively affected by their interparticle separation without ambiguity from photobleaching or blinking effects. A plasmon ruler is a noble metal nanoparticle pair, tethered in close proximity to one another via a biomolecule, that acts through dipole-dipole interactions and results in the light scattering to increase exponentially. In contrast, a sharp decrease in intensity is observed when the pair is confronted by a large interparticle distance. To align the mechanism of protease activity with building a sensor that can report a binary signal in the presence or absence of caspase-3, we present a caspase-3 selective plasmon ruler (C3SPR) composed of a pair of Zn0.4Fe2.6O4@SiO2@Au core-shell nanoparticles connected by a caspase-3 deavage sequence. The dielectric core (Zn0.4Fe2.6O4@SiO2)-shell (Au) geometry provided a brighter scattering intensity versus solid Au nanoparticles, and the magnetic core additionally acted as a purification handle during the plasmon ruler assembly. By monitoring the decrease in light scattering intensity per plasmon ruler, we detected caspase-3 activity at single molecule resolution across a broad dynamic range. This was observed to be as low as 100 fM of recombinant material or 10 ng of total protein from cellular lysate. By thorough analyses of single molecule trajectories, we show caspase-3 activation in a drug-treated chronic myeloid leukemia (1(562) cancer system as early as 4 and 8 h with greater sensitivity (2- and 4-fold, respectively) than conventional reagents. This study provides future implications for monitoring caspase-3 as a biomarker and efficacy of drugs. C1 [Tajon, Cheryl A.; Craik, Charles S.] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94158 USA. [Seo, Daeha; Jun, Young-wook] Univ Calif San Francisco, Dept Otolaryngol, San Francisco, CA 94115 USA. [Seo, Daeha] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Seo, Daeha] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. [Asmussen, Jennifer; Shah, Neil] Univ Calif San Francisco, Dept Pharmaceut Sci & Pharmacogen, San Francisco, CA 94143 USA. RP Jun, YW (reprint author), Univ Calif San Francisco, Dept Otolaryngol, San Francisco, CA 94115 USA. EM yjun@ohns.ucsf.edu; charles.craik@ucsf.edu FU Microbial Pathogenesis and Host Defense Training Grant [T32-GM64337]; UCSF Quantitative Biosciences Consortium (QBC) Fellowship; NIGMS-IMSD [R25-GM56847]; Human Frontier Science Program Cross-disciplinary postdoc research fellowship; NIH [T32 GM007175]; UC Cancer Research Coordinating Committee (CRCC) Fellowship; National Institute of Biomedical Imaging and Bioengineering; National Institutes of Health [NIH 1R21EB015088, NIH R01CA128765]; Biomedical Research Technology Program of the NIH National Center for Research Resources [NIH NCRR P41RR001614, NRCC RR014606] FX C.A.T. was supported as an appointee on the Microbial Pathogenesis and Host Defense Training Grant (T32-GM64337) and received the UCSF Quantitative Biosciences Consortium (QBC) Fellowship and NIGMS-IMSD award (R25-GM56847). D.S. was supported by the Human Frontier Science Program Cross-disciplinary postdoc research fellowship. J.A. received support from the NIH Training Grant T32 GM007175 and the UC Cancer Research Coordinating Committee (CRCC) Fellowship. Y.J. was supported from the National Institute of Biomedical Imaging and Bioengineering and National Institutes of Health (NIH 1R21EB015088). C.S.C received support from the National Institutes of Health (NIH R01CA128765). N. Shah is a Leukemia & Lymphoma Scholar in Clinical Research. We thank J. Wells (University of California, San Francisco) and J. Zorn for providing us with purified recombinant caspases. Mass spectrometry was provided by the Bio-Organic Mass Spectrometry Resource at UCSF (A. Burlingame, Director) supported by the Biomedical Research Technology Program of the NIH National Center for Research Resources (NIH NCRR P41RR001614 and NRCC RR014606). Amino acid analysis was performed at Texas A&M University (Protein Chemistry Laboratory, Department of Biochemistry). The authors thank C. Duan (Boston University) for critical review of the manuscript. NR 52 TC 14 Z9 14 U1 6 U2 57 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD SEP PY 2014 VL 8 IS 9 BP 9199 EP 9208 DI 10.1021/nn502959q PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AP6JP UT WOS:000342184400049 PM 25166742 ER PT J AU Rowland, CE Hannah, DC Demortiere, A Yang, JH Cook, RE Prakapenka, VB Kortshagen, U Schaller, RD AF Rowland, Clare E. Hannah, Daniel C. Demortiere, Arnaud Yang, Jihua Cook, Russell E. Prakapenka, Vitali B. Kortshagen, Uwe Schaller, Richard D. TI Silicon Nanocrystals at Elevated Temperatures: Retention of Photoluminescence and Diamond Silicon to beta-Silicon Carbide Phase Transition SO ACS NANO LA English DT Article DE silicon; nanocrystals; photoluminescence; high temperature; phase transition ID LIGHT-EMITTING-DIODES; QUANTUM DOTS; SEMICONDUCTOR NANOCRYSTALS; SIZE; ENERGY; NANOPARTICLES; LUMINESCENCE; PRESSURE; CELLS; FILMS AB We report the photoluminescence (PL) properties of colloidal Si nanocrystals (NCs) up to 800 K and observe PL retention on par with core/shell structures of other compositions. These alkane-terminated Si NCs even emit at temperatures well above previously reported melting points for oxide-embedded particles. Using selected area electron diffraction (SAED), powder X-ray diffraction (XRD), liquid drop theory, and molecular dynamics (MD) simulations, we show that melting does not play a role at the temperatures explored experimentally in PL, and we observe a phase change to beta-SiC in the presence of an electron beam. Loss of diffraction peaks (melting) with recovery of diamond-phase silicon upon cooling is observed under inert atmosphere by XRD. We further show that surface passivation by covalently bound ligands endures the experimental temperatures. These findings point to covalently bound organic ligands as a route to the development of NCs for use in high temperature applications, including concentrated solar cells and electrical lighting. C1 [Rowland, Clare E.; Hannah, Daniel C.; Schaller, Richard D.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Demortiere, Arnaud; Cook, Russell E.] Argonne Natl Lab, Electron Microscopy Ctr, Argonne, IL 60439 USA. [Demortiere, Arnaud] IIT, Dept Phys, Chicago, IL 60616 USA. [Yang, Jihua; Kortshagen, Uwe] Univ Minnesota, Dept Mech Engn, Minneapolis, MN 55455 USA. [Prakapenka, Vitali B.] Univ Chicago, Ctr Adv Radiat Sources, Chicago, IL 60637 USA. [Schaller, Richard D.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Schaller, RD (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM schaller@northwestern.edu RI Kortshagen, Uwe/B-8744-2016 OI Kortshagen, Uwe/0000-0001-5944-3656 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; National Science Foundation [EAR-1128799, DGE-0824162]; Department of Energy [DE-FG02-94ER14466]; DOE Energy Frontier Research Center for Advanced Solar Photophysics FX Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. XRD was performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source, Argonne National Laboratory. GSECARS is supported by the National Science Foundation (EAR-1128799) and Department of Energy (DE-FG02-94ER14466). C.E.R. and D.C.H. acknowledge support by National Science Foundation Graduate Research Fellowships under Grant No. DGE-0824162. J.Y. and U.K. acknowledge support by the DOE Energy Frontier Research Center for Advanced Solar Photophysics. NR 38 TC 7 Z9 7 U1 6 U2 60 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD SEP PY 2014 VL 8 IS 9 BP 9219 EP 9223 DI 10.1021/nn5029967 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AP6JP UT WOS:000342184400051 PM 25181589 ER PT J AU Huang, J Liu, WY Dolzhnikov, DS Protesescu, L Kovalenko, MV Koo, B Chattopadhyay, S Shenchenko, EV Talapin, DV AF Huang, Jing Liu, Wenyong Dolzhnikov, Dmitriy S. Protesescu, Loredana Kovalenko, Maksym V. Koo, Bonil Chattopadhyay, Soma Shenchenko, Elena V. Talapin, Dmitri V. TI Surface Functionalization of Semiconductor and Oxide Nanocrystals with Small Inorganic Oxoanions (PO43-, MoO42-) and Polyoxometalate Ligands SO ACS NANO LA English DT Article DE nanocrystals; surface chemistry; inorganic ligands; oxoanion ligands; polyoxometalate ligands; water oxidation; Li-ion battery ID INP QUANTUM DOTS; COLLOIDAL NANOCRYSTALS; IRON-OXIDE; WATER OXIDATION; NANOCLUSTER FORMATION; CDSE NANOCRYSTALS; CAPPING LIGANDS; SEEDED GROWTH; NANOPARTICLES; SIZE AB In this work, we study the functionalization of the nanocrystal (NC) surface with inorganic oxo ligands, which bring a new set of functionalities to all-inorganic colloidal nanomaterials. We show that simple inorganic oxoanions, such as PO43- and MoO42-, exhibit strong binding affinity to the surface of various II-VI and III-V semiconductor and metal oxide NCs. zeta-Potential titration offered a useful tool to differentiate the binding affinities of inorganic ligands toward different NCs. Direct comparison of the binding affinity of oxo and chalcogenidometallate ligands revealed that the former ligands form a stronger bond with oxide NCs (e.g., Fe2O3, ZnO, and TiO2), while the latter prefer binding to metal chalcogenide NCs (e.g., CdSe). The binding between NCs and oxo ligands strengthens when moving from small oxoanions to polyoxometallates (POMs). We also show that small oxo ligands and POMs make it possible to tailor NC properties. For example, we observed improved stability upon Li+-ion intercalation into the films of Fe2O3 hollow NCs when capped with MoO42- ligands. We also observed lower overpotential and enhanced exchange current density for water oxidation using Fe2O3 NCs capped with [P2MO18O62](6-) ligands and even more so for [{Ru4O4(OH)(2)(H2O)(4)}(gamma-SiW10O36)(2)] with POM as the capping ligand. C1 [Huang, Jing; Liu, Wenyong; Dolzhnikov, Dmitriy S.; Talapin, Dmitri V.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Huang, Jing; Liu, Wenyong; Dolzhnikov, Dmitriy S.; Talapin, Dmitri V.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Protesescu, Loredana; Kovalenko, Maksym V.] ETH, Inorgan Chem Lab, Dept Chem & Appl Biosci, CH-8006 Zurich, Switzerland. [Protesescu, Loredana; Kovalenko, Maksym V.] EMPA Swiss Fed Labs Mat Sci & Technol, CH-8600 Dubendorf, Switzerland. [Koo, Bonil; Shenchenko, Elena V.; Talapin, Dmitri V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Chattopadhyay, Soma] Argonne Natl Lab, APS, MRCAT, CSRRI IIT, Chicago, IL 60616 USA. [Chattopadhyay, Soma] IIT, Dept Phys, Chicago, IL 60616 USA. RP Talapin, DV (reprint author), Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA. EM dvtalapin@uchicago.edu RI ID, MRCAT/G-7586-2011; Kovalenko, Maksym/B-6844-2008; liu, wenyong/J-3208-2015 OI Kovalenko, Maksym/0000-0002-6396-8938; liu, wenyong/0000-0001-9143-9139 FU NSF [DMR-1310398]; NSF MRSEC Program [DMR 08-20054]; University of Chicago Institute of Molecular Engineering Water Initiative; David and Lucile Packard Foundation; Keck Foundation; US Department of Energy (DOE) Office of Science [DE-AC02-06CH11357]; European Union [306733] FX We would like to thank T. Shibata, V. Zyryanov, and C. Segre from Illinois Institute of Technology for help with EXAFS measurements and T. Shpigel for reading the manuscript. The work on synthesis and characterization of NCs was supported by the NSF under Award Number DMR-1310398 and by the NSF MRSEC Program under Award Number DMR 08-20054. Study of water oxidation was supported by the University of Chicago Institute of Molecular Engineering Water Initiative. D.V.T. thanks the David and Lucile Packard Foundation and Keck Foundation for their generous support. The work at the Center for Nanoscale Materials and the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy (DOE) Office of Science under Contract No. DE-AC02-06CH11357. MRCAT Beamline operations were supported by the Department of Energy and the MRCAT member institutions. M.V.K. thanks the European Union for financial support via ERC Starting Grant 2012 (Project NANOSOLID, GA No. 306733). NR 68 TC 23 Z9 23 U1 14 U2 142 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD SEP PY 2014 VL 8 IS 9 BP 9388 EP 9402 DI 10.1021/nn503458y PG 15 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AP6JP UT WOS:000342184400070 PM 25181260 ER PT J AU Xie, Y Dall'Agnese, Y Naguib, M Gogotsi, Y Barsoum, MW Zhuang, HLL Kent, PRC AF Xie, Yu Dall'Agnese, Yohan Naguib, Michael Gogotsi, Yury Barsoum, Michel W. Zhuang, Houlong L. Kent, Paul R. C. TI Prediction and Characterization of MXene Nanosheet Anodes for Non-Lithium-Ion Batteries SO ACS NANO LA English DT Article DE MXenes; energy storage; metal ion batteries; multilayer adsorption; conversion reaction; two-dimensional ID TRANSITION-METAL CARBIDES; RECHARGEABLE MAGNESIUM BATTERIES; 2-DIMENSIONAL TITANIUM CARBIDE; ENERGY-STORAGE; HIGH-CAPACITY; ELECTROLYTE-SOLUTIONS; NEGATIVE-ELECTRODE; RATE CAPABILITY; PRUSSIAN BLUE; LI AB Rechargeable non-lithium-ion (Na+, K+ Mg2+, Ca2+, and Al3+) batteries have attracted great attention as emerging low-cost and high energy-density technologies for large-scale renewable energy storage applications. However, the development of these batteries is hindered by the limited choice of high-performance electrode materials. In this work, MXene nanosheets, a class of two-dimensional transition-metal carbides, are predicted to serve as high-performing anodes for non-lithium-ion batteries by combined first-principles simulations and experimental measurements. Both O-terminated and bare MXenes are shown to be promising anode materials with high capacities and good rate capabilities, while bare MXenes show better performance. Our experiments clearly demonstrate the feasibility of Na- and K-ion intercalation into terminated MXenes. Moreover, stable multilayer adsorption is predicted for Mg and Al, which significantly increases their theoretical capacities. We also show that O-terminated MXenes can decompose into bare MXenes and metal oxides when in contact with Mg, Ca, or Al. Our results provide insight into metal ion storage mechanisms on two-dimensional materials and suggest a route to preparing bare MXene nanosheets. C1 [Xie, Yu; Zhuang, Houlong L.; Kent, Paul R. C.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Dall'Agnese, Yohan] Univ Toulouse 3, CIRIMAT UMR CNRS 5085, F-31062 Toulouse, France. [Dall'Agnese, Yohan; Naguib, Michael; Gogotsi, Yury; Barsoum, Michel W.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Dall'Agnese, Yohan; Naguib, Michael; Gogotsi, Yury; Barsoum, Michel W.] Drexel Univ, AJ Drexel Nanomat Inst, Philadelphia, PA 19104 USA. [Kent, Paul R. C.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Xie, Y (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM yxe@ornl.gov; gogotsi@drexel.edu RI Naguib, Michael/A-7315-2012; Xie, Yu/E-5875-2011; Kent, Paul/A-6756-2008; Zhuang, Houlong/D-8801-2014 OI Naguib, Michael/0000-0002-4952-9023; Xie, Yu/0000-0002-7782-5428; Kent, Paul/0000-0001-5539-4017; Zhuang, Houlong/0000-0002-3845-4601 FU Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center - US Department of Energy, Office of Science, Office of Basic Energy Sciences; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX We thank P.-L Taberna and P. Simon for useful discussions. This work was supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 67 TC 105 Z9 108 U1 96 U2 534 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD SEP PY 2014 VL 8 IS 9 BP 9606 EP 9615 DI 10.1021/nn503921j PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA AP6JP UT WOS:000342184400094 PM 25157692 ER PT J AU Habteyes, TG Staude, I Chong, KE Dominguez, J Decker, M Miroshnichenko, A Kivshar, Y Brener, I AF Habteyes, Terefe Getaneh Staude, Isabelle Chong, Katie E. Dominguez, Jason Decker, Manuel Miroshnichenko, Andrey Kivshar, Yuri Brener, Igal TI Near-Field Mapping of Optical Modes on All-Dielectric Silicon Nanodisks SO ACS PHOTONICS LA English DT Article DE near-field microscopy; all-dielectric nanophotonics; subwavelength structures; nanostructures; quadrupole mode ID RESONANCES; MICROSCOPY; SCATTERING; CONTRAST; NANOPARTICLES; INTERFERENCE; NANOANTENNAS; LIGHT; SIZE AB We measure, for the first time to our knowledge, the near-field amplitudes and phases of localized optical modes of high-index all-dielectric nanoparticles using apertureless near-field optical microscopy. For individual silicon nanodisks, we observe a four-lobed mode pattern and the formation of deep-subwavelength hot-spots. Our numerical calculations of the optical near-fields of the nanodisks in combination with a multipole expansion of the scattered field based on vector spherical harmonics reveal that the observed modes are dominated by electric quadrupole contributions. The observed mode is of particular interest for the design of low-loss all-dielectric metasurfaces and nanoantennas for a broad range of applications, such as directional and complex-polarization controlled emission, light extraction from multipolar atomic transitions, and coherent multiple-emitter-nanocavity interactions. C1 [Habteyes, Terefe Getaneh] Univ New Mexico, Dept Chem & Biol Chem, Albuquerque, NM 87131 USA. [Habteyes, Terefe Getaneh] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87131 USA. [Staude, Isabelle; Chong, Katie E.; Decker, Manuel; Miroshnichenko, Andrey; Kivshar, Yuri] Australian Natl Univ, Res Sch Phys & Engn, Nonlinear Phys Ctr, Canberra, ACT 0200, Australia. [Dominguez, Jason; Brener, Igal] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Habteyes, TG (reprint author), Univ New Mexico, Dept Chem & Biol Chem, Albuquerque, NM 87131 USA. EM habteyes@unm.edu; isabelle.staude@anu.edu.au RI Staude, Isabelle/N-4270-2015; Miroshnichenko, Andrey/C-2170-2016; OI Miroshnichenko, Andrey/0000-0001-9607-6621; Decker, Manuel/0000-0002-9125-0851 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Australian Research Council FX This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors also acknowledge a support from the Australian Research Council. NR 29 TC 18 Z9 18 U1 4 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2330-4022 J9 ACS PHOTONICS JI ACS Photonics PD SEP PY 2014 VL 1 IS 9 BP 794 EP 798 DI 10.1021/ph500232u PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied; Physics, Condensed Matter SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA AP5LI UT WOS:000342120300007 ER PT J AU Peer, A Biswas, R AF Peer, Akshit Biswas, Rana TI Nanophotonic Organic Solar Cell Architecture for Advanced Light Trapping with Dual Photonic Crystals SO ACS PHOTONICS LA English DT Article DE organic solar cell; light trapping; diffraction; surface plasmons ID LOW-BANDGAP POLYMER; EFFICIENCY; ABSORPTION; LIMIT; PHOTOVOLTAICS AB Organic solar cells have demonstrated rapidly increasing efficiencies, but typically absorb less than half of the incident solar spectrum. To increase broadband light absorption, we rigorously design experimentally realizable solar cell architectures based on dual photonic crystals using scattering matrix simulations. There is a polymer microlens on the glass coupled with a photonic-plasmonic crystal at the metal cathode on the back of the cell. The microlens focuses light on the periodic nanostructure that in turn strongly diffracts light. Waveguiding modes and surface plasmon modes enhance long wavelength absorption. The optimal architecture has a period of 500 nm for both arrays, resulting in absorption enhancement of 49% and photocurrent enhancement of 58% relative to the flat cell, for nearly lossless metal cathodes. The enhanced absorption approaches the Lambertian limit. Misalignment between the two photonic crystals leads to about 1% loss of performance. Simulations incorporating experimental dielectric functions for metal cathode and ITO, using a real space methodology find the enhancement of 38% for the photocurrent and 36% for the weighted absorption due to parasitic losses mainly in the metal cathode. This solar architecture is particularly amenable for fabrication since it does not require spin coating of organic layers on corrugated surfaces, but instead requires nanoimprinting an organic layer, followed by metal cathode deposition. This dual photonic crystal architecture has great potential to achieve >12% efficient single junction organic solar cells and to control photons by focusing light on nanostructures and plasmonic components. C1 [Peer, Akshit; Biswas, Rana] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. [Peer, Akshit; Biswas, Rana] Iowa State Univ, Microelect Res Ctr, Ames, IA USA. [Biswas, Rana] Iowa State Univ, Ames Lab, Ames, IA USA. [Biswas, Rana] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. RP Biswas, R (reprint author), Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. EM biswasr@iastate.edu FU Ames Laboratory; Department of Energy [DE-AC02-07CH11385]; National Science Foundation [ECCS-1232067]; Office of Science of the USDOE [DE-AC02-05CH11231] FX This research was partially supported by the Ames Laboratory, operated for the Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11385 (theoretical analysis) and the National Science Foundation through Grant ECCS-1232067 (computational work). The research used resources at the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the USDOE under Contract No. DE-AC02-05CH11231. We thank A. Moule for providing experimental data. NR 36 TC 11 Z9 11 U1 3 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2330-4022 J9 ACS PHOTONICS JI ACS Photonics PD SEP PY 2014 VL 1 IS 9 BP 840 EP 847 DI 10.1021/ph500124q PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied; Physics, Condensed Matter SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA AP5LI UT WOS:000342120300013 ER PT J AU Yang, HHU Olmon, RL Deryckx, KS Xu, XJG Bechtel, HA Xu, YC Lail, BA Raschke, MB AF Yang, Honghua U. Olmon, Robert L. Deryckx, Kseniya S. Xu, Xiaoji G. Bechtel, Hans A. Xu, Yuancheng Lail, Brian A. Raschke, Markus B. TI Accessing the Optical Magnetic Near-Field through Babinet's Principle SO ACS PHOTONICS LA English DT Article DE optical magnetic field; IR antenna; slot antenna; Babinet's principle; near-field; duality ID SUBWAVELENGTH APERTURE; PLASMONIC STRUCTURES; LIGHT; ARRAYS; METAMATERIALS; RESONANCES; ANTENNAS; DIPOLE; METAL; NANOANTENNAS AB Engineering the optical magnetic field with optical antennas or metamaterials extends the ways to control light-matter interaction. The slot antenna, as the electromagnetic dual of the linear rod antenna, provides the simplest form of a magnetic resonator tunable through its length. Using combined far-and near-field spectroscopy and imaging, and theory, we identify magnetic dipole and higher order bright and dark magnetic resonances at mid-infrared frequencies. From resonant length scaling and spatial near-field distribution, we confirm the applicability of Babinet's principle over the mid-infrared spectral region. Babinet's principle thus provides access to spatial and spectral magnetic field properties, leading to the targeted design of magnetic optical antennas. C1 [Yang, Honghua U.; Olmon, Robert L.; Xu, Xiaoji G.; Raschke, Markus B.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Yang, Honghua U.; Olmon, Robert L.; Xu, Xiaoji G.; Raschke, Markus B.] Univ Colorado, Dept Chem, Boulder, CO 80309 USA. [Yang, Honghua U.; Olmon, Robert L.; Xu, Xiaoji G.; Raschke, Markus B.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Deryckx, Kseniya S.] Univ Washington, Sch Med, Seattle, WA 98195 USA. [Bechtel, Hans A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source Div, Berkeley, CA 94720 USA. [Xu, Yuancheng; Lail, Brian A.] Florida Inst Technol, Dept Elect & Comp Engn, Melbourne, FL 32901 USA. RP Raschke, MB (reprint author), Univ Colorado, Dept Phys, Boulder, CO 80309 USA. EM markus.raschke@colorado.edu RI Raschke, Markus/F-8023-2013; Lail, Brian/L-6382-2015 OI Lail, Brian/0000-0001-6039-3385 FU Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility from the DOE Office of Biological and Environmental Research at Pacific Northwest National Laboratory (PNNL); U.S. DOE [DEAC06-76RL01830]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [1204993, CHE 1306398] FX The authors thank C. Rockstuhl for helpful discussions. Part of the work was supported by a partner proposal with the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility from the DOE Office of Biological and Environmental Research at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. DOE under Contract DEAC06-76RL01830. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Funding from the National Science Foundation (1204993 and NSF Grant CHE 1306398) is gratefully acknowledged. NR 54 TC 16 Z9 16 U1 1 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2330-4022 J9 ACS PHOTONICS JI ACS Photonics PD SEP PY 2014 VL 1 IS 9 BP 894 EP 899 DI 10.1021/ph5001988 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied; Physics, Condensed Matter SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA AP5LI UT WOS:000342120300020 ER PT J AU Anenberg, SC West, JJ Yu, HB Chin, M Schulz, M Bergmann, D Bey, I Bian, HS Diehl, T Fiore, A Hess, P Marmer, E Montanaro, V Park, R Shindell, D Takemura, T Dentener, F AF Anenberg, Susan C. West, J. Jason Yu, Hongbin Chin, Mian Schulz, Michael Bergmann, Dan Bey, Isabelle Bian, Huisheng Diehl, Thomas Fiore, Arlene Hess, Peter Marmer, Elina Montanaro, Veronica Park, Rokjin Shindell, Drew Takemura, Toshihiko Dentener, Frank TI Impacts of intercontinental transport of anthropogenic fine particulate matter on human mortality SO AIR QUALITY ATMOSPHERE AND HEALTH LA English DT Article DE Health impact assessment; Particulate matter; Long-range transport; Chemical transport modeling ID REGIONAL AIR-QUALITY; MULTIMODEL ASSESSMENT; EMISSION CONTROLS; GLOBAL BURDEN; UNITED-STATES; POLLUTION; AEROSOL; OZONE; EXPOSURE; VISIBILITY AB Fine particulate matter with diameter of 2.5 mu m or less (PM2.5) is associated with premature mortality and can travel long distances, impacting air quality and health on intercontinental scales. We estimate the mortality impacts of 20 % anthropogenic primary PM2.5 and PM2.5 precursor emission reductions in each of four major industrial regions (North America, Europe, East Asia, and South Asia) using an ensemble of global chemical transport model simulations coordinated by the Task Force on Hemispheric Transport of Air Pollution and epidemiologically-derived concentration-response functions. We estimate that while 93-97 % of avoided deaths from reducing emissions in all four regions occur within the source region, 3-7 % (11,500; 95 % confidence interval, 8,800-14,200) occur outside the source region from concentrations transported between continents. Approximately 17 and 13 % of global deaths avoided by reducing North America and Europe emissions occur extraregionally, owing to large downwind populations, compared with 4 and 2 % for South and East Asia. The coarse resolution global models used here may underestimate intraregional health benefits occurring on local scales, affecting these relative contributions of extraregional versus intraregional health benefits. Compared with a previous study of 20 % ozone precursor emission reductions, we find that despite greater transport efficiency for ozone, absolute mortality impacts of intercontinental PM2.5 transport are comparable or greater for neighboring source-receptor pairs, due to the stronger effect of PM2.5 on mortality. However, uncertainties in modeling and concentration-response relationships are large for both estimates. C1 [Anenberg, Susan C.] US EPA, Washington, DC 20460 USA. [West, J. Jason] Univ N Carolina, Chapel Hill, NC USA. [Yu, Hongbin] Univ Maryland, College Pk, MD 20742 USA. [Chin, Mian; Bian, Huisheng; Diehl, Thomas] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Schulz, Michael] Norwegian Meteorol Inst, Oslo, Norway. [Bergmann, Dan] Lawrence Livermore Natl Lab, Livermore, CA USA. [Bey, Isabelle] Swiss Fed Inst Technol, Zurich, Switzerland. [Diehl, Thomas] Univ Space Res Assoc, Columbia, MD USA. [Fiore, Arlene] Columbia Univ, Lamont Doherty Geol Observ, Palisades, NY 10964 USA. [Hess, Peter] Cornell Univ, Dept Biol & Environm Engn, Ithaca, NY USA. [Marmer, Elina] Univ Hamburg, Dept Educ, Hamburg, Germany. [Montanaro, Veronica] Univ Aquila, I-67100 Laquila, Italy. [Park, Rokjin] Seoul Natl Univ, Seoul, South Korea. [Shindell, Drew] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Shindell, Drew] Columbia Earth Inst, New York, NY USA. [Takemura, Toshihiko] Kyushu Univ, Appl Mech Res Inst, Fukuoka 8168580, Japan. [Dentener, Frank] Commiss European Communities, Joint Res Ctr, Inst Environm & Sustainabil, I-21020 Ispra, Italy. RP Anenberg, SC (reprint author), US EPA, 1200 Penn Ave NW MC6301A, Washington, DC 20460 USA. EM anenberg.susan@epa.gov RI Yu, Hongbin/C-6485-2008; Takemura, Toshihiko/C-2822-2009; Kyushu, RIAM/F-4018-2015; West, Jason/J-2322-2015; Park, Rokjin/I-5055-2012; Shindell, Drew/D-4636-2012; Schulz, Michael/A-6930-2011; U-ID, Kyushu/C-5291-2016; Chin, Mian/J-8354-2012 OI Yu, Hongbin/0000-0003-4706-1575; Takemura, Toshihiko/0000-0002-2859-6067; West, Jason/0000-0001-5652-4987; Park, Rokjin/0000-0001-8922-0234; Schulz, Michael/0000-0003-4493-4158; FU NASA; US Department of Energy (BER) at LLNL [DE-AC5207NA27344] FX The opinions expressed in this article are the authors' and do not necessarily represent those of their employers, including the USEPA. Model simulations were performed under the UN ECE Task Force on Hemispheric Transport of Air Pollution. H. Y. was supported by the NASA Atmospheric Composition Modeling and Analysis Program administered by R. Eckman. D. B. was supported by the US Department of Energy (BER) at LLNL under contract DE-AC5207NA27344. NR 48 TC 6 Z9 6 U1 8 U2 41 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 1873-9318 EI 1873-9326 J9 AIR QUAL ATMOS HLTH JI Air Qual. Atmos. Health PD SEP PY 2014 VL 7 IS 3 BP 369 EP 379 DI 10.1007/s11869-014-0248-9 PG 11 WC Environmental Sciences SC Environmental Sciences & Ecology GA AO8GP UT WOS:000341592100011 ER PT J AU Scheihing, P AF Scheihing, Paul TI Save Energy through the Superior Energy Performance Program SO CHEMICAL ENGINEERING PROGRESS LA English DT Article C1 [Scheihing, Paul] US DOE, AMO, Washington, DC 20585 USA. [Scheihing, Paul] US DOE, Super Energy Performance SEP Certificat Program, Washington, DC 20585 USA. RP Scheihing, P (reprint author), US DOE, AMO, Washington, DC 20585 USA. EM paul.scheihing@ee.doe.gov NR 5 TC 0 Z9 0 U1 0 U2 0 PU AMER INST CHEMICAL ENGINEERS PI NEW YORK PA 3 PARK AVE, NEW YORK, NY 10016-5901 USA SN 0360-7275 EI 1945-0710 J9 CHEM ENG PROG JI Chem. Eng. Prog. PD SEP PY 2014 VL 110 IS 9 BP 48 EP 51 PG 4 WC Engineering, Chemical SC Engineering GA AP3FN UT WOS:000341961100012 ER PT J AU Waters, KM Cummings, BS Shankaran, H Scholpa, NE Weber, TJ AF Waters, Katrina M. Cummings, Brian S. Shankaran, Harish Scholpa, Natalie E. Weber, Thomas J. TI ERK Oscillation-Dependent Gene Expression Patterns and Deregulation by Stress Response SO CHEMICAL RESEARCH IN TOXICOLOGY LA English DT Article ID GROWTH-FACTOR; TUMOR-SUPPRESSOR; CELL-DEATH; EPITHELIAL-CELLS; MAP KINASES; KAPPA-B; ACTIVATION; PHOSPHORYLATION; DIFFERENTIATION; ASSOCIATION AB Studies were undertaken to determine whether extracellular signal regulated kinase (ERK) oscillations regulate a unique subset of genes in human keratinocytes and subsequently whether the p38 stress response inhibits ERK oscillations. A DNA microarray identified many genes that were unique to ERK oscillations, and network reconstruction predicted an important role for the mediator complex subunit 1 (MED1) node in mediating ERK oscillation-dependent gene expression. Increased ERK-dependent phosphorylation of MED1 was observed in oscillating cells compared to nonoscillating counterparts as validation. Treatment of keratinocytes with a p38 inhibitor (SB203580) increased ERK oscillation amplitudes and MED1 and phospho-MED1 protein levels. Bromate is a probable human carcinogen that activates p38. Bromate inhibited ERK oscillations in human keratinocytes and JB6 cells and induced an increase in phospho-p38 and a decrease in phospho-MED1 protein levels. Treatment of normal rat kidney cells and primary salivary gland epithelial cells with bromate decreased phospho-MED1 levels in a reversible fashion upon treatment with p38 inhibitors (SB202190; SB203580). Our results indicate that oscillatory behavior in the ERK pathway alters homeostatic gene regulation patterns and that the cellular response to perturbation may manifest differently in oscillating vs nonoscillating cells. C1 [Waters, Katrina M.; Shankaran, Harish; Weber, Thomas J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Cummings, Brian S.; Scholpa, Natalie E.] Univ Georgia, Dept Pharmaceut & Biomed Sci, Coll Pharm South, Athens, GA 30602 USA. RP Weber, TJ (reprint author), Pacific NW Natl Lab, 790 Sixth St,J4-02, Richland, WA 99354 USA. EM Thomas.Weber@pnnl.gov FU Biological and Environmental Research Program (BER), U.S. Department of Energy [DE-AC06-76RLO]; CDC/NIOSH [R01OH008173-06]; Georgia Cancer Coalition Distinguished Scholar Grants; NIH NIBIB [R21EB08153, R01EB0116100]; Interdisciplinary Toxicology Program Graduate Stipend FX This work was supported by the Biological and Environmental Research Program (BER), U.S. Department of Energy [DE-AC06-76RLO], and a grant from the CDC/NIOSH (R01OH008173-06). This research was funded in part by Georgia Cancer Coalition Distinguished Scholar Grants and NIH NIBIB (R21EB08153 and R01EB0116100) to B.S.C. and an Interdisciplinary Toxicology Program Graduate Stipend to N.E.S. NR 49 TC 2 Z9 2 U1 1 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0893-228X EI 1520-5010 J9 CHEM RES TOXICOL JI Chem. Res. Toxicol. PD SEP PY 2014 VL 27 IS 9 BP 1496 EP 1503 DI 10.1021/tx500085u PG 8 WC Chemistry, Medicinal; Chemistry, Multidisciplinary; Toxicology SC Pharmacology & Pharmacy; Chemistry; Toxicology GA AP0JM UT WOS:000341747600004 PM 25068892 ER PT J AU Fang, WQ Huo, ZY Liu, PR Wang, XL Zhang, M Jia, Y Zhang, HM Zhao, HJ Yang, HG Yao, XD AF Fang, Wen Qi Huo, Ziyang Liu, Porun Wang, Xue Lu Zhang, Miao Jia, Yi Zhang, Haimin Zhao, Huijun Yang, Hua Gui Yao, Xiangdong TI Fluorine-Doped Porous Single-Crystal Rutile TiO2 Nanorods for Enhancing Photoelectrochemical Water Splitting SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE photoelectrochemistry; hierarchical structures; porous materials; titanium dioxide; water splitting ID SENSITIZED SOLAR-CELLS; ELECTRON-TRANSPORT; PHOTONIC CRYSTALS; CONTROLLED GROWTH; ANATASE TIO2; LOW-COST; PERFORMANCE; EFFICIENCY; FILMS; NANOPARTICLES AB Fluorine-doped hierarchical porous single-crystal rutile TiO2 nanorods have been synthesized through a silica template method, in which F- ions acts as both n-type dopants and capping agents to make the isotropic growth of the nanorods. The combination of high crystallinity, abundant surface reactive sites, large porosity, and improved electronic conductivity leads to an excellent photoelectrochemical activity. The photoanode made of F-doped porous single crystals displays a remarkably enhanced solar-to-hydrogen conversion efficiency (approximate to 0.35% at -0.33 V vs. Ag/AgCl) under 100 mWcm(-2) of AM=1.5 solar simulator illumination that is ten times of the pristine solid TiO2 single crystals. C1 [Fang, Wen Qi; Wang, Xue Lu; Yang, Hua Gui] E China Univ Sci & Technol, Sch Mat Sci & Engn, Key Lab Ultrafine Mat, Minist Educ, Shanghai 200237, Peoples R China. [Fang, Wen Qi; Huo, Ziyang; Jia, Yi; Yao, Xiangdong] Griffith Univ, QLD Micro & Nanotechnol Ctr, Nathan, Qld 4111, Australia. [Liu, Porun; Wang, Xue Lu; Zhang, Haimin; Zhao, Huijun; Yang, Hua Gui] Griffith Univ, Griffith Sch Environm, Ctr Clean Environm & Energy, Nathan, Qld 4222, Australia. [Zhang, Miao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Yang, HG (reprint author), E China Univ Sci & Technol, Sch Mat Sci & Engn, Key Lab Ultrafine Mat, Minist Educ, 130 Meilong Rd, Shanghai 200237, Peoples R China. EM hgyang@ecust.edu.cn; x.yao@griffith.edu.au RI Yao, Xiangdong/E-1259-2013; Griffith University, QMNC/I-5498-2013; Zhao, Huijun/H-5882-2015 OI Zhao, Huijun/0000-0002-3028-0459 FU National Natural Science Foundation of China [21373083, 21203061]; SRF for ROCS, SEM, SRFDP, Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning; Shanghai Municipal Natural Science Foundation [12ZR1407500]; Fundamental Research Funds for the Central Universities [WD1313009, WM1314018, WD1214036]; China Postdoctoral Science Foundation [2012M511056, 2013T60425]; Australian Research Council [FT120100913, LP110100337] FX This work was financially supported by the National Natural Science Foundation of China (21373083, 21203061), SRF for ROCS, SEM, SRFDP, Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, the Shanghai Municipal Natural Science Foundation (12ZR1407500), the Fundamental Research Funds for the Central Universities (WD1313009, WM1314018, WD1214036), and the China Postdoctoral Science Foundation (2012M511056, 2013T60425), and a Australian Research Council's Future Fellowships (FT120100913), and ARC LP110100337. NR 32 TC 21 Z9 21 U1 11 U2 128 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0947-6539 EI 1521-3765 J9 CHEM-EUR J JI Chem.-Eur. J. PD SEP 1 PY 2014 VL 20 IS 36 BP 11439 EP 11444 DI 10.1002/chem.201402914 PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA AO8UF UT WOS:000341629800026 PM 25059762 ER PT J AU Birkedal, KA Freeman, CM Moridis, GJ Graue, A AF Birkedal, Knut A. Freeman, C. Matt Moridis, George J. Graue, Arne TI Numerical Predictions of Experimentally Observed Methane Hydrate Dissociation and Reformation in Sandstone SO ENERGY & FUELS LA English DT Article ID ALASKA NORTH SLOPE; STRATIGRAPHIC TEST WELL; INDUCED GAS-PRODUCTION; POROUS-MEDIA; SELF-PRESERVATION; DEPRESSURIZATION; SIMULATION; RESERVOIRS; DECOMPOSITION; PRESSURE AB Numerical tools are essential for the prediction and evaluation of conventional hydrocarbon reservoir performance. Gas hydrates represent a vast natural resource with a significant energy potential. The numerical codes/tools describing processes involved during the dissociation (induced by several methods) for gas production from hydrates are powerful, but they need validation by comparison to empirical data to instill confidence in their predictions. In this study, we successfully reproduce experimental data of hydrate dissociation using the TOUGH+HYDRATE (T+H) code. Methane (CH4) hydrate growth and dissociation in partially water-and gas-saturated Bentheim sandstone were spatially resolved using Magnetic Resonance Imaging (MRI), which allows the in situ monitoring of saturation and phase transitions. All the CH4 that had been initially converted to gas hydrate was recovered during depressurization. The physical system was reproduced numerically, using both a simplified 2D model and a 3D grid involving complex Voronoi elements. We modeled dissociation using both the equilibrium and the kinetic reaction options in T+H, and we used a range of kinetic parameters for sensitivity analysis and curve fitting. We successfully reproduced the experimental results, which confirmed the empirical data that demonstrated that heat transport was the limiting factor during dissociation. Dissociation was more sensitive to kinetic parameters than anticipated, which indicates that kinetic limitations may be important in short-term core studies and a necessity in such simulations. This is the first time T+H has been used to predict empirical nonmonotonic dissociation behavior, where hydrate dissociation and reformation occurred as parallel events. C1 [Birkedal, Knut A.; Graue, Arne] Univ Bergen, Dept Phys & Technol, N-5200 Bergen, Norway. [Freeman, C. Matt] Hilcorp Energy Co, Houston, TX 77002 USA. [Moridis, George J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Birkedal, KA (reprint author), Ekofiskvegen 35, N-4056 Tananger, Norway. EM knutarne.birkedal@conocophillips.com FU Research Council of Norway; Statoil; ConocoPhillips FX Thanks to Dr. Jarle Husebo (from Statoil), Dr. Geir Ersland (from the University of Bergen), Jim Stevens and Dr. James Howard (from ConocoPhillips) for their contribution and experimental expertise. Thanks to Christian Hagenvik, Hans Berge, Truls Hamre Haheim, and Reza Hossainpour (University of Bergen) for their contribution on test 3. One of the authors is indebted to the Research Council of Norway, Statoil, and ConocoPhillips for funding. NR 46 TC 7 Z9 7 U1 2 U2 52 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD SEP PY 2014 VL 28 IS 9 BP 5573 EP 5586 DI 10.1021/ef500255y PG 14 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA AP5KN UT WOS:000342118200001 ER PT J AU Elliott, DC Wang, HM French, R Deutch, S Iisa, K AF Elliott, Douglas C. Wang, Huamin French, Richard Deutch, Steve Iisa, Kristiina TI Hydrocarbon Liquid Production from Biomass via Hot-Vapor-Filtered Fast Pyrolysis and Catalytic Hydroprocessing of the Bio-oil SO ENERGY & FUELS LA English DT Article ID GAS FILTRATION AB Hot-vapor-filtered bio-oils were produced from two different biomass feedstocks, oak and switchgrass, and the oils were evaluated in hydroprocessing tests for the production of liquid hydrocarbon products. Hot-vapor filtering reduced bio-oil yields and increased gas yields. The yields of fuel carbon as bio-oil were reduced by 10% by hot-vapor filtering for both feedstocks. The unfiltered bio-oils were evaluated alongside the filtered bio-oils using a fixed-bed catalytic hydrotreating test. These tests showed good processing results using a two-stage catalytic hydroprocessing strategy. Equal-sized catalyst beds, sulfided Ru on a C catalyst bed operated at 220 degrees C and sulfided CoMo on an Al2O3 catalyst bed operated at 400 degrees C were used with the entire reactor at 10 MPa operating pressure. The products from the four tests were similar. The light-oil-phase product was fully hydrotreated, so that nitrogen and sulfur were below the level of detection, while the residual oxygen ranged from 0.3 to 2.0%. The density of the products varied from 0.80 to 0.86 g/mL over the period of the test with a correlated change of the hydrogen/carbon atomic ratio from 1.79 to 1.57, suggesting some loss of catalyst activity through the test. These tests provided the data needed to assess the suite of liquid fuel products from the process and the activity of the catalyst in the relationship to the existing catalyst lifetime barrier for the technology. C1 [Elliott, Douglas C.; Wang, Huamin] Pacific NW Natl Lab, Chem & Biol Proc Dev, Richland, WA 99352 USA. [French, Richard; Deutch, Steve; Iisa, Kristiina] Natl Renewable Energy Lab, Thermochem Proc R&D & Biorefinery Anal, Golden, CO 80401 USA. RP Elliott, DC (reprint author), Pacific NW Natl Lab, Chem & Biol Proc Dev, 902 Battelle Blvd, Richland, WA 99352 USA. EM dougc.elliott@pnnl.gov FU U.S. Department of Energy at NREL [DE-AC36-08-GO28308]; U.S. Department of Energy at PNNL [DE-AC05-76RL01830]; Department of Energy Bioenergy Technologies Office FX This work was supported by the U.S. Department of Energy under Contract DE-AC36-08-GO28308 at NREL and Contract DE-AC05-76RL01830 at PNNL. The authors gratefully acknowledge the support of the Department of Energy Bioenergy Technologies Office. Esther Wilcox and Mark Nimlos at NREL are acknowledged for helpful discussions. Suh-Jane Lee and Asanga Padmaperuma are acknowledged for their participation in the operations of the mini-hydrotreater. NR 15 TC 17 Z9 17 U1 1 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD SEP PY 2014 VL 28 IS 9 BP 5909 EP 5917 DI 10.1021/ef501536j PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA AP5KN UT WOS:000342118200038 ER PT J AU Fisher, JC Siriwardane, RV AF Fisher, James C., II Siriwardane, Ranjani V. TI Mg(OH)(2) for CO2 Capture from High-Pressure, Moderate-Temperature Gas Streams SO ENERGY & FUELS LA English DT Article ID SORBENTS AB Precombustion CO2 separation is considered to be the most efficient method of carbon removal for fossil fuels. Solid sorbents are promising for CO2 separation because of lower sensible heats, higher CO2 sorption capacities, and favorable adsorption/desorption temperatures. The work reported here continues an effort to develop a Mg(OH)(2)-based sorbent that adsorbs CO2 at IGCC fuel gas temperatures of 150-200 degrees C and at 280 psig. One novelty of the sorbent is that the CO2 can also be released near 300 degrees C at 280 psig reducing downstream compression costs of CO2 capture and storage. This work details thermodynamic equilibrium data that illustrates the optimal regeneration temperature and pressure, Fourier transform infrared data that shows the adsorbed species on the surface of the sorbents, fixed-bed performance testing, and the effect of moisture on regeneration. Additional information on potential heat integration during regeneration is also reported. These findings further demonstrate the ability of the Mg(OH)(2) sorbent to capture CO2 from fuel gas streams in an IGCC plant efficiently. C1 [Fisher, James C., II; Siriwardane, Ranjani V.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Fisher, JC (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM James.Fisher@netl.doe.gov FU National Energy Technology Laboratory's ongoing research under the RES [DE-FE0004000] FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research under the RES contract DE-FE0004000. NR 15 TC 2 Z9 3 U1 3 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD SEP PY 2014 VL 28 IS 9 BP 5936 EP 5941 DI 10.1021/ef500841h PG 6 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA AP5KN UT WOS:000342118200041 ER PT J AU Campbell, AG Schwientek, P Vishnivetskaya, T Woyke, T Levy, S Beall, CJ Griffen, A Leys, E Podar, M AF Campbell, Alisha G. Schwientek, Patrick Vishnivetskaya, Tatiana Woyke, Tanja Levy, Shawn Beall, Clifford J. Griffen, Ann Leys, Eugene Podar, Mircea TI Diversity and genomic insights into the uncultured Chloroflexi from the human microbiota SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID IN-SITU HYBRIDIZATION; AUTOTROPHIC NITRIFYING BIOFILMS; CAPSULAR POLYSACCHARIDE; BACTERIAL DIVERSITY; EMENDED DESCRIPTION; PHYLUM CHLOROFLEXI; ORAL MICROBIOME; GUT MICROBIOTA; DARK-MATTER; GEN. NOV. AB Many microbial phyla that are widely distributed in open environments have few or no representatives within animal-associated microbiota. Among them, the Chloroflexi comprises taxonomically and physiologically diverse lineages adapted to a wide range of aquatic and terrestrial habitats. A distinct group of uncultured chloroflexi related to free-living anaerobic Anaerolineae inhabits the mammalian gastrointestinal tract and includes low-abundance human oral bacteria that appear to proliferate in periodontitis. Using a single-cell genomics approach, we obtained the first draft genomic reconstruction for these organisms and compared their inferred metabolic potential with free-living chloroflexi. Genomic data suggest that oral chloroflexi are anaerobic heterotrophs, encoding abundant carbohydrate transport and metabolism functionalities, similar to those seen in environmental Anaerolineae isolates. The presence of genes for a unique phosphotransferase system and N-acetylglucosamine metabolism suggests an important ecological niche for oral chloroflexi in scavenging material from lysed bacterial cells and the human tissue. The inferred ability to produce sialic acid for cell membrane decoration may enable them to evade the host defence system and colonize the subgingival space. As with other low abundance but persistent members of the microbiota, discerning community and host factors that influence the proliferation of oral chloroflexi may help understand the emergence of oral pathogens and the microbiota dynamics in health and disease states. C1 [Campbell, Alisha G.; Podar, Mircea] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Schwientek, Patrick; Woyke, Tanja] Joint Genome Inst, Walnut Creek, CA USA. [Vishnivetskaya, Tatiana] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37932 USA. [Levy, Shawn] Hudson Alpha Inst Biotechnol, Huntsville, AL USA. [Beall, Clifford J.; Griffen, Ann; Leys, Eugene] Ohio State Univ, Coll Dent, Columbus, OH 43210 USA. NW Missouri State Univ, Div Nat Sci, Maryville, MO USA. RP Podar, M (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM podarm@ornl.gov OI Vishnivetskaya, Tatiana/0000-0002-0660-023X; Podar, Mircea/0000-0003-2776-0205 FU National Human Genome Research Institute (NHGRI) of the National Institutes of Health (NIH) [R01 HG004857]; National Institute for Dental and Cranial Research (NIDCR) of the NIH [1R56DE021567]; U.S. Department of Energy Joint Genome Institute; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This research was supported by grant R01 HG004857 from the National Human Genome Research Institute (NHGRI) of the National Institutes of Health (NIH) to M. P. and by grant 1R56DE021567 from the National Institute for Dental and Cranial Research (NIDCR) of the NIH to M. P., A. G. and E. L. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U. S. Department of Energy. P. S. and T. W. were supported by the U.S. Department of Energy Joint Genome Institute and by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We thank Steve Allman, Sarah Kauffman, Zamin Yang and Alexander Sczyrba for laboratory and bioinformatics assistance. NR 62 TC 7 Z9 7 U1 2 U2 37 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1462-2912 EI 1462-2920 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD SEP PY 2014 VL 16 IS 9 SI SI BP 2635 EP 2643 DI 10.1111/1462-2920.12461 PG 9 WC Microbiology SC Microbiology GA AO8CH UT WOS:000341579700001 PM 24738594 ER PT J AU Antony-Babu, S Deveau, A Van Nostrand, JD Zhou, JZ Le Tacon, F Robin, C Frey-Klett, P Uroz, S AF Antony-Babu, Sanjay Deveau, Aurelie Van Nostrand, Joy D. Zhou, Jizhong Le Tacon, Francois Robin, Christophe Frey-Klett, Pascale Uroz, Stephane TI Black truffle-associated bacterial communities during the development and maturation of Tuber melanosporum ascocarps and putative functional roles SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID BORCHII VITTAD; BICOLOR S238N; FRUIT BODIES; DIVERSITY; SOIL; RNA; MYCELIUM; GENES; SPP.; MYCORRHIZOSPHERE AB Although truffles are cultivated since decades, their life cycle and the conditions stimulating ascocarp formation still remain mysterious. A role for bacteria in the development of several truffle species has been suggested but few is known regarding the natural bacterial communities of Perigord Black truffle. Thus, the aim of this study was to decipher the structure and the functional potential of the bacterial communities associated to the Black truffle in the course of its life cycle and along truffle maturation. A polyphasic approach combining 454-pyrosequencing of 16S rRNA gene, TTGE, in situ hybridization and functional GeoChip 3.0 revealed that Black truffle ascocarps provide a habitat to complex bacterial communities that are clearly differentiated from those of the surrounding soil and the ectomycorrhizosphere. The composition of these communities is dynamic and evolves during the maturation of the ascocarps with an enrichment of specific taxa and a differentiation of the gleba and peridium-associated bacterial communities. Genes related to nitrogen and sulphur cycling were enriched in the ascocarps. Together, these data paint a new picture of the interactions existing between truffle and bacteria and of the potential role of these bacteria in truffle maturation. C1 [Antony-Babu, Sanjay; Deveau, Aurelie; Le Tacon, Francois; Frey-Klett, Pascale; Uroz, Stephane] INRA, UMR1136, F-54280 Champenoux, France. [Antony-Babu, Sanjay; Deveau, Aurelie; Le Tacon, Francois; Frey-Klett, Pascale; Uroz, Stephane] Univ Lorraine, UMR1136, F-54500 Vandoeuvre Les Nancy, France. [Van Nostrand, Joy D.; Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Dept Microbiol & Plant Biol, Norman, OK 73072 USA. [Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. [Robin, Christophe] Univ Lorraine, UMR 1121, F-54500 Vandoeuvre Les Nancy, France. [Robin, Christophe] INRA, Ctr INRA Nancy Lorraine, UMR 1121, F-54500 Vandoeuvre Les Nancy, France. RP Deveau, A (reprint author), INRA, UMR1136, F-54280 Champenoux, France. EM deveau@nancy.inra.fr RI ROBIN, Christophe/C-7323-2013; Van Nostrand, Joy/F-1740-2016 OI ROBIN, Christophe/0000-0001-8117-806X; Van Nostrand, Joy/0000-0001-9548-6450 FU French National Research Agency; Laboratory of Excellence ARBRE [ANR-11-LABX-0002-01] FX This work was supported by the French National Research Agency through the SYSTRUF project and the Laboratory of Excellence ARBRE (ANR-11-LABX-0002-01). We thank Giovanni Pacioni for having provided to us pictures (not shown in this paper) of the early stages of T. melanosporum ascocarp development. We also acknowledge Emmanuelle Morin and Claude Murat (INRA-Nancy) for helping formatting sff files for NCBI submission. NR 53 TC 21 Z9 21 U1 4 U2 63 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1462-2912 EI 1462-2920 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD SEP PY 2014 VL 16 IS 9 SI SI BP 2831 EP 2847 DI 10.1111/1462-2920.12294 PG 17 WC Microbiology SC Microbiology GA AO8CH UT WOS:000341579700017 PM 24118660 ER PT J AU Ghim, YS Choi, Y Chang, YS Kim, J AF Ghim, Young Sung Choi, Yongjoo Chang, Young-Soo Kim, Jeongsoo TI Natural and anthropogenic influences on heavy metals in airborne particles over the Korean Peninsula SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH LA English DT Article DE Heavy metals; Industrial complex; Crustal origin; Combustion sources; Asian dust ID LONG-RANGE TRANSPORT; PARTICULATE MATTER; CHEMICAL-COMPOSITION; DUST EVENTS; ASIAN DUST; AEROSOLS; CHINA; EMISSIONS; CADMIUM; SEOUL AB Six monitoring stations were selected to characterize the variations in airborne concentrations of heavy metals in South Korea between 1999 and 2012. Three stations represented higher concentrations, and three represented lower concentrations. The heavy metals monitored at these stations include cadmium, chromium, copper, iron (Fe), lead, manganese (Mn), and nickel. During the study period, concentrations of heavy metals at many stations, including those around the Seoul metropolitan area, showed a decreasing trend. However, concentrations of Mn and Fe that are primarily of crustal origin increased at four of the six stations. Some stations were significantly affected by emissions from the local industrial complex (IC), and heavy metal concentrations at those stations were relatively high even in summer. Many heavy metal concentrations were higher in spring than in winter, but wintertime concentrations of Cr and Pb were higher at the stations representing lower concentrations due to the dominant influence of combustion emissions. At stations less affected by emissions from the IC, concentrations of Fe and Mn that are predominantly crustal in origin were higher in spring, when Asian dust (AD) events are most frequent. Although Mn concentrations were also high at stations within the steelmaking IC during AD periods, they were much higher during non-AD periods due to local emissions. Variations in heavy metal concentrations, which are heavily influenced by emissions from the IC, warrant individual analysis because their emission characteristics differ from those of typical cases. C1 [Ghim, Young Sung; Choi, Yongjoo] Hankuk Univ Foreign Studies, Dept Environm Sci, Yongin 449791, Gyeonggi, South Korea. [Chang, Young-Soo] Argonne Natl Lab, Div Environm Sci, Argonne, IL 60439 USA. [Kim, Jeongsoo] Natl Inst Environm Res, Transportat Pollut Res Ctr, Inchon 404708, South Korea. RP Ghim, YS (reprint author), Hankuk Univ Foreign Studies, Dept Environm Sci, Yongin 449791, Gyeonggi, South Korea. EM ysghim@hufs.ac.kr FU Hankuk University of Foreign Studies Research Fund FX This work was supported by the Hankuk University of Foreign Studies Research Fund. NR 39 TC 2 Z9 2 U1 0 U2 8 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0944-1344 EI 1614-7499 J9 ENVIRON SCI POLLUT R JI Environ. Sci. Pollut. Res. PD SEP PY 2014 VL 21 IS 18 BP 10713 EP 10724 DI 10.1007/s11356-014-3082-6 PG 12 WC Environmental Sciences SC Environmental Sciences & Ecology GA AP5QA UT WOS:000342132500016 PM 24894754 ER PT J AU Song, GL Zeng, RC AF Song, Guang-Ling Zeng, Rong-Chang TI Preface for the special issue on light metals as biomaterials SO FRONTIERS OF MATERIALS SCIENCE LA English DT Editorial Material C1 [Song, Guang-Ling] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Zeng, Rong-Chang] Shandong Univ Sci & Technol, Qingdao 266590, Peoples R China. RP Song, GL (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RI Zeng, Rong-Chang/H-4154-2011; Song, Guang-Ling/D-9540-2013 OI Zeng, Rong-Chang/0000-0002-5945-3851; Song, Guang-Ling/0000-0002-9802-6836 NR 0 TC 2 Z9 3 U1 1 U2 5 PU HIGHER EDUCATION PRESS PI BEIJING PA SHATANHOU ST 55, BEIJING 100009, PEOPLES R CHINA SN 2095-025X EI 2095-0268 J9 FRONT MATER SCI JI Front. Mater. Sci. PD SEP PY 2014 VL 8 IS 3 BP 199 EP 199 DI 10.1007/s11706-014-0260-x PG 1 WC Materials Science, Multidisciplinary SC Materials Science GA AP4PH UT WOS:000342059600001 ER PT J AU Kim, H Bishop, JKB Dietrich, WE Fung, IY AF Kim, Hyojin Bishop, James K. B. Dietrich, William E. Fung, Inez Y. TI Process dominance shift in solute chemistry as revealed by long-term high-frequency water chemistry observations of groundwater flowing through weathered argillite underlying a steep forested hillslope SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID CATION-EXCHANGE CAPACITY; HEADWATER CATCHMENT; UNCHANNELED CATCHMENT; CRITICAL ZONE; RATES; SCALE; DISSOLUTION; MINERALS; QUALITY; SOILS AB Significant solute flux from the weathered bedrock zone - which underlies soils and saprolite - has been suggested by many studies. However, controlling processes for the hydrochemistry dynamics in this zone are poorly understood. This work reports the first results from a four-year (2009-2012) high-frequency (1-3 day) monitoring of major solutes (Ca, Mg, Na, K and Si) in the perched, dynamic groundwater in a 4000 m(2) zero-order basin located at the Angelo Coast Range Reserve, Northern California. Groundwater samples were autonomously collected at three wells (downslope, mid-slope, and upslope) aligned with the axis of the drainage. Rain and throughfall samples, profiles of well headspace pCO(2), vertical profiles and time series of groundwater temperature, and contemporaneous data from an extensive hydrologic and climate sensor network provided the framework for data analysis. All runoff at this soil-mantled site occurs by vertical unsaturated flow through a 5-25 m thick weathered argillite and then by lateral flows to the adjacent channel as groundwater perched over fresher bedrock. Driven by strongly seasonal rainfall, over each of the four years of observations, the hydrochemistry of the groundwater at each well repeats an annual cycle, which can be explained by two end-member processes. The first end-member process, which dominates during the winter high-flow season in mid- and upslope areas, is CO2 enhanced cation exchange reaction in the vadose zone in the more shallow conductive weathered bedrock. This process rapidly increases the cation concentrations of the infiltrated rainwater, which is responsible for the lowest cation concentration of groundwater. The second-end member process occurs in the deeper perched groundwater and either dominates year-round (at the downslope well) or becomes progressively dominant during low flow season at the two upper slope wells. This process is the equilibrium reaction with minerals such as calcite and clay minerals, but not with primary minerals, suggesting the critical role of the residence time of the water. Collectively, our measurements reveal that the hydrochemistry dynamics of the groundwater in the weathered bedrock zone is governed by two end-member processes whose dominance varies with critical zone structure, the relative importance of vadose versus groundwater zone processes, and thus with the seasonal variation of the chemistry of recharge and runoff. (C) 2014 The Authors. Published by Elsevier Ltd. C1 [Kim, Hyojin; Bishop, James K. B.; Dietrich, William E.; Fung, Inez Y.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Bishop, James K. B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Kim, H (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, McCone Hall 307, Berkeley, CA 94720 USA. EM hyojin820@berkeley.edu FU W.M. Keck Foundation; National Science Foundation [NSF-OCE1049222]; Department of Energy [DE-SC000147]; NSF CZP [EAR - 1331940] FX We would like to thank two anonymous reviewers for providing insightful comments. This study was funded by the W.M. Keck Foundation (Berkeley HydroWatch Center Award), the National Science Foundation award (NSF-OCE1049222), the Department of Energy (DE-SC000147), and NSF CZP EAR - 1331940 for the Eel River Critical Zone Observatory. We are also grateful to the University of California Natural Reserve System for establishing the Angelo Coast Range Reserve as a protected site for our research. Todd Wood (LBNL) automated the remote sampling system and provided critical help with ICP-MS analyses. The Center for Environmental Biotechnology at Lawrence Berkeley National Laboratory generously offered their facilities for our soil/rock analysis. Daniella Rempe provided helpful discussion. UC Berkeley Undergraduate Research Apprenticeship Program interns Michael Fong, Nolan Wong, Tim Ault, Ernesto Martinez, Robert Nicklas, and Kevin Ni assisted both in the field and in the laboratory. NR 63 TC 12 Z9 12 U1 3 U2 25 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD SEP 1 PY 2014 VL 140 BP 1 EP 19 DI 10.1016/j.gca.2014.05.011 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AP2SP UT WOS:000341925300001 ER PT J AU Eickhoff, M Obst, M Schroder, C Hitchcock, AP Tyliszczak, T Martinez, RE Robbins, LJ Konhauser, KO Kappler, A AF Eickhoff, Merle Obst, Martin Schroeder, Christian Hitchcock, Adam P. Tyliszczak, Tolek Martinez, Raul E. Robbins, Leslie J. Konhauser, Kurt O. Kappler, Andreas TI Nickel partitioning in biogenic and abiogenic ferrihydrite: The influence of silica and implications for ancient environments SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID BANDED IRON-FORMATION; HYDROUS FERRIC-OXIDE; ANOXYGENIC PHOTOTROPHIC BACTERIA; X-RAY SPECTROMICROSCOPY; GREAT OXIDATION EVENT; FE(II)-OXIDIZING BACTERIA; FERROUS-IRON; MINERAL PRECIPITATION; MICROBIAL ECOSYSTEMS; OXIDIZING BACTERIA AB Fe(III) (oxyhydr) oxides are ubiquitous in modern soils and sediments, and their large surface area leads to scavenging of trace elements. Experimental trace element partitioning between Fe(III) (oxyhydr) oxides and aqueous solutions have been used to elucidate the geochemical composition of the Precambrian oceans based on the trace element concentrations in Precambrian banded iron formations (BIFs). However, previous partitioning experiments did not consider the potential influence of microbially-derived organic material, even though it is widely believed that bacterial phytoplankton was involved in Fe(II) oxidation and the deposition of BIF primary minerals. Therefore, the present study focuses on sorption of Ni to, and co-precipitation of Ni with, both biogenic ferrihydrite precipitated by the freshwater photoferrotroph Rhodobacter ferrooxidans SW2 and the marine photoferrotroph Rhodovulum iodosum, as well as chemically synthesized ferrihydrite. We considered the influence of cellular organic material, medium composition and the availability of dissolved silica. Our results show a preferential association of Ni with ferrihydrite, and not with the microbial cells or extracellular organic substances. We found that the addition of silica (2 mM) did not influence Ni partitioning but led to the encrustation of some cells with ferrihydrite and amorphous silica. The two- to threefold lower Ni/Fe ratio in biogenic as compared to abiogenic ferrihydrite is probably due to a competition between Ni and organic matter for sorption sites on the mineral surface. Additionally, the competition of ions present at high concentrations in marine medium for sorption sites led to decreased Ni sorption or co-precipitation. Based on our data we conclude that, if the Fe(III) minerals deposited in BIFs were - at least to some extent - biological, then the Ni concentrations in the early ocean would have been higher than previously suggested. This study shows the importance of considering the presence of microbial biomass and seawater ions in paleomarine reconstructions. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Eickhoff, Merle; Obst, Martin; Schroeder, Christian; Kappler, Andreas] Univ Tubingen, Ctr Appl Geosci, D-72074 Tubingen, Germany. [Hitchcock, Adam P.] McMaster Univ, Dept Chem & Chem Biol, Hamilton, ON L8S 4M1, Canada. [Tyliszczak, Tolek] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Martinez, Raul E.] Univ Freiburg, Inst Geo & Umweltnaturwissensch, D-79104 Freiburg, Germany. [Robbins, Leslie J.; Konhauser, Kurt O.] Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB T6G 2E3, Canada. RP Kappler, A (reprint author), Univ Tubingen, Ctr Appl Geosci, Hoelderlinstr 12, D-72074 Tubingen, Germany. EM andreas.kappler@uni-tuebingen.de RI Schroder, Christian/B-3870-2009; Kappler, Andreas/G-7221-2016 OI Schroder, Christian/0000-0002-7935-6039; FU Deutsche Forschungsgemeinschaft (DFG) [KA 1736/4-1, 12-1]; DFG [OB 362/1-1]; Natural Sciences and Engineering Research Council of Canada (NSERC); NSERC; CIHR; NRC; Province of Saskatchewan; WEDC; University of Saskatchewan; Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was funded by grants from the Deutsche Forschungsgemeinschaft (DFG) to A.K. (KA 1736/4-1 and 12-1), the Emmy-Noether program of the DFG to M.O. (OB 362/1-1) and the Natural Sciences and Engineering Research Council of Canada (NSERC) to K.K. The CLS is supported by NSERC, CIHR, NRC, the Province of Saskatchewan, WEDC, and the University of Saskatchewan. The ALS is supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy, under Contract DE-AC02-05CH11231. We thank E. Struve for BET and P. Kuhn and S. Flaiz for ICP-OES measurements, S. Bussecker for support with ferrozine assays and F. Zeitvogel for support in image processing. We thank T. Lyons, J. Catalano and M. Kersten for their constructive comments that greatly improved the quality of the manuscript. NR 89 TC 13 Z9 13 U1 3 U2 44 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD SEP 1 PY 2014 VL 140 BP 65 EP 79 DI 10.1016/j.gca.2014.05.021 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AP2SP UT WOS:000341925300005 ER PT J AU Gaffney, AM Borg, LE AF Gaffney, Amy M. Borg, Lars E. TI A young solidification age for the lunar magma ocean SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID NORITIC ANORTHOSITE CLAST; MANTLE-CRUST SYSTEM; SM-ND AGE; LU-HF; U-PB; RB-SR; ISOTOPIC COMPOSITION; TERRESTRIAL PLANETS; IMPACT HISTORY; KREEP BASALT AB The time at which the lunar magma ocean solidified can be determined from the Lu-Hf isotope systematics of lunar rocks derived from magma sources that formed during crystallization of the lunar magma ocean. The final magma ocean crystallization product, termed urKREEP, is enriched in incompatible elements including K, REE and P. We have determined the initial Hf isotopic compositions of four samples, two KREEP basalts and two Mg-suite norites. The incompatible trace element compositions of these samples are controlled by an urKREEP component, and therefore the initial Hf isotopic compositions of these samples represent the Hf isotopic evolution of urKREEP. In order to correct the effects of neutron irradiation on the Hf isotopic compositions of these samples, we have developed a model that uses the stable Hf and Sm isotopic compositions measured on an irradiated sample to determine and correct for the thermal and epithermal neutron fluence that has modified the Hf isotopic composition of the sample. We use our corrected results to calculate a Lu-176-Hf-176 urKREEP model age of 4353 +/- 37Ma and the Lu-176/Hf-177 of urKREEP to be 0.0153 +/- 0.0033. The Lu-Hf model age is concordant with the re-calculated Sm-Nd urKREEP model age of 4389 +/- 45 Ma, and we take the average of these ages, 4368 +/- 29 Ma, to represent the time at which urKREEP formed. This age is concordant with the age of the most reliably dated ferroan noritic anorthosite as well as Nd-142 model ages for the formation or re-equilibration of mare basalt sources. Taken together, these ages indicate that the Moon experienced a widespread, large-scale magmatic event around 4370 Ma, most plausibly attributed to solidification of the lunar magma ocean. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Gaffney, Amy M.; Borg, Lars E.] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94550 USA. RP Gaffney, AM (reprint author), Lawrence Livermore Natl Lab, Div Chem Sci, 7000 East Ave L-231, Livermore, CA 94550 USA. EM gaffney1@llnl.gov RI Gaffney, Amy/F-8423-2014 OI Gaffney, Amy/0000-0001-5714-0029 FU NASA LASER grant [NNH09AL72I]; U.S. Department of Energy [DE-AC52-07NA27344] FX Greg Balco assisted in the formulation of the neutron irradiation calculations. Clive Neal, two anonymous reviewers, Shichun Huang (Associate Editor) and Marc Norman (Executive Editor) provided detailed and constructive reviews. This work was supported by NASA LASER grant NNH09AL72I to A. M. G. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344; LLNL-JRNL-654029. NR 76 TC 15 Z9 15 U1 0 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD SEP 1 PY 2014 VL 140 BP 227 EP 240 DI 10.1016/j.gca.2014.05.028 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AP2SP UT WOS:000341925300015 ER PT J AU Sharma, S Shi, Y Hou, YT Sherali, HD Kompella, S AF Sharma, Sushant Shi, Yi Hou, Y. Thomas Sherali, Hanif D. Kompella, Sastry TI Joint Optimization of Session Grouping and Relay Node Selection for Network-Coded Cooperative Communications SO IEEE TRANSACTIONS ON MOBILE COMPUTING LA English DT Article DE Optimization; session grouping; relay node selection; cooperative communications; network coding ID WIRELESS NETWORKS; COLUMN GENERATION; DIVERSITY; FRAMEWORK AB Network-coded cooperative communications (NC-CC) is a new paradigm for communications in wireless networks that employs network coding (NC) to improve the performance of CC. A key problem to harness the potential of NC-CC is how to put sessions into different groups, and assign a relay node for each group. In this paper, we study this joint grouping and relay node selection problem for NC-CC. We provide a formal proof of NP-hardness for this problem. Due to NP-hardness, we propose a distributed and online algorithm and show that it offers near-optimal solution to this problem. The key idea in this algorithm is to have each neighboring relay node of a new session calculate the best local group that it can offer and advertise this information; and then to have the source node of the new session select the best local group to join among all offers. We show that our distributed algorithm has polynomial time complexity. Using extensive numerical results, we show that our distributed algorithm adapts well to online network dynamics. C1 [Sharma, Sushant] Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA. [Shi, Yi; Hou, Y. Thomas] Virginia Tech, Dept Elect & Comp Engn, Blacksburg, VA 24061 USA. [Sherali, Hanif D.] Virginia Tech, Dept Ind Engn, Blacksburg, VA 24061 USA. [Kompella, Sastry] US Naval Res Lab, Div Informat Technol, Washington, DC 20375 USA. RP Sharma, S (reprint author), Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA. EM sushant@bnl.gov; yshi@vt.edu; thou@vt.edu; hanifs@vt.edu; sastry.kompella@nrl.navy.mil FU NSF [1102013, 1064953, 1247830]; ONR [N00014-13-1-0080] FX The authors wish to thank the anonymous reviewers for their comments. This work was supported in part by NSF Grants 1102013, 1064953, 1247830, and ONR Grant N00014-13-1-0080. The work of S. Kompella was supported in part by the ONR. This work was completed while S. Sharma was a Ph.D. student at Virginia Tech. Y.T. Hou is the corresponding author. NR 25 TC 4 Z9 4 U1 0 U2 4 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1536-1233 EI 1558-0660 J9 IEEE T MOBILE COMPUT JI IEEE. Trans. Mob. Comput. PD SEP PY 2014 VL 13 IS 9 BP 2028 EP 2041 DI 10.1109/TMC.2013.93 PG 14 WC Computer Science, Information Systems; Telecommunications SC Computer Science; Telecommunications GA AP6BI UT WOS:000342162100010 ER PT J AU Harper-Slaboszewicz, VJ Leckbee, J Lake, PW McCourt, AL AF Harper-Slaboszewicz, Victor J. Leckbee, Joshua Lake, Patrick W. McCourt, Andrew L. TI Effect of Rod Material on the Impedance Behavior of Small Aspect Ratio Rod Pinches SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Rod pinch ID DIODE; PLASMA AB A series of experiments on small aspect ratio rod pinches using solid tungsten, solid graphite, and thin-wall tantalum anode rods driven by a nominally 375-kV linear transformer driver, powered inductive voltage adder has characterized the impedance behavior over a range of aspect ratios and materials. For the tungsten and tantalum anodes, the impedance behavior is well described by the pinched current for self-magnetically insulated flow in a cylindrical geometry with ions present and gap closure velocities of 1-2 cm/mu s. The graphite anodes always exhibited strong localized pinching of the electron beam onto the anode rod, with substantially higher operating impedance, as well as a delay in the formation of the plasma at the anode. The graphite anodes also had a longer radiation delay time, consistent with the longer anode plasma formation time. C1 [Harper-Slaboszewicz, Victor J.; Leckbee, Joshua; Lake, Patrick W.; McCourt, Andrew L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Harper-Slaboszewicz, VJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM vjharpe@sandia.gov; jjleckb@sandia.gov; pwlake@sandia.gov; almccou@sandia.gov FU Laboratory Directed Research and Development Program, Sandia National Laboratories, Albuquerque, NM, USA; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported in part by the Laboratory Directed Research and Development Program, Sandia National Laboratories, Albuquerque, NM, USA, which is a Multiprogram Laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, and in part by the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 6 TC 1 Z9 1 U1 3 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD SEP PY 2014 VL 42 IS 9 BP 2207 EP 2212 DI 10.1109/TPS.2014.2346701 PG 6 WC Physics, Fluids & Plasmas SC Physics GA AP5GU UT WOS:000342108500007 ER PT J AU Giani, A Bent, R Pan, F AF Giani, Annarita Bent, Russell Pan, Feng TI Phasor measurement unit selection for unobservable electric power data integrity attack detection SO INTERNATIONAL JOURNAL OF CRITICAL INFRASTRUCTURE PROTECTION LA English DT Article DE Smart grid; Synchrophasors; Phasor measurement units; Cyber security; Unobservable data integrity attacks; Integer programming ID SYSTEM STATE ESTIMATION; IDENTIFICATION AB Electric power system operators make critical decisions based on remote measurements. If the measurements are compromised, the decisions made on the basis of the bad measurements could lead to critical consequences. Of particular concern are unobservable attacks where compromised measurements are not flagged as erroneous by bad data detection algorithms. Secure measurement devices, such as phasor measurement units (PMUs), can help to recognize these attacks. This paper presents an algorithm based on integer programming for the optimal placement of PMUs to detect unobservable electric power SCADA data integrity attacks. The algorithm can also be used to identify minimal sets of existing PMUs whose data is needed to detect unobservable bad data attacks. Practical examples drawn from the power engineering literature are used to demonstrate the efficiency of the algorithm. (C) 2014 Elsevier B.V. All rights reserved. C1 [Giani, Annarita] Los Alamos Natl Lab, DSA 4, CNLS, Los Alamos, NM 87545 USA. [Bent, Russell; Pan, Feng] Los Alamos Natl Lab, DSA 4, Los Alamos, NM 87545 USA. RP Giani, A (reprint author), Los Alamos Natl Lab, DSA 4, CNLS, POB 1663, Los Alamos, NM 87545 USA. EM annarita@lanl.gov OI Bent, Russell/0000-0002-7300-151X FU Los Alamos National Laboratory; Center for Nonlinear Studies (CNLS) [DE-AC52-06NA25396] FX This research was partially supported by the Los Alamos National Laboratory Director's Fellowship entitled Cyber Security of the Smart Grid and by the Center for Nonlinear Studies (CNLS (Grant no. DE-AC52-06NA25396)). NR 27 TC 5 Z9 5 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1874-5482 EI 2212-2087 J9 INT J CRIT INFR PROT JI Int. J. Crit. Infrastruct. Prot. PD SEP PY 2014 VL 7 IS 3 BP 155 EP 164 DI 10.1016/j.ijcip.2014.06.001 PG 10 WC Computer Science, Information Systems; Engineering, Multidisciplinary SC Computer Science; Engineering GA AP7OW UT WOS:000342267600003 ER PT J AU Giangrande, SE Collis, S Theisen, AK Tokay, A AF Giangrande, Scott E. Collis, Scott Theisen, Adam K. Tokay, Ali TI Precipitation Estimation from the ARM Distributed Radar Network during the MC3E Campaign SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID MESOSCALE CONVECTIVE SYSTEMS; DUAL-POLARIZATION RADAR; X-BAND; DIFFERENTIAL PHASE; C-BAND; RAINFALL ESTIMATION; POLARIMETRIC RADAR; WEATHER RADAR; ERROR VARIANCE; PART II AB This study presents radar-based precipitation estimates collected during the 2-month U. S. Department of Energy Atmospheric Radiation Measurement Program (ARM)-NASA Midlatitude Continental Convective Clouds Experiment (MC3E). Emphasis is on the usefulness of radar observations from the C-band and X-band scanning ARM precipitation radars (CSAPR and XSAPR, respectively) for rainfall estimation products to distances within 100 km of the Lamont, Oklahoma, ARM facility. The study utilizes a dense collection of collocated ARM, NASA Global Precipitation Measurement, and nearby surface Oklahoma Mesonet gauge records to evaluate radar-based hourly rainfall products and campaign-optimized methods over individual gauges and for areal rainfall characterizations. Rainfall products are also evaluated against the performance of a regional NWS Weather Surveillance Radar-1988 Doppler (WSR-88D) S-band dual-polarization radar product. Results indicate that the CSAPR system may achieve similar point-and areal-gauge bias and root-mean-square (RMS) error performance to a WSR-88D reference for the variety of MC3E deep convective events sampled. The best campaign rainfall performance was achieved when using radar relations capitalizing on estimates of the specific attenuation from the CSAPR system. The XSAPRs demonstrate limited capabilities, having modest success in comparison with the WSR-88D reference for hourly rainfall accumulations that are under 10mm. All rainfall estimation methods exhibit a reduction by a factor of 1.5-2.5 in RMS errors for areal accumulations over a 15-km(2) NASA dense gauge network, with the smallest errors typically associated with dual-polarization radar methods. C1 [Giangrande, Scott E.] Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA. [Collis, Scott] Argonne Natl Lab, Div Environm Sci, Argonne, IL 60439 USA. [Theisen, Adam K.] Univ Oklahoma, Cooperat Inst Mesoscale Meteorol Studies, Atmospher Radiat Measurement Program, Data Qual Off, Norman, OK 73019 USA. [Tokay, Ali] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA. [Tokay, Ali] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Giangrande, SE (reprint author), Brookhaven Natl Lab, Div Atmospher Sci, Bldg 490D,Bell Ave, Upton, NY 11973 USA. EM scott.giangrande@bnl.gov RI Measurement, Global/C-4698-2015; Giangrande, Scott/I-4089-2016 OI Giangrande, Scott/0000-0002-8119-8199 FU Brookhaven Science Associates, LLC [DE-AC02-98CH10886]; U.S. Department of Energy; Climate Science for a Sustainable Energy Future (CSSEF) project of the Earth System Modeling (ESM) program in the DOE Office of Science; U.S. Department of Energy Office of Science, Office of Biological and Environmental Research (OBER) [DE-AC02-06CH11357]; OBER of the DOE as part of the ARM Program; Battelle-Pacific Northwest National Laboratory [206248]; NOAA/Office of Oceanic and Atmospheric Research under U.S. Department of Commerce NOAA-University of Oklahoma [NA11OAR4320072] FX This paper has been authored by employees of Brookhaven Science Associates, LLC, under Contract DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the paper for publication acknowledges that the U.S. government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this paper, or to allow others to do so, for U.S. government purposes. Author Giangrande's work is supported by the Climate Science for a Sustainable Energy Future (CSSEF) project of the Earth System Modeling (ESM) program in the DOE Office of Science. Argonne National Laboratory's work was supported by the U.S. Department of Energy Office of Science, Office of Biological and Environmental Research (OBER), under Contract DE-AC02-06CH11357. The work has been supported by the OBER of the DOE as part of the ARM Program. Adam Theisen's work was supported by Battelle-Pacific Northwest National Laboratory, Contract 206248, and his home institution CIMMS is supported by NOAA/Office of Oceanic and Atmospheric Research under U.S. Department of Commerce NOAA-University of Oklahoma Cooperative Agreement NA11OAR4320072. The authors thank Dr. Alexander Ryzhkov for support on implementation of specific-attenuation-based rainfall methods, associated comments, and considerations. We thank Michael Jensen of BNL, Virendra Ghate of ANL, and Randy Peppler of OU-CIMMS for internal reviews of this manuscript. NR 63 TC 9 Z9 9 U1 1 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD SEP PY 2014 VL 53 IS 9 BP 2130 EP 2147 DI 10.1175/JAMC-D-13-0321.1 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AP3ZY UT WOS:000342017800003 ER PT J AU Park, S Bretherton, CS Rasch, PJ AF Park, Sungsu Bretherton, Christopher S. Rasch, Philip J. TI Integrating Cloud Processes in the Community Atmosphere Model, Version 5 SO JOURNAL OF CLIMATE LA English DT Article ID SEA-SURFACE TEMPERATURE; RADIATION BUDGET EXPERIMENT; SOUTHERN-OCEAN; CLIMATE MODELS; CONVECTION; ANOMALIES; IMPACT; ENSO; PARAMETERIZATION; MICROPHYSICS AB This paper provides a description of the integrated representation for the cloud processes in the Community Atmosphere Model, version 5 (CAM5). CAM5 cloud parameterizations add the following unique characteristics to previous versions: 1) a cloud macrophysical structure with horizontally nonoverlapped deep cumulus, shallow cumulus, and stratus in each grid layer, where each of which has its own cloud fraction, and mass and number concentrations for cloud liquid droplets and ice crystals; 2) stratus-radiation-turbulence interactions that allow CAM5 to simulate marine stratocumulus solely from grid-mean relative humidity without relying on a stability-based empirical formula; 3) prognostic treatment of the number concentrations of stratus liquid droplets and ice crystals, with activated aerosols and detrained in-cumulus condensates as the main sources and with evaporation, sedimentation, and precipitation of stratus condensate as the main sinks; and 4) radiatively active cumulus and snow. By imposing consistency between diagnosed stratus fraction and prognosed stratus condensate, unrealistically empty or highly dense stratus is avoided in CAM5. Because of the activation of the prognostic aerosols and the parameterizations of the radiation and stratiform precipitation production as a function of the cloud droplet size, CAM5 simulates various aerosol indirect effects as well as the direct effects: that is, aerosols affect both the radiation budget and the hydrological cycle. Detailed analysis of various simulations indicates that CAM5 improves upon CAM3/CAM4 in global performance as well as in physical formulation. However, several problems are also identified in CAM5, which can be attributed to deficient regional tuning, inconsistency between various physics parameterizations, and incomplete treatment of physics. Efforts are continuing to further improve CAM5. C1 [Park, Sungsu] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Bretherton, Christopher S.] Univ Washington, Seattle, WA 98195 USA. [Rasch, Philip J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Park, S (reprint author), Natl Ctr Atmospher Res, Climate & Global Dynam Div, POB 3000, Boulder, CO 80307 USA. EM sungsup@ucar.edu FU National Science Foundation; Regional and Global Climate Modeling Program (RGCM) of the U.S. Department of Energy, Office of Science (BER) [DE-FC02-97ER62402] FX Sungsu Park is supported by the National Science Foundation. Part of this work was supported by the Regional and Global Climate Modeling Program (RGCM) of the U.S. Department of Energy, Office of Science (BER), Cooperative Agreement DE-FC02-97ER62402. NR 34 TC 35 Z9 35 U1 5 U2 20 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD SEP PY 2014 VL 27 IS 18 BP 6821 EP 6856 DI 10.1175/JCLI-D-14-00087.1 PG 36 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AP3NC UT WOS:000341981800001 ER PT J AU Liu, Y Liu, Z Zhang, S Jacob, R Lu, F Rong, X Wu, S AF Liu, Y. Liu, Z. Zhang, S. Jacob, R. Lu, F. Rong, X. Wu, S. TI Ensemble-Based Parameter Estimation in a Coupled General Circulation Model SO JOURNAL OF CLIMATE LA English DT Article ID EARTH SYSTEM MODEL; DATA ASSIMILATION; KALMAN FILTER; CLIMATE ESTIMATION; EQUATORIAL PACIFIC; TROPICAL PACIFIC; PART I; VARIABILITY; STATE; HOLOCENE AB Parameter estimation provides a potentially powerful approach to reduce model bias for complex climate models. Here, in a twin experiment framework, the authors perform the first parameter estimation in a fully coupled ocean-atmosphere general circulation model using an ensemble coupled data assimilation system facilitated with parameter estimation. The authors first perform single-parameter estimation and then multiple-parameter estimation. In the case of the single-parameter estimation, the error of the parameter [solar penetration depth (SPD)] is reduced by over 90% after similar to 40 years of assimilation of the conventional observations of monthly sea surface temperature (SST) and salinity (SSS). The results of multiple-parameter estimation are less reliable than those of single-parameter estimation when only the monthly SST and SSS are assimilated. Assimilating additional observations of atmospheric data of temperature and wind improves the reliability of multiple-parameter estimation. The errors of the parameters are reduced by 90% in; 8 years of assimilation. Finally, the improved parameters also improve the model climatology. With the optimized parameters, the bias of the climatology of SST is reduced by similar to 90%. Overall, this study suggests the feasibility of ensemble-based parameter estimation in a fully coupled general circulation model. C1 [Liu, Y.; Liu, Z.; Lu, F.; Wu, S.] Univ Wisconsin, Ctr Climate Res, Madison, WI 53706 USA. [Liu, Y.; Liu, Z.; Lu, F.; Wu, S.] Univ Wisconsin, Dept Atmospher & Ocean Sci, Madison, WI 53706 USA. [Liu, Z.] Peking Univ, Sch Phys, Lab Ocean Atmosphere Studies, Beijing 100871, Peoples R China. [Zhang, S.] Princeton Univ, NOAA, GFDL, Princeton, NJ 08544 USA. [Jacob, R.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Rong, X.] Chinese Acad Meteorol Sci, Beijing, Peoples R China. RP Liu, Y (reprint author), Univ Wisconsin, Ctr Climate Res, 1225 W Dayton St, Madison, WI 53706 USA. EM liu6@wisc.edu OI Lu, Feiyu/0000-0001-6532-0740 FU NSF; Chinese MOST [2012CB955200] FX We gratefully appreciate Ms. M. Kirchmeier for her help in editing the manuscript. We would also like to thank three anonymous reviewers for their comments on an earlier version of the manuscript. We gratefully acknowledge the computing resources provided on "Fusion," a 320-node computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory. This research is sponsored by the NSF and Chinese MOST 2012CB955200. This paper is CCR Contribution 1182. NR 42 TC 7 Z9 7 U1 0 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD SEP PY 2014 VL 27 IS 18 BP 7151 EP 7162 DI 10.1175/JCLI-D-13-00406.1 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AP3NC UT WOS:000341981800018 ER PT J AU An, J Shim, JH Kim, YB Park, JS Lee, W Gur, TM Prinz, FB AF An, Jihwan Shim, Joon Hyung Kim, Young-Beom Park, Joong Sun Lee, Wonyoung Guer, Turgut M. Prinz, Fritz B. TI MEMS-based thin-film solid-oxide fuel cells SO MRS BULLETIN LA English DT Article ID YTTRIA-STABILIZED ZIRCONIA; ATOMIC LAYER DEPOSITION; DOPED CERIA INTERLAYERS; OXYGEN REDUCTION; BARIUM ZIRCONATE; GRAIN-BOUNDARY; ELECTROLYTE; PERFORMANCE; MEMBRANES; CATHODES AB Thin-film solid-oxide fuel cells (TF-SOFCs) fabricated using microelectromechanical systems (MEMS) processing techniques not only help lower the cell operating temperature but also provide a convenient platform for studying cathodic losses. Utilizing these platforms, cathode kinetics can be enhanced dramatically by engineering the microstructure of the cathode/electrolyte interface by increasing the surface grain-boundary density. Nanoscale secondary ion mass spectrometry and high-resolution transmission electron microscopy studies have shown that oxygen exchange at electrolyte surface grain boundaries is facilitated by a high population of oxide-ion vacancies segregating preferentially to the grain boundaries. Furthermore, three-dimensional structuring of TF-SOFCs enabled by various lithography methods also helps increase the active surface area and enhance the surface exchange reaction. Although their practical prospects are yet to be verified, MEMS-based TF-SOFC platforms hold the potential to provide high-performance for low-temperature SOFC applications. C1 [An, Jihwan] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. [An, Jihwan] Seoul Natl Univ Sci & Technol, Seoul, South Korea. [Shim, Joon Hyung] Korea Univ, Dept Mech Engn, Seoul, South Korea. [Kim, Young-Beom] Hanyang Univ, Dept Mech Engn, Seoul, South Korea. [Park, Joong Sun] Argonne Natl Lab, Argonne, IL 60439 USA. [Lee, Wonyoung] Sungkyunkwan Univ, Sch Mech Engn, Seoul, South Korea. [Guer, Turgut M.; Prinz, Fritz B.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Prinz, Fritz B.] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. RP An, J (reprint author), Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. EM jihwanan@stanford.edu; shimm@korea.ac.kr; ybkim@hanyang.ac.kr; parkj@anl.gov; leewy@skku.edu; turgut.gur@stanford.edu; fbp@cdr.stanford.edu RI Lee, Wonyoung/C-5718-2014 FU Center on Nanostructuring for Efficient Energy Conversion (CNEEC); Energy Frontier Research Center - US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001060]; Fusion Research Program for Green Technologies of the National Research Foundation (NRF) of Korea - Ministry of Education, Science, and Technology (MEST) [NRF-2011-0019300] FX Work at Stanford University by J.A., T.M.G., and F.B.P. was supported, in part, by the Center on Nanostructuring for Efficient Energy Conversion (CNEEC), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001060. S.J.H. is also grateful to the Fusion Research Program for Green Technologies of the National Research Foundation (NRF) of Korea funded by the Ministry of Education, Science, and Technology (MEST) (Grant No. NRF-2011-0019300) for their financial support. NR 49 TC 12 Z9 12 U1 1 U2 36 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 EI 1938-1425 J9 MRS BULL JI MRS Bull. PD SEP PY 2014 VL 39 IS 9 BP 798 EP 804 DI 10.1557/mrs.2014.171 PG 7 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA AP3RT UT WOS:000341995600014 ER PT J AU Li, WB Fan, HY Li, J AF Li, Wenbin Fan, Hongyou Li, Ju TI Deviatoric Stress-Driven Fusion of Nanoparticle Super lattices SO NANO LETTERS LA English DT Article DE entropic viscoelasticity; ligand diffusion; room-temperature sintering; nanowire array; processing diagram ID MECHANICAL-PROPERTIES; MOLECULAR-DYNAMICS; NANOCRYSTALS; SUPERLATTICES; MONOLAYERS; MEMBRANES; SURFACE; ARRAYS; SIZE; AU AB We model the mechanical response of alkanethiol-passivated gold nanoparticle superlattice (supercrystal) at ambient and elevated pressures using large-scale molecular dynamics simulation. Because of the important roles of soft organic ligands in mechanical response, the supercrystals exhibit entropic viscoelasticity during compression at ambient pressure. Applying a hydrostatic pressure of several hundred megapascals on the superlattice, combined with a critical deviatoric stress of the same order along the [110] direction of the face-centered-cubic supercrystal, can drive the room-temperature sintering ("fusion") of gold nanoparticles into ordered gold nanowire arrays. We discuss the molecular-level mechanism of such phenomena and map out a nonequilibrium stress-driven processing diagram, which reveals a region in stress space where fusion of nanoparticles can occur, instead of other competing plasticity or phase transformation processes in the supercrystal. We further demonstrate that, for silver-gold (Ag-Au) binary nanoparticle superlattices in sodium chloride-type superstructure, stress-driven fusion along the [100] direction leads to the ordered formation of Ag-Au multijunction nanowire arrays. C1 [Li, Wenbin; Li, Ju] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Fan, Hongyou] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. [Li, Ju] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA. RP Li, J (reprint author), MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM liju@mit.edu RI Li, Ju/A-2993-2008; OI Li, Ju/0000-0002-7841-8058; Li, Wenbin/0000-0002-1240-2707 FU NSF [DMR-1120901]; U.S. Department of Energy's National Nuclear Security Administration [DEAC0494AL85000]; Extreme Science and Engineering Discovery Environment (XSEDE) [TG-DMR130038] FX We thank Huimeng Wu for very helpful discussions. W.L. and J.L. acknowledge support by NSF under Grant No. DMR-1120901. H.F. thanks U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DEAC0494AL85000. Computational time on the Extreme Science and Engineering Discovery Environment (XSEDE) under the grant number TG-DMR130038 is gratefully acknowledged. NR 38 TC 11 Z9 11 U1 4 U2 77 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2014 VL 14 IS 9 BP 4951 EP 4958 DI 10.1021/nl5011977 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AO7PG UT WOS:000341544500005 PM 25075442 ER PT J AU Islam, AE Nikolaev, P Amama, PB Saber, S Zakharov, D Huffman, D Erford, M Sargent, G Semiatin, SL Stach, EA Maruyama, B AF Islam, A. E. Nikolaev, P. Amama, P. B. Saber, S. Zakharov, D. Huffman, D. Erford, M. Sargent, G. Semiatin, S. L. Stach, E. A. Maruyama, B. TI Engineering the Activity and Lifetime of Heterogeneous Catalysts for Carbon Nanotube Growth via Substrate Ion Beam Bombardment SO NANO LETTERS LA English DT Article DE Carbon nanotubes; heterogeneous catalyst; catalyst support; ion beam bombardment ID HIGH-PERFORMANCE ELECTRONICS; ENERGY-STORAGE; CARPET GROWTH; ARRAYS; COMPOSITES; EVOLUTION; TERMINATION; MORPHOLOGY; SAPPHIRE; OXIDE AB We demonstrate that argon ion bombardment of single crystal sapphire leads to the creation of substrates that support the growth of vertically aligned carbon nanotubes from iron catalysts with a density, height, and quality equivalent to those grown on conventional, disordered alumina supports. We quantify the evolution of the catalyst using a range of surface characterization techniques and demonstrate the ability to engineer and pattern the catalyst support through control of ion beam bombardment parameters. C1 [Islam, A. E.; Nikolaev, P.; Huffman, D.; Sargent, G.; Semiatin, S. L.; Maruyama, B.] Air Force Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA. [Islam, A. E.; Nikolaev, P.; Huffman, D.; Sargent, G.] Universal Energy Syst Inc, Biol & Nanoscale Technol, Dayton, OH 45432 USA. [Amama, P. B.] Kansas State Univ, Dept Chem Engn, Manhattan, KS 66506 USA. [Saber, S.] Purdue Univ, Sch Mat Sci & Engn, W Lafayette, IN 47907 USA. [Zakharov, D.; Stach, E. A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Huffman, D.] Wright State Univ, Dept Phys, Dayton, OH 45435 USA. [Erford, M.] Southwestern Ohio Council Higher Educ, Dayton, OH 45403 USA. RP Maruyama, B (reprint author), Air Force Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA. EM benji.maruyama@us.af.mil RI Stach, Eric/D-8545-2011; Zakharov, Dmitri/F-4493-2014; SEMIATIN, SHELDON/E-7264-2017 OI Stach, Eric/0000-0002-3366-2153; FU Air Force Office of Scientific Research [FA 8650-09-D-5037]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Purdue Electron Microscopy Consortium FX This work was supported by the Air Force Office of Scientific Research, under Contract No. FA 8650-09-D-5037. Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. S.S. acknowledges partial support from the Purdue Electron Microscopy Consortium. NR 49 TC 5 Z9 5 U1 2 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2014 VL 14 IS 9 BP 4997 EP 5003 DI 10.1021/nl501417h PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AO7PG UT WOS:000341544500012 PM 25079258 ER PT J AU Liu, K Yan, QM Chen, M Fan, W Sun, YH Suh, J Fu, DY Lee, S Zhou, J Tongay, S Ji, J Neaton, JB Wu, JQ AF Liu, Kai Yan, Qimin Chen, Michelle Fan, Wen Sun, Yinghui Suh, Joonki Fu, Deyi Lee, Sangwook Zhou, Jian Tongay, Sefaattin Ji, Jie Neaton, Jeffrey B. Wu, Junqiao TI Elastic Properties of Chemical-Vapor-Deposited Monolayer MoS2, WS2, and Their Bilayer Heterostructures SO NANO LETTERS LA English DT Article DE Molybdenum disulfide; tungsten disulfide; monolayer; elastic modulus; heterostructures ID THIN-FILM TRANSISTORS; LARGE-AREA; MOLYBDENUM-DISULFIDE; LAYERED MATERIALS; GRAIN-BOUNDARIES; ATOMIC LAYERS; GRAPHENE; GROWTH; SEMICONDUCTORS; ELECTRONICS AB Elastic properties of materials are an important factor in their integration in applications. Chemical vapor deposited (CVD) monolayer semiconductors are proposed as key components in industrial-scale flexible devices and building blocks of 2D van der Waals heterostructures. However, their mechanical and elastic properties have not been fully characterized. Here we report high 2D elastic moduli of CVD monolayer MoS2 and WS2 (similar to 170 N/m), which is very close to the value of exfoliated MoS2 monolayers and almost half the value of the strongest material, graphene. The 2D moduli of their bilayer heterostructures are lower than the sum of 2D modulus of each layer, but comparable to the corresponding bilayer homostructure, implying similar interactions between the hetero monolayers as between homo monolayers. These results not only provide deep insight to understanding interlayer interactions in 2D van der Waals structures, but also potentially allow engineering of their elastic properties as desired. C1 [Liu, Kai; Chen, Michelle; Fan, Wen; Suh, Joonki; Fu, Deyi; Lee, Sangwook; Zhou, Jian; Tongay, Sefaattin; Wu, Junqiao] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Liu, Kai; Wu, Junqiao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Yan, Qimin; Neaton, Jeffrey B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Yan, Qimin; Sun, Yinghui; Neaton, Jeffrey B.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Fan, Wen; Ji, Jie] Univ Sci & Technol China, Dept Thermal Sci & Energy Engn, Hefei 230027, Anhui, Peoples R China. [Neaton, Jeffrey B.] Univ Calif Berkeley, Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA. RP Wu, JQ (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM wuj@berkeley.edu RI Yan, Qimin/B-2147-2014; Fu, Deyi/C-6624-2011; Wu, Junqiao/G-7840-2011; Liu, Kai/A-4754-2012; Sun, Yinghui/K-1945-2014; Lee, Sangwook/O-9166-2015; Neaton, Jeffrey/F-8578-2015; Foundry, Molecular/G-9968-2014; Sun, Yinghui/I-5947-2016 OI Fu, Deyi/0000-0003-1365-8963; Wu, Junqiao/0000-0002-1498-0148; Liu, Kai/0000-0002-0638-5189; Lee, Sangwook/0000-0002-3535-0241; Neaton, Jeffrey/0000-0001-7585-6135; FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF Center for Energy Efficient Electronics Science (NSF Award) [ECCS-0939514]; U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-05CH11231] FX This work was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.The AFM characterization was partially supported by the NSF Center for Energy Efficient Electronics Science (NSF Award No. ECCS-0939514). The computational part of this work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231. Portions of the computation work were done using NERSC resources. We thank Cong Liu for assistance in fabricating the holey substrates. NR 44 TC 48 Z9 49 U1 24 U2 314 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2014 VL 14 IS 9 BP 5097 EP 5103 DI 10.1021/nl501793a PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AO7PG UT WOS:000341544500027 PM 25120033 ER PT J AU Ulvestad, A Singer, A Cho, HM Clark, JN Harder, R Maser, J Meng, YS Shpyrko, OG AF Ulvestad, Andrew Singer, Andrej Cho, Hyung-Man Clark, Jesse N. Harder, Ross Maser, Jorg Meng, Ying Shirley Shpyrko, Oleg G. TI Single Particle Nanomechanics in Operando Batteries via Lensless Strain Mapping SO NANO LETTERS LA English DT Article DE Battery; Operando; In Situ; Coherent X-ray Diffractive Imaging; Strain; LNMO ID LITHIUM-ION BATTERIES; LIFEPO4 NANOPARTICLES; COHERENCY STRAIN; NANOSCALE; CATHODE; DECOMPOSITION; EVOLUTION; DIFFUSION; DYNAMICS; STORAGE AB We reveal three-dimensional strain evolution in situ of a single LiNi0.5Mn1.5O4 nanoparticle in a coin cell battery under operando conditions during charge/discharge cycles with coherent X-ray diffractive imaging. We report direct observation of both stripe morphologies and coherency strain at the nanoscale. Our results suggest the critical size for stripe formation is 50 nm. Surprisingly, the single nanoparticle elastic energy landscape, which we map with femtojoule precision, depends on charge versus discharge, indicating hysteresis at the single particle level. This approach opens a powerful new avenue for studying battery nanomechanics, phase transformations, and capacity fade under operando conditions at the single particle level that will enable profound insight into the nanoscale mechanisms that govern electrochemical energy storage systems. C1 [Ulvestad, Andrew; Singer, Andrej; Shpyrko, Oleg G.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Cho, Hyung-Man; Meng, Ying Shirley] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA. [Clark, Jesse N.] SLAC Natl Accelerator Lab, Stanford PULSE Inst, Menlo Pk, CA 94025 USA. [Clark, Jesse N.] Deutsch Elektronensynchrotron DESY, Ctr Free Electron Laser Sci CFEL, D-22607 Hamburg, Germany. [Harder, Ross; Maser, Jorg] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Ulvestad, A (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. EM aulvesta@ucsd.edu RI Ulvestad, Andrew/K-8888-2015; Singer, Andrej/M-3948-2015 OI Ulvestad, Andrew/0000-0003-4611-2561; FU U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001805]; U. S. Department of Energy, Office of Basic Energy Sciences [DE-SC0002357]; UCSD; U.S. D.O.E. [DE-AC02-06CH11357]; Volkswagen Foundation FX This work was supported by U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-SC0001805. H.M.C. and Y.S.M. acknowledge the financial support by U. S. Department of Energy, Office of Basic Energy Sciences, under Award Number DE-SC0002357. O.G.S. and Y.S.M. are grateful to the UCSD Chancellor's Interdisciplinary Collaborators Award that made this collaboration possible. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U. S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. D.O.E. under Contract No. DE-AC02-06CH11357. A.U. thanks beamline scientist David Vine and staff at Argonne National Laboratory and the Advanced Photon Source for their support. J.N.C gratefully acknowledges financial support from the Volkswagen Foundation. NR 30 TC 18 Z9 18 U1 5 U2 73 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2014 VL 14 IS 9 BP 5123 EP 5127 DI 10.1021/nl501858u PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AO7PG UT WOS:000341544500031 PM 25141157 ER PT J AU Liontas, R Gu, XW Fu, EG Wang, YQ Li, N Mara, N Greer, JR AF Liontas, Rachel Gu, X. Wendy Fu, Engang Wang, Yongqiang Li, Nan Mara, Nathan Greer, Julia R. TI Effects of Helium Implantation on the Tensile Properties and Microstructure of Ni73P27 Metallic Glass Nanostructures SO NANO LETTERS LA English DT Article DE Amorphous; Ni-P; irradiation; ductility; mechanical properties ID ION IRRADIATION; MECHANICAL-PROPERTIES; STRUCTURAL-MATERIALS; BUBBLE FORMATION; SIZE-REDUCTION; DUCTILITY; ALLOYS; STATE; EMBRITTLEMENT; ACCUMULATION AB We report fabrication and nanomechanical tension experiments on as-fabricated and helium-implanted similar to 130 nm diameter Ni73P27 metallic glass nanocylinders. The nanocylinders were fabricated by a templated electroplating process and implanted with He+ at energies of 50, 100, 150, and 200 keV to create a uniform helium concentration of similar to 3 atom % throughout the nanocylinders. Transmission electron microscopy imaging and through-focus analysis reveal that the specimens contained similar to 2 nm helium bubbles distributed uniformly throughout the nanocylinder volume. In situ tensile experiments indicate that helium-implanted specimens exhibit enhanced ductility as evidenced by a 2-fold increase in plastic strain over as-fabricated specimens with no sacrifice in yield and ultimate tensile strengths. This improvement in mechanical properties suggests that metallic glasses may actually exhibit a favorable response to high levels of helium implantation. C1 [Liontas, Rachel; Gu, X. Wendy] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Fu, Engang; Wang, Yongqiang; Li, Nan; Mara, Nathan] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Greer, Julia R.] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. [Greer, Julia R.] CALTECH, Kavli Nanosci Inst, Pasadena, CA 91125 USA. RP Greer, JR (reprint author), CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. EM jrgreer@caltech.edu RI Mara, Nathan/J-4509-2014; Li, Nan /F-8459-2010; OI Li, Nan /0000-0002-8248-9027; Liontas, Rachel/0000-0001-9925-9466 FU U.S. Department of Energy [DE-SC0006599, DE-AC52-06NA25396]; National Defense Science and Engineering Graduate Fellowship; National Science Foundation Graduate Research Fellowship [DGE-1144469]; Kavli Nanoscience Institute (KNI) at Caltech FX The authors gratefully acknowledge the financial support of the U.S. Department of Energy through J.R.G.'s Early Career Research Program under Grant DE-SC0006599. Additional financial support was provided by X.W.G.'s National Defense Science and Engineering Graduate Fellowship and R.L.'s National Science Foundation Graduate Research Fellowship. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant DGE-1144469. Any opinions, findings, and conclusions or recommendations expressed in the material are those of the authors and do not necessarily reflect the views of the National Science Foundation. The authors thank David Chen and Kelly Guan for developing the Ni-P electroplating conditions and Dongchan Jang and Carol Garland for TEM assistance. The authors also thank the Kavli Nanoscience Institute (KNI) at Caltech for support and availability of cleanroom facilities, and the Center for Integrated Nanotechnologies (CINT) user program for use of ion beam facilities at Los Alamos National Laboratory. This work was performed in part at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. NR 64 TC 13 Z9 13 U1 6 U2 83 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2014 VL 14 IS 9 BP 5176 EP 5183 DI 10.1021/nl502074d PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AO7PG UT WOS:000341544500039 PM 25084487 ER PT J AU Singer, A Ulvestad, A Cho, HM Kim, JW Maser, J Harder, R Meng, YS Shpyrko, OG AF Singer, Andrej Ulvestad, Andrew Cho, Hyung-Man Kim, Jong Woo Maser, Joerg Harder, Ross Meng, Ying Shirley Shpyrko, Oleg G. TI Nonequilibrium Structural Dynamics of Nanoparticles in LiNi1/2Mn3/2O4 Cathode under Operando Conditions SO NANO LETTERS LA English DT Article DE Lithium ion batteries; operando; in situ; coherent X-rays phase transformation; metastable solid solution ID LITHIUM-ION BATTERY; VOLTAGE SPINEL MATERIALS; X-RAY-DIFFRACTION; LIFEPO4 NANOPARTICLES; PHASE-SEPARATION; SOLID-SOLUTION; ELECTRODE; MICROSCOPY; DIFFUSION; DISCHARGE AB We study nonequilibrium structural dynamics in LiNi1/2Mn3/2O4 spinel cathode material during fast charge/discharge under operando conditions using coherent X-rays. Our in situ measurements reveal a hysteretic behavior of the structure upon cycling and we directly observe the interplay between different transformation mechanisms: solid solution and two-phase reactions at the single nanoparticle level. For high lithium concentrations solid solution is observed upon both charge and discharge. For low lithium concentration, we find concurrent solid solution and two-phase reactions upon charge, while a pure two-phase reaction is found upon discharge. A delithiation model based on an ionic blockade layer on the particle surface is proposed to explain the distinct structural transformation mechanisms in nonequilibrium conditions. This study addresses the controversy of why two-phase materials show exemplary kinetics and opens new avenues to understand fundamental processes underlying charge transfer, which will be invaluable for developing the next generation battery materials. C1 [Singer, Andrej; Ulvestad, Andrew; Kim, Jong Woo; Shpyrko, Oleg G.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Cho, Hyung-Man; Meng, Ying Shirley] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA. [Maser, Joerg; Harder, Ross] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Singer, A (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. EM ansinger@ucsd.edu RI Ulvestad, Andrew/K-8888-2015; Singer, Andrej/M-3948-2015; Kim, Jong Woo/B-5369-2017 OI Ulvestad, Andrew/0000-0003-4611-2561; FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001805]; UCSD Chancellor's Interdisciplinary Award; U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0002357]; U.S. DOE [DE-AC02-06CH11357] FX This work was supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-SC0001805 and by the UCSD Chancellor's Interdisciplinary Award. H.M.C. and Y.S.M. acknowledge the financial support by U.S. Department of Energy, Office of Basic Energy Sciences, under Award Number DE-SC0002357. O.S. and Y.S.M. are grateful to the UCSD Chancellor's Interdisciplinary Collaboratories Award that made this collaboration possible. The use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 35 TC 13 Z9 13 U1 6 U2 68 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2014 VL 14 IS 9 BP 5295 EP 5300 DI 10.1021/nl502332b PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AO7PG UT WOS:000341544500058 PM 25148536 ER PT J AU Sun, YH Liu, K Hong, XP Chen, M Kim, J Shi, SF Wu, JQ Zettl, A Wang, F AF Sun, Yinghui Liu, Kai Hong, Xiaoping Chen, Michelle Kim, Jonghwan Shi, Sufei Wu, Junqiao Zettl, Alex Wang, Feng TI Probing Local Strain at MX2-Metal Boundaries with Surface Plasmon-Enhanced Raman Scattering SO NANO LETTERS LA English DT Article DE Molybdenum disulfide; strain; Raman peak splitting; surface-enhanced Raman scattering ID MOS2 TRANSISTORS; MONOLAYER MOS2; 2-DIMENSIONAL SEMICONDUCTORS; ELECTRON MICROSCOPE; PHOTOLUMINESCENCE; DIELECTRICS; BILAYER; GROWTH AB Interactions between metal and atomically thin two-dimensional (2D) materials can exhibit interesting physical behaviors that are of both fundamental interests and technological importance. In addition to forming a metalsemiconductor Schottky junction that is critical for electrical transport, metal deposited on 2D layered materials can also generate a local mechanical strain. We investigate the local strain at the boundaries between metal (Ag, Au) nanoparticles and MX2 (M = Mo, W; X = S) layers by exploiting the strong local field enhancement at the boundary in surface plasmon-enhanced Raman scattering (SERS). We show that the local mechanical strain splits both the in-plane vibration mode E2(g1) and the out-of-plane vibration mode A(1g) in monolayer MoS2, and activates the in-plane mode E1g that is normally forbidden in backscattering Raman process. In comparison, the effects of mechanical strain in thicker MoS2 layers are significantly weaker. We also observe that photoluminescence from the indirect bandgap transition (when the number of layers is =2) is quenched with the metal deposition, while a softened and broadened shoulder peak emerges close to the original direct-bandgap transition because of the mechanical strain. The strain at metalMX(2) boundaries, which locally modifies the electronic and phonon structures of MX2, can have important effects on electrical transport through the metalMX(2) contact. C1 [Sun, Yinghui; Hong, Xiaoping; Kim, Jonghwan; Shi, Sufei; Zettl, Alex; Wang, Feng] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Liu, Kai; Chen, Michelle; Wu, Junqiao] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Liu, Kai; Shi, Sufei; Wu, Junqiao; Zettl, Alex; Wang, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Sun, YH (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM yhsun81@gmail.com; fengwang76@berkeley.edu RI Hong, Xiaoping/G-8673-2013; Wu, Junqiao/G-7840-2011; Liu, Kai/A-4754-2012; Sun, Yinghui/K-1945-2014; Sun, Yinghui/I-5947-2016; Zettl, Alex/O-4925-2016; wang, Feng/I-5727-2015 OI Hong, Xiaoping/0000-0002-5864-4533; Wu, Junqiao/0000-0002-1498-0148; Liu, Kai/0000-0002-0638-5189; Zettl, Alex/0000-0001-6330-136X; FU Office of Basic Energy Science, Department of Energy [DE-SC0003949, DE-AC02-05CH11231]; National Science Foundation [DMR-1306601] FX Y.H.S. thanks Chenhao Jin, Zhiwen Shi, and Sefaattin Tongay for helpful discussions. This work was mainly supported by Office of Basic Energy Science, Department of Energy under contract No. DE-SC0003949 (Early Career Award) and DE-AC02-05CH11231 (Materials Sciences Division). J.W. acknowledges support by the National Science Foundation under Grant DMR-1306601. NR 31 TC 20 Z9 20 U1 21 U2 173 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2014 VL 14 IS 9 BP 5329 EP 5334 DI 10.1021/nl5023767 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AO7PG UT WOS:000341544500063 PM 25133959 ER PT J AU Liu, ZF Wei, SJ Yoon, H Adak, O Ponce, I Jiang, Y Jang, WD Campos, LM Venkataraman, L Neaton, JB AF Liu, Zhen-Fei Wei, Sujun Yoon, Hongsik Adak, Olgun Ponce, Ingrid Jiang, Yivan Jang, Woo-Dong Campos, Luis M. Venkataraman, Latha Neaton, Jeffrey B. TI Control of Single-Molecule Junction Conductance of Porphyrins via a Transition-Metal Center SO NANO LETTERS LA English DT Article DE Porphyrins and metalloporphyrins; single-molecule junction conductance; density functional theory; nonequilibrium Green's function; self-energy correction; range-separated hybrid functional ID TRANSPORT-PROPERTIES; ENERGY-CONVERSION; CHARGE-TRANSPORT; SOLAR-CELLS; RESISTANCE; CIRCUITS AB Using scanning tunneling microscope break-junction experiments and a new first-principles approach to conductance calculations, we report and explain low-bias charge transport behavior of four types of metalporphyringold molecular junctions. A nonequilibrium Greens function approach based on self-energy corrected density functional theory and optimally tuned range-separated hybrid functionals is developed and used to understand experimental trends quantitatively. Importantly, due to the localized d states of the porphyrin molecules, hybrid functionals are essential for explaining measurements; standard semilocal functionals yield qualitatively incorrect results. Comparing directly with experiments, we show that the conductance can change by nearly a factor of 2 when different metal cations are used, counter to trends expected from gas-phase ionization energies which are relatively unchanged with the metal center. Our work explains the sensitivity of the porphyrin conductance with the metal center via a detailed and quantitative portrait of the interface electronic structure and provides a new framework for understanding transport quantitatively in complex junctions involving molecules with localized d states of relevance to light harvesting and energy conversion. C1 [Liu, Zhen-Fei; Neaton, Jeffrey B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Liu, Zhen-Fei; Neaton, Jeffrey B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Wei, Sujun; Jiang, Yivan; Campos, Luis M.] Columbia Univ, Dept Chem, New York, NY 10027 USA. [Yoon, Hongsik; Jang, Woo-Dong] Yonsei Univ, Dept Chem, Seoul 120749, South Korea. [Adak, Olgun; Ponce, Ingrid; Venkataraman, Latha] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Neaton, Jeffrey B.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Neaton, Jeffrey B.] Kavli Energy Nanosci Inst Berkeley, Berkeley, CA 94720 USA. RP Liu, ZF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM zfliu@lbl.gov; lcampos@columbia.edu; 1v2117@columbia.edu; jbneaton@lbl.gov RI Neaton, Jeffrey/F-8578-2015; Foundry, Molecular/G-9968-2014; Liu, Zhenfei/D-8980-2017; OI Neaton, Jeffrey/0000-0001-7585-6135; Venkataraman, Latha/0000-0002-6957-6089 FU U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-05CH11231]; Molecular Foundry through the U.S. Department of Energy, Office of Basic Energy Sciences; NSF Grant [DMR-1206202]; Fondecyt [3140104] FX Z.-F.L. thanks Michele Kotiuga and Hector Vazquez for discussion of the use of SIESTA and TranSIESTA packages and Sivan Refaely-Abramson and Shira Weissman for discussion of the OT-RSH functional. The computational part of this work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231. A portion of this work was also supported by the Molecular Foundry through the U.S. Department of Energy, Office of Basic Energy Sciences, under the same contract number. A portion of the computation work was done using NERSC resources. The experimental portions of this work were supported by NSF Grant DMR-1206202 (L.V., S.W., and L.M.C.). I.P. is grateful to Fondecyt Project 3140104. NR 65 TC 18 Z9 18 U1 6 U2 56 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2014 VL 14 IS 9 BP 5365 EP 5370 DI 10.1021/nl5025062 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AO7PG UT WOS:000341544500068 PM 25111197 ER PT J AU Sakimoto, KK Liu, C Lim, J Yang, PD AF Sakimoto, Kelsey K. Liu, Chong Lim, Jongwoo Yang, Peidong TI Salt-Induced Self-Assembly of Bacteria on Nanowire Arrays SO NANO LETTERS LA English DT Article DE Nanowire; bacteria; self-assembly; alignment; filamentous; DLVO theory ID MICROBIAL FUEL-CELLS; ESCHERICHIA-COLI; OSMOTIC-STRESS; ADHESION; GROWTH; MEDIA; SURFACES; DLVO AB Studying bacteria-nanostructure interactions is crucial;to gaining Controllable interfacing of biotic and abiotic components h advanced biotechnologies. For biodectrochemical systems, tunable cell electrode architectures offer A path toward: improving performance and,discovering emergent properties. As such, Spororitusa Ovata cells cultured on vertical silicon nano-wire arrays formed filamentous cells and aligned parallel to the nanowires when grown in increasing ionic coricentrations. Here, we propose a model describing the kinetic and the thermodynamic driving forces of bacteria nanowire interactions. C1 [Sakimoto, Kelsey K.; Liu, Chong; Lim, Jongwoo; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Liu, Chong; Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Yang, Peidong] Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu OI Liu, Chong/0000-0001-5546-3852 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy [DE-AC02-05CH11231(PChem)]; National Science Foundation Graduate Research Fellowship Program [DGE 1106400] FX The nanowire part of the work is supported by Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy under Contract No. DE-AC02-05CH11231(PChem). K.K.S. is supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE 1106400. NR 31 TC 13 Z9 13 U1 15 U2 92 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2014 VL 14 IS 9 BP 5471 EP 5476 DI 10.1021/nl502946j PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AO7PG UT WOS:000341544500082 PM 25115484 ER PT J AU Fredrickson, ED Gorelenkov, NN Podesta, M Bortolon, A Gerhardt, SP Bell, RE Diallo, A LeBlanc, B AF Fredrickson, E. D. Gorelenkov, N. N. Podesta, M. Bortolon, A. Gerhardt, S. P. Bell, R. E. Diallo, A. LeBlanc, B. TI Parametric dependence of fast-ion transport events on the National Spherical Torus Experiment SO NUCLEAR FUSION LA English DT Article DE energetic particles; TAE; NSTX ID ALFVEN EIGENMODES; JT-60U; TOKAMAK; PLASMAS; DRIVEN; BEAM AB This paper presents an empirical approach towards characterizing the stability boundaries for some common energetic-ion-driven instabilities as seen on the National Spherical Torus Experiment (NSTX). Understanding the conditions for which beam-driven instabilities arise, and the extent of the resulting perturbation to the fast-ion population, is important for predicting and eventually demonstrating non-inductive current ramp-up and sustainment in NSTX-U (Menard J. et al 2012 Nucl. Fusion 52 083015), as well as the performance of future fusion plasma experiments such as ITER. A database has been constructed, based on shots from the 2010 experimental campaign for which TRANSP runs were performed. Each shot was divided into 50 ms intervals and the dominant beam-driven activity was characterized, and plasma parameters were collected into a database. It is found that TAE avalanches are present for beta(fast)/beta(total) > 0.3 and quiescent plasmas only for beta(fast)/beta(total) < 0.3. C1 [Fredrickson, E. D.; Gorelenkov, N. N.; Podesta, M.; Gerhardt, S. P.; Bell, R. E.; Diallo, A.; LeBlanc, B.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Bortolon, A.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37916 USA. RP Fredrickson, ED (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM efredrickson@pppl.gov RI Bortolon, Alessandro/H-5764-2015 OI Bortolon, Alessandro/0000-0002-0094-0209 FU US DoE [DE-AC02-09CH11466] FX The authors would like to express their appreciation to the NSTX team for performing the experiments from which these data were collected. This paper has been authored under US DoE Contract Number DE-AC02-09CH11466. NR 19 TC 7 Z9 7 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD SEP PY 2014 VL 54 IS 9 AR 093007 DI 10.1088/0029-5515/54/9/093007 PG 7 WC Physics, Fluids & Plasmas SC Physics GA AP3HR UT WOS:000341966700009 ER PT J AU Guillemaut, C Pitts, RA Kukushkin, AS Gunn, JP Bucalossi, J Arnoux, G Belo, P Brezinsek, S Brix, M Corrigan, G Devaux, S Flanagan, J Groth, M Harting, D Huber, A Jachmich, S Kruezi, U Lehnen, M Marchetto, C Marsen, S Meigs, AG Meyer, O Stamp, M Strachan, JD Wiesen, S Wischmeier, M AF Guillemaut, C. Pitts, R. A. Kukushkin, A. S. Gunn, J. P. Bucalossi, J. Arnoux, G. Belo, P. Brezinsek, S. Brix, M. Corrigan, G. Devaux, S. Flanagan, J. Groth, M. Harting, D. Huber, A. Jachmich, S. Kruezi, U. Lehnen, M. Marchetto, C. Marsen, S. Meigs, A. G. Meyer, O. Stamp, M. Strachan, J. D. Wiesen, S. Wischmeier, M. CA JET EFDA Contributors TI Influence of atomic physics on EDGE2D-EIRENE simulations of JET divertor detachment with carbon and beryllium/tungsten plasma-facing components SO NUCLEAR FUSION LA English DT Article DE controlled nuclear fusion; edge physics; divertor detachment ID ITER-LIKE WALL; L-MODE PLASMAS; ASDEX UPGRADE; TOKAMAK; PARTICLE; EDGE; DEUTERIUM; RELEASE; DESIGN; PROBES AB The EDGE2D-EIRENE code is applied for simulation of divertor detachment during matched density ramp experiments in high triangularity, L-mode plasmas in both JET-Carbon (JET-C) and JET-ITER-Like Wall (JET-ILW). The code runs without drifts and includes either C or Be as impurity, but not W, assuming that the W targets have been coated with Be via main chamber migration. The simulations reproduce reasonably well the observed particle flux detachment as density is raised in both JET-C and JET-ILW experiments and can better match the experimental in-out divertor target power asymmetry if the heat flux entering the outer divertor is artificially set at around 2-3 times that entering the inner divertor. A careful comparison between different sets of atomic physics processes used in EIRENE shows that the detachment modelled by EDGE2D-EIRENE relies only on an increase of the particle sinks and not on a decrease of the ionization source. For the rollover and the beginning of the partially detached phase, the particle losses by perpendicular transport and the molecular activated recombination processes are mainly involved. For a deeper detachment with significant target ion flux reduction, volume recombination appears to be the main contributor. The elastic molecule-ion collisions are also important to provide good neutral confinement in the divertor and thus stabilize the simulations at low electron temperature (T-e), when the sink terms are strong. Comparison between EDGE2D-EIRENE and SOLPS4.3 simulations of the density ramp in C shows similar detachment trends, but the importance of the elastic ion-molecule collisions is reduced in SOLPS4.3. Both codes suggest that any process capable of increasing the neutral confinement in the divertor should help to improve the modelling of the detachment. A further outcome of this work has been to demonstrate that key JET divertor diagnostic signals-Langmuir probe T-e and bolometric tomographic reconstructions-are running beyond the limit of validity in high recycling and detached conditions and cannot be reliably used for code validation. The simulations do, however, reproduce the trend of the evolution of the line integrated bolometer chord measurements. The comparison between the code results and high-n Balmer line radiation intensity profiles confirms that a strong volume recombination is present during the experimental detachment and may play a role in this process, as suggested by the code. C1 [JET EFDA Contributors] JET EFDA, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Guillemaut, C.; Gunn, J. P.; Bucalossi, J.; Meyer, O.] CEA, IRFM, F-13108 St Paul Les Durance, France. [Pitts, R. A.; Kukushkin, A. S.] ITER Org, F-13067 St Paul Les Durance, France. [Arnoux, G.; Brix, M.; Corrigan, G.; Devaux, S.; Flanagan, J.; Meigs, A. G.; Stamp, M.] Euratom CCFE Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Belo, P.] Assoc EURATOM IST, Inst Plasmas & Nucl Fus, Lisbon, Portugal. [Brezinsek, S.; Harting, D.; Huber, A.; Kruezi, U.; Lehnen, M.; Wiesen, S.] Forschungszentrum Julich, Inst Plasma Phys, EURATOM Assoc, D-52425 Julich, Germany. [Groth, M.] Aalto Univ, Assoc EURATOM Tekes, Espoo 02015, Finland. [Jachmich, S.] Assoc EURATOM Belgian State, ERM KMS, Plasma Phys Lab, B-1000 Brussels, Belgium. [Marchetto, C.] EURATOM, ENEA IFP CNR, I-20125 Milan, Italy. [Marsen, S.] EURATOM Assoziat, Teilinsitut Greifswald, Max Planck Inst Plasmaphys, D-17491 Greifswald, Germany. [Strachan, J. D.] Princeton Univ, PPPL, Princeton, NJ 08540 USA. [Wischmeier, M.] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. RP Guillemaut, C (reprint author), CEA, IRFM, F-13108 St Paul Les Durance, France. EM christophe.guillemaut@ccfe.ac.uk RI Groth, Mathias/G-2227-2013; Brezinsek, Sebastijan/B-2796-2017; OI Brezinsek, Sebastijan/0000-0002-7213-3326; Wiesen, Sven/0000-0002-3696-5475 FU EURATOM FX This work was supported by EURATOM and carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission nor those of the ITER Organization. NR 42 TC 7 Z9 7 U1 5 U2 32 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD SEP PY 2014 VL 54 IS 9 AR 093012 DI 10.1088/0029-5515/54/9/093012 PG 25 WC Physics, Fluids & Plasmas SC Physics GA AP3HR UT WOS:000341966700014 ER PT J AU Holcomb, CT Ferron, JR Luce, TC Petrie, TW Park, JM Turco, F Van Zeeland, MA Okabayashi, M Lasnier, CT Hanson, JM Politzter, PA In, Y Hyatt, AW La Haye, RJ Lanctot, MJ AF Holcomb, C. T. Ferron, J. R. Luce, T. C. Petrie, T. W. Park, J. M. Turco, F. Van Zeeland, M. A. Okabayashi, M. Lasnier, C. T. Hanson, J. M. Politzter, P. A. In, Y. Hyatt, A. W. La Haye, R. J. Lanctot, M. J. TI Steady state scenario development with elevated minimum safety factor on DIII-D SO NUCLEAR FUSION LA English DT Article DE steady state scenarios; high beta; non-inductive current drive ID ADVANCED TOKAMAK; HIGH-BETA; MAGNETIC SHEAR; POWER-PLANT; CONFINEMENT; PLASMAS AB On DIII-D (Luxon 2005 Fusion Sci. Technol. 48 828), a high beta scenario with minimum safety factor (q(min)) near 1.4 has been optimized with new tools and shown to be a favourable candidate for long pulse or steady state operation in future devices. The new capability to redirect up to 5 MW of neutral beam injection (NBI) from on- to off-axis improves the ability to sustain elevated q(min) with a less peaked pressure profile. These changes increase the ideal magnetohydrodynamics (MHD) n = 1 mode beta(N) limit thus providing a path forward for increasing the noninductive current drive fraction by operating at high beta(N). Quasi-stationary discharges free of tearing modes have been sustained at beta(N) = 3.5 and beta(T) = 3.6% for two current profile diffusion timescales (about 3 s) limited by neutral beam duration. The discharge performance has normalized fusion performance expected to give fusion gain Q approximate to 5 in a device the size of ITER. Analysis of the poloidal flux evolution and current drive balance show that the loop voltage profile is almost relaxed even with 25% of the current driven inductively, and q(min) remains elevated near 1.4. These observations increase confidence that the current profile will not evolve to one unstable to a tearing mode. In preliminary tests a divertor heat flux reduction technique based on producing a radiating mantle with neon injection appears compatible with this operating scenario. 0D model extrapolations suggest it may be possible to push this scenario up to 100% noninductive current drive by raising beta(N). Similar discharges with q(min) = 1.5-2 were susceptible to tearing modes and off-axis fishbones, and with q(min) > 2 lower normalized global energy confinement time is observed. C1 [Holcomb, C. T.; Lasnier, C. T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Ferron, J. R.; Luce, T. C.; Petrie, T. W.; Van Zeeland, M. A.; Politzter, P. A.; Hyatt, A. W.; La Haye, R. J.; Lanctot, M. J.] Gen Atom, San Diego, CA 92186 USA. [Park, J. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Turco, F.] Columbia Univ, New York, NY 10027 USA. [Okabayashi, M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [In, Y.] FAR TECH Inc, San Diego, CA 92121 USA. RP Holcomb, CT (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM holcomb@fusion.gat.com RI Lanctot, Matthew J/O-4979-2016 OI Lanctot, Matthew J/0000-0002-7396-3372 FU US Department of Energy, Office of Science, Office of Fusion Energy Sciences [DE-AC52-07NA27344, DE-FC02-04ER54698, DE-AC05-00OR22725, DE-FG02-04ER54761, DE-AC02-09CH11466, DE-FG02-08ER85195] FX This material is based upon work supported by the US Department of Energy, Office of Science, Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science User Facility, under awards DE-AC52-07NA27344, DE-FC02-04ER54698, DE-AC05-00OR22725, DE-FG02-04ER54761, DE-AC02-09CH11466, and DE-FG02-08ER85195. DIII-D data shown in this paper can be obtained in digital format by following the links at https://fusion.gat.com/global/D3D_DMP. NR 42 TC 3 Z9 3 U1 4 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD SEP PY 2014 VL 54 IS 9 AR 093009 DI 10.1088/0029-5515/54/9/093009 PG 10 WC Physics, Fluids & Plasmas SC Physics GA AP3HR UT WOS:000341966700011 ER PT J AU Kim, M Choi, MJ Lee, J Yun, GS Lee, W Park, HK Domier, CW Luhmann, NC Xu, XQ AF Kim, M. Choi, M. J. Lee, J. Yun, G. S. Lee, W. Park, H. K. Domier, C. W. Luhmann, N. C., Jr. Xu, X. Q. CA KSTAR Team TI Comparison of measured 2D ELMs with synthetic images from BOUT plus plus simulation in KSTAR SO NUCLEAR FUSION LA English DT Article DE ELMs; ECEI; BOUT plus; synthetic diagnostics; KSTAR ID EDGE LOCALIZED MODES; DIII-D; PEDESTAL AB A detailed study of edge-localized mode (ELM) dynamics in the KSTAR tokamak is performed using a two-dimensional (2D) electron cyclotron emission imaging (ECEI) diagnostic system. Highly coherent mode structures rotating in the poloidal view plane are routinely observed in the inter-ELM pedestal region where the optical thickness for ECE rapidly changes and the interpretation of emission intensity is complicated. To have confidence on the measurements, the observed images are compared with synthetic images of the ELM structure deduced from three-field BOUT++ simulations. The synthetic process considers instrumental effects of the ECEI diagnostic, intrinsic broadening of the ECE and background noise. The synthetic 2D images highly resemble the observed structure, providing confidence that the ELM dynamics can be visualized by ECEI. C1 [Kim, M.; Choi, M. J.; Lee, J.; Yun, G. S.] Pohang Univ Sci & Technol, Pohang 790784, Gyeongbuk, South Korea. [Lee, W.; Park, H. K.] Ulsan Natl Inst Sci & Technol, Ulsan 689798, South Korea. [Domier, C. W.; Luhmann, N. C., Jr.] Univ Calif Davis, Davis, CA 95616 USA. [Xu, X. Q.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Kim, M (reprint author), Pohang Univ Sci & Technol, Pohang 790784, Gyeongbuk, South Korea. EM hyeonpark@unist.ac.kr FU National R&D Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT & Future Planning [2014M1A7A1A03029865]; US DoE by LLNL [DE-AC52-07NA27344]; UC Davis [DE-FG02-99ER54531] FX We thank Dr Steve Sabbagh and Dr Young-Seok Park for providing EFIT reconstruction results. This research was supported by the National R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2014M1A7A1A03029865) and US DoE by LLNL under Contract No DE-AC52-07NA27344 and by UC Davis under Contract No DE-FG02-99ER54531. NR 30 TC 7 Z9 7 U1 4 U2 24 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD SEP PY 2014 VL 54 IS 9 AR 093004 DI 10.1088/0029-5515/54/9/093004 PG 7 WC Physics, Fluids & Plasmas SC Physics GA AP3HR UT WOS:000341966700006 ER PT J AU Luce, TC Humphreys, DA Jackson, GL Solomon, WM AF Luce, T. C. Humphreys, D. A. Jackson, G. L. Solomon, W. M. TI Inductive flux usage and its optimization in tokamak operation SO NUCLEAR FUSION LA English DT Article DE tokamak; flux; scaling; inductance ID DIII-D TOKAMAK; PLASMA AB The energy flow from the poloidal field coils of a tokamak to the electromagnetic and kinetic stored energy of the plasma is considered in the context of optimizing the operation of ITER. The goal is to optimize the flux usage in order to allow the longest possible burn in ITER at the desired conditions to meet the physics objectives (500 MW fusion power with energy gain of 10). A mathematical formulation of the energy flow is derived and applied to experiments in the DIII-D tokamak that simulate the ITER design shape and relevant normalized current and pressure. The rate of rise of the plasma current was varied, and the fastest stable current rise is found to be the optimum for flux usage in DIII-D. A method to project the results to ITER is formulated. The constraints of the ITER poloidal field coil set yield an optimum at ramp rates slower than the maximum stable rate for plasmas similar to the DIII-D plasmas. Experiments in present-day tokamaks for further optimization of the current rise and validation of the projections are suggested. C1 [Luce, T. C.; Humphreys, D. A.; Jackson, G. L.] Gen Atom Co, San Diego, CA 92186 USA. [Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Luce, TC (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM luce@fusion.gat.com OI Solomon, Wayne/0000-0002-0902-9876 FU US Department of Energy [DE-FC02-04ER54698, DE-AC02-09CH11466] FX This work was supported by the US Department of Energy under DE-FC02-04ER54698 and DE-AC02-09CH11466. The authors gratefully acknowledge useful discussions about the ITER poloidal field coil set specifications, flux usage, and scenario simulations with Y. Gribov, T.A. Casper and S.-H. Kim. The need for experiments to validate the assumptions used in simulations of the current rise in ITER arose in discussions in the ITPA Integrated Operation Scenarios topical group and discussions there, especially with G. Sips, C. Challis and E. Joffrin are also gratefully acknowledged. DIII-D data shown in this paper can be obtained in digital format by following the links at https://fusion.gat.com/global/D3D_DMP. NR 18 TC 5 Z9 5 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD SEP PY 2014 VL 54 IS 9 AR 093005 DI 10.1088/0029-5515/54/9/093005 PG 12 WC Physics, Fluids & Plasmas SC Physics GA AP3HR UT WOS:000341966700007 ER PT J AU Orlov, DM Moyer, RA Evans, TE Wingen, A Buttery, RJ Ferraro, NM Grierson, BA Eldon, D Watkins, JG Nazikian, R AF Orlov, D. M. Moyer, R. A. Evans, T. E. Wingen, A. Buttery, R. J. Ferraro, N. M. Grierson, B. A. Eldon, D. Watkins, J. G. Nazikian, R. TI Comparison of the numerical modelling and experimental measurements of DIII-D separatrix displacements during H-modes with resonant magnetic perturbations SO NUCLEAR FUSION LA English DT Article DE stochastic magnetic field lines; non-axisymmetric magnetic perturbations; tokamaks; ELM (edge localized modes); ELM control; RMP (resonant magnetic perturbation) ID EDGE; TOKAMAKS AB Numerical modelling of the plasma boundary position and its displacement due to external magnetic perturbations in DIII-D low-collisionality H-mode discharges is presented. The results of the vacuum model are compared to the experimental measurements for boundary displacements including Thomson scattering electron temperature T-e, charge exchange recombination spectroscopy, beam emission spectroscopy, soft x-ray, and divertor Langmuir probe measurements. Magnetically perturbed discharges with toroidal mode number n = 2 and n = 3 are studied. It is shown that the vacuum model predictions agree well with the measurements above and below the midplane, and disagree at the outer midplane in discharges where significant kink amplification is present. The role of the plasma response is studied using the two-fluid MHD code M3D-C-1, and the results are compared to the vacuum model showing that the plasma response model underestimates the boundary displacements. C1 [Orlov, D. M.; Moyer, R. A.; Eldon, D.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Evans, T. E.; Buttery, R. J.; Ferraro, N. M.] Gen Atom Co, San Diego, CA 92186 USA. [Wingen, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Watkins, J. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Grierson, B. A.; Nazikian, R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Orlov, DM (reprint author), Univ Calif San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM orlov@fusion.gat.com RI Orlov, Dmitriy/D-2406-2016; OI Orlov, Dmitriy/0000-0002-2230-457X; Wingen, Andreas/0000-0001-8855-1349; Eldon, David/0000-0003-1895-0648 FU US Department of Energy [DE-FG02-073ER4917, DE-FC02-04ER54698, DE-AC05-00OR22725, DE-AC04-94AL85000, DE-AC02-09CH11466] FX This research has been supported in part by the US Department of Energy under DE-FG02-073ER4917, DE-FC02-04ER54698, DE-AC05-00OR22725, DE-AC04-94AL85000 and DE-AC02-09CH11466. DIII-D data shown in this paper can be obtained in digital format by following the links at https://fusion.gat.com/global/D3D_DMP. NR 37 TC 6 Z9 6 U1 1 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD SEP PY 2014 VL 54 IS 9 AR 093008 DI 10.1088/0029-5515/54/9/093008 PG 12 WC Physics, Fluids & Plasmas SC Physics GA AP3HR UT WOS:000341966700010 ER PT J AU Tang, WM AF Tang, William M. TI Francis 'Rip' William Perkins Jr Obituary SO NUCLEAR FUSION LA English DT Biographical-Item C1 Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Tang, WM (reprint author), Princeton Univ, Princeton Plasma Phys Lab, James Forrest Campus, Princeton, NJ 08543 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD SEP PY 2014 VL 54 IS 9 AR 090401 DI 10.1088/0029-5515/54/9/090401 PG 4 WC Physics, Fluids & Plasmas SC Physics GA AP3HR UT WOS:000341966700001 ER PT J AU Frauendorf, S Macchiavelli, AO AF Frauendorf, S. Macchiavelli, A. O. TI Overview of neutron-proton pairing SO PROGRESS IN PARTICLE AND NUCLEAR PHYSICS LA English DT Review DE Isovector vs. isoscalar pairing; HFB theory; Shell model; Binding energies; Rotational bands; Beta decay ID TO-Z NUCLEI; MODEL MONTE-CARLO; DOUBLE-BETA DECAY; PROJECTED SHELL-MODEL; MEDIUM-MASS NUCLEI; LIGHT-NUCLEI; ROTATIONAL BANDS; SYMMETRY ENERGY; RICH NUCLEI; COLLECTIVE TREATMENT AB The role of neutron proton pairing correlations on the structure of nuclei along the N = Z line is reviewed. Particular emphasis is placed on the competition between isovector (T = 1) and isoscalar (T = 0) pair fields. The expected properties of these systems, in terms of pairing collective motion, are assessed by different theoretical frameworks including schematic models, realistic Shell Model and mean field approaches. The results are contrasted with experimental data with the goal of establishing clear signals for the existence of neutron proton (np) condensates. We will show that there is clear evidence for an isovector np condensate as expected from isospin invariance. However, and contrary to early expectations, a condensate of deuteron-like pairs appears quite elusive and pairing collectivity in the T = 0 channel may only show in the form of a phonon. Arguments are presented for the use of direct reactions, adding or removing an np pair, as the most promising tool to provide a definite answer to this intriguing question. (C) 2014 Elsevier B.V. All rights reserved. C1 [Frauendorf, S.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Macchiavelli, A. O.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Macchiavelli, AO (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM aomacchiavelli@lbl.gov FU US Department of Energy [DE-FG02-95ER40934, DE-AC02-05CH11231] FX This work has been supported by the US Department of Energy under grants DE-FG02-95ER40934 (Notre Dame) and DE-AC02-05CH11231(LBNL). AOM would like to thank the members of the Nuclear Structure Group at LBNL, in particular Dr. Paul FaIllon, for many illuminating discussions on several aspects of this review. NR 195 TC 29 Z9 30 U1 2 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0146-6410 EI 1873-2224 J9 PROG PART NUCL PHYS JI Prog. Part. Nucl. Phys. PD SEP PY 2014 VL 78 BP 24 EP 90 DI 10.1016/j.ppnp.2014.07.001 PG 67 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA AP7IU UT WOS:000342251800002 ER PT J AU Lopez-Zavala, AA Quintero-Reyes, IE Carrasco-Miranda, JS Stojanoff, V Weichsel, A Rudino-Pinera, E Sotelo-Mundo, RR AF Lopez-Zavala, Alonso A. Quintero-Reyes, Idania E. Carrasco-Miranda, Jesus S. Stojanoff, Vivian Weichsel, Andrzej Rudino-Pinera, Enrique Sotelo-Mundo, Rogerio R. TI Structure of nucleoside diphosphate kinase from pacific shrimp (Litopenaeus vannamei) in binary complexes with purine and pyrimidine nucleoside diphosphates SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS LA English DT Article ID X-RAY-STRUCTURE; 3-DIMENSIONAL STRUCTURE; 2-ANGSTROM RESOLUTION; CRYSTAL-STRUCTURE; CRYSTALLOGRAPHY; REVEALS AB Nucleoside diphosphate kinase (NDK; EC 2.7.4.6) is an enzyme that catalyzes the third phosphorylation of nucleoside diphosphates, leading to nucleoside triphosphates for DNA replication. Expression of the NDK from Litopenaeus vannamei (LvNDK) is known to be regulated under viral infection. Also, as determined by isothermal titration calorimetry, LvNDK binds both purine and pyrimidine deoxynucleoside diphosphates with high binding affinity for dGDP and dADP and with no heat of binding interaction for dCDP [Quintero-Reyes et al. (2012), J. Bioenerg. Biomembr. 44, 325-331]. In order to investigate the differences in selectivity, LvNDK was crystallized as binary complexes with both acceptor (dADP and dCDP) and donor (ADP) phosphate-group nucleoside diphosphate substrates and their structures were determined. The three structures with purine or pyrimidine nucleotide ligands are all hexameric. Also, the binding of deoxy or ribonucleotides is similar, as in the former a water molecule replaces the hydrogen bond made by Lys11 to the 2'-hydroxyl group of the ribose moiety. This allows Lys11 to maintain a catalytically favourable conformation independently of the kind of sugar found in the nucleotide. Because of this, shrimp NDK may phosphorylate nucleotide analogues to inhibit the viral infections that attack this organism. C1 [Lopez-Zavala, Alonso A.; Carrasco-Miranda, Jesus S.; Sotelo-Mundo, Rogerio R.] Ctr Invest Alimentac & Desarrollo AC CIAD, Hermosillo 83304, Sonora, Mexico. [Quintero-Reyes, Idania E.] Univ Sonora, Obregon 85039, Sonora, Mexico. [Stojanoff, Vivian] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Weichsel, Andrzej] Univ Arizona, Macromol Crystallog Core, Tucson, AZ 85721 USA. [Rudino-Pinera, Enrique] UNAM, Inst Biotecnol IBT, Dept Med Mol & Bioproc, Cuernavaca 62210, Morelos, Mexico. RP Sotelo-Mundo, RR (reprint author), Ctr Invest Alimentac & Desarrollo AC CIAD, Carretera Ejido La Victoria Km 0-6, Hermosillo 83304, Sonora, Mexico. EM rrs@ciad.mx RI Sotelo-Mundo, Rogerio/A-6097-2011 OI Sotelo-Mundo, Rogerio/0000-0001-5543-6889 FU CONACyT (Mexico's National Science and Research Council); CONACyT [CB-2009-131859, E0007-2011-01-179940]; Texas A&M-CONACyT Collaborative Grant Program [2011-050] FX AAL-Z, IEQ-R and JSC-M were supported by a PhD fellowship from CONACyT (Mexico's National Science and Research Council). RS-M acknowledges financial support from CONACyT grants CB-2009-131859 and E0007-2011-01-179940 and grant 2011-050 from the Texas A&M-CONACyT Collaborative Grant Program. We thank Edwin Lazo for technical support at BNL NSLS X6A and Gerardo Reyna, Felipe Isac, Luis Leyva, Adalberto Murrieta, Jose Luis Aguilar and Martin Peralta for bibliographical and computational support from CIAD. The authors acknowledge the editorial reviewers for extensive corrections and suggestions. NR 28 TC 1 Z9 1 U1 0 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Commun. PD SEP PY 2014 VL 70 BP 1150 EP 1154 DI 10.1107/S2053230X1401557X PN 9 PG 5 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA AP1HJ UT WOS:000341818600006 PM 25195883 ER PT J AU Zhao, R Li, WW Lee, JH Choi, EM Liang, Y Zhang, W Tang, RJ Wang, HY Jia, QX MacManus-Driscoll, JL Yang, H AF Zhao, Run Li, Weiwei Lee, Joon Hwan Choi, Eun Mi Liang, Yan Zhang, Wei Tang, Rujun Wang, Haiyan Jia, Quanxi MacManus-Driscoll, Judith L. Yang, Hao TI Precise Tuning of (YBa2Cu3O7-delta)(1-x):(BaZrO3)(x) Thin Film Nanocomposite Structures SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID SPONTANEOUS PHASE-SEPARATION; BRILLOUIN SPECTROSCOPY; MATERIALS SCIENCE; SOUND VELOCITIES; PERFORMANCE; YBA2CU3O7-X; INTERFACE; CRYSTALS; STRAIN; NANOSTRUCTURES AB Self-assembled nanocomposite films and coatings have huge potential for many functional and structural applications. However, control and manipulation of the nanostructures is still at very early stage. Here, guidelines are established for manipulating the types of composite structures that can be achieved. In order to do this, a well studied (YBa2Cu3O7-delta)(1-x):(BaZrO3)(x) 'model' system is used. A switch from BaZrO3 nanorods in YBa2Cu3O7-delta matrix to planar, horizontal layered plates is found with increasing x, with a transitional cross-ply structure forming between these states at x = 0.4. The switch is related to a release in strain energy which builds up in the YBa2Cu3O7-delta with increasing x. At x = 0.5, an unusually low strain state is observed in the planar composite structure, which is postulated to arise from a pseudo-spinodal mechanism. C1 [Zhao, Run; Li, Weiwei; Liang, Yan; Zhang, Wei; Tang, Rujun; Yang, Hao] Soochow Univ, Sch Phys Sci & Technol, Suzhou 215006, Peoples R China. [Zhao, Run; Li, Weiwei; Liang, Yan; Zhang, Wei; Tang, Rujun; Yang, Hao] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou 215006, Peoples R China. [Lee, Joon Hwan; Wang, Haiyan] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. [Jia, Quanxi] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Choi, Eun Mi; MacManus-Driscoll, Judith L.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. RP Zhao, R (reprint author), Soochow Univ, Sch Phys Sci & Technol, Suzhou 215006, Peoples R China. EM jld35@cam.ac.uk; yanghao@suda.edu.cn RI Wang, Haiyan/P-3550-2014 OI Wang, Haiyan/0000-0002-7397-1209 FU National Natural Science Foundation of China [11004145, 11274237, 51202153, 51228201]; Natural Science Foundation of Jiangsu Province [BK2010223]; Scientific Research Foundation for the Returned Overseas Chinese Scholars (State Education Ministry of China); Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD); ERC Advanced Investigator Grant, Novox [ERC-2009-AFG-247276]; US National Science Foundation [NSF-1007969, 1401266]; Center for Integrated Nanotechnologies, an Office of Science User Facility; Los Alamos National Laboratory LDRD Program FX The authors acknowledge the support of the National Natural Science Foundation of China (Grant No. 11004145, 11274237, 51202153, and 51228201), the Natural Science Foundation of Jiangsu Province under Grant No. BK2010223, the Scientific Research Foundation for the Returned Overseas Chinese Scholars (State Education Ministry of China), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). J.L.M.D gratefully acknowledges funding from the ERC Advanced Investigator Grant, Novox, ERC-2009-AFG-247276. The TEM work at Texas A&M University is funded by the US National Science Foundation (NSF-1007969 and 1401266). The work at Los Alamos was supported, in part, by the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science. Q.X.J also acknowledges the support from the Los Alamos National Laboratory LDRD Program. NR 56 TC 10 Z9 10 U1 3 U2 32 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD SEP PY 2014 VL 24 IS 33 BP 5240 EP 5245 DI 10.1002/adfm.201304302 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AO9TF UT WOS:000341699200009 ER PT J AU Perepezko, JH Pint, BA Forrest, DR AF Perepezko, John H. Pint, Bruce A. Forrest, David R. TI Structural Intermetallics: Alloy Design, Processing, and Applications SO ADVANCED MATERIALS & PROCESSES LA English DT Article ID SI-B ALLOYS; MICROSTRUCTURE; COATINGS; PHASE; OXIDATION; ENGINE C1 [Perepezko, John H.] Univ Wisconsin, Madison, WI 53706 USA. [Pint, Bruce A.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Forrest, David R.] US DOE, Washington, DC 20585 USA. RP Perepezko, JH (reprint author), Univ Wisconsin, 1509 Univ Ave, Madison, WI 53706 USA. EM perepezk@engr.wisc.edu RI Pint, Bruce/A-8435-2008 OI Pint, Bruce/0000-0002-9165-3335 FU U.S. DOE; ONR [N00014-10-1-0913]; AFOSR [FA9550-11-1-1201] FX Financial support for Bruce Pint from the U.S. DOE, and for John Perepezko from ONR (N00014-10-1-0913) and AFOSR (FA9550-11-1-1201), is gratefully acknowledged. Mike Brady at ORNL provided helpful insights on background information. NR 21 TC 0 Z9 0 U1 2 U2 9 PU ASM INT PI MATERIALS PARK PA SUBSCRIPTIONS SPECIALIST CUSTOMER SERVICE, MATERIALS PARK, OH 44073-0002 USA SN 0882-7958 EI 2161-9425 J9 ADV MATER PROCESS JI Adv. Mater. Process. PD SEP PY 2014 VL 172 IS 9 BP 22 EP 26 PG 5 WC Materials Science, Multidisciplinary SC Materials Science GA AP0IL UT WOS:000341744600024 ER PT J AU Southard, LE Liu, XB Spitler, JD AF Southard, L. E. Liu, Xiaobing Spitler, J. D. TI Part One Performance of HVAC Systems at ASHRAE HQ SO ASHRAE JOURNAL LA English DT Article AB When ASHRAE headquarters in Atlanta was renovated in 2008, one goal was to create a living lab that could be accessed by members to learn about commercial building performance and state-of-the-art sustainable technology. As a part of this living lab concept, the building uses three separate HVAC systems: a variable refrigerant flow (VRF) system for spaces on the first floor, a ground source heat pump (GSHP) system, primarily for spaces on the second floor, and a dedicated outdoor air system (DOAS), which supplies fresh air to both floors. C1 [Southard, L. E.; Spitler, J. D.] Oklahoma State Univ, Sch Mech & Aerosp Engn, Stillwater, OK 74078 USA. [Liu, Xiaobing] Oak Ridge Natl Lab, Bldg Technol Res & Integrat Ctr, Oak Ridge, TN USA. RP Southard, LE (reprint author), Oklahoma State Univ, Sch Mech & Aerosp Engn, Stillwater, OK 74078 USA. NR 1 TC 0 Z9 0 U1 1 U2 5 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 EI 1943-6637 J9 ASHRAE J JI ASHRAE J. PD SEP PY 2014 VL 56 IS 9 BP 14 EP + PG 8 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA AO9LQ UT WOS:000341677600007 ER PT J AU Siljestrom, S Freissinet, C Goesmann, F Steininger, H Goetz, W Steele, A Amundsen, H AF Siljestrom, Sandra Freissinet, Caroline Goesmann, Fred Steininger, Harald Goetz, Walter Steele, Andrew Amundsen, Hans CA AMASE11 Team TI Comparison of Prototype and Laboratory Experiments on MOMA GCMS: Results from the AMASE11 Campaign SO ASTROBIOLOGY LA English DT Article DE MOMA; ExoMars; Pyrolysis-GCMS; Derivatization; Svalbard; AMASE ID CHROMATOGRAPHY-MASS-SPECTROMETRY; ALLAN HILLS 84001; MARTIAN METEORITE ALH84001; ROCKNEST AEOLIAN DEPOSIT; MARS-LIKE SOILS; ORGANIC-COMPOUNDS; OMEGA/MARS EXPRESS; DESERT VARNISH; LIFE-DETECTION; FOSSIL LEAVES AB The characterization of any organic molecules on Mars is a top-priority objective for the ExoMars European Space Agency-Russian Federal Space Agency joint mission. The main instrument for organic analysis on the ExoMars rover is the Mars Organic Molecule Analyzer (MOMA). In preparation for the upcoming mission in 2018, different Mars analog samples are studied with MOMA and include samples collected during the Arctic Mars Analog Svalbard Expedition (AMASE) to Svalbard, Norway. In this paper, we present results obtained from two different Mars analog sites visited during AMASE11, Colletthogda and Botniahalvoya. Measurements were performed on the samples during AMASE11 with a MOMA gas chromatograph (GC) prototype connected to a commercial mass spectrometer (MS) and later in home institutions with commercial pyrolysis-GCMS instruments. In addition, derivatization experiments were performed on the samples during AMASE11 and in the laboratory. Three different samples were studied from the Colletthogda that included one evaporite and two carbonate-bearing samples. Only a single sample was studied from the Botniahalvoya site, a weathered basalt covered by a shiny surface consisting of manganese and iron oxides. Organic molecules were detected in all four samples and included aromatics, long-chained hydrocarbons, amino acids, nucleobases, sugars, and carboxylic acids. Both pyrolysis and derivatization indicated the presence of extinct biota by the detection of carboxylic acids in the samples from Colletthogda, while the presence of amino acids, nucleobases, carboxylic acids, and sugars indicated an active biota in the sample from Botniahalvoya. The results obtained with the prototype flight model in the field coupled with repeat measurements with commercial instruments within the laboratory were reassuringly similar. This demonstrates the performance of the MOMA instrument and validates that the instrument will aid researchers in their efforts to answer fundamental questions regarding the speciation and possible source of organic content on Mars. C1 [Siljestrom, Sandra] SP Tech Res Inst Sweden, Dept Chem Mat & Surfaces, S-50115 Boras, Sweden. [Siljestrom, Sandra; Steele, Andrew] Carnegie Inst Sci, Geophys Lab, Washington, DC USA. [Freissinet, Caroline] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Freissinet, Caroline] Oak Ridge Associated Univ, NASA Postdoctoral Program NPP, Oak Ridge, TN USA. [Goesmann, Fred; Steininger, Harald; Goetz, Walter] Max Planck Inst Sonnensyst Forsch, Gottingen, Germany. [Amundsen, Hans] Earth & Planetary Explorat Serv, Oslo, Norway. RP Siljestrom, S (reprint author), SP Tech Res Inst Sweden, Dept Chem Mat & Surfaces, Box 587, S-50115 Boras, Sweden. EM sandra.siljestrom@sp.se FU AMASE by ESA; Deutsches Zentrum fur Luft- und Raumfahrt (DLR) [FKZ: 50QX1001]; MPS; Swedish National Space Board; Deep Carbon Observatory (A. Steele, PI); program of the Geophysical Laboratory, Carnegie Institution of Washington; Swedish National Space Board [121/11]; GSFC; NASA ASTEP (A. Steele, PI) FX The financial support of AMASE by ESA is gratefully acknowledged. The participation of F. G. was supported by Deutsches Zentrum fur Luft- und Raumfahrt (DLR; FKZ: 50QX1001). The participation of S. S. in AMASE11 was supported by MPS and a Swedish National Space Board travel grant. S. S. was further supported by the Deep Carbon Observatory (A. Steele, PI), the postdoctoral fellowship program of the Geophysical Laboratory, Carnegie Institution of Washington, and the Swedish National Space Board (Contract No. 121/11). The participation of C. F. was supported by GSFC. AMASE11 was strongly supported by NASA ASTEP (A. Steele, PI). NR 89 TC 2 Z9 2 U1 6 U2 32 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 EI 1557-8070 J9 ASTROBIOLOGY JI Astrobiology PD SEP PY 2014 VL 14 IS 9 BP 780 EP 797 DI 10.1089/ast.2014.1197 PG 18 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA AP1GM UT WOS:000341815900004 PM 25238325 ER PT J AU Ragan, ED Jennings, SR Massey, JD Doolittle, PE AF Ragan, Eric D. Jennings, Samuel R. Massey, John D. Doolittle, Peter E. TI Unregulated use of laptops over time in large lecture classes SO COMPUTERS & EDUCATION LA English DT Article DE Improving classroom teaching; Teaching/learning strategies ID CLASSROOMS AB Students often have their own individual laptop computers in university classes, and researchers debate the potential benefits and drawbacks of laptop use. In the presented research, we used a combination of surveys and in-class observations to study how students use their laptops in an unmonitored and unrestricted class setting a large lecture-based university class with nearly 3000 enrolled students. By analyzing computer use over the duration of long (165 min) classes, we demonstrate how computer use changes over time. The observations and student-reports provided similar descriptions of laptop activities. Note taking was the most common use for the computers, followed by the use of social media web sites. Overall, the data show that students engaged in off-task computer activities for nearly two-thirds of the time. An analysis of the frequency of the various laptop activities over time showed that engagement in individual activities varied significantly over the duration of the class. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Ragan, Eric D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Jennings, Samuel R.] Radford Univ, Sch Commun, Radford, VA 24141 USA. [Massey, John D.] Virginia Tech, Univ Org & Profess Dev, Blacksburg, VA 24061 USA. [Doolittle, Peter E.] Virginia Tech, Dept Learning Sci & Technol, Ctr Instruct Dev & Educ Res, Blacksburg, VA 24061 USA. RP Ragan, ED (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM raganed@ornl.gov; sjennings15@radford.edu; jdmassey@vt.edu; pdoo@vt.edu FU UT-Battelle, LLC [DE-AC05-000R22725]; U.S. Department of Energy FX Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-000R22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 24 TC 11 Z9 11 U1 8 U2 36 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-1315 EI 1873-782X J9 COMPUT EDUC JI Comput. Educ. PD SEP PY 2014 VL 78 BP 78 EP 86 DI 10.1016/j.compedu.2014.05.002 PG 9 WC Computer Science, Interdisciplinary Applications; Education & Educational Research SC Computer Science; Education & Educational Research GA AO9KR UT WOS:000341675100008 ER PT J AU McHugh, CA Fontana, J Nemecek, D Cheng, NQ Aksyuk, AA Heymann, JB Winkler, DC Lam, AS Wall, JS Steven, AC Hoiczyk, E AF McHugh, Colleen A. Fontana, Juan Nemecek, Daniel Cheng, Naiqian Aksyuk, Anastasia A. Heymann, J. Bernard Winkler, Dennis C. Lam, Alan S. Wall, Joseph S. Steven, Alasdair C. Hoiczyk, Egbert TI A virus capsid-like nanocompartment that stores iron and protects bacteria from oxidative stress SO EMBO JOURNAL LA English DT Article DE cryo-electron microscopy; encapsulin; ferritin; HK97 fold; oxidative stress ID TRANSMISSION ELECTRON-MICROSCOPY; MYXOCOCCUS-XANTHUS; CRYSTAL-STRUCTURE; COMMON ANCESTRY; MASS ANALYSIS; MATURATION; PROTEINS; EVOLUTION; MICROCOMPARTMENTS; FERRITIN AB Living cells compartmentalize materials and enzymatic reactions to increase metabolic efficiency. While eukaryotes use membrane-bound organelles, bacteria and archaea rely primarily on protein-bound nanocompartments. Encapsulins constitute a class of nanocompartments widespread in bacteria and archaea whose functions have hitherto been unclear. Here, we characterize the encapsulin nanocompartment from Myxococcus xanthus, which consists of a shell protein (EncA, 32.5 kDa) and three internal proteins (EncB, 17 kDa; EncC, 13 kDa; EncD, 11 kDa). Using cryo-electron microscopy, we determined that EncA self-assembles into an icosahedral shell 32 nm in diameter (26 nm internal diameter), built from 180 subunits with the fold first observed in bacteriophage HK97 capsid. The internal proteins, of which EncB and EncC have ferritin-like domains, attach to its inner surface. Native nanocompartments have dense iron-rich cores. Functionally, they resemble ferritins, cage-like iron storage proteins, but with a massively greater capacity (similar to 30,000 iron atoms versus similar to 3,000 in ferritin). Physiological data reveal that few nanocompartments are assembled during vegetative growth, but they increase fivefold upon starvation, protecting cells from oxidative stress through iron sequestration. C1 [McHugh, Colleen A.; Lam, Alan S.; Hoiczyk, Egbert] Johns Hopkins Bloomberg Sch Publ Hlth, W Harry Feinstone Dept Mol Microbiol & Immunol, Baltimore, MD USA. [Fontana, Juan; Nemecek, Daniel; Cheng, Naiqian; Aksyuk, Anastasia A.; Heymann, J. Bernard; Winkler, Dennis C.; Steven, Alasdair C.] NIAMSD, Struct Biol Res Lab, Bethesda, MD 20892 USA. [Wall, Joseph S.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Steven, AC (reprint author), NIAMSD, Struct Biol Res Lab, Bethesda, MD 20892 USA. EM stevena@mail.nih.gov; ehoiczyk@jhsph.edu RI Fontana, Juan/A-9138-2009 OI Fontana, Juan/0000-0002-9084-2927 FU National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health; Ruth L. Kirschstein National Research Service Award [T32 ES07141]; National Institutes of Health, National Institute of General Medical Sciences [R01 GM085024] FX We thank G. Ketner, I. Coppens, K. McLean, D. Sullivan, A. Rule, D. Zusman, H. Engelhardt, and J. Kellermann for contributions of reagents and advice and P. Afonine for advice on the use of phenix.refine and phenix.map_to_structure_factors programs. Funding for this work was provided by the Intramural Research Program of the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health (ACS), a Ruth L. Kirschstein National Research Service Award T32 ES07141 (CAM), and National Institutes of Health, National Institute of General Medical Sciences grant R01 GM085024 (EH). NR 76 TC 14 Z9 14 U1 3 U2 23 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0261-4189 EI 1460-2075 J9 EMBO J JI Embo J. PD SEP 1 PY 2014 VL 33 IS 17 BP 1896 EP 1911 DI 10.15252/embj.201488566 PG 16 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA AP1OF UT WOS:000341839500008 PM 25024436 ER PT J AU Hedlund, BP Dodsworth, JA Murugapiran, SK Rinke, C Woyke, T AF Hedlund, Brian P. Dodsworth, Jeremy A. Murugapiran, Senthil K. Rinke, Christian Woyke, Tanja TI Impact of single-cell genomics and metagenomics on the emerging view of extremophile "microbial dark matter" SO EXTREMOPHILES LA English DT Review DE Single-cell genomics; Metagenomics; Candidate phyla; Genomic encyclopedia of bacteria and archaea (GEBA); "Microbial dark matter'' ID YELLOWSTONE-NATIONAL-PARK; RIBOSOMAL-RNA SEQUENCES; GEN. NOV.; UNCULTURED MICROORGANISMS; FILAMENTOUS BACTERIUM; ARCHAEAL DIVERSITY; GREAT-BASIN; HOT-SPRINGS; ORD. NOV; COMMUNITY AB Despite > 130 years of microbial cultivation studies, many microorganisms remain resistant to traditional cultivation approaches, including numerous candidate phyla of bacteria and archaea. Unraveling the mysteries of these candidate phyla is a grand challenge in microbiology and is especially important in habitats where they are abundant, including some extreme environments and low-energy ecosystems. Over the past decade, parallel advances in DNA amplification, DNA sequencing and computing have enabled rapid progress on this problem, particularly through metagenomics and single-cell genomics. Although each approach suffers limitations, metagenomics and single-cell genomics are particularly powerful when combined synergistically. Studies focused on extreme environments have revealed the first substantial genomic information for several candidate phyla, encompassing putative acidophiles (Parvarchaeota), halophiles (Nanohaloarchaeota), thermophiles (Acetothermia, Aigarchaeota, Atribacteria, Calescamantes, Korarchaeota, and Fervidibacteria), and piezophiles (Gracilibacteria). These data have enabled insights into the biology of these organisms, including catabolic and anabolic potential, molecular adaptations to life in extreme environments, unique genomic features such as stop codon reassignments, and predictions about cell ultrastructure. In addition, the rapid expansion of genomic coverage enabled by these studies continues to yield insights into the early diversification of microbial lineages and the relationships within and between the phyla of Bacteria and Archaea. In the next 5 years, the genomic foliage within the tree of life will continue to grow and the study of yet-uncultivated candidate phyla will firmly transition into the post-genomic era. C1 [Hedlund, Brian P.; Dodsworth, Jeremy A.; Murugapiran, Senthil K.] Univ Nevada, Sch Life Sci, Las Vegas, NV 89154 USA. [Rinke, Christian; Woyke, Tanja] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Hedlund, BP (reprint author), Univ Nevada, Sch Life Sci, 4004,4505 Maryland Pkwy, Las Vegas, NV 89154 USA. EM brian.hedlund@unlv.edu OI Rinke, Christian/0000-0003-4632-1187 FU NASA Exobiology grant [EXO-NNX11AR78G]; U.S. National Science Foundation [OISE 0968421]; U.S. Department of Energy (DOE) [DE-EE-0000716]; Joint Genome Institute [CSP-182]; Office of Science of the U.S. DOE [DE-AC02-05CH11231]; Greg Fullmer through the UNLV Foundation FX This work was supported by NASA Exobiology grant EXO-NNX11AR78G; U.S. National Science Foundation grant OISE 0968421; U.S. Department of Energy (DOE) grant DE-EE-0000716; and the Joint Genome Institute (CSP-182), supported by the Office of Science of the U.S. DOE under Contract No. DE-AC02-05CH11231. B. P. H. acknowledges generous support from Greg Fullmer through the UNLV Foundation. NR 85 TC 20 Z9 21 U1 20 U2 119 PU SPRINGER JAPAN KK PI TOKYO PA CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN SN 1431-0651 EI 1433-4909 J9 EXTREMOPHILES JI Extremophiles PD SEP PY 2014 VL 18 IS 5 BP 865 EP 875 DI 10.1007/s00792-014-0664-7 PG 11 WC Biochemistry & Molecular Biology; Microbiology SC Biochemistry & Molecular Biology; Microbiology GA AP1WQ UT WOS:000341863200007 PM 25113821 ER PT J AU Iglesias, CA AF Iglesias, Carlos A. TI A plea for a reexamination of ionization potential depression measurements SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Ionization potential depression; Continuum lowering ID STRONGLY COUPLED PLASMAS; HOT; MODEL; EQUILIBRIUM; ATOMS; LASER AB Experiments at the Linac Coherent Light Source determined the ionization potential depression (IPD) in dense plasmas by measuring the K alpha fluorescence associated with K-shell holes created by the X-ray free-electron laser. The analysis of the experimental spectrum found a significantly larger IPD than predicted by the widely used Stewart-Pyatt model. It is shown, however, that a more accurate treatment of atomic levels than used in the analysis has additional channels reducing the threshold laser energy for creating K alpha photons without invoking an increase in the IPD. Thus, it is argued that a simulation of the Ka fluorescence using improved atomic data could impact the interpretation of the experimental results. (C) 2014 Elsevier B.V. All rights reserved. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Iglesias, CA (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. EM iglesias1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX It is a pleasure to thank Philip A. Sterne and Sam M. Vinko for valuable discussions. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 20 TC 6 Z9 6 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 EI 1878-0563 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD SEP PY 2014 VL 12 BP 5 EP 11 DI 10.1016/j.hedp.2014.04.002 PG 7 WC Physics, Fluids & Plasmas SC Physics GA AP2LH UT WOS:000341903200002 ER PT J AU Faussurier, G Libby, SB Silvestrelli, PL AF Faussurier, G. Libby, S. B. Silvestrelli, P. L. TI The viscosity to entropy ratio: From string theory motivated bounds to warm dense matter transport SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Viscosity; Entropy density; Yukawa one-component plasmas; Warm dense matter ID ONE-COMPONENT-PLASMA; COUPLED YUKAWA SYSTEMS; SHEAR VISCOSITY; SIMPLE FLUIDS; SIMULATIONS; HYDROGEN; THERMODYNAMICS; EQUATION; LIQUID; STATES AB We study the ratio of viscosity to entropy density in Yukawa one-component plasmas as a function of coupling parameter at fixed screening, and in realistic warm dense matter models as a function of temperature at fixed density. In these two situations, the ratio is minimized for values of the coupling parameters that depend on screening, and for temperatures that in turn depend on density and material. In this context, we also examine Rosenfeld arguments relating transport coefficients to excess reduced entropy for Yukawa one-component plasmas. For these cases we show that this ratio is always above the lower-bound conjecture derived from string theory ideas. (C) 2014 Elsevier B.V. All rights reserved. C1 [Faussurier, G.] CEA, DAM, DIF, F-91297 Arpajon, France. [Libby, S. B.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. [Silvestrelli, P. L.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy. [Silvestrelli, P. L.] CNR, Ist Officina Mat, DEMOCRITOS Natl Simulat Ctr, Trieste, Italy. RP Faussurier, G (reprint author), CEA, DAM, DIF, F-91297 Arpajon, France. EM gerald.faussurier@cea.fr FU U.S. Department of Energy at Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX S. B. Libby's work was performed under the auspices of the U.S. Department of Energy at Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 35 TC 1 Z9 1 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 EI 1878-0563 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD SEP PY 2014 VL 12 BP 21 EP 26 DI 10.1016/j.hedp.2014.06.001 PG 6 WC Physics, Fluids & Plasmas SC Physics GA AP2LH UT WOS:000341903200004 ER PT J AU Flaig, M Plewa, T Keiter, PA Drake, RP Grosskopf, M Kuranz, C Park, HS AF Flaig, Markus Plewa, Tomasz Keiter, Paul A. Drake, R. Paul Grosskopf, Mike Kuranz, Carolyn Park, Hye-Sook TI Design of a supernova-relevant Rayleigh-Taylor experiment on the National Ignition Facility. I. Planar target design and diagnostics SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Hydrodynamics; Hydrodynamic instabilities; Laboratory astrophysics; Rayleigh-Taylor; HEDP laboratory experiments; National Ignition Facility ID CORE COLLAPSE SUPERNOVAE; HYDRODYNAMIC INSTABILITY EXPERIMENTS; 2 DIMENSIONS; SIMULATION; LASER; EVOLUTION; EXPLOSIONS; DEPENDENCE; SN-1987A; FLUIDS AB We present a feasability study for a laser-driven shock experiment on the National Ignition Facility (NIF) to study the evolution of the Rayleigh-Taylor instability in the non-linear regime. The experiment is relevant to the problem of material mixing in core-collapse supernovae and is intended to serve as a stepping stone for more realistic Rayleigh Taylor experiments using spherical geometry. The radiation hydrodynamics simulations described here are done using the CRASH code and include the actual NIF laser drive. It is shown that the simulations are converged with respect to numerical resolution effects. Small-scale imperfections, such as they might be introduced during the process of target fabrication, are found to have negligible impact, provided that their size is smaller than 1 mu m. The simulation results are in excellent agreement with a buoyancy-drag model, and the mix layer width is found to increase at higher drive energies. Published by Elsevier B.V. C1 [Flaig, Markus; Plewa, Tomasz] Florida State Univ, Tallahassee, FL 32306 USA. [Keiter, Paul A.; Drake, R. Paul; Kuranz, Carolyn] Univ Michigan, Ann Arbor, MI 48109 USA. [Grosskopf, Mike] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Park, Hye-Sook] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Flaig, M (reprint author), Florida State Univ, Tallahassee, FL 32306 USA. EM mflaig@fsu.edu RI Drake, R Paul/I-9218-2012; OI Drake, R Paul/0000-0002-5450-9844; Flaig, Markus/0000-0003-4759-9535 FU U.S. Department of Energy [DE-FG52-09NA29548]; NSF [AST-1109113]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank two anonymous reviewers for providing thoughtful comments that helped to improve the manuscript. MF and TP were supported by the U.S. Department of Energy grant DE-FG52-09NA29548 and the NSF grant AST-1109113. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 38 TC 3 Z9 3 U1 3 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 EI 1878-0563 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD SEP PY 2014 VL 12 BP 35 EP 45 DI 10.1016/j.hedp.2014.06.003 PG 11 WC Physics, Fluids & Plasmas SC Physics GA AP2LH UT WOS:000341903200006 ER PT J AU Dhople, SV Johnson, BB Dorfler, F Hamadeh, AO AF Dhople, Sairaj V. Johnson, Brian B. Doerfler, Florian Hamadeh, Abdullah O. TI Synchronization of Nonlinear Circuits in Dynamic Electrical Networks With General Topologies SO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS LA English DT Article DE Kron reduction; nonlinear circuits; synchronization ID SYSTEMS; OSCILLATORS; PASSIVITY; GRAPHS; DELAY AB Sufficient conditions are derived for global asymptotic synchronization in a system of identical nonlinear electrical circuits coupled through linear time-invariant (LTI) electrical networks. In particular, the conditions we derive apply to settings where: i) the nonlinear circuits are composed of a parallel combination of passive LTI circuit elements and a nonlinear voltage-dependent current source with finite gain; and ii) a collection of these circuits are coupled through either uniform or homogeneous LTI electrical networks. Uniform electrical networks have identical per-unit-length impedances. Homogeneous electrical networks are characterized by having the same effective impedance between any two terminals with the others open circuited. Synchronization in these networks is guaranteed by ensuring the stability of an equivalent coordinate-transformed differential system that emphasizes signal differences. The applicability of the synchronization conditions to this broad class of networks follows from leveraging recent results on structural and spectral properties of Kron reduction-a model-reduction procedure that isolates the interactions of the nonlinear circuits in the network. The validity of the analytical results is demonstrated with simulations in networks of coupled Chua's circuits. C1 [Dhople, Sairaj V.] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA. [Johnson, Brian B.] Natl Renewable Energy Lab, Power Syst Engn Ctr, Golden, CO 80401 USA. [Doerfler, Florian] ETH, Automat Control Lab, CH-8092 Zurich, Switzerland. [Hamadeh, Abdullah O.] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. RP Dhople, SV (reprint author), Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA. EM sdhople@UMN.EDU; brian.johnson@NREL.GOV; dorfler@ETHZ.CH; ahamadeh@MIT.EDU NR 37 TC 14 Z9 15 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1549-8328 EI 1558-0806 J9 IEEE T CIRCUITS-I JI IEEE Trans. Circuits Syst. I-Regul. Pap. PD SEP PY 2014 VL 61 IS 9 BP 2677 EP 2690 DI 10.1109/TCSI.2014.2332250 PG 14 WC Engineering, Electrical & Electronic SC Engineering GA AO8HC UT WOS:000341593700017 ER PT J AU Hsieh, LH Dai, SX AF Hsieh, Lung-Hwa Dai, Steve X. TI Bandpass Filters With Localized Temperature Compensation Dielectrics in Low-Temperature Cofired Ceramic Packages SO IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY LA English DT Article DE Bandpass filter (BPF); low-temperature cofireable ceramic (LTCC); SrTiO3 (STO); temperature compensation; widestopband ID PASS FILTERS; RESONATORS; COEFFICIENT; LINES AB A series of SrTiO3 (STO) based temperature compensation dielectrics that were cofireable with the commercial DuPont 951 low-temperature cofireable ceramic (LTCC) were developed. The STO30 dielectric with 30 wt% STO showed the highest positive temperature coefficient of resonant frequency (tau(f)) that was opposite to the tau(f) = -69 ppm/degrees C of the Dupont 951 LTCC, and was selected to design a temperature-compensated four-pole bandpass filter. The filter shows a near zero tau(f) = 0.7 ppm/degrees C over a temperature range -20 degrees C to 80 degrees C. The variance of insertion loss of the filter over the same temperature span is 0.28 dB. The maximum-difference group delay of the filter is 37 pS. The insertion loss included two SMA connectors at 20 degrees C is greater than 2.45 dB. A general variational method with the transmission-line technique provided an analytical method to calculate the effective dielectric constant and the characteristic impedance of an arbitrary multilayer strip line structure. With this method, the thickness of STO30 compensation dielectric can be optimized to obtain a nearly full temperature compensation for the filter. The electromagnetic simulation results of the filter agreed well with measured data. C1 [Hsieh, Lung-Hwa; Dai, Steve X.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Hsieh, LH (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. EM welberhsieh@hotmail.com; sxdai@sandia.gov FU Laboratory Directed Research and Development Program; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported in part by the Laboratory Directed Research and Development Program and in part by the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. Recommended for publication by Associate Editor A. Shapiro upon evaluation of reviewers' comments. NR 21 TC 0 Z9 0 U1 0 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3950 EI 2156-3985 J9 IEEE T COMP PACK MAN JI IEEE Trans. Compon. Pack. Manuf. Technol. PD SEP PY 2014 VL 4 IS 9 BP 1427 EP 1431 DI 10.1109/TCPMT.2014.2331144 PG 5 WC Engineering, Manufacturing; Engineering, Electrical & Electronic; Materials Science, Multidisciplinary SC Engineering; Materials Science GA AP3OL UT WOS:000341985900003 ER PT J AU Atchley, AL Navarre-Sitchler, AK Maxwell, RM AF Atchley, Adam L. Navarre-Sitchler, Alexis K. Maxwell, Reed M. TI The effects of physical and geochemical heterogeneities on hydro-geochemical transport and effective reaction rates SO JOURNAL OF CONTAMINANT HYDROLOGY LA English DT Article DE Hydro-geochemical transport; Physical and geochemical heterogeneities; Effective reaction rate ID STREAMLINE-BASED SIMULATION; STOCHASTIC-CONVECTIVE TRANSPORT; FLUID-ROCK INTERACTION; KINETIC METAL RELEASE; HYDRAULIC CONDUCTIVITY; SOLUTE TRANSPORT; POROUS-MEDIA; CO2 LEAKAGE; SPATIAL VARIABILITY; WEATHERING RATES AB The role of coupled physical and geochemical heterogeneities in hydro-geochemical transport is investigated by simulating three-dimensional transport in a heterogeneous system with kinetic mineral reactions. Ensembles of 100 physically heterogeneous realizations were simulated for three geochemical conditions: 1) spatially homogeneous reactive mineral surface area, 2) reactive surface area positively correlated to hydraulic heterogeneity, and 3) reactive surface area negatively correlated to hydraulic heterogeneity. Groundwater chemistry and the corresponding effective reaction rates were calculated at three transverse planes to quantify differences in plume evolution due to heterogeneity in mineral reaction rates and solute residence time (T). The model is based on a hypothetical CO2 intrusion into groundwater from a carbon capture utilization and storage (CCUS) operation where CO2 dissolution and formation of carbonic acid created geochemical dis-equilibrium between fluids and the mineral galena that resulted in increased aqueous lead (Pb2+) concentrations. Calcite dissolution buffered the pH change and created conditions of galena oversaturation, which then reduced lead concentrations along the flow path. Near the leak kinetic geochemical reactions control the release of solutes into the fluid, but further along the flow path mineral solubility controls solute concentrations. Simulation results demonstrate the impact of heterogeneous distribution of geochemical reactive surface area in coordination with physical heterogeneity on the effective reaction rate (K-rxn,K-eff) and Pb2+ concentrations within the plume. Dissimilarities between ensemble Pb2+ concentration and K-rxn,K-eff are attributed to how geochemical heterogeneity affects the time (T-eq) and therefore advection distance (L-eq) required for the system to re-establish geochemical equilibrium. Only after geochemical equilibrium is re-established, K-rxn,K-eff and Pb2+ concentrations are the same for all three geochemical conditions. Correlation between reactive surface area and hydraulic conductivity, either positive or negative, results in variation in T-eq and L-eq. Published by Elsevier B.V. RP Atchley, AL (reprint author), Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. EM aatchley@lanl.gov RI Maxwell, Reed/D-7980-2013; Navarre-Sitchler, Alexis/J-3389-2014; OI Maxwell, Reed/0000-0002-1364-4441; Atchley, Adam/0000-0003-2203-1994 FU US Environmental Protection Agency's Science; US Environmental Protection Agency's STAR program [RD-83438701-0] FX This research has been supported by a grant from the US Environmental Protection Agency's Science to Achieve Results (STAR) program. Although the research described in the article has been funded wholly by the US Environmental Protection Agency's STAR program through Grant RD-83438701-0, it has not been subjected to any EPA review and therefore does not necessarily reflect the views of the Agency, and no official endorsement should be inferred. The authors would like to further thank the helpful and thorough reviews from John McCray, Magnus Skold, David Benson, and two anonymous reviewers. NR 60 TC 8 Z9 8 U1 4 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-7722 EI 1873-6009 J9 J CONTAM HYDROL JI J. Contam. Hydrol. PD SEP PY 2014 VL 165 BP 53 EP 64 DI 10.1016/j.jconhyd.2014.07.008 PG 12 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA AP2JR UT WOS:000341899000005 PM 25113426 ER PT J AU Aad, G Abbott, B Abdallah, J Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Agatonovic-Jovin, T Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimoto, G Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Allbrooke, BMM Allison, LJ Allport, PP Almond, J Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Araque, JP Arce, ATH Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Auerbach, B Augsten, K Aurousseau, M Avolio, G Azuelos, G Azuma, Y Baak, MA Baas, A Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Balek, P Balli, F Banas, E Banerjee, S Bannoura, AAE Bansal, V Bansil, HS Barak, L Baranov, SP Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Bartsch, V Bassalat, A Basye, A Bates, RL Batkova, L Batley, JR Battaglia, M Battistin, M Bauer, F Bawa, HS Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, K Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, E Garcia, JAB Benjamin, DP Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernat, P Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, D Besana, MI Besjes, GJ Bessidskaia, O Bessner, MF Besson, N Betancourt, C Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boddy, CR Boehler, M Boek, TT Bogaerts, JA Bogdanchikov, AG Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Brendlinger, K Brennan, AJ Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bundock, AC Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Buszello, CP Butler, B Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calandri, A Calderini, G Calfayan, P Calkins, R Caloba, LP Calvet, D Calvet, S Toro, R Camarda, S Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, B Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chang, P Chapleau, B Chapman, JD Charfeddine, D Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Cheng, HC Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Chouridou, S Chow, BKB Chromek-Burckhart, D Chu, ML Chudoba, J Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Cole, B Cole, S Colijn, AP Collot, J Colombo, T Colon, G Compostella, G Muino, P Coniavitis, E Conidi, MC Connell, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Cuciuc, CM Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Daniells, AC Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, JA Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davignon, O Davison, AR Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Dias, FA Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Dimitrievska, A Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Do Valle Wemans, A Doan, TKO Dobos, D Doglioni, C Doherty, T Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudziak, F Duflot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Dwuznik, M Dyndal, M Ebke, J Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Engelmann, R Erdmann, J Ereditato, A Eriksson, D Ernis, G Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Perez, SF Ferrag, S Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipicic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, J Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Bustos, ACF Flowerdew, MJ Formica, A Forti, A Fortin, D Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Franchino, S Francis, D Franklin, M Franz, S Fraternali, M French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galster, G Gan, KK Gandrajula, RP Gao, J Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giorgi, FM Giraud, PF Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Glonti, GL Goblirsch-Kolb, M Goddard, JR Godfrey, J Godlewski, J Goeringer, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Grebenyuk, OG Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Groth-Jensen, J Grout, ZJ Guan, L Guescini, F Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Gunther, J Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guttman, N Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, PF Hartjes, F Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Heng, Y Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hofmann, JI Hohlfeld, M Holmes, TR Hong, TM van Huysduynen, LH Hopkins, WH Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, KE Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jungst, RM Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneda, M Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karastathis, N Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Kehoe, R Keil, M Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kerevan, BP Kersten, S Kessoku, K Keung, J Khalil-zada, F Khandanyan, H Khanov, A Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, HY Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Konig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J La Rosa, A La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laier, H Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Le, BT Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, CA Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Lehmacher, M Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzen, G Lenzi, B Leone, R Leone, S Leonhardt, K Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Lester, CM Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, L Li, L Li, S Li, Y Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loevschall-Jensen, AE Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, BA Long, JD Long, RE Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lou, X Lounis, A Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeno, M Maeno, T Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Maiani, C Maidantchik, C Maier, AA Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LMD Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, L March, L Marchand, JF Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marques, CN Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazzaferro, L Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Meade, A Mechnich, J Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitani, T Mitrevski, J Mitsou, VA Mitsui, S Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Moraes, A Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Moritz, S Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, T Mueller, T Muenstermann, D Munwes, Y Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Narayan, R Nattermann, T Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, MI Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Ohshima, T Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pires, S Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Price, D Price, J Price, LE Prieur, D Primavera, M Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Przysiezniak, H Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Qureshi, A Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Randle-Conde, AS Rangel-Smith, C Rao, K Rauscher, F Rave, TC Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reisin, H Relich, M Rembser, C Ren, H Ren, ZL Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Ridel, M Rieck, P Rieger, J Rijssenbeek, M Rimoldi, A Rinaldi, L Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodrigues, L Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Adam, ER Rompotis, N Roos, L Ros, E Rosati, S Rosbach, K Rose, M Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sacerdoti, S Saddique, A Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sartisohn, G Sasaki, O Sasaki, Y Sauvage, G Sauvan, E Savard, P Savu, DO Sawyer, C Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, C Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skottowe, HP Skovpen, KY Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, KM Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Camillocci, ES Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosebee, M Soualah, R Soueid, P Soukharev, AM South, D Spagnolo, S Spano, F Spearman, WR Spettel, F Spighi, R Spigo, G Spousta, M Spreitzer, T Spurlock, B St Denis, RD Staerz, S Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramania, H Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tannenwald, BB Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, A Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Teoh, JJ Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomlinson, L Tomoto, M Tompkins, L Toms, K Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Triplett, N Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Cakir, IT Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Urbaniec, D Urquijo, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Den Wollenberg, W Van Der Deijl, PC van der Geer, R van der Graaf, H Van Der Leeuw, R van der Ster, D van Eldik, N van Gemmeren, P Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloso, F Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Virzi, J Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weigell, P Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K White, A White, MJ White, R White, S Whiteson, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilkens, HG Will, JZ Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittig, T Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wright, M Wu, M Wu, SL Wu, X Wu, Y Wulf, E Wyatt, TR Wynne, BM Xella, S Xiao, M Xu, D Xu, L Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamaguchi, Y Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, UK Yang, Y Yanush, S Yao, L Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yen, AL Yildirim, E Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D della Porta, GZ Zhang, D Zhang, F Zhang, H Zhang, J Zhang, L Zhang, X Zhang, Z Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zobernig, G Zoccoli, A Nedden, M Zurzolo, G Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Alconada Verzini, M. J. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Almond, J. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Amaral Coutinho, Y. Amelung, C. Amidei, D. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Araque, J. P. Arce, A. T. H. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Auerbach, B. Augsten, K. Aurousseau, M. Avolio, G. Azuelos, G. Azuma, Y. Baak, M. A. Baas, A. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Balek, P. Balli, F. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Bartsch, V. Bassalat, A. Basye, A. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, M. Battistin, M. Bauer, F. Bawa, H. S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, K. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernat, P. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, D. Besana, M. I. Besjes, G. J. Bessidskaia, O. Bessner, M. F. Besson, N. Betancourt, C. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boddy, C. R. Boehler, M. Boek, T. T. Bogaerts, J. A. Bogdanchikov, A. G. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Brendlinger, K. Brennan, A. J. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bundock, A. C. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buscher, D. Buscher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Byszewski, M. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Cameron, D. Caminada, L. M. Caminal Armadans, R. Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Castillo Gimenez, V. Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chang, P. Chapleau, B. Chapman, J. D. Charfeddine, D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. Cherkaoui El Moursli, R. Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiefari, G. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Chouridou, S. Chow, B. K. B. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Coggeshall, J. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Colon, G. Compostella, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Connell, S. H. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Cuciuc, C. -M. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Daniells, A. C. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. A. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Dimitrievska, A. Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Do Valle Wemans, A. Doan, T. K. O. Dobos, D. Doglioni, C. Doherty, T. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudziak, F. Duflot, L. Duguid, L. Duehrssen, M. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Dwuznik, M. Dyndal, M. Ebke, J. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Engelmann, R. Erdmann, J. Ereditato, A. Eriksson, D. Ernis, G. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Perez, S. Fernandez Ferrag, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipicic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Bustos, A. C. Florez Flowerdew, M. J. Formica, A. Forti, A. Fortin, D. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Franklin, M. Franz, S. Fraternali, M. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gandrajula, R. P. Gao, J. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gianotti, F. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Glonti, G. L. Goblirsch-Kolb, M. Goddard, J. R. Godfrey, J. Godlewski, J. Goeringer, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstroem, P. Grahn, K. -J. Gramling, J. Gramstad, E. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Grebenyuk, O. G. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Groth-Jensen, J. Grout, Z. J. Guan, L. Guescini, F. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Gunther, J. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guttman, N. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, P. F. Hartjes, F. Hasegawa, S. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Herbert, G. H. Hernandez Jimenez, Y. Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hofmann, J. I. Hohlfeld, M. Holmes, T. R. Hong, T. M. van Huysduynen, L. Hooft Hopkins, W. H. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, K. E. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jungst, R. M. Jussel, P. Juste Rozas, A. Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneda, M. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karastathis, N. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keil, M. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kerevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Y. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Klok, P. F. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Konig, A. C. Koenig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Kruger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. La Rosa, A. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laier, H. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Le, B. T. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leone, R. Leone, S. Leonhardt, K. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Lester, C. M. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, Y. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, B. A. Long, J. D. Long, R. E. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Lopez Paz, I. Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lou, X. Lounis, A. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Machado Miguens, J. Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, M. Maeno, T. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Maiani, C. Maidantchik, C. Maier, A. A. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Manhaes de Andrade Filho, L. Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, L. March, L. Marchand, J. F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marques, C. N. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin dit Martinez, H. Martinez, M. Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazzaferro, L. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitani, T. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Montejo Berlingen, J. Monticelli, F. Monzani, S. Moore, R. W. Moraes, A. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Mueller, T. Muenstermann, D. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Narayan, R. Nattermann, T. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, M. I. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Ohshima, T. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Damazio, D. Oliveira Oliver Garcia, E. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Ozcan, V. E. Ozturk, N. Pachal, K. Pacheco Pages, A. Padilla Aranda, C. Pagacova, M. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedersen, M. Pedraza Lopez, S. Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pires, S. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Portell Bueso, X. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Przysiezniak, H. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Qureshi, A. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Randle-Conde, A. S. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reisin, H. Relich, M. Rembser, C. Ren, H. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Ridel, M. Rieck, P. Rieger, J. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodrigues, L. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romero Adam, E. Rompotis, N. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, M. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sacerdoti, S. Saddique, A. Sadeh, I. Sadrozinski, H. F. -W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sartisohn, G. Sasaki, O. Sasaki, Y. Sauvage, G. Sauvan, E. Savard, P. Savu, D. O. Sawyer, C. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skottowe, H. P. Skovpen, K. Yu. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Spagnolo, S. Spano, F. Spearman, W. R. Spettel, F. Spighi, R. Spigo, G. Spousta, M. Spreitzer, T. Spurlock, B. St. Denis, R. D. Staerz, S. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Strohmer, R. Strom, D. M. Stroynowski, R. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramania, HS. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tannenwald, B. B. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Tavares Delgado, A. Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Teoh, J. J. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Topilin, N. D. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Triplett, N. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C. -L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Cakir, I. Turk Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Urbaniec, D. Urquijo, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. Van Den Wollenberg, W. Van Der Deijl, P. C. van der Geer, R. van der Graaf, H. Van Der Leeuw, R. van der Ster, D. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloso, F. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Virzi, J. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weigell, P. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. White, A. White, M. J. White, R. White, S. Whiteson, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilkens, H. G. Will, J. Z. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittig, T. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wright, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wyatt, T. R. Wynne, B. M. Xella, S. Xiao, M. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamaguchi, Y. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, U. K. Yang, Y. Yanush, S. Yao, L. Yao, W-M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yen, A. L. Yildirim, E. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, F. Zhang, H. Zhang, J. Zhang, L. Zhang, X. Zhang, Z. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zobernig, G. Zoccoli, A. zur Nedden, M. Zurzolo, G. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at=8 TeV with the ATLAS detector SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Hadron-Hadron Scattering; Supersymmetry; Top squark; Proton-proton scattering ID DYNAMICAL SYMMETRY-BREAKING; SUPERGAUGE TRANSFORMATIONS; E(+)E(-) COLLISIONS; PP COLLISIONS; ROOT-S=7 TEV; SUPERSYMMETRY; MODEL; PARTICLE; MASS; LHC AB The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1 fb(-1) of proton-proton collision data at = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via or , where denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of . For a branching fraction of 100%, top squark masses in the range 270-645 GeV are excluded for masses below 30 GeV. For a branching fraction of 50% to either or , and assuming the mass to be twice the mass, top squark masses in the range 250-550 GeV are excluded for masses below 60 GeV. C1 [Jackson, P.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Sbrizzi, A.; Subramania, HS.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Cheu, E.; Childers, J. T.; Feng, E. J.; Goshaw, A. T.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; LeCompte, T.; Lei, X.; Leone, R.; Loch, P.; Love, J.; Malon, D.; Nayyar, R.; Nguyen, D. H.; Nodulman, L.; O'grady, F.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Rutherfoord, J. P.; Ferrando, B. M. Salvachua; Shupe, M. A.; Stanek, R. W.; Toggerson, B.; van Gemmeren, P.; Vaniachine, A.; Varnes, E. W.; Veatch, J.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Maeno, M.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Portell Bueso, X.; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Portell Bueso, X.; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tsiskaridze, S.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Dimitrievska, A.; Krstic, J.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Agatonovic-Jovin, T.; Cirkovic, P.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Carminati, L.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Kuutmann, E. Bergeaas; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Wendland, D.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Ancu, L. S.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Schneider, B.; Sciacca, F. G.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Ancu, L. S.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Schneider, B.; Sciacca, F. G.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Grafstroem, P.; Massa, I.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Semprini-Cesari, N.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, INFN Sez Bologna, Bologna, Italy. [Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstroem, P.; Massa, I.; Mengarelli, A.; Piccinini, M.; Romano, M.; Semprini-Cesari, N.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeck, S.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Kruger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Liebal, J.; Limbach, C.; Loddenkoetter, T.; Mergelmeyer, S.; Mueller, K.; Nanava, G.; Nattermann, T.; Obermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Stillings, J. A.; Therhaag, J.; Uchida, K.; Uhlenbrock, M.; Urquijo, P.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Daya-Ishmukhametova, R. K.; Fitzgerald, E. A.; Gozpinar, S.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Amaral Coutinho, Y.; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Fed Univ Juiz de Fora UFJF, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Hu, X.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Schovancova, J.; Snyder, S.; Steinberg, P.; Takai, H.; Triplett, N.; Undrus, A.; Wenaus, T.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Ducu, O. A.; Jinaru, A.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. [Darbo, G.] Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Gonzalez-Sevilla, S.; Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Battistin, M.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dopke, J.; Dudarev, A.; Duehrssen, M.; Ellis, N.; Elsing, M.; Facini, G.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Franchino, S.; Francis, D.; Froidevaux, D.; Garonne, V.; Gianotti, F.; Gillberg, D.; Glatzer, J.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hauschild, M.; Hawkings, R. J.; Heller, C.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jansen, H.; Jungst, R. M.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Li, B.; Lichard, P.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Martin, B.; Marzin, A.; Messina, A.; Meyer, C.; Mornacchi, G.; Nairz, A. M.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Pommes, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Rodrigues, L.; Roe, S.; Salzburger, A.; Savu, D. O.; Scanlon, T.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Yamanaka, T.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Boveia, A.; Cheng, Y.; Fiascaris, M.; Gardner, R. W.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.] Catholic Univ Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Sun, X.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guan, L.; Han, L.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, K.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Feng, C.; Ge, P.; Ma, L. L.; Zhu, C. G.; Zhuang, X.] Shandong Univ, Sch Phys, Qingdao, Shandong, Peoples R China. [Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Cole, B.; Guo, J.; Hu, D.; Hughes, E. W.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Wulf, E.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Dam, M.; Galster, G.; Gregersen, K.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Jakobsen, S.; Loevschall-Jensen, A. E.; Mehlhase, S.; Monk, J.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Susinno, G.; Tassi, E.] Univ Calabria, INFN Grp Collegato Cosenza, Lab Nazl Frascati, I-87036 Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartmento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, PL-31007 Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hoffman, J.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Lou, X.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Grahn, K. -J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kuhl, A.; Lisovyi, M.; Lobodzinska, E.; Maettig, P.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Hamburg, Germany. [Argyropoulos, S.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Grahn, K. -J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Maettig, P.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Esch, H.; Goeringer, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Kobel, M.; Leonhardt, K.; Mader, W. F.; Morgenstern, M.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B.; Kajomovitz, E.; Kotwal, A.; Kruse, A.; Li, S.; Liu, M.; Oh, S. H.; Pollard, C. S.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Bristow, T. M.; Clark, P. J.; Debenedetti, C.; Edwards, N. C.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Annovi, A.; Antonelli, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alexander, G.; Barone, G.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Toro, R. Camacho; Clark, A.; della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Latour, B. Martin dit; Mermod, P.; Miucci, A.; Muenstermann, D.; Nektarijevic, S.; Nikolics, K.; Pasztor, G.; Picazio, A.; Pohl, M.; Rosbach, K.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Univ Genoa, Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; St. Denis, R. D.; Stewart, G. A.; Thompson, A. S.; Wright, M.] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow, Lanark, Scotland. [Bierwagen, K.; Bindi, M.; Blumenschein, U.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Hensel, C.; Kawamura, G.; Keil, M.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mchedlidze, G.; Llacer, M. Moreno; Nackenhorst, O.; Nadal, J.; Quadt, A.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Stolte, P.; Schroeder, T. Vazquez; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Brown, J.; Clement, C.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Le, B. T.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Bellomo, M.; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mercurio, K. M.; Skottowe, H. P.; Spearman, W. R.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Brandt, O.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Hanke, P.; Hofmann, J. I.; Jongmanns, J.; Khomich, A.; Kluge, E. -E.; Laier, H.; Lang, V. S.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Franz, S.; Jussel, P.; Kneringer, E.; Lukas, W.; Nagai, K.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Cinca, D.; Gandrajula, R. P.; Mallik, U.; Mandrysch, R.; Morange, N.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Ruiz-Martinez, A.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Huseynov, N.; Karpov, S. N.; Kazanin, V. F.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimine, N. I.] Joint Inst Nucl Res Dubna, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Ikematsu, K.; Inamaru, Y.; Kishimoto, T.; Kurashige, H.; Ochi, A.; Shimizu, S.; Takeda, H.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alconada Verzini, M. J.; Alonso, A.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Alconada Verzini, M. J.; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Allison, L. J.; Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Catmore, J. R.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, B.; Grancagnolo, S.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jackson, P.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Migas, S.; Price, J.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, J. H.; Waller, P.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipicic, A.; Gorisek, A.; Kramberger, G.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipicic, A.; Gorisek, A.; Kersten, S.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bona, M.; Carter, J. R.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Salamanna, G.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Boisvert, V.; Brooks, T.; Cantrill, R.; Connelly, I. A.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; George, S.; Gibson, S. M.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, O. K.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Cooper, B. D.; Davison, A. R.; Davison, P.; Dobos, D.; Gutschow, C.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Korn, A.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, M. I.; Pilkington, A. D.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Bernius, C.; Greenwood, Z. D.; Jana, D. K.; Jenni, P.; Sawyer, L.; Sircar, A.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Jarlskog, G.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Inst Fys, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Llorente Merino, J.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Arnaez, O.; Blum, W.; Buehrer, F.; Caputo, R.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Goeringer, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Huelsing, T. A.; Ji, W.; Karnevskiy, M.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moreno, D.; Moritz, S.; Mueller, T.; Poettgen, R.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Brown, J.; Cox, B. E.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Peters, R. F. Y.; Price, D.; Robinson, J. E. M.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Chen, L.; Clemens, J. C.; Coadou, Y.; Djama, F.; Feligioni, L.; Gao, J.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Serre, T.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Chen, L.; Coadou, Y.; Djama, F.; Feligioni, L.; Gao, J.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] CNRS, IN2P3, Marseille, France. Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Bellomo, M.; Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Mantifel, R.; Robertson, S. H.; Schramm, S.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Goldfarb, S.; Harper, D.; Lei, X.; Liu, L.; Long, J. D.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Panikashvili, N.; Qian, J.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Meloni, F.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Rescigno, M.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Meloni, F.; Perini, L.; Pizio, C.; Ragusa, F.; Simoniello, R.; Turra, R.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Leontsinis, S.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Asbah, N.; Azuelos, G.; Dallaire, F.; Davies, M.; Gauthier, L.; Leroy, C.; Martin, B.; Rezvani, R.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Timoshenko, S.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Biebel, O.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Heller, C.; Hertenberger, R.; Legger, F.; Lorenz, J.; Mann, A.; Meineck, C.; Mitrevski, J.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Schmitt, C.; Vladoiu, D.; Walker, R.; Will, J. Z.; Wittkowski, J.; Zibell, A.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Pospisil, S.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Stern, S.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Giordano, R.; Izzo, V.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Alviggi, M. G.; Astalos, R.; Canale, V.; Chiefari, G.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Dao, V.; De Groot, N.; Filthaut, F.; Galea, C.; Klok, P. F.; Koenig, S.; Salvucci, A.] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, NL-6525 ED Nijmegen, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluth, S.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] Nikhef Natl Inst Subatom Phys, Amsterdam, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] Univ Amsterdam, Amsterdam, Netherlands. [Burghgrave, B.; Calkins, R.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL USA. [Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Skovpen, K. Yu.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.] NYU, Dept Phys, New York, NY 10003 USA. [Fisher, W. C.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Hasib, A.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Bousson, N.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De la Torre, H.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De la Torre, H.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybar, M.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, S.; Tran, H. L.; Zerwas, D.; Zhao, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Endo, M.; Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Nomachi, M.; Okamura, W.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Gjelsten, B. K.; Gramstad, E.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Smestad, L.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Behr, K.; Boddy, C. R.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Nickerson, R. B.; Pachal, K.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C. -L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Newman, P. R.; Ospanov, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Roda, C.; Scuri, F.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Peso, J.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Scuri, F.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Su, J.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Anjos, N.; Araque, J. P.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Maio, A.; Maneira, J.; Marques, C. N.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Tavares Delgado, A.; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao Fis Expt Particulas, P-1000 Lisbon, Portugal. [Amorim, A.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Gomes, A.; Jorge, P. M.; Machado Miguens, J.; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Tavares Delgado, A.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amor Dos Santos, S. P.; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Do Valle Wemans, A.] Univ Nova Lisboa, Dept Fis, Caparica, Portugal. [Do Valle Wemans, A.] Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, Caparica, Portugal. [Bohm, J.; Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Gunther, J.; Jakubek, J.; Kohout, Z.; Kral, V.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Kodys, P.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Shiga, Japan. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Dionisi, C.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vanadia, M.; Vari, R.; Veneziano, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Dionisi, C.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Lacava, F.; Luci, C.; Monzani, S.; Camillocci, E. Solfaroli; Vanadia, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Cardarelli, R.; Cattani, G.; Grossi, G. C.; Liberti, B.; Mazzaferro, L.; Paolozzi, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarda, S.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Mazzaferro, L.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Stanescu, C.; Trovatelli, M.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Trovatelli, M.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Techn Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA, Fac Sci Semlalia, Marrakech, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [Cherkaoui El Moursli, R.; Haddad, N.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Abreu, H.; Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Grabas, H. M. X.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mal, P.; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J-P.; Mijovic, L.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] CEA Saclay, DSM IRFU, Inst Rech Lois Fondament Univers, F-91191 Gif Sur Yvette, France. [Grillo, A. A.; Kuhl, A.; Law, A. T.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Sadrozinski, H. F. -W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; De Bruin, P. H. Sales; Verducci, M.; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Paredes, B. Lopez; Miyagawa, P. S.; Paganis, E.; Suruliz, K.; Tovey, D. R.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ibragimov, I.; Ikematsu, K.; Rammensee, M.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Dawe, E.; Godfrey, J.; Kvita, J.; O'Neil, D. C.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; Trottier-McDonald, M.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kagan, M.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, T. K.; Piacquadio, G.; Salihagic, D.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittkowski, J.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Batkova, L.; Blazek, T.; Federic, P.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Carrillo-Montoya, G. D.; Chen, X.; Huang, Y.; Garcia, B. R. Mellado; Ruan, X.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Asman, B.; Bendtz, K.; Bessidskaia, O.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaiti, Y.; Asman, B.; Bendtz, K.; Bessidskaia, O.; Clement, C.; Gellerstedt, K.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bee, C. P.; Campoverde, A.; Chen, H.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; Cerri, A.; Barajas, C. A. Chavez; De Santo, A.; Grout, Z. J.; Potter, C. J.; Rose, M.; Salvatore, F.; Castillo, I. Santoyo; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, C. A.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, C.; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benhammou, Y.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkialas, I.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Ikematsu, K.; Kanaya, N.; Kataoka, Y.; Kawamura, G.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Ishitsuka, M.; Jinnouchi, O.; Kuze, M.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Brelier, B.; Chau, C. C.; Ilic, N.; Keung, J.; Krieger, P.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Chekulaev, S. V.; Fortin, D.; Koutsman, A.; Oram, C. J.; Codina, E. Perez; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bentvelsen, S.; Bustos, A. C. Florez; Ramos, J. A. Manjarres; Palacino, G.; Qureshi, A.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Farrell, S.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Toggerson, B.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; De Santo, A.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Quayle, W. B.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Martin-Haugh, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Perez, M. Villaplana; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Perez, M. Villaplana; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Perez, M. Villaplana; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrari, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Perez, M. Villaplana; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moles-Valls, R.; Pino, S. A. Olivares; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Perez, M. Villaplana; Vos, M.] CSIC, Valencia, Spain. [Fedorko, W.; Gay, C.; Gecse, Z.; Lister, A.; Loh, C. W.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; David, C.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Kimura, N.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alonso, A.; Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Castillo, L. R. Flores; Hard, A. S.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wienemann, P.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Redelbach, A.; Sandstroem, R.; Schreyer, M.; Siragusa, G.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Barisonzi, M.; Becker, S.; Beermann, T. A.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fisher, W. C.; Fleischmann, S.; Flick, T.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Maettig, P.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich C Phys, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Ideal, E.; Lacuesta, V. R.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Tipton, P.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] Ctr Calcul Inst Natl Phys Nucl & Phys, IN2P3, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London WC2R 2LS, England. [Ahmadov, F.; Huseynov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Belotskiy, K.; Maximov, D. A.; Talyshev, A. A.; Tikhonov, Yu. A.] Tomsk State Univ, Tomsk 634050, Russia. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys, Ottawa, ON, Canada. [Gkialas, I.; Papageorgiou, K.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Greenwood, Z. D.; Sawyer, L.] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China. [Grinstein, S.; Juste Rozas, A.; Martinez, M.] Univ Aegean, Dept Financial & Management Engn, Chios, Greece. [Kono, T.] ICREA, Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Konoplich, R.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Li, Y.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan. [Liang, Z.; Soh, D. A.; Weng, Z.] Manhattan Coll, New York, NY USA. [Lin, S. C.; Rezanova, O. L.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Messina, A.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Nessi, M.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Pasztor, G.; Toth, J.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Purohit, M.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Smirnova, L. N.; Turchikhin, S.] SISSA, Int Sch Adv Studies, I-34014 Trieste, Italy. Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Tikhomirov, V. O.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Vickey, T.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Xu, L.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Susinno, G.] Univ Hamburg, Inst Experimentalphys, Hamburg, Germany. [Washbrook, A.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. [Sundermann, J. E.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; Perrino, Roberto/B-4633-2010; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Olshevskiy, Alexander/I-1580-2016; Snesarev, Andrey/H-5090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Ciubancan, Liviu Mihai/L-2412-2015; Zhukov, Konstantin/M-6027-2015; Shmeleva, Alevtina/M-6199-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; Andreazza, Attilio/E-5642-2011; Carvalho, Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Buttar, Craig/D-3706-2011; Joergensen, Morten/E-6847-2015; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Mir, Lluisa-Maria/G-7212-2015; Marti-Garcia, Salvador/F-3085-2011; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Di Simone, Andrea/K-6609-2013; Doyle, Anthony/C-5889-2009; Di Domenico, Antonio/G-6301-2011; de Groot, Nicolo/A-2675-2009; Nemecek, Stanislav/G-5931-2014; Gutierrez, Phillip/C-1161-2011; Ventura, Andrea/A-9544-2015; Livan, Michele/D-7531-2012; De, Kaushik/N-1953-2013; Mitsou, Vasiliki/D-1967-2009; Smirnova, Oxana/A-4401-2013; White, Ryan/E-2979-2015; Bosman, Martine/J-9917-2014; Boyko, Igor/J-3659-2013; Nepomuceno, Andre/M-9190-2014; Warburton, Andreas/N-8028-2013; Gabrielli, Alessandro/H-4931-2012; Lokajicek, Milos/G-7800-2014; Turra, Ruggero/N-2374-2014; Castro, Nuno/D-5260-2011; Moraes, Arthur/F-6478-2010; Grinstein, Sebastian/N-3988-2014; Staroba, Pavel/G-8850-2014; Brooks, William/C-8636-2013; Lei, Xiaowen/O-4348-2014; Monzani, Simone/D-6328-2017; Li, Liang/O-1107-2015; Garcia, Jose /H-6339-2015; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Silva, Jorge/M-8750-2013; Maneira, Jose/D-8486-2011; messina, andrea/C-2753-2013; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Gauzzi, Paolo/D-2615-2009; Fabbri, Laura/H-3442-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Peleganchuk, Sergey/J-6722-2014; Yang, Haijun/O-1055-2015 OI Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; Perrino, Roberto/0000-0002-5764-7337; SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672; Olshevskiy, Alexander/0000-0002-8902-1793; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Ciubancan, Liviu Mihai/0000-0003-1837-2841; Tikhomirov, Vladimir/0000-0002-9634-0581; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; Andreazza, Attilio/0000-0001-5161-5759; Carvalho, Joao/0000-0002-3015-7821; Mashinistov, Ruslan/0000-0001-7925-4676; Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582; Mir, Lluisa-Maria/0000-0002-4276-715X; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Di Simone, Andrea/0000-0003-0201-3377; Doyle, Anthony/0000-0001-6322-6195; Di Domenico, Antonio/0000-0001-8078-2759; Ventura, Andrea/0000-0002-3368-3413; Livan, Michele/0000-0002-5877-0062; De, Kaushik/0000-0002-5647-4489; Mitsou, Vasiliki/0000-0002-1533-8886; Smirnova, Oxana/0000-0003-2517-531X; White, Ryan/0000-0003-3589-5900; Bosman, Martine/0000-0002-7290-643X; Boyko, Igor/0000-0002-3355-4662; Warburton, Andreas/0000-0002-2298-7315; Gabrielli, Alessandro/0000-0001-5346-7841; Castro, Nuno/0000-0001-8491-4376; Moraes, Arthur/0000-0002-5157-5686; Grinstein, Sebastian/0000-0002-6460-8694; Brooks, William/0000-0001-6161-3570; Lei, Xiaowen/0000-0002-2564-8351; Monzani, Simone/0000-0002-0479-2207; Li, Liang/0000-0001-6411-6107; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Gauzzi, Paolo/0000-0003-4841-5822; Fabbri, Laura/0000-0002-4002-8353; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592; FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPE SP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET; ERC; NSRF, European Un ion; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; I-CORE, Israel; Benozi yo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; NCN, Poland; GRICES, Portuga l; FCT, Portuga l; MNE/IFA, Romania; MES of Russia, Russian Federation; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZ. S, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society and Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPE SP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Un ion; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benozi yo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portuga l; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZ. S, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (U.K.) and BNL (U.S.A.) and in the Tier-2 facilities worldwide. NR 99 TC 17 Z9 17 U1 6 U2 95 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD SEP 1 PY 2014 IS 9 AR 015 DI 10.1007/JHEP09(2014)015 PG 51 WC Physics, Particles & Fields SC Physics GA AP1II UT WOS:000341821700001 ER PT J AU Khanal, S Zhao, L Reno, JL Kumar, S AF Khanal, Sudeep Zhao, Le Reno, John L. Kumar, Sushil TI Temperature performance of terahertz quantum-cascade lasers with resonant-phonon active-regions SO JOURNAL OF OPTICS LA English DT Review DE quantum cascade lasers; intersubband lasers; terahertz ID THZ; SCATTERING; TIME; DEPOPULATION; TECHNOLOGY; TRANSPORT AB Significant progress has recently been made toward improving the power output, beam quality and spectral characteristics of terahertz quantum cascade lasers (QCLs). However, the maximum operating temperature of the best-performing devices has become relatively stagnant and is in the range of 150-200 K for QCLs designed to emit in the frequency range of 2-4 THz. Such QCLs are primarily designed with resonant-phonon depopulation schemes. The requirement to cryogenically cool terahertz QCLs leads to stringent limitations on their use for various applications. Although significant advances have been made to model quantum transport in quantum cascade superlattices, the relative role of various electron transport mechanisms as a function of temperature is not clear. This article discusses temperature behavior of resonant-phonon terahertz QCLs with respect to a variety of active-region design schemes, and argues that precise understanding of high-temperature transport remains elusive for terahertz QCLs. The role of electron-phonon scattering, collisional-broadening, thermal leakage, and interface-roughness scattering towards the degradation of intersubband optical gain at higher temperatures is discussed for the popular terahertz QCL designs. C1 [Khanal, Sudeep; Zhao, Le; Kumar, Sushil] Lehigh Univ, Dept Elect & Comp Engn, Bethlehem, PA 18015 USA. [Reno, John L.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Kumar, Sushil] Lehigh Univ, Ctr Photon & Nanoelect, Bethlehem, PA 18015 USA. RP Khanal, S (reprint author), Lehigh Univ, Dept Elect & Comp Engn, Bethlehem, PA 18015 USA. EM sushil@lehigh.edu FU National Science Foundation [ECCS 1128562, ECCS 1351142]; U.S. DOE's National Nuclear Security Administration [DE-AC04-94AL85000] FX This material is based upon work supported by the National Science Foundation under Grant Nos. ECCS 1128562 and ECCS 1351142, respectively, that are administered by the program managed by Dr. John M Zavada. The work is also performed, in part, at the Center for Integrated Nanotechnologies, a US Department of Energy (DOE), Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 64 TC 10 Z9 10 U1 1 U2 34 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2040-8978 EI 2040-8986 J9 J OPTICS-UK JI J. Opt. PD SEP PY 2014 VL 16 IS 9 SI SI AR 094001 DI 10.1088/2040-8978/16/9/094001 PG 11 WC Optics SC Optics GA AP0MY UT WOS:000341757400002 ER PT J AU Borland, M Decker, G Emery, L Sajaev, V Sun, YP Xiao, AM AF Borland, Michael Decker, Glenn Emery, Louis Sajaev, Vadim Sun, Yipeng Xiao, Aimin TI Lattice design challenges for fourth-generation storage-ring light sources SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE lattice; storage ring; beam dynamics; brightness ID FIELDS; SIZE AB Third-generation low-emittance storage-ring light sources based on double-and triple-bend cells and undulator magnets have been in operation around the world for more than two decades. On the horizon is a new generation based on the multi-bend achromat (MBA) lattice concept promising two to three orders of magnitude higher brightness than is available in today's sources. In this paper, the challenges inherent in designing MBA lattices, as well as potential solutions, are described. Topics covered include lattice concepts, scaling of storage-ring performance, brightness optimization, nonlinear dynamics, beam lifetime and injection schemes. C1 [Borland, Michael; Decker, Glenn; Emery, Louis; Sajaev, Vadim; Sun, Yipeng; Xiao, Aimin] Argonne Natl Lab, Argonne, IL 60439 USA. RP Borland, M (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM borland@aps.anl.gov FU US Department of Energy, Office of Science [DE-AC02-06CH11357] FX Thanks to P. Raimondi, L. Farvacque, N. Carmignani and others at ESRF for providing a copy of an earlier version of their lattice, which helped in the development of the APS HMBA lattice. Parts of this work were performed using the Blues cluster at Argonne's Laboratory Computing Resource Center and the Mira cluster at Argonne's Advanced Leadership Computing Facility. This work was supported by the US Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. NR 79 TC 14 Z9 15 U1 3 U2 15 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2014 VL 21 BP 912 EP 936 DI 10.1107/S1600577514015203 PN 5 PG 25 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA AO9PF UT WOS:000341687000008 PM 25177982 ER PT J AU Huang, XB Rabedeau, T Safranek, J AF Huang, Xiaobiao Rabedeau, Thomas Safranek, James TI Generation of picosecond electron bunches in storage rings SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE short pulse; picosecond; storage ring ID X-RAY PULSES; SYNCHROTRON-RADIATION AB Approaches to generating short X-ray pulses in synchrotron light sources are discussed. In particular, the method of using a superconducting harmonic cavity to generate simultaneously long and short bunches in storage rings and the approach of injecting short bunches from a linac injector into a storage ring for multi-turn circulation are emphasized. If multi-cell superconducting RF (SRF) cavities with frequencies of similar to 1.5 GHz can be employed in storage rings, it would be possible to generate stable, high-flux, short-pulse X-ray beams with pulse lengths of 1-10 ps (FWHM) in present or future storage rings. However, substantial challenges exist in adapting today's high-gradient SRF cavities for high-current storage ring operation. Another approach to generating short X-ray pulses in a storage ring is injecting short-pulse electron bunches from a high-repetition-rate linac injector for circulation. Its performance is limited by the microbunching instability due to coherent synchrotron radiation. Tracking studies are carried out to evaluate its performance. Challenges and operational considerations for this mode are considered. C1 [Huang, Xiaobiao; Rabedeau, Thomas; Safranek, James] SSRL, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Huang, XB (reprint author), SSRL, SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM xiahuang@slac.stanford.edu FU US Department of Energy [DE-AC02-76SF-00515] FX We thank Dr Juhao Wu for providing LCLS beam distribution and useful discussions, Dr Bob Hettel and Dr John Schmerge for discussions on general considerations of short-bunch operation. This work is supported by US Department of Energy Contract DE-AC02-76SF-00515. NR 18 TC 3 Z9 3 U1 1 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 EI 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2014 VL 21 BP 961 EP 967 DI 10.1107/S1600577514010509 PN 5 PG 7 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA AO9PF UT WOS:000341687000010 PM 25177984 ER PT J AU Denes, P Schmitt, B AF Denes, Peter Schmitt, Bernd TI Pixel detectors for diffraction-limited storage rings SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE detectors; hybrid pixel detectors; monolithic pixel detectors; diffraction-limited storage rings; RIXS; XPCS; CXDI ID RAY; RESOLUTION AB Dramatic advances in synchrotron radiation sources produce ever-brighter beams of X-rays, but those advances can only be used if there is a corresponding improvement in X-ray detectors. With the advent of storage ring sources capable of being diffraction-limited (down to a certain wavelength), advances in detector speed, dynamic range and functionality is required. While many of these improvements in detector capabilities are being pursued now, the orders-of-magnitude increases in brightness of diffraction-limited storage ring sources will require challenging non-incremental advances in detectors. This article summarizes the current state of the art, developments underway worldwide, and challenges that diffraction-limited storage ring sources present for detectors. C1 [Denes, Peter] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Schmitt, Bernd] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. RP Denes, P (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM pdenes@lbl.gov; bernd.schmitt@psi.ch RI Schmitt, Bernd/H-9365-2013 OI Schmitt, Bernd/0000-0002-5778-0680 NR 26 TC 6 Z9 6 U1 1 U2 16 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 EI 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2014 VL 21 BP 1006 EP 1010 DI 10.1107/S1600577514017135 PN 5 PG 5 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA AO9PF UT WOS:000341687000015 PM 25177989 ER PT J AU Hitchcock, AP Toney, MF AF Hitchcock, Adam P. Toney, Michael F. TI Spectromicroscopy and coherent diffraction imaging: focus on energy materials applications SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE scanning X-ray microscopy; coherent diffraction imaging; ptychography; resonant X-ray scattering; energy materials; lithium batteries; polymer electrolyte membrane fuel cells ID X-RAY MICROSCOPY; NM SPATIAL-RESOLUTION; CELL CATALYST LAYERS; FUEL-CELL; WATER; SPECTROSCOPY; NANOSCALE; SPACE; FLUORESCENCE; SCATTERING AB Current and future capabilities of X-ray spectromicroscopy are discussed based on coherence-limited imaging methods which will benefit from the dramatic increase in brightness expected from a diffraction-limited storage ring (DLSR). The methods discussed include advanced coherent diffraction techniques and nanoprobe-based real-space imaging using Fresnel zone plates or other diffractive optics whose performance is affected by the degree of coherence. The capabilities of current systems, improvements which can be expected, and some of the important scientific themes which will be impacted are described, with focus on energy materials applications. Potential performance improvements of these techniques based on anticipated DLSR performance are estimated. Several examples of energy sciences research problems which are out of reach of current instrumentation, but which might be solved with the enhanced DLSR performance, are discussed. C1 [Hitchcock, Adam P.] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4M1, Canada. [Toney, Michael F.] SSRL, Menlo Pk, CA 94025 USA. RP Hitchcock, AP (reprint author), McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4M1, Canada. EM aph@mcmaster.ca; mftoney@slac.stanford.edu FU Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX STXM data were acquired at beamline 5.3.2.2 and at beamline 11.0.2 at the ALS, supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231), and at beamline 10ID1 at the CLS, supported by NSERC, CIHR, NRC and the University of Saskatchewan. We thank David Shapiro and Tolek Tyliszczak for their assistance with measuring and analyzing the ptychography data. We thank Marcia West for outstanding ultramicrotomy sample preparation, and the staff scientists at ALS (David Kilcoyne, Tolek Tyliszczak) and CLS (Chithra Karunakaran, Jian Wang) for their support. NR 73 TC 7 Z9 7 U1 6 U2 34 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 EI 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2014 VL 21 BP 1019 EP 1030 DI 10.1107/S1600577514013046 PN 5 PG 12 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA AO9PF UT WOS:000341687000017 PM 25177991 ER PT J AU de Jonge, MD Ryan, CG Jacobsen, CJ AF de Jonge, Martin D. Ryan, Christopher G. Jacobsen, Chris J. TI X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE X-ray fluorescence microscopy; fluorescence tomography; nanotomography; scanning X-ray microscopy; diffraction-limited storage rings ID PHASE-SPACE ANALYSIS; ABSORPTION SPECTROSCOPY; SYNCHROTRON-RADIATION; COMPUTED-TOMOGRAPHY; ZONE PLATES; ELEMENTAL MICROANALYSIS; CYCLOTELLA-MENEGHINIANA; IMAGE-RECONSTRUCTION; ELECTRON MICROSCOPY; SPATIAL-RESOLUTION AB X-ray nanoprobes require coherent illumination to achieve optic-limited resolution, and so will benefit directly from diffraction-limited storage rings. Here, the example of high-resolution X-ray fluorescence tomography is focused on as one of the most voracious demanders of coherent photons, since the detected signal is only a small fraction of the incident flux. Alternative schemes are considered for beam delivery, sample scanning and detectors. One must consider as well the steps before and after the X-ray experiment: sample preparation and examination conditions, and analysis complexity due to minimum dose requirements and self-absorption. By understanding the requirements and opportunities for nanoscale fluorescence tomography, one gains insight into the R&D challenges in optics and instrumentation needed to fully exploit the source advances that diffraction-limited storage rings offer. C1 [de Jonge, Martin D.] Australian Synchrotron, Clayton, Vic 3168, Australia. [Ryan, Christopher G.] CSIRO Earth Sci & Res Engn, Clayton, Vic 3168, Australia. [Jacobsen, Chris J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Jacobsen, Chris J.] Northwestern Univ, Dept Phys, Chem Life Proc Inst, Evanston, IL 60208 USA. [Jacobsen, Chris J.] Northwestern Univ, Chem Life Proc Inst, Evanston, IL 60208 USA. RP de Jonge, MD (reprint author), Australian Synchrotron, 800 Blackburn Rd, Clayton, Vic 3168, Australia. EM martin.dejonge@synchrotron.org.au RI de Jonge, Martin/C-3400-2011; Ryan, Chris/A-6032-2011; Jacobsen, Chris/E-2827-2015 OI Ryan, Chris/0000-0003-2891-3912; Jacobsen, Chris/0000-0001-8562-0353 FU US Department of Energy (DOE) Office of Science [DE-AC02-06CH11357]; US National Institutes of Health [R01 GM-104530]; CSIRO FX We thank Sophie-Charlotte Gleber, Stefan Vogt, Si Chen, Junjing Deng, Gayle Woloschak, Tatjana Paunesku, David Paterson, Daryl Howard, Simon James, Michael Jones and Gary Ruben for helpful discussions, and Gary Ruben for help with Fig. 2. We thank the US Department of Energy (DOE) Office of Science for support of this work under contract DE-AC02-06CH11357 to Argonne National Laboratory, and the US National Institutes of Health for support under grant R01 GM-104530 (CJJ). We thank the Australian Synchrotron (MDdJ), as well as the Commonwealth Science and Industrial Research Organization (CSIRO) for general support as well as for a CSIRO Newton Turner Award (CGR). NR 143 TC 15 Z9 15 U1 3 U2 34 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2014 VL 21 BP 1031 EP 1047 DI 10.1107/S160057751401621X PN 5 PG 17 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA AO9PF UT WOS:000341687000018 PM 25177992 ER PT J AU Rotenberg, E Bostwick, A AF Rotenberg, Eli Bostwick, Aaron TI microARPES and nanoARPES at diffraction-limited light sources: opportunities and performance gains SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE ARPES; nanoARPES; photoemission; space-charge broadening ID ANGLE-RESOLVED PHOTOEMISSION; SINGLE-PARTICLE SPECTRUM; DEGENERATE ELECTRON-GAS; CHEMICAL-VAPOR-DEPOSITION; DOPED GRAPHENE; SPECTROSCOPY; FILMS; BEAMLINE; ELETTRA; GROWTH AB The scientific opportunities for microARPES and nanoARPES techniques are discussed, and the benefits to these techniques at diffraction-limited light sources are presented, in particular the impact on spectromicroscopic ARPES (angle-resolved photoemission spectroscopy) of upgrading the Advanced Light Source to diffraction-limited performance. The most important consideration is whether the space-charge broadening, impacting the energy and momentum resolution, will limit the possible benefits for ARPES. Calculations of energy broadening due to space-charge effects will be presented over a wide range of parameters, and optimum conditions for ARPES will be discussed. The conclusion is that spectromicroscopic ARPES will greatly benefit from the advent of diffraction-limited light sources; space-charge broadening effects will not be a limiting factor. C1 [Rotenberg, Eli; Bostwick, Aaron] EO Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Rotenberg, E (reprint author), EO Lawrence Berkeley Natl Lab, Adv Light Source, MS 6-2100, Berkeley, CA 94720 USA. EM erotenberg@lbl.gov RI Rotenberg, Eli/B-3700-2009 OI Rotenberg, Eli/0000-0002-3979-8844 FU Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. The authors thank S. D. Kevan for critically reading the manuscript. NR 43 TC 2 Z9 2 U1 5 U2 20 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 EI 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2014 VL 21 BP 1048 EP 1056 DI 10.1107/S1600577514015409 PN 5 PG 9 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA AO9PF UT WOS:000341687000019 PM 25177993 ER PT J AU Canestrari, N Chubar, O Reininger, R AF Canestrari, Niccolo Chubar, Oleg Reininger, Ruben TI Partially coherent X-ray wavefront propagation simulations including grazing-incidence focusing optics SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE wavefront propagation; wave optics; Fourier optics; geometrical ray-tracing; grazing-incidence mirror; benchmarking ID FREE-ELECTRON LASER; SYNCHROTRON-RADIATION; BEAMS; CODE AB X-ray beamlines in modern synchrotron radiation sources make extensive use of grazing-incidence reflective optics, in particular Kirkpatrick-Baez elliptical mirror systems. These systems can focus the incoming X-rays down to nanometer-scale spot sizes while maintaining relatively large acceptance apertures and high flux in the focused radiation spots. In low-emittance storage rings and in free-electron lasers such systems are used with partially or even nearly fully coherent X-ray beams and often target diffraction-limited resolution. Therefore, their accurate simulation and modeling has to be performed within the framework of wave optics. Here the implementation and benchmarking of a wave-optics method for the simulation of grazing-incidence mirrors based on the local stationary-phase approximation or, in other words, the local propagation of the radiation electric field along geometrical rays, is described. The proposed method is CPU-efficient and fully compatible with the numerical methods of Fourier optics. It has been implemented in the Synchrotron Radiation Workshop (SRW) computer code and extensively tested against the geometrical ray-tracing code SHADOW. The test simulations have been performed for cases without and with diffraction at mirror apertures, including cases where the grazing-incidence mirrors can be hardly approximated by ideal lenses. Good agreement between the SRW and SHADOW simulation results is observed in the cases without diffraction. The differences between the simulation results obtained by the two codes in diffraction-dominated cases for illumination with fully or partially coherent radiation are analyzed and interpreted. The application of the new method for the simulation of wavefront propagation through a high-resolution X-ray microspectroscopy beamline at the National Synchrotron Light Source II (Brookhaven National Laboratory, USA) is demonstrated. C1 [Canestrari, Niccolo; Chubar, Oleg] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. [Reininger, Ruben] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Canestrari, N (reprint author), Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. EM ncanestrari@bnl.gov FU US DOE [DE-AC02-98CH10886, DE-AC02-06CH11357]; Brookhaven National Laboratory Research Scholar Program [P-1-01957, 8668704]; Advanced Photon Source; European Synchrotron Radiation Facility; University Joseph Fourier in Grenoble, France FX The present work was supported by US DOE, contract No. DE-AC02-98CH10886, Brookhaven National Laboratory Research Scholar Program grant P-1-01957 No. 8668704, US DOE, Contract No. DE-AC02-06CH11357, Advanced Photon Source, and was made in collaboration with the European Synchrotron Radiation Facility and the University Joseph Fourier in Grenoble, France. The authors would like to express special thanks to V. De Andrade (BNL) for his help in simulations for SRX beamline, S. Hulbert (BNL), Q. Shen (BNL), M. S. del Rio (ESRF), K. Sawhney (DLS), X. Shi (APS), L. Samoylova (E-XFEL) and H. Sinn (E-XFEL) for support and fruitful discussions. NR 23 TC 8 Z9 8 U1 4 U2 12 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2014 VL 21 BP 1110 EP 1121 DI 10.1107/S1600577514013058 PN 5 PG 12 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA AO9PF UT WOS:000341687000026 PM 25178000 ER PT J AU Manceau, A Marcus, M Lenoir, T AF Manceau, Alain Marcus, Matthew Lenoir, Thomas TI Estimating the number of pure chemical components in a mixture by X-ray absorption spectroscopy SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE XANES; EXAFS; PCA; factor analysis; F-test ID TRANSFORMATION FACTOR-ANALYSIS; MULTIVARIATE CURVE RESOLUTION; CRYSTAL-STRUCTURE REFINEMENT; ALKALINE AQUEOUS-SOLUTION; EXAFS SPECTROSCOPY; ZN SPECIATION; QUANTITATIVE SPECIATION; XANES SPECTROSCOPY; CONTAMINATED SOIL; COMPLEX-FORMATION AB Principal component analysis (PCA) is a multivariate data analysis approach commonly used in X-ray absorption spectroscopy to estimate the number of pure compounds in multicomponent mixtures. This approach seeks to describe a large number of multicomponent spectra as weighted sums of a smaller number of component spectra. These component spectra are in turn considered to be linear combinations of the spectra from the actual species present in the system from which the experimental spectra were taken. The dimension of the experimental dataset is given by the number of meaningful abstract components, as estimated by the cascade or variance of the eigenvalues (EVs), the factor indicator function (IND), or the F-test on reduced EVs. It is shown on synthetic and real spectral mixtures that the performance of the IND and F-test critically depends on the amount of noise in the data, and may result in considerable underestimation or overestimation of the number of components even for a signal-to-noise (s/n) ratio of the order of 80 (sigma = 20) in a XANES dataset. For a given s/n ratio, the accuracy of the component recovery from a random mixture depends on the size of the dataset and number of components, which is not known in advance, and deteriorates for larger datasets because the analysis picks up more noise components. The scree plot of the EVs for the components yields one or two values close to the significant number of components, but the result can be ambiguous and its uncertainty is unknown. A new estimator, NSS-stat, which includes the experimental error to XANES data analysis, is introduced and tested. It is shown that NSS-stat produces superior results compared with the three traditional forms of PCA-based component-number estimation. A graphical user-friendly interface for the calculation of EVs, IND, F-test and NSS-stat from a XANES dataset has been developed under LabVIEW for Windows and is supplied in the supporting information. Its possible application to EXAFS data is discussed, and several XANES and EXAFS datasets are also included for download. C1 [Manceau, Alain] Univ Grenoble Alpes, ISTerre, F-38000 Grenoble, France. [Manceau, Alain] CNRS, F-38000 Grenoble, France. [Marcus, Matthew] Univ Calif Berkeley, Adv Light Source, Berkeley, CA 94720 USA. [Lenoir, Thomas] IFSTTAR, F-44344 Bouguenais, France. RP Manceau, A (reprint author), Univ Grenoble Alpes, ISTerre, F-38000 Grenoble, France. EM manceau@ujf-grenoble.fr OI Lenoir, Thomas/0000-0003-4539-9417 FU Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX We thank Phoebe J. Lam for sharing her Fe-XANES datasets. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 61 TC 6 Z9 6 U1 4 U2 36 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 EI 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2014 VL 21 BP 1140 EP 1147 DI 10.1107/S1600577514013526 PN 5 PG 8 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA AO9PF UT WOS:000341687000030 PM 25178004 ER PT J AU Muir, RD Pogranichney, NR Muir, JL Sullivan, SZ Battaile, KP Mulichak, AM Toth, SJ Keefe, LJ Simpson, GJ AF Muir, Ryan D. Pogranichney, Nicholas R. Muir, J. Lewis Sullivan, Shane Z. Battaile, Kevin P. Mulichak, Anne M. Toth, Scott J. Keefe, Lisa J. Simpson, Garth J. TI Linear fitting of multi-threshold counting data with a pixel-array detector for spectral X-ray imaging SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE energy dispersive; spectroscopic imaging; multi-wavelength; fractional counting ID FRACTIONAL COUNTS; READOUT CHIP; PILATUS DETECTORS; SILICON; TIME; DIFFRACTION; WORKING; MODE AB Experiments and modeling are described to perform spectral fitting of multi-threshold counting measurements on a pixel-array detector. An analytical model was developed for describing the probability density function of detected voltage in X-ray photon-counting arrays, utilizing fractional photon counting to account for edge/corner effects from voltage plumes that spread across multiple pixels. Each pixel was mathematically calibrated by fitting the detected voltage distributions to the model at both 13.5 keV and 15.0 keV X-ray energies. The model and established pixel responses were then exploited to statistically recover images of X-ray intensity as a function of X-ray energy in a simulated multi-wavelength and multi-counting threshold experiment. C1 [Muir, Ryan D.; Pogranichney, Nicholas R.; Sullivan, Shane Z.; Toth, Scott J.; Simpson, Garth J.] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. [Muir, J. Lewis; Battaile, Kevin P.; Mulichak, Anne M.; Keefe, Lisa J.] Argonne Natl Lab, Hauptman Woodward Med Res Inst, IMCA CAT, Argonne, IL 60439 USA. RP Simpson, GJ (reprint author), Purdue Univ, Dept Chem, 560 Oval Dr, W Lafayette, IN 47907 USA. EM gsimpson@purdue.edu OI Battaile, Kevin/0000-0003-0833-3259 FU NIH from the NIGMS [R01GM-103401, R01GM-103910]; National Institute of Pharmaceutical Technology and Education (NIPTE); Hauptman-Woodward Medical Research Institute; US Department of Energy, Office of Biological and Environmental Research [DE-AC02-06CH11357] FX We would like to thank Stefan Brandstetter, Clemens Schulze-Briese, Peter Trueb and Tilman Donath of Dectris for their help and interest in this project. RDM, NRP, SZS and GJS gratefully acknowledge support from the NIH grant numbers R01GM-103401 and R01GM-103910 from the NIGMS. SJT gratefully acknowledges support from the National Institute of Pharmaceutical Technology and Education (NIPTE). IMCA-CAT is supported by the companies of the Industrial Macromolecular Crystallography Association through a contract with Hauptman-Woodward Medical Research Institute. The Structural Biology Center at Argonne is operated by UChicago Argonne, LLC, for the US Department of Energy, Office of Biological and Environmental Research under contract DE-AC02-06CH11357. NR 29 TC 1 Z9 1 U1 0 U2 10 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 EI 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2014 VL 21 BP 1180 EP 1187 DI 10.1107/S1600577514014167 PN 5 PG 8 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA AO9PF UT WOS:000341687000036 PM 25178010 ER PT J AU Gursoy, D De Carlo, F Xiao, XH Jacobsen, C AF Guersoy, Doga De Carlo, Francesco Xiao, Xianghui Jacobsen, Chris TI TomoPy: a framework for the analysis of synchrotron tomographic data SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE tomography; X-ray imaging; phase retrieval ID RECONSTRUCTION; PHASE; MICROSCOPY; IMAGE AB Analysis of tomographic datasets at synchrotron light sources (including X-ray transmission tomography, X-ray fluorescence microscopy and X-ray diffraction tomography) is becoming progressively more challenging due to the increasing data acquisition rates that new technologies in X-ray sources and detectors enable. The next generation of synchrotron facilities that are currently under design or construction throughout the world will provide diffraction-limited X-ray sources and are expected to boost the current data rates by several orders of magnitude, stressing the need for the development and integration of efficient analysis tools. Here an attempt to provide a collaborative framework for the analysis of synchrotron tomographic data that has the potential to unify the effort of different facilities and beamlines performing similar tasks is described in detail. The proposed Python-based framework is open-source, platform-and data-format-independent, has multiprocessing capability and supports procedural programming that many researchers prefer. This collaborative platform could affect all major synchrotron facilities where new effort is now dedicated to developing new tools that can be deployed at the facility for real-time processing, as well as distributed to users for off-site data processing. C1 [Guersoy, Doga; De Carlo, Francesco; Xiao, Xianghui; Jacobsen, Chris] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Gursoy, D (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 South Cass Ave, Argonne, IL 60439 USA. EM dgursoy@aps.anl.gov RI Jacobsen, Chris/E-2827-2015 OI Jacobsen, Chris/0000-0001-8562-0353 FU US Department of Energy [DE-AC02-06CH11357] FX The authors would like to thank Waruntorn (Jane) Kanitpanyacharoen and Hans-Rudolf Wenk for stimulating discussions leading to the round-robin project (Kanitpanyacharoen et al., 2013) and for sharing the shale rock sample data used in Figs. 2(b), 2(d), 5 and 7. The authors would also like to thank Richard Owen Prum and Todd Alan Harvey for sharing the bird feather data used in Figs. 2(a) and 2(c). This work is partially supported by the US Department of Energy under Contract No. DE-AC02-06CH11357. NR 17 TC 50 Z9 50 U1 5 U2 31 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2014 VL 21 BP 1188 EP 1193 DI 10.1107/S1600577514013939 PN 5 PG 6 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA AO9PF UT WOS:000341687000037 PM 25178011 ER PT J AU Reininger, R Dufresne, EM Borland, M Beno, MA Young, L Evans, PG AF Reininger, R. Dufresne, E. M. Borland, M. Beno, M. A. Young, L. Evans, P. G. TI A short-pulse X-ray beamline for spectroscopy and scattering SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE picosecond X-ray pulses; time-resolved spectroscopy and scattering; X-ray beamline ID FREE-ELECTRON LASER AB Experimental facilities for picosecond X-ray spectroscopy and scattering based on RF deflection of stored electron beams face a series of optical design challenges. Beamlines designed around such a source enable time-resolved diffraction, spectroscopy and imaging studies in chemical, condensed matter and nanoscale materials science using few-picosecond-duration pulses possessing the stability, high repetition rate and spectral range of synchrotron light sources. The RF-deflected chirped electron beam produces a vertical fan of undulator radiation with a correlation between angle and time. The duration of the X-ray pulses delivered to experiments is selected by a vertical aperture. In addition to the radiation at the fundamental photon energy in the central cone, the undulator also emits the same photon energy in concentric rings around the central cone, which can potentially compromise the time resolution of experiments. A detailed analysis of this issue is presented for the proposed SPXSS beamline for the Advanced Photon Source. An optical design that minimizes the effects of off-axis radiation in lengthening the duration of pulses and provides variable X-ray pulse duration between 2.4 and 16 ps is presented. C1 [Reininger, R.; Dufresne, E. M.; Borland, M.; Beno, M. A.; Young, L.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Evans, P. G.] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. RP Reininger, R (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM rreininger@aps.anl.gov RI Evans, Paul/A-9260-2009 OI Evans, Paul/0000-0003-0421-6792 FU US DOE [DE-AC02-06CH11357]; US Department of Energy (DOE) Office of Science, Division of Chemical, Geological and Biological Sciences [DEAC02-06CH11357]; US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-10ER46147] FX The Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. LY acknowledges support from the US Department of Energy (DOE) Office of Science, Division of Chemical, Geological and Biological Sciences under Contract No. DEAC02-06CH11357. PE acknowledges support from the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Grant No. DE-FG02-10ER46147. We thank Mark Erdmann and Joshua Downey for their contribution to the beamline layout. NR 16 TC 0 Z9 0 U1 1 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 EI 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2014 VL 21 BP 1194 EP 1199 DI 10.1107/S1600577514012302 PN 5 PG 6 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA AO9PF UT WOS:000341687000038 PM 25178012 ER PT J AU Lerotic, M Mak, R Wirick, S Meirer, F Jacobsen, C AF Lerotic, Mirna Mak, Rachel Wirick, Sue Meirer, Florian Jacobsen, Chris TI MANTiS: a program for the analysis of X-ray spectromicroscopy data SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Software Review DE X-ray microscopy; X-ray spectromicroscopy; XANES; NEXAFS ID CALLOVO-OXFORDIAN ARGILLITE; CLUSTER-ANALYSIS; ELECTRON TOMOGRAPHY; CHEMICAL CONTRAST; SPECTROSCOPY; MICROSCOPY; XANES; IMAGE; SOIL; SPECIMENS AB Spectromicroscopy combines spectral data with microscopy, where typical datasets consist of a stack of images taken across a range of energies over a microscopic region of the sample. Manual analysis of these complex datasets can be time-consuming, and can miss the important traits in the data. With this in mind we have developed MANTiS, an open-source tool developed in Python for spectromicroscopy data analysis. The backbone of the package involves principal component analysis and cluster analysis, classifying pixels according to spectral similarity. Our goal is to provide a data analysis tool which is comprehensive, yet intuitive and easy to use. MANTiS is designed to lead the user through the analysis using story boards that describe each step in detail so that both experienced users and beginners are able to analyze their own data independently. These capabilities are illustrated through analysis of hard X-ray imaging of iron in Roman ceramics, and soft X-ray imaging of a malaria-infected red blood cell. C1 [Lerotic, Mirna] 2nd Look Consulting, Hong Kong, Hong Kong, Peoples R China. [Mak, Rachel; Jacobsen, Chris] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Wirick, Sue] Univ Chicago, Ctr Adv Radiat Sources, Chicago, IL 60637 USA. [Meirer, Florian] Univ Utrecht, NL-3584 CG Utrecht, Netherlands. [Jacobsen, Chris] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Jacobsen, Chris] Northwestern Univ, Chem Life Proc Inst, Evanston, IL 60208 USA. RP Lerotic, M (reprint author), 2nd Look Consulting, Room 1702,17-F,Tung Hip Commercial Bldg, Hong Kong, Hong Kong, Peoples R China. EM mirna@2ndlookconsulting.com RI Jacobsen, Chris/E-2827-2015; Institute (DINS), Debye/G-7730-2014; Meirer, Florian/H-7642-2016 OI Jacobsen, Chris/0000-0001-8562-0353; Meirer, Florian/0000-0001-5581-5790 FU US Department of Energy (DOE) Office of Science [DE-AC02-06CH11357] FX Initial development of MANTiS was supported by the US Department of Energy (DOE) Office of Science, under contract DE-AC02-06CH11357 to Argonne National Laboratory. The authors would like to thank Philippe Sciau (University of Toulouse) and Joy C. Andrews (Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory) for providing the Roman ceramics data described in 3.1, as well as Eric Hanssen (University of Melbourne) for the malaria data described in 3.2. NR 41 TC 12 Z9 12 U1 0 U2 16 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2014 VL 21 BP 1206 EP 1212 DI 10.1107/S1600577514013964 PN 5 PG 7 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA AO9PF UT WOS:000341687000040 PM 25178014 ER PT J AU Kirchhofer, R Diercks, DR Gorman, BP Ihlefeld, JF Kotula, PG Shelton, CT Brennecka, GL AF Kirchhofer, Rita Diercks, David R. Gorman, Brian P. Ihlefeld, Jon F. Kotula, Paul G. Shelton, Christopher T. Brennecka, Geoff L. TI Quantifying Compositional Homogeneity in Pb(Zr,Ti)O-3 Using Atom Probe Tomography SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID ASSISTED FIELD EVAPORATION; LEAD-ZIRCONATE-TITANATE; THIN-FILMS; PIEZOELECTRIC CERAMICS; SPATIAL-RESOLUTION; METALLIC GLASSES; PULSED-LASER; FERROELECTRICS; RECONSTRUCTION; OXIDE AB Atom probe tomography (APT) is a powerful materials characterization technique capable of ppm chemical resolution and near atomic scale spatial resolution. However, owing to a number of factors, the technique has not been widely applied to insulating materials and even less to complex oxides. In this study, we outline the methodology necessary to obtain high-quality results on a technologically relevant complex oxide Pb(Zr,Ti)O-3 (or PZT) using laser-assisted APT on both bulk and thin film specimens. We show how, with optimized and well-controlled conditions, APT complements conventional techniques such as STEM-EDS. The correlative information can be used to obtain the nanoscale 3-D chemical information and investigate the nanoscale distribution of cations. Using nearest-neighbor cluster analysis routines, 5-10nm segregation of B-site cations was detected in bulk sintered PZT 53/47 from chemically prepared powders. No statistically significant segregation of B-site cations was observed in thin film specimens. This work opens new avenues toward understanding the process-structure properties in complex materials at length scales heretofore unachievable. C1 [Kirchhofer, Rita; Diercks, David R.; Gorman, Brian P.] Colorado Sch Mines, Golden, CO 80401 USA. [Ihlefeld, Jon F.; Kotula, Paul G.; Shelton, Christopher T.; Brennecka, Geoff L.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Shelton, Christopher T.] N Carolina State Univ, Raleigh, NC 27695 USA. RP Gorman, BP (reprint author), Colorado Sch Mines, Golden, CO 80401 USA. EM bgorman@mines.edu RI Kotula, Paul/A-7657-2011; Brennecka, Geoff/J-9367-2012 OI Kotula, Paul/0000-0002-7521-2759; Brennecka, Geoff/0000-0002-4476-7655 FU NSF by MRI [1040456]; National Institute for NanoEngineering (NINE); Sandia Laboratory Directed Research and Development Program; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work is funded through NSF by MRI Number 1040456. Special thanks to N. A. Sanford from NIST-Boulder for aiding in the specimen analysis and to M. A. Blea-Kirby for assistance with sample fabrication. A portion of this work was funded under the National Institute for NanoEngineering (NINE) and the Sandia Laboratory Directed Research and Development Program. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 74 TC 5 Z9 5 U1 3 U2 49 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD SEP PY 2014 VL 97 IS 9 BP 2677 EP 2697 DI 10.1111/jace.13135 PG 21 WC Materials Science, Ceramics SC Materials Science GA AP1JX UT WOS:000341826500001 ER PT J AU Dwivedi, G Viswanathan, V Sampath, S Shyam, A Lara-Curzio, E AF Dwivedi, Gopal Viswanathan, Vaishak Sampath, Sanjay Shyam, Amit Lara-Curzio, Edgar TI Fracture Toughness of Plasma-Sprayed Thermal Barrier Ceramics: Influence of Processing, Microstructure, and Thermal Aging SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID YTTRIA-STABILIZED ZIRCONIA; ELEVATED-TEMPERATURES; MECHANICAL-PROPERTIES; PROPERTY CORRELATIONS; ELASTIC PROPERTIES; HEAT-TREATMENT; YSZ COATINGS; CONDUCTIVITY; DELAMINATION; BEHAVIOR AB Fracture toughness of thermal barrier coatings (TBCs) has gained significant interest in recent years as one of the dominant design parameters dictating selection of materials and assessing durability. Much progress has been made in characterizing and understanding fracture toughness of relevant TBC compositions in their bulk form, but it is also apparent that the toughness is significantly affected by process-induced microstructural defects. In this investigation, a systematic study of the influence of coating microstructure on the fracture toughness of atmospheric plasma-sprayed TBCs has been carried out. Yttria partially stabilized zirconia (YSZ) coatings were fabricated under different process conditions inducing different levels of porosity and defect densities. Fracture toughness was measured on free-standing coatings in as-processed and thermally aged conditions using the double torsion technique. Results indicate significant variance in fracture toughness among coatings with different microstructures including changes induced by thermal aging. Comparative studies were also conducted on an alternative composition, Gd2Zr2O7 which, as anticipated, shows significantly lower fracture toughness compared to YSZ. The results not only point toward a need for process and microstructure optimization for enhancing TBC performance, but also a framework for establishing performance metrics for promising new TBC compositions. C1 [Dwivedi, Gopal; Viswanathan, Vaishak; Sampath, Sanjay] SUNY Stony Brook, Ctr Thermal Spray Res, Stony Brook, NY 11790 USA. [Shyam, Amit; Lara-Curzio, Edgar] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Sampath, S (reprint author), SUNY Stony Brook, Ctr Thermal Spray Res, Stony Brook, NY 11790 USA. EM sanjay.sampath@stonybrook.edu OI Shyam, Amit/0000-0002-6722-4709 FU National Energy Technology Laboratory of the U.S. Department of Energy [DE-FE0004771]; US Department of Energy, Office of Energy Efficiency, Renewable Energy and Vehicle Technologies Program [2010-054]; industrial Consortium for Thermal Spray Technology at Stony Brook FX This research was supported by the National Energy Technology Laboratory of the U.S. Department of Energy (Award: DE-FE0004771). We thank Howard Waller, Saint-Gobain USA., for providing Gd2Zr2O7 and YSZ powders. The research work through the Oak Ridge National Laboratory's High Temperature Materials Laboratory User Program (proposal number 2010-054) was sponsored by the US Department of Energy, Office of Energy Efficiency, Renewable Energy and Vehicle Technologies Program. The financial support through the industrial Consortium for Thermal Spray Technology at Stony Brook is gratefully acknowledged. We are grateful to Stony Brook Adjunct Professor Curt Johnson, GE(Rtd) and Dr. Sebastien Drypondt (ORNL) for detailed critic of the subject matter and manuscript. NR 47 TC 7 Z9 7 U1 7 U2 57 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD SEP PY 2014 VL 97 IS 9 BP 2736 EP 2744 DI 10.1111/jace.13021 PG 9 WC Materials Science, Ceramics SC Materials Science GA AP1JX UT WOS:000341826500010 ER PT J AU Qin, HL Sutter, P Zhou, GW AF Qin, Hailang Sutter, Peter Zhou, Guangwen TI The Crystallization of Amorphous Aluminum Oxide Thin Films Grown on NiAl(100) SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID THERMAL-OXIDATION; NIAL(001); SURFACE; AL2O3; AL2O3/NIAL(100); CO; NANOCLUSTERS; DIFFRACTION AB The crystallization of amorphous aluminum oxide thin films formed on NiAl(100) has been investigated using in-situ low energy electron microscopy, low energy electron diffraction, and scanning tunneling microscopy. It is found that both the annealing temperature and annealing time play crucial roles in the crystallization process. A critical temperature range of 450 degrees C-500 degrees C exists for the crystallization to occur within a reasonably short annealing time. The initially uniform oxide film first becomes roughened, followed by coalescing into amorphous-like oxide islands; further annealing results in the conversion of the amorphous oxide islands into crystalline oxide stripes. The density of the crystalline oxide stripes increases concomitantly with the decrease in the density of the amorphous oxide islands for annealing at a higher temperature or longer time. C1 [Qin, Hailang; Zhou, Guangwen] SUNY Binghamton, Dept Mech Engn, Binghamton, NY 13902 USA. [Qin, Hailang; Zhou, Guangwen] SUNY Binghamton, Multidisciplinary Program Mat Sci & Engn, Binghamton, NY 13902 USA. [Sutter, Peter] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Zhou, GW (reprint author), SUNY Binghamton, Dept Mech Engn, Binghamton, NY 13902 USA. EM gzhou@binghamton.edu FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-09ER46600]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under award no. DE-FG02-09ER46600. Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract no. DE-AC02-98CH10886. NR 26 TC 3 Z9 3 U1 5 U2 21 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD SEP PY 2014 VL 97 IS 9 BP 2762 EP 2769 DI 10.1111/jace.13036 PG 8 WC Materials Science, Ceramics SC Materials Science GA AP1JX UT WOS:000341826500013 ER PT J AU Mhin, S Nittala, K Lee, J Robinson, DS Ihlefeld, JF Brennecka, GL Sanchez, LM Polcawich, RG Jones, JL AF Mhin, Sungwook Nittala, Krishna Lee, Jinhyung Robinson, Douglas S. Ihlefeld, Jon F. Brennecka, Geoff L. Sanchez, Luz M. Polcawich, Ronald G. Jones, Jacob L. TI Phase and Texture Evolution in Chemically Derived PZT Thin Films on Pt Substrates SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID LEAD-ZIRCONATE-TITANATE; CRYSTALLIZATION; TRANSITION; ACTUATORS; PBTIO3; LAYERS; MEMS AB The crystallization of lead zirconate titanate (PZT) thin films was evaluated on two different platinum-coated Si substrates. One substrate consisted of a Pt coating on a Ti adhesion layer, whereas the other consisted of a Pt coating on a TiO2 adhesion layer. The Pt deposited on TiO2 exhibited a higher degree of preferred orientation than the Pt deposited on Ti (as measured by the Full Width at Half Maximum of the 111 peak about the sample normal). PZT thin films with a nominal Zr/Ti ratio of 52/48 were deposited on the substrates using the inverted mixing order (IMO) route. Phase and texture evolution of the thin films were monitored during crystallization using in situ X-ray diffraction at a synchrotron source. The intensity of the Pt3Pb phase indicated that deposition on a highly oriented Pt/TiO2 substrate resulted in less diffusion of Pb into the substrate relative to films deposited on Pt/Ti. There was also no evidence of the pyrochlore phase influencing texture evolution. The results suggest that PZT nucleates directly on Pt, which explains the observation of a more highly oriented 111 texture of PZT on the Pt/TiO2 substrate than on the Pt/Ti substrate. C1 [Mhin, Sungwook; Nittala, Krishna; Lee, Jinhyung] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. [Robinson, Douglas S.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Ihlefeld, Jon F.; Brennecka, Geoff L.] Sandia Natl Labs, Elect Opt & Nano Mat Dept, Albuquerque, NM 87185 USA. [Sanchez, Luz M.; Polcawich, Ronald G.] US Army Res Lab, RF MEMS & Mm Scale Robot, Adelphi, MD 20783 USA. [Jones, Jacob L.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. RP Jones, JL (reprint author), N Carolina State Univ, Dept Mat Sci & Engn, Box 7907, Raleigh, NC 27695 USA. EM Jacobjones@ncsu.edu RI Brennecka, Geoff/J-9367-2012 OI Brennecka, Geoff/0000-0002-4476-7655 FU NSF [DMR-1207293]; U.S. Department of the Army [W911NF-09-1-0435]; National Institute for NanoEngineering (NINE) under the Sandia Laboratory Directed Research and Development Program; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; U.S. DOE [DE-AC02-06CH11357] FX Portions of this work were supported by the NSF under DMR-1207293, the U.S. Department of the Army under W911NF-09-1-0435, and the National Institute for NanoEngineering (NINE) under the Sandia Laboratory Directed Research and Development Program. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract no. DE-AC02-06CH11357. We would like to thank Dr. Jennifer Forrester and Jason Nikkel for their critical review of the manuscript and contributions to figure preparation. The authors would like to thank Dr. Daniel Potrepka and Dr. Joel Martin of the US Army Research Laboratory for their contributions in preparing the Pt/TiO2-coated substrates. NR 26 TC 6 Z9 6 U1 1 U2 29 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD SEP PY 2014 VL 97 IS 9 BP 2973 EP 2979 DI 10.1111/jace.13007 PG 7 WC Materials Science, Ceramics SC Materials Science GA AP1JX UT WOS:000341826500042 ER PT J AU Honrubia, JJ Fernandez, JC Hegelich, BM Murakami, M Enriquez, CD AF Honrubia, J. J. Fernandez, J. C. Hegelich, B. M. Murakami, M. Enriquez, C. D. TI Fast ignition driven by quasi-monoenergetic ions: Optimal ion type and reduction of ignition energies with an ion beam array SO LASER AND PARTICLE BEAMS LA English DT Article DE Inertial Fusion Energy; Ion fast ignition; Laser-driven ion beams ID PROTON-BEAMS; FUEL AB Fast ignition of inertial fusion targets driven by quasi-monoenergetic ion beams is investigated by means of numerical simulations. Light and intermediate ions such as lithium, carbon, aluminum and vanadium have been considered. Simulations show that the minimum ignition energies of an ideal configuration of compressed Deuterium-Tritium are almost independent on the ion atomic number. However, they are obtained for increasing ion energies, which scale, approximately, as Z(2), where Z is the ion atomic number. Assuming that the ion beam can be focused into 10 mu m spots, a new irradiation scheme is proposed to reduce the ignition energies. The combination of intermediate Z ions, such as 5.5 GeV vanadium, and the new irradiation scheme allows a reduction of the number of ions required for ignition by, roughly, three orders of magnitude when compared with the standard proton fast ignition scheme. C1 [Honrubia, J. J.; Enriquez, C. D.] Univ Politecn Madrid, ETSI Aeronaut, E-28006 Madrid, Spain. [Fernandez, J. C.; Hegelich, B. M.] Los Alamos Natl Lab, Los Alamos, NM USA. [Murakami, M.] Osaka Univ, Inst Laser Engn, Osaka, Japan. RP Honrubia, JJ (reprint author), Univ Politecn Madrid, ETSI Aeronaut, E-28006 Madrid, Spain. EM Javier.honrubia@upm.es RI murakami, masakatsu/I-2309-2015; Fernandez, Juan/H-3268-2011 OI murakami, masakatsu/0000-0003-2220-7638; Fernandez, Juan/0000-0002-1438-1815 FU Spanish Ministry of Education and Research, HiPER preparatory project [ENE2009-1168]; LDRD program at Los Alamos National Laboratory; US DOE FX This work was partially supported by the research grant ENE2009-1168 of the Spanish Ministry of Education and Research, was undertaken as part of the HiPER preparatory project, and used resources and technical assistance from the CeSViMa HPC Center of the Polytechnic University of Madrid. This work was also partially supported by the LDRD program at Los Alamos National Laboratory, and by the US DOE. NR 52 TC 6 Z9 6 U1 1 U2 14 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0263-0346 EI 1469-803X J9 LASER PART BEAMS JI Laser Part. Beams PD SEP PY 2014 VL 32 IS 3 BP 419 EP 427 DI 10.1017/S0263034614000305 PG 9 WC Physics, Applied SC Physics GA AO9SG UT WOS:000341696400011 ER PT J AU Foster, ME Zhang, BA Murtagh, D Liu, Y Sfeir, MY Wong, BM Azoulay, JD AF Foster, Michael E. Zhang, Benjamin A. Murtagh, Dustin Liu, Yi Sfeir, Matthew Y. Wong, Bryan M. Azoulay, Jason D. TI Solution-Processable Donor-Acceptor Polymers with Modular Electronic Properties and Very Narrow Bandgaps SO MACROMOLECULAR RAPID COMMUNICATIONS LA English DT Article DE density functional calculations; donor-acceptor systems; polymers; polymerization; semiconductors ID SOLAR-CELL APPLICATIONS; PI-CONJUGATED SYSTEMS; OPTICAL-PROPERTIES; AROMATIC-DONOR; GAP; DESIGN; TRANSISTORS; UNITS; POLYISOTHIANAPHTHENE; POLY(THIOPHENES) AB Bridgehead imine-substituted cyclopentadithiophene structural units, in combination with highly electronegative acceptors that exhibit progressively delocalized -systems, afford donor-acceptor (DA) conjugated polymers with broad absorption profiles that span technologically relevant wavelength () ranges from 0.7 < < 3.2 m. A joint theoretical and experimental study demonstrates that the presence of the cross-conjugated substituent at the donor bridgehead position results in the capability to fine-tune structural and electronic properties so as to achieve very narrow optical bandgaps (E-g(opt) < 0.5 eV). This strategy affords modular DA copolymers with broad- and long-wavelength light absorption in the infrared and materials with some of the narrowest bandgaps reported to date. C1 [Foster, Michael E.; Zhang, Benjamin A.; Murtagh, Dustin; Azoulay, Jason D.] Sandia Natl Labs, Dept Chem Mat, Livermore, CA 94551 USA. [Liu, Yi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Sfeir, Matthew Y.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Wong, Bryan M.] Univ Calif Riverside, Dept Chem & Environm Engn & Mat Sci & Engn, Riverside, CA 92521 USA. RP Azoulay, JD (reprint author), Sandia Natl Labs, Dept Chem Mat, Livermore, CA 94551 USA. EM jdazoulay@gmail.com RI Liu, yi/A-3384-2008; Wong, Bryan/B-1663-2009; Zhang, Benjamin/P-7571-2015; OI Liu, yi/0000-0002-3954-6102; Wong, Bryan/0000-0002-3477-8043; Zhang, Benjamin/0000-0001-8840-367X; Sfeir, Matthew/0000-0001-5619-5722 FU United States Department of Energy [DE-AC04-94AL85000]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; US Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX The authors acknowledge the following funding sources: Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 77 TC 10 Z9 10 U1 0 U2 31 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1022-1336 EI 1521-3927 J9 MACROMOL RAPID COMM JI Macromol. Rapid Commun. PD SEP PY 2014 VL 35 IS 17 BP 1516 EP 1521 DI 10.1002/marc.201400228 PG 6 WC Polymer Science SC Polymer Science GA AO9OM UT WOS:000341685100007 PM 24979470 ER PT J AU Arellano, DE Goodman, DA Howlette, T Kroelinger, CD Law, M Phillips, D Jones, J Brantley, MD Fitzgerald, M AF Arellano, Danielle E. Goodman, David A. Howlette, Travis Kroelinger, Charlan D. Law, Mark Phillips, Donna Jones, Jessica Brantley, Mary D. Fitzgerald, Maureen TI Evaluation of the 2012 18th Maternal and Child Health (MCH) Epidemiology and 22nd CityMatCH MCH Urban Leadership Conference: Six Month Impact on Science, Program, and Policy SO MATERNAL AND CHILD HEALTH JOURNAL LA English DT Article DE MCH; Capacity building; Impact assessment; Conference evaluation AB The 18th Maternal and Child Health (MCH) Epidemiology and 22nd CityMatCH MCH Urban Leadership Conference took place in December 2012, covering MCH science, program, and policy issues. Assessing the impact of the Conference on attendees' work 6 months post-Conference provides information critical to understanding the impact and the use of new partnerships, knowledge, and skills gained during the Conference. Evaluation assessments, which included collection of quantitative and qualitative data, were administered at two time points: at Conference registration and 6 months post-Conference. The evaluation files were merged using computer IP address, linking responses from each assessment. Percentages of attendees reporting Conference impacts were calculated from quantitative data, and common themes and supporting examples were identified from qualitative data. Online registration was completed by 650 individuals. Of registrants, 30 % responded to the 6 month post-Conference assessment. Between registration and 6 month post-Conference evaluation, the distribution of respondents did not significantly differ by organizational affiliation. In the 6 months following the Conference, 65 % of respondents reported pursuing a networking interaction; 96 % shared knowledge from the Conference with co-workers and others in their agency; and 74 % utilized knowledge from the Conference to translate data into public health action. The Conference produced far-reaching impacts among Conference attendees. The Conference served as a platform for networking, knowledge sharing, and attaining skills that advance the work of attendees, with the potential of impacting organizational and workforce capacity. Increasing capacity could improve MCH programs, policies, and services, ultimately impacting the health of women, infants, and children. C1 [Arellano, Danielle E.; Goodman, David A.; Kroelinger, Charlan D.; Phillips, Donna; Brantley, Mary D.] Ctr Dis Control & Prevent, Div Reprod Hlth, Natl Ctr Chron Dis Prevent & Hlth Promot, Atlanta, GA USA. [Arellano, Danielle E.; Howlette, Travis] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Arellano, Danielle E.] Ctr Dis Control & Prevent, Div Reprod Hlth, Natl Ctr Chron Dis Prevent & Hlth Promot, Chamblee, GA 30341 USA. [Law, Mark; Fitzgerald, Maureen] Univ Nebraska Med Ctr, CityMatCH, Omaha, NE USA. [Jones, Jessica] US Hlth Resources & Serv Adm, Maternal & Child Hlth Bur, Washington, DC USA. RP Arellano, DE (reprint author), Ctr Dis Control & Prevent, Div Reprod Hlth, Natl Ctr Chron Dis Prevent & Hlth Promot, 4770 Buford Hwy NE,MS F-74, Chamblee, GA 30341 USA. EM hiz6@cdc.gov OI Law, Mark/0000-0001-5938-2785 FU Intramural CDC HHS [CC999999] NR 9 TC 1 Z9 1 U1 1 U2 2 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1092-7875 EI 1573-6628 J9 MATERN CHILD HLTH J JI Matern. Child Health J. PD SEP PY 2014 VL 18 IS 7 BP 1565 EP 1571 DI 10.1007/s10995-014-1585-x PG 7 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA AO9RM UT WOS:000341693900004 PM 25107597 ER PT J AU Saleh, R Robinson, ES Tkacik, DS Ahern, AT Liu, S Aiken, AC Sullivan, RC Presto, AA Dubey, MK Yokelson, RJ Donahue, NM Robinson, AL AF Saleh, Rawad Robinson, Ellis S. Tkacik, Daniel S. Ahern, Adam T. Liu, Shang Aiken, Allison C. Sullivan, Ryan C. Presto, Albert A. Dubey, Manvendra K. Yokelson, Robert J. Donahue, Neil M. Robinson, Allen L. TI Brownness of organics in aerosols from biomass burning linked to their black carbon content SO NATURE GEOSCIENCE LA English DT Article ID LIGHT-ABSORPTION; MIXING STATE; EMISSIONS; COMBUSTION; PARTICLES; MODEL AB Atmospheric particulate matter plays an important role in the Earth's radiative balance. Over the past two decades, it has been established that a portion of particulate matter, black carbon, absorbs significant amounts of light and exerts a warming effect rivalling that of anthropogenic carbon dioxide(1,2). Most climate models treat black carbon as the sole light-absorbing carbonaceous particulate. However, some organic aerosols, dubbed brown carbon and mainly associated with biomass burning emissions(3-6), also absorbs light(7). Unlike black carbon, whose light absorption properties are well understood(8), brown carbon comprises a wide range of poorly characterized compounds that exhibit highly variable absorptivities, with reported values spanning two orders of magnitude(3-6,9,10). Here we present smog chamber experiments to characterize the effective absorptivity of organic aerosol from biomass burning under a range of conditions. We show that brown carbon in emissions from biomass burning is associated mostly with organic compounds of extremely low volatility(11). In addition, we find that the effective absorptivity of organic aerosol in biomass burning emissions can be parameterized as a function of the ratio of black carbon to organic aerosol, indicating that aerosol absorptivity depends largely on burn conditions, not fuel type. We conclude that brown carbon from biomass burning can be an important factor in aerosol radiative forcing. C1 [Saleh, Rawad; Robinson, Ellis S.; Tkacik, Daniel S.; Ahern, Adam T.; Sullivan, Ryan C.; Presto, Albert A.; Donahue, Neil M.; Robinson, Allen L.] Carnegie Mellon Univ, Ctr Atmospher Particle Studies, Pittsburgh, PA 15213 USA. [Liu, Shang; Aiken, Allison C.; Dubey, Manvendra K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Yokelson, Robert J.] Univ Montana, Dept Chem, Missoula, MT 59812 USA. RP Robinson, AL (reprint author), Carnegie Mellon Univ, Ctr Atmospher Particle Studies, Pittsburgh, PA 15213 USA. EM alr@andrew.cmu.edu RI Aiken, Allison/B-9659-2009; Dubey, Manvendra/E-3949-2010; Yokelson, Robert/C-9971-2011; Sullivan, Ryan/B-4674-2008; Donahue, Neil/A-2329-2008; Presto, Albert/C-3193-2008; Tkacik, Daniel/G-5630-2011; Robinson, Allen/M-3046-2014; Liu, Shang/F-9085-2011 OI Aiken, Allison/0000-0001-5749-7626; Dubey, Manvendra/0000-0002-3492-790X; Yokelson, Robert/0000-0002-8415-6808; Sullivan, Ryan/0000-0003-0701-7158; Donahue, Neil/0000-0003-3054-2364; Presto, Albert/0000-0002-9156-1094; Robinson, Allen/0000-0002-1819-083X; Liu, Shang/0000-0002-3403-8651 FU NSF [ATM-0936321, AGS-1256042]; DOE's ASR programme [F265, ER65296] FX FLAME 4 and R.J.Y. were supported by NSF grant ATM-0936321. S.L., A.C.A. and M.K.D. thank DOE's ASR programme F265 for financial support. Carnegie Mellon University team thanks DOE's ASR programme (ER65296) and NSF (AGS-1256042) for financial support. The authors also thank the Fire Science Laboratory Staff and other FLAME 4 team members. NR 26 TC 82 Z9 83 U1 23 U2 158 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD SEP PY 2014 VL 7 IS 9 BP 647 EP 650 DI 10.1038/NGEO2220 PG 4 WC Geosciences, Multidisciplinary SC Geology GA AO8WI UT WOS:000341635600012 ER PT J AU Hong, XP Kim, J Shi, SF Zhang, Y Jin, CH Sun, YH Tongay, S Wu, JQ Zhang, YF Wang, F AF Hong, Xiaoping Kim, Jonghwan Shi, Su-Fei Zhang, Yu Jin, Chenhao Sun, Yinghui Tongay, Sefaattin Wu, Junqiao Zhang, Yanfeng Wang, Feng TI Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures SO NATURE NANOTECHNOLOGY LA English DT Article ID MOLYBDENUM-DISULFIDE; LAYERED MATERIALS; DIRAC FERMIONS; MONOLAYER MOS2; SOLAR-CELLS; GRAPHENE; SUPERLATTICES; FILMS AB Van der Waals heterostructures have recently emerged as a new class of materials, where quantum coupling between stacked atomically thin two-dimensional layers, including graphene, hexagonal-boron nitride and transition-metal dichalcogenides (MX2), give rise to fascinating new phenomena(1-10). MX2 heterostructures are particularly exciting for novel optoelectronic and photovoltaic applications, because two-dimensional MX2 monolayers can have an optical bandgap in the near-infrared to visible spectral range and exhibit extremely strong light-matter interactions(2,3,11). Theory predicts that many stacked MX2 heterostructures form type II semiconductor heterojunctions that facilitate efficient electron-hole separation for light detection and harvesting(12-16). Here, we report the first experimental observation of ultrafast charge transfer in photoexcited MoS2/WS2 heterostructures using both photoluminescence mapping and femtosecond pump-probe spectroscopy. We show that hole transfer from the MoS2 layer to the WS2 layer takes place within 50 fs after optical excitation, a remarkable rate for van der Waals coupled two-dimensional layers. Such ultrafast charge transfer in van der Waals heterostructures can enable novel two-dimensional devices for optoelectronics and light harvesting. C1 [Hong, Xiaoping; Kim, Jonghwan; Shi, Su-Fei; Jin, Chenhao; Sun, Yinghui; Wang, Feng] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Shi, Su-Fei; Tongay, Sefaattin; Wu, Junqiao; Wang, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zhang, Yu; Zhang, Yanfeng] Peking Univ, Coll Engn, Dept Mat Sci & Engn, Beijing 100871, Peoples R China. [Tongay, Sefaattin; Wu, Junqiao] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Tongay, Sefaattin] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA. [Wang, Feng] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Wang, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Wang, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM fengwang76@berkeley.edu RI Hong, Xiaoping/G-8673-2013; Wu, Junqiao/G-7840-2011; Sun, Yinghui/I-5947-2016; wang, Feng/I-5727-2015 OI Hong, Xiaoping/0000-0002-5864-4533; Wu, Junqiao/0000-0002-1498-0148; FU Office of Basic Energy Science, Department of Energy [DE-SC0003949, DE-AC02-05CH11231]; National Natural Science Foundation of China [51222201, 51290272]; Ministry of Science and Technology of China [2011CB921903]; David and Lucile Packard fellowship FX Optical measurements and MoS2 growth were supported by the Office of Basic Energy Science, Department of Energy (contract no. DE-SC0003949, Early Career Award; contract no. DE-AC02-05CH11231, Materials Science Division). The WS2 growth part was supported financially by the National Natural Science Foundation of China (grants nos. 51222201, 51290272) and the Ministry of Science and Technology of China (grant no. 2011CB921903). F.W. acknowledges support from a David and Lucile Packard fellowship. The authors thank K. Liu and Y. Chen for help in sample characterization and L. Ju for providing the evaporation mask. NR 36 TC 280 Z9 281 U1 124 U2 657 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 EI 1748-3395 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD SEP PY 2014 VL 9 IS 9 BP 682 EP 686 DI 10.1038/NNANO.2014.167 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA AP1FZ UT WOS:000341814400010 PM 25150718 ER PT J AU Nakamura, M Chen, L Howes, SC Schindler, TD Nogales, E Bryant, Z AF Nakamura, Muneaki Chen, Lu Howes, Stuart C. Schindler, Tony D. Nogales, Eva Bryant, Zev TI Remote control of myosin and kinesin motors using light-activated gearshifting SO NATURE NANOTECHNOLOGY LA English DT Article ID ATPASE ACTIVITY; STRUCTURAL BASIS; CELL BIOLOGY; POWER STROKE; LEVER-ARM; PROTEIN; MOTILITY; BINDING; SYSTEMS; DOMAIN AB Cytoskeletal motors perform critical force generation and transport functions in eukaryotic cells(1,2). Engineered modifications of motor function provide direct tests of protein structure-function relationships and potential tools for controlling cellular processes or for harnessing molecular transport in artificial systems(3,4). Here, we report the design and characterization of a panel of cytoskeletal motors that reversibly change gears-speed up, slow down or switch directions-when exposed to blue light. Our genetically encoded structural designs incorporate a photoactive protein domain to enable light-dependent conformational changes in an engineered lever arm. Using in vitro motility assays, we demonstrate robust spatiotemporal control over motor function and characterize the kinetics of the optical gearshifting mechanism. We have used a modular approach to create optical gearshifting motors for both actin-based and microtubule-based transport. C1 [Nakamura, Muneaki] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Nakamura, Muneaki; Chen, Lu; Schindler, Tony D.; Bryant, Zev] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA. [Howes, Stuart C.] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. [Nogales, Eva] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Nogales, Eva] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Nogales, Eva] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Bryant, Zev] Stanford Univ, Dept Biol Struct, Sch Med, Stanford, CA 94305 USA. RP Bryant, Z (reprint author), Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA. EM zevry@stanford.edu FU Pew Scholars Award, National Institutes of Health [DP2 OD004690, P01GM051487]; AHA Predoctoral Fellowship; National Science Foundation Graduate Research Fellowship; Stanford Graduate Fellowship FX The authors thank J-C. Liao, T. Omabegho, D.J. Cipriano, P.V. Ruijgrok and M. W. Elting for technical assistance, S. Sutton and H. M. Warrick for providing purified actin, and M.J. Footer for providing a gelsolin expression plasmid. This work was supported by a Pew Scholars Award, National Institutes of Health grants DP2 OD004690 (to Z.B.) and P01GM051487 (to E.N.), an AHA Predoctoral Fellowship (to M.N.), a National Science Foundation Graduate Research Fellowship (to L.C.) and a Stanford Graduate Fellowship (to T.D.S.). E.N. is a Howard Hughes Medical Institute investigator. NR 39 TC 12 Z9 12 U1 2 U2 33 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 EI 1748-3395 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD SEP PY 2014 VL 9 IS 9 BP 693 EP 697 DI 10.1038/NNANO.2014.147 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA AP1FZ UT WOS:000341814400012 PM 25086603 ER PT J AU Lu, YM Xiang, T Lee, DH AF Lu, Yuan-Ming Xiang, Tao Lee, Dung-Hai TI Underdoped superconducting cuprates as topological superconductors SO NATURE PHYSICS LA English DT Article ID SYMMETRY; TRANSITION AB Superconductivity in copper oxide (cuprate) high-transition-temperature superconductors follows from the chemical doping of an antiferromagnetic insulating state. The consensus that the wavefunction of the superconducting carrier, the Cooper pair, has d(x2-y2) symmetry(1,2) has long been reached. This pairing symmetry implies the existence of nodes in the superconducting energy gap. Recently, a series of angle-resolved photoemission spectroscopy experiments(3-9) have revealed that deeply underdoped cuprates exhibit a particle-hole symmetric(3) superconducting-like energy gap at the momentum-space locations where the d(x2-y2) gap nodes are expected. Here we discuss the possibility that this phenomenon is caused by a fully gapped topological superconducting state that coexists with the antiferromagnetic order. If experimentally confirmed, this result will completely change our view of how exactly the high-temperature superconductivity state evolves from the insulating antiferromagnet. C1 [Lu, Yuan-Ming; Lee, Dung-Hai] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lu, Yuan-Ming; Lee, Dung-Hai] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Xiang, Tao] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. RP Lee, DH (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM dunghai@berkeley.edu RI Lu, Yuan-Ming/D-7554-2017 OI Lu, Yuan-Ming/0000-0001-6275-739X FU US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-05CH11231] FX We thank Y. He and M. Hashimoto for useful discussions. We especially thank J. Xia for pointing out to us that Kerr rotation is a candidate experiment to probe the chiral nature of the proposed SC state. This work was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, grant DE-AC02-05CH11231 (Y-M.L., D-H.L.). NR 20 TC 7 Z9 7 U1 2 U2 44 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD SEP PY 2014 VL 10 IS 9 BP 634 EP 637 DI 10.1038/NPHYS3021 PG 4 WC Physics, Multidisciplinary SC Physics GA AP1HZ UT WOS:000341820700014 ER PT J AU Gilbert, I Chern, GW Zhang, S O'Brien, L Fore, B Nisoli, C Schiffer, P AF Gilbert, Ian Chern, Gia-Wei Zhang, Sheng O'Brien, Liam Fore, Bryce Nisoli, Cristiano Schiffer, Peter TI Emergent ice rule and magnetic charge screening from vertex frustration in artificial spin ice SO NATURE PHYSICS LA English DT Article ID MONOPOLES; ENTROPY; DY2TI2O7; HO2TI2O7 AB Artificial spin ice comprises a class of frustrated arrays of interacting single-domain ferromagnetic nanostructures. Previous studies of artificial spin ice have focused on simple lattices based on natural frustrated materials. Here we experimentally examine artificial spin ice created on the shakti lattice, a structure that does not directly correspond to any known natural magnetic material. On the shakti lattice, none of the near-neighbour interactions is locally frustrated, but instead the lattice topology frustrates the interactions leading to a high degree of degeneracy. We demonstrate that the shakti system achieves a physical realization of the classic six-vertex model ground state. Furthermore, we observe that the mixed coordination of the shakti lattice leads to crystallization of effective magnetic charges and the screening of magnetic excitations, underscoring the importance of magnetic charge as the relevant degree of freedom in artificial spin ice and opening new possibilities for studies of its dynamics. C1 [Gilbert, Ian; Fore, Bryce; Schiffer, Peter] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Gilbert, Ian; Fore, Bryce; Schiffer, Peter] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. [Chern, Gia-Wei; Nisoli, Cristiano] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Chern, Gia-Wei; Nisoli, Cristiano] Los Alamos Natl Lab, Ctr Nonlinear Studies MS B258, Los Alamos, NM 87545 USA. [Zhang, Sheng] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Zhang, Sheng] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. [O'Brien, Liam] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. [O'Brien, Liam] Univ Cambridge, Cavendish Lab, Dept Phys, Thin Film Magnetism Grp, Cambridge CB3 0HE, England. RP Schiffer, P (reprint author), Univ Illinois, Dept Phys, Urbana, IL 61801 USA. EM pschiffe@illinois.edu RI Zhang, Sheng/M-9238-2014; O'Brien, Liam/H-1994-2012; OI Zhang, Sheng/0000-0002-9710-6738; O'Brien, Liam/0000-0002-0136-8603; Gilbert, Ian/0000-0001-8259-0697; Schiffer, Peter/0000-0002-6430-6549; Nisoli, Cristiano/0000-0003-0053-1023 FU US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-SC0010778]; US Department of Energy at LANL [DE-AC52-06NA253962]; EU Marie Curie IOF [299376] FX This project was funded by the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Grant No. DE-SC0010778. Lithography was performed in part with the support of the National Nanotechnology Infrastructure Network. The work of G-W. C. and C.N. was carried out under the auspices of the US Department of Energy at LANL under contract no. DE-AC52-06NA253962. Work performed at the University of Minnesota was supported by EU Marie Curie IOF project no. 299376. NR 37 TC 28 Z9 28 U1 2 U2 47 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD SEP PY 2014 VL 10 IS 9 BP 671 EP 676 DI 10.1038/NPHYS3037 PG 6 WC Physics, Multidisciplinary SC Physics GA AP1HZ UT WOS:000341820700022 ER PT J AU Davis, A Dudziak, DJ Kornreich, DE AF Davis, Adam Dudziak, Donald J. Kornreich, Drew E. TI Slant-Path Photon Buildup Factors in Dual-Layer Radiation Shields Comprising Polyethylene and Lead SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID OBLIQUELY INCIDENT; CONCRETE; TRANSMISSION; EXPOSURE; WATER; RAYS; IRON AB Photon buildup factors provide a convenient method for radiation protection professionals to calculate dose and exposure behind various shielding configurations. Examination of buildup factors can also provide insight into the behavior of photons in these shields. Recent work has developed dual-layer buildup factors for several shielding configurations and a limited number of energies while slant-path buildup factors have been developed for single-layer shields. This work develops slant-path buildup factors for slab-geometric, dual-layer shields comprising polyethylene and lead at 25 energies conforming to the energies used in the buildup factor standard ANSI/ANS-6.4.3-1991 (W2001), "Gamma-Ray Attenuation Coefficients and Buildup Factors for Engineering Materials," between 10 keV and 10 MeV. Further, the increased energy resolution of the calculations performed in this work allows the energy at which the previously identified "buildup reversal" phenomenon occurs to be more precisely identified. The effect of mesh spacing and quadrature resolution on fluence through the shields is also considered. C1 [Davis, Adam; Dudziak, Donald J.; Kornreich, Drew E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Davis, A (reprint author), Los Alamos Natl Lab, AET-2,Mailstop E548, Los Alamos, NM 87545 USA. EM adamdavisne@gmail.com NR 31 TC 0 Z9 0 U1 0 U2 7 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD SEP PY 2014 VL 178 IS 1 BP 42 EP 56 PG 15 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AO8OZ UT WOS:000341615400004 ER PT J AU Tovesson, F Laptev, A Hill, TS AF Tovesson, F. Laptev, A. Hill, T. S. TI Fast Neutron-Induced Fission Cross Sections of (233,) (234,) (236,) U-238 up to 200 MeV SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID ENERGY-RANGE; SCIENCE AB The U-233,U-234,U-236,U-238 fission cross sections have been measured relative to U-235(n, f) for incident neutron energies from 200 keV to 200 MeV using neutron time-of-flight at the Los Alamos Neutron Science Center. The results are generally consistent with the current ENDF/B-VII evaluation, but some discrepancies with previous measurements above 20 to 30 MeV are observed. These measurements are part of a campaign to measure fission cross sections with high precision in support of fast reactor technology. C1 [Tovesson, F.; Laptev, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hill, T. S.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Tovesson, F (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM tovesson@lanl.gov RI Laptev, Alexander/D-4686-2009 OI Laptev, Alexander/0000-0002-9759-9907 FU U.S. Department of Energy; Los Alamos National Security, LLC [DE-AC52-06NA25396] FX This work has benefited from the use of LANSCE at the Los Alamos National Laboratory. This facility is funded by the U.S. Department of Energy and operated by Los Alamos National Security, LLC, under contract DE-AC52-06NA25396. NR 26 TC 4 Z9 4 U1 0 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD SEP PY 2014 VL 178 IS 1 BP 57 EP 65 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AO8OZ UT WOS:000341615400005 ER PT J AU Ball, J Parra, FI Barnes, M Dorland, W Hammett, GW Rodrigues, P Loureiro, NF AF Ball, Justin Parra, Felix I. Barnes, Michael Dorland, William Hammett, Gregory W. Rodrigues, Paulo Loureiro, Nuno F. TI Intrinsic momentum transport in up-down asymmetric tokamaks SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE tokamaks; gyrokinetics; intrinsic rotation; up-down asymmetry ID MODE STABILIZATION; PLASMA ROTATION; PHYSICS BASIS; TOROIDAL ROTATION; VELOCITY-SHEAR; ION-TRANSPORT; TURBULENCE; CONFINEMENT; INSTABILITIES; EQUATIONS AB Recent work has demonstrated that breaking the up-down symmetry of tokamak flux surfaces removes a constraint that limits intrinsic momentum transport, and hence toroidal rotation, to be small. We show, through MHD analysis, that ellipticity is most effective at introducing up-down asymmetry throughout the plasma. We detail an extension to GS2, a local delta f gyrokinetic code that self-consistently calculates momentum transport, to permit up-down asymmetric configurations. Tokamaks with tilted elliptical poloidal cross-sections were simulated to determine nonlinear momentum transport. The results, which are consistent with the experiment in magnitude, suggest that a toroidal velocity gradient, (partial derivative u(zeta i)/partial derivative rho)/nu(thi), of 5% of the temperature gradient, (partial derivative T-i/partial derivative rho)/T-i, is sustainable. Here nu(thi) is the ion thermal speed, u(zeta i) is the ion toroidal mean flow, rho is the minor radial coordinate normalized to the tokamak minor radius, and T-i is the ion temperature. Though other known core intrinsic momentum transport mechanisms scale poorly to larger machines, these results indicate that up-down asymmetry may be a feasible method to generate the current experimentally measured rotation levels in reactor-sized devices. C1 [Ball, Justin; Parra, Felix I.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England. [Ball, Justin; Parra, Felix I.; Barnes, Michael] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Barnes, Michael] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. [Dorland, William] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Hammett, Gregory W.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Rodrigues, Paulo; Loureiro, Nuno F.] Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, P-1049001 Lisbon, Portugal. RP Ball, J (reprint author), Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England. EM Justin.Ball@physics.ox.ac.uk RI Parra, Felix I./C-1442-2012; Rodrigues, Paulo/G-4226-2010; Hammett, Gregory/D-1365-2011; Loureiro, Nuno/E-8719-2011 OI Parra, Felix I./0000-0001-9621-7404; Rodrigues, Paulo/0000-0001-6189-6865; Hammett, Gregory/0000-0003-1495-6647; Loureiro, Nuno/0000-0001-9755-6563 FU US DoE [DE-SC008435]; RCUK Energy Programme [EP/I501045]; European Union's Horizon research and innovation programme; EURATOM within the framework of the European Fusion Development Agreement; Fundacao para a Ciencia e Tecnologia [Pest-OE/SADG/LA0010/2011]; NFL [IF/00530/2013, PTDC/FIS/118187/2010]; Office of Science of the US Department of Energy [DE-AC02-05CH11231]; Helios supercomputer at IFERC-CSC under project GKMSC FX JRB and FIP were partially supported by US DoE Grant No DE-SC008435, by the RCUK Energy Programme (grant number EP/I501045) and by the European Union's Horizon 2020 research and innovation programme. PR and NFL were supported by EURATOM, within the framework of the European Fusion Development Agreement. Fundacao para a Ciencia e Tecnologia also supported IST activities through project Pest-OE/SADG/LA0010/2011, and NFL through grants IF/00530/2013 and PTDC/FIS/118187/2010. The computing time was provided by the National Energy Scientific Computing Center, supported by the Office of Science of the US Department of Energy under Contract No DE-AC02-05CH11231, and by the Helios supercomputer at IFERC-CSC under project GKMSC. The views and opinions expressed herein do not necessarily reflect those of the European Commission. NR 58 TC 14 Z9 14 U1 3 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD SEP PY 2014 VL 56 IS 9 AR 095014 DI 10.1088/0741-3335/56/9/095014 PG 20 WC Physics, Fluids & Plasmas SC Physics GA AP1TK UT WOS:000341854100024 ER PT J AU Cooper, WA Hirshman, SP Chapman, IT Brunetti, D Faustin, JM Graves, JP Pfefferle, D Raghunathan, M Sauter, O Tran, TM Aiba, N AF Cooper, W. A. Hirshman, S. P. Chapman, I. T. Brunetti, D. Faustin, J. M. Graves, J. P. Pfefferle, D. Raghunathan, M. Sauter, O. Tran, T. M. Aiba, N. TI An approximate single fluid 3-dimensional magnetohydrodynamic equilibrium model with toroidal flow SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 19th International Stellarator-Heliotron Workshop held Jointly with the 16th Reversed Field Pinch Workshop CY SEP 16-20, 2013 CL Padova, ITALY DE toroidal rotation; magnetohydrodynamic equilibrium; three-dimensional ID TOKAMAK EQUILIBRIA; PLASMAS AB An approximate model for a single fluid three-dimensional (3D) magnetohydrodynamic (MHD) equilibrium with pure isothermal toroidal flow with imposed nested magnetic flux surfaces is proposed. It recovers the rigorous toroidal rotation equilibrium description in the axisymmetric limit. The approximation is valid under conditions of nearly rigid or vanishing toroidal rotation in regions with significant 3D deformation of the equilibrium flux surfaces. Bifurcated helical core equilibrium simulations of long-lived modes in the MAST device demonstrate that the magnetic structure is only weakly affected by the flow but that the 3D pressure distortion is important. The pressure is displaced away from the major axis and therefore is not as noticeably helically deformed as the toroidal magnetic flux under the subsonic flow conditions measured in the experiment. The model invoked fails to predict any significant screening by toroidal plasma rotation of resonant magnetic perturbations in MAST free boundary computations. C1 [Cooper, W. A.; Brunetti, D.; Faustin, J. M.; Graves, J. P.; Pfefferle, D.; Raghunathan, M.; Sauter, O.; Tran, T. M.] Ecole Polytech Fed Lausanne, Ctr Rech Phys Plasmas, Assoc Euratom Confederat Suisse, CH-1015 Lausanne, Switzerland. [Hirshman, S. P.] Oak Ridge Natl Lab, Fus & Nucl Mat Sci Div, Oak Ridge, TN 37831 USA. [Chapman, I. T.] EURATOM, CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Aiba, N.] Japan Atom Energy Author, Rokkasho, Aomori 0393212, Japan. RP Cooper, WA (reprint author), Ecole Polytech Fed Lausanne, Ctr Rech Phys Plasmas, Assoc Euratom Confederat Suisse, CH-1015 Lausanne, Switzerland. EM wilfred.cooper@epfl.ch RI EPFL, Physics/O-6514-2016 NR 26 TC 3 Z9 3 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD SEP PY 2014 VL 56 IS 9 AR 094004 DI 10.1088/0741-3335/56/9/094004 PG 8 WC Physics, Fluids & Plasmas SC Physics GA AP1TK UT WOS:000341854100005 ER PT J AU Finn, JM Billey, Z Daughton, W Zweibel, E AF Finn, J. M. Billey, Z. Daughton, W. Zweibel, E. TI Quasi-separatrix layer reconnection for nonlinear line-tied collisionless tearing modes (vol 56, 064013, 2014) SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Correction C1 [Finn, J. M.; Daughton, W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Billey, Z.; Zweibel, E.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. RP Finn, JM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Daughton, William/L-9661-2013 NR 5 TC 0 Z9 0 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD SEP PY 2014 VL 56 IS 9 AR 099502 DI 10.1088/0741-3335/56/9/099502 PG 2 WC Physics, Fluids & Plasmas SC Physics GA AP1TK UT WOS:000341854100042 ER PT J AU Heidbrink, WW Ferron, JR Holcomb, CT Van Zeeland, MA Chen, X Collins, CM Garofalo, A Gong, X Grierson, BA Podesta, M Stagner, L Zhu, Y AF Heidbrink, W. W. Ferron, J. R. Holcomb, C. T. Van Zeeland, M. A. Chen, Xi Collins, C. M. Garofalo, A. Gong, X. Grierson, B. A. Podesta, M. Stagner, L. Zhu, Y. TI Confinement degradation by Alfven-eigenmode induced fast-ion transport in steady-state scenario discharges SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE tokamaks; fast particle effects; Alfven waves; fusion product effects ID DIII-D TOKAMAK; ENERGETIC IONS; SPECTROSCOPY; OPERATION; PROGRESS; PLASMAS; PHYSICS; SYSTEM; ALPHA; SHEAR AB Analysis of neutron and fast-ion D-alpha data from the DIII-D tokamak shows that Alfven eigenmode activity degrades fast-ion confinement in many high beta(N), high q(min), steady-state scenario discharges. (beta(N) is the normalized plasma pressure and q(min) is the minimum value of the plasma safety factor.) Fast-ion diagnostics that are sensitive to the co-passing population exhibit the largest reduction relative to classical predictions. The increased fast-ion transport in discharges with strong AE activity accounts for the previously observed reduction in global confinement with increasing q(min); however, not all high q(min) discharges show appreciable degradation. Two relatively simple empirical quantities provide convenient monitors of these effects: (1) an 'AE amplitude' signal based on interferometer measurements and (2) the ratio of the neutron rate to a zero-dimensional classical prediction. C1 [Heidbrink, W. W.; Collins, C. M.; Stagner, L.; Zhu, Y.] Univ Calif Irvine, Irvine, CA 92697 USA. [Ferron, J. R.; Van Zeeland, M. A.; Garofalo, A.] Gen Atom Co, San Diego, CA USA. [Holcomb, C. T.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Chen, Xi] Oak Ridge Inst Sci Educ, Oak Ridge, TN USA. [Gong, X.] Chinese Acad Sci, Inst Plasma Phys, Hefei, Peoples R China. [Grierson, B. A.; Podesta, M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Heidbrink, WW (reprint author), Univ Calif Irvine, Irvine, CA 92697 USA. EM Bill.Heidbrink@uci.edu FU US Department of Energy [SC-G903402, DE-FG03-97ER54415, DE-AC05-0000R22725, DE-AC02-09CH11466, DE-FC02-04ER54698] FX This work was supported by the US Department of Energy under SC-G903402, DE-FG03-97ER54415, DE-AC05-0000R22725, DE-AC02-09CH11466, and DE-FC02-04ER54698. We thank T Luce, J Hanson, and M Murakami for helpful suggestions and the entire DIII-D team for their support. NR 49 TC 12 Z9 12 U1 5 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD SEP PY 2014 VL 56 IS 9 AR 095030 DI 10.1088/0741-3335/56/9/095030 PG 14 WC Physics, Fluids & Plasmas SC Physics GA AP1TK UT WOS:000341854100040 ER PT J AU Lazerson, SA AF Lazerson, S. A. TI The ITER 3D magnetic diagnostic response to applied n=3 and n=4 resonant magnetic perturbations SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE fusion; magnetics; diagnostics; equilibria AB The ITER magnetic diagnostic response to applied n = 3 and n = 4 resonant magnetic perturbations (RMPs) has been calculated for the 15 MA scenario. The VMEC code was utilized to calculate free boundary 3D ideal magnetohydrodynamic equilibria, where the non-stellarator symmetric terms were included in the calculation (Hirshman and Whitson 1983 Phys. Fluids 26 3553). This allows an assessment to be made of the possible boundary displacements due to RMP application in ITER. As the VMEC code assumes a continuous set of nested flux surface, the possibility of island and stochastic region formation is ignored. At the start of the current flat-top (L-mode) application of n = 4 RMPs indicates approximately 1 cm peak-to-peak displacements on the low field side of the plasma while later in the shot (H-mode) perturbations as large as 3 cm are present. Forward modeling of the ITER magnetic diagnostics indicates significant non-axisymmetric plasma response, exceeding 10% the axisymmetric signal in many of the flux loops. Magnetic field probes seem to indicate a greater robustness to 3D effects but still indicate large sensitivities to 3D effects in a number of sensors. Forward modeling of the diagnostics response to 3D equilibria allows assessment of diagnostics design and control scenarios. C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Lazerson, SA (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM lazerson@pppl.gov RI Lazerson, Samuel/E-4816-2014 OI Lazerson, Samuel/0000-0001-8002-0121 FU Princeton University [DE-AC02-09CH11466] FX This manuscript has been authored by Princeton University under contract number DE-AC02-09CH11466 with the U.S. Department of Energy. The publisher, by accepting the article for publication acknowledges, that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 22 TC 1 Z9 1 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD SEP PY 2014 VL 56 IS 9 AR 095006 DI 10.1088/0741-3335/56/9/095006 PG 8 WC Physics, Fluids & Plasmas SC Physics GA AP1TK UT WOS:000341854100016 ER PT J AU McMillan, M Lazerson, SA AF McMillan, Matthew Lazerson, Samuel A. TI BEAMS3D Neutral Beam Injection Model SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE equilibria; reconstruction; magnetics; diagnostics; fusion ID NCSX AB With the advent of applied 3D fields in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous slowing down, and pitch angle scattering are modeled with the ADAS atomic physics database. Elementary benchmark calculations are presented to verify the collisionless particle orbits, NBI model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields. C1 [McMillan, Matthew] Wheaton Coll, Wheaton, IL 60187 USA. [Lazerson, Samuel A.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP McMillan, M (reprint author), Wheaton Coll, 1106 E Forest Ave, Wheaton, IL 60187 USA. EM mcmillan.matthew.i@gmail.com; lazerson@pppl.gov RI Lazerson, Samuel/E-4816-2014 OI Lazerson, Samuel/0000-0001-8002-0121 FU DOE FX The authors would like to thank M Gorelenkova for her valuable guidance regarding the implementation of the ADAS libraries and discussions regarding NUBEAM. We would also like to extend thanks to R White for his useful discussion of collisionless particle orbits. Finally, we acknowledge the Summer Undergraduate Laboratory Internship (SULI) program funded by the DOE Office of Workforce Development for Teachers and Students. NR 16 TC 0 Z9 0 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD SEP PY 2014 VL 56 IS 9 AR 095019 DI 10.1088/0741-3335/56/9/095019 PG 7 WC Physics, Fluids & Plasmas SC Physics GA AP1TK UT WOS:000341854100029 ER PT J AU Mynick, H Xanthopoulos, P Faber, B Lucia, M Rorvig, M Talmadge, JN AF Mynick, H. Xanthopoulos, P. Faber, B. Lucia, M. Rorvig, M. Talmadge, J. N. TI Turbulent optimization of toroidal configurations SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE stellarator; turbulence; transport ID STELLARATOR AB Recent progress in 'turbulent optimization' of toroidal configurations is described, using a method recently developed for evolving such configurations to ones having reduced turbulent transport. The method uses the GENE gyrokinetic code to compute the radial heat flux Q(gk), and the STELLOPT optimization code with a theory-based 'proxy' figure of merit Q(pr) to stand in for Q(gk) for computational speed. Improved expressions for Q(pr) have been developed, involving further geometric quantities beyond those in the original proxy, which can also be used as 'control knobs' to reduce Q(gk). Use of a global search algorithm has led to the discovery of turbulent-optimized configurations not found by the standard, local algorithm usually employed, as has use of a mapping capability which STELLOPT has been extended to provide, of figures of merit over the search space. C1 [Mynick, H.; Faber, B.; Lucia, M.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08544 USA. [Xanthopoulos, P.] EURATOM, Max Planck Inst Plasmaphys, Greifswald, Germany. [Rorvig, M.; Talmadge, J. N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Rorvig, M.; Talmadge, J. N.] Univ Wisconsin, Dept Elect Engn, Madison, WI USA. RP Mynick, H (reprint author), Princeton Univ, Plasma Phys Lab, Princeton, NJ 08544 USA. OI Faber, Benjamin/0000-0003-4934-400X NR 13 TC 6 Z9 6 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD SEP PY 2014 VL 56 IS 9 AR 094001 DI 10.1088/0741-3335/56/9/094001 PG 7 WC Physics, Fluids & Plasmas SC Physics GA AP1TK UT WOS:000341854100002 ER PT J AU Ogawa, K Isobe, M Toi, K Shimizu, A Spong, DA Osakabe, M Yamamoto, S AF Ogawa, Kunihiro Isobe, Mitsutaka Toi, Kazuo Shimizu, Akihiro Spong, Donald A. Osakabe, Masaki Yamamoto, Satoshi CA LHD Expt Grp TI Energetic ion losses caused by magnetohydrodynamic activity resonant and non-resonant with energetic ions in Large Helical Device SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE energetic ion; toroidal Alfven eigenmode; edge-localized mode; lost fast-ion diagnostics; orbit simulation ID MAGNETIC PERTURBATIONS; MODES; TFTR; LHD; DISCHARGES; TRANSPORT; PLASMAS AB Experiments to reveal energetic ion dynamics associated with magnetohydrodynamic activity are ongoing in the Large Helical Device (LHD). Interactions between beam-driven toroidal Alfven eigenmodes (TAEs) and energetic ions have been investigated. Energetic ion losses induced by beam-driven burst TAEs have been observed using a scintillator-based lost fast-ion probe (SLIP) in neutral beam-heated high beta plasmas. The loss flux of co-going beam ions increases as the TAE amplitude increases. In addition to this, the expulsion of beam ions associated with edge-localized modes (ELMs) has been also recognized in LHD. The SLIP has indicated that beam ions having co-going and barely co-going orbits are affected by ELMs. The relation between ELM amplitude and ELM-induced loss has a dispersed structure. To understand the energetic ion loss process, a numerical simulation based on an orbit-following model, DELTA5D, that incorporates magnetic fluctuations is performed. The calculation result shows that energetic ions confined in the interior region are lost due to TAE instability, with a diffusive process characterizing their loss. For the ELM, energetic ions existing near the confinement/loss boundary are lost through a convective process. We found that the ELM-induced loss flux measured by SLIP changes with the ELM phase. This relation between the ELM amplitude and measured ELM-induced loss results in a more dispersed loss structure. C1 [Ogawa, Kunihiro; Isobe, Mitsutaka; Toi, Kazuo; Shimizu, Akihiro; Osakabe, Masaki; LHD Expt Grp] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Isobe, Mitsutaka] Grad Univ Adv Studies, Sch Phys Sci, Toki, Gifu 5095292, Japan. [Spong, Donald A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Yamamoto, Satoshi] Kyoto Univ, Inst Adv Energy, Uji, Kyoto 6110011, Japan. RP Ogawa, K (reprint author), Natl Inst Nat Sci, Natl Inst Fus Sci, 322-6 Oroshicho, Toki, Gifu 5095292, Japan. EM ogawa.kunihiro@lhd.nifs.ac.jp NR 30 TC 1 Z9 1 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD SEP PY 2014 VL 56 IS 9 AR 094005 DI 10.1088/0741-3335/56/9/094005 PG 7 WC Physics, Fluids & Plasmas SC Physics GA AP1TK UT WOS:000341854100006 ER PT J AU Olofsson, KEJ Hanson, JM Shiraki, D Volpe, FA Humphreys, DA La Haye, RJ Lanctot, MJ Strait, EJ Welander, AS Kolemen, E Okabayashi, M AF Olofsson, K. E. J. Hanson, J. M. Shiraki, D. Volpe, F. A. Humphreys, D. A. La Haye, R. J. Lanctot, M. J. Strait, E. J. Welander, A. S. Kolemen, E. Okabayashi, M. TI Array magnetics modal analysis for the DIII-D tokamak based on localized time-series modelling SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE inference methods; magnetohydrodynamics; microinstabilities ID NEOCLASSICAL TEARING MODE; SINGULAR-VALUE DECOMPOSITION; CYCLOTRON CURRENT DRIVE; ASDEX UPGRADE; SUBSPACE IDENTIFICATION; MHD INSTABILITIES; TOROIDAL PLASMAS; SIGNALS; STABILIZATION; ITER AB Time-series analysis of magnetics data in tokamaks is typically done using block-based fast Fourier transform methods. This work presents the development and deployment of a new set of algorithms for magnetic probe array analysis. The method is based on an estimation technique known as stochastic subspace identification (SSI). Compared with the standard coherence approach or the direct singular value decomposition approach, the new technique exhibits several beneficial properties. For example, the SSI method does not require that frequencies are orthogonal with respect to the timeframe used in the analysis. Frequencies are obtained directly as parameters of localized time-series models. The parameters are extracted by solving small-scale eigenvalue problems. Applications include maximum-likelihood regularized eigenmode pattern estimation, detection of neoclassical tearing modes, including locked mode precursors, and automatic clustering of modes, and magnetics-pattern characterization of sawtooth pre- and postcursors, edge harmonic oscillations and fishbones. C1 [Olofsson, K. E. J.; Hanson, J. M.; Shiraki, D.; Volpe, F. A.] Columbia Univ, New York, NY 10027 USA. [Humphreys, D. A.; La Haye, R. J.; Lanctot, M. J.; Strait, E. J.; Welander, A. S.] Gen Atom Co, San Diego, CA USA. [Kolemen, E.; Okabayashi, M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Olofsson, KEJ (reprint author), Columbia Univ, New York, NY 10027 USA. EM ko2319@columbia.edu RI Volpe, Francesco/D-2994-2009; Lanctot, Matthew J/O-4979-2016 OI Volpe, Francesco/0000-0002-7193-7090; Lanctot, Matthew J/0000-0002-7396-3372 FU US Department of Energy [DE-SC0008520, DE-FG02-04ER54761, DE-FC02-04ER54698, DE-AC02-09CH11466] FX This work is supported by the US Department of Energy under DE-SC0008520, DE-FG02-04ER54761, DE-FC02-04ER54698 and DE-AC02-09CH11466. The first author thanks BG Penaflor for help with the deployment of parts of the analysis code eigspec at DIII-D, CPaz-Soldan for doing early beta testing, and J King for help with DIII-D magnetics upgrade information. Further thanks goes to Bill Meyer for providing the original DIII-D povray model. DIII-D data shown in this paper can be obtained in digital format by following the links at https://fusion.gat.com/global/D3D_DMP. NR 52 TC 5 Z9 5 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD SEP PY 2014 VL 56 IS 9 AR 095012 DI 10.1088/0741-3335/56/9/095012 PG 15 WC Physics, Fluids & Plasmas SC Physics GA AP1TK UT WOS:000341854100022 ER PT J AU Sears, J Feng, Y Intrator, TP Weber, TE Swan, HO AF Sears, J. Feng, Y. Intrator, T. P. Weber, T. E. Swan, H. O. TI Flux rope dynamics in three dimensions SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE magnetohydrodynamics; solar physics; kink stability; flux rope ID KINK INSTABILITY; SOLAR-FLARES; PLASMA; RECONNECTION; RELAXATION; DESIGN; PINCH; FIELD AB A large 3D data set has been assembled using the relaxation scaling experiment (RSX) device to study the dynamics of flux ropes. In a series of single flux rope experiments, we have measured induced eddy currents inside the plasma that complicate the evolution of a nominally simple current system. It is also likely that the nominal MHD force balance is violated on ion inertial length scales. These phenomena appear irreducibly three dimensional. C1 [Sears, J.; Feng, Y.; Intrator, T. P.; Weber, T. E.; Swan, H. O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Sears, J (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM jason.sears@alum.mit.edu FU Los Alamos National Laboratory, US Department of Energy [DE-AC52-06NA25396]; NASA Geospace, Basic [NNHIOA044I]; Los Alamos Laboratory Directed Research and Development Program; National Science Foundation and Department of Energy, Office of Fusion Energy Sciences; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX Supported by Los Alamos National Laboratory, US Department of Energy Contract No. DE-AC52-06NA25396; NASA Geospace NNHIOA044I, Basic; Los Alamos Laboratory Directed Research and Development Program; Center for Magnetic Self Organization funded by National Science Foundation and Department of Energy, Office of Fusion Energy Sciences. JS acknowledges support from the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 50 TC 2 Z9 2 U1 3 U2 20 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD SEP PY 2014 VL 56 IS 9 AR 095022 DI 10.1088/0741-3335/56/9/095022 PG 7 WC Physics, Fluids & Plasmas SC Physics GA AP1TK UT WOS:000341854100032 ER PT J AU Zweben, SJ Stotler, DP Bell, RE Davis, WM Kaye, SM LeBlanc, BP Maqueda, RJ Meier, ET Munsat, T Ren, Y Sabbagh, SA Sechrest, Y Smith, DR Soukhanovskii, V AF Zweben, S. J. Stotler, D. P. Bell, R. E. Davis, W. M. Kaye, S. M. LeBlanc, B. P. Maqueda, R. J. Meier, E. T. Munsat, T. Ren, Y. Sabbagh, S. A. Sechrest, Y. Smith, D. R. Soukhanovskii, V. TI Effect of a deuterium gas puff on the edge plasma in NSTX SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE tokamak; turbulence; NSTX ID SPHERICAL TORUS EXPERIMENT; H-MODE ACCESS; DIII-D; TRANSPORT-COEFFICIENTS; FUELING LOCATION; TOKAMAK; TURBULENCE; ROTATION; NEUTRALS AB This paper describes a detailed examination of the effects of a relatively small pulsed deuterium gas puff on the edge plasma and edge turbulence in NSTX. This gas puff caused little or no change in the line-averaged plasma density or total stored energy, or in the edge density and electron temperature up to the time of the peak of the gas puff. The radial profile of the D alpha light emission and the edge turbulence within this gas puff did not vary significantly over its rise and fall, implying that these gas puffs did not significantly perturb the local edge plasma or edge turbulence. These measurements are compared with modeling by DEGAS 2, UEDGE, and with simplified estimates for the expected effects of this gas puff. C1 [Zweben, S. J.; Stotler, D. P.; Bell, R. E.; Davis, W. M.; Kaye, S. M.; LeBlanc, B. P.; Ren, Y.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. [Maqueda, R. J.] X Sci LLC, Plainsboro, NJ 08543 USA. [Meier, E. T.; Soukhanovskii, V.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Munsat, T.; Sechrest, Y.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Sabbagh, S. A.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10026 USA. [Smith, D. R.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. RP Zweben, SJ (reprint author), Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. EM szweben@pppl.gov RI Stotler, Daren/J-9494-2015; OI Stotler, Daren/0000-0001-5521-8718; Davis, William/0000-0003-0666-7247 FU US DOE [DE-AC02-09CH11466] FX The authors would like to thank the NSTX group and particularly D Battaglia, A Diallo, and S Kubota for the gas puffing during their experiments, S Gerhardt, K Tritz, H Schneider and F Scotti for help with diagnostic data and C S Chang, J Lang, R Maingi, and I Shesterikov, L Shao, J L Terry for discussions on this topic. This work was supported by US DOE Contract No. DE-AC02-09CH11466. NR 62 TC 11 Z9 11 U1 7 U2 27 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD SEP PY 2014 VL 56 IS 9 AR 095010 DI 10.1088/0741-3335/56/9/095010 PG 20 WC Physics, Fluids & Plasmas SC Physics GA AP1TK UT WOS:000341854100020 ER PT J AU Chahine, NO Collette, NM Thomas, CB Genetos, DC Loots, GG AF Chahine, Nadeen O. Collette, Nicole M. Thomas, Cynthia B. Genetos, Damian C. Loots, Gabriela G. TI Nanocomposite Scaffold for Chondrocyte Growth and Cartilage Tissue Engineering: Effects of Carbon Nanotube Surface Functionalization SO TISSUE ENGINEERING PART A LA English DT Article ID HUMAN ARTICULAR CHONDROCYTES; HYALURONAN-BASED SCAFFOLD; IN-VITRO; NANOFIBROUS SCAFFOLDS; AGAROSE GELS; COLLAGEN; ADHESION; MATRIX; BETA-1-INTEGRINS; COMPRESSION AB The goal of this study was to assess the long-term biocompatibility of single-wall carbon nanotubes (SWNTs) for tissue engineering of articular cartilage. We hypothesized that SWNT nanocomposite scaffolds in cartilage tissue engineering can provide an improved molecular-sized substrate for stimulation of chondrocyte growth, as well as structural reinforcement of the scaffold's mechanical properties. The effect of SWNT surface functionalization (-COOH or -PEG) on chondrocyte viability and biochemical matrix deposition was examined in two-dimensional cultures, in three-dimensional (3D) pellet cultures, and in a 3D nanocomposite scaffold consisting of hydrogels + SWNTs. Outcome measures included cell viability, histological and SEM evaluation, GAG biochemical content, compressive and tensile biomechanical properties, and gene expression quantification, including extracellular matrix (ECM) markers aggrecan (Agc), collagen-1 (Col1a1), collagen-2 (Col2a1), collagen-10 (Col10a1), surface adhesion proteins fibronectin (Fn), CD44 antigen (CD44), and tumor marker (Tp53). Our findings indicate that chondrocytes tolerate functionalized SWNTs well, with minimal toxicity of cells in 3D culture systems (pellet and nanocomposite constructs). Both SWNT-PEG and SWNT-COOH groups increased the GAG content in nanocomposites relative to control. The compressive biomechanical properties of cell-laden SWNT-COOH nanocomposites were significantly elevated relative to control. Increases in the tensile modulus and ultimate stress were observed, indicative of a tensile reinforcement of the nanocomposite scaffolds. Surface coating of SWNTs with -COOH also resulted in increased Col2a1 and Fn gene expression throughout the culture in nanocomposite constructs, indicative of increased chondrocyte metabolic activity. In contrast, surface coating of SWNTs with a neutral -PEG moiety had no significant effect on Col2a1 or Fn gene expression, suggesting that the charged nature of the -COOH surface functionalization may promote ECM expression in this culture system. The results of this study indicate that SWNTs exhibit a unique potential for cartilage tissue engineering, where functionalization with bioactive molecules may provide an improved substrate for stimulation of cellular growth and repair. C1 [Chahine, Nadeen O.] Feinstein Inst Med Res, Ctr Autoimmune & Musculoskeletal Dis, Manhasset, NY USA. [Collette, Nicole M.; Thomas, Cynthia B.; Loots, Gabriela G.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Genetos, Damian C.] Univ Calif Davis, Sch Vet Med, Davis, CA 95616 USA. [Loots, Gabriela G.] Univ Calif Merced, Sch Nat Sci, Merced, CA USA. RP Chahine, NO (reprint author), Hofstra North Shore LIJ Sch Med, Ctr Autoimmune & Musculoskeletal Dis, Feinstein Inst Med Res, 350 Community Dr, Manhasset, NY 11030 USA. EM nchahine@nshs.edu RI Chahine, Nadeen/O-5496-2015; OI Genetos, Damian/0000-0002-8599-2867; Chahine, Nadeen/0000-0002-0478-6042 FU US DOE by LLNL [DE-AC52-07NA27344]; Ernest Lawrence Fellowship; LLNL-LDRD [09-LW-072]; NSF CAREER Award [1151605] FX This work was conducted under the auspices of the US DOE by LLNL (DE-AC52-07NA27344). This study was, in part, funded by the Ernest Lawrence Fellowship (NOC), LLNL-LDRD 09-LW-072, and NSF CAREER Award 1151605. The authors would like to thank Heather Thompson for technical support. NR 61 TC 5 Z9 6 U1 2 U2 25 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1937-3341 EI 1937-335X J9 TISSUE ENG PT A JI Tissue Eng. Part A PD SEP PY 2014 VL 20 IS 17-18 BP 2305 EP 2315 DI 10.1089/ten.tea.2013.0328 PG 11 WC Cell & Tissue Engineering; Biotechnology & Applied Microbiology; Cell Biology SC Cell Biology; Biotechnology & Applied Microbiology GA AP1LC UT WOS:000341830400004 PM 24593020 ER PT J AU Weiss, CJ Das, P Miller, DL Helm, ML Appel, AM AF Weiss, Charles J. Das, Parthapratim Miller, Deanna L. Helm, Monte L. Appel, Aaron M. TI Catalytic Oxidation of Alcohol via Nickel Phosphine Complexes with Pendant Amines SO ACS CATALYSIS LA English DT Article DE alcohol oxidation; nickel; electrochemistry; catalysis; proton relay ID PONNDORF-VERLEY REDUCTION; 2ND COORDINATION SPHERE; ELECTROCATALYTIC OXIDATION; H-2 PRODUCTION; HYDROGEN-PRODUCTION; IRON COMPLEXES; PROTON RELAYS; EFFICIENT; RUTHENIUM; WATER AB Nickel complexes were prepared with diphosphine ligands that contain pendant amines, and these complexes catalytically oxidize primary and secondary alcohols to their respective aldehydes and ketones. Kinetic and mechanistic studies of these prospective electrocatalysts were performed to understand what influences the catalytic activity. For the oxidation of diphenylmethanol, the catalytic rates were determined to be dependent on the concentration of both the catalyst and the alcohol and independent of the concentration of base and oxidant. The incorporation of pendant amines to the phosphine ligand results in substantial increases in the rate of alcohol oxidation with more electron-donating substituents on the pendant amine exhibiting the fastest rates. C1 [Weiss, Charles J.; Das, Parthapratim; Miller, Deanna L.; Helm, Monte L.; Appel, Aaron M.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Appel, AM (reprint author), Pacific NW Natl Lab, Div Phys Sci, POB 999,MS K2-57, Richland, WA 99352 USA. EM aaron.appel@pnnl.gov OI Appel, Aaron/0000-0002-5604-1253 FU US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences; Center for Molecular Electrocatalysis, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences FX We thank Dr. John C. Linehan, Prof. Elliott B. Hulley, Dr. Jonathan M. Darmon, and Dr. Elizabeth L. Tyson for helpful discussions. Research by C.J.W., P.D., D.L.M., and A.M.A. was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Research by M.L.H. was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. NR 57 TC 15 Z9 15 U1 6 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD SEP PY 2014 VL 4 IS 9 BP 2951 EP 2958 DI 10.1021/cs500853f PG 8 WC Chemistry, Physical SC Chemistry GA AO5SM UT WOS:000341405600012 ER PT J AU Brewster, TP Ou, WC Tran, JC Goldberg, KI Hanson, SK Cundari, TR Heinekey, DM AF Brewster, Timothy P. Ou, William C. Tran, Jeremy C. Goldberg, Karen I. Hanson, Susan K. Cundari, Thomas R. Heinekey, D. Michael TI Iridium, Rhodium, and Ruthenium Catalysts for the "Aldehyde-Water Shift" Reaction SO ACS CATALYSIS LA English DT Article DE aldehyde oxidation; homogeneous catalysis; dehydrogenation; disproportionation; water ID OXYGEN-ATOM SOURCE; HYDROGEN-PRODUCTION; CARBON-DIOXIDE; ACETIC-ACID; ALCOHOLS; COMPLEXES; METHANOL; H-2; AMINES; LIGAND AB A series of half-sandwich complexes of iridium, rhodium, and ruthenium are shown to be active catalysts for the conversion of aldehydes and water to carboxylic acids. Depending on the catalyst, H-2 is either released (the "aldehyde-water shift") or transferred to a second equivalent of aldehyde (aldehyde disproportionation). Mechanistic studies suggest hydride transfer to be the selectivity-determining step along the reaction pathway. Using [(p-cymene)Ru(bpy)OH2][OTf](2) as precatalyst, we demonstrate a novel example of a highly selective aldehyde-water shift in the absence of a hydrogen acceptor or base. C1 [Brewster, Timothy P.; Tran, Jeremy C.; Goldberg, Karen I.; Heinekey, D. Michael] Univ Washington, Dept Chem, Seattle, WA 98195 USA. [Hanson, Susan K.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Ou, William C.; Cundari, Thomas R.] Univ N Texas, Dept Chem, Ctr Adv Sci Comp & Modeling CASCaM, Denton, TX 76203 USA. RP Cundari, TR (reprint author), Univ N Texas, Dept Chem, Ctr Adv Sci Comp & Modeling CASCaM, POB 305070, Denton, TX 76203 USA. EM t@unt.edu; heinekey@chem.washington.edu FU Camille and Henry Dreyfus Postdoctoral Program in Environmental Chemistry; Washington NASA Space Grant; NSF under the CCI Center for Enabling New Technologies through Catalysis (CENTC) [CHE-1205189]; TAMS Summer Research Fellowship FX This work was supported by the Camille and Henry Dreyfus Postdoctoral Program in Environmental Chemistry (T.P.B., K.I.G.), by the Washington NASA Space Grant (J.C.T.), and by NSF under the CCI Center for Enabling New Technologies through Catalysis (CENTC), CHE-1205189 (T.P.B., J.C.T, K.I.G., S.KH., T.R.C., D.M.H.). W.C.O. is a student in the Texas Academy of Math and Science (TAMS) at the University of North Texas (UNT) and thanks the TAMS Summer Research Fellowship for its support of this research. The authors acknowledge Dr. David L. Thorn for helpful discussions. NR 24 TC 10 Z9 10 U1 3 U2 78 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD SEP PY 2014 VL 4 IS 9 BP 3034 EP 3038 DI 10.1021/cs500843a PG 5 WC Chemistry, Physical SC Chemistry GA AO5SM UT WOS:000341405600022 ER PT J AU Zhou, K Wang, W Zhao, Z Luo, GH Miller, JT Wong, MS Wei, F AF Zhou, Kai Wang, Wei Zhao, Zhun Luo, Guohua Miller, Jeffrey T. Wong, Michael S. Wei, Fei TI Synergistic Gold Bismuth Catalysis for Non-Mercury Hydrochlorination of Acetylene to Vinyl Chloride Monomer SO ACS CATALYSIS LA English DT Article DE gold catalysis; hydrochlorination; mercury-free; synergistic catalysis; Au-Bi ID VAPOR-PHASE HYDROCHLORINATION; AU/C CATALYSTS; OXIDATION; METAL; NANOPARTICLES; DEACTIVATION; REGENERATION; REACTIVATION; MECHANISM AB Gold has been proposed as an environmentally friendly catalyst for acetylene hydrochlorination for vinyl chloride monomer synthesis by replacing the commercially used mercury catalyst. However, long life with excellent activity is difficult to achieve because gold is readily reduced to metallic nanoparticles. The stability of gold limits its industrial application. In this paper, we promoted gold with bismuth for the hydrochlorination of acetylene. It was found that the Bi promotion leads to partial reduction to AuC1, rather than the complete reduction of Au to metallic nanoparticles in the absence of Bi. The optimized catalyst with a molar ratio of Bi/Au =3:1 (0.3 wt % Au) showed comparable reactivity to 1.0 wt % Au catalyst and significantly improved stability. Furthermore, the gold bismuth catalyst had higher activity and stability than the commercial mercury catalyst, is less toxic and more environmental-friendly, making it a potentially green, mercury-free industrial catalyst for acetylene hydrochlorination. KEYWORDS: gold catalysis, hydrochlorination, mercury-free, synergistic catalysis, Au Bi C1 [Zhou, Kai; Wang, Wei; Luo, Guohua; Wei, Fei] Tsinghua Univ, Beijing Key Lab Green React Engn & Technol, Dept Chem Engn, Beijing 100084, Peoples R China. [Zhao, Zhun; Wong, Michael S.] Rice Univ, Dept Chem & Biomol Engn, Houston, TX 77005 USA. [Miller, Jeffrey T.] Argonne Natl Lab, Dept Chem Sci & Engn, Argonne, IL 60439 USA. [Wong, Michael S.] Rice Univ, Dept Chem, Houston, TX 77005 USA. [Wong, Michael S.] Rice Univ, Dept Civil & Environm Engn, Houston, TX 77005 USA. RP Luo, GH (reprint author), Tsinghua Univ, Beijing Key Lab Green React Engn & Technol, Dept Chem Engn, 1 Tsinghua Rd, Beijing 100084, Peoples R China. EM luoguoh@tsinghua.edu.cn; wf-dce@tsinghua.edu.cn RI Wong, Michael/F-9286-2010; Wei, Fei/H-4809-2012; Zhao, Zhun/G-3007-2013 OI Wong, Michael/0000-0002-3652-3378; Zhao, Zhun/0000-0002-4577-5470 FU Ministry of Science and Technology of China [2008BAB41B02, 2012AA062901]; National Science Foundation [CBET-1134535]; U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences [DE-AC-02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Financial support from the Ministry of Science and Technology of China (Nos. 2008BAB41B02, 2012AA062901) is highly appreciated. Support from the National Science Foundation (CBET-1134535) is also gratefully acknowledged (MSW). J.T.M. was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences under Contract DE-AC-02-06CH11357. The use of the Advanced Photon Source (APS) was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Materials Research Collaborative Access Team operations are supported by the Department of Energy and the MRCAT member institutions. NR 37 TC 29 Z9 32 U1 12 U2 94 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD SEP PY 2014 VL 4 IS 9 BP 3112 EP 3116 DI 10.1021/cs500530f PG 5 WC Chemistry, Physical SC Chemistry GA AO5SM UT WOS:000341405600032 ER PT J AU Martinez-Prieto, LM Carenco, S Wu, CH Bonnefille, E Axnanda, S Liu, Z Fazzini, PF Philippot, K Salmeron, M Chaudret, B AF Martinez-Prieto, Luis M. Carenco, Sophie Wu, Cheng H. Bonnefille, Eric Axnanda, Stephanus Liu, Zhi Fazzini, Pier F. Philippot, Karine Salmeron, Miquel Chaudret, Bruno TI Organometallic Ruthenium Nanoparticles as Model Catalysts for CO Hydrogenation: A Nuclear Magnetic Resonance and AmbientPressure X-ray Photoelectron Spectroscopy Study SO ACS CATALYSIS LA English DT Article DE ruthenium nanoparticles; model Fischer Tropsch synthesis; surface chemistry; ligand effect; ambient-pressure XPS; NMR; FTIR; mass spectrometry ID FISCHER-TROPSCH SYNTHESIS; AMBIENT-PRESSURE XPS; DFT CALCULATIONS; CARBON-MONOXIDE; RU CATALYSTS; IN-SITU; SURFACE; SELECTIVITY; DISSOCIATION; OXIDATION AB We present a study of the structure and reactivity of Ru nanopartides of different sizes (1.3, 1.9, and 3.1 nm) for CO hydrogenation using gas-phase nuclear magnetic resonance and mass spectroscopy. In addition, the nanopartides were characterized under reaction mixtures in situ by ambient-pressure X-ray photoelectron spectroscopy. We found that during reaction the Ru is in the metallic state and that the diphosphine ligands [bis(diphenylphosphino)butane (dppb)] on the surface of 1.9 and 3.1 nm nanopartides not only act as capping and protecting agents but also stay on the surface during reaction and improve their activity and selectivity toward C-2 C-4 hydrocarbons. KEYWORDS: ruthenium nanoparticles, model Fischer Tropsch synthesis, surface chemistry, ligand effect, ambient-pressure XPS, NMR, FTIR, mass spectrometry C1 [Martinez-Prieto, Luis M.; Bonnefille, Eric; Philippot, Karine] CNRS, LCC, F-31077 Toulouse, France. [Martinez-Prieto, Luis M.; Bonnefille, Eric; Philippot, Karine] Univ Toulouse, UPS, INPT, LCC, F-31077 Toulouse, France. [Carenco, Sophie] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA. [Wu, Cheng H.; Salmeron, Miquel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Axnanda, Stephanus; Liu, Zhi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Fazzini, Pier F.; Chaudret, Bruno] CNRS, LPCNO, UMR5215, INSA,UPS,Inst Sci Appl, F-31077 Toulouse, France. [Salmeron, Miquel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Salmeron, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM mbsalmeron@lbl.gov; chaudret@insa-toulouse.fr RI Wu, Cheng Hao/C-9565-2014; Carenco, Sophie/D-6512-2011; Liu, Zhi/B-3642-2009; FAZZINI, Pier Francesco/B-2645-2012; OI Carenco, Sophie/0000-0002-6164-2053; Liu, Zhi/0000-0002-8973-6561; FAZZINI, Pier Francesco/0000-0002-4307-6481; PHILIPPOT, Karine/0000-0002-8965-825X FU EU (ERC) [NANOSONWINGS 2009-246763]; Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, under U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank CNRS, University Paul Sabatier at Toulouse University, Institut des Sciences Appliquees at Toulouse (INSA), and V. Colliere and L. Data for TEM facilities (TEMSCAN, UPS) and P. Lecante (CEMES, CNRS) for WAXS measurements, and C. Bijani and Y. Coppel for gas-phase and solid state NMR measurements. This work was supported by EU (ERC Advanced Grant, NANOSONWINGS 2009-246763). The in situ XPS part of this work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, under U.S. Department of Energy Contract DE-AC02-05CH11231. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. NR 56 TC 14 Z9 14 U1 8 U2 79 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD SEP PY 2014 VL 4 IS 9 BP 3160 EP 3168 DI 10.1021/cs5010536 PG 9 WC Chemistry, Physical SC Chemistry GA AO5SM UT WOS:000341405600039 ER PT J AU Li, Q Wu, G Cullen, DA More, KL Mack, NH Chung, HT Zelenay, P AF Li, Qing Wu, Gang Cullen, David A. More, Karren L. Mack, Nathan H. Chung, Hoon T. Zelenay, Piotr TI Phosphate-Tolerant Oxygen Reduction Catalysts SO ACS CATALYSIS LA English DT Article DE oxygen reduction; nonprecious metal catalysis; phosphate tolerance; Pt poisoning; phosphoric acid fuel cells ID NONPRECIOUS METAL CATALYST; NITROGEN-DOPED GRAPHENE; ELECTROLYTE FUEL-CELLS; ONION-LIKE CARBON; CATHODE CATALYSTS; METHANOL ELECTROOXIDATION; PERFORMANCE DURABILITY; POLYANILINE; ADSORPTION; IRON AB Increased oxygen reduction reaction (ORR) kinetics, improved CO tolerance, and more efficient water and heat management represent significant advantages that high-temperature polymer electrolyte fuel cells (HT-PEFCs) operating with a phosphoric acid-doped polybenzimidazole (PBI) membrane offer over traditional Nafion-based, low-temperature PEFCs. However, before such HT-PEFCs become viable, the detrimental effect of phosphate chemisorption on the performance of state-of-the-art wt-based cathode catalysts needs to be addressed. In this study, we propose a solution to the severe poisoning of Pt-based PEFC cathode catalysts with phosphates (H2PO4 and HPO42-) by replacing standard Pt/C catalysts with phosphate-tolerant, nonprecious metal catalyst (NPMC) formulations. Catalysts with a very high surface area (845 m(2) g (-1)) were synthesized in this work from polyaniline (PANI), iron, and carbon using a high-temperature approach. The effects of metal precursors and metal loading on the morphology, structure, and ORR activity of the NPMCs were systematically studied. Electrochemical measurements indicated that as-prepared Fe-based catalysts (PANI-Fe-C) can tolerate phosphate ions at high concentrations and deliver ORR performance in 5.0 M H3PO4 that is superior to that of Pt/C catalysts. A 30 wt 96 Fe-derived catalyst was found to have the most porous morphology and the highest surface area among studied Fe-based catalysts, which correlates with the highest ORR activity of that catalyst. These cost-effective and well-performing ORR catalysts can potentially replace Pt/C catalysts in phosphoric acid-based HT-PEFCs. C1 [Li, Qing; Wu, Gang; Chung, Hoon T.; Zelenay, Piotr] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Mack, Nathan H.] Los Alamos Natl Lab, Chem Div, Los Alamos, NM 87545 USA. [Cullen, David A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [More, Karren L.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Wu, G (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. EM wugang@lanl.gov; zelenay@lanl.gov RI Wu, Gang/E-8536-2010; Cullen, David/A-2918-2015; Li, Qing/G-4502-2011; More, Karren/A-8097-2016; Chung, Hoon/A-7916-2012 OI Wu, Gang/0000-0003-4956-5208; Cullen, David/0000-0002-2593-7866; Li, Qing/0000-0003-4807-030X; More, Karren/0000-0001-5223-9097; Chung, Hoon/0000-0002-5367-9294 FU DOE-EERE Fuel Cell Technologies Office; ORNL's Center for Nanophase Materials Sciences (CNMS); Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE FX Financial support from the DOE-EERE Fuel Cell Technologies Office is gratefully acknowledged. Microscopy research was supported by ORNL's Center for Nanophase Materials Sciences (CNMS), which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE. NR 46 TC 21 Z9 22 U1 9 U2 91 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD SEP PY 2014 VL 4 IS 9 BP 3193 EP 3200 DI 10.1021/cs500807v PG 8 WC Chemistry, Physical SC Chemistry GA AO5SM UT WOS:000341405600042 ER PT J AU Wolfe, DN Heppner, DG Gardner, SN Jaing, C Dupuy, LC Schmaljohn, CS Canton, K AF Wolfe, Daniel N. Heppner, D. Gray Gardner, Shea N. Jaing, Crystal Dupuy, Lesley C. Schmaljohn, Connie S. Canton, Kevin TI Perspective Piece: Current Strategic Thinking for the Development of a Trivalent Alphavirus Vaccine for Human Use SO AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE LA English DT Article ID EQUINE-ENCEPHALITIS-VIRUS; EASTERN EQUINE; IN-VIVO; ENCEPHALOMYELITIS VACCINE; NEUTRALIZING ANTIBODIES; EXPERIMENTAL INFECTION; IMMUNE INTERFERENCE; CYNOMOLGUS MACAQUES; ANIMAL-MODELS; MICE AB Vaccinations against the encephalitic alphaviruses (western, eastern, and Venezuelan equine encephalitis virus) are of significant interest to biological defense, public health, and agricultural communities alike. Although vaccines licensed for veterinary applications are used in the Western Hemisphere and attenuated or inactivated viruses have been used under Investigational New Drug status to protect at-risk personnel, there are currently no licensed vaccines for use in humans. Here, we will discuss the need for a trivalent vaccine that can protect humans against all three viruses, recent progress to such a vaccine, and a strategy to continue development to Food and Drug Administration licensure. C1 [Wolfe, Daniel N.; Heppner, D. Gray] Def Threat Reduct Agcy, Chem & Biol Technol Dept, Ft Belvoir, VA 22060 USA. [Heppner, D. Gray] TASC Inc, Lorton, VA USA. [Gardner, Shea N.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Jaing, Crystal] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA USA. [Dupuy, Lesley C.; Schmaljohn, Connie S.] US Army Med Res Inst Infect Dis, Div Virol, Ft Detrick, MD USA. Joint Program Execut Off, Joint Vaccine Acquisit Program, Ft Detrick, MD USA. RP Wolfe, DN (reprint author), Def Threat Reduct Agcy, Chem & Biol Technol Dept, 8725 John Kingman Rd, Ft Belvoir, VA 22060 USA. EM daniel.wolfe@dtra.mil; donald.heppner@tasc.com; Gardner26@llnl.gov; jaing2@llnl.gov; lesley.c.dupuy.ctr@mail.mil; connie.s.schmaljohn.civ@mail.mil; kevin.s.carlton.civ@mail.mil NR 52 TC 3 Z9 3 U1 0 U2 6 PU AMER SOC TROP MED & HYGIENE PI MCLEAN PA 8000 WESTPARK DR, STE 130, MCLEAN, VA 22101 USA SN 0002-9637 EI 1476-1645 J9 AM J TROP MED HYG JI Am. J. Trop. Med. Hyg. PD SEP PY 2014 VL 91 IS 3 BP 442 EP 450 DI 10.4269/ajtmh.14-0055 PG 9 WC Public, Environmental & Occupational Health; Tropical Medicine SC Public, Environmental & Occupational Health; Tropical Medicine GA AO4WQ UT WOS:000341342500004 PM 24842880 ER PT J AU Ramos, AG Nunziata, SO Lance, SL Rodriguez, C Faircloth, BC Gowaty, PA Drummond, H AF Ramos, Alejandra G. Nunziata, Schyler O. Lance, Stacey L. Rodriguez, Cristina Faircloth, Brant C. Gowaty, Patricia Adair Drummond, Hugh TI Habitat structure and colony structure constrain extrapair paternity in a colonial bird SO ANIMAL BEHAVIOUR LA English DT Article DE blue-footed booby; colonial seabird; extrapair paternity; extrapair sire; habitat structure; microsatellite; nest density; spatial location; Sula nebouxii ID BLUE-FOOTED BOOBY; PAIR PATERNITY; ACADIAN FLYCATCHERS; SULA-NEBOUXII; MATE; FEMALE; QUALITY; HETEROZYGOSITY; POPULATIONS; HYPOTHESIS AB Individual variation in sexual fidelity and extrapair paternity (EPP) is widely attributed to environmental heterogeneity, but the only variables known to be influential are food abundance and density of conspecific breeders (potential extrapair partners). Habitat structure is thought to impact EPP but is rarely measured and, when considered, is usually confounded with food abundance and predation pressure. To sidestep these confounds, we tested whether EPP is associated with habitat structure variables and with local conspecific density in a species whose nesting habitat is not used for feeding and lacks predators. In a blue-footed booby, Sula nebouxii, colony, the probability of EPP in a female's nest was highest in parts of the study plot where there were few obstacles to locomotion, and was quadratically related to local density of sexually active males, even though local males did not sire the EP chicks. The probability of a male breeder siring EP (extrapair) chicks elsewhere was quadratically related to local density of sexually active males around his nest. From these patterns we infer that both sexes may foray for EP interactions, that males and females nesting at intermediate density are most likely to be accessed by forayers, and that obstacles in the vicinity of a female's nest constrain access of foraying males. To our knowledge, this is the first demonstration that individual variation in EPP is associated with habitat structure in the absence of confounding variation in food availability, predation pressure or breeder quality, and the first evidence that EPP opportunities of female and male breeders are reduced by high density of conspecific breeders above a particular threshold. (C) 2014 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. C1 [Ramos, Alejandra G.; Rodriguez, Cristina; Drummond, Hugh] Univ Nacl Autonoma Mexico, Inst Ecol, Dept Ecol & Evolut, Mexico City 04510, DF, Mexico. [Nunziata, Schyler O.; Lance, Stacey L.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC USA. [Nunziata, Schyler O.] Univ Kentucky, Dept Biol, Lexington, KY USA. [Faircloth, Brant C.; Gowaty, Patricia Adair] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA USA. [Gowaty, Patricia Adair] Univ Calif Los Angeles, Inst Environm & Sustainabil, Los Angeles, CA USA. [Gowaty, Patricia Adair] Smithsonian Trop Res Inst, Washington, DC USA. RP Ramos, AG (reprint author), Univ Nacl Autonoma Mexico, Inst Ecol, Dept Ecol & Evolut, AP 70-275, Mexico City 04510, DF, Mexico. EM ramos.alejndra@gmail.com RI Lance, Stacey/K-9203-2013; OI Lance, Stacey/0000-0003-2686-1733; Faircloth, Brant/0000-0002-1943-0217 FU UNAM (PAPIIT) [IN206610]; CONACyT [104313]; Consejo Nacional de Ciencia y Tecnologia; Universidad Nacional Autonoma de Mexico; U.S. Department of Energy [DE-FC09-07SR22506] FX We are grateful to Simon C. Griffith, Lynna M. Kiere, Marcela Osorio-Beristain, Diana Perez-Staples, Oscar Sanchez-Macouzet and two anonymous referees for helpful comments on the manuscript, and to numerous volunteers and colleagues for help in the field and lab, especially Santiago Bautista-Lopez, Jonathan P. Drury, Gabriela Lopez-Carapia, Janeth Rosas-Morales and David Schneider. We are grateful to Pablo Frank-Bolton, who kindly wrote the script used to estimate neighbourhood nest density. The Armada de Mexico, local fishermen and staff of the Parque Nacional Isla Isabel supplied vital and much appreciated logistical support. This study was financed by UNAM (PAPIIT, IN206610) and CONACyT (104313). This manuscript constitutes a partial fulfilment of the Graduate Program in Biomedical Sciences of the Universidad Nacional Autonoma de Mexico. A.G.R. wishes to thank and acknowledge the scholarship and financial support provided by the Consejo Nacional de Ciencia y Tecnologia and the Universidad Nacional Autonoma de Mexico. This research was partially supported by U.S. Department of Energy under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation. NR 51 TC 6 Z9 6 U1 1 U2 31 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0003-3472 EI 1095-8282 J9 ANIM BEHAV JI Anim. Behav. PD SEP PY 2014 VL 95 BP 121 EP 127 DI 10.1016/j.anbehav.2014.07.003 PG 7 WC Behavioral Sciences; Zoology SC Behavioral Sciences; Zoology GA AO5BN UT WOS:000341355900014 ER PT J AU Park, DM Jiao, YQ AF Park, Dan M. Jiao, Yongqin TI Modulation of Medium pH by Caulobacter crescentus Facilitates Recovery from Uranium-Induced Growth Arrest SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID ESCHERICHIA-COLI; CELL-CYCLE; SUBSURFACE SOILS; BACTERIA; BIOREMEDIATION; SURVIVAL; ION; BIOPRECIPITATION; PRECIPITATION; REPLICATION AB The oxidized form of uranium [U(VI)] predominates in oxic environments and poses a major threat to ecosystems. Due to its ability to mineralize U(VI), the oligotroph Caulobacter crescentus is an attractive candidate for U(VI) bioremediation. However, the physiological basis for U(VI) tolerance is unclear. Here we demonstrated that U(VI) caused a temporary growth arrest in C. crescentus and three other bacterial species, although the duration of growth arrest was significantly shorter for C. crescentus. During the majority of the growth arrest period, cell morphology was unaltered and DNA replication initiation was inhibited. However, during the transition from growth arrest to exponential phase, cells with shorter stalks were observed, suggesting a decoupling between stalk development and the cell cycle. Upon recovery from growth arrest, C. crescentus proliferated with a growth rate comparable to that of a control without U(VI), although a fraction of these cells appeared filamentous with multiple replication start sites. Normal cell morphology was restored by the end of exponential phase. Cells did not accumulate U(VI) resistance mutations during the prolonged growth arrest, but rather, a reduction in U(VI) toxicity occurred concomitantly with an increase in medium pH. Together, these data suggest that C. crescentus recovers from U(VI)-induced growth arrest by reducing U(VI) toxicity through pH modulation. Our finding represents a unique U(VI) detoxification strategy and provides insight into how microbes cope with U(VI) under nongrowing conditions, a metabolic state that is prevalent in natural environments. C1 [Park, Dan M.; Jiao, Yongqin] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Jiao, YQ (reprint author), Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Phys & Life Sci Directorate, Livermore, CA 94550 USA. EM jiao1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Department of Energy Early Career Research Program award from the Office of Biological and Environmental Sciences FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 (LLNL-JRNL-646493). Funding was provided by a Department of Energy Early Career Research Program award from the Office of Biological and Environmental Sciences (to Y.J.). NR 47 TC 2 Z9 2 U1 3 U2 11 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD SEP PY 2014 VL 80 IS 18 BP 5680 EP 5688 DI 10.1128/AEM.01294-14 PG 9 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA AO6UV UT WOS:000341488200013 PM 25002429 ER PT J AU Herwig, F Woodward, PR Lin, PH Knox, M Fryer, C AF Herwig, Falk Woodward, Paul R. Lin, Pei-Hung Knox, Mike Fryer, Chris TI GLOBAL NON-SPHERICAL OSCILLATIONS IN THREE-DIMENSIONAL 4 pi SIMULATIONS OF THE H-INGESTION FLASH SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE convection; hydrodynamics; instabilities; stars: AGB and post-AGB; stars: individual (V4334 Sagittarii); stars: interiors ID EXTREMELY METAL-POOR; SAKURAIS OBJECT; LOW-METALLICITY; STARS; EVOLUTION; NUCLEOSYNTHESIS; CONVECTION AB We performed three-dimensional simulations of proton-rich material entrainment into C-12-rich He-shell flash convection and the subsequent H-ingestion flash that took place in the post-asymptotic giant branch star Sakurai's object. Observations of the transient nature and anomalous abundance features are available to validate our method and assumptions, with the aim of applying them to very low-metallicity stars in the future. We include nuclear energy feedback from H burning and cover the full 4 pi geometry of the shell. Runs on 768(3) and 1536(3) grids agree well with each other and have been followed for 1500 minutes and 1200 minutes. After an 850 minute long quiescent entrainment phase, the simulations enter into a global non-spherical oscillation that is launched and sustained by individual ignition events of H-rich fluid pockets. Fast circumferential flows collide at the antipode and cause the formation and localized ignition of the next H-overabundant pocket. The cycle repeats for more than a dozen times while its amplitude decreases. During the global oscillation, the entrainment rate increases temporarily by a factor of approximate to 100. Entrained entropy quenches convective motions in the upper layer until the burning of entrained H establishes a separate convection zone. The lower-resolution run hints at the possibility that another global oscillation, perhaps even more violent, will follow. The location of the H-burning convection zone agrees with a one-dimensional model in which the mixing efficiency is calibrated to reproduce the light curve. The simulations have been performed at the NSF Blue Waters supercomputer at NCSA. C1 [Herwig, Falk] Univ Victoria, Dept Phys & Astron, Victoria, BC V8P5C2, Canada. [Herwig, Falk] New Mexico Consortium, Turbulence Stellar Astrophys Program, Los Alamos, NM 87544 USA. [Woodward, Paul R.; Lin, Pei-Hung; Knox, Mike] Univ Minnesota, LCSE, Minneapolis, MN 55455 USA. [Woodward, Paul R.; Lin, Pei-Hung; Knox, Mike] Univ Minnesota, Dept Astron, Minneapolis, MN 55455 USA. [Fryer, Chris] Los Alamos Natl Lab, Computat Comp Sci Div, Los Alamos, NM 87545 USA. [Fryer, Chris] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. RP Herwig, F (reprint author), Univ Victoria, Dept Phys & Astron, Victoria, BC V8P5C2, Canada. EM fherwig@uvic.ca FU U.S. on the NCSA BlueWaters system under PRAC grant [NSF/OCI-0832618]; DoE; Los Alamos and Sandia National Laboratories; NSF CRI grant [CNS-0708822]; NSF; Blue Waters project at NCSA FX The computer simulations have been performed in the U.S. on the NCSA BlueWaters system under PRAC grant NSF/OCI-0832618 and in Canada on the WestGrid Orcinus computer. F. H. acknowledges funding from an NSERC Discovery grant. P. R. W. acknowledges DoE support from contracts with the Los Alamos and Sandia National Laboratories, NSF CRI grant CNS-0708822, and support from an NSF subcontract from the Blue Waters project at NCSA. NR 24 TC 26 Z9 26 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD SEP 1 PY 2014 VL 792 IS 1 AR L3 DI 10.1088/2041-8205/792/1/L3 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AO4KO UT WOS:000341306900003 ER PT J AU Landerer, FW Gleckler, PJ Lee, T AF Landerer, Felix W. Gleckler, Peter J. Lee, Tong TI Evaluation of CMIP5 dynamic sea surface height multi-model simulations against satellite observations SO CLIMATE DYNAMICS LA English DT Article DE Sea surface height; CMIP5; GCM skill; Model evaluation; AR5 ID OCEAN CIRCULATION; CLIMATE MODELS; LEVEL CHANGE; VARIABILITY; ATTRIBUTION; PROJECTIONS; PRODUCTS; IMPACT; RISE; FLUX AB We evaluate the representation of dynamic sea surface height (SSH) fields of 33 global coupled models (GCMs) contributed to the fifth phase of the Coupled Model Intercomparison Project (CMIP5). We use observations from satellite altimetry and basic performance metrics to quantify the ability of the GCMs to replicate observed SSH of the time-mean, seasonal cycle, and inter-annual variability patterns. The time-mean SSH representation has markedly improved from CMIP3 to CMIP5, both in terms of overall reduction in root-mean square differences, and in terms of reduced GCM ensemble spread. Biases of the time-mean SSH field in the Indian and Pacific Ocean equatorial regions are consistent with biases in the zonal surface wind stress fields identified with independent measurements. In the Southern Ocean, the latitude of the maximum meridional gradient of the zonal mean SSH CMIP5 models is shifted equatorward, consistent with the GCMs' spatial biases in the maximum of the zonal mean westerly surface wind stress fields. However, while the Southern Ocean SSH gradients correlate well with the maximum Antarctic circumpolar current transports, there is no significant correlation with the maximum zonal mean wind stress amplitudes, consistent with recent findings that the eddy parameterisations in GCMs dominate over wind stress amplitudes in this region. There is considerable spread across the CMIP5 ensemble for the seasonal and interannual SSH variability patterns. Because of the short observational period, the interannual variability patterns depend on the time-period over which they are derived, while no such dependency is found for the time-mean patterns. The model performance metrics for SSH presented here provide insight into GCM shortcoming due to inadequate model physics or processes. While the diagnostics of CMIP5 GCM performance relative to observations reveal that some models are clearly better than others, model performance is sensitive to the spatio-temporal scales chosen. C1 [Landerer, Felix W.; Lee, Tong] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Gleckler, Peter J.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA USA. RP Landerer, FW (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM felix.w.landerer@jpl.nasa.gov OI Landerer, Felix/0000-0003-2678-095X FU NASA FX We acknowledge the GCM modeling groups, the PCMDI, and the WCRP's Working Group on Coupled Modeling for their roles in making available the WCRP CMIP3 and CMIP5 multimodel data sets. Support of these data sets is provided by the Office of Science, US Department of Energy. FWL's and TL's work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. NR 47 TC 9 Z9 9 U1 2 U2 21 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD SEP PY 2014 VL 43 IS 5-6 BP 1271 EP 1283 DI 10.1007/s00382-013-1939-x PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AO5FR UT WOS:000341369700008 ER PT J AU Lux, SF Pollak, E Boesenberg, U Richardson, T Kostecki, R AF Lux, Simon Franz Pollak, Elad Boesenberg, Ulrike Richardson, Thomas Kostecki, Robert TI Electrochemical reactivity of pyrolytic carbon film electrodes in organic carbonate electrolytes SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Pyrolytic carbon; CO2 heat treatment; Lithium-ion battery; Positive electrode; Interfacial reactivity ID LITHIUM-ION BATTERIES; RECHARGEABLE BATTERIES; CHARGING STATES; RAMAN-SPECTRUM; GRAPHITE; CONDUCTIVITY; DEPENDENCE; CATHODE; OXYGEN; BLACK AB The electrochemical reactivity of polyimide-derived pyrolytic carbon film electrodes in a standard organic carbonate lithium-ion battery electrolyte was studied and quantified. An oxidative heat treatment at 900 degrees C under CO2 atmosphere was found to lower the reactivity of disordered carbons towards electrolyte oxidation. Cyclic voltammetry and potentiostatic measurements of the carbon film electrodes demonstrate the beneficial effect of the CO2 heat treatment in the potential range between 4.2 and 4.8 V vs. Li/Li+ i.e., at potentials where high-energy Li-ion positive composite electrodes operate. (C) 2014 Elsevier B.V. All rights reserved. C1 [Lux, Simon Franz; Pollak, Elad; Boesenberg, Ulrike; Richardson, Thomas; Kostecki, Robert] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Kostecki, R (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM r_kostecki@lbl.gov FU Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors also gratefully acknowledge the support received by Dr. Lydia Terborg regarding the SEM images. NR 22 TC 3 Z9 3 U1 1 U2 21 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 EI 1873-1902 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD SEP PY 2014 VL 46 BP 5 EP 8 DI 10.1016/j.elecom.2014.05.030 PG 4 WC Electrochemistry SC Electrochemistry GA AO4ZA UT WOS:000341348700002 ER PT J AU Greer, DR Basso, TP Ibanez, AB Bauer, S Skerker, JM Ozcam, AE Leon, D Shin, C Arkin, AP Balsara, NP AF Greer, Douglas R. Basso, Thalita P. Ibanez, Ana B. Bauer, Stefan Skerker, Jeffrey M. Ozcam, A. Evren Leon, Dacia Shin, Chaeyoung Arkin, Adam P. Balsara, Nitash P. TI Fermentation of hydrolysate detoxified by pervaporation through block copolymer membranes SO GREEN CHEMISTRY LA English DT Article ID CELLULOSIC BIOFUELS; ETHANOL-PRODUCTION; ENERGY CROP; BIOMASS; INHIBITION; MISCANTHUS; WOOD; LIGNOCELLULOSE; PRETREATMENT; MIXTURES AB The large-scale use of lignocellulosic hydrolysate as a fermentation broth has been impeded due to its high concentration of organic inhibitors to fermentation. In this study, pervaporation with polystyrene-block-polydimethylsiloxane-block-polystyrene (SDS) block copolymer membranes was shown to be an effective method for separating volatile inhibitors from dilute acid pretreated hydrolysate, thus detoxifying hydrolysate for subsequent fermentation. We report the separation of inhibitors from hydrolysate thermodynamically and quantitatively by detailing their concentrations in the hydrolysate before and after detoxification by pervaporation. Specifically, we report >99% removal of furfural and 27% removal of acetic acid with this method. Additionally, we quantitatively report that the membrane is selective for organic inhibitor compounds over water, despite water's smaller molecular size. Because its inhibitors were removed but its sugars left intact, pervaporation-detoxified hydrolysate was suitable for fermentation. In our fermentation experiments, Saccharomyces cerevisiae strain SA-1 consumed the glucose in pervaporation-detoxified hydrolysate, producing ethanol. In contrast, under the same conditions, a control hydrolysate was unsuitable for fermentation; no ethanol was produced and no glucose was consumed. This work demonstrates progress toward economical lignocellulosic hydrotysate fermentation. C1 [Greer, Douglas R.; Ozcam, A. Evren; Shin, Chaeyoung; Balsara, Nitash P.] Univ Calif Berkeley, Dept Biomol & Chem Engn, Berkeley, CA 94720 USA. [Basso, Thalita P.; Skerker, Jeffrey M.; Arkin, Adam P.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Ibanez, Ana B.; Bauer, Stefan; Leon, Dacia] Univ Calif Berkeley, Energy Biosci Inst, Berkeley, CA 94704 USA. [Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Greer, DR (reprint author), Univ Calif Berkeley, Dept Biomol & Chem Engn, Berkeley, CA 94720 USA. EM aparkin@lbl.gov; nbalsara@berkeley.edu RI Arkin, Adam/A-6751-2008 OI Arkin, Adam/0000-0002-4999-2931 FU Energy Biosciences Institute; U.S. Department of Energy [DE-AC36-08GO28308] FX This work was funded by the Energy Biosciences Institute. Hydrolysate was provided by the National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401, a national laboratory of the U.S. Department of Energy managed by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy under Contract Number DE-AC36-08GO28308. NR 34 TC 8 Z9 8 U1 1 U2 36 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9262 EI 1463-9270 J9 GREEN CHEM JI Green Chem. PD SEP PY 2014 VL 16 IS 9 BP 4206 EP 4213 DI 10.1039/c4gc00756e PG 8 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA AO4BW UT WOS:000341282200022 ER PT J AU Gupta, S Kobayashi, T Hlova, IZ Goldston, JF Pruski, M Pecharsky, VK AF Gupta, S. Kobayashi, T. Hlova, I. Z. Goldston, J. F. Pruski, M. Pecharsky, V. K. TI Solvent-free mechanochemical synthesis of alane, AlH3: effect of pressure on the reaction pathway SO GREEN CHEMISTRY LA English DT Article ID ALUMINUM-HYDRIDE; HYDROGEN-STORAGE; THERMAL-DECOMPOSITION; CRYSTAL-STRUCTURE; NMR; STABILITIES; POLYMORPHS AB Nearly quantitative mechanochemical synthesis of non-solvated AlH3 from lithium aluminium hydride (LiAlH4) and aluminium chloride (AlCl3) has been achieved at room temperature under reasonably low pressure of hydrogen (210 bar) or inert gas (125 bar for He or 90 bar for Ar). X-ray diffraction, solid-state Al-27 NMR spectroscopy, and temperature programmed desorption analyses of as-milled materials reveal a nearly complete conversion of a 3 : 1 (molar) mixture of LiAlH4 and AlCl3 to a 4: 3 (molar) mixture of AlH3 and LiCl in ca. 30 min. By applying pressure of 210 bar or less (depending on the gas: hydrogen, helium, or argon), competing reactions leading to formation of metallic aluminium can be completely suppressed. X-ray diffraction and NMR analyses of products extracted at various stages of the mechanochemical reaction between LiAlH4 and AlCl3 reveal, for the first time, that the solid-state transformation proceeds with LiAlCl4 as an intermediate. Evidently, the critical pressure required to suppress the formation of metallic aluminium depends on the rate at which mechanical energy is supplied during milling. For example, the critical pressure is reduced from 210 bar to 1 bar of hydrogen when the milling speed of a standard planetary milt is reduced from 300 rpm to 150 rpm, although at the expense of sluggish kinetics and much longer reaction time. C1 [Gupta, S.; Kobayashi, T.; Hlova, I. Z.; Goldston, J. F.; Pruski, M.; Pecharsky, V. K.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Hlova, I. Z.; Pecharsky, V. K.] Iowa State Univ, Dept Chem, Ames, IA USA. [Goldston, J. F.; Pruski, M.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Gupta, S (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM shalabh@ameslab.gov; mpruski@ameslab.gov; vitkp@ameslab.gov FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358] FX Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract no. DE-AC02-07CH11358. NR 42 TC 7 Z9 7 U1 7 U2 45 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9262 EI 1463-9270 J9 GREEN CHEM JI Green Chem. PD SEP PY 2014 VL 16 IS 9 BP 4378 EP 4388 DI 10.1039/c4gc00998c PG 11 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA AO4BW UT WOS:000341282200040 ER PT J AU Yang, SH Hashemi, MR Berry, CW Jarrahi, M AF Yang, Shang-Hua Hashemi, Mohammad R. Berry, Christopher W. Jarrahi, Mona TI 7.5% Optical-to-Terahertz Conversion Efficiency Offered by Photoconductive Emitters With Three-Dimensional Plasmonic Contact Electrodes SO IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY LA English DT Article DE Nanoscale devices; photoconductive antenna; plasmonics; terahertz source; ultrafast photoconductor ID SECURITY APPLICATIONS; ANTENNA; TECHNOLOGY; RADIATION; ENHANCEMENT; GENERATION; EXCITATION; FIELDS; SWITCH; DRUGS AB We present a photoconductive terahertz emitter that incorporates three-dimensional plasmonic contact electrodes to offer record high optical-to-terahertz power conversion efficiencies. By use of three-dimensional plasmonic contact electrodes the majority of photocarriers are generated within nanoscale distances from the photoconductor contact electrodes and drifted to the terahertz radiating antenna in a sub-picosecond time-scale to efficiently contribute to terahertz radiation. We experimentally demonstrate 105 mu W of broadband terahertz radiation in the 0.1-2 THz frequency range in response to a 1.4 mW optical pump, exhibiting a record high optical-to-terahertz power conversion efficiency of 7.5%. C1 [Yang, Shang-Hua; Hashemi, Mohammad R.; Jarrahi, Mona] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. [Yang, Shang-Hua; Hashemi, Mohammad R.; Berry, Christopher W.; Jarrahi, Mona] Univ Michigan, Elect Engn & Comp Sci Dept, Ann Arbor, MI 48109 USA. [Berry, Christopher W.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Yang, SH (reprint author), Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. EM mjarrahi@ucla.edu FU DARPA Young Faculty Award [N66001-10-1-4027]; NSF CAREER Award [N00014-11-1-0096]; ONR Young Investigator Award [N00014-12-1-0947]; ARO Young Investigator Award [W911NF-12-1-0253] FX This work was supported in part by DARPA Young Faculty Award N66001-10-1-4027, by the NSF CAREER Award N00014-11-1-0096, by the ONR Young Investigator Award N00014-12-1-0947, and by the ARO Young Investigator Award (W911NF-12-1-0253. NR 45 TC 31 Z9 31 U1 0 U2 20 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-342X J9 IEEE T THZ SCI TECHN JI IEEE Trans. Terahertz Sci. Technol. PD SEP PY 2014 VL 4 IS 5 BP 575 EP 581 DI 10.1109/TTHZ.2014.2342505 PG 7 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA AO7YQ UT WOS:000341569400008 ER PT J AU Tang, SF Lorbeer, C Wang, XJ Ghosh, P Mudring, AV AF Tang, Si-Fu Lorbeer, Chantal Wang, Xinjiao Ghosh, Pushpal Mudring, Anja-Verena TI Highly Luminescent Salts Containing Well-Shielded Lanthanide-Centered Complex Anions and Bulky Imidazolium Countercations SO INORGANIC CHEMISTRY LA English DT Article ID TEMPERATURE IONIC LIQUIDS; BETA-DIKETONATE COMPLEXES; CRYSTAL-STRUCTURE; QUANTUM YIELD; EUROPIUM; SOLVENTS; EU3+; PHOTOLUMINESCENCE; CATALYSIS; POLARITY AB Four salts containing imidazolium cations and europium(III)- or terbium(III)-centered complex anions have been successfully synthesized from an ethanol/H2O solution. The single-crystal X-ray diffraction analyses reveal that these compounds have a common formula of [R] [Ln(DETCAP)(4)] [R = 1-ethyl-3-methylimidazolium (C(2)mim), Ln = Eu (1) and Tb (2); R = 1-butyl-3-methylimidazolium (C(4)mim), Ln = Eu (3) and Tb (4); DETCAP = diethyl-2,2,2-trichloroacetylphosphoramidate], in which the lanthanide centers are chelated by four chelating pseudo-beta-diketonate ligands (DETCAP)(-), forming the respective complex anions. Their thermal behaviors and stabilities were also investigated to study the role of the length of the side chain in the cations. Fluorescence measurements at both room temperature and liquid-nitrogen temperature show that these materials show intense characteristic europium(III) or terbium(III) emissions and have long decay times. Their overall quantum yields were determined to be in the range of 30-49%. C1 [Tang, Si-Fu] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Key Lab Biofuel, Qingdao 266101, Peoples R China. [Lorbeer, Chantal; Wang, Xinjiao; Ghosh, Pushpal; Mudring, Anja-Verena] Ruhr Univ Bochum, D-44801 Bochum, Germany. [Ghosh, Pushpal] Dr Hari Singh Gour Vishwavidyalaya, Dept Chem, Sch Chem Sci & Technol, Sagar 470003, Madhya Pradesh, India. [Mudring, Anja-Verena] Iowa State Univ, Ames, IA 50014 USA. [Mudring, Anja-Verena] Ames Lab, Crit Mat Inst, Ames, IA 50011 USA. RP Tang, SF (reprint author), Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Key Lab Biofuel, Qingdao 266101, Peoples R China. EM tangsf@qibebt.ac.cn; mudring@iastate.edu OI Ghosh, Pushpal/0000-0002-7596-5056 FU National Natural Science Foundation of China [21171173] FX This work was supported by the National Natural Science Foundation of China (Grant 21171173). NR 77 TC 5 Z9 5 U1 5 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD SEP 1 PY 2014 VL 53 IS 17 BP 9027 EP 9035 DI 10.1021/ic500979p PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AO3LB UT WOS:000341229600025 PM 25121823 ER PT J AU He, H Miiller, W Aronson, MC AF He, Hua Miiller, Wojciech Aronson, Meigan C. TI New Kagome Metal Sc3Mn3Al7Si5 and Its Gallium-Doped Analogues: Synthesis, Crystal Structure, and Physical Properties SO INORGANIC CHEMISTRY LA English DT Article ID RARE-EARTH-METALS; MAGNETIC-STRUCTURE; FRUSTRATED MAGNETS; SOLID-SOLUTIONS; SPIN; STATE; SCANDIUM; SYSTEM; PHASE; SUPERCONDUCTIVITY AB We report the synthesis, crystal structure, and basic properties of the new intermetallic compound Sc3Mn3Al7Si5. The structure of the compound was established by single-crystal X-ray diffraction, and it crystallizes with a hexagonal structure (Sc3Ni11Si4 type) with Mn atoms forming the Kagome nets. The dc magnetic susceptibility measurements reveal a Curie-Weiss moment of similar to 0.51 mu(B)/Mn; however, no magnetic order is found for temperatures as low as 1.8 K. Electrical resistivity and heat capacity measurements show that this compound is definitively metallic, with a relatively large specific heat Sommerfeld coefficient, indicating strong electronic correlations. Intriguingly, these features have revealed Sc3Mn3Al7Si5 as a possible quantum spin liquid. With chemical and lattice disorder introduced by doping, a spin liquid to spin glass transition is observed in the highest Ga-doped compounds. The roles of the geometrically frustrated structure and Mn-ligand hybridization in the magnetism of the title compounds are also discussed. C1 [He, Hua; Miiller, Wojciech; Aronson, Meigan C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Aronson, Meigan C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP He, H (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. EM hua.he@stonybrook.edu FU Department of Defense National Security Science and Engineering Faculty Fellowship via Air Force Office of Scientific Research [FA 9550-10-1-0191] FX Work at Stony Brook University was carried out under the auspices of a Department of Defense National Security Science and Engineering Faculty Fellowship via Air Force Office of Scientific Research grant FA 9550-10-1-0191. H.H. acknowledges Mr. Chang Liu and Dr. Chaoying Ni for the EDS measurements at the W.M. Keck Electron Microscopy Facility at the University of Delaware. NR 49 TC 1 Z9 1 U1 5 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD SEP 1 PY 2014 VL 53 IS 17 BP 9115 EP 9121 DI 10.1021/ic501088t PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AO3LB UT WOS:000341229600035 PM 25144523 ER PT J AU Lin, K Rong, YC Wu, H Huang, QZ You, L Ren, Y Fan, LL Chen, J Xing, XR AF Lin, Kun Rong, Yangchun Wu, Hui Huang, Qingzhen You, Li Ren, Yang Fan, Longlong Chen, Jun Xing, Xianran TI Ordered Structure and Thermal Expansion in Tungsten Bronze Pb2K0.5Li0.5Nb5O15 SO INORGANIC CHEMISTRY LA English DT Article ID LEAD POTASSIUM NIOBATE; ELECTRICAL-PROPERTIES; SINGLE-CRYSTAL; PHASES; PB2KNB5O15; TRANSITION AB The crystal structure and thermal expansion behaviors of a new tetragonal tungsten bronze (TTB) ferroelectric, Pb2K0.5Li0.5Nb5O15, were systematically investigated by selected-area electron diffraction (SAED), neutron powder diffraction, synchrotron X-ray diffraction (XRD), and high-temperature XRD. SAED and Rietveld refinement reveal that Pb2K0.5Li0.5Nb5O15 displays a commensurate superstructure of simple orthorhombic TTB structure at room temperature. The structure can be described with space group Bb2(1)m. The transition to a paraelectric phase (P4/mbm) occurs at 500 degrees C. Compared with Pb2KNb5O15 (PKN), the substitution of 0.5K(+) with small 0.5Li(+) into PKN causes the tilting of NbO6 octahedra away from the c axis with Delta theta approximate to 10 degrees and raises the Curie temperature by 40 degrees C, and the negative thermal expansion coefficient along the polar b axis increases more than 50% in the temperature range 25-500 degrees C. We present that, by introduction of Li+, the enhanced spontaneous polarization is responsible for the enhanced negative thermal expansion along the b axis, which may be caused by more Pb2+ in the pentagonal caves. C1 [Lin, Kun; Rong, Yangchun; Fan, Longlong; Chen, Jun; Xing, Xianran] Univ Sci & Technol Beijing, Dept Phys Chem, Beijing 100083, Peoples R China. [You, Li] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. [Wu, Hui; Huang, Qingzhen] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Wu, Hui] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Ren, Yang] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Xing, XR (reprint author), Univ Sci & Technol Beijing, Dept Phys Chem, Beijing 100083, Peoples R China. EM xing@ustb.edu.cn RI Wu, Hui/C-6505-2008; Chen, Jun/M-1669-2015 OI Wu, Hui/0000-0003-0296-5204; FU National Natural Science Foundation of China [91022016, 21031005, 21231001]; Program for Changjiang Scholars, and Innovative Research Team in University [IRT1207] FX This work was supported by the National Natural Science Foundation of China (Grants 91022016, 21031005, and 21231001), Program for Changjiang Scholars, and Innovative Research Team in University (IRT1207). We thank Prof. Chen Dong from the Institute of Physics, CAS, for his kindly help in structure analysis. We thank Shaoying Zheng and Laijun Liu from Guilin University of Technology for their help in dielectric measurements. NR 39 TC 12 Z9 12 U1 4 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD SEP 1 PY 2014 VL 53 IS 17 BP 9174 EP 9180 DI 10.1021/ic501189n PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA AO3LB UT WOS:000341229600042 PM 25116333 ER PT J AU Cheng, SC Logunov, S Streltsov, A AF Cheng, Shangcong Logunov, Stephan Streltsov, Alexander TI Laser-Induced Swelling of Borosilicate Glasses-An Analysis of Associated Microstructural Development SO INTERNATIONAL JOURNAL OF APPLIED GLASS SCIENCE LA English DT Article AB Borosilicate glass swelling by laser irradiation is an unusual phenomenon. The height of raised hemisphere on the swelled glass surface can be approximately 10-15% of the 1-3mm glass thickness. To understand the mechanism of glass swelling, the micro-structural information of swelled glasses is essential. Several transmission electron microscopy (TEM) techniques, including bright field image (BFI), selected area electron diffraction (SAED), energy dispersive spectroscopy (EDS), and electron energy loss spectroscopy (EELS) analysis, were used to find out the possible microstructure changes of the swelled glasses. Transition metal nanoparticles or alkali metal segregations as well as gas bubbles in the swelled glasses were identified. These observations suggest that reduction of glass components may provide oxygen to form bubbles, which can increase in size due to thermal effects of the laser radiation and lead to the glass swelling. C1 [Cheng, Shangcong; Logunov, Stephan; Streltsov, Alexander] Corning Inc, Sci & Technol, Corning, NY 14831 USA. [Cheng, Shangcong] Corning Inc, Corning, NY 14831 USA. RP Cheng, SC (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM shangcongcheng@lbl.gov NR 14 TC 1 Z9 1 U1 1 U2 8 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2041-1286 EI 2041-1294 J9 INT J APPL GLASS SCI JI Int. J. Appl. Glass Sci. PD SEP PY 2014 VL 5 IS 3 SI SI BP 267 EP 275 DI 10.1111/ijag.12067 PG 9 WC Materials Science, Ceramics SC Materials Science GA AO9GG UT WOS:000341663500007 ER PT J AU Rougier, E Knight, EE Broome, ST Sussman, AJ Munjiza, A AF Rougier, E. Knight, E. E. Broome, S. T. Sussman, A. J. Munjiza, A. TI Validation of a three-dimensional Finite-Discrete Element Method using experimental results of the Split Hopkinson Pressure Bar test SO INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES LA English DT Article DE FDEM; Simulation; Granite; High strain rate ID SIMULATION; ALGORITHM; FRACTURE; GRANITE AB A full-scale 3D analysis of a Split Hopkinson Pressure Bar experiment on granite material using a 3D combined Finite-Discrete Element Method (FDEM) is shown. Previous efforts to simulate Split Hopkinson Pressure Bar experiments using the 2D FDEM had obtained a very good match for the loading portion of the experiment. This work extends those efforts by modeling the entire 3D Split Hopkinson Pressure Bar experimental setup, and reproducing the softening behavior of the sample after breakage. This modeling effort introduces the effect of a compliant interface between the bars and the sample. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Rougier, E.; Knight, E. E.; Sussman, A. J.] Los Alamos Natl Lab, Geophys Grp, Los Alamos, NM 92093 USA. [Broome, S. T.] Sandia Natl Labs, Geomech Team, Albuquerque, NM USA. [Munjiza, A.] Univ London, Dept Engn, London, England. RP Rougier, E (reprint author), Los Alamos Natl Lab, Geophys Grp, Los Alamos, NM 92093 USA. EM erougier@lanl.gov RI Rougier, Esteban/C-9946-2015; OI Rougier, Esteban/0000-0002-4624-2844; Knight, Earl/0000-0003-0461-0714 FU National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development (DNN RD); National Nuclear Security Administration (NNSA) [DE-AC52-06NA25946] FX The Source Physics Experiments (SPE) would not have been possible without the support of many people from several organizations. The authors wish to express their gratitude to the SPE working group, a multi-institutional and interdisciplinary group of scientists and engineers from National Security Technologies (NSTec), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), the Defense Threat Reduction Agency (DTRA), and the Air Force Technical Applications Center (AFTAC). The authors also wish to thank the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development (DNN R&D) for their sponsorship of the National Center for Nuclear Security (NCNS) and its Source Physics Experiment (SPE) working group. This work was sponsored by the National Nuclear Security Administration (NNSA) under Award number DE-AC52-06NA25946. NR 31 TC 10 Z9 11 U1 2 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1365-1609 EI 1873-4545 J9 INT J ROCK MECH MIN JI Int. J. Rock Mech. Min. Sci. PD SEP PY 2014 VL 70 BP 101 EP 108 DI 10.1016/j.ijrmms.2014.03.011 PG 8 WC Engineering, Geological; Mining & Mineral Processing SC Engineering; Mining & Mineral Processing GA AO5EK UT WOS:000341365900010 ER PT J AU Zuo, JP Xie, HP Dai, F Ju, Y AF Zuo, Jian-ping Xie, He-ping Dai, Feng Ju, Yang TI Three-point bending test investigation of the fracture behavior of siltstone after thermal treatment SO INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES LA English DT Article DE Siltstone; Temperature Three-point bending (TPB) experiment; Threshold temperature; Fracture toughness ID MODE-I; TOUGHNESS; SANDSTONE; STRESS; ROCK AB The influence of temperature on the fracture behavior of siltstone is investigated in detail by mode l fracture toughness tests under three-point bending in situ SEM observations. A total of 27 specimens subjected to thermal pre-treatment have been tested. Experimental results indicate that effects of temperature on siltstone fracture behavior are obvious, not only on failure mechanism, but also on mechanical parameters like peak failure loads, fracture toughness and modulus of elasticity. The failure mechanism changes from intergranular fracture to mixed intergranular and transgranular fractures, and filially to intergranular fracture and thermal cracking with temperature from 25 to 60 C. Fracture toughness K-tc decreases slightly from room temperature 25 to 100 degrees C, and then increases significantly from 100 to 125 degrees C, and then gradually declines from 125 to 600 degrees C. A new numerical elastic modulus estimation method is proposed, considering a series of fluctuated experimental data The variation of the elastic modulus with the temperature is similar with that of fracture toughness. (C) 2014 Elsevier Ltd. All rights reserved C1 [Zuo, Jian-ping; Ju, Yang] China Univ Min & Technol, State Key Lab Coal Resources & Safe Min, Beijing 100083, Peoples R China. [Zuo, Jian-ping] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Xie, He-ping; Dai, Feng] Sichuan Univ, Coll Water Resources & Hydropower, Chengdu 610065, Sichuan, Peoples R China. RP Zuo, JP (reprint author), China Univ Min & Technol, State Key Lab Coal Resources & Safe Min, Beijing 100083, Peoples R China. EM zjp@cumtb.edu.cn RI Jianping, Zuo/G-9307-2011; JU, YANG/I-7954-2013 OI JU, YANG/0000-0003-4297-4455 FU National Natural Science Foundation of China [51374215, 11102225]; Special Funds for Major State Basic Research Project [2010CB732002, 2011CB201201]; Fok Ying Tung Education Foundation [142018]; Foundation for the Author of National Excellent Doctoral Dissertation of P.R. China [201030]; 111 Project [B14006]; Open Project of State Key Laboratory Breeding Base for Mining Disaster Prevention and Control (Shandong University of Science and Technology) [MDPC2012KF03] FX The work was supported by the National Natural Science Foundation of China (51374215 and 11102225), the Special Funds for Major State Basic Research Project (2010CB732002 and 2011CB201201), Fok Ying Tung Education Foundation (142018), Foundation for the Author of National Excellent Doctoral Dissertation of P.R. China (201030), the 111 Project (B14006) and Open Project of State Key Laboratory Breeding Base for Mining Disaster Prevention and Control (Shandong University of Science and Technology) (MDPC2012KF03). NR 25 TC 8 Z9 8 U1 4 U2 45 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1365-1609 EI 1873-4545 J9 INT J ROCK MECH MIN JI Int. J. Rock Mech. Min. Sci. PD SEP PY 2014 VL 70 BP 133 EP 143 DI 10.1016/j.ijrmms.2014.04.005 PG 11 WC Engineering, Geological; Mining & Mineral Processing SC Engineering; Mining & Mineral Processing GA AO5EK UT WOS:000341365900014 ER PT J AU Deng, SC Li, HB Ma, GW Huang, H Li, X AF Deng, Shouchun Li, Haibo Ma, Guowei Huang, Hai Li, Xu TI Simulation of shale-proppant interaction in hydraulic fracturing by the discrete element method SO INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES LA English DT Article DE Discrete element method; Grain's interaction; Cement bond; Hydraulic fracturing; Shale; Proppant ID TREATMENT TECHNOLOGY; GRANULAR ASSEMBLIES; POLYHEDRAL BLOCKS; PREDICTING WIDTH; NUMERICAL-MODEL; 2-PHASE FLOW; SYSTEM; FORMULATION; PARTICLES; EQUATIONS AB In this paper, a three dimensional discrete element method (3D DEM) was proposed and deployed to simulate shale-proppant interaction in hydraulic fracturing. Shale is represented by particles with cement bond, and proppant is represented by particles without a cement layer. The velocity Verlet method is implemented to substitute the traditional central time integration scheme. The proposed DEM is used to investigate the shale-proppant interactions and evaluate the fracture aperture under different proppant sizes, Young's moduli and pressure levels. The results reveal that, the more soft shale particle, the higher pressure and the larger proppant size imply smaller crack aperture and larger plastic zone for other given conditions. (C) 2014 Elsevier Ltd. All rights reserved C1 [Deng, Shouchun; Li, Haibo] Chinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn, Wuhan 430071, Peoples R China. [Deng, Shouchun; Ma, Guowei] Univ Western Australia, Sch Civil & Resource Engn, Crawley, WA, Australia. [Huang, Hai] Idaho Natl Lab, Carbon Resource Dept, Idaho Falls, ID 83415 USA. [Li, Xu] Shell Explorat & Prod Co, Houston, TX USA. RP Deng, SC (reprint author), Chinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn, Wuhan 430071, Peoples R China. EM dengshouchun@gmail.com RI Ma, Guowei/A-2211-2010 FU Shell Exploration & Production Company (USA); Chinese Academy of Sciences [XDB10030400] FX The research was supported by the Shell Exploration & Production Company (USA) through the Project "Three-Dimensional (3D) Modeling And Experimental Studies of Proppant-Shale Mechanical Interactions And Permeability Reduction of Hydraulic Fracture". It is also supported by Chinese Academy of Sciences through the Project "Fundamental Theory And Key Technologies of Exploration And Production of Shale Gas (XDB10030400)". We would like to express our greatest gratitude for their generous support. NR 58 TC 9 Z9 13 U1 7 U2 50 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1365-1609 EI 1873-4545 J9 INT J ROCK MECH MIN JI Int. J. Rock Mech. Min. Sci. PD SEP PY 2014 VL 70 BP 219 EP 228 DI 10.1016/j.ijrmms.2014.04.011 PG 10 WC Engineering, Geological; Mining & Mineral Processing SC Engineering; Mining & Mineral Processing GA AO5EK UT WOS:000341365900023 ER PT J AU Walsh, SDC Lomoy, IN Wideman, TW Potter, JM AF Walsh, Stuart D. C. Lomoy, Ilya N. Wideman, Thomas W. Potter, Jared M. TI Size dependent spall aspect ratio and its effects in thermal spallation SO INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES LA English DT Article ID DIRECTIONAL TENSILE FAILURE; ELASTIC-VISCOPLASTIC MODEL; NUMERICAL-SIMULATION; ROCK C1 [Walsh, Stuart D. C.; Lomoy, Ilya N.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Wideman, Thomas W.; Potter, Jared M.] Potter Drilling, Redwood City, CA USA. RP Walsh, SDC (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM walsh24@llnl.gov OI Walsh, Stuart/0000-0001-8155-4870 FU Geothermal Technologies Program of the US Department of Energy under the Enhanced Geothermal Systems Program; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; United States government FX The authors gratefully acknowledge the Geothermal Technologies Program of the US Department of Energy for support of this work under the Enhanced Geothermal Systems Program.; This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes. NR 38 TC 0 Z9 0 U1 3 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1365-1609 EI 1873-4545 J9 INT J ROCK MECH MIN JI Int. J. Rock Mech. Min. Sci. PD SEP PY 2014 VL 70 BP 375 EP 380 DI 10.1016/j.ijrmms.2014.05.010 PG 6 WC Engineering, Geological; Mining & Mineral Processing SC Engineering; Mining & Mineral Processing GA AO5EK UT WOS:000341365900037 ER PT J AU Lei, QH Latham, JP Xiang, JS Tsang, CF Lang, P Guo, LW AF Lei, Qinghua Latham, John-Paul Xiang, Jiansheng Tsang, Chin-Fu Lang, Philipp Guo, Liwei TI Effects of geomechanical changes on the validity of a discrete fracture network representation of a realistic two-dimensional fractured rock SO INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES LA English DT Article DE Fracture network; Geomechanical response; Hydro-mechanical coupling; Permeability ID STRESS-DEPENDENT PERMEABILITY; FINITE-ELEMENT; TRACE LENGTH; NUMERICAL-SIMULATION; FLOW; MASSES; DEFORMATION; APERTURE; MODELS; JOINTS AB This paper aims to examine the validity of the discrete fracture network (DFN) method in representing a realistic two-dimensional fractured rock in terms of their geomechanical response to in situ stresses and hydraulic behaviour in a steady state fluid held. First, a real fracture network is extracted from the geological map of an actual rock outcrop, which is termed the analogue fracture network (AFN). Multiple DFN realisations are created using the statistics oldie analogue pattern. A conductivity parameter that was found to have a linear relationship with the conductivity of 2D fracture networks is included to further enhance network similarity. A series of numerical experiments are designed with far-field stresses applied at a range of angles to the rock domains and their geomechanical response is modelled using the combined finite discrete element method (FEMDEM). A geomechanical comparison between the AFN and as DFN equivalents is made based on phenomena such as heterogeneity of fracture-dependent stress contours, sliding between pre-existing fracture walls, coalescence of propagating fractures and variability of aperture distribution. Furthermore, an indirect hydro-mechanical (HM) coupling is applied and the hydraulic behaviour of the porous rock models is investigated using the hybrid finite element-finite volume method (FEFVM). A further comparison is conducted focusing on the hydraulic behaviour of the AFN and DFNs under the effects of geomechanical changes. The results show that although DFNs may represent an AFN quite well for fixed mechanical conditions, such a representation may not be dependable if mechanical changes occur. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Lei, Qinghua; Latham, John-Paul; Xiang, Jiansheng; Lang, Philipp; Guo, Liwei] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London, England. [Tsang, Chin-Fu] Uppsala Univ, Dept Earth Sci, Uppsala, Sweden. [Tsang, Chin-Fu] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Latham, JP (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London, England. EM j.p.latham@imperial.ac.uk OI Latham, John-Paul/0000-0002-9410-3945 FU Department of Earth Science and Engineering, Imperial College London FX The authors would like to thank the sponsors of the itf-ISF project "Improved Simulation of Faulted and Fractured Reservoirs" and to acknowledge the Janet Watson scholarship, awarded to the first author by the Department of Earth Science and Engineering, Imperial College London. NR 55 TC 17 Z9 17 U1 3 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1365-1609 EI 1873-4545 J9 INT J ROCK MECH MIN JI Int. J. Rock Mech. Min. Sci. PD SEP PY 2014 VL 70 BP 507 EP 523 DI 10.1016/j.ijrmms.2014.06.001 PG 17 WC Engineering, Geological; Mining & Mineral Processing SC Engineering; Mining & Mineral Processing GA AO5EK UT WOS:000341365900051 ER PT J AU Kelkar, S Lewis, K Karra, S Zyvoloski, G Rapaka, S Viswanathan, H Mishra, PK Chu, S Coblentz, D Pawar, R AF Kelkar, S. Lewis, K. Karra, S. Zyvoloski, G. Rapaka, S. Viswanathan, H. Mishra, P. K. Chu, S. Coblentz, D. Pawar, R. TI A simulator for modeling coupled thermo-hydro-mechanical processes in subsurface geological media SO INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES LA English DT Article DE Coupled processes; Finite element; Finite volume; Mechanical deformation; Subsurface modeling; Thermal-hydro-mechanical ID FINITE-ELEMENT-ANALYSIS; DRY ROCK RESERVOIRS; WASTE REPOSITORIES; YUCCA MOUNTAIN; FLOW; TRANSPORT; PERMEABILITY; DEFORMATION; PERFORMANCE; STRESS AB We present the description of a fully coupled simulator FEHM for modeling coupled thermo-hydro-mechanical (THM) processes in geomedia. The coupled equations for fluid flow and energy transport are implemented using finite volume whereas Galerkin finite element method is used for mechanical force balance. The simulator is designed to address spatial scales on the order of tens of centimeters to tens of kilometers, and time scales on the order of hours to tens of years. The governing coupled nonlinear equations are solved using a Newton-Rapshon scheme with analytically or numerically computed Jacobians. A suite of models is available for coupling flow and mechanical deformation via permeability deformation relationships. The coupled simulator is verified by comparing with several analytical solutions developed for this purpose. A subset of the simulator capabilities is benchmarked against commercially available simulators. We also demonstrate a good match with data from Desert Peak geothermal field in Nevada, USA. This validation required the use of a shear failure model with non-linear permeability stress relationship. In addition, we present another application involving fluid injection into an inclined fault zone using a non-orthogonal grid with stress dependent Young's modulus and permeability. Published by Elsevier Ltd. C1 [Kelkar, S.; Lewis, K.; Karra, S.; Zyvoloski, G.; Rapaka, S.; Viswanathan, H.; Mishra, P. K.; Chu, S.; Pawar, R.] Los Alamos Natl Lab, Div Earth & Environm Sci, Computat Earth Sci Grp EES 16, Los Alamos, NM 87545 USA. [Coblentz, D.] Los Alamos Natl Lab, Div Earth & Environm Sci, Geophys Grp, Los Alamos, NM 87545 USA. RP Karra, S (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Computat Earth Sci Grp EES 16, MS T003, Los Alamos, NM 87545 USA. EM satkarra@lanl.gov OI Karra, Satish/0000-0001-7847-6293 FU US DOE [DE-EE0002766]; US DOE Office of Geothermal Technologies [GT-100036-20685-09] FX The coupled flow and stress numerical simulation capability in FEHM applied for this work were done under the Zero Emission Research & Technology (ZERT-II) project at LANL. ZERT - II is funded by US DOE through its CO2 sequestration R&D program. The geothermal example and the example with inclined fault reported in this paper were done under US DOE Office of Geothermal Technologies contract no. GT-100036-20685-09. The authors would like to thank David Dempsey for a careful review and valuable suggestions. Satish Karra thanks US DOE for support through DE-EE0002766. NR 52 TC 7 Z9 8 U1 0 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1365-1609 EI 1873-4545 J9 INT J ROCK MECH MIN JI Int. J. Rock Mech. Min. Sci. PD SEP PY 2014 VL 70 BP 569 EP 580 DI 10.1016/j.ijrmms.2014.06.011 PG 12 WC Engineering, Geological; Mining & Mineral Processing SC Engineering; Mining & Mineral Processing GA AO5EK UT WOS:000341365900057 ER PT J AU Song, H Lin, WY Lin, YL Wolf, AB Donner, LJ Del Genio, AD Neggers, R Endo, S Liu, YG AF Song, Hua Lin, Wuyin Lin, Yanluan Wolf, Audrey B. Donner, Leo J. Del Genio, Anthony D. Neggers, Roel Endo, Satoshi Liu, Yangang TI Evaluation of Cloud Fraction Simulated by Seven SCMs against the ARM Observations at the SGP Site SO JOURNAL OF CLIMATE LA English DT Article ID SINGLE-COLUMN MODELS; RADIATION MEASUREMENT PROGRAM; GENERAL-CIRCULATION MODELS; SHALLOW CUMULUS CONVECTION; PHASE ARCTIC CLOUD; LARGE-SCALE MODELS; CLIMATE MODELS; SURFACE OBSERVATIONS; PARAMETERIZATION; SYSTEM AB This study evaluates the performances of seven single-column models (SCMs) by comparing simulated cloud fraction with observations at the Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) site from January 1999 to December 2001. Compared with the 3-yr mean observational cloud fraction, the ECMWF SCM underestimates cloud fraction at all levels and the GISS SCM underestimates cloud fraction at levels below 200 hPa. The two GFDL SCMs underestimate lower-to-middle level cloud fraction but overestimate upper-level cloud fraction. The three Community Atmosphere Model (CAM) SCMs overestimate upper-level cloud fraction and produce lower-level cloud fraction similar to the observations but as a result of compensating overproduction of convective cloud fraction and underproduction of stratiform cloud fraction. Besides, the CAM3 and CAM5 SCMs both overestimate midlevel cloud fraction, whereas the CAM4 SCM underestimates. The frequency and partitioning analyses show a large discrepancy among the seven SCMs: Contributions of nonstratiform processes to cloud fraction production are mainly in upper-level cloudy events over the cloud cover range 10%-80% in SCMs with prognostic cloud fraction schemes and in lower-level cloudy events over the cloud cover range 15%-50% in SCMs with diagnostic cloud fraction schemes. Further analysis reveals different relationships between cloud fraction and relative humidity (RH) in the models and observations. The underestimation of lower-level cloud fraction in most SCMs is mainly due to the larger threshold RH used in models. The overestimation of upper-level cloud fraction in the three CAM SCMs and two GFDL SCMs is primarily due to the overestimation of RH and larger mean cloud fraction of cloudy events plus more occurrences of RH around 40%-80%, respectively. C1 [Song, Hua; Lin, Wuyin; Endo, Satoshi; Liu, Yangang] Brookhaven Natl Lab, Upton, NY 11973 USA. [Lin, Yanluan] Tsinghua Univ, Ctr Earth Syst Sci, Key Lab Earth Syst Modeling, Minist Educ, Beijing 100084, Peoples R China. [Wolf, Audrey B.] Columbia Univ, New York, NY USA. [Donner, Leo J.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Del Genio, Anthony D.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Neggers, Roel] Royal Netherlands Meteorol Inst, NL-3730 AE De Bilt, Netherlands. RP Song, H (reprint author), Brookhaven Natl Lab, Div Atmospher Sci, 75 Rutherford Dr,Bldg 815E, Upton, NY 11973 USA. EM hsong@bnl.gov RI lin, yanluan/A-6333-2015; Liu, Yangang/H-6154-2011 FU Office of Biological and Environmental Research of the U.S. Department of Energy as part of the Earth Systems Modeling (ESM) program via the FASTER project; Atmospheric System Research program; NASA Modeling and Analysis Program FX This work is supported by the Office of Biological and Environmental Research of the U.S. Department of Energy as part of the Earth Systems Modeling (ESM) program via the FASTER project (http://www.bnl.gov/faster) and Atmospheric System Research program. Del Genio is supported also by the NASA Modeling and Analysis Program. We thank Editor Dr. Robert Wood and three anonymous reviewers for their insightful and constructive comments. We also thank Dr. Stephen Schwartz for his interest and helpful suggestions. NR 61 TC 4 Z9 4 U1 1 U2 14 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD SEP 1 PY 2014 VL 27 IS 17 BP 6698 EP 6719 DI 10.1175/JCLI-D-13-00555.1 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AO4BS UT WOS:000341281800021 ER PT J AU Blas, JG Abella, M Isaila, F Carretero, J Desco, M AF Garcia Blas, Javier Abella, Monica Isaila, Florin Carretero, Jesus Desco, Manuel TI Surfing the optimization space of a multiple-GPU parallel implementation of a X-ray tomography reconstruction algorithm SO JOURNAL OF SYSTEMS AND SOFTWARE LA English DT Article DE CT reconstruction; Tomography; GPGPU; Optimization; Paralellism ID PERFORMANCE ANALYSIS AB The increasing popularity of massively parallel architectures based on accelerators have opened up the possibility of significantly improving the performance of X-ray computed tomography (CT) applications towards achieving real-time imaging. However, achieving this goal is a challenging process, as most CT applications have not been designed for exploiting the amount of parallelism existing in these architectures. In this paper we present the massively parallel implementation and optimization of Mangoose(++), a CT application for reconstructing 3D volumes from 20 images collected by scanners based on cone-beam geometry. The main contribution of this paper are the following. First, we develop a modular application design that allows to exploit the functional parallelism inside the application and to facilitate the parallelization of individual application phases. Second, we identify a set of optimizations that can be applied individually and in combination for optimally deploying the application on a massively parallel multi-GPU system. Third, we present a study of surfing the optimization space of the modularized application and demonstrate that a significant benefit can be obtained from employing the adequate combination of application optimizations. (C) 2014 Elsevier Inc. All rights reserved. C1 [Garcia Blas, Javier; Isaila, Florin; Carretero, Jesus] Univ Carlos III Madrid, Comp Architecture & Commun Area, Madrid, Spain. [Isaila, Florin] Argonne Natl Lab, Chicago, IL USA. [Abella, Monica; Desco, Manuel] Univ Carlos III Madrid, Bioengn & Aerosp Engn Dept, Madrid, Spain. [Abella, Monica; Desco, Manuel] Inst Invest Sanitaria Gregorio Maranon IiSGM, Madrid, Spain. [Desco, Manuel] Ctr Invest Red Salud Mental CIBERSAM, Madrid, Spain. RP Blas, JG (reprint author), Univ Carlos III Madrid, Comp Architecture & Commun Area, Madrid, Spain. EM fjblas@arcos.inf.uc3m.es RI Desco, Manuel/D-2822-2009; OI Desco, Manuel/0000-0003-0989-3231; Carretero, Jesus/0000-0002-1413-4793 FU Spanish Ministry of Science and Technology [TIN2010-16497]; AMIT project from the CDTI-CENIT program [CEN-20101014]; RECAVA-RETIC Network [RD07/0014/2009]; Spanish Ministerio de Ciencia e Innovacion [TEC2010-21619-C04-01, TEC2011-28972-C02-01, PI11/00616]; ARTEMIS program from the Comunidad de Madrid [S2009/DPI-1802] FX This work was partially funded by the Spanish Ministry of Science and Technology under the grant TIN2010-16497, the AMIT project (CEN-20101014) from the CDTI-CENIT program, RECAVA-RETIC Network (RD07/0014/2009), projects TEC2010-21619-C04-01, TEC2011-28972-C02-01, and PI11/00616 from the Spanish Ministerio de Ciencia e Innovacion, ARTEMIS program (S2009/DPI-1802), from the Comunidad de Madrid. NR 26 TC 2 Z9 2 U1 0 U2 7 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0164-1212 EI 1873-1228 J9 J SYST SOFTWARE JI J. Syst. Softw. PD SEP PY 2014 VL 95 BP 166 EP 175 DI 10.1016/j.jss.2014.03.083 PG 10 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA AO4VC UT WOS:000341338500011 ER PT J AU Gopalan, H Gundling, C Brown, K Roget, B Sitaraman, J Mirocha, JD Miller, WO AF Gopalan, Harish Gundling, Christopher Brown, Kevin Roget, Beatrice Sitaraman, Jayanarayanan Mirocha, Jefferey D. Miller, Wayne O. TI A coupled mesoscale-microscale framework for wind resource estimation and farm aerodynamics SO JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS LA English DT Article DE Overset grids; Mesoscale microscale coupling; Lillgrund wind farm; Wind turbine aerodynamics; Wind resource estimation ID LARGE-EDDY SIMULATION; LAYER TURBULENCE; WRF MODEL AB This study discusses the development of a coupled mesoscale-microscale framework for wind resource estimation and farm aerodynamics. WINDWYO is a computational framework for performing coupled mesoscale-microscale simulations. The framework is modular, automated and supports coupling of different mesoscale and microscale solvers using overset or matched grids. The modular nature of the framework and the support for overset grids allows the independent development of mesoscale and microscale solvers and the efficient coupling between the codes. The performance of the framework is evaluated by coupling Weather Research and Forecasting (WRF) model with three microscale computational fluid dynamics (CFD) codes of varying complexity. The solvers used are: (i) UWake: a blade element model with free-vortex wake, (ii) Flowyo: large eddy simulation code with actuator line/disk parametrization of the wind turbine and (iii) HELIOS: detached eddy simulation code with full rotor modeling and adaptive mesh refinement. Power predictions and wake visualization of single turbine and off-shore Lillgrund wind farm in uniform and turbulent inflow are used to demonstrate the capabilities of the framework. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Gopalan, Harish; Gundling, Christopher; Brown, Kevin; Roget, Beatrice; Sitaraman, Jayanarayanan] Univ Wyoming, Wind Energy Res Ctr, Laramie, WY 82071 USA. [Mirocha, Jefferey D.; Miller, Wayne O.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Gopalan, H (reprint author), Union Coll Mech Engn, 218 Steinmetz Hall,807 Union St, Schenectady, NY 12308 USA. EM harish.gopalan@gmail.com OI Gopalan, Harish/0000-0001-6866-0900 FU Lawrence Livermore National Labs [DE-AC52-07NA27344] FX The authors from University of Wyoming gratefully acknowledge Lawrence Livermore National Labs (DE-AC52-07NA27344) for continuous support of this work. The authors would also like to thank Dr. Bob Meakin who directs the DoD CREATE/AV program and Dr. Roger Strawn at the Army Aeroflightdynamics directorate at NASA Ames for providing access to the use of HELIOS software framework. NR 26 TC 6 Z9 6 U1 2 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-6105 EI 1872-8197 J9 J WIND ENG IND AEROD JI J. Wind Eng. Ind. Aerodyn. PD SEP PY 2014 VL 132 BP 13 EP 26 DI 10.1016/j.jweia.2014.06.001 PG 14 WC Engineering, Civil; Mechanics SC Engineering; Mechanics GA AO6RG UT WOS:000341478600002 ER PT J AU Williams, PT Thompson, PD AF Williams, Paul T. Thompson, Paul D. TI Increased Cardiovascular Disease Mortality Associated With Excessive Exercise in Heart Attack Survivors SO MAYO CLINIC PROCEEDINGS LA English DT Article ID ACUTE MYOCARDIAL-INFARCTION; DEATH CERTIFICATE COMPLETION; PHYSICAL-ACTIVITY; MARATHON RUNNERS; PROGNOSTIC RELEVANCE; VIGOROUS EXERCISE; AMERICAN-COLLEGE; SPORTS-MEDICINE; RISK-FACTORS; CHOLESTEROL AB Objective: To test whether greater exercise is associated with progressively lower mortality after a cardiac event. Patients and Methods: We used Cox proportional hazard analyses to examine mortality vs estimated energy expended by running or walking measured as metabolic equivalents (3.5 mL O-2/kg per min per day or metabolic equivalent of task-h/d [MET-h/d]) in 2377 self-identified heart attack survivors, where 1 MET-h/d is the energy equivalent of running 1 km/d. Mortality surveillance via the National Death Index included January 1991 through December 2008. Results: A total of 526 deaths occurred during an average prospective follow-up of 10.4 years, 376 (71.5%) of which were related to cardiovascular disease (CVD) (International Statistical Classification of Diseases, 10th Revision codes I00-I99). CVD-related mortality compared with the lowest exercise group decreased by 21% for 1.07 to 1.8 MET-h/d of running or walking (P=.11), 24% for 1.8 to 3.6 MET-h/d (P=.04), 50% for 3.6 to 5.4 MET-h/d (P=.001), and 63% for 5.4 to 7.2 MET-h/d (P<.001) but decreased only 12% for >= 7.2 MET-h/d (P=.68). These data represent a 15% average risk reduction per MET-h/d for CVD-related mortality through 7.2 MET-h/d (P<.001) and a 2.6-fold risk increase above 7.2 MET-h/d (P=.009). Relative to the risk reduction at 7.2 MET-h/d, the risk for >= 7.2 MET-h/d increased 3.2-fold (P=.006) for all ischemic heart disease (IHD)-related mortalities but was not significantly increased for non-IHD-CVD, arrhythmia-related CVD, or non-CVD-related mortalities. Conclusion: Running or walking decreases CVD mortality risk progressively at most levels of exercise in patients after a cardiac event, but the benefit of exercise on CVD mortality and IHD deaths is attenuated at the highest levels of exercise (running: above 7.1 km/d or walking briskly: 10.7 km/d). 2014 Mayo Foundation for Medical Education and Research C1 [Williams, Paul T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Thompson, Paul D.] Hartford Hosp, Dept Cardiol, Hartford, CT 06115 USA. RP Williams, PT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Donner 4641 Cycloton Rd, Berkeley, CA 94720 USA. EM ptwilliams@lbl.gov FU National Heart, Lung, and Blood Institute [HL094717] FX This research was supported by grant HL094717 from the National Heart, Lung, and Blood Institute and was conducted at the Ernest Orlando Lawrence Berkeley National Laboratory (Department of Energy DE-AC03-76SF00098 to the University of California). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 43 TC 29 Z9 29 U1 3 U2 21 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0025-6196 EI 1942-5546 J9 MAYO CLIN PROC JI Mayo Clin. Proc. PD SEP PY 2014 VL 89 IS 9 BP 1187 EP 1194 DI 10.1016/j.mayocp.2014.05.006 PG 8 WC Medicine, General & Internal SC General & Internal Medicine GA AO5UR UT WOS:000341411300007 PM 25128072 ER PT J AU Holewinski, A Idrobo, JC Linic, S AF Holewinski, Adam Idrobo, Juan-Carlos Linic, Suljo TI High-performance Ag-Co alloy catalysts for electrochemical oxygen reduction SO NATURE CHEMISTRY LA English DT Article ID SINGLE-CRYSTAL SURFACES; ALKALINE FUEL-CELL; POLYCRYSTALLINE SILVER; AQUEOUS-ELECTROLYTE; ELECTROCATALYSTS; PLATINUM; ELECTROREDUCTION; OXIDATION; NANOPARTICLES; ADSORPTION AB The electrochemical oxygen reduction reaction is the limiting half-reaction for low-temperature hydrogen fuel cells, and currently costly Pt-based electrocatalysts are used to generate adequate rates. Although most other metals are not stable in typical acid-mediated cells, alkaline environments permit the use of less costly electrodes, such as silver. Unfortunately, monometallic silver is not sufficiently active for economical fuel cells. Herein we demonstrate the design of low-cost Ag-Co surface alloy nanoparticle electrocatalysts for oxygen reduction. Their performance relative to that of Pt is potential dependent, but reaches over half the area-specific activity of Pt nanoparticle catalysts and is more than a fivefold improvement over pure silver nanoparticles at typical operating potentials. The Ag-Co electrocatalyst was initially identified with quantum chemical calculations and then synthesized using a novel technique that generates a surface alloy, despite bulk immiscibility of the constituent materials. Characterization studies support the hypothesis that the activity improvement comes from a ligand effect, in which cobalt atoms perturb surface silver sites. C1 [Holewinski, Adam; Linic, Suljo] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA. [Idrobo, Juan-Carlos] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Linic, S (reprint author), Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA. EM linic@umich.edu RI Idrobo, Juan/H-4896-2015; OI Idrobo, Juan/0000-0001-7483-9034; HOLEWINSKI, ADAM/0000-0001-8307-5881 FU US DOE Office of Basic Energy Sciences, Division of Chemical Sciences [FG-02-05ER15686]; Scientific User Facilities Division, Office of Basic Energy Sciences, US DOE; Oak Ridge National Laboratory (ORNL)'s Center FX We acknowledge support from the US DOE Office of Basic Energy Sciences, Division of Chemical Sciences (FG-02-05ER15686). We also acknowledge the University of Michigan Electron Microbeam Analysis Laboratory for use of the microscopy facilities. This research is also supported as part of a user project by Oak Ridge National Laboratory (ORNL)'s Center for Nanophase Materials Sciences, which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US DOE (J-C.I.). Finally, we acknowledge H. Xin and T. van Cleve for helpful discussions and experimental assistance. NR 49 TC 77 Z9 78 U1 43 U2 270 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1755-4330 EI 1755-4349 J9 NAT CHEM JI Nat. Chem. PD SEP PY 2014 VL 6 IS 9 BP 828 EP 834 DI 10.1038/NCHEM.2032 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA AO5HA UT WOS:000341373500020 PM 25143220 ER PT J AU Seoung, D Lee, Y Cynn, H Park, C Choi, KY Blom, DA Evans, WJ Kao, CC Vogt, T Lee, Y AF Seoung, Donghoon Lee, Yongmoon Cynn, Hyunchae Park, Changyong Choi, Kwang-Yong Blom, Douglas A. Evans, William J. Kao, Chi-Chang Vogt, Thomas Lee, Yongjae TI Irreversible xenon insertion into a small-pore zeolite at moderate pressures and temperatures SO NATURE CHEMISTRY LA English DT Article ID INDUCED HYDRATION; GAS-PHASE; SILVER; NOBLE; CHABAZITE; IRRADIATION; REFINEMENT; NATROLITES; ADSORPTION; CLUSTERS AB Pressure drastically alters the chemical and physical properties of materials and allows structural phase transitions and chemical reactions to occur that defy much of our understanding gained under ambient conditions. Particularly exciting is the high-pressure chemistry of xenon, which is known to react with hydrogen and ice at high pressures and form stable compounds. Here, we show that Ag16Al16Si24O8 center dot 16H(2)O (Ag-natrolite) irreversibly inserts xenon into its micropores at 1.7 GPa and 250 degrees C, while Ag+ is reduced to metallic Ag and possibly oxidized to Ag2+. In contrast to krypton, xenon is retained within the pores of this zeolite after pressure release and requires heat to desorb. This irreversible insertion and trapping of xenon in Ag-natrolite under moderate conditions sheds new light on chemical reactions that could account for the xenon deficiency relative to argon observed in terrestrial and Martian atmospheres. C1 [Seoung, Donghoon; Lee, Yongmoon; Lee, Yongjae] Yonsei Univ, Dept Earth Syst Sci, Seoul 120749, South Korea. [Cynn, Hyunchae; Evans, William J.] Lawrence Livermore Natl Lab, High Pressure Phys Grp, Livermore, CA 94550 USA. [Park, Changyong] Carnegie Inst Sci, Geophys Lab, HPCAT, Argonne, IL 60439 USA. [Choi, Kwang-Yong] Chung Ang Univ, Dept Phys, Seoul 156756, South Korea. [Blom, Douglas A.; Vogt, Thomas] Univ S Carolina, NanoCtr, Columbia, SC 29208 USA. [Blom, Douglas A.; Vogt, Thomas] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. [Kao, Chi-Chang] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. RP Lee, Y (reprint author), Yonsei Univ, Dept Earth Syst Sci, Seoul 120749, South Korea. EM yongjaelee@yonsei.ac.kr RI Park, Changyong/A-8544-2008; Vogt, Thomas /A-1562-2011; Lee, Yongjae/K-6566-2016 OI Park, Changyong/0000-0002-3363-5788; Vogt, Thomas /0000-0002-4731-2787; FU Global Research Laboratory Program of the Korean Ministry of Science, ICT and Planning (MSIP); US Department of Energy [W-7405-Eng-48, DE-AC52-07NA27344]; MSIP's PAL-XFEL project; DOE-NNSA [DE-NA0001974]; DOE-BES [DE-FG02-99ER45775, DE-AC02-06CH11357]; National Science Foundation; National Research Foundation of Korea (NRF) [2009-0093817] FX This work was supported by the Global Research Laboratory Program of the Korean Ministry of Science, ICT and Planning (MSIP) and was performed under the auspices of the US Department of Energy (contracts W-7405-Eng-48 and DE-AC52-07NA27344). Experiments using the synchrotron were supported by MSIP's PAL-XFEL project. A portion of this work was performed at HPCAT (Sector 16), the Advanced Photon Source (APS), Argonne National Laboratory. HPCAT operations were supported by the DOE-NNSA (under award no. DE-NA0001974) and the DOE-BES (under award no. DE-FG02-99ER45775), with partial instrumentation funding by the National Science Foundation. The APS is supported by the DOE-BES (under contract no. DE-AC02-06CH11357). K.C. acknowledges financial support from the National Research Foundation of Korea (NRF, grant no. 2009-0093817). NR 46 TC 11 Z9 11 U1 3 U2 47 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1755-4330 EI 1755-4349 J9 NAT CHEM JI Nat. Chem. PD SEP PY 2014 VL 6 IS 9 BP 835 EP 839 DI 10.1038/NCHEM.1997 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA AO5HA UT WOS:000341373500022 PM 25143221 ER PT J AU Smith, SJ Wigley, TML Meinshausen, M Rogelj, J AF Smith, Steven J. Wigley, Tom M. L. Meinshausen, Malte Rogelj, Joeri TI Questions of bias in climate models SO NATURE CLIMATE CHANGE LA English DT Letter ID SENSITIVITY C1 [Smith, Steven J.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Wigley, Tom M. L.] Univ Adelaide, Sch Earth & Environm Sci, Adelaide, SA 5005, Australia. [Wigley, Tom M. L.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Meinshausen, Malte] Univ Melbourne, Sch Earth Sci, Melbourne, Vic 3010, Australia. [Meinshausen, Malte] Potsdam Inst Climate Impact Res, D-14412 Potsdam, Germany. [Rogelj, Joeri] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, CH-8092 Zurich, Switzerland. [Rogelj, Joeri] Int Inst Appl Syst Anal, Energy Program, A-2361 Laxenburg, Austria. RP Smith, SJ (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. EM ssmith@pnl.gov NR 7 TC 1 Z9 1 U1 2 U2 18 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X EI 1758-6798 J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD SEP PY 2014 VL 4 IS 9 BP 741 EP 742 PG 3 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA AO7YS UT WOS:000341569700004 ER PT J AU Arnlund, D Johansson, LC Wickstrand, C Barty, A Williams, GJ Malmerberg, E Davidsson, J Milathianaki, D DePonte, DP Shoeman, RL Wang, DJ James, D Katona, G Westenhoff, S White, TA Aquila, A Bari, S Berntsen, P Bogan, M van Driel, TB Doak, RB Kjaer, KS Frank, M Fromme, R Grotjohann, I Henning, R Hunter, MS Kirian, RA Kosheleva, I Kupitz, C Liang, MN Martin, AV Nielsen, MM Messerschmidt, M Seibert, MM Sjohamn, J Stellato, F Weierstall, U Zatsepin, NA Spence, JCH Fromme, P Schlichting, I Boutet, S Groenhof, G Chapman, HN Neutze, R AF Arnlund, David Johansson, Linda C. Wickstrand, Cecilia Barty, Anton Williams, Garth J. Malmerberg, Erik Davidsson, Jan Milathianaki, Despina DePonte, Daniel P. Shoeman, Robert L. Wang, Dingjie James, Daniel Katona, Gergely Westenhoff, Sebastian White, Thomas A. Aquila, Andrew Bari, Sadia Berntsen, Peter Bogan, Mike van Driel, Tim Brandt Doak, R. Bruce Kjaer, Kasper Skov Frank, Matthias Fromme, Raimund Grotjohann, Ingo Henning, Robert Hunter, Mark S. Kirian, Richard A. Kosheleva, Irina Kupitz, Christopher Liang, Mengning Martin, Andrew V. Nielsen, Martin Meedom Messerschmidt, Marc Seibert, M. Marvin Sjohamn, Jennie Stellato, Francesco Weierstall, Uwe Zatsepin, Nadia A. Spence, John C. H. Fromme, Petra Schlichting, Ilme Boutet, Sebastien Groenhof, Gerrit Chapman, Henry N. Neutze, Richard TI Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser SO NATURE METHODS LA English DT Article ID FREQUENCY VIBRATIONAL-MODES; STRUCTURAL DYNAMICS AB We describe a method to measure ultrafast protein structural changes using time-resolved wide-angle X-ray scattering at an X-ray free-electron laser. We demonstrated this approach using multiphoton excitation of the Blastochloris viridis photosynthetic reaction center, observing an ultrafast global conformational change that arises within picoseconds and precedes the propagation of heat through the protein. This provides direct structural evidence for a 'protein quake': the hypothesis that proteins rapidly dissipate energy through quake-like structural motions. C1 [Arnlund, David; Johansson, Linda C.; Wickstrand, Cecilia; Malmerberg, Erik; Katona, Gergely; Westenhoff, Sebastian; Berntsen, Peter; Sjohamn, Jennie; Neutze, Richard] Univ Gothenburg, Dept Chem & Mol Biol, Gothenburg, Sweden. [Barty, Anton; DePonte, Daniel P.; White, Thomas A.; Aquila, Andrew; Liang, Mengning; Martin, Andrew V.; Messerschmidt, Marc; Stellato, Francesco; Chapman, Henry N.] DESY, Ctr Free Electron Laser Sci, Hamburg, Germany. [Williams, Garth J.; Milathianaki, Despina; DePonte, Daniel P.; Messerschmidt, Marc; Seibert, M. Marvin; Boutet, Sebastien] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA USA. [Davidsson, Jan] Uppsala Univ, Dept Chem, Angstrom Lab, Uppsala, Sweden. [Shoeman, Robert L.; Doak, R. Bruce; Schlichting, Ilme] Max Planck Inst Med Res, D-69120 Heidelberg 1, Germany. [Shoeman, Robert L.; Bari, Sadia; Schlichting, Ilme] Ctr Free Elect Laser Sci, Max Planck Adv Study Grp, Hamburg, Germany. [Wang, Dingjie; James, Daniel; Doak, R. Bruce; Kirian, Richard A.; Weierstall, Uwe; Zatsepin, Nadia A.; Spence, John C. H.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Bari, Sadia] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Bogan, Mike] SLAC Natl Accelerator Lab, PULSE Inst Ultrafast Energy Sci, Menlo Pk, CA USA. [van Driel, Tim Brandt; Kjaer, Kasper Skov; Nielsen, Martin Meedom] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby, Denmark. [Kjaer, Kasper Skov] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Frank, Matthias] Lawrence Livermore Natl Lab, Livermore, CA USA. [Fromme, Raimund; Grotjohann, Ingo; Hunter, Mark S.; Kupitz, Christopher; Fromme, Petra] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ USA. [Henning, Robert; Kosheleva, Irina] Univ Chicago, BioCARS, Chicago, IL 60637 USA. [Groenhof, Gerrit] Univ Jyvaskyla, Nanosci Ctr, Jyvaskyla, Finland. [Groenhof, Gerrit] Univ Jyvaskyla, Dept Chem, Jyvaskyla, Finland. [Chapman, Henry N.] Univ Hamburg, Dept Phys, Hamburg, Germany. [Chapman, Henry N.] Ctr Ultrafast Imaging, Hamburg, Germany. RP Neutze, R (reprint author), Univ Gothenburg, Dept Chem & Mol Biol, Gothenburg, Sweden. EM richard.neutze@chem.gu.se RI Sjohamn, Jennie/A-8266-2011; Barty, Anton/K-5137-2014; Katona, Gergely/B-3491-2008; Fromme, Raimund/C-8885-2012; Chapman, Henry/G-2153-2010; Johansson, Linda/B-1240-2011; Messerschmidt, Marc/F-3796-2010; Neutze, Richard/A-7573-2010; Frank, Matthias/O-9055-2014; Schlichting, Ilme/I-1339-2013; Nielsen, Martin/A-5133-2009; Bari, Sadia/E-6216-2015; OI Barty, Anton/0000-0003-4751-2727; Katona, Gergely/0000-0002-2031-8716; Fromme, Raimund/0000-0003-4835-1080; Chapman, Henry/0000-0002-4655-1743; Johansson, Linda/0000-0003-4776-5142; Messerschmidt, Marc/0000-0002-8641-3302; Neutze, Richard/0000-0003-0986-6153; Nielsen, Martin/0000-0002-8135-434X; Seibert, Mark Marvin/0000-0003-0251-0744; MARTIN, ANDREW/0000-0003-3704-1829; James, Daniel/0000-0002-8348-6661; Groenhof, Gerrit/0000-0001-8148-5334 FU Swedish Science Research Council (VR); Swedish Foundation for International Cooperation in Research and Higher Education (STINT); Swedish Strategic Research Foundation (SSF); Knut and Alice Wallenberg Foundation; US National Science Foundation (NSF) and its bioXFEL Science and Technology Center [NSF 1231306]; US National Institute of Health (NIH); DOE Office of Basic Energy Sciences; Hamburg Ministry of Science and Research; Joachim Herz Stiftung; Deutsche Forschungsgemeinschaft (DFG); German Federal Ministry for Education and Research (BMBF),; European Union; Academy of Finland; Max Planck Society; Danish National Research Foundations Centre for Molecular Movie; DANSCATT; UCOP Lab [118036]; LLNL [12-ERD-031] FX Experiments were carried out at the LCLS, a national user facility operated by Stanford University on behalf of the US Department of Energy (DOE), Office of Basic Energy Sciences. We acknowledge financial support from the Swedish Science Research Council (VR), the Swedish Foundation for International Cooperation in Research and Higher Education (STINT), the Swedish Strategic Research Foundation (SSF), the Knut and Alice Wallenberg Foundation, the US National Science Foundation (NSF) and its bioXFEL Science and Technology Center (NSF 1231306), the US National Institute of Health (NIH), the DOE Office of Basic Energy Sciences, the Hamburg Ministry of Science and Research, the Joachim Herz Stiftung, the Deutsche Forschungsgemeinschaft (DFG), the German Federal Ministry for Education and Research (BMBF), a Marie Curie International Incoming Fellowship of the European Union, the Academy of Finland, the Max Planck Society, the Danish National Research Foundations Centre for Molecular Movies, DANSCATT, the UCOP Lab Fee Program (award no: 118036) and the LLNL Lab-directed Research & Development Program (12-ERD-031). NR 20 TC 56 Z9 57 U1 10 U2 83 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1548-7091 EI 1548-7105 J9 NAT METHODS JI Nat. Methods PD SEP PY 2014 VL 11 IS 9 BP 923 EP 926 DI 10.1038/NMETH.3067 PG 4 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA AO5UB UT WOS:000341409700019 PM 25108686 ER PT J AU Huo, YW Nam, KH Ding, F Lee, HJ Wu, LJ Xiao, YB Farchione, MD Zhou, S Rajashankar, K Kurinov, I Zhang, RG Ke, AL AF Huo, Yanwu Nam, Ki Hyun Ding, Fang Lee, Heejin Wu, Lijie Xiao, Yibei Farchione, M. Daniel, Jr. Zhou, Sharleen Rajashankar, Kanagalaghatta Kurinov, Igor Zhang, Rongguang Ke, Ailong TI Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation SO NATURE STRUCTURAL & MOLECULAR BIOLOGY LA English DT Article ID IN-VITRO RECONSTITUTION; IMMUNE-SYSTEM; INTERFERENCE; HELICASE; PROKARYOTES; NUCLEASE; REVEALS; COMPLEX; TARGET; ENZYME AB CRISPR drives prokaryotic adaptation to invasive nucleic acids such as phages and plasmids, using an RNA-mediated interference mechanism. Interference in type I CRISPR-Cas systems requires a targeting Cascade complex and a degradation machine, Cas3, which contains both nuclease and helicase activities. Here we report the crystal structures of Thermobifida fusca Cas3 bound to single-stranded (ss) DNA substrate and show that it is an obligate 3'-to-5' ssDNase that preferentially accepts substrate directly from the helicase moiety. Conserved residues in the HD-type nuclease coordinate two irons for ssDNA cleavage: We demonstrate ATP coordination and conformational flexibility of the SF2-type helicase domain. Cas3 is specifically guided toward Cascade-bound target DNA by a PAM sequence, through physical interactions with both the nontarget substrate strand and the CasA protein. The sequence of recognition events ensures well-controlled DNA targeting and degradation of foreign DNA by Cascade and Cas3. C1 [Huo, Yanwu; Nam, Ki Hyun; Ding, Fang; Lee, Heejin; Xiao, Yibei; Farchione, M. Daniel, Jr.; Ke, Ailong] Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY 14850 USA. [Wu, Lijie; Zhang, Rongguang] Inst Biochem & Cell Biol, Shanghai, Peoples R China. [Zhou, Sharleen] Univ Calif Berkeley, Howard Hughes Med Inst, Mass Spectrometry Lab, Berkeley, CA 94720 USA. [Rajashankar, Kanagalaghatta; Kurinov, Igor] Northeastern Collaborat Access Team, Argonne, IL USA. [Rajashankar, Kanagalaghatta; Kurinov, Igor] Cornell Univ, Dept Chem & Chem Biol, Argonne Natl Lab, Argonne, IL USA. RP Ke, AL (reprint author), Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY 14850 USA. EM ak425@cornell.edu FU US National Institutes of Health (NIH) [GM-086766, GM-102543]; Korean Postdoctoral Fellowship [NRF-2010-357-C00106]; NIH [GM103403, GM103485] FX This work was supported by US National Institutes of Health (NIH) grants GM-086766 and GM-102543 to A.K. and Korean Postdoctoral Fellowship NRF-2010-357-C00106 to K.H.N. NE-CAT and MACCHESS beamlines were supported by NIH grants GM103403 and GM103485, respectively. We thank Y. Chen and K. Perry for technical help and). van der Oost, J. Grigg, R. Hayes and I. Price for helpful discussions. NR 28 TC 36 Z9 38 U1 3 U2 29 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1545-9993 EI 1545-9985 J9 NAT STRUCT MOL BIOL JI Nat. Struct. Mol. Biol. PD SEP PY 2014 VL 21 IS 9 BP 771 EP 777 DI 10.1038/nsmb.2875 PG 7 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA AO5RY UT WOS:000341404200006 PM 25132177 ER PT J AU McLerran, L Schenke, B AF McLerran, Larry Schenke, Bjoern TI The Glasma, photons and the implications of anisotropy SO NUCLEAR PHYSICS A LA English DT Article DE Photon production; Glasma; Collective flow ID QUARK-GLUON PLASMA AB We introduce distribution functions for quarks and gluons in the Glasma and discuss how they satisfy various relationships of statistical physics. We use these distributions to compute photon production in the early stages of heavy ion collisions. Photon rates satisfy geometric scaling, that is, the emission rate per unit area scales as a function of the saturation momenta divided by the transverse momentum of the photon. Photon distributions from the Glasma are steeper than those computed in the Thermalized Quark Gluon Plasma (TQGP). Both the delayed equilibration of the Glasma and a possible anisotropy in the pressure lead to slower expansion and mean times of photon emission of fixed energy are increased. This delayed emission might allow for larger photon elliptic flow. (C) 2014 Elsevier B.V. All rights reserved. C1 [McLerran, Larry; Schenke, Bjoern] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [McLerran, Larry] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. [McLerran, Larry] Cent China Normal Univ, Dept Phys, Wuhan, Peoples R China. RP Schenke, B (reprint author), Brookhaven Natl Lab, Dept Phys, Bldg 510A, Upton, NY 11973 USA. EM mclerran@bnl.gov; bschenke@bnl.gov FU DOE [DE-AC02-98CH10886] FX The research of L.M. and B.P.S. is supported under DOE Contract No. DE-AC02-98CH10886. Larry McLerran would like to thank Klaus Reygers and Johanna Stachel who organized the EMMI Rapid Reaction Task Force Meeting "Direct Photon Flow Problem". He gratefully acknowledges the hospitality of EMMI. This work was initiated during this meeting, and was motivated by conversations specifically with Charles Gale and Ulrich Heinz, and more generally as a result of dialog with participants in the meeting. NR 30 TC 20 Z9 20 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD SEP PY 2014 VL 929 BP 71 EP 82 DI 10.1016/j.nuclphysa.2014.06.004 PG 12 WC Physics, Nuclear SC Physics GA AO6LZ UT WOS:000341464900006 ER PT J AU McLerran, L Skokov, V AF McLerran, L. Skokov, V. TI Comments about the electromagnetic field in heavy-ion collisions SO NUCLEAR PHYSICS A LA English DT Article DE Magnetic field; Electromagnetic probes; Chiral magnetic wave AB In this article we discuss the properties of electromagnetic fields in heavy-ion collisions and consequences for observables. We address quantitatively the issue of the magnetic field lifetime in a collision including the electric and chiral magnetic conductivities. We show that for reasonable parameters, the magnetic field created by spectators in a collision is not modified by the presence of matter. (C) 2014 Elsevier B.V. All rights reserved. C1 [McLerran, L.] Brookhaven Natl Lab, RIKEN, Upton, NY 11973 USA. [McLerran, L.; Skokov, V.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [McLerran, L.] Cent China Normal Univ, Dept Phys, Wuhan, Peoples R China. RP McLerran, L (reprint author), Brookhaven Natl Lab, RIKEN, Upton, NY 11973 USA. OI Skokov, Vladimir/0000-0001-7619-1796 FU US Department of Energy [DE-AC02-98CH10886] FX We thank Adam Bzdak, Dmitri Kharzeev, Jinfeng Liao and Shu Lin for stimulating discussions. The research of the authors is supported by the US Department of Energy under contract #DE-AC02-98CH10886. NR 13 TC 34 Z9 34 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD SEP PY 2014 VL 929 BP 184 EP 190 DI 10.1016/j.nuclphysa.2014.05.008 PG 7 WC Physics, Nuclear SC Physics GA AO6LZ UT WOS:000341464900015 ER PT J AU Adolph, C Akhunzyanov, R Alexeev, MG Alexandrov, Y Alexeev, GD Amoroso, A Andrieux, V Anosov, V Austregesilo, A Badelek, B Balestra, F Barth, J Baum, G Beck, R Bedfer, Y Berlin, A Bernhard, J Bertini, R Bicker, K Bieling, J Birsa, R Bisplinghoff, J Bodlak, M Boer, M Bordalo, P Bradamante, F Braun, C Bravar, A Bressan, A Buchele, M Burtin, E Capozza, L Chiosso, M Chung, SU Cicuttin, A Crespo, ML Curiel, Q Torre, SD Dasgupta, SS Dasgupta, S Denisov, OY Donskov, SV Doshita, N Duic, V Dunnweber, W Dziewiecki, M Efremov, A Elia, C Eversheim, PD Eyrich, W Faessler, M Ferrero, A Filin, A Finger, M Finger, M Fischer, H Franco, C von Hohenesche, ND Friedrich, JM Frolov, V Garfagnini, R Gautheron, F Gavrichtchouk, OP Gerassimov, S Geyer, R Giorgi, M Gnesi, I Gobbo, B Goertz, S Gorzellik, M Grabmuller, S Grasso, A Grube, B Guskov, A Guthorl, T Haas, F von Harrach, D Hahne, D Hashimoto, R Heinsius, FH Herrmann, F Hinterberger, F Hoppner, C Horikawa, N d'Hose, N Huber, S Ishimoto, S Ivanov, A Ivanshin, Y Iwata, T Jahn, R Jary, V Jasinski, P Joerg, P Joosten, R Kabuss, E Kang, D Ketzer, B Khaustov, GV Khokhlov, YA Kisselev, Y Klein, F Klimaszewski, K Koivuniemi, JH Kolosov, VN Kondo, K Konigsmann, K Konorov, I Konstantinov, VF Kotzinian, AM Kouznetsov, O Kral, Z Kramer, M Kroumchtein, ZV Kuchinski, N Kunne, F Kurek, K Kurjata, RP Lednev, AA Lehmann, A Levorato, S Lichtenstadt, J Maggiora, A Magnon, A Makke, N Mallot, GK Marchand, C Martin, A Marzec, J Matousek, J Matsuda, H Matsuda, T Meshcheryakov, G Meyer, W Michigami, T Mikhailov, YV Miyachi, Y Nagaytsev, A Nagel, T Nerling, F Neubert, S Neyret, D Nikolaenko, VI Novy, J Nowak, WD Nunes, AS Orlov, I Olshevsky, AG Ostrick, M Panknin, R Panzieri, D Parsamyan, B Paul, S Pesek, M Peshekhonov, D Piragino, G Platchkov, S Pochodzalla, J Polak, J Polyakov, VA Pretz, J Quaresma, M Quintans, C Ramos, S Reicherz, G Rocco, E Rodionov, V Rondio, E Rychter, A Rossiyskaya, NS Ryabchikov, DI Samoylenko, VD Sandacz, A Sarkar, S Savin, IA Sbrizzai, G Schiavon, P Schill, C Schluter, T Schmidt, A Schmidt, K Schmieden, H Schonning, K Schopferer, S Schott, M Shevchenko, OY Silva, L Sinha, L Sirtl, S Slunecka, M Sosio, S Sozzi, F Srnka, A Steiger, L Stolarski, M Sulc, M Sulej, R Suzuki, H Szableski, A Szameitat, T Sznajder, P Takekawa, S ter Wolbeek, J Tessaro, S Tessarotto, F Thibaud, F Uhl, S Uman, I Vandenbroucke, M Virius, M Vondra, J Wang, L Weisrock, T Wilfert, M Windmolders, R Wislicki, W Wollny, H Zaremba, K Zavertyaev, M Zemlyanichkina, E Ziembicki, M AF Adolph, C. Akhunzyanov, R. Alexeev, M. G. Alexandrov, Yu. Alexeev, G. D. Amoroso, A. Andrieux, V. Anosov, V. Austregesilo, A. Badelek, B. Balestra, F. Barth, J. Baum, G. Beck, R. Bedfer, Y. Berlin, A. Bernhard, J. Bertini, R. Bicker, K. Bieling, J. Birsa, R. Bisplinghoff, J. Bodlak, M. Boer, M. Bordalo, P. Bradamante, F. Braun, C. Bravar, A. Bressan, A. Buechele, M. Burtin, E. Capozza, L. Chiosso, M. Chung, S. U. Cicuttin, A. Crespo, M. L. Curiel, Q. Torre, S. Dalla Dasgupta, S. S. Dasgupta, S. Denisov, O. Yu. Donskov, S. V. Doshita, N. Duic, V. Duennweber, W. Dziewiecki, M. Efremov, A. Elia, C. Eversheim, P. D. Eyrich, W. Faessler, M. Ferrero, A. Filin, A. Finger, M. Finger, M., Jr. Fischer, H. Franco, C. von Hohenesche, N. du Fresne Friedrich, J. M. Frolov, V. Garfagnini, R. Gautheron, F. Gavrichtchouk, O. P. Gerassimov, S. Geyer, R. Giorgi, M. Gnesi, I. Gobbo, B. Goertz, S. Gorzellik, M. Grabmueller, S. Grasso, A. Grube, B. Guskov, A. Guthoerl, T. Haas, F. von Harrach, D. Hahne, D. Hashimoto, R. Heinsius, F. H. Herrmann, F. Hinterberger, F. Hoeppner, Ch. Horikawa, N. d'Hose, N. Huber, S. Ishimoto, S. Ivanov, A. Ivanshin, Yu. Iwata, T. Jahn, R. Jary, V. Jasinski, P. Joerg, P. Joosten, R. Kabuss, E. Kang, D. Ketzer, B. Khaustov, G. V. Khokhlov, Yu. A. Kisselev, Yu. Klein, F. Klimaszewski, K. Koivuniemi, J. H. Kolosov, V. N. Kondo, K. Koenigsmann, K. Konorov, I. Konstantinov, V. F. Kotzinian, A. M. Kouznetsov, O. Kral, Z. Kraemer, M. Kroumchtein, Z. V. Kuchinski, N. Kunne, F. Kurek, K. Kurjata, R. P. Lednev, A. A. Lehmann, A. Levorato, S. Lichtenstadt, J. Maggiora, A. Magnon, A. Makke, N. Mallot, G. K. Marchand, C. Martin, A. Marzec, J. Matousek, J. Matsuda, H. Matsuda, T. Meshcheryakov, G. Meyer, W. Michigami, T. Mikhailov, Yu. V. Miyachi, Y. Nagaytsev, A. Nagel, T. Nerling, F. Neubert, S. Neyret, D. Nikolaenko, V. I. Novy, J. Nowak, W. -D. Nunes, A. S. Orlov, I. Olshevsky, A. G. Ostrick, M. Panknin, R. Panzieri, D. Parsamyan, B. Paul, S. Pesek, M. Peshekhonov, D. Piragino, G. Platchkov, S. Pochodzalla, J. Polak, J. Polyakov, V. A. Pretz, J. Quaresma, M. Quintans, C. Ramos, S. Reicherz, G. Rocco, E. Rodionov, V. Rondio, E. Rychter, A. Rossiyskaya, N. S. Ryabchikov, D. I. Samoylenko, V. D. Sandacz, A. Sarkar, S. Savin, I. A. Sbrizzai, G. Schiavon, P. Schill, C. Schlueter, T. Schmidt, A. Schmidt, K. Schmieden, H. Schoenning, K. Schopferer, S. Schott, M. Shevchenko, O. Yu. Silva, L. Sinha, L. Sirtl, S. Slunecka, M. Sosio, S. Sozzi, F. Srnka, A. Steiger, L. Stolarski, M. Sulc, M. Sulej, R. Suzuki, H. Szableski, A. Szameitat, T. Sznajder, P. Takekawa, S. ter Wolbeek, J. Tessaro, S. Tessarotto, F. Thibaud, F. Uhl, S. Uman, I. Vandenbroucke, M. Virius, M. Vondra, J. Wang, L. Weisrock, T. Wilfert, M. Windmolders, R. Wislicki, W. Wollny, H. Zaremba, K. Zavertyaev, M. Zemlyanichkina, E. Ziembicki, M. TI Measurement of azimuthal hadron asymmetries in semi-inclusive deep inelastic scattering off unpolarised nucleons SO NUCLEAR PHYSICS B LA English DT Article ID MUON PROTON-SCATTERING; SIVERS ASYMMETRIES; SPIN ASYMMETRIES; DISTRIBUTIONS; ELECTROPRODUCTION; LEPTOPRODUCTION; DEPENDENCE; COLLINS AB Spin-averaged asymmetries in the azimuthal distributions of positive and negative hadrons produced in deep inelastic scattering were measured using the CERN SPS longitudinally polarised muon beam at 160 GeV/c and a (LiD)-Li-6 target. The amplitudes of the three azimuthal modulations cos phi(h), cos 2 phi(h) and sin phi(h) were obtained binning the data separately in each of the relevant kinematic variables x, z or p(T)(h), and binning in a three-dimensional grid of these three variables. The amplitudes of the cos phi(h) and cos 2 phi(h) modulations show strong kinematic dependencies both for positive and negative hadrons. (C) 2014 CERN for the benefit of the COMPASS Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/Licenses/by/3.0/). C1 [Baum, G.] Univ Bielefeld, Fak Phys, D-33501 Bielefeld, Germany. [Berlin, A.; Gautheron, F.; Koivuniemi, J. H.; Meyer, W.; Reicherz, G.; Wang, L.] Univ Bochum, Inst Experimentalphys, D-44780 Bochum, Germany. [Beck, R.; Bisplinghoff, J.; Eversheim, P. D.; Hinterberger, F.; Jahn, R.; Joosten, R.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany. [Barth, J.; Bieling, J.; Goertz, S.; Hahne, D.; Klein, F.; Panknin, R.; Pretz, J.; Schmieden, H.; Windmolders, R.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Srnka, A.] Acad Sci Czech Republic, Inst Sci Instruments, CS-61264 Brno, Czech Republic. [Dasgupta, S. S.; Dziewiecki, M.; Marzec, J.; Sarkar, S.; Sinha, L.; Zaremba, K.] Matrivani Inst Expt Res & Educ, Kolkata 700030, W Bengal, India. [Akhunzyanov, R.; Alexeev, G. D.; Anosov, V.; Efremov, A.; Gavrichtchouk, O. P.; Guskov, A.; Ivanov, A.; Ivanshin, Yu.; Kisselev, Yu.; Kouznetsov, O.; Kroumchtein, Z. V.; Kuchinski, N.; Meshcheryakov, G.; Nagaytsev, A.; Orlov, I.; Olshevsky, A. G.; Peshekhonov, D.; Rodionov, V.; Rossiyskaya, N. S.; Savin, I. A.; Shevchenko, O. Yu.; Slunecka, M.; Zemlyanichkina, E.] Joint Inst Nucl Res, Moscow 141980, Russia. [Adolph, C.; Braun, C.; Eyrich, W.; Lehmann, A.; Schmidt, A.] Univ Erlangen Nurnberg, Inst Phys, D-91054 Erlangen, Germany. [Buechele, M.; Fischer, H.; Gorzellik, M.; Guthoerl, T.; Heinsius, F. H.; Herrmann, F.; Joerg, P.; Koenigsmann, K.; Nowak, W. -D.; Schill, C.; Schmidt, K.; Szameitat, T.; ter Wolbeek, J.] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany. [Austregesilo, A.; Bicker, K.; Bradamante, F.; von Hohenesche, N. du Fresne; Frolov, V.; Mallot, G. K.; Rocco, E.; Schoenning, K.; Schott, M.] CERN, CH-1211 Geneva 23, Switzerland. [Polak, J.; Sulc, M.] Tech Univ Liberec, Liberec 46117, Czech Republic. [Bordalo, P.; Franco, C.; Nunes, A. S.; Quaresma, M.; Quintans, C.; Ramos, S.; Silva, L.; Stolarski, M.] LIP, P-1000149 Lisbon, Portugal. [Bernhard, J.; von Hohenesche, N. du Fresne; von Harrach, D.; Jasinski, P.; Kabuss, E.; Kang, D.; Nerling, F.; Ostrick, M.; Pochodzalla, J.; Weisrock, T.; Wilfert, M.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Matsuda, T.] Miyazaki Univ, Miyazaki 8892192, Japan. [Alexandrov, Yu.; Gerassimov, S.; Konorov, I.; Zavertyaev, M.] PN Lebedev Phys Inst, Moscow 119991, Russia. [Duennweber, W.; Faessler, M.; Geyer, R.; Schlueter, T.; Uman, I.] Univ Munich, Dept Phys, D-80799 Munich, Germany. [Austregesilo, A.; Bicker, K.; Chung, S. U.; Friedrich, J. M.; Gerassimov, S.; Grabmueller, S.; Grube, B.; Haas, F.; Hoeppner, Ch.; Huber, S.; Ketzer, B.; Konorov, I.; Kraemer, M.; Nagel, T.; Neubert, S.; Paul, S.; Uhl, S.] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany. [Horikawa, N.] Nagoya Univ, Nagoya, Aichi 464, Japan. [Bodlak, M.; Finger, M.; Finger, M., Jr.; Matousek, J.; Pesek, M.] Charles Univ Prague, Fac Math & Phys, CR-18000 Prague, Czech Republic. [Jary, V.; Kral, Z.; Novy, J.; Virius, M.; Vondra, J.] Czech Tech Univ, Prague 16636, Czech Republic. [Donskov, S. V.; Filin, A.; Khaustov, G. V.; Khokhlov, Yu. A.; Kolosov, V. N.; Konstantinov, V. F.; Lednev, A. A.; Mikhailov, Yu. V.; Nikolaenko, V. I.; Polyakov, V. A.; Ryabchikov, D. I.; Samoylenko, V. D.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino 142281, Russia. [Andrieux, V.; Bedfer, Y.; Boer, M.; Burtin, E.; Capozza, L.; Curiel, Q.; Ferrero, A.; d'Hose, N.; Kunne, F.; Magnon, A.; Marchand, C.; Neyret, D.; Platchkov, S.; Thibaud, F.; Vandenbroucke, M.; Wollny, H.] CEA IRFU SPhN Saclay, F-91191 Gif Sur Yvette, France. [Lichtenstadt, J.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Birsa, R.; Bravar, A.; Bressan, A.; Cicuttin, A.; Crespo, M. L.; Torre, S. Dalla; Dasgupta, S.; Elia, C.; Giorgi, M.; Gobbo, B.; Levorato, S.; Makke, N.; Martin, A.; Polak, J.; Sbrizzai, G.; Schiavon, P.; Sozzi, F.; Steiger, L.; Tessaro, S.; Tessarotto, F.] Ist Nazl Fis Nucl, Trieste Sect, I-34127 Trieste, Italy. [Bradamante, F.; Bressan, A.; Duic, V.; Elia, C.; Giorgi, M.; Makke, N.; Martin, A.; Sbrizzai, G.; Schiavon, P.] Univ Trieste, Dept Phys, I-34127 Trieste, Italy. [Cicuttin, A.; Crespo, M. L.] Abdus & Salam ICTP, I-34151 Trieste, Italy. [Amoroso, A.; Balestra, F.; Bertini, R.; Chiosso, M.; Garfagnini, R.; Gnesi, I.; Grasso, A.; Kotzinian, A. M.; Parsamyan, B.; Piragino, G.; Sosio, S.] Univ Turin, Dept Phys, I-10125 Turin, Italy. [Alexeev, M. G.; Amoroso, A.; Balestra, F.; Bertini, R.; Chiosso, M.; Denisov, O. Yu.; Garfagnini, R.; Gnesi, I.; Grasso, A.; Kotzinian, A. M.; Maggiora, A.; Panzieri, D.; Parsamyan, B.; Piragino, G.; Sosio, S.; Takekawa, S.] Ist Nazl Fis Nucl, Torino Sect, I-10125 Turin, Italy. [Panzieri, D.] Univ Piemonte Orientale, I-15100 Alessandria, Italy. [Klimaszewski, K.; Kurek, K.; Rondio, E.; Sandacz, A.; Sulej, R.; Szableski, A.; Sznajder, P.; Wislicki, W.] Natl Ctr Nucl Res, PL-00681 Warsaw, Poland. [Badelek, B.] Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland. [Kurjata, R. P.; Rychter, A.; Ziembicki, M.] Warsaw Univ Technol, Inst Radioelect, PL-00665 Warsaw, Poland. [Doshita, N.; Hashimoto, R.; Ishimoto, S.; Iwata, T.; Kondo, K.; Matsuda, H.; Michigami, T.; Miyachi, Y.; Suzuki, H.] Yamagata Univ, Yamagata 9928510, Japan. [Bordalo, P.; Ramos, S.] Univ Lisbon, Inst Super Tecn, P-1699 Lisbon, Portugal. [Chung, S. U.] Pusan Natl Univ, Dept Phys, Pusan 609735, South Korea. [Chung, S. U.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Horikawa, N.; Suzuki, H.] Chubu Univ, Kasugai, Aichi 4878501, Japan. [Ishimoto, S.] Natl Lab High Energy Phys, KEK, Tsukuba, Ibaraki 3050801, Japan. [Khokhlov, Yu. A.] Moscow Inst Phys & Technol, Moscow 141700, Russia. RP Bressan, A (reprint author), Univ Trieste, Dept Phys, I-34127 Trieste, Italy. EM Andrea.Bressan@cern.ch; Fabienne.Kunne@cern.ch; Giulio.Sbrizzai@ts.infn.it RI Dasgupta, Shuddha Shankar/O-6118-2016; Srnka, A/E-2441-2012; Friedrich, Jan/B-9024-2013; Steiger, Lukas/H-3061-2014; Martin, Anna/I-9381-2012; Koivuniemi, Jaakko/L-2959-2015; Zavertyaev, Mikhail/M-6844-2015; Gerassimov, Sergei/M-8779-2015; Olshevskiy, Alexander/I-1580-2016; Kurjata, Robert/I-5112-2016; Paul, Stephan/F-7596-2015; Paul, Stephan/K-9237-2016; Silva, Luis/M-4435-2016 OI Heinsius, Fritz-Herbert/0000-0002-9545-5117; Ostrick, Michael/0000-0002-3748-0242; Stolarski, Marcin/0000-0003-0276-8059; Franco, Celso/0000-0003-2729-4064; Jary, Vladimir/0000-0003-4718-4444; Bordalo, Paula/0000-0002-3651-6370; Nunes, Ana Sofia/0000-0001-8361-622X; Amoroso, Antonio/0000-0002-3095-8610; Friedrich, Jan/0000-0001-9298-7882; Steiger, Lukas/0000-0001-9772-9444; Martin, Anna/0000-0002-1333-0143; Koivuniemi, Jaakko/0000-0002-6817-5267; Olshevskiy, Alexander/0000-0002-8902-1793; Kurjata, Robert/0000-0001-8547-910X; Paul, Stephan/0000-0002-8813-0437; Paul, Stephan/0000-0002-8813-0437; Silva, Luis/0000-0003-0044-3736 FU DFG Research Training Group Programme "Physics at Hadron Accelerators" [1102]; ICTP programme for Training and Research in Italian Laboratories (TRIL); German Bundesministerium fur Bildung und Forschung; Czech Republic MEYS Grants [ME492, LA242]; SAIL (CSR), Government of India; CERN-RFBR Grants [08-02-91009, 12-02-91500]; Portuguese FCT - Fundacao para a Ciencia e Tecnologia [CERN/FP/109323/2009, CERN/FP/116376/2010, CERN/FP/123600/2011]; MEXT; JSPS [18002006, 20540299, 18540281]; Daiko Foundation; Yamada Foundation; DFG cluster of excellence 'Origin and Structure of the Universe'; EU FP7 (HadronPhysics3) [283286]; Israel Science Foundation; Polish Narodowe Centrum Nauki Grant [DEC-2011/01/M/ST2/02350] FX Supported by the DFG Research Training Group Programme 1102 "Physics at Hadron Accelerators".; Supported by the ICTP programme for Training and Research in Italian Laboratories (TRIL).; Supported by the German Bundesministerium fur Bildung und Forschung.; Supported by Czech Republic MEYS Grants ME492 and LA242.; Supported by SAIL (CSR), Government of India.; Supported by CERN-RFBR Grants 08-02-91009 and 12-02-91500.; Supported by the Portuguese FCT - Fundacao para a Ciencia e Tecnologia, COMPETE and QREN, Grants CERN/FP/109323/2009, CERN/FP/116376/2010 and CERN/FP/123600/2011.; Supported by the MEXT and the JSPS under the Grants No. 18002006, No. 20540299 and No. 18540281; Daiko Foundation and Yamada Foundation.; Supported by the DFG cluster of excellence 'Origin and Structure of the Universe' (www.universe-cluster.de).; Supported by EU FP7 (HadronPhysics3, Grant Agreement number 283286).; Supported by the Israel Science Foundation, founded by the Israel Academy of Sciences and Humanities.; Supported by the Polish Narodowe Centrum Nauki Grant DEC-2011/01/M/ST2/02350. NR 31 TC 16 Z9 16 U1 0 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 EI 1873-1562 J9 NUCL PHYS B JI Nucl. Phys. B PD SEP PY 2014 VL 886 BP 1046 EP 1077 DI 10.1016/j.nuclphysb.2014.07.019 PG 32 WC Physics, Particles & Fields SC Physics GA AO4XK UT WOS:000341344500034 ER PT J AU Adolph, C Akhunzyanov, R Alexeev, MG Alexeev, GD Amoroso, A Andrieux, V Anosov, V Austregesilo, A Badelek, B Balestra, F Barth, J Baum, G Beck, R Bedfer, Y Berlin, A Bernhard, J Bicker, K Bieling, J Birsax, R Bisplinghoff, J Bodlak, M Boer, M Bordalo, P Bradamante, F Braun, C Bressan, A Buchele, M Burtin, E Capozza, L Chiosso, M Chung, SU Cicuttin, A Crespo, ML Curiel, Q Dalla Torre, S Dasgupta, SS Dasgupta, S Denisov, OY Donskov, SV Doshita, N Duic, V Dunnweber, W Dziewiecki, M Efremov, A Elia, C Eversheim, PD Eyrich, W Faessler, M Ferrero, A Filin, A Finger, M Finger, M Fischer, H Franco, C von Hohenesche, ND Friedrich, JM Frolov, V Gautheron, F Gavrichtchouk, OP Gerassimov, S Geyer, R Gnesi, I Gobbo, B Goertz, S Gorzellik, M Grabmuller, S Grasso, A Grube, B Grussenmeyer, T Guskov, A Guthorl, T Haas, F von Harrach, D Hahne, D Hashimoto, R Heinsius, FH Herrmann, F Hinterberger, F Hoppner, C Horikawa, N d'Hose, N Huber, S Ishimoto, S Ivanov, A Ivanshing, Y Iwata, T Jahn, R Jary, V Jasinski, P Joerg, P Joosten, R Kabuss, E Ketzer, B Khaustov, GV Khokhlov, YA Kisselev, Y Klein, F Klimaszewski, K Koivuniemi, JH Kolosov, VN Kondo, K Konigsmann, K Konorov, I Konstantinov, VF Kotzinian, AM Kouznetsov, O Kramer, M Kroumchtein, ZV Kuchinski, N Kunne, F Kurek, K Kurjata, RP Lednev, AA Lehmann, A Levillain, M Levorato, S Lichtenstadt, J Maggiora, A Magnon, A Makke, N Mallot, GK Marchand, C Martin, A Marzec, J Matousek, J Matsuda, H Matsuda, T Meshcheryakov, G Meyer, W Michigami, T Mikhailov, YV Miyachi, Y Nagaytsev, A Nagel, T Nerling, F Neubert, S Neyret, D Nikolaenko, VI Novy, J Nowak, WD Nunes, AS Olshevsky, AG Orlov, I Ostrick, M Panknin, R Panzieri, D Parsamyan, B Paul, S Platchkov, S Pochodzalla, J Polyakov, VA Pretz, J Quaresma, M Quintans, C Ramos, S Regali, C Reicherz, G Rocco, E Rossiyskaya, NS Ryabchikov, DI Rychter, A Samoylenko, VD Sandacz, A Sapozhnikov, M Sarkar, S Savin, IA Sbrizzai, G Schiavon, P Schill, C Schluter, T Schmidt, K Schmieden, H Schonning, K Schopferer, S Schott, M Shevchenko, OY Silva, L Sinha, L Sirtl, S Slunecka, M Sosio, S Sozzi, F Srnka, A Steiger, L Stolarski, M Sulc, M Sulej, R Suzuki, H Szableski, A Szameitat, T Sznajder, P Takekawa, S ter Wolbeek, J Tessaro, S Tessarotto, F Thibaud, F Uhl, S Uman, I Virius, M Wang, L Weisrock, T Wilfert, M Windmolders, R Wollny, H Zaremba, K Zavertyaev, M Zemlyanichkina, E Ziembicki, M Zink, A AF Adolph, C. Akhunzyanov, R. Alexeev, M. G. Alexeev, G. D. Amoroso, A. Andrieux, V. Anosov, V. Austregesilo, A. Badelek, B. Balestra, F. Barth, J. Baum, G. Beck, R. Bedfer, Y. Berlin, A. Bernhard, J. Bicker, K. Bieling, J. Birsax, R. Bisplinghoff, J. Bodlak, M. Boer, M. Bordalo, P. Bradamante, F. Braun, C. Bressan, A. Buechele, M. Burtin, E. Capozza, L. Chiosso, M. Chung, S. U. Cicuttin, A. Crespo, M. L. Curiel, Q. Dalla Torre, S. Dasgupta, S. S. Dasgupta, S. Denisov, O. Yu. Donskov, S. V. Doshita, N. Duic, V. Duennweber, W. Dziewiecki, M. Efremov, A. Elia, C. Eversheim, P. D. Eyrich, W. Faessler, M. Ferrero, A. Filin, A. Finger, M. Finger, M., Jr. Fischer, H. Franco, C. von Hohenesche, N. du Fresne Friedrich, J. M. Frolov, V. Gautheron, F. Gavrichtchouk, O. P. Gerassimov, S. Geyer, R. Gnesi, I. Gobbo, B. Goertz, S. Gorzellik, M. Grabmueller, S. Grasso, A. Grube, B. Grussenmeyer, T. Guskov, A. Guthoerl, T. Haas, F. von Harrach, D. Hahne, D. Hashimoto, R. Heinsius, F. H. Herrmann, F. Hinterberger, F. Hoeppner, Ch. Horikawa, N. d'Hose, N. Huber, S. Ishimoto, S. Ivanov, A. Ivanshing, Yu. Iwata, T. Jahn, R. Jary, V. Jasinski, P. Joerg, P. Joosten, R. Kabuss, E. Ketzer, B. Khaustov, G. V. Khokhlov, Yu. A. Kisselev, Yu. Klein, F. Klimaszewski, K. Koivuniemi, J. H. Kolosov, V. N. Kondo, K. Koenigsmann, K. Konorov, I. Konstantinov, V. F. Kotzinian, A. M. Kouznetsov, O. Kraemer, M. Kroumchtein, Z. V. Kuchinski, N. Kunne, F. Kurek, K. Kurjata, R. P. Lednev, A. A. Lehmann, A. Levillain, M. Levorato, S. Lichtenstadt, J. Maggiora, A. Magnon, A. Makke, N. Mallot, G. K. Marchand, C. Martin, A. Marzec, J. Matousek, J. Matsuda, H. Matsuda, T. Meshcheryakov, G. Meyer, W. Michigami, T. Mikhailov, Yu. V. Miyachi, Y. Nagaytsev, A. Nagel, T. Nerling, F. Neubert, S. Neyret, D. Nikolaenko, V. I. Novy, J. Nowak, W. -D. Nunes, A. S. Olshevsky, A. G. Orlov, I. Ostrick, M. Panknin, R. Panzieri, D. Parsamyan, B. Paul, S. Platchkov, S. Pochodzalla, J. Polyakov, V. A. Pretz, J. Quaresma, M. Quintans, C. Ramos, S. Regali, C. Reicherz, G. Rocco, E. Rossiyskaya, N. S. Ryabchikov, D. I. Rychter, A. Samoylenko, V. D. Sandacz, A. Sapozhnikov, M. Sarkar, S. Savin, I. A. Sbrizzai, G. Schiavon, P. Schill, C. Schlueter, T. Schmidt, K. Schmieden, H. Schoenning, K. Schopferer, S. Schott, M. Shevchenko, O. Yu. Silva, L. Sinha, L. Sirtl, S. Slunecka, M. Sosio, S. Sozzi, F. Srnka, A. Steiger, L. Stolarski, M. Sulc, M. Sulej, R. Suzuki, H. Szableski, A. Szameitat, T. Sznajder, P. Takekawa, S. ter Wolbeek, J. Tessaro, S. Tessarotto, F. Thibaud, F. Uhl, S. Uman, I. Virius, M. Wang, L. Weisrock, T. Wilfert, M. Windmolders, R. Wollny, H. Zaremba, K. Zavertyaev, M. Zemlyanichkina, E. Ziembicki, M. Zink, A. TI Spin alignment and violation of the OZI rule in exclusive omega and phi production in pp collisions SO NUCLEAR PHYSICS B LA English DT Article ID PROTON-PROTON COLLISIONS; LOW-ENERGY PHOTOPRODUCTION; ZWEIG-IIZUKA RULE; MESON PRODUCTION; EXPERIMENTAL TESTS; SELECTION RULE; POLARIZATION; NUCLEON; PI AB Exclusive production of the isoscalar vector mesons omega and phi is measured with a 190 GeV/c proton beam impinging on a liquid hydrogen target. Cross section ratios are determined in three intervals of the Feynman variable x(F) of the fast proton. A significant violation of the OZI rule is found, confirming earlier findings. Its kinematic dependence on xF and on the invariant mass M-pV of the system formed by fast proton p(fast) and vector meson V is discussed in terms of diffractive production of p(fast) V resonances in competition with central production. The measurement of the spin density matrix element rho(00) of the vector mesons in different selected reference frames provides another handle to distinguish the contributions of these two major reaction types. Again, dependences of the alignment on x(F) and on M-pV are found. Most of the observations can be traced back to the existence of several excited baryon states contributing to omega production which are absent in the case of the phi meson. Removing the low-mass M-pV resonant region, the OZI rule is found to be violated by a factor of eight, independently of x(F). (C) 2014 CERN for the benefit of the COMPASS Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). C1 [Baum, G.] Univ Bielefeld, Fak Phys, D-33501 Bielefeld, Germany. [Berlin, A.; Gautheron, F.; Koivuniemi, J. H.; Meyer, W.; Reicherz, G.; Wang, L.] Ruhr Univ Bochum, Inst Experimentalphys, D-44780 Bochum, Germany. [Beck, R.; Bisplinghoff, J.; Eversheim, P. D.; Hinterberger, F.; Jahn, R.; Joosten, R.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany. [Barth, J.; Bieling, J.; Goertz, S.; Hahne, D.; Klein, F.; Panknin, R.; Pretz, J.; Schmieden, H.; Windmolders, R.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Badelek, B.; Srnka, A.] AS CR, Inst Sci Instruments, Brno 61264, Czech Republic. [Dasgupta, S. S.; Sarkar, S.; Sinha, L.] Matrivani Inst Expt Res & Educ, Kolkata 700030, W Bengal, India. [Akhunzyanov, R.; Alexeev, G. D.; Anosov, V.; Efremov, A.; Gavrichtchouk, O. P.; Guskov, A.; Ivanov, A.; Ivanshing, Yu.; Kisselev, Yu.; Kouznetsov, O.; Kroumchtein, Z. V.; Kuchinski, N.; Meshcheryakov, G.; Nagaytsev, A.; Olshevsky, A. G.; Orlov, I.; Rossiyskaya, N. S.; Sapozhnikov, M.; Savin, I. A.; Shevchenko, O. Yu.; Slunecka, M.; Zemlyanichkina, E.] Joint Inst Nucl Res, Dubna 141980, Russia. [Adolph, C.; Braun, C.; Eyrich, W.; Lehmann, A.; Zink, A.] Univ Erlangen Nurnberg, Inst Phys, D-91054 Erlangen, Germany. [Buechele, M.; Fischer, H.; Gorzellik, M.; Grussenmeyer, T.; Guthoerl, T.; Heinsius, F. H.; Herrmann, F.; Joerg, P.; Koenigsmann, K.; Nowak, W. -D.; Regali, C.; Schill, C.; Schmidt, K.; Schopferer, S.; Sirtl, S.; Szameitat, T.; ter Wolbeek, J.] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany. [Austregesilo, A.; Bicker, K.; Bradamante, F.; von Hohenesche, N. du Fresne; Frolov, V.; Mallot, G. K.; Rocco, E.; Schoenning, K.; Schott, M.] CERN, CH-1211 Geneva 23, Switzerland. [Sulc, M.] Tech Univ Liberec, Liberec 46117, Czech Republic. [Bordalo, P.; Franco, C.; Nunes, A. S.; Quaresma, M.; Quintans, C.; Ramos, S.; Silva, L.; Stolarski, M.] LIP, P-1000149 Lisbon, Portugal. [Bernhard, J.; von Hohenesche, N. du Fresne; von Harrach, D.; Jasinski, P.; Kabuss, E.; Nerling, F.; Ostrick, M.; Pochodzalla, J.; Weisrock, T.; Wilfert, M.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Matsuda, T.] Miyazaki Univ, Miyazaki 8892192, Japan. [Gerassimov, S.; Konorov, I.; Zavertyaev, M.] PN Lebedev Phys Inst, Moscow 119991, Russia. [Duennweber, W.; Faessler, M.; Geyer, R.; Schlueter, T.; Uman, I.] Univ Munich, Dept Phys, D-80799 Munich, Germany. [Austregesilo, A.; Bicker, K.; Chung, S. U.; Friedrich, J. M.; Gerassimov, S.; Grabmueller, S.; Grube, B.; Haas, F.; Hoeppner, Ch.; Huber, S.; Ketzer, B.; Konorov, I.; Kraemer, M.; Nagel, T.; Neubert, S.; Paul, S.; Uhl, S.] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany. [Horikawa, N.] Nagoya Univ, Nagoya, Aichi 464, Japan. [Bodlak, M.; Finger, M.; Finger, M., Jr.; Matousek, J.] Charles Univ Prague, Fac Math & Phys, CR-18000 Prague, Czech Republic. [Jary, V.; Novy, J.; Virius, M.] Czech Tech Univ, Prague 16636, Czech Republic. [Donskov, S. V.; Filin, A.; Khaustov, G. V.; Khokhlov, Yu. A.; Kolosov, V. N.; Konstantinov, V. F.; Lednev, A. A.; Mikhailov, Yu. V.; Nikolaenko, V. I.; Polyakov, V. A.; Ryabchikov, D. I.; Samoylenko, V. D.] State Res Ctr Russian Fedeiat, Inst High Energy Phys, Protvino 142281, Russia. [Andrieux, V.; Bedfer, Y.; Boer, M.; Burtin, E.; Capozza, L.; Curiel, Q.; Ferrero, A.; d'Hose, N.; Kunne, F.; Levillain, M.; Magnon, A.; Marchand, C.; Neyret, D.; Platchkov, S.; Thibaud, F.; Wollny, H.] CEA, IRFU SPhN Saclay, F-91191 Gif Sur Yvette, France. [Lichtenstadt, J.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Birsax, R.; Bressan, A.; Cicuttin, A.; Crespo, M. L.; Dalla Torre, S.; Dasgupta, S.; Elia, C.; Gobbo, B.; Levorato, S.; Makke, N.; Martin, A.; Sbrizzai, G.; Schiavon, P.; Sozzi, F.; Steiger, L.; Tessaro, S.; Tessarotto, F.] Ist Nazl Fis Nucl, Trieste Sect, I-34127 Trieste, Italy. [Bradamante, F.; Bressan, A.; Duic, V.; Elia, C.; Makke, N.; Martin, A.; Sbrizzai, G.; Schiavon, P.] Univ Trieste, Dept Phys, I-34127 Trieste, Italy. [Cicuttin, A.; Crespo, M. L.] Abdus Salam Int Ctr Theoret Phys, I-34151 Trieste, Italy. [Amoroso, A.; Balestra, F.; Chiosso, M.; Gnesi, I.; Grasso, A.; Kotzinian, A. M.; Parsamyan, B.; Sosio, S.] Univ Turin, Dept Phys, I-10125 Turin, Italy. [Alexeev, M. G.; Amoroso, A.; Balestra, F.; Chiosso, M.; Denisov, O. Yu.; Gnesi, I.; Grasso, A.; Kotzinian, A. M.; Maggiora, A.; Panzieri, D.; Parsamyan, B.; Sosio, S.; Takekawa, S.] Ist Nazl Fis Nucl, Torino Sect, I-10125 Turin, Italy. [Panzieri, D.] Univ Piemonte Orientale, I-15100 Alessandria, Italy. [Klimaszewski, K.; Kurek, K.; Sandacz, A.; Sulej, R.; Szableski, A.; Sznajder, P.] Natl Ctr Nucl Res, PL-00681 Warsaw, Poland. Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland. [Dziewiecki, M.; Kurjata, R. P.; Marzec, J.; Rychter, A.; Zaremba, K.; Ziembicki, M.] Warsaw Univ Technol, Inst Radioelectron, PL-00665 Warsaw, Poland. [Doshita, N.; Hashimoto, R.; Ishimoto, S.; Iwata, T.; Kondo, K.; Matsuda, H.; Michigami, T.; Miyachi, Y.; Suzuki, H.] Yamagata Univ, Yamagata 9928510, Japan. [Bordalo, P.; Ramos, S.] Univ Lisbon, Inst Super Tecn, P-1699 Lisbon, Portugal. [Chung, S. U.] Pusan Natl Univ, Dept Phys, Pusan 609735, South Korea. [Chung, S. U.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Horikawa, N.; Suzuki, H.] Chubu Univ, Kasugai, Aichi 4878501, Japan. [Ishimoto, S.] KEK, Tsukuba, Ibaraki 3050801, Japan. [Khokhlov, Yu. A.] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Russia. RP Bressan, A (reprint author), Univ Trieste, Dept Phys, I-34127 Trieste, Italy. EM Andrea.Bressan@cern.ch; Fabienne.Kunne@cern.ch; Stina.Karin.Schoenning@cern.ch RI Dasgupta, Shuddha Shankar/O-6118-2016; Srnka, A/E-2441-2012; Friedrich, Jan/B-9024-2013; Steiger, Lukas/H-3061-2014; Martin, Anna/I-9381-2012; Koivuniemi, Jaakko/L-2959-2015; Zavertyaev, Mikhail/M-6844-2015; Gerassimov, Sergei/M-8779-2015; Olshevskiy, Alexander/I-1580-2016; Kurjata, Robert/I-5112-2016; Paul, Stephan/F-7596-2015; Paul, Stephan/K-9237-2016; Silva, Luis/M-4435-2016; OI Ostrick, Michael/0000-0002-3748-0242; Heinsius, Fritz-Herbert/0000-0002-9545-5117; Stolarski, Marcin/0000-0003-0276-8059; Franco, Celso/0000-0003-2729-4064; Jary, Vladimir/0000-0003-4718-4444; Bordalo, Paula/0000-0002-3651-6370; Friedrich, Jan/0000-0001-9298-7882; Steiger, Lukas/0000-0001-9772-9444; Martin, Anna/0000-0002-1333-0143; Koivuniemi, Jaakko/0000-0002-6817-5267; Olshevskiy, Alexander/0000-0002-8902-1793; Kurjata, Robert/0000-0001-8547-910X; Paul, Stephan/0000-0002-8813-0437; Paul, Stephan/0000-0002-8813-0437; Silva, Luis/0000-0003-0044-3736; Amoroso, Antonio/0000-0002-3095-8610 FU DFG [1102]; ICTP programme for Training and Research in Italian Laboratories (TRIL); German Bundesministerium fur Bildung und Forschung; Czech Republic MEYS Grants [ME492, LA242]; SAIL (CSR), Govt. of India; CERN-RFBR Grants [08-02-91009, 12-02-91500]; Portuguese FCT - Fundacao para a Ciencia e Tecnologia [CERN/FP/109323/2009, CERN/FP/116376/2010, CERN/FP/123600/2011]; MEXT; JSPS [18002006, 20540299, 18540281]; Daiko Foundation; Yamada Foundation; DFG cluster of excellence 'Origin and Structure of the Universe'; EU FP7 (HadronPhysics3) [283286]; Israel Science Foundation; Polish NCN Grant [DEC-2011/01/M/ST2/02350] FX Supported by the DFG Research Training Group Programme 1102 "Physics at Hadron Accelerators".; Supported by the ICTP programme for Training and Research in Italian Laboratories (TRIL).; Supported by the German Bundesministerium fur Bildung und Forschung.; Supported by Czech Republic MEYS Grants ME492 and LA242.; Supported by SAIL (CSR), Govt. of India.; Supported by CERN-RFBR Grants 08-02-91009 and 12-02-91500.; Supported by the Portuguese FCT - Fundacao para a Ciencia e Tecnologia, COMPETE and QREN, Grants CERN/FP/109323/2009, CERN/FP/116376/2010 and CERN/FP/123600/2011.; Supported by the MEXT and the JSPS under the Grants No. 18002006, No. 20540299 and No. 18540281; Daiko Foundation and Yamada Foundation.; Supported by the DFG cluster of excellence 'Origin and Structure of the Universe' (http://www.universe-cluster.de).; Supported by EU FP7 (HadronPhysics3, Grant Agreement number 283286).; Supported by the Israel Science Foundation, founded by the Israel Academy of Sciences and Humanities.; Supported by the Polish NCN Grant DEC-2011/01/M/ST2/02350. NR 39 TC 1 Z9 1 U1 1 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 EI 1873-1562 J9 NUCL PHYS B JI Nucl. Phys. B PD SEP PY 2014 VL 886 BP 1078 EP 1101 DI 10.1016/j.nuclphysb.2014.07.020 PG 24 WC Physics, Particles & Fields SC Physics GA AO4XK UT WOS:000341344500035 ER PT J AU Chang, D Langrock, C Lin, YW Phillips, CR Bennett, CV Fejer, MM AF Chang, Derek Langrock, Carsten Lin, Yu-Wei Phillips, C. R. Bennett, C. V. Fejer, M. M. TI Complex-transfer-function analysis of optical-frequency converters SO OPTICS LETTERS LA English DT Article ID PHASE-MATCHING GRATINGS; 2ND-HARMONIC GENERATION; WAVE-GUIDES; PULSE-COMPRESSION; LINBO3; CONVERSION AB The measurement of the magnitude and phase of the complex transfer function (CTF) of a periodically poled lithium niobate waveguide devices using frequency resolved optical gating (FROG) is demonstrated. We investigate the sources of CTF distortions which are related to variations in the spatial distribution of the nonlinear coefficient and phase-mismatch profile and present a method to infer fabrication errors from the CTF discussed. (C) 2014 Optical Society of America C1 [Chang, Derek; Langrock, Carsten; Lin, Yu-Wei; Phillips, C. R.; Fejer, M. M.] Stanford Univ, Edward L Ginzton Lab, Stanford, CA 94305 USA. [Chang, Derek; Bennett, C. V.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Phillips, C. R.] ETH, Inst Quantum Elect, Dept Phys, CH-8093 Zurich, Switzerland. RP Chang, D (reprint author), Stanford Univ, Edward L Ginzton Lab, Stanford, CA 94305 USA. EM djychang@stanford.edu RI Bennett, Corey/C-2403-2009 OI Bennett, Corey/0000-0003-4365-5739 FU U.S. Department of Energy by LLNL [DE-AC52-07NA27344]; Lawrence Scholar Program; AFOSR [FA9550-12-1-0110] FX The authors thank Dan Kane for his helpful advice and support. This work performed under the auspices of U.S. Department of Energy by LLNL under contract (DE-AC52-07NA27344). In addition, we gratefully acknowledge the support of the Lawrence Scholar Program and AFOSR (FA9550-12-1-0110). NR 15 TC 1 Z9 1 U1 1 U2 6 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 EI 1539-4794 J9 OPT LETT JI Opt. Lett. PD SEP 1 PY 2014 VL 39 IS 17 BP 5106 EP 5109 DI 10.1364/OL.39.005106 PG 4 WC Optics SC Optics GA AO1UK UT WOS:000341100300034 PM 25166085 ER PT J AU Guildenbecher, DR Cooper, MA Gill, W Stauffacher, HL Oliver, MS Grasser, TW AF Guildenbecher, Daniel R. Cooper, Marcia A. Gill, Walter Stauffacher, Howard Lee Oliver, Michael S. Grasser, Thomas W. TI Quantitative, three-dimensional imaging of aluminum drop combustion in solid propellant plumes via digital in-line holography SO OPTICS LETTERS LA English DT Article ID HYBRID METHOD; PARTICLE; SIMULATIONS; QUANTIFY; MOTOR AB Burning aluminized propellants eject reacting molten aluminum drops with a broad size distribution. Prior to this work, in situ measurement of the drop size statistics and other quantitative flow properties was complicated by the narrow depth-of-focus of microscopic videography. Here, digital in-line holography (DIH) is demonstrated for quantitative volumetric imaging of the propellant plume. For the first time, to the best of our knowledge, in-focus features, including burning surfaces, drop morphologies, and reaction zones, are automatically measured through a depth spanning many millimeters. By quantifying all drops within the line of sight, DIH provides an order of magnitude increase in the effective data rate compared to traditional imaging. This enables rapid quantification of the drop size distribution with limited experimental repetition. (C) 2014 Optical Society of America C1 [Guildenbecher, Daniel R.; Cooper, Marcia A.; Gill, Walter; Stauffacher, Howard Lee; Oliver, Michael S.; Grasser, Thomas W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Guildenbecher, DR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM drguild@sandia.gov FU California Institute of Technology-Jet Propulsion Laboratory Work for Other Contract [FI015110718]; Weapons Systems Engineering Assessment Technology program; Laboratory Directed Research and Development program; United States Department of Energy [DE-AC04-94AL85000] FX This work was supported by the California Institute of Technology-Jet Propulsion Laboratory Work for Other Contract FI015110718, the Weapons Systems Engineering Assessment Technology program, and the Laboratory Directed Research and Development program. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy, under contract DE-AC04-94AL85000. NR 17 TC 7 Z9 7 U1 1 U2 11 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 EI 1539-4794 J9 OPT LETT JI Opt. Lett. PD SEP 1 PY 2014 VL 39 IS 17 BP 5126 EP 5129 DI 10.1364/OL.39.005126 PG 4 WC Optics SC Optics GA AO1UK UT WOS:000341100300039 PM 25166090 ER PT J AU Evans, J Kim, J Childs, KL Vaillancourt, B Crisovan, E Nandety, A Gerhardt, DJ Richmond, TA Jeddeloh, JA Kaeppler, SM Casler, MD Buell, CR AF Evans, Joseph Kim, Jeongwoon Childs, Kevin L. Vaillancourt, Brieanne Crisovan, Emily Nandety, Aruna Gerhardt, Daniel J. Richmond, Todd A. Jeddeloh, Jeffrey A. Kaeppler, Shawn M. Casler, Michael D. Buell, C. Robin TI Nucleotide polymorphism and copy number variant detection using exome capture and next-generation sequencing in the polyploid grass Panicum virgatum SO PLANT JOURNAL LA English DT Article DE exome; switchgrass; polyploidy; copy number variant; presence/absence variant; Panicum virgatum ID SORGHUM-BICOLOR; HUMAN GENOME; SWITCHGRASS; GENES; DIVERSITY; BARLEY; RICE; IDENTIFICATION; DUPLICATION; ARABIDOPSIS AB Switchgrass (Panicum virgatum) is a polyploid, outcrossing grass species native to North America and has recently been recognized as a potential biofuel feedstock crop. Significant phenotypic variation including ploidy is present across the two primary ecotypes of switchgrass, referred to as upland and lowland switchgrass. The tetraploid switchgrass genome is approximately 1400Mbp, split between two subgenomes, with significant repetitive sequence content limiting the efficiency of re-sequencing approaches for determining genome diversity. To characterize genetic diversity in upland and lowland switchgrass as a first step in linking genotype to phenotype, we designed an exome capture probe set based on transcript assemblies that represent approximately 50Mb of annotated switchgrass exome sequences. We then evaluated and optimized the probe set using solid phase comparative genome hybridization and liquid phase exome capture followed by next-generation sequencing. Using the optimized probe set, we assessed variation in the exomes of eight switchgrass genotypes representing tetraploid lowland and octoploid upland cultivars to benchmark our exome capture probe set design. We identified ample variation in the switchgrass genome including 1395501 single nucleotide polymorphisms (SNPs), 8173 putative copy number variants and 3336 presence/absence variants. While the majority of the SNPs (84%) detected was bi-allelic, a substantial number was tri-allelic with limited occurrence of tetra-allelic polymorphisms consistent with the heterozygous and polyploid nature of the switchgrass genome. Collectively, these data demonstrate the efficacy of exome capture for discovery of genome variation in a polyploid species with a large, repetitive and heterozygous genome. C1 [Evans, Joseph; Kim, Jeongwoon; Childs, Kevin L.; Vaillancourt, Brieanne; Crisovan, Emily; Buell, C. Robin] Michigan State Univ, Great Lakes Bioenergy Res Ctr, Dept Energy, E Lansing, MI 48824 USA. [Evans, Joseph; Kim, Jeongwoon; Childs, Kevin L.; Vaillancourt, Brieanne; Crisovan, Emily; Buell, C. Robin] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Nandety, Aruna; Kaeppler, Shawn M.; Casler, Michael D.] Univ Wisconsin, Dept Energy, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Nandety, Aruna; Casler, Michael D.] Univ Wisconsin, USDA ARS, US Dairy Forage Res Ctr, Madison, WI 53706 USA. [Gerhardt, Daniel J.; Richmond, Todd A.; Jeddeloh, Jeffrey A.] Roche NimbleGen, Madison, WI 53719 USA. [Kaeppler, Shawn M.] Univ Wisconsin, Dept Agron, Madison, WI 53706 USA. RP Buell, CR (reprint author), Michigan State Univ, Great Lakes Bioenergy Res Ctr, Dept Energy, E Lansing, MI 48824 USA. EM buell@msu.edu RI Childs, Kevin/C-9513-2014; OI Childs, Kevin/0000-0002-3680-062X; Kaeppler, Shawn/0000-0002-5964-1668 FU Department of Energy Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494] FX This work was funded by the Department of Energy Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We are grateful to Jeremy Schmutz of the Department of Energy JGI for his work on the switchgrass genome. NR 70 TC 10 Z9 10 U1 4 U2 47 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0960-7412 EI 1365-313X J9 PLANT J JI Plant J. PD SEP PY 2014 VL 79 IS 6 BP 993 EP 1008 DI 10.1111/tpj.12601 PG 16 WC Plant Sciences SC Plant Sciences GA AO7ET UT WOS:000341515600009 PM 24947485 ER PT J AU Vadhavkar, N Pham, C Georgescu, W Deschamps, T Heuskin, AC Tang, J Costes, SV AF Vadhavkar, Nikhil Pham, Christopher Georgescu, Walter Deschamps, Thomas Heuskin, Anne-Catherine Tang, Jonathan Costes, Sylvain V. TI Combinatorial DNA Damage Pairing Model Based on X-Ray-Induced Foci Predicts the Dose and LET Dependence of Cell Death in Human Breast Cells SO RADIATION RESEARCH LA English DT Article ID DOUBLE-STRAND BREAKS; HEAVY-ION BEAMS; HIGH-LET; BIOLOGICAL EFFECTIVENESS; CHROMOSOME-ABERRATIONS; IONIZING-RADIATION; PARTICLE TRACKS; CHROMATIN; REPAIR; DYNAMICS AB In contrast to the classic view of static DNA double-strand breaks (DSBs) being repaired at the site of damage, we hypothesize that DSBs move and merge with each other over large distances (mu m). As X-ray dose increases, the probability of having DSB clusters increases as does the probability of misrepair and cell death. Experimental work characterizing the X-ray dose dependence of radiation-induced foci (RIF) in nonmalignant human mammary epithelial cells (MCF10A) is used here to validate a DSB clustering model. We then use the principles of the local effect model (LEM) to predict the yield of DSBs at the submicron level. Two mechanisms for DSB clustering, namely random coalescence of DSBs versus active movement of DSBs into repair domains are compared and tested. Simulations that best predicted both RIF dose dependence and cell survival after X-ray irradiation favored the repair domain hypothesis, suggesting the nucleus is divided into an array of regularly spaced repair domains of similar to 1.55 mu m sides. Applying the same approach to high-linear energy transfer (LET) ion tracks, we are able to predict experimental RIF/mu m along tracks with an overall relative error of 12%, for LET ranging between 30-350 keV/mu m and for three different ions. Finally, cell death was predicted by assuming an exponential dependence on the total number of DSBs and of all possible combinations of paired DSBs within each simulated RIF. Relative biological effectiveness (RBE) predictions for cell survival of MCF10A exposed to high-LET showed an LET dependence that matches previous experimental results for similar cell types. Overall, this work suggests that microdosimetric properties of ion tracks at the submicron level are sufficient to explain both RIF data and survival curves for any LET, similarly to the LEM assumption. Conversely, high-LET death mechanism does not have to infer linear-quadratic dose formalism as done in the LEM. In addition, the size of repair domains derived in our model are based on experimental RIF and are three times larger than the hypothetical LEM voxel used to fit survival curves. Our model is therefore an alternative to previous approaches that provides a testable biological mechanism (i.e., RIF). In addition, we propose that DSB pairing will help develop more accurate alternatives to the linear cancer risk model (LNT) currently used for regulating exposure to very low levels of ionizing radiation. (C) 2014 by Radiation Research Society C1 [Vadhavkar, Nikhil] MIT, Cambridge, MA 02139 USA. [Pham, Christopher] Univ Texas Houston, MD Anderson Canc Ctr, Dept Radiat Phys, Houston, TX 77054 USA. [Georgescu, Walter; Deschamps, Thomas; Tang, Jonathan; Costes, Sylvain V.] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Heuskin, Anne-Catherine] Univ Namur, Res Ctr Phys Matter & Radiat PMR, Namur Res Inst Life Sci, Namur, Belgium. RP Costes, SV (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 77R225A, Berkeley, CA 94720 USA. EM svcostes@lbl.gov FU NASA Specialized Center for Research in Radiation Health Effects [NNJ09HC64I]; Low Dose Scientific Focus Area, United States Department of Energy [DE-AC02-05CH11231]; National Space Biomedical Research Institute [NCC-9-58] FX The authors would like to thank Dr. Jasmina Vujic, Dr. Bethany Goldblum and Nicholas Brickner from the nuclear engineering department at UC Berkeley for their initial contribution on microdosimetry. SVC, WG, TD, JT are supported by NASA Specialized Center for Research in Radiation Health Effects [NNJ09HC64I] and the Low Dose Scientific Focus Area, United States Department of Energy [DE-AC02-05CH11231]. NV is supported by the National Space Biomedical Research Institute (grant no. NCC-9-58). NR 43 TC 7 Z9 7 U1 0 U2 6 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 EI 1938-5404 J9 RADIAT RES JI Radiat. Res. PD SEP PY 2014 VL 182 IS 3 BP 273 EP 281 DI 10.1667/RR13792.1 PG 9 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA AO4LH UT WOS:000341309000003 PM 25076115 ER PT J AU Saha, J Wilson, P Thieberger, P Lowenstein, D Wang, ML Cucinotta, FA AF Saha, Janapriya Wilson, Paul Thieberger, Peter Lowenstein, Derek Wang, Minli Cucinotta, Francis A. TI Biological Characterization of Low-Energy Ions with High-Energy Deposition on Human Cells SO RADIATION RESEARCH LA English DT Article ID DOUBLE-STRAND BREAKS; CHARGED-PARTICLE TRACKS; GALACTIC COSMIC-RAYS; DNA-DAMAGE; HOMOLOGOUS RECOMBINATION; MAMMALIAN-CELLS; TARGET FRAGMENTATION; LET RADIATION; NUCLEAR FOCI; HEAVY-IONS AB During space travel, astronauts are exposed to cosmic radiation that is comprised of high-energy nuclear particles. Cancer patients are also exposed to high-energy nuclear particles when treated with proton and carbon beams. Nuclear interactions from high-energy particles traversing shielding materials and tissue produce low-energy (<10 MeV/n) secondary particles of high-LET that contribute significantly to overall radiation exposures. Track structure theories suggest that high charge and energy (HZE) particles and low-energy secondary ions of similar LET will have distinct biological effects for cellular and tissue damage endpoints. We investigated the biological effects of low-energy ions of high LET utilizing the Tandem Van de Graaff accelerator at the Brookhaven National Laboratory (BNL), and compared these to experiments with HZE particles, that mimic the space environment produced at NASA Space Radiation Laboratory (NSRL) at BNL. Immunostaining for DNA damage response proteins was carried out after irradiation with 5.6 MeV/n boron (LET 205 keV/mu m), 5.3 MeV/n silicon (LET 1241 keV/mu m), 600 MeV/n Fe (LET 180 keV/mu m) and 77 MeV/n oxygen (LET 58 keV/mu m) particles. Low-energy ions caused more persistent DNA damage response (DDR) protein foci in irradiated human fibroblasts and esophageal epithelial cells compared to HZE particles. More detailed studies comparing boron ions to Fe particles, showed that boron-ion radiation resulted in a stronger G(2) delay compared to Fe-particle exposure, and boron ions also showed an early recruitment of Rad51 at double-strand break (DSB) sites, which suggests a preference of homologous recombination for DSB repair in low-energy albeit high-LET particles. Our experiments suggest that the very high-energy radiation deposition by low-energy ions, representative of galactic cosmic radiation and solar particle event secondary radiation, generates massive but localized DNA damage leading to delayed DSB repair, and distinct cellular responses from HZE particles. Thus, low-energy heavy ions provide a valuable probe for studies of homologous recombination repair in radiation responses. (C) 2014 by Radiation Research Society C1 [Saha, Janapriya; Wang, Minli] Univ Space Res Assoc, Div Space Life Sci, Houston, TX 77058 USA. [Saha, Janapriya] Univ Texas SW Med Ctr Dallas, Dept Radiat Oncol, Dallas, TX 75390 USA. [Wilson, Paul; Thieberger, Peter; Lowenstein, Derek] Brookhaven Natl Lab, Long Isl City, NY 11973 USA. [Cucinotta, Francis A.] Univ Nevada, Las Vegas, NV 89154 USA. RP Wang, ML (reprint author), Univ Space Res Assoc, Div Space Life Sci, 3600 Bay Area Blvd, Houston, TX 77058 USA. EM minli.wang@nasa.gov; Francis.Cucinotta@unlv.edu FU NASA Space Radiation Program [NNX13AD75G]; DOE Low Dose Program [DE-AI02-10ER64969]; University of Nevada, Las Vegas FX This work was supported by NASA Space Radiation Program (grant no. NNX13AD75G) and the DOE Low Dose Program (grant no. DE-AI02-10ER64969), the University of Nevada, Las Vegas. The authors are indebted to Peter Guida, Charles Carlson and other staff at Medical Department, Tandem accelerator and NSRL at BNL, New York. NR 46 TC 2 Z9 2 U1 5 U2 15 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 EI 1938-5404 J9 RADIAT RES JI Radiat. Res. PD SEP PY 2014 VL 182 IS 3 BP 282 EP 291 DI 10.1667/RR13747.1 PG 10 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA AO4LH UT WOS:000341309000004 PM 25098728 ER PT J AU Park, BY AF Park, Byoung Yoon TI Interbed Modeling to Predict Wellbore Damage for Big Hill Strategic Petroleum Reserve SO ROCK MECHANICS AND ROCK ENGINEERING LA English DT Article DE Strategic petroleum reserve (SPR); Salt creep; Wellbore damage; Interbed modeling AB Oil leaks were found in wellbores of Caverns 105 and 109 at the Big Hill Strategic Petroleum Reserve site. According to the field observations, two instances of casing damage occurred at the depth of the interbed between the caprock bottom and salt top. A three-dimensional finite element model, which allows each cavern to be configured individually, was constructed to investigate horizontal and vertical displacements in each well as it crosses the various interbeds. The model contains interfaces between each lithology and a shear zone (fault) to examine the interbed behavior in a realistic manner. This analysis results indicate that the casings of Caverns 105 and 109 failed, respectively, from shear stress that exceeded the casing shear strength due to the horizontal movement of the salt top relative to the caprock and tensile stress due to the downward movement of the salt top from the caprock. The wellbores of Caverns 114 and 104, located at the far end of the field and near the fault, respectively, are predicted to fail by shear stress in the near future. The wellbores of inmost Caverns 107 and 108 are predicted to fail by tensile stress in the near future. The salt top subsides because the volumes of caverns in the salt dome decrease with time due to salt creep closure, while the caprock does not subside at the same rate as the salt top because the caprock is thick and stiff. This discrepancy yields deformation of the well. C1 Sandia Natl Labs, Geomech Dept, Albuquerque, NM 87185 USA. RP Park, BY (reprint author), Sandia Natl Labs, Geomech Dept, POB 5800 MS 0751, Albuquerque, NM 87185 USA. EM bypark@sandia.gov FU SPR programs; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Dr. Courtney G. Herrick (SNL) and Dr. Stephen J. Bauer (SNL) provided a technical review, and Dr. Moo Y. Lee (SNL) and Dr. David J. Borns (SNL) provided a management review. This paper has been improved by these individuals. This research is funded by SPR programs administered by the U.S. Department of Energy. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 18 TC 1 Z9 1 U1 1 U2 10 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0723-2632 EI 1434-453X J9 ROCK MECH ROCK ENG JI Rock Mech. Rock Eng. PD SEP PY 2014 VL 47 IS 5 SI SI BP 1551 EP 1561 DI 10.1007/s00603-014-0572-2 PG 11 WC Engineering, Geological; Geosciences, Multidisciplinary SC Engineering; Geology GA AO5IR UT WOS:000341378300005 ER PT J AU Ameli, P Elkhoury, JE Morris, JP Detwiler, RL AF Ameli, Pasha Elkhoury, Jean E. Morris, Joseph P. Detwiler, Russell L. TI Fracture Permeability Alteration due to Chemical and Mechanical Processes: A Coupled High-Resolution Model SO ROCK MECHANICS AND ROCK ENGINEERING LA English DT Article DE Fracture; Deformation; Dissolution; Transmissivity; Analytical model; Coupled processes ID LIMESTONE FRACTURE; CARBONATE CAPROCK; SINGLE FRACTURE; NORMAL STRESS; DISSOLUTION; FLOW; ROCK; REDUCTION; JOINTS AB Reactive fluid-flow experiments in fractures subjected to normal stress suggest the potential for either increased or decreased permeability resulting from fracture-surface dissolution. We present a computational model that couples mechanical deformation and chemical alteration of fractures subjected to constant normal stress and reactive fluid flow. The model explicitly represents micro-scale roughness of the fracture surfaces and calculates elastic deformation of the rough surfaces using a semi-analytical approach that ensures the surfaces remain in static equilibrium. A depth-averaged reactive transport model calculates chemical alteration of the surfaces, which leads to alteration of the contacting fracture surfaces. The mechanical deformation and chemical alteration calculations are explicitly coupled, which is justified by the disparate timescales required for equilibration of mechanical stresses and reactive transport processes. An idealized analytical representation of dissolution from a single contacting asperity shows that under reaction-limited conditions, contacting asperities can dissolve faster than the open regions of the fracture. Computational simulations in fractures with hundreds of contacting asperities show that the transition from transport-limited conditions (low flow rates) to reaction-rate-limited conditions (high flow rates) causes a shift from monotonically increasing permeability to a more complicated process in which permeability initially decreases and then increases as contacting asperities begin to dissolve. These results are qualitatively consistent with a number of experimental observations reported in the literature and suggest the potential importance of the relative magnitude of mass transport and reaction kinetics on the evolution of fracture permeability in fractures subjected to combined normal stress and reactive fluid flow. C1 [Ameli, Pasha; Elkhoury, Jean E.; Detwiler, Russell L.] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA. [Morris, Joseph P.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Detwiler, RL (reprint author), Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA. EM aamelire@uci.edu; elkhoury@uci.edu; jmorris4@slb.com; detwiler@uci.edu RI Detwiler, Russell/C-3228-2008 OI Detwiler, Russell/0000-0002-7693-9271 FU U.S. Department of Energy, Office of Basic Energy Sciences Geosciences Program [DE-FG02-09ER16003] FX We acknowledge the U.S. Department of Energy, Office of Basic Energy Sciences Geosciences Program for financial support for this research (contract DE-FG02-09ER16003). NR 28 TC 9 Z9 9 U1 1 U2 22 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0723-2632 EI 1434-453X J9 ROCK MECH ROCK ENG JI Rock Mech. Rock Eng. PD SEP PY 2014 VL 47 IS 5 SI SI BP 1563 EP 1573 DI 10.1007/s00603-014-0575-z PG 11 WC Engineering, Geological; Geosciences, Multidisciplinary SC Engineering; Geology GA AO5IR UT WOS:000341378300006 ER PT J AU Antropov, V Ke, LQ Aberg, D AF Antropov, Vladimir Ke, Liqin Aberg, Daniel TI Constituents of magnetic anisotropy and a screening of spin-orbit coupling in solids SO SOLID STATE COMMUNICATIONS LA English DT Article DE Magnetic anisotropy; Perturbation; Screening; Spin-orbit coupling ID MAGNETOCRYSTALLINE ANISOTROPY; METALS; ORIGIN AB Using quantum mechanical perturbation theory (PT) we analyze how the energy of perturbation of different orders is renormalized in solids. We test the validity of VT analysis by considering a specific case of spinorbit coupling as a perturbation. We further compare the relativistic energy and the magnetic anisotropy from the PT approach with direct density functional calculations in FePt, CoPt, FePd, MnAl, MnGa, FeNi, and tetragonally strained FeCo. In addition using decomposition of anisotropy into contributions from individual sites and different spin components we explain the microscopic origin of high anisotropy in FePt and CoPt magnets. Published by Elsevier Ltd. C1 [Antropov, Vladimir; Ke, Liqin] US DOE, Ames Lab, Ames, IA 50011 USA. [Aberg, Daniel] Lawrence Livermore Natl Lab, US DOE, Livermore, CA 94550 USA. RP Antropov, V (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM antropov@ameslab.gov; liqinke@ameslab.gov OI Aberg, Daniel/0000-0003-4364-9419 FU Critical Materials Institute, an Energy Innovation Hub - U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; Vehicle Technologies Program, through the Ames Laboratory; LLNL [DE-AC52-07NA27344]; Iowa State University [DE-AC02-07CH11358] FX This research is supported in part by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office and by its Vehicle Technologies Program, through the Ames Laboratory. LLNL is operated under Contract DE-AC52-07NA27344 and Ames Laboratory is operated by Iowa State University under Contract DE-AC02-07CH11358. NR 19 TC 11 Z9 11 U1 2 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 EI 1879-2766 J9 SOLID STATE COMMUN JI Solid State Commun. PD SEP PY 2014 VL 194 BP 35 EP 38 DI 10.1016/j.ssc.2014.06.003 PG 4 WC Physics, Condensed Matter SC Physics GA AO2PA UT WOS:000341166000008 ER PT J AU Fabre, C Cousin, A Wiens, RC Ollila, A Gasnault, O Maurice, S Sautter, V Forni, O Lasue, J Tokar, R Vaniman, D Melikechi, N AF Fabre, C. Cousin, A. Wiens, R. C. Ollila, A. Gasnault, O. Maurice, S. Sautter, V. Forni, O. Lasue, J. Tokar, R. Vaniman, D. Melikechi, N. TI In situ calibration using univariate analyses based on the onboard ChemCam targets: first prediction of Martian rock and soil compositions SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article; Proceedings Paper CT 7th Euro-Mediterranean Symposium on Laser Induced Breakdown Spectroscopy (EMSLIBS) CY SEP 16-20, 2013 CL Bari, ITALY DE LIES; Curiosity; ChemCam; Univariate calibration ID INDUCED BREAKDOWN SPECTROSCOPY; GALE CRATER; CURIOSITY ROVER; LASER; MARS; LIBS; EXPLORATION; FEASIBILITY; MINERALOGY; SURFACE AB Curiosity rover landed on August 6th, 2012 in Gale Crater, Mars and it possesses unique analytical capabilities to investigate the chemistry and mineralogy of the Martian soil. In particular, the LIBS technique is being used for the first time on another planet with the ChemCam instrument, and more than 75,000 spectra have been returned in the first year on Mars. Curiosity carries body-mounted calibration targets specially designed for the ChemCam instrument, some of which are homgeneous glasses and others that are fine-grained glass-ceramics. We present direct calibrations, using these onboard standards to infer elements and element ratios by ratioing relative peak areas. As the laser spot size is around 300 mu m, the LIBS technique provides measurements of the silicate glass compositions representing homogeneous material and measurements of the ceramic targets that are comparable to fine-grained rock or soil. The laser energy and the auto-focus are controlled for all sequences used for calibration. The univariate calibration curves present relatively to very good correlation coefficients with low RSDs for major and ratio calibrations. Trace element calibration curves (Li, Sr, and Mn), down to several ppm, can be used as a rapid tool to draw attention to remarkable rocks and soils along the traverse. First comparisons to alpha-particle X-ray spectroscopy (APXS) data, on selected targets, show good agreement for most elements and for Mg# and Al/Si estimates. SiO2 estimates using univariate cannot be yet used. Na2O and K2O estimates are relevant for high alkali contents, but probably under estimated due to the CCCT initial compositions. Very good results for CaO and Al2O3 estimates and satisfactory results for Fe are obtained. 2014 Elsevier B.V. All rights reserved. C1 [Fabre, C.] Univ Lorraine, GeoRessources Iab, Nancy, France. [Cousin, A.; Wiens, R. C.] Los Alamos Natl Lab, Los Alamos, NM USA. [Ollila, A.] Univ New Mexico, Albuquerque, NM 87131 USA. [Gasnault, O.; Maurice, S.; Forni, O.; Lasue, J.] IRAP, Toulouse, France. [Sautter, V.] Museum Natl Hist Nat, F-75231 Paris, France. [Tokar, R.; Vaniman, D.] Planetary Sci Inst, Tucson, AZ USA. [Melikechi, N.] Delaware State Univ, Dover, DE USA. RP Fabre, C (reprint author), Univ Lorraine, GeoRessources Iab, Nancy, France. OI FABRE, Cecile/0000-0001-8627-4050 NR 64 TC 10 Z9 10 U1 3 U2 34 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD SEP 1 PY 2014 VL 99 BP 34 EP 51 DI 10.1016/j.sab.2014.03.014 PG 18 WC Spectroscopy SC Spectroscopy GA AO7RD UT WOS:000341549400006 ER PT J AU Fittschen, UEA Menzel, M Scharf, O Radtke, M Reinholz, U Buzanich, G Lopez, VM McIntosh, K Streli, C Havrilla, GJ AF Fittschen, Ursula Elisabeth Adriane Menzel, Magnus Scharf, Oliver Radtke, Martin Reinholz, Uwe Buzanich, Guenther Lopez, Velma M. McIntosh, Kathryn Streli, Christina Havrilla, George Joseph TI Observation of X-ray shadings in synchrotron radiation-total reflection X-ray fluorescence using a color X-ray camera SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article DE TXRF; Full field micro-XRF; Color X-ray camera AB Absorption effects and the impact of specimen shape on TXRF analysis has been discussed intensively. Model calculations indicated that ring shaped specimens should give better results in terms of higher counts per mass signals than filled rectangle or circle shaped specimens. One major reason for the difference in signal is shading effects. Full field micro-XRF with a color X-ray camera (CXC) was used to investigate shading, which occurs when working with small angles of excitation as in TXRF. The device allows monitoring the illuminated parts of the sample and the shaded parts at the same time. It is expected that sample material hit first by the primary beam shade material behind it. Using the CXC shading could be directly visualized for the high concentration specimens. In order to compare the experimental results with calculation of the shading effect the generation of controlled specimens is crucial. This was achieved by "drop on demand" technology. It allows generating uniform, microscopic deposits of elements. The experimentally measured shadings match well with those expected from calculation. (C) 2014 Elsevier B.V. All rights reserved. C1 [Fittschen, Ursula Elisabeth Adriane; Menzel, Magnus] Univ Hamburg, Inst Anorgan & Angew Chem, D-20146 Hamburg, Germany. [Scharf, Oliver] IfG Inst Sci Instruments GmbH, Berlin, Germany. [Radtke, Martin; Reinholz, Uwe; Buzanich, Guenther] BAM Fed Inst Mat Res & Testing, Berlin, Germany. [Lopez, Velma M.; McIntosh, Kathryn; Havrilla, George Joseph] Los Alamos Natl Lab, Los Alamos, NM USA. [Streli, Christina] TU Wien, Atominst, Vienna, Austria. RP Fittschen, UEA (reprint author), Univ Hamburg, Inst Anorgan & Angew Chem, Martin Luther King Pl 6, D-20146 Hamburg, Germany. EM ursula.fittschen@chemie.uni-hamburg.de RI fittschen, ursula/Q-1049-2015; OI Streli, Christina/0000-0002-5141-3177; Havrilla, George/0000-0003-2052-7152; McIntosh, Kathryn/0000-0002-8623-403X NR 11 TC 6 Z9 6 U1 1 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD SEP 1 PY 2014 VL 99 BP 179 EP 184 DI 10.1016/j.sab.2014.06.025 PG 6 WC Spectroscopy SC Spectroscopy GA AO7RD UT WOS:000341549400024 ER PT J AU Stock, SR Deymier-Black, AC Veis, A Telser, A Lux, E Cai, Z AF Stock, S. R. Deymier-Black, A. C. Veis, A. Telser, A. Lux, E. Cai, Z. TI Bovine and equine peritubular and intertubular dentin SO ACTA BIOMATERIALIA LA English DT Article DE Dentin; Tubule; X-ray diffraction mapping; X-ray fluorescence mapping; Zinc ID HUMAN TEETH; MATRIX; CONSTITUENTS; COLLAGEN; TISSUES; MMP-2; ZINC AB Dentin contains 1-2 mu m diameter tubules extending from the pulp cavity to near the junction with enamel. Peritubular dentin (PTD) borders the tubule lumens and is surrounded by intertubular dentin (ITD). Differences in PTD and ITD composition and microstructure remain poorly understood. Here, a (similar to 200 nm)(2), 10.1 keV synchrotron X-ray beam maps X-ray fluorescence and X-ray diffraction simultaneously around tubules in 15-30 mu m thick bovine and equine specimens. Increased Ca fluorescence surrounding tubule lumens confirms that PTD is present, and the relative intensities in PTD and ITD correspond to carbonated apatite (cAp) volume fraction of similar to 0.8 in PTD vs. 0.65 assumed for ITD. In the PTD near the lumen edges, Zn intensity is strongly peaked, corresponding to a Zn content of similar to 0.9 mg g(-1) for an assumed concentration of similar to 0.4 mg g(-1) for ITD. In the equine specimen, the Zn K-edge position indicates that Zn2+ is present, similar to bovine dentin (Deymier-Black et al., 2013), and the above edge structure is consistent with spectra from macromolecules related to biomineralization. Transmission X-ray diffraction shows only cAp, and the 00.2 diffraction peak (Miller-Bravais indices) width is constant from ITD to the lumen edge. The cAp 00.2 average preferred orientation is axisymmetric (about the tubule axis) in both bovine and equine dentin, and the axisymmetric preferred orientation continues from ITD through the PTD to the tubule lumen. These data indicate that cAp structure does not vary from PTD to ITD. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Stock, S. R.] Northwestern Univ, Dept Mol Pharmacol & Biol Chem, Chicago, IL 60611 USA. [Deymier-Black, A. C.; Veis, A.; Telser, A.; Lux, E.] Northwestern Univ, Dept Cell & Mol Biol, Chicago, IL 60611 USA. [Cai, Z.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Stock, SR (reprint author), Northwestern Univ, Dept Mol Pharmacol & Biol Chem, 303 E Chicago Ave, Chicago, IL 60611 USA. EM s-stock@northwestern.edu FU NICDR grant [DE001374]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors thank Dr M.C. Stewart (Veterinary College, University of Illinois-Urbana-Champaign) for providing the horse incisor. The research was supported by NICDR grant DE001374 (to A.V.). The funding source had no role in the planning, execution or reporting of this study. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 34 TC 4 Z9 4 U1 1 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1742-7061 EI 1878-7568 J9 ACTA BIOMATER JI Acta Biomater. PD SEP PY 2014 VL 10 IS 9 SI SI BP 3969 EP 3977 DI 10.1016/j.actbio.2014.05.027 PG 9 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA AN8KO UT WOS:000340853300016 PM 24911530 ER PT J AU Grunenfelder, LK Suksangpanya, N Salinas, C Milliron, G Yaraghi, N Herrera, S Evans-Lutterodt, K Nutt, SR Zavattieri, P Kisailus, D AF Grunenfelder, L. K. Suksangpanya, N. Salinas, C. Milliron, G. Yaraghi, N. Herrera, S. Evans-Lutterodt, K. Nutt, S. R. Zavattieri, P. Kisailus, D. TI Bio-inspired impact-resistant composites SO ACTA BIOMATERIALIA LA English DT Article DE Biomimetic; Composites; Biomineralization; Modeling ID LOBSTER HOMARUS-AMERICANUS; CRAB CANCER-PAGURUS; BIOLOGICAL COMPOSITES; MANTIS SHRIMP; CUTICLE; EXOSKELETON; DESIGN; MICROSTRUCTURE; DEFORMATION; PRINCIPLES AB Through evolutionary processes, biological composites have been optimized to fulfil specific functions. This optimization is exemplified in the mineralized dactyl club of the smashing predator stomatopod (specifically, Odontodactylus scyllarus). This crustacean's club has been designed to withstand the thousands of high-velocity blows that it delivers to its prey. The endocuticle of this multiregional structure is characterized by a helicoidal arrangement of mineralized fiber layers, an architecture which results in impact resistance and energy absorbance. Here, we apply the helicoidal design strategy observed in the stomatopod club to the fabrication of high-performance carbon fiber-epoxy composites. Through experimental and computational methods, a helicoidal architecture is shown to reduce through-thickness damage propagation in a composite panel during an impact event and result in an increase in toughness. These findings have implications in the design of composite parts for aerospace, automotive and armor applications. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Grunenfelder, L. K.; Salinas, C.; Milliron, G.; Herrera, S.; Kisailus, D.] Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA. [Suksangpanya, N.; Zavattieri, P.] Purdue Univ, Sch Civil Engn, W Lafayette, IN 47907 USA. [Yaraghi, N.; Kisailus, D.] Univ Calif Riverside, Mat Sci & Engn Program, Riverside, CA 92521 USA. [Evans-Lutterodt, K.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Nutt, S. R.] Univ So Calif, Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA. RP Kisailus, D (reprint author), Univ Calif Riverside, Dept Chem & Environm Engn, Bourns Hall B357, Riverside, CA 92521 USA. EM david@engr.ucr.edu FU Air Force Office of Scientific Research [AFOSR-FA9550-12-1-0245]; National Science Foundation [DMR-0906770] FX The authors gratefully acknowledge financial support from the Air Force Office of Scientific Research (AFOSR-FA9550-12-1-0245) and the National Science Foundation (DMR-0906770). Assistance from Dr. Timotei Centea at the University of Southern California and Mark Ostermeier at Cytec Engineered Materials is also acknowledged. NR 35 TC 26 Z9 26 U1 16 U2 110 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1742-7061 EI 1878-7568 J9 ACTA BIOMATER JI Acta Biomater. PD SEP PY 2014 VL 10 IS 9 SI SI BP 3997 EP 4008 DI 10.1016/j.actbio.2014.03.022 PG 12 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA AN8KO UT WOS:000340853300019 PM 24681369 ER PT J AU Broussard, CS Frey, MT Hernandez-Diaz, S Greene, MF Chambers, CD Sahin, L Sharp, BAC Honein, MA AF Broussard, Cheryl S. Frey, Meghan T. Hernandez-Diaz, Sonia Greene, Michael F. Chambers, Christina D. Sahin, Leyla Sharp, Beth A. Collins Honein, Margaret A. TI Developing a systematic approach to safer medication use during pregnancy: summary of a Centers for Disease Control and Prevention-convened meeting SO AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY LA English DT Article DE Centers for Disease Control and Prevention; expert review; medications; pregnancy; teratogens ID RECOMMENDATIONS; WOMEN; LACTATION; INFECTION; FETAL; BIRTH; RISK; CDC AB To address information gaps that limit informed clinical decisions on medication use in pregnancy, the Centers for Disease Control and Prevention (CDC) solicited expert input on a draft prototype outlining a systematic approach to evaluating the quality and strength of existing evidence for associated risks. The draft prototype outlined a process for the systematic review of available evidence and deliberations by a panel of experts to inform clinical decision making for managing health conditions in pregnancy. At an expert meeting convened by the CDC in January 2013, participants divided into working groups discussed decision points within the prototype. This report summarizes their discussions of best practices for formulating an expert review process, developing evidence summaries and treatment guidance, and disseminating information. There is clear recognition of current knowledge gaps and a strong collaboration of federal partners, academic experts, and professional organizations willing to work together toward safer medication use during pregnancy. C1 [Broussard, Cheryl S.; Frey, Meghan T.; Honein, Margaret A.] Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, Atlanta, GA 30333 USA. [Frey, Meghan T.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Hernandez-Diaz, Sonia] Harvard Univ, Sch Publ Hlth, Boston, MA 02115 USA. [Greene, Michael F.] Harvard Univ, Sch Med, Dept Obstet Gynecol & Reprod Biol, Boston, MA 02115 USA. [Greene, Michael F.] Massachusetts Gen Hosp, Boston, MA 02114 USA. [Chambers, Christina D.] Univ Calif San Diego, Dept Pediat, La Jolla, CA 92093 USA. [Chambers, Christina D.] Univ Calif San Diego, Dept Family & Prevent Med, La Jolla, CA 92093 USA. [Sahin, Leyla] US FDA, Ctr Drug Evaluat & Res, Off New Drugs, Maternal Hlth Team,Pediat & Maternal Hlth Staff, Silver Spring, MD USA. [Sharp, Beth A. Collins] Agcy Healthcare Res & Qual, Rockville, MD USA. RP Broussard, CS (reprint author), Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, Atlanta, GA 30333 USA. FU Centers for Disease Control and Prevention (CDC) FX This work was supported in part by an appointment to the Research Participation Program at the Centers for Disease Control and Prevention (CDC) administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the US Department of Energy and the CDC (M.T.F.). NR 35 TC 11 Z9 11 U1 0 U2 4 PU MOSBY-ELSEVIER PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010-1710 USA SN 0002-9378 EI 1097-6868 J9 AM J OBSTET GYNECOL JI Am. J. Obstet. Gynecol. PD SEP PY 2014 VL 211 IS 3 BP 208 EP U667 DI 10.1016/j.ajog.2014.05.040 PG 8 WC Obstetrics & Gynecology SC Obstetrics & Gynecology GA AO4HO UT WOS:000341297900007 PM 24881821 ER PT J AU Zhao, XR Massoudi, M AF Zhao, Xinran Massoudi, Mehrdad TI Flow of granular materials with slip boundary condition: A continuum-kinetic theory approach SO APPLIED MATHEMATICS AND COMPUTATION LA English DT Article DE Slip boundary condition; Granular materials; Continuum mechanics; Kinetic theory; Shear flow ID INELASTIC SPHERES; ANTIGRANULOCYTES MATERIALS; STRESS CALCULATIONS; RAPID FLOW; SMOOTH; SHEARING; ASSEMBLIES; VELOCITIES; PARTICLES; DYNAMICS AB We study the steady fully developed flow of granular materials between two horizontal flat plates, subject to slip at the walls. The constitutive model for the stress tensor is based on ideas in continuum mechanics and kinetic theory. The constitutive equation used in our study is a model proposed by Rajagopal et al. (1994) [24], and the material properties such as viscosity and the normal stress coefficients are derived using the kinetic theory approximation proposed by Boyle and Massoudi (1990) [2] which includes the effect of the gradient of volume fraction. The slip boundary condition is based on the particle dynamics simulation results of Rosato and Kim (1994) [30]. The governing equations are non-dimensionalized, and the resulting system of non-linear differential equations is solved numerically. The results for the velocity profiles and the volume fraction profiles are presented. Published by Elsevier Inc. C1 [Zhao, Xinran] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA. [Massoudi, Mehrdad] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Massoudi, M (reprint author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. EM mehrdad.massoudi@netl.doe.gov NR 37 TC 0 Z9 0 U1 1 U2 4 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0096-3003 EI 1873-5649 J9 APPL MATH COMPUT JI Appl. Math. Comput. PD SEP 1 PY 2014 VL 242 BP 518 EP 527 DI 10.1016/j.amc.2014.05.093 PG 10 WC Mathematics, Applied SC Mathematics GA AN4MV UT WOS:000340563000046 ER PT J AU Clegg, SM Wiens, R Misra, AK Sharma, SK Lambert, J Bender, S Newell, R Nowak-Lovato, K Smrekar, S Dyar, MD Maurice, S AF Clegg, Samuel M. Wiens, Roger Misra, Anupam K. Sharma, Shiv K. Lambert, James Bender, Steven Newell, Raymond Nowak-Lovato, Kristy Smrekar, Sue Dyar, M. Darby Maurice, Sylvestre TI Planetary Geochemical Investigations Using Raman and Laser-Induced Breakdown Spectroscopy SO APPLIED SPECTROSCOPY LA English DT Article DE Raman spectroscopy; Laser-induced breakdown spectroscopy; LIBS; Mars geology; Venus geology; Remote sensing ID CHEMCAM INSTRUMENT SUITE; BULK AQUEOUS-SOLUTIONS; IN-SITU; HIGH-PRESSURE; GALE CRATER; PIGMENT IDENTIFICATION; MARS; EXPLORATION; SURFACES; SCIENCE AB An integrated Raman spectroscopy and laser-induced breakdown spectroscopy (LIBS) instrument is a valuable geoanalytical tool for future planetary missions to Mars, Venus, and elsewhere. The Chem Cam instrument operating on the Mars Curiosity rover includes a remote LIBS instrument. An integrated Raman-LIBS spectrometer (RLS) based on the Chem Cam architecture could be used as a reconnaissance tool for other contact instruments as well as a primary science instrument capable of quantitative mineralogical and geochemical analyses. Replacing one of the Chem Cam spectrometers with a miniature transmission spectrometer enables a Raman spectroscopy mineralogical analysis to be performed, complementing the LIBS chemical analysis while retaining an overall architecture resembling Chem Cam. A prototype transmission spectrometer was used to record Raman spectra under both Martian and Venus conditions. Two different high-pressure and high-temperature cells were used to collect the Raman and LIBS spectra to simulate surface conditions on Venus. The resulting LIBS spectra were used to generate a limited partial least squares Venus calibration model for the major elements. These experiments demonstrate the utility and feasibility of a combined RLS instrument. C1 [Clegg, Samuel M.; Wiens, Roger; Bender, Steven; Newell, Raymond; Nowak-Lovato, Kristy] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Misra, Anupam K.; Sharma, Shiv K.] Univ Hawaii Manoa, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Lambert, James; Smrekar, Sue] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Dyar, M. Darby] Mt Holyoke Coll, Dept Astron, S Hadley, MA 01075 USA. [Maurice, Sylvestre] Univ Toulouse, Inst Rech Astrophys & Planetol, Toulouse 04, France. RP Clegg, SM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM sclegg@lanl.gov OI Clegg, Sam/0000-0002-0338-0948 FU LANL Laboratory Directed Research and Development (LORD) program; NASA New Frontiers program; NASA Mars Science Laboratory program FX We gratefully acknowledge the LANL Laboratory Directed Research and Development (LORD) program, the NASA New Frontiers program, and the NASA Mars Science Laboratory program for funding various aspects of the study presented here. We also gratefully acknowledge David J. Cremers and Amy J. Bauer for the gracious invitation to present at the SCIX conference as well as the SCIX organizers for the opportunity to contribute to this special issue. NR 61 TC 14 Z9 14 U1 11 U2 66 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0003-7028 EI 1943-3530 J9 APPL SPECTROSC JI Appl. Spectrosc. PD SEP PY 2014 VL 68 IS 9 BP 925 EP 936 DI 10.1366/13-07386 PG 12 WC Instruments & Instrumentation; Spectroscopy SC Instruments & Instrumentation; Spectroscopy GA AN8PF UT WOS:000340865400003 PM 25226246 ER PT J AU Weisberg, A Lakis, RE Simpson, MF Horowitz, L Craparo, J AF Weisberg, Arel Lakis, Rollin E. Simpson, Michael F. Horowitz, Leo Craparo, Joseph TI Measuring Lanthanide Concentrations in Molten Salt Using Laser-Induced Breakdown Spectroscopy (LIBS) SO APPLIED SPECTROSCOPY LA English DT Article DE Laser-induced breakdown spectroscopy; LIBS; Lanthanides; Lithium potassium chloride salt; Molten salt; Europium; Praseodymium ID AQUEOUS-SOLUTION; INDUCED PLASMA; IN-SITU; URANIUM; STEEL; SPECTROMETRY; RESIDUES; SAMPLES; SENSOR; ALLOY AB The versatility of laser-induced breakdown spectroscopy (LIBS) as an analytical method for high-temperature applications was demonstrated through measurement of the concentrations of the lanthanide elements europium (Eu) and praseodymium (Pr) in molten eutectic lithium chloride-potassium chloride (LiCI-KCI) salts at a temperature of 500 degrees C. Laser pulses (1064 nm, 7 ns, 120 mJ/pulse) were focused on the top surface of the molten salt samples in a laboratory furnace under an argon atmosphere, and the resulting LIBS signals were collected using a broadband Echelle-type spectrometer. Partial least squares (PLS) regression using leave-one-sample-out cross-validation was used to quantify the concentrations of Eu and Pr in the samples. The root mean square error of prediction (RMSEP) for Eu was 0.13% (absolute) over a concentration range of 0-3.01%, and for Pr was 0.13% (absolute) over a concentration range of 0-1.04%. C1 [Weisberg, Arel; Horowitz, Leo; Craparo, Joseph] Energy Res Co, Plainfield, NJ 07062 USA. [Lakis, Rollin E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Simpson, Michael F.] Univ Utah, Dept Met Engn, Salt Lake City, UT 84112 USA. RP Weisberg, A (reprint author), Energy Res Co, 1250 South Ave, Plainfield, NJ 07062 USA. EM aweisberg@er-co.com OI Lakis, Rollin/0000-0002-7308-6832 NR 35 TC 4 Z9 4 U1 3 U2 29 PU SOC APPLIED SPECTROSCOPY PI FREDERICK PA 5320 SPECTRUM DRIVE SUITE C, FREDERICK, MD 21703 USA SN 0003-7028 EI 1943-3530 J9 APPL SPECTROSC JI Appl. Spectrosc. PD SEP PY 2014 VL 68 IS 9 BP 937 EP 948 DI 10.1366/13-07390 PG 12 WC Instruments & Instrumentation; Spectroscopy SC Instruments & Instrumentation; Spectroscopy GA AN8PF UT WOS:000340865400004 PM 25226247 ER PT J AU Goueguel, C McIntyre, DL Singh, JP Jain, J Karamalidis, AK AF Goueguel, Christian McIntyre, Dustin L. Singh, Jagdish P. Jain, Jinesh Karamalidis, Athanasios K. TI Laser-Induced Breakdown Spectroscopy (LIBS) of a High-Pressure CO2-Water Mixture: Application to Carbon Sequestration SO APPLIED SPECTROSCOPY LA English DT Article DE Laser-induced breakdown spectroscopy; LIBS; Underwater analysis; Calcium chloride; Carbone dioxide; Nitrogen; Groundwater quality monitoring ID BULK AQUEOUS-SOLUTIONS; OCEANIC PRESSURES; MEDIA; TOOL; CO2 AB Geologic carbon storage in deep saline aquifers is considered a feasible and possible approach of mitigating the problem of increasing greenhouse gas emissions. However, there are latent risks in which carbon dioxide (CO2) could migrate from the deep saline formations to shallower aquifers. In the event of a significant CO2 leakage to an underground source of drinking water, CO2 will dissolve in the water, thereby increasing its acidity, which could potentially enhance the solubility of various aquifer constituents, including hazardous compounds, subsequently compromising groundwater quality due to increased concentration of aqueous metals. In this paper we explore the possibility of detecting such leakage by the use of laser-induced breakdown spectroscopy (LIBS). The experiments were conducted in calcium chloride solution at three pressures of 10, 50, and 120 bar. To evaluate the direct effect of elevated CO2 on the intensity of calcium emission lines (422.67 and 393.37 nm), we also performed experiments with pure nitrogen (N-2) gas, offering large water solubility contrast. We found that when performed in presence of CO2, LIBS showed only a modest decrease in Ca emission intensity from 10 to 120 bar compared to N-2. These results indicate that LIBS is a viable tool for measuring brine/water contents in high-pressure CO2 environment and can be applied for monitoring CO2 leakage and displaced brine migration. C1 [Goueguel, Christian; Karamalidis, Athanasios K.] NETL RUA, Pittsburgh, PA 15236 USA. [Goueguel, Christian; Karamalidis, Athanasios K.] Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA. [McIntyre, Dustin L.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Singh, Jagdish P.] Mississippi State Univ, Inst Clean Energy Technol, Starkville, MS 39759 USA. [Singh, Jagdish P.] King Saud Univ, Dept Phys, Riyadh, Saudi Arabia. [Jain, Jinesh] Natl Energy Technol Lab, URS Washington Div, Pittsburgh, PA 15236 USA. RP Goueguel, C (reprint author), NETL RUA, Pittsburgh, PA 15236 USA. EM christian.goueguel@netl.doe.gov RI Goueguel, Christian/J-9316-2015 OI Goueguel, Christian/0000-0003-0521-3446 FU RES [DE-FE0004000]; NETL-ORISE Visiting Faculty Program; Department of Energy, National Energy Technology Laboratory, an agency of the United States government; URS Energy & Construction, Inc. FX As part of the National Energy Technology Laboratory's Regional University Alliance (NETL-RUA), a collaborative initiative of the NETL, this technical effort was performed under RES contract DE-FE0004000. J.P.S. acknowledges the NETL-ORISE Visiting Faculty Program for financial support. This project was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States government, through a support contract with URS Energy & Construction, Inc. Neither the United States government nor any agency thereof, nor any of their employees, nor URS Energy & Construction, Inc., nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. NR 22 TC 4 Z9 4 U1 5 U2 13 PU SOC APPLIED SPECTROSCOPY PI FREDERICK PA 5320 SPECTRUM DRIVE SUITE C, FREDERICK, MD 21703 USA SN 0003-7028 EI 1943-3530 J9 APPL SPECTROSC JI Appl. Spectrosc. PD SEP PY 2014 VL 68 IS 9 BP 997 EP 1003 DI 10.1366/13-07383 PG 7 WC Instruments & Instrumentation; Spectroscopy SC Instruments & Instrumentation; Spectroscopy GA AN8PF UT WOS:000340865400010 PM 25226253 ER PT J AU Chen, KJ Heger, A Woosley, S Almgren, A Whalen, DJ AF Chen, Ke-Jung Heger, Alexander Woosley, Stan Almgren, Ann Whalen, Daniel J. TI PAIR INSTABILITY SUPERNOVAE OF VERY MASSIVE POPULATION III STARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: theory; early universe; galaxies: formation; galaxies: high-redshift; hydrodynamics; quasars: supermassive black holes; stars: early-type; supernovae: general ID SUPERMASSIVE BLACK-HOLES; 1ST STARS; EARLY UNIVERSE; MULTIDIMENSIONAL SIMULATIONS; SUPERLUMINOUS SUPERNOVAE; TURBULENT CONVECTION; BIGGEST EXPLOSIONS; RADIATIVE FEEDBACK; PRIMORDIAL STARS; METAL ENRICHMENT AB Numerical studies of primordial star formation suggest that the first stars in the universe may have been very massive. Stellar models indicate that non-rotating Population III stars with initial masses of 140-260 M-circle dot die as highly energetic pair-instability supernovae. We present new two-dimensional simulations of primordial pair-instability supernovae done with the CASTRO code. Our simulations begin at earlier times than previous multidimensional models, at the onset of core contraction, to capture any dynamical instabilities that may be seeded by core contraction and explosive burning. Such instabilities could enhance explosive yields by mixing hot ash with fuel, thereby accelerating nuclear burning, and affect the spectra of the supernova by dredging up heavy elements from greater depths in the star at early times. Our grid of models includes both blue supergiants and red supergiants over the range in progenitor mass expected for these events. We find that fluid instabilities driven by oxygen and helium burning arise at the upper and lower boundaries of the oxygen shell similar to 20-100 s after core bounce. Instabilities driven by burning freeze out after the SN shock exits the helium core. As the shock later propagates through the hydrogen envelope, a strong reverse shock forms that drives the growth of Rayleigh-Taylor instabilities. In red supergiant progenitors, the amplitudes of these instabilities are sufficient to mix the supernova ejecta. C1 [Chen, Ke-Jung; Woosley, Stan] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Chen, Ke-Jung] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Heger, Alexander] Monash Univ, Monash Ctr Astrophys, Clayton, Vic 3800, Australia. [Almgren, Ann] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA. [Whalen, Daniel J.] Los Alamos Natl Lab, T 2, Los Alamos, NM 87545 USA. [Whalen, Daniel J.] Heidelberg Univ, Inst Theoret Astrophys, Zentrum Astron, D-69120 Heidelberg, Germany. RP Chen, KJ (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. EM kchen@ucolick.org FU IAU; Future Fellowship from the Australian Research Council [ARC FT 120100363]; DOE HEP Program [DE-SC0010676]; National Science Foundation [AST 0909129]; NASA Theory Program [NNX14AH34G]; Baden-Wurttemberg-Stiftung [P-LS-SPII/18]; DOE [DE-SC0010676, DE-AC02-05CH11231, DE-GF02-87ER40328, DE-FC02-09ER41618]; NSF [AST-1109394, PHY02-16783]; National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX The authors thank the anonymous referee for reviewing this manuscript and providing insightful comments and the members of the CCSE at LBNL for help with CASTRO. We are grateful to Volker Bromm, Dan Kasen, Lars Bildsten, John Bell, and Adam Burrows for useful discussions. K. C. was supported by the IAU-Gruber Fellowship, Stanwood Johnston Fellowship, and KITP Graduate Fellowship. A. H. was supported by a Future Fellowship from the Australian Research Council (ARC FT 120100363). S. W. acknowledges support by the DOE HEP Program under contract DE-SC0010676; the National Science Foundation (AST 0909129) and the NASA Theory Program (NNX14AH34G). D.J.W. acknowledges support by the Baden-Wurttemberg-Stiftung by contract research via the programme Internationale Spitzenforschung II (grant P-LS-SPII/18). All numerical simulations were done with allocations from the University of Minnesota Supercomputing Institute and the National Energy Research Scientific Computing Center. This work was supported by DOE grants DE-SC0010676, DE-AC02-05CH11231, DE-GF02-87ER40328, and DE-FC02-09ER41618, and by NSF grants AST-1109394 and PHY02-16783. Work at LANL was done under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 111 TC 18 Z9 18 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2014 VL 792 IS 1 AR 44 DI 10.1088/0004-637X/792/1/44 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AO2RE UT WOS:000341172100044 ER PT J AU Chen, KJ Woosley, S Heger, A Almgren, A Whalen, DJ AF Chen, Ke-Jung Woosley, Stan Heger, Alexander Almgren, Ann Whalen, Daniel J. TI TWO-DIMENSIONAL SIMULATIONS OF PULSATIONAL PAIR-INSTABILITY SUPERNOVAE SO ASTROPHYSICAL JOURNAL LA English DT Article DE early universe; hydrodynamics; instabilities; shock waves; stars: massive; supernovae: general ID DENSE MASS-LOSS; STAR-FORMATION; POPULATION III; LIGHT CURVES; 1ST STARS; MULTIDIMENSIONAL SIMULATIONS; SUPERLUMINOUS SUPERNOVAE; RADIATION HYDRODYNAMICS; LUMINOUS SUPERNOVAE; SHOCK BREAKOUT AB Massive stars that end their lives with helium cores in the range of 35-65 M-circle dot are known to produce repeated thermonuclear outbursts due to a recurring pair-instability. In some of these events, solar masses of material are ejected in repeated outbursts of several x 10(50) erg each. Collisions between these shells can sometimes produce very luminous transients that are visible from the edge of the observable universe. Previous one-dimensional (1D) studies of these events produce thin, high-density shells as one ejection plows into another. Here, in the first multi-dimensional simulations of these collisions, we show that the development of a Rayleigh-Taylor instability truncates the growth of the high-density spike and drives mixing between the shells. The progenitor is a 110 M-circle dot solar-metallicity star that was shown in earlier work to produce a superluminous supernova. The light curve of this more realistic model has a peak luminosity and duration that are similar to those of 1D models but a structure that is smoother. C1 [Chen, Ke-Jung; Woosley, Stan] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Chen, Ke-Jung] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Heger, Alexander] Monash Univ, Monash Ctr Astrophys, Melbourne, Vic 3800, Australia. [Almgren, Ann] Lawrence Berkeley Natl Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA. [Whalen, Daniel J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Whalen, Daniel J.] Heidelberg Univ, Zentrum Astron, Inst Theoret Astrophys, D-69120 Heidelberg, Germany. RP Chen, KJ (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. EM kchen@ucolick.org FU IAU; DOE HEP Program [DE-SC0010676]; National Science Foundation [AST 0909129]; NASA Theory Program [NNX14AH34G]; Australian Research Council [ARC FT 120100363]; Baden-Wurttemberg-Stiftung [P-LS-SPII/18]; DOE [DE-SC0010676, DE-AC02-05CH11231, DE-GF02-87ER40328, DE-FC02-09ER41618]; NSF [AST-1109394, PHY02-16783]; National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX The authors thank the anonymous referee for reviewing this manuscript and providing valuable comments, and the members of CCSE at LBNL for help with CASTRO. We also thank Volker Bromm, Dan Kasen, Lars Bildsten, John Bell, and Adam Burrows for many useful discussions. K. C. was supported by an IAU-Gruber Fellowship, a Stanwood Johnston Fellowship, and a KITP Graduate Fellowship. S. W. acknowledges support by DOE HEP Program under contract DE-SC0010676; the National Science Foundation (AST 0909129) and the NASA Theory Program (NNX14AH34G). A. H. was supported by a Future Fellowship from the Australian Research Council (ARC FT 120100363). D.J.W. was supported by the Baden-Wurttemberg-Stiftung by contract research via the programme Internationale Spitzenforschung II (grant P-LS-SPII/18). All numerical simulations were performed at the University of Minnesota Supercomputing Institute and the National Energy Research Scientific Computing Center. This work has been supported by the DOE grants DE-SC0010676, DE-AC02-05CH11231, DE-GF02-87ER40328, DE-FC02-09ER41618 and by NSF grants AST-1109394 and PHY02-16783. Work at LANL was done under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 55 TC 19 Z9 19 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2014 VL 792 IS 1 AR 28 DI 10.1088/0004-637X/792/1/28 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AO2RE UT WOS:000341172100028 ER PT J AU Kratz, KL Farouqi, K Moller, P AF Kratz, Karl-Ludwig Farouqi, Khalil Moeller, Peter TI A HIGH-ENTROPY-WIND r-PROCESS STUDY BASED ON NUCLEAR-STRUCTURE QUANTITIES FROM THE NEW FINITE-RANGE DROPLET MODEL FRDM(2012) SO ASTROPHYSICAL JOURNAL LA English DT Article DE nuclear reactions; nucleosynthesis; abundances ID CORE-COLLAPSE SUPERNOVAE; NEUTRINO-DRIVEN WINDS; STRENGTH-FUNCTION PHENOMENA; LOW-METALLICITY STARS; METAL-POOR STARS; II SUPERNOVAE; MASS FORMULA; EMISSION PROBABILITIES; PROCESS ABUNDANCES; PROCESS ISOTOPES AB Attempts to explain the source of gamma-process elements in our solar system (S.S.) by particular astrophysical sites still face entwined uncertainties, stemming from the extrapolation of nuclear properties far from stability, inconsistent sources of different properties (e.g., nuclear masses and beta-decay properties), and the poor understanding of astrophysical conditions, which are hard to disentangle. In this paper we present results from the investigation of gamma-process in the high-entropy wind (HEW) of core-collapse supernovae (here chosen as one of the possible scenarios for this nucleosynthesis process), using new nuclear-data input calculated in a consistent approach, for masses and beta-decay properties from the new finite-range droplet model FRDM(2012). The accuracy of the new mass model is 0.56 MeV with respect to AME2003, to which it was adjusted. We compare the new HEW r-process abundance pattern to the latest S. S. gamma-process residuals and to our earlier calculations with the nuclear-structure quantities based on FRDM(1992). Substantial overall and specific local improvements in the calculated pattern of the r-process between A similar or equal to 110 and Bi-209, as well as remaining deficiencies, are discussed in terms of the underlying spherical and deformed shell structure far from stability. C1 [Kratz, Karl-Ludwig] Max Planck Inst Chem, Otto Hahn Inst, D-55128 Mainz, Germany. [Kratz, Karl-Ludwig] Johannes Gutenberg Univ Mainz, Fachbereich Chem Pharm & Geowissensch, D-55128 Mainz, Germany. [Farouqi, Khalil] Heidelberg Univ, Zentrum Astron, D-69117 Heidelberg, Germany. [Farouqi, Khalil] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland. [Moeller, Peter] Los Alamos Natl Lab, Div Theoret, MS B214, Los Alamos, NM 87545 USA. RP Kratz, KL (reprint author), Max Planck Inst Chem, Otto Hahn Inst, D-55128 Mainz, Germany. EM klk@uni-mainz.de; kfarouqi@lsw.uni-heidelberg.de; moller@lanl.gov OI Moller, Peter/0000-0002-5848-3565 FU National Nuclear Security Administration of the U. S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX First, we would like to acknowledge the constructive criticism of the anonymous referee, who greatly helped to improve our paper. Furthermore, we thank Jirina Stone, Tobias Fischer, Matthias Hempel and Mounib El Eid for fruitful discussions. P.M. carried out this work under the auspices of the National Nuclear Security Administration of the U. S. Department of Energy at Los Alamos National Laboratory under contract No. DE-AC52-06NA25396. NR 76 TC 13 Z9 13 U1 2 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2014 VL 792 IS 1 DI 10.1088/0004-637X/792/1/6 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AO2RE UT WOS:000341172100006 ER PT J AU Ruel, J Bazin, G Bayliss, M Brodwin, M Foley, RJ Stalder, B Aird, KA Armstrong, R Ashby, MLN Bautz, M Benson, BA Bleem, LE Bocquet, S Carlstrom, JE Chang, CL Chapman, SC Cho, HM Clocchiatti, A Crawford, TM Crites, AT De Haan, T Desai, S Dobbs, MA Dudley, JP Forman, WR George, EM Gladders, MD Gonzalez, AH Halverson, NW Harrington, NL High, FW Holder, GP Holzapfel, WL Hrubes, JD Jones, C Joy, M Keisler, R Knox, L Lee, AT Leitch, EM Liu, J Lueker, M Luong-Van, D Mantz, A Marrone, DP McDonald, M McMahon, JJ Mehl, J Meyer, SS Mocanu, L Mohr, JJ Montroy, TE Murray, SS Natoli, T Nurgaliev, D Padin, S Plagge, T Pryke, C Reichardt, CL Rest, A Ruhl, JE Saliwanchik, BR Saro, A Sayre, JT Schaffer, KK Shaw, L Shirokoff, E Song, J Suhada, R Spieler, HG Stanford, SA Staniszewski, Z Starsk, AA Story, K Stubbs, CW Van Engelen, A Vanderlinde, K Vieira, JD Vikhlinin, A Williamson, R Zahn, O Zenteno, A AF Ruel, J. Bazin, G. Bayliss, M. Brodwin, M. Foley, R. J. Stalder, B. Aird, K. A. Armstrong, R. Ashby, M. L. N. Bautz, M. Benson, B. A. Bleem, L. E. Bocquet, S. Carlstrom, J. E. Chang, C. L. Chapman, S. C. Cho, H. M. Clocchiatti, A. Crawford, T. M. Crites, A. T. De Haan, T. Desai, S. Dobbs, M. A. Dudley, J. P. Forman, W. R. George, E. M. Gladders, M. D. Gonzalez, A. H. Halverson, N. W. Harrington, N. L. High, F. W. Holder, G. P. Holzapfel, W. L. Hrubes, J. D. Jones, C. Joy, M. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. Liu, J. Lueker, M. Luong-Van, D. Mantz, A. Marrone, D. P. McDonald, M. McMahon, J. J. Mehl, J. Meyer, S. S. Mocanu, L. Mohr, J. J. Montroy, T. E. Murray, S. S. Natoli, T. Nurgaliev, D. Padin, S. Plagge, T. Pryke, C. Reichardt, C. L. Rest, A. Ruhl, J. E. Saliwanchik, B. R. Saro, A. Sayre, J. T. Schaffer, K. K. Shaw, L. Shirokoff, E. Song, J. Suhada, R. Spieler, H. G. Stanford, S. A. Staniszewski, Z. Starsk, A. A. Story, K. Stubbs, C. W. Van Engelen, A. Vanderlinde, K. Vieira, J. D. Vikhlinin, A. Williamson, R. Zahn, O. Zenteno, A. TI OPTICAL SPECTROSCOPY AND VELOCITY DISPERSIONS OF GALAXY CLUSTERS FROM THE SPT-SZ SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE catalogs; galaxies: clusters: general ID SOUTH-POLE TELESCOPE; BLANCO COSMOLOGY SURVEY; ZELDOVICH EFFECT SURVEY; 720 SQUARE DEGREES; GREATER-THAN 1; SAMPLE; MASS; ANISOTROPY; REDSHIFTS; CATALOG AB We present optical spectroscopy of galaxies in clusters detected through the Sunyaev-Zel'dovich (SZ) effect with the South Pole Telescope (SPT). We report our own measurements of 61 spectroscopic cluster redshifts, and 48 velocity dispersions each calculated with more than 15 member galaxies. This catalog also includes 19 dispersions of SPT-observed clusters previously reported in the literature. The majority of the clusters in this paper are SPT-discovered; of these, most have been previously reported in other SPT cluster catalogs, and five are reported here as SPT discoveries for the first time. By performing a resampling analysis of galaxy velocities, we find that unbiased velocity dispersions can be obtained from a relatively small number of member galaxies (less than or similar to 30), but with increased systematic scatter. We use this analysis to determine statistical confidence intervals that include the effect of membership selection. We fit scaling relations between the observed cluster velocity dispersions and mass estimates from SZ and X-ray observables. In both cases, the results are consistent with the scaling relation between velocity dispersion and mass expected from dark-matter simulations. We measure a similar to 30% log-normal scatter in dispersion at fixed mass, and a similar to 10% offset in the normalization of the dispersion-mass relation when compared to the expectation from simulations, which is within the expected level of systematic uncertainty. C1 [Ruel, J.; Bayliss, M.; Nurgaliev, D.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Bazin, G.; Bocquet, S.; Desai, S.; Liu, J.; Mohr, J. J.; Saro, A.; Suhada, R.; Zenteno, A.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Bazin, G.; Bocquet, S.; Desai, S.; Liu, J.; Mohr, J. J.; Zenteno, A.] Excellence Cluster Universe, D-85748 Garching, Germany. [Bayliss, M.; Foley, R. J.; Stalder, B.; Ashby, M. L. N.; Forman, W. R.; Jones, C.; Murray, S. S.; Starsk, A. A.; Stubbs, C. W.; Vikhlinin, A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Brodwin, M.] Univ Missouri, Dept Phys & Astron, Kansas City, MO 64110 USA. [Foley, R. J.; Vieira, J. D.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Foley, R. J.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Aird, K. A.; Hrubes, J. D.; Luong-Van, D.] Univ Chicago, Chicago, IL 60637 USA. [Armstrong, R.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Bautz, M.; McDonald, M.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; High, F. W.; Keisler, R.; Leitch, E. M.; Mantz, A.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Natoli, T.; Padin, S.; Plagge, T.; Schaffer, K. K.; Story, K.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Meyer, S. S.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Natoli, T.; Story, K.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; High, F. W.; Leitch, E. M.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Padin, S.; Plagge, T.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Chapman, S. C.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Cho, H. M.] NIST Quantum Devices Grp, Boulder, CO 80305 USA. [Clocchiatti, A.] Pontificia Univ Catolica Chile, Inst Astrofis, Santiago, Chile. [De Haan, T.; Dobbs, M. A.; Dudley, J. P.; Holder, G. P.; Shaw, L.; Van Engelen, A.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [George, E. M.; Harrington, N. L.; Holzapfel, W. L.; Lee, A. T.; Lueker, M.; Reichardt, C. L.; Shirokoff, E.; Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Gonzalez, A. H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Joy, M.] NASA, George C Marshall Space Flight Ctr, Dept Space Sci, Huntsville, AL 35812 USA. [Knox, L.; Stanford, S. A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Lee, A. T.; Spieler, H. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Lueker, M.; Shirokoff, E.; Vieira, J. D.] CALTECH, Pasadena, CA 91125 USA. [Marrone, D. P.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [McMahon, J. J.; Song, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Montroy, T. E.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Staniszewski, Z.] Case Western Reserve Univ, Ctr Educ & Res Cosmol & Astrophys, Dept Phys, Cleveland, OH 44106 USA. [Pryke, C.] Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA. [Rest, A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Schaffer, K. K.] Sch Art Inst Chicago, Liberal Arts Dept, Chicago, IL 60603 USA. [Shaw, L.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA. [Vanderlinde, K.] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Vanderlinde, K.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Zahn, O.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Dept Phys, Berkeley, CA 94720 USA. [Zahn, O.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Ruel, J (reprint author), Harvard Univ, Dept Phys, 17 Oxford St, Cambridge, MA 02138 USA. EM mbayliss@cfa.harvard.edu RI Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; Stubbs, Christopher/C-2829-2012; OI Williamson, Ross/0000-0002-6945-2975; Stubbs, Christopher/0000-0003-0347-1724; Marrone, Daniel/0000-0002-2367-1080; Aird, Kenneth/0000-0003-1441-9518; Reichardt, Christian/0000-0003-2226-9169; Forman, William/0000-0002-9478-1682; Stark, Antony/0000-0002-2718-9996 FU NASA; National Science Foundation [ANT-0638937]; NSF Physics Frontier Center [PHY-0114422]; Kavli Foundation; Gordon and Betty Moore Foundation; NSF [AST-1009012, AST-1009649, MRI-0723073]; NASA [12800071, 12800088, 13800883, NAS 8-03060]; National Sciences and Engineering Research Council of Canada; Canada Research Chairs program; Canadian Institute for Advanced Research; Cluster of Excellence "Origin and Structure of the Universe," - Excellence Initiative of the Federal Government of Germany, EXC project [153]; Clay Fellowship; KICP Fellowship; Pennsylvania State University [2834-MIT-SAO-4018]; Alfred P. Sloan Research Fellowship; Smithsonian Institution; Brinson Foundation; PFB-06 CATA, Chile; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Blanco 4 m at Cerro Tololo Interamerican Observatories [2005B-0043, 2009B-0400, 2010A-0441, 2010B-0598] FX Optical imaging data from the Blanco 4 m at Cerro Tololo Interamerican Observatories (programs 2005B-0043, 2009B-0400, 2010A-0441, 2010B-0598) are included in this work. Additional imaging data were obtained with the 6.5 m Magellan Telescopes and the Swope telescope, which are located at the Las Campanas Observatory in Chile. This work is based in part on observations made with the Spitzer Space Telescope (PIDs 60099, 70053), which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.; The South Pole Telescope program is supported by the National Science Foundation through grant ANT-0638937. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation. Galaxy cluster research at Harvard is supported by NSF grant AST-1009012. Galaxy cluster research at SAO is supported in part by NSF grants AST-1009649 and MRI-0723073. Support for X-ray analysis was provided by NASA through Chandra Award Nos. 12800071, 12800088, and 13800883 issued by the Chandra X-Ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA. The McGill group acknowledges funding from the National Sciences and Engineering Research Council of Canada, Canada Research Chairs program, and the Canadian Institute for Advanced Research. X-ray research at the CfA is supported through NASA Contract NAS 8-03060. The Munich group was supported by The Cluster of Excellence "Origin and Structure of the Universe," funded by the Excellence Initiative of the Federal Government of Germany, EXC project number 153. R.J.F. is supported by a Clay Fellowship. B. A. B is supported by a KICP Fellowship, M. B. and M. M. acknowledge support from contract 2834-MIT-SAO-4018 from the Pennsylvania State University to the Massachusetts Institute of Technology. M. D. acknowledges support from an Alfred P. Sloan Research Fellowship, W. F. and C.J. acknowledge support from the Smithsonian Institution. B. S. acknowledges support from the Brinson Foundation. A. C. received support from PFB-06 CATA, Chile. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 58 TC 30 Z9 30 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2014 VL 792 IS 1 AR 45 DI 10.1088/0004-637X/792/1/45 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AO2RE UT WOS:000341172100045 ER PT J AU Skemer, AJ Marley, MS Hinz, PM Morzinski, KM Skrutskie, MF Leisenring, JM Close, LM Saumon, D Bailey, VP Briguglio, R Defrere, D Esposito, S Follette, KB Hill, JM Males, JR Puglisi, A Rodigas, TJ Xompero, M AF Skemer, Andrew J. Marley, Mark S. Hinz, Philip M. Morzinski, Katie M. Skrutskie, Michael F. Leisenring, Jarron M. Close, Laird M. Saumon, Didier Bailey, Vanessa P. Briguglio, Runa Defrere, Denis Esposito, Simone Follette, Katherine B. Hill, John M. Males, Jared R. Puglisi, Alfio Rodigas, Timothy J. Xompero, Marco TI DIRECTLY IMAGED L-T TRANSITION EXOPLANETS IN THE MID-INFRARED SO ASTROPHYSICAL JOURNAL LA English DT Article DE brown dwarfs; infrared: planetary systems; instrumentation: adaptive optics; planets and satellites: atmospheres; planets and satellites: gaseous planets; stars: individual (HR 8799 2M1207 b) ID PLANETARY-MASS COMPANION; NEAR-INFRARED SPECTROSCOPY; YOUNG BROWN DWARF; ORBITING HR 8799; EDGE-ON DISK; GIANT PLANETS; MU-M; EXTRASOLAR PLANET; FINDING CAMPAIGN; CARBON-MONOXIDE AB Gas-giant planets emit a large fraction of their light in the mid-infrared (greater than or similar to 3 mu m), where photometry and spectroscopy are critical to our understanding of the bulk properties of extrasolar planets. Of particular importance are the L- and M-band atmospheric windows (3-5 mu m), which are the longest wavelengths currently accessible to ground-based, high-contrast imagers. We present binocular LBT adaptive optics (AO) images of the HR 8799 planetary system in six narrow-band filters from 3 to 4 mu m, and a Magellan AO image of the 2M1207 planetary system in a broader 3.3 mu m band. These systems encompass the five known exoplanets with luminosities consistent with L -> T transition brown dwarfs. Our results show that the exoplanets are brighter and have shallower spectral slopes than equivalent temperature brown dwarfs in a wavelength range that contains the methane fundamental absorption feature (spanned by the narrow-band filters and encompassed by the broader 3.3 mu m filter). For 2M1207 b, we find that thick clouds and non-equilibrium chemistry caused by vertical mixing can explain the object's appearance. For the HR 8799 planets, we present new models that suggest the atmospheres must have patchy clouds, along with non-equilibrium chemistry. Together, the presence of a heterogeneous surface and vertical mixing presents a picture of dynamic planetary atmospheres in which both horizontal and vertical motions influence the chemical and condensate profiles. C1 [Skemer, Andrew J.; Hinz, Philip M.; Morzinski, Katie M.; Leisenring, Jarron M.; Close, Laird M.; Bailey, Vanessa P.; Defrere, Denis; Follette, Katherine B.; Males, Jared R.; Rodigas, Timothy J.] Univ Arizona, Dept Astron, Steward Observ, Tucson, AZ 85721 USA. [Marley, Mark S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Skrutskie, Michael F.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Leisenring, Jarron M.] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Saumon, Didier] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Briguglio, Runa; Esposito, Simone; Puglisi, Alfio; Xompero, Marco] Osserv Astrofis Arcetri, Ist Nazl Astrofis, I-50125 Florence, Italy. [Hill, John M.] Univ Arizona, Large Binocular Telescope Observ, Tucson, AZ 85721 USA. [Rodigas, Timothy J.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. RP Skemer, AJ (reprint author), Univ Arizona, Dept Astron, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA. RI Marley, Mark/I-4704-2013; OI Esposito, Simone/0000-0002-3114-677X; Xompero, Marco/0000-0002-5565-084X; Marley, Mark/0000-0002-5251-2943; Skemer, Andrew/0000-0001-6098-3924; Morzinski, Katie/0000-0002-1384-0063; Bailey, Vanessa/0000-0002-5407-2806 FU NASA Origins of Solar Systems Program [NNX13AJ17G]; NSF Graduate Research Fellowship Program [DGE-1143953]; National Aeronautics and Space Administration, Exoplanet Exploration program; National Science Foundation [AST-0705296] FX The authors thank Travis Barman for his insightful comments and for supplying his 2M1207 b model. We also thank the anonymous referee for excellent suggestions. This work would not have been possible without the dedication of the LBTI staff, in particular Vidhya Vaitheeswaran, who programmed LBTI's rapid filter changing capabilities. A.S. was supported by the NASA Origins of Solar Systems Program, grant NNX13AJ17G. V.B. is supported by the NSF Graduate Research Fellowship Program (DGE-1143953). The Large Binocular Telescope Interferometer is funded by the National Aeronautics and Space Administration as part of its Exoplanet Exploration program. LMIRCam is funded by the National Science Foundation through grant NSF AST-0705296. NR 88 TC 34 Z9 34 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2014 VL 792 IS 1 AR 17 DI 10.1088/0004-637X/792/1/17 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AO2RE UT WOS:000341172100017 ER PT J AU Wik, DR Hornstrup, A Molendi, S Madejski, G Harrison, FA Zoglauer, A Grefenstette, BW Gastaldello, F Madsen, KK Westergaard, NJ Ferreira, DDM Kitaguchi, T Pedersen, K Boggs, SE Christensen, FE Craig, WW Hailey, CJ Stern, D Zhang, WW AF Wik, Daniel R. Hornstrup, A. Molendi, S. Madejski, G. Harrison, F. A. Zoglauer, A. Grefenstette, B. W. Gastaldello, F. Madsen, K. K. Westergaard, N. J. Ferreira, D. D. M. Kitaguchi, T. Pedersen, K. Boggs, S. E. Christensen, F. E. Craig, W. W. Hailey, C. J. Stern, D. Zhang, W. W. TI NuSTAR OBSERVATIONS OF THE BULLET CLUSTER: CONSTRAINTS ON INVERSE COMPTON EMISSION SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: general; galaxies: clusters: individual (Bullet cluster); intergalactic medium; magnetic fields; radiation mechanisms: non-thermal; X-rays: galaxies: clusters ID X-RAY-SPECTRA; HOTTEST KNOWN CLUSTER; GALAXY CLUSTERS; COMA CLUSTER; MAGNETIC-FIELDS; 1E 0657-56; NONTHERMAL EMISSION; EXCESS EMISSION; XMM-NEWTON; CHANDRA AB The search for diffuse non-thermal inverse Compton (IC) emission from galaxy clusters at hard X-ray energies has been undertaken with many instruments, with most detections being either of low significance or controversial. Because all prior telescopes sensitive at E > 10 keV do not focus light and have degree-scale fields of view, their backgrounds are both high and difficult to characterize. The associated uncertainties result in lower sensitivity to IC emission and a greater chance of false detection. In this work, we present 266 ks NuSTAR observations of the Bullet cluster, which is detected in the energy range 3-30 keV. NuSTAR's unprecedented hard X-ray focusing capability largely eliminates confusion between diffuse IC and point sources; however, at the highest energies, the background still dominates and must be well understood. To this end, we have developed a complete background model constructed of physically inspired components constrained by extragalactic survey field observations, the specific parameters of which are derived locally from data in non-source regions of target observations. Applying the background model to the Bullet cluster data, we find that the spectrum is well-but not perfectly-described as an isothermal plasma with kT = 14.2 +/- 0.2 keV. To slightly improve the fit, a second temperature component is added, which appears to account for lower temperature emission from the cool core, pushing the primary component to kT similar to 15.3 keV. We see no convincing need to invoke an IC component to describe the spectrum of the Bullet cluster, and instead argue that it is dominated at all energies by emission from purely thermal gas. The conservatively derived 90% upper limit on the IC flux of 1.1 x 10(-12) erg s(-1) cm(-2) (50-100 keV), implying a lower limit on B greater than or similar to 0.2 mu G, is barely consistent with detected fluxes previously reported. In addition to discussing the possible origin of this discrepancy, we remark on the potential implications of this analysis for the prospects for detecting IC in galaxy clusters in the future. C1 [Wik, Daniel R.; Zhang, W. W.] NASA, Astrophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wik, Daniel R.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Hornstrup, A.; Westergaard, N. J.; Ferreira, D. D. M.; Pedersen, K.; Christensen, F. E.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Molendi, S.; Gastaldello, F.] INAF, IASF Milano, I-20133 Milan, Italy. [Madejski, G.] SLAC Natl Accelerator Lab, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Harrison, F. A.; Grefenstette, B. W.; Madsen, K. K.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Zoglauer, A.; Boggs, S. E.; Craig, W. W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Kitaguchi, T.] RIKEN, Nishina Ctr, Wako, Saitama 3510198, Japan. [Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Wik, DR (reprint author), NASA, Astrophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM daniel.r.wik@nasa.gov RI Boggs, Steven/E-4170-2015; Gastaldello, Fabio/N-4226-2015; Ferreira, Desiree/M-1666-2016; OI Boggs, Steven/0000-0001-9567-4224; Gastaldello, Fabio/0000-0002-9112-0184; Ferreira, Desiree/0000-0003-4003-3256; Molendi, Silvano/0000-0002-2483-278X NR 43 TC 51 Z9 51 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2014 VL 792 IS 1 AR 48 DI 10.1088/0004-637X/792/1/48 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AO2RE UT WOS:000341172100048 ER PT J AU Zhang, YF Zheng, Y Qin, L Wang, SH Buchko, GW Garavito, RM AF Zhang, Yanfeng Zheng, Yi Qin, Ling Wang, Shihua Buchko, Garry W. Garavito, R. Michael TI Structural characterization of a beta-hydroxyacid dehydrogenase from Geobacter sulfurreducens and Geobacter metallireducens with succinic semialdehyde reductase activity SO BIOCHIMIE LA English DT Article DE Succinic semialdehyde reductase; Structural biology; GABA shunt; Bio-inspired catalysis; Protein X-ray crystallography ID GAMMA-HYDROXYBUTYRATE; CRYSTAL-STRUCTURE; 3-HYDROXYISOBUTYRATE DEHYDROGENASE; GLUTAMATE-DECARBOXYLASE; ESCHERICHIA-COLI; ACID; IDENTIFICATION; EXPRESSION; SYSTEM; BRAIN AB Beta-hydroxyacid dehydrogenase (beta-HAD) genes have been identified in all sequenced genomes of eukaryotes and prokaryotes. Their gene products catalyze the NAD(+)- or NADP(+)-dependent oxidation of various beta-hydroxy acid substrates into their corresponding semialdehyde. In many fungal and bacterial genomes, multiple beta-HAD genes are observed leading to the hypothesis that these gene products may have unique, uncharacterized metabolic roles specific to their species. The genomes of Geobacter sulfurreducens and Geobacter metallireducens each contain two potential beta-HAD genes. The protein sequences of one pair of these genes, Gs-beta HAD (Q74DE4) and Gm-beta HAD (Q39R98), have 65% sequence identity and 77% sequence similarity with each other. Both proteins are observed to reduce succinic semialdehyde, a 4-carbon substrate instead of the typical beta-HAD 3-carbon substrate, to gamma-hydroxybutyric acid. To further explore the structural and functional characteristics of these two beta-HADs with a less frequently observed substrate specificity, crystal structures for Gs-beta HAD and Gm-beta HAD in complex with NADP(+) were determined to a resolution of 1.89 angstrom and 2.07 angstrom, respectively. The structures of both proteins are similar, composed of 14 alpha-helices and nine beta-strands organized into two domains. Domain 1(1-165) adopts a typical Rossmann fold composed of two alpha/beta units: a six-strand parallel beta-sheet surrounded by six a-helices (alpha 1-alpha 6) followed by a mixed three-strand beta-sheet surrounded by two alpha-helices (alpha 7 and alpha 8). Domain 2 (166-287) is composed of a bundle of seven alpha-helices (alpha 9-alpha 14). Four functional regions conserved in all beta-HADs are spatially located near each other, with a buried molecule of NADP(+), at the interdomain cleft. Comparison of these Geobacter structures to a closely related beta-HAD from Arabidopsis thaliana in the apo-NADP(+) and apo-substrate bound state suggests that NADP(+) binding effects a rigid body rotation between Domains 1 and 2. Bound near the Substrate-Binding and Catalysis Regions in two of the eight protomers in the asymmetric unit of Gm-beta HAD is a glycerol molecule that may mimic features of bound biological substrates. (C) 2014 Elsevier Masson SAS. All rights reserved. C1 [Zhang, Yanfeng; Wang, Shihua] Fujian Agr & Forestry Univ, Coll Life Sci, Fuzhou 350002, Fujian, Peoples R China. [Zhang, Yanfeng; Zheng, Yi; Qin, Ling; Garavito, R. Michael] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. [Buchko, Garry W.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Wang, SH (reprint author), Fujian Agr & Forestry Univ, Coll Life Sci, Fuzhou 350002, Fujian, Peoples R China. EM wshyyl@sina.com; garry.buchko@pnnl.gov; garavito@msu.edu RI Buchko, Garry/G-6173-2015; zheng, yi/G-1917-2016 OI Buchko, Garry/0000-0002-3639-1061; zheng, yi/0000-0002-4871-0779 FU Michigan State University [REF03-016]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-ACO2-06CH11357]; Michigan Economic Development Corporation (Michigan Tri-Corridor) [085P1000817]; U.S. Department of Energy's Office of Biological and Environmental Research (BER) program FX The work was supported in part by a grant from Michigan State University (REF03-016) to RMG. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-ACO2-06CH11357. The LS-CAT Sector 21 was supported by the Michigan Economic Development Corporation (Michigan Tri-Corridor Grant 085P1000817). Dr. G.W. Buchko resides at the W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by U.S. Department of Energy's Office of Biological and Environmental Research (BER) program. Battelle operates PNNL for the U.S. Department of Energy. We thank Amy Sharmen for assistance on the initial stages of DNA cloning and Drs. David Smith and Spencer Anderson for their assistance with X-ray data collection. NR 46 TC 4 Z9 4 U1 0 U2 10 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI PARIS PA 23 RUE LINOIS, 75724 PARIS, FRANCE SN 0300-9084 EI 1638-6183 J9 BIOCHIMIE JI Biochimie PD SEP PY 2014 VL 104 BP 61 EP 69 DI 10.1016/j.biochi.2014.05.002 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA AN8KE UT WOS:000340852300007 PM 24878278 ER PT J AU Bonner, IJ Smith, WA Einerson, JJ Kenney, KL AF Bonner, Ian J. Smith, William A. Einerson, Jeffery J. Kenney, Kevin L. TI Impact of Harvest Equipment on Ash Variability of Baled Corn Stover Biomass for Bioenergy SO BIOENERGY RESEARCH LA English DT Article DE Corn stover; Biomass; Bales; Ash; Soil contamination ID SINGLE-PASS; COMBUSTION; FUELS; GRAIN AB Cost-effective conversion of agricultural residues for renewable energy hinges not only on the material's quality but also the biorefinery's ability to reliably measure quality specifications. The ash content of biomass is one such specification, influencing pretreatment and disposal costs for the conversion facility and the overall value of a delivered lot of biomass. The biomass harvest process represents a primary pathway for accumulation of soil-derived ash within baled material. In this work, the influence of five collection techniques on the total ash content and variability of ash content within baled corn stover in southwest Kansas is discussed. The equipment tested included a mower for cutting the corn stover stubble, a basket rake, wheel rake, or shred flail to gather the stover, and a mixed or uniform in-feed baler for final collection. The results showed mean ash content to range from 11.5 to 28.2 % depending on operational choice. Resulting impacts on feedstock costs for a biochemical conversion process range from $5.38 to $22.30 Mg-1 based on the loss of convertible dry matter and ash disposal costs. Collection techniques that minimized soil contact (shred flail or nonmowed stubble) were shown to prevent excessive ash contamination, whereas more aggressive techniques (mowing and use of a wheel rake) caused greater soil disturbance and entrainment within the final baled material. Material sampling and testing were shown to become more difficult as within-bale ash variability increased, creating uncertainty around feedstock quality and the associated costs of ash mitigation. C1 [Bonner, Ian J.; Kenney, Kevin L.] Idaho Natl Lab, Biofuels & Renewable Energy Technol Dept, Idaho Falls, ID 83415 USA. [Smith, William A.] Idaho Natl Lab, Dept Syst Biol, Idaho Falls, ID 83415 USA. [Einerson, Jeffery J.] Idaho Natl Lab, Human Factors Controls & Stat Dept, Idaho Falls, ID 83415 USA. RP Bonner, IJ (reprint author), Idaho Natl Lab, Biofuels & Renewable Energy Technol Dept, Idaho Falls, ID 83415 USA. EM ian.bonner@inl.gov FU U.S. Department of Energy, under DOE Idaho Operations Office [DE-AC07-05ID14517] FX This work is supported by the U.S. Department of Energy, under DOE Idaho Operations Office Contract DE-AC07-05ID14517. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. NR 25 TC 5 Z9 5 U1 2 U2 21 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1939-1234 EI 1939-1242 J9 BIOENERG RES JI BioEnergy Res. PD SEP PY 2014 VL 7 IS 3 SI SI BP 845 EP 855 DI 10.1007/s12155-014-9432-x PG 11 WC Energy & Fuels; Environmental Sciences SC Energy & Fuels; Environmental Sciences & Ecology GA AN9SW UT WOS:000340949900010 ER PT J AU Penning, BW Sykes, RW Babcock, NC Dugard, CK Klimek, JF Gamblin, D Davis, M Filley, TR Mosier, NS Weil, CF McCann, MC Carpita, NC AF Penning, Bryan W. Sykes, Robert W. Babcock, Nicholas C. Dugard, Christopher K. Klimek, John F. Gamblin, David Davis, Mark Filley, Timothy R. Mosier, Nathan S. Weil, Clifford F. McCann, Maureen C. Carpita, Nicholas C. TI Validation of PyMBMS as a High-throughput Screen for Lignin Abundance in Lignocellulosic Biomass of Grasses SO BIOENERGY RESEARCH LA English DT Article DE Maize; Cell walls; Pyrolysismolecular-beam mass spectrometry; Lignin; p-Coumaric acid; Cellulose; Xylan ID CELL-WALL POLYSACCHARIDES; OXIDATION-PRODUCTS; MAIZE; POPULATION; BIOGENESIS; PYROLYSIS; POPULUS; PLANTS; GENE AB Pyrolysis molecular-beam mass spectrometry (PyMBMS) was tested as a high-throughput method for relative abundances of guaiacyl and syringyl lignin in lignocellulosic cell-wall materials from stems of a population of maize intermated B73 x Mo17 (IBM) recombinant inbred lines. Variations of up to twofold across the population in phenylpropanoid abundance were observed. Several histochemical and quantitative biochemical assays were used to validate the mass spectrometric data for lignin, hydroxycinnamic acids, crystalline cellulose, non-cellulosic glucans, and xylans. We demonstrate PyMBMS to be a valid high-throughput screen suitable for analysis of lignin abundance in large populations of bioenergy grasses. Pentose from xylans and hexose from cellulosic and non-cellulosic glucans also varied substantially across the population, but abundances of diagnostic fragments for these monosaccharides were not well correlated with the abundance of cell-wall polysaccharides. C1 [Penning, Bryan W.; McCann, Maureen C.; Carpita, Nicholas C.] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA. [Penning, Bryan W.; Dugard, Christopher K.; Klimek, John F.; Carpita, Nicholas C.] Purdue Univ, Dept Bot & Plant Pathol, W Lafayette, IN 47907 USA. [Sykes, Robert W.; Davis, Mark] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. [Babcock, Nicholas C.; Weil, Clifford F.] Purdue Univ, Dept Agron, W Lafayette, IN 47907 USA. [Gamblin, David; Filley, Timothy R.] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA. [Mosier, Nathan S.] Purdue Univ, Dept Agr & Biol Engn, W Lafayette, IN 47907 USA. RP Carpita, NC (reprint author), Purdue Univ, Dept Bot & Plant Pathol, 915 West State St, W Lafayette, IN 47907 USA. EM carpita@purdue.edu OI davis, mark/0000-0003-4541-9852 FU Office of Biological and Environmental Research in the DOE Office of Science [DE-AC36-08-GO28308]; National Science Foundation [0938033]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0000997] FX We thank Steve Moose, University of Illinois, for providing access to the maize stover and helpful discussions. Multiyear sampling of the IBM population was supported by the U.S. Department of Energy Feedstock Genomics Program, Office of Biological and Environmental Research, Office of Science; screening of the IBM population by PyMBMS was supported by the BioEnergy Science Center a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science Contract No. DE-AC36-08-GO28308, and by the National Science Foundation "Hy-Bi", an Emerging Frontiers in Research and Innovation (EFRI) program, Award No. 0938033; histochemical and analytical validations of PyMBMS for lignin and carbohydrate abundance were supported by the Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Award Number DE-SC0000997. NR 39 TC 5 Z9 5 U1 1 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1939-1234 EI 1939-1242 J9 BIOENERG RES JI BioEnergy Res. PD SEP PY 2014 VL 7 IS 3 SI SI BP 899 EP 908 DI 10.1007/s12155-014-9410-3 PG 10 WC Energy & Fuels; Environmental Sciences SC Energy & Fuels; Environmental Sciences & Ecology GA AN9SW UT WOS:000340949900015 ER PT J AU Sievers, DA Tao, L Schell, DJ AF Sievers, David A. Tao, Ling Schell, Daniel J. TI Performance and techno-economic assessment of several solid-liquid separation technologies for processing dilute-acid pretreated corn stover SO BIORESOURCE TECHNOLOGY LA English DT Article DE Solid-liquid separation; Filtration; Biofuels; Process modeling; Techno-economic analysis ID ENZYMATIC-HYDROLYSIS; CARDBOARD WASTE; BIOMASS; ETHANOL; PRODUCTS; BIOFUEL; YIELD AB Solid-liquid separation of pretreated lignocellulosic biomass slurries is a critical unit operation employed in several different processes for production of fuels and chemicals. An effective separation process achieves good recovery of solute (sugars) and efficient dewatering of the biomass slurry. Dilute acid pretreated corn stover slurries were subjected to pressure and vacuum filtration and basket centrifugation to evaluate the technical and economic merits of these technologies. Experimental performance results were used to perform detailed process simulations and economic analysis using a 2000 tonne/day biorefinery model to determine differences between the various filtration methods and their process settings. The filtration processes were able to successfully separate pretreated slurries into liquor and solid fractions with estimated sugar recoveries of at least 95% using a cake washing process. A continuous vacuum belt filter produced the most favorable process economics. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Sievers, David A.; Tao, Ling; Schell, Daniel J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Sievers, DA (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM david.sievers@nrel.gov; ling.tao@nrel.gov; dan.schell@nrel.gov FU US Department of Energy's Bioenergy Technologies Office FX Funding for this work was provided by the US Department of Energy's Bioenergy Technologies Office. We also would like to thank Joe Skafar and Adam McFarland from Outotec, Inc. for supplying and operating the pilot scale pressure filter and bench vacuum filter. NR 23 TC 4 Z9 4 U1 1 U2 28 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 EI 1873-2976 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD SEP PY 2014 VL 167 BP 291 EP 296 DI 10.1016/j.biortech.2014.05.113 PG 6 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA AN8YH UT WOS:000340891500040 PM 24995879 ER PT J AU Collins, AM Jones, HDT McBride, RC Behnke, C Timlin, JA AF Collins, Aaron M. Jones, Howland D. T. McBride, Robert C. Behnke, Craig Timlin, Jerilyn A. TI Host Cell Pigmentation in Scenedesmus dimorphus as a Beacon for Nascent Parasite Infection SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE biofuels; host-pathogen interactions; fluorescence; spectral imaging; multivariate curve resolution ID MULTIVARIATE CURVE RESOLUTION; NILE RED; PHYTOPLANKTON; SPECTROSCOPY; BLASTOCLADIOMYCOTA; AUTOFLUORESCENCE; LOCALIZATION; TECHNOLOGY; MORPHOLOGY; VIRUSES AB Biofuels derived from the mass cultivation of algae represent an emerging industry that aims to partially displace petroleum based fuels. Outdoor, open-pond, and raceway production facilities are attractive options for the mass culture of algae however, this mode of cultivation leaves the algae susceptible to epidemics from a variety of environmental challenges. Infestations can result in complete collapse of the algal populations and destruction of their valuable products making it paramount to understand the host-pathogen relationships of known algal pests in order to develop mitigation strategies. In the present work, we characterize the spatial-temporal response of photosynthetic pigments in Scenedesmus dimorphus to infection from Amoeboaphelidium protococcarum, a destructive endoparasite, with the goal of understanding the potential for early detection of infection via host pigment changes. We employed a hyperspectral confocal fluorescence microscope to quantify these changes in pigmentation with high spatial and spectral resolution during early parasite infection. Carotenoid abundance and autofluorescence increased within the first 24 h of infection while chlorophyll emission remained constant. Changes in host cell photosynthesis and bulk chlorophyll content were found to lag behind parasite replication. The results herein raise the possibility of using host-cell pigment changes as indicators of nascent parasite infection. (c) 2014 Wiley Periodicals, Inc. C1 [Collins, Aaron M.; Jones, Howland D. T.; Timlin, Jerilyn A.] Sandia Natl Labs, Bioenergy & Def Technol Dept, Albuquerque, NM 87185 USA. [McBride, Robert C.; Behnke, Craig] Sapphire Energy Inc, San Diego, CA USA. RP Timlin, JA (reprint author), Sandia Natl Labs, Bioenergy & Def Technol Dept, POB 5800, Albuquerque, NM 87185 USA. EM jatimli@sandia.gov OI Timlin, Jerilyn/0000-0003-2953-1721 FU U.S. Department of Energy [M0102060-05794-1004173]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Contract grant sponsor: U.S. Department of Energy; Contract grant number: Integrated Biorefinery Award #BM0102060-05794-1004173; Contract grant sponsor: Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration; Contract grant number: DE-AC04-94AL85000 NR 50 TC 1 Z9 1 U1 3 U2 19 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0006-3592 EI 1097-0290 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD SEP PY 2014 VL 111 IS 9 BP 1748 EP 1757 DI 10.1002/bit.25235 PG 10 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA AO3MX UT WOS:000341236100006 PM 24931928 ER PT J AU Lee, TC Burghardt, AJ Yao, W Lane, NE Majumdar, S Gullberg, GT Seo, YH AF Lee, Tzu-Cheng Burghardt, Andrew J. Yao, Wei Lane, Nancy E. Majumdar, Sharmila Gullberg, Grant T. Seo, Youngho TI Improved Trabecular Bone Structure of 20-Month-Old Male Spontaneously Hypertensive Rats SO CALCIFIED TISSUE INTERNATIONAL LA English DT Article DE Trabecular structure; Quantitative micro-CT; Bone strength; Hypertension; Spontaneous hypertensive rat; Aging ID URIC-ACID; MINERAL DENSITY; PARATHYROID-HORMONE; OXIDATIVE STRESS; CANCELLOUS BONE; ANGIOTENSIN-II; BLOOD-PRESSURE; BETA-BLOCKERS; RISK-FACTOR; OLDER MEN AB A few clinical studies have reported that elderly male participants with hypertensive disease frequently have higher bone mineral density (BMD) than the normotensive participants at several skeletal sites. The detailed mechanism is still unknown; therefore, a study of bone structure and density using the hypertensive animal models could be informative. We used micro-computed tomography to quantitatively evaluate the tibial and 3rd lumbar vertebral bones in the 20-month-old male spontaneous hypertensive rat (SHR). The BMD, volume fraction, and the microarchitecture changes of the SHR were compared to those of same-age normotensive controls (Wistar-Kyoto rat, WKY). We found that in the very old (20 month) male rats, the trabecular bone fraction and microstructure were higher than those in the same-age normotensive controls. The observation of the association of hypertension with BMD and bone strength in hypertensive rats warrants further investigations of bone mass and strength in elderly males with hypertension. C1 [Lee, Tzu-Cheng; Seo, Youngho] Univ Calif San Francisco, Phys Res Lab, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA. [Burghardt, Andrew J.; Majumdar, Sharmila] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, Musculoskeletal Quantitat Imaging Res Grp, San Francisco, CA 94143 USA. [Yao, Wei; Lane, Nancy E.] Univ Calif Davis, Dept Med, Ctr Musculoskeletal Hlth, Sacramento, CA 95817 USA. [Gullberg, Grant T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Struct Biol & Imaging Dept, Berkeley, CA 94720 USA. RP Seo, YH (reprint author), Univ Calif San Francisco, Phys Res Lab, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA. EM youngho.seo@ucsf.edu FU National Institutes of Health of the U. S. Department of Health and Human Services [R01 EB007219, R01 AG17762, R01 EB012965]; Office of Science, Office of Biological and Environmental Research of the U. S. Department of Energy [DE-AC02-05CH11231] FX The authors would like to thanks Dr. Kathleen Brennan (LBNL) and Ms. Stephanie Murphy (UCSF, Radiology) for handling the serum test and harvesting the bone samples. The study was supported in part by the National Institutes of Health of the U. S. Department of Health and Human Services under grants R01 EB007219 (GTG), R01 AG17762 (SM), and R01 EB012965 (YS), and by the Director, Office of Science, Office of Biological and Environmental Research of the U. S. Department of Energy under contract DE-AC02-05CH11231 (GTG). NR 53 TC 2 Z9 2 U1 0 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0171-967X EI 1432-0827 J9 CALCIFIED TISSUE INT JI Calcif. Tissue Int. PD SEP PY 2014 VL 95 IS 3 BP 282 EP 291 DI 10.1007/s00223-014-9893-0 PG 10 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA AN5BE UT WOS:000340603200011 PM 25106873 ER PT J AU Duyker, SG Halder, GJ Southon, PD Price, DJ Edwards, AJ Peterson, VK Kepert, CJ AF Duyker, S. G. Halder, G. J. Southon, P. D. Price, D. J. Edwards, A. J. Peterson, V. K. Kepert, C. J. TI Topotactic structural conversion and hydration-dependent thermal expansion in robust LnM(III)(CN)(6)center dot nH(2)O and flexible ALnFe(II)(CN)(6)center dot nH(2)O frameworks (A = Li, Na, K; Ln = La-Lu, Y; M = Co, Fe; 0 <= n <= 5) SO CHEMICAL SCIENCE LA English DT Article ID NANOSIZED LAFEO3 POWDERS; METAL-ORGANIC FRAMEWORK; CRYSTAL-STRUCTURE; SINGLE-CRYSTAL; DECOMPOSITION; EVOLUTION; COMPLEX; LN=LA; HO; GD AB The structures of the A(x)LnM(CN)(6)center dot nH(2)O (A = Li, Na, K; Ln = La-Lu, Y; M = Co, Fe; x = 0, 1; 0 <= n <= 5) cyanide frameworks, their thermal expansion behaviour, and their transformations upon dehydration are explored using X-ray and neutron single crystal diffraction and X-ray powder diffraction. Modification from positive to negative thermal expansion in the LnCo(CN)(6)center dot nH(2)O phases is achieved by removal of the guest water molecules. Most notable is the unprecedented flexibility demonstrated by the "coiling" of KLnFe(CN)(6)center dot nH(2)O frameworks upon their dehydration, wherein the lanthanoid coordination geometry reversibly converts from a 9-coordinate tri-capped trigonal prism to a 6-coordinate octahedron via a single-crystal-to-single-crystal process, accompanied by a large (14-16%) decrease in unit cell volume. C1 [Duyker, S. G.; Southon, P. D.; Price, D. J.; Kepert, C. J.] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. [Duyker, S. G.; Edwards, A. J.; Peterson, V. K.] Australian Nucl Sci & Technol Org, Lucas Heights, NSW, Australia. [Halder, G. J.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Kepert, CJ (reprint author), Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. EM c.kepert@chem.usyd.edu.au RI Halder, Gregory/C-5357-2013; Duyker, Samuel/B-7391-2009 OI Duyker, Samuel/0000-0002-5380-9204 FU Australian Research Council [DP120101445, DP0985611]; International Synchrotron Access Program (ISAP); Australian Government; Australian Institute of Nuclear Science and Engineering; U.S. DOE [DE-AC02-06CH11357]; [FT100100514]; [FF0561456] FX This research was supported by Australian Research Council grants DP120101445 and DP0985611 and fellowships FT100100514 and FF0561456. We acknowledge travel funding provided by the International Synchrotron Access Program (ISAP) managed by the Australian Synchrotron and funded by the Australian Government. S.G.D. acknowledges a postgraduate scholarship funded by the Australian Government and the Australian Institute of Nuclear Science and Engineering. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract no. DE-AC02-06CH11357. We thank Nadia Leyarovska and Karena W. Chapman for beamline support. NR 45 TC 5 Z9 5 U1 1 U2 36 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2041-6520 EI 2041-6539 J9 CHEM SCI JI Chem. Sci. PD SEP PY 2014 VL 5 IS 9 BP 3409 EP 3417 DI 10.1039/c4sc00809j PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA AN6HO UT WOS:000340695800008 ER PT J AU Noh, SY Timm, SC Jang, H AF Noh, Seo-Young Timm, Steven C. Jang, Haengjin TI vcluster: a framework for auto scalable virtual cluster system in heterogeneous clouds SO CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS LA English DT Article DE vcluster; Virtual cluster; Cloud resource management; Heterogeneous clouds AB Cloud computing is an emerging technology and is being widely considered for resource utilization in various research areas. One of the main advantages of cloud computing is its flexibility in computing resource allocations. Many computing cycles can be ready in very short time and can be smoothly reallocated between tasks. Because of this, there are many private companies entering the new business of reselling their idle computing cycles. Research institutes have also started building their own cloud systems for their various research purposes. In this paper, we introduce a framework for virtual cluster system called vcluster which is capable of utilizing computing resources from heterogeneous clouds and provides a uniform view in computing resource management. vcluster is an IaaS (Infrastructure as a Service) based cloud resource management system. It distributes batch jobs to multiple clouds depending on the status of queue and system pool. The main design philosophy behind vcluster is cloud and batch system agnostic and it is achieved through plugins. This feature mitigates the complexity of integrating heterogeneous clouds. In the pilot system development, we use FermiCloud and Amazon EC2, which are a private and a public cloud system, respectively. In this paper, we also discuss the features and functionalities that must be considered in virtual cluster systems. C1 [Noh, Seo-Young; Jang, Haengjin] Korea Inst Sci & Technol Informat, Natl Inst Supercomputing & Networking, Taejon 305806, South Korea. [Timm, Steven C.] Fermilab Natl Accelerator Lab, Grid & Cloud Comp Dept, Batavia, IL 60510 USA. RP Jang, H (reprint author), Korea Inst Sci & Technol Informat, Natl Inst Supercomputing & Networking, Taejon 305806, South Korea. EM rsyoung@kisti.re.kr; hjjang@kisti.re.kr FU National Research Foundation (NRF) of Korea [N-13-NM-IR04] FX This research was supported by the National Research Foundation (NRF) of Korea through contract N-13-NM-IR04. NR 21 TC 2 Z9 2 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1386-7857 EI 1573-7543 J9 CLUSTER COMPUT JI Cluster Comput. PD SEP PY 2014 VL 17 IS 3 BP 741 EP 749 DI 10.1007/s10586-013-0292-5 PG 9 WC Computer Science, Information Systems; Computer Science, Theory & Methods SC Computer Science GA AO1OF UT WOS:000341081900012 ER PT J AU Zhang, ZW Hu, X Hou, TY Lin, G Yan, MK AF Zhang, Zhiwen Hu, Xin Hou, Thomas Y. Lin, Guang Yan, Mike TI An Adaptive ANOVA-Based Data-Driven Stochastic Method for Elliptic PDEs with Random Coefficient SO COMMUNICATIONS IN COMPUTATIONAL PHYSICS LA English DT Article DE Analysis of variance; stochastic partial differential equations; data-driven methods; Karhunen-Loeve expansion; uncertainty quantification; model reduction ID PARTIAL-DIFFERENTIAL-EQUATIONS; GENERALIZED POLYNOMIAL CHAOS; UNCERTAINTY QUANTIFICATION; INTEGRATION; EXPANSIONS; INTERPOLATION; SIMULATIONS; ALGORITHMS; MECHANICS; DYNAMICS AB In this paper, we present an adaptive, analysis of variance (ANOVA)-based data-driven stochastic method (ANOVA-DSM) to study the stochastic partial differential equations (SPDEs) in the multi-query setting. Our new method integrates the advantages of both the adaptive ANOVA decomposition technique and the data-driven stochastic method. To handle high-dimensional stochastic problems, we investigate the use of adaptive ANOVA decomposition in the stochastic space as an effective dimension-reduction technique. To improve the slow convergence of the generalized polynomial chaos (gPC) method or stochastic collocation (SC) method, we adopt the data-driven stochastic method (DSM) for speed up. An essential ingredient of the DSM is to construct a set of stochastic basis under which the stochastic solutions enjoy a compact representation for a broad range of forcing functions and/or boundary conditions. Our ANOVA-DSM consists of offline and online stages. In the offline stage, the original high-dimensional stochastic problem is decomposed into a series of low-dimensional stochastic subproblems, according to the ANOVA decomposition technique. Then, for each subproblem, a data-driven stochastic basis is computed using the Karhunen-Loeve expansion (KLE) and a two-level preconditioning optimization approach. Multiple trial functions are used to enrich the stochastic basis and improve the accuracy. In the online stage, we solve each stochastic subproblem for any given forcing function by projecting the stochastic solution into the data-driven stochastic basis constructed offline. In our ANOVA-DSM framework, solving the original high-dimensional stochastic problem is reduced to solving a series of ANOVA-decomposed stochastic subproblems using the DSM. An adaptive ANOVA strategy is also provided to further reduce the number of the stochastic subproblems and speed up our method. To demonstrate the accuracy and efficiency of our method, numerical examples are presented for one-and two-dimensional elliptic PDEs with random coefficients. C1 [Zhang, Zhiwen; Hu, Xin; Hou, Thomas Y.; Yan, Mike] CALTECH, Pasadena, CA 91125 USA. [Lin, Guang] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Hou, TY (reprint author), CALTECH, Pasadena, CA 91125 USA. EM hou@cms.caltech.edu; Guang.Lin@pnnl.gov FU AFOSR MURI project [FA 9550-09-1-0613]; DOE [DE-FG02-06ER25727]; NSF FRG [DMS-1159138]; U.S. Department of Energy (DOE) Office of Science Advanced Scientific Computing Research Applied Mathematics program FX The work of Thomas Hou was supported in part by an AFOSR MURI project under Contract FA 9550-09-1-0613, a DOE Grant DE-FG02-06ER25727, and NSF FRG Grant DMS-1159138. The work of Guang Lin was supported by the U.S. Department of Energy (DOE) Office of Science Advanced Scientific Computing Research Applied Mathematics program. Pacific Northwest National Laboratory is operated by Battelle for the DOE under Contract DE-AC05-76RL01830. NR 42 TC 3 Z9 3 U1 1 U2 8 PU GLOBAL SCIENCE PRESS PI WANCHAI PA ROOM 3208, CENTRAL PLAZA, 18 HARBOUR RD, WANCHAI, HONG KONG 00000, PEOPLES R CHINA SN 1815-2406 EI 1991-7120 J9 COMMUN COMPUT PHYS JI Commun. Comput. Phys. PD SEP PY 2014 VL 16 IS 3 BP 571 EP 598 DI 10.4208/cicp.270913.020414a PG 28 WC Physics, Mathematical SC Physics GA AN7NS UT WOS:000340787900001 ER PT J AU Loubere, R Dumbser, M Diot, S AF Loubere, Raphael Dumbser, Michael Diot, Steven TI A New Family of High Order Unstructured MOOD and ADER Finite Volume Schemes for Multidimensional Systems of Hyperbolic Conservation Laws SO COMMUNICATIONS IN COMPUTATIONAL PHYSICS LA English DT Article DE Finite Volume; high-order; conservation law; polynomial reconstruction; ADER; MOOD; hyperbolic PDE; unstructured meshes; finite volume; one-step time discretization; local continuous space-time Galerkin method; WENO; Euler equations; MHD equations; relativistic MHD equations ID ESSENTIALLY NONOSCILLATORY SCHEMES; DISCONTINUOUS GALERKIN SCHEMES; COMPRESSIBLE EULER EQUATIONS; FLUID TRANSPORT ALGORITHM; DIFFERENCE WENO SCHEMES; TANG VORTEX SYSTEM; RELATIVISTIC MAGNETOHYDRODYNAMICS; EFFICIENT IMPLEMENTATION; RIEMANN PROBLEM; ELEMENT-METHOD AB In this paper, we investigate the coupling of the Multi-dimensional Optimal Order Detection (MOOD) method and the Arbitrary high order DERivatives (ADER) approach in order to design a new high order accurate, robust and computationally efficient Finite Volume (FV) scheme dedicated to solve nonlinear systems of hyperbolic conservation laws on unstructured triangular and tetrahedral meshes in two and three space dimensions, respectively. The Multi-dimensional Optimal Order Detection (MOOD) method for 2D and 3D geometries has been introduced in a recent series of papers for mixed unstructured meshes. It is an arbitrary high-order accurate Finite Volume scheme in space, using polynomial reconstructions with a posteriori detection and polynomial degree decrementing processes to deal with shock waves and other discontinuities. In the following work, the time discretization is performed with an elegant and efficient one-step ADER procedure. Doing so, we retain the good properties of the MOOD scheme, that is to say the optimal high-order of accuracy is reached on smooth solutions, while spurious oscillations near singularities are prevented. The ADER technique permits not only to reduce the cost of the overall scheme as shown on a set of numerical tests in 2D and 3D, but it also increases the stability of the overall scheme. A systematic comparison between classical unstructured ADER-WENO schemes and the new ADER-MOOD approach has been carried out for high-order schemes in space and time in terms of cost, robustness, accuracy and efficiency. The main finding of this paper is that the combination of ADER with MOOD generally outperforms the one of ADER and WENO either because at given accuracy MOOD is less expensive (memory and/or CPU time), or because it is more accurate for a given grid resolution. A large suite of classical numerical test problems has been solved on unstructured meshes for three challenging multi-dimensional systems of conservation laws: the Euler equations of compressible gas dynamics, the classical equations of ideal magneto-Hydrodynamics (MHD) and finally the relativistic MHD equations (RMHD), which constitutes a particularly challenging nonlinear system of hyperbolic partial differential equation. All tests are run on genuinely unstructured grids composed of simplex elements. C1 [Loubere, Raphael] Univ Toulouse 3, CNRS, F-31062 Toulouse, France. [Loubere, Raphael] Univ Toulouse 3, IMT, F-31062 Toulouse, France. [Dumbser, Michael] Univ Trento, Dept Civil Environm & Mech Engn, I-38123 Trento, Italy. [Diot, Steven] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Loubere, R (reprint author), Univ Toulouse 3, CNRS, F-31062 Toulouse, France. EM raphael.loubere@math.univ-toulouse.fr; michael.dumbser@unitn.it; diot@lanl.gov RI Dumbser, Michael/F-2740-2010; OI Dumbser, Michael/0000-0002-8201-8372 FU European Research Council (ERC); STiMulUs; ANR; ERC [278267] FX M.D. has been financed by the European Research Council (ERC) under the European Union's Seventh Framework Programme (FP7/2007-2013) with the research project STiMulUs, ERC Grant agreement no. 278267. R.L. has been partially funded by the ANR under the JCJC project "ALE INC(ubator) 3D". This work has been authorized for publication under the reference LA-UR-13-28795. The authors would like to acknowledge PRACE for awarding access to the SuperMUC supercomputer based in Munich, Germany at the Leibniz Rechenzentrum (LRZ). NR 96 TC 23 Z9 23 U1 2 U2 11 PU GLOBAL SCIENCE PRESS PI WANCHAI PA ROOM 3208, CENTRAL PLAZA, 18 HARBOUR RD, WANCHAI, HONG KONG 00000, PEOPLES R CHINA SN 1815-2406 EI 1991-7120 J9 COMMUN COMPUT PHYS JI Commun. Comput. Phys. PD SEP PY 2014 VL 16 IS 3 BP 718 EP 763 DI 10.4208/cicp.181113.140314a PG 46 WC Physics, Mathematical SC Physics GA AN7NS UT WOS:000340787900007 ER PT J AU Freeman, CM Boyle, KL Reagan, M Johnson, J Rycroft, C Moridis, GJ AF Freeman, C. M. Boyle, K. L. Reagan, M. Johnson, J. Rycroft, C. Moridis, G. J. TI MeshVoro: A three-dimensional Voronoi mesh building tool for the TOUGH family of codes SO COMPUTERS & GEOSCIENCES LA English DT Article DE Mesh; Grid; TOUGH; Hydrology; Geology; Visualization; Visit; Petroleum; Shale; Voronoi ID POROUS-MEDIA; TESSELLATIONS; FLOW AB Few tools exist for creating and visualizing complex three-dimensional simulation meshes, and these have limitations that restrict their application to particular geometries and circumstances. Mesh generation needs to trend toward ever more general applications. To that end, we have developed MeshVoro, a tool that is based on the Voro+ + (Chris H. Rycroft, 2009. Chaos 19, 041111) library and is capable of generating complex three-dimensional Voronoi tessellation-based (unstructured) meshes for the solution of problems of flow and transport in subsurface geologic media that are addressed by the TOUGH (Pruess, K., Oldenburg C., Moridis G., 1999. Report LBNL-43134, 582. Lawrence Berkeley National Laboratory, Berkeley, CA) family of codes. MeshVoro, which includes built-in data visualization routines, is a particularly useful tool because it extends the applicability of the TOUGH family of codes by enabling the scientifically robust and relatively easy discretization of systems with challenging 3D geometries. We describe several applications of MeshVoro. We illustrate the ability of the tool to straightforwardly transform a complex geological grid into a simulation mesh that conforms to the specifications of the TOUGH family of codes. We demonstrate how MeshVoro can describe complex system geometries with a relatively small number of grid blocks, and we construct meshes for geometries that would have been practically intractable with a standard Cartesian grid approach. We also discuss the limitations and appropriate applications of this new technology. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Freeman, C. M.] Hilcorp Energy Co, Houston, TX 77002 USA. [Boyle, K. L.; Reagan, M.; Johnson, J.; Moridis, G. J.] Lawrence Berkeley Natl Lab, Div Earth Sci, Houston, TX 77002 USA. [Rycroft, C.] Harvard Univ, Sch Engn & Appl Sci, Houston, TX 77002 USA. RP Freeman, CM (reprint author), Hilcorp Energy Co, 1201 Louisiana St 1400, Houston, TX 77002 USA. EM matt.freeman@pe.tamu.edu RI Reagan, Matthew/D-1129-2015; OI Reagan, Matthew/0000-0001-6225-4928; Rycroft, Chris/0000-0003-4677-6990 FU US Environmental Protection Agency, Office of Water, under an Interagency Agreement with the U.S. Department of Energy at the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; U.S. Environmental Protection Agency through Interagency Agreement [DW-89-92235901-C] FX This study was supported by the US Environmental Protection Agency, Office of Water, under an Interagency Agreement with the U.S. Department of Energy at the Lawrence Berkeley National Laboratory through Contract No. DE-AC02-05CH11231. The research described in this article has been funded wholly (or in part) by the U.S. Environmental Protection Agency through Interagency Agreement (DW-89-92235901-C) to the Lawrence Berkeley National Laboratory. The views expressed in this article are those of the authors and do not necessarily reflect the views or policies of the EPA. NR 21 TC 4 Z9 4 U1 3 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-3004 EI 1873-7803 J9 COMPUT GEOSCI-UK JI Comput. Geosci. PD SEP PY 2014 VL 70 BP 26 EP 34 DI 10.1016/j.cageo.2014.05.002 PG 9 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA AN6HG UT WOS:000340695000003 ER PT J AU Engle, M Gallo, M Schroeder, K Geboy, N Zupancic, J AF Engle, Mark A. Gallo, Michele Schroeder, Karl T. Geboy, Nicholas J. Zupancic, John W. TI Three-way compositional analysis of water quality monitoring data SO ENVIRONMENTAL AND ECOLOGICAL STATISTICS LA English DT Article DE Coalbed natural gas; Log-ratio; Multi-mode analysis; Powder River Basin; Produced waters; Tucker3 ID STATISTICAL-ANALYSIS; LOG-RATIO; CHEMISTRY; RIVER; GEOCHEMISTRY; BASIN AB Water quality monitoring data typically consist of J parameters and constituents measured at I number of static locations at K sets of seasonal occurrences. The resulting I x J x K three-way array can be difficult to interpret. Additionally, the constituent portion of the dataset (e.g., major ion and trace element concentration, pH, etc.) is compositional in that it sums to a constant (e.g., 1 kg/L) and is mathematically confined to the simplex, the sample space for compositional data. Here we apply a Tucker3 model on centered log-ratio data to find low dimensional representation of latent variables as a means to simplify data processing and interpretation of three years of seasonal compositional groundwater chemistry data for 14 wells at a study site in Wyoming, USA. The study site has been amended with treated coalbed methane produced water, using a subsurface drip irrigation system, to allow for irrigation of forage crops. Results from three-way compositional data analysis indicate that primary controls on water quality at the study site include: solutes concentration by evapotranspiration, cation exchange, and dissolution of native salts. These findings agree well with results from more detailed investigations of the site. In addition, the model identified Ba uptake during gypsum precipitation in some portions of the site during the final 6-9 months of investigation, a process for which the timing and extent had not previously been identified. These results suggest that multi-way compositional analyses hold promise as a means to more easily interpret water quality monitoring data. C1 [Engle, Mark A.; Geboy, Nicholas J.] US Geol Survey, Reston, VA 22092 USA. [Engle, Mark A.] Univ Texas El Paso, Dept Geol Sci, El Paso, TX 79968 USA. [Gallo, Michele] Univ Naples Lorientale, Dept Human & Social Sci, Naples, Italy. [Schroeder, Karl T.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA USA. [Zupancic, John W.] BeneTerra LLC, Sheridan, WY USA. RP Engle, M (reprint author), US Geol Survey, 959 Natl Ctr, Reston, VA 22092 USA. EM engle@usgs.gov OI Gallo, Michele/0000-0001-7904-0491; Engle, Mark/0000-0001-5258-7374 FU U.S. Department of Energy (DOE); U.S. Geological Survey Energy Resources Program; University of Naples-"L'Orientale" (I) FX Funding for this project was provided by the U.S. Department of Energy (DOE), U.S. Geological Survey Energy Resources Program and by ex-60% 2011 funds of the University of Naples-"L'Orientale" (I). Thoughtful review and comment on an earlier version of this paper were provided by Carl Bern (USGS). Assistance with sampling logistics and analytical results were provided by Adam Quist (BeneTerra), Carol Cardone (National Energy Technology Laboratory [NETL]), and Kristen Carlisle (NETL). NR 37 TC 5 Z9 5 U1 4 U2 29 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1352-8505 EI 1573-3009 J9 ENVIRON ECOL STAT JI Environ. Ecol. Stat. PD SEP PY 2014 VL 21 IS 3 BP 565 EP 581 DI 10.1007/s10651-013-0268-x PG 17 WC Environmental Sciences; Mathematics, Interdisciplinary Applications; Statistics & Probability SC Environmental Sciences & Ecology; Mathematics GA AN6CS UT WOS:000340681900009 ER PT J AU Budworth, H Harris, F Williams, P Lee, DY Pahnke, J Szczesny, B Mitra, S Acevdeo-Torres, K Ayala-Pena, S McMurray, CT AF Budworth, H. Harris, F. Williams, P. Lee, D-Y Pahnke, J. Szczesny, B. Mitra, S. Acevdeo-Torres, K. Ayala-Pena, S. McMurray, C. T. TI Suppression of Somatic Expansion Delays Motor Decline in a Mouse Model of Huntington's Disease. SO ENVIRONMENTAL AND MOLECULAR MUTAGENESIS LA English DT Meeting Abstract CT 45th Annual Meeting of the Environmental-Mutagenesis-and-Genomics-Society (EMGS) CY SEP 13-17, 2014 CL Orlando, FL SP Environm Mutagenesis & Genom Soc C1 [Budworth, H.; Williams, P.; McMurray, C. T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Harris, F.] Mayo Clin & Mayo Fdn, Mol Pharmacol & Expt Therapeut Dept, Rochester, MN USA. [Lee, D-Y] Kookmin Univ, Adv Fermentat Fus Sci & Technol Dept, Seoul, South Korea. [Pahnke, J.] Univ Magdeburg, Neurodegenerat Res Lab, Dept Neurol, D-39106 Magdeburg, Germany. [Pahnke, J.] German Ctr Neurodegenerat Dis, Magdeburg, Germany. [Szczesny, B.] Univ Texas Med Branch, Dept Anesthesiol, Galveston, TX 77555 USA. [Mitra, S.] Houston Methodist Res Inst, Houston, TX USA. [Acevdeo-Torres, K.] Univ Puerto Rico, Puerto Rico Ctr Inherited Dis, San Juan, PR 00936 USA. [Ayala-Pena, S.] Univ Puerto Rico, Dept Pharmacol & Toxicol, San Juan, PR 00936 USA. RI Pahnke, Jens/G-1757-2010 NR 0 TC 0 Z9 0 U1 0 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0893-6692 EI 1098-2280 J9 ENVIRON MOL MUTAGEN JI Environ. Mol. Mutagen. PD SEP PY 2014 VL 55 SU 1 MA S24 BP S25 EP S25 PG 1 WC Environmental Sciences; Genetics & Heredity; Toxicology SC Environmental Sciences & Ecology; Genetics & Heredity; Toxicology GA AO2ST UT WOS:000341176900033 ER PT J AU Lai, Y Beaver, JM Chan, NLS Zhang, Z McMurray, CT Liu, Y AF Lai, Y. Beaver, J. M. Chan, N. L. S. Zhang, Z. McMurray, C. T. Liu, Y. TI MSH2-MSH3 Promotes GAA Repeat Expansion by Stimulating DNA Polymerase beta Activity during Base Excision Repair SO ENVIRONMENTAL AND MOLECULAR MUTAGENESIS LA English DT Meeting Abstract CT 45th Annual Meeting of the Environmental-Mutagenesis-and-Genomics-Society (EMGS) CY SEP 13-17, 2014 CL Orlando, FL SP Environm Mutagenesis & Genom Soc C1 [Lai, Y.; Beaver, J. M.; Liu, Y.] Florida Int Univ, Miami, FL 33199 USA. [Chan, N. L. S.; McMurray, C. T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Zhang, Z.] Sichuan Univ, Chengdu 610064, Peoples R China. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0893-6692 EI 1098-2280 J9 ENVIRON MOL MUTAGEN JI Environ. Mol. Mutagen. PD SEP PY 2014 VL 55 SU 1 MA P63 BP S55 EP S55 PG 1 WC Environmental Sciences; Genetics & Heredity; Toxicology SC Environmental Sciences & Ecology; Genetics & Heredity; Toxicology GA AO2ST UT WOS:000341176900155 ER PT J AU Sowa, MB AF Sowa, M. B. TI Health Risks and Benefits from Low Dose and Low Dose-Rate Environmental Exposures SO ENVIRONMENTAL AND MOLECULAR MUTAGENESIS LA English DT Meeting Abstract CT 45th Annual Meeting of the Environmental-Mutagenesis-and-Genomics-Society (EMGS) CY SEP 13-17, 2014 CL Orlando, FL SP Environm Mutagenesis & Genom Soc C1 [Sowa, M. B.] Pacific NW Natl Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0893-6692 EI 1098-2280 J9 ENVIRON MOL MUTAGEN JI Environ. Mol. Mutagen. PD SEP PY 2014 VL 55 SU 1 MA S12 BP S22 EP S22 PG 1 WC Environmental Sciences; Genetics & Heredity; Toxicology SC Environmental Sciences & Ecology; Genetics & Heredity; Toxicology GA AO2ST UT WOS:000341176900022 ER PT J AU Wyrobek, AJ Allard, P Somers, CM AF Wyrobek, A. J. Allard, P. Somers, C. M. TI A Perspective on the Contributions of EMGS to Characterizing the Effect of Exposure to Environmental Mutagens on the Germ Line and the Risk of Inherited Disease to Future Generations SO ENVIRONMENTAL AND MOLECULAR MUTAGENESIS LA English DT Meeting Abstract CT 45th Annual Meeting of the Environmental-Mutagenesis-and-Genomics-Society (EMGS) CY SEP 13-17, 2014 CL Orlando, FL SP Environm Mutagenesis & Genom Soc C1 [Wyrobek, A. J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Allard, P.] Univ Calif Los Angeles, Los Angeles, CA USA. [Somers, C. M.] Univ Regina, Regina, SK S4S 0A2, Canada. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0893-6692 EI 1098-2280 J9 ENVIRON MOL MUTAGEN JI Environ. Mol. Mutagen. PD SEP PY 2014 VL 55 SU 1 MA S1 BP S20 EP S20 PG 1 WC Environmental Sciences; Genetics & Heredity; Toxicology SC Environmental Sciences & Ecology; Genetics & Heredity; Toxicology GA AO2ST UT WOS:000341176900011 ER PT J AU Shi, WB Moon, CD Leahy, SC Kang, DW Froula, J Kittelmann, S Fan, C Deutsch, S Gagic, D Seedorf, H Kelly, WJ Atua, R Sang, C Soni, P Li, D Pinares-Patino, CS McEwan, JC Janssen, PH Chen, F Visel, A Wang, Z Attwood, GT Rubin, EM AF Shi, Weibing Moon, Christina D. Leahy, Sinead C. Kang, Dongwan Froula, Jeff Kittelmann, Sandra Fan, Christina Deutsch, Samuel Gagic, Dragana Seedorf, Henning Kelly, William J. Atua, Renee Sang, Carrie Soni, Priya Li, Dong Pinares-Patino, Cesar S. McEwan, John C. Janssen, Peter H. Chen, Feng Visel, Axel Wang, Zhong Attwood, Graeme T. Rubin, Edward M. TI Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome SO GENOME RESEARCH LA English DT Article ID RESIDUAL FEED-INTAKE; RUMINAL FERMENTATION; GENOME SEQUENCE; BEEF-CATTLE; EMISSIONS; COMMUNITY; EFFICIENCY; DIETARY; ARCHAEA; METHANOGENESIS AB Ruminant livestock represent the single largest anthropogenic source of the potent greenhouse gas methane, which is generated by methanogenic archaea residing in ruminant digestive tracts. While differences between individual animals of the same breed in the amount of methane produced have been observed, the basis for this variation remains to be elucidated. To explore the mechanistic basis of this methane production, we measured methane yields from 22 sheep, which revealed that methane yields are a reproducible, quantitative trait. Deep metagenomic and metatranscriptomic sequencing demonstrated a similar abundance of methanogens and methanogenesis pathway genes in high and low methane emitters. However, transcription of methanogenesis pathway genes was substantially increased in sheep with high methane yields. These results identify a discrete set of rumen methanogens whose methanogenesis pathway transcription profiles correlate with methane yields and provide new targets for CH4 mitigation at the levels of microbiota composition and transcriptional regulation. C1 [Shi, Weibing; Kang, Dongwan; Froula, Jeff; Fan, Christina; Deutsch, Samuel; Chen, Feng; Visel, Axel; Wang, Zhong; Rubin, Edward M.] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Shi, Weibing; Kang, Dongwan; Froula, Jeff; Fan, Christina; Deutsch, Samuel; Chen, Feng; Visel, Axel; Wang, Zhong; Rubin, Edward M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. [Moon, Christina D.; Leahy, Sinead C.; Kittelmann, Sandra; Gagic, Dragana; Seedorf, Henning; Kelly, William J.; Atua, Renee; Sang, Carrie; Soni, Priya; Li, Dong; Pinares-Patino, Cesar S.; McEwan, John C.; Janssen, Peter H.; Attwood, Graeme T.] AgR Ltd, Grasslands Res Ctr, Palmerston North 4442, New Zealand. [Visel, Axel; Wang, Zhong] Univ Calif, Sch Nat Sci, Merced, CA 95343 USA. RP Rubin, EM (reprint author), Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. EM emrubin@lbl.gov RI McEwan, John/A-1143-2008; Visel, Axel/A-9398-2009; OI McEwan, John/0000-0003-4801-6207; Visel, Axel/0000-0002-4130-7784; Leahy, Sinead/0000-0002-5461-6738; Seedorf, Henning/0000-0002-5763-0236; Janssen, Peter/0000-0002-1022-3502; Moon, Christina/0000-0001-9692-9559 FU Office of Science of the US Department of Energy [DE-AC02-05CH11231]; New Zealand Ministry of Primary Industries; Pastoral Greenhouse Gas Research Consortium (PGgRc); AgResearch Core funding FX This study was conducted by the US Department of Energy Joint Genome Institute and supported by the Office of Science of the US Department of Energy under contract no. DE-AC02-05CH11231. The work was also supported by Global Partnerships in Livestock Emission Research funding from the New Zealand Ministry of Primary Industries, the Pastoral Greenhouse Gas Research Consortium (PGgRc), and AgResearch Core funding. We thank J. Bristow, L.A. Pennacchio, M. Blow, S.G. Tringe, and M. Morrison for critical discussions and reading the manuscript. We thank the JGI production team for technical support, M. Hamilton and S. Nath for gene resequencing experiments, and R. Egan and X. Meng for data analysis support. We thank G. Molano, S. Maclean, H. Kjestrup, E. Sandoval, G. Skelton, N. Palevich, T. Finn, S. Schewaramani, and R. Nitzsche for assistance with animal feeding, CH4 measurements, and rumen sampling; M. Kirk for amplicon processing; G. Henderson for providing the QIIME-compatible archaeal 16S rRNA gene database; and W. Young for statistical analyses. NR 64 TC 43 Z9 43 U1 9 U2 57 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI COLD SPRING HARBOR PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA SN 1088-9051 EI 1549-5469 J9 GENOME RES JI Genome Res. PD SEP PY 2014 VL 24 IS 9 BP 1517 EP 1525 DI 10.1101/gr.168245.113 PG 9 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity GA AO4BM UT WOS:000341281200010 PM 24907284 ER PT J AU Zhang, R Song, XL Fomel, S Sen, MK Srinivasan, S AF Zhang, Rui Song, Xiaolei Fomel, Sergey Sen, Mrinal K. Srinivasan, Sanjay TI Time-lapse pre-stack seismic data registration and inversion for CO2 sequestration study at Cranfield SO GEOPHYSICAL PROSPECTING LA English DT Article ID GULF-OF-MEXICO; SATURATION CHANGES; AVO INVERSION; OIL-FIELD; PRESSURE; RESERVOIRS AB Pre-stack seismic data are indicative of subsurface elastic properties within the amplitude versus offset characteristic and can be used to detect elastic rock property changes caused by CO2 injection. We perform time-lapse pre-stack 3-D seismic data analysis for monitoring CO2 sequestration at Cranfield. The time-lapse amplitude differences of Cranfield datasets are found entangled with time-shifts. To disentangle these two characters, we apply a local-correlation-based warping method to register the time-lapse pre-stack datasets, which can effectively separate the time-shift from the time-lapse seismic amplitude difference without changing the original amplitudes. We demonstrate the effectiveness of our registration method by evaluating the inverted elastic properties. These inverted time-lapse elastic properties can be reliably used for monitoring CO2 plumes. C1 [Zhang, Rui] Univ Texas Austin, Lawrence Berkeley Natl Lab, Austin, TX 78712 USA. [Song, Xiaolei] Univ Texas Austin, Austin, TX 78712 USA. [Fomel, Sergey] Univ Texas Austin, Bur Econ Geol, Austin, TX 78712 USA. [Sen, Mrinal K.] Univ Texas Austin, Inst Geophys, Austin, TX 78712 USA. [Sen, Mrinal K.] Natl Geophys Res Inst, Hyderabad 500007, Andhra Pradesh, India. [Srinivasan, Sanjay] Univ Texas Austin, Dept Petr & Geosyst Engn, Austin, TX 78712 USA. RP Zhang, R (reprint author), Univ Texas Austin, Lawrence Berkeley Natl Lab, Austin, TX 78712 USA. EM ruizhang2@lbl.gov RI Fomel, Sergey/A-3100-2009; Zhang, Rui/H-2993-2013 OI Fomel, Sergey/0000-0002-9024-5137; FU Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001114]; National Energy Technology Laboratory; Southeast Regional Carbon Sequestration Partnership; Denbury Resources FX This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. We thank the National Energy Technology Laboratory, the Southeast Regional Carbon Sequestration Partnership and Denbury Resources for providing support and data from Cranfield. We thank Dr. Susan D. Hovorka for providing the dataset. NR 47 TC 1 Z9 1 U1 1 U2 10 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0016-8025 EI 1365-2478 J9 GEOPHYS PROSPECT JI Geophys. Prospect. PD SEP PY 2014 VL 62 IS 5 BP 1028 EP 1039 DI 10.1111/1365-2478.12114 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AO0TC UT WOS:000341024000007 ER PT J AU Till, JE Rood, AS Garzon, CD Lagdon, RH AF Till, John E. Rood, Arthur S. Garzon, Caroline D. Lagdon, Richard H., Jr. TI COMPARISON OF THE MACCS2 ATMOSPHERIC TRANSPORT MODEL WITH LAGRANGIAN PUFF MODELS AS APPLIED TO DETERMINISTIC AND PROBABILISTIC SAFETY ANALYSIS SO HEALTH PHYSICS LA English DT Article DE modeling, dose assessment; atmospheric transport, environmental assessment; risk analysis AB The suitability of a new facility in terms of potential impacts from routine and accidental releases is typically evaluated using conservative models and assumptions to assure dose standards are not exceeded. However, overly conservative dose estimates that exceed target doses can result in unnecessary and costly facility design changes. This paper examines one such case involving the U.S. Department of Energy's pretreatment facility of the Waste Treatment and Immobilization Plant (WTP). The MELCOR Accident Consequence Code System Version 2 (MACCS2) was run using conservative parameter values in prescribed guidance to demonstrate that the dose from a postulated airborne release would not exceed the guideline dose of 0.25 Sv. External review of default model parameters identified the deposition velocity of 1.0 cm s(-1) as being non-conservative. The deposition velocity calculated using resistance models was in the range of 0.1 to 0.3 cm s(-1). A value of 0.1 cm s(-1) would result in the dose guideline being exceeded. To test the overall conservatism of the MACCS2 transport model, the 95th percentile hourly average dispersion factor based on one year of meteorological data was compared to dispersion factors generated from two state-of-the-art Lagrangian puff models. The 95th percentile dispersion factor from MACCS2 was a factor of 3 to 6 higher compared to those of the Lagrangian puff models at a distance of 9.3 km and a deposition velocity of 0.1 cm s(-1). Thus, the inherent conservatism in MACCS2 more than compensated for the high deposition velocity used in the assessment. Applications of models like MACCS2 with a conservative set of parameters are essentially screening calculations, and failure to meet dose criteria should not trigger facility design changes but prompt a more in-depth analysis using probabilistic methods with a defined margin of safety in the target dose. A sample application of the probabilistic approach is provided. C1 [Till, John E.] Risk Assessment Corp, Neeses, SC 29107 USA. [Rood, Arthur S.] K Spar Inc, Idaho Falls, ID 83402 USA. [Garzon, Caroline D.; Lagdon, Richard H., Jr.] US DOE, Germantown, MD USA. RP Till, JE (reprint author), Risk Assessment Corp, 417 Till Rd, Neeses, SC 29107 USA. EM johntill@mindspring.com NR 31 TC 1 Z9 1 U1 0 U2 5 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD SEP PY 2014 VL 107 IS 3 BP 213 EP 230 DI 10.1097/HP.0000000000000102 PG 18 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA AN5FM UT WOS:000340616100004 PM 25068959 ER PT J AU Snyder, E Drake, J Cardarelli, J Hall, K Szabo, J Demmer, R Lindberg, M Riggs, K James, R AF Snyder, Emily Drake, John Cardarelli, John Hall, Kathy Szabo, Jeff Demmer, Rick Lindberg, Michael Riggs, Karen James, Ryan TI ASSESSMENT OF SELF-HELP METHODS TO REDUCE POTENTIAL EXPOSURE TO RADIOLOGICAL CONTAMINATION AFTER A LARGE-SCALE RADIOLOGICAL RELEASE SO HEALTH PHYSICS LA English DT Article DE Cs-137; accidents, nuclear; cesium; exposure, radiation AB After the release of radioactive materials from a large radiological dispersal device (e.g., dirty bomb), improvised nuclear detonation, or nuclear power plant accident, up to hundreds of square miles may be contaminated. A portion of this area will be evacuated; however, people living in the portion that is not evacuated yet is still contaminated with low-levels of radioactive contamination will be asking for ways they can reduce their exposure. Whether cleaning activities can significantly reduce exposure is not fully understood. In this effort, the ability of cleaning activities to remove cesium (Cs-137) was studied. The removal efficacy of cleaning with a commercial product, Simple Green (R), was compared to cleaning with water for hard surfaces typically seen in residences. The removal efficacy of laundering fabric material surfaces was also determined for a range of conditions (e.g., fabric material type, wash temperature). During these studies, assessments of the implications of these activities (e.g., cross-contamination, resulting waste streams) were also completed. Simple Green (R) and water were effective for removing Cs-137 from plastic laminate and vinyl flooring (93.4-96.8%) but were not effective for removing Cs-137 from painted wallboard and wood (7.3-68.1%). It was also determined that there was no significant difference between the two cleaners on all of the surfaces, except plastic laminate, for which Simple Green (R) was slightly more effective. Laundering was effective for removing Cs-137 contamination from polyester and cotton swatches and cotton comforters (up to 96.8% in the single swatch testing). C1 [Snyder, Emily] US EPA, Off Res & Dev, Natl Homeland Secur Res Ctr, Res Triangle Pk, NC 27711 USA. [Drake, John; Hall, Kathy; Szabo, Jeff] US EPA, Off Res & Dev, Natl Homeland Secur Res Ctr, Cincinnati, OH 45268 USA. [Cardarelli, John] US EPA, Off Solid Waste, Erlanger, KY 41018 USA. [Cardarelli, John] Emergency Response Off Emergency Managements Cons, Erlanger, KY 41018 USA. [Demmer, Rick] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Lindberg, Michael] Pacific NW Natl Lab, Richland, WA 99352 USA. [Riggs, Karen; James, Ryan] Battelle Mem Inst, Columbus, OH 43201 USA. RP Snyder, E (reprint author), US EPA, Off Res & Dev, Natl Homeland Secur Res Ctr, 109 TW Alexander Dr, Res Triangle Pk, NC 27711 USA. EM snyder.emily@epa.gov FU United States Environmental Protection Agency through its Office of Research and Development [EP-C-10-001] FX The United States Environmental Protection Agency through its Office of Research and Development funded and managed the research described here (through Battelle contract No. EP-C-10-001). It has been subjected to Agency's administrative review and approved for publication. The views expressed in this manuscript are those of the authors and do not necessarily reflect the views or policies of the Agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. NR 11 TC 0 Z9 0 U1 2 U2 11 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD SEP PY 2014 VL 107 IS 3 BP 231 EP 241 DI 10.1097/HP.0000000000000101 PG 11 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA AN5FM UT WOS:000340616100005 PM 25068960 ER PT J AU Lieberman, HR Karl, JP Niro, PJ Williams, KW Farina, EK Cable, SJ McClung, JP AF Lieberman, Harris R. Karl, J. Philip Niro, Philip J. Williams, Kelly W. Farina, Emily K. Cable, Sonya J. McClung, James P. TI Positive Effects of Basic Training on Cognitive Performance and Mood of Adult Females SO HUMAN FACTORS LA English DT Article DE army; stress fatigue; depression; reaction time; vigilance; learning; boot camp; structured training; soldiers ID PLACEBO-CONTROLLED TRIAL; DOUBLE-BLIND; IRON STATUS; WORKING-MEMORY; OLDER-ADULTS; SLEEP LOSS; SOLDIERS; DECREMENTS; CAFFEINE; STRESS AB Objective: This study investigated whether a stressful military training program, the 9- to 10-week U. S. Army basic combat training (BCT) course, alters the cognitive performance and mood of healthy young adult females. Background: Structured training programs including adolescent boot camps, sports training camps, learning enrichment programs, and military basic training are accepted methods for improving academic and social functioning. However, limited research is available on the behavioral effects of structured training programs in regard to cognitive performance and mood. Method: Two separate, within-subject studies were conducted with different BCT classes; in total 212 female volunteers were assessed before and after BCT. In Study 1, Four-Choice Reaction Time, Match-to-Sample, and Grammatical Reasoning tests were administered. The Psychomotor Vigilance Test (PVT) was administered in Study 2. The Profile of Mood States (POMS) was administered in both studies. Results: In Study 1, reaction time to correct responses on all three of the performance tests improved from pre- to post-BCT. In Study 2, PVT reaction time significantly improved. All POMS subscales improved over time in the second study, whereas POMS subscales in the first study failed to meet criteria for statistically significant differences over time. Conclusion: Cognition and mood substantially improved over military basic training. These changes may be a result of structured physical and mental training experienced during basic training or other factors not as yet identified. Application: Properly structured training may have extensive, beneficial effects on cognitive performance and mood; however, additional research is needed to determine what factors are responsible for such changes. C1 [Lieberman, Harris R.; Niro, Philip J.; McClung, James P.] US Army, Mil Nutr Div, Environm Med Res Inst, Natick, MA 01760 USA. [Karl, J. Philip] US Army, Environm Med Res Inst, Natick, MA 01760 USA. [Williams, Kelly W.; Farina, Emily K.] Oak Ridge Associated Univ, Oak Ridge, TN USA. [Cable, Sonya J.] Initial Mil Training Ctr Excellence, Human Dimens Div, Ft Eustis, VA USA. RP Lieberman, HR (reprint author), US Army, Mil Nutr Div, Environm Med Res Inst, Natick, MA 01760 USA. EM harris.lieberman@us.army.mil OI Karl, J. Philip/0000-0002-5871-2241 FU Military Operational Medicine Research Program of the U.S. Army Medical Research and Materiel Command FX The authors wish to acknowledge the soldier volunteers that participated in the present study as well as the command staff at Fort Jackson, South Carolina, for allowing access to the soldiers. The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the U. S. Army or Department of Defense. Human subjects participated in these studies after giving their free and informed voluntary consent. The investigators have adhered to the policies for protection of human subjects as prescribed in Army Regulation 70-25, and the research was conducted in adherence with the provisions of 32 CFR Part 219. Citations of commercial organizations and trade names in this report do not constitute an official U. S. Department of the Army endorsement or approval of the products or services of these organizations. None of the authors had a personal or financial conflict of interest. This research was supported by the Military Operational Medicine Research Program of the U.S. Army Medical Research and Materiel Command. NR 39 TC 5 Z9 5 U1 2 U2 32 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0018-7208 EI 1547-8181 J9 HUM FACTORS JI Hum. Factors PD SEP PY 2014 VL 56 IS 6 BP 1113 EP 1123 DI 10.1177/0018720813519472 PG 11 WC Behavioral Sciences; Engineering, Industrial; Ergonomics; Psychology, Applied; Psychology SC Behavioral Sciences; Engineering; Psychology GA AN8BT UT WOS:000340827100007 PM 25277020 ER PT J AU Arghandeh, R Brown, M Del Rosso, A Ghatikar, G Stewart, E Vojdani, A von Meier, A AF Arghandeh, Reza Brown, Merwin Del Rosso, Alberto Ghatikar, Girish Stewart, Emma Vojdani, Ali von Meier, Alexandra TI The Local Team Leveraging Distributed Resources to Improve Resilience SO IEEE POWER & ENERGY MAGAZINE LA English DT Article C1 [Arghandeh, Reza; Brown, Merwin; von Meier, Alexandra] Univ Calif Berkeley, CIEE, Berkeley, CA 94720 USA. [Del Rosso, Alberto] Elect Power Res Inst, Knoxville, TN USA. [Ghatikar, Girish; Stewart, Emma] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Vojdani, Ali] GridBright Inc, Alamo, CA USA. RP Arghandeh, R (reprint author), Univ Calif Berkeley, CIEE, Berkeley, CA 94720 USA. NR 3 TC 5 Z9 6 U1 0 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1540-7977 EI 1558-4216 J9 IEEE POWER ENERGY M JI IEEE Power Energy Mag. PD SEP-OCT PY 2014 VL 12 IS 5 BP 76 EP 83 DI 10.1109/MPE.2014.2331902 PG 8 WC Engineering, Electrical & Electronic SC Engineering GA AN9SV UT WOS:000340949800009 ER PT J AU Jin, S Botterud, A Ryan, SM AF Jin, Shan Botterud, Audun Ryan, Sarah M. TI Temporal Versus Stochastic Granularity in Thermal Generation Capacity Planning With Wind Power SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Electricity markets; generation expansion planning; stochastic programming; unit commitment; wind energy ID PENETRATION; SYSTEMS; DEMAND; IMPACT AB We propose a stochastic generation expansion model, where we represent the long-term uncertainty in the availability and variability in the weekly wind pattern with multiple scenarios. Scenario reduction is conducted to select a representative set of scenarios for the long-term wind power uncertainty. We assume that the short-term wind forecast error induces an additional amount of operating reserves as a predefined fraction of the wind power forecast level. Unit commitment (UC) decisions and constraints for thermal units are incorporated into the expansion model to better capture the impact of wind variability on the operation of the system. To reduce computational complexity, we also consider a simplified economic dispatch (ED) based model with ramping constraints as an alternative to the UC formulation. We find that the differences in optimal expansion decisions between the UC and ED formulations are relatively small. We also conclude that the reduced set of scenarios can adequately represent the long-term wind power uncertainty in the expansion problem. The case studies are based on load and wind power data from the state of Illinois. C1 [Jin, Shan] Iowa State Univ, Ames, IA 50010 USA. [Botterud, Audun] Argonne Natl Lab, Decis & Informat Sci Div, Ctr Energy Environm & Econ Syst Anal, Argonne, IL 60439 USA. [Ryan, Sarah M.] Iowa State Univ, Dept Ind & Mfg Syst Engn, Ames, IA 50010 USA. RP Jin, S (reprint author), Liberty Mutual Insurance Grp, Boston, MA 02116 USA. EM shan.jin.c@gmail.com; abotterud@anl.gov; smryan@iastate.edu OI Ryan, Sarah/0000-0001-5903-1432 FU Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; U.S. Department of Energy; U.S. Department of Energy for "The Future Grid to Enable Sustainable Energy Systems," an initiative of the Power Systems Engineering Research Center FX Manuscript received March 08, 2013; revised June 27, 2013 and October 19, 2013; accepted December 28, 2013. Date of publication January 29, 2014; date of current version August 15, 2014. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The authors acknowledge the U.S. Department of Energy's Wind Power Program, for funding the research presented in this paper. Additional funding was provided by the U.S. Department of Energy for "The Future Grid to Enable Sustainable Energy Systems," an initiative of the Power Systems Engineering Research Center. Paper no. TPWRS-00280-2013. NR 23 TC 16 Z9 16 U1 1 U2 17 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD SEP PY 2014 VL 29 IS 5 BP 2033 EP 2041 DI 10.1109/TPWRS.2014.2299760 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA AO2XL UT WOS:000341190700004 ER PT J AU Wang, SB Lu, S Zhou, N Lin, G Elizondo, M Pai, MA AF Wang, Shaobu Lu, Shuai Zhou, Ning Lin, Guang Elizondo, Marcelo Pai, M. A. TI Dynamic-Feature Extraction, Attribution, and Reconstruction (DEAR) Method for Power System Model Reduction SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Dynamic response; feature extraction; model reduction; orthogonal decomposition; power systems ID PRINCIPAL COMPONENT ANALYSIS; COHERENCY; AGGREGATION; IDENTIFICATION AB In interconnected power systems, dynamic model reduction can be applied to generators outside the area of interest (i.e., study area) to reduce the computational cost associated with transient stability studies. This paper presents a method of deriving the reduced dynamic model of the external area based on dynamic response measurements. The method consists of three steps, namely dynamic-feature extraction, attribution, and reconstruction (DEAR). In this method, a feature extraction technique, such as singular value decomposition (SVD), is applied to the measured generator dynamics after a disturbance. Characteristic generators are then identified in the feature attribution step for matching the extracted dynamic features with the highest similarity, forming a suboptimal "basis" of system dynamics. In the reconstruction step, generator state variables such as rotor angles and voltage magnitudes are approximated with a linear combination of the characteristic generators, resulting in a quasi-nonlinear reduced model of the original system. The network model is unchanged in the DEAR method. Tests on several IEEE standard systems show that the proposed method yields better reduction ratio and response errors than the traditional coherency based reduction methods. C1 [Wang, Shaobu; Lu, Shuai; Zhou, Ning; Lin, Guang; Elizondo, Marcelo] Pacific NW Natl Lab, Richland, WA 99352 USA. [Pai, M. A.] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA. RP Wang, SB (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM shaobu.wang@pnnl.gov; shuai.lu@pnnl.gov; ning.zhou@pnnl.gov; guang.lin@pnnl.gov; marcelo.elizondo@pnnl.gov; mapai@illinois.edu FU Advanced Scientific Computing Research (ASCR) program of the U.S. Department of Energy (DOE) Office of Science; DOE [DE-AC05-76RL01830] FX Manuscript received March 26, 2013; revised July 19, 2013, November 06, 2013, and January 06, 2014; accepted January 12, 2014. Date of publication January 31, 2014; date of current version August 15, 2014. This work was supported by the Advanced Scientific Computing Research (ASCR) program of the U.S. Department of Energy (DOE) Office of Science. Pacific Northwest National Laboratory is operated by Battelle for DOE under Contract DE-AC05-76RL01830. Paper no. TPWRS-00370-2013. NR 24 TC 11 Z9 11 U1 1 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD SEP PY 2014 VL 29 IS 5 BP 2049 EP 2059 DI 10.1109/TPWRS.2014.2301032 PG 11 WC Engineering, Electrical & Electronic SC Engineering GA AO2XL UT WOS:000341190700006 ER PT J AU Chen, RLY Cohn, A Fan, N Pinar, A AF Chen, Richard Li-Yang Cohn, Amy Fan, Neng Pinar, Ali TI Contingency-Risk Informed Power System Design SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Contingency requirements; decomposition; implicit optimization; long-term grid planning; separation oracle ID MULTIPLE CONTINGENCIES; VULNERABILITY ANALYSIS; PROGRAMMING APPROACH; CASCADING FAILURE; TERRORIST THREAT; SECURITY; ALGORITHM; MODELS; GRIDS AB We consider the problem of designing (or augmenting) an electric power system at a minimum cost such that it satisfies the N - k-epsilon survivability criterion. This survivability criterion is a generalization of the well-known N - k criterion, and it requires that at least (1 - epsilon(j)) fraction of the steady-state demand be met after failures of j components, for j = 0, 1,..., k. The network design problem adds another level of complexity to the notoriously hard contingency analysis problem, since the contingency analysis is only one of the requirements for the design optimization problem. We present a mixed-integer programming formulation of this problem that takes into account both transmission and generation expansion. We propose an algorithm that can avoid combinatorial explosion in the number of contingencies, by seeking vulnerabilities in intermediary solutions and constraining the design space accordingly. Our approach is built on our ability to identify such system vulnerabilities quickly. Our empirical studies on modified instances of the IEEE 30-bus and IEEE 57-bus systems show the effectiveness of our methods. We were able to solve the transmission and generation expansion problems for k = 4 in approximately 30 min, while other approaches failed to provide a solution at the end of 2 h. C1 [Chen, Richard Li-Yang; Pinar, Ali] Sandia Natl Labs, Livermore, CA 94551 USA. [Cohn, Amy] Univ Michigan, Dept Ind & Operat Engn, Ann Arbor, MI 48109 USA. [Fan, Neng] Univ Arizona, Syst & Ind Engn Dept, Tucson, AZ 85721 USA. RP Chen, RLY (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM rlchen@sandia.gov; amycohn@umich.edu; nfan@email.arizona.edu; apinar@sandia.gov FU DOE Applied Mathematics Program at Sandia National Laboratories; Laboratory Directed Research and Development (LDRD) Program at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the DOE Applied Mathematics Program at and by the Laboratory Directed Research and Development (LDRD) Program at Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. Paper no. TPWRS-00542-2013. NR 32 TC 7 Z9 7 U1 2 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD SEP PY 2014 VL 29 IS 5 BP 2087 EP 2096 DI 10.1109/TPWRS.2014.2301691 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA AO2XL UT WOS:000341190700010 ER PT J AU Fan, L Wang, JH Jiang, RW Guan, YP AF Fan, Lei Wang, Jianhui Jiang, Ruiwei Guan, Yongpei TI Min-Max Regret Bidding Strategy for Thermal Generator Considering Price Uncertainty SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Benders' decomposition; bidding strategy; electricity markets; min-max regret; self-scheduling; uncertainty ID ROBUST UNIT COMMITMENT; ELECTRICITY MARKET; TREATMENT CHOICE; NETWORK; POWER; OPTIMIZATION AB The electricity price volatility brings challenges to bidding strategies in the electricity markets. In this paper, we propose a minimax regret approach for a market participant to obtain an optimal bidding strategy and the corresponding self-scheduled generation plans. Motivated by recently proposed robust optimization approaches, our approach relies on the confidence intervals of price forecasts rather than point estimators. We reformulate the minimax regret model as a mixed-integer linear program (MILP), and solve it by the Benders' decomposition algorithm. Moreover, we design a bidding strategy based on the price forecast confidence intervals to generate the offer curve. Finally, we numerically test the minimax regret approach, in comparison with the robust optimization approach, on three types of thermal generators by using real electricity price data from PJM to verify the effectiveness of our proposed approach. C1 [Fan, Lei; Guan, Yongpei] Univ Florida, Dept Ind & Syst Engn, Gainesville, FL 32611 USA. [Wang, Jianhui] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Jiang, Ruiwei] Univ Arizona, Dept Syst & Ind Engn, Tucson, AZ 85721 USA. RP Fan, L (reprint author), Univ Florida, Dept Ind & Syst Engn, Gainesville, FL 32611 USA. EM jianhui.wang@anl.gov; ruiweijiang@email.arizona.edu; guan@ise.ufl.edu NR 40 TC 6 Z9 6 U1 1 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD SEP PY 2014 VL 29 IS 5 BP 2169 EP 2179 DI 10.1109/TPWRS.2014.2308477 PG 11 WC Engineering, Electrical & Electronic SC Engineering GA AO2XL UT WOS:000341190700018 ER PT J AU Chen, C Wang, JH Kishore, S AF Chen, Chen Wang, Jianhui Kishore, Shalinee TI A Distributed Direct Load Control Approach for Large-Scale Residential Demand Response SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Communication; demand response; direct load control; distributed control; scheduling ID CONSENSUS AB This paper proposes a distributed direct load control scheme for large-scale residential demand response (DR) built on a two-layer communication-based control architecture. The lower-layer network is within each building, where the energy management controller (EMC) uses wireless links to schedule operation of appliances upon request according to a local power consumption target. The upper-layer network links a number of EMCs in a region whose aggregated demand is served by a load aggregator. The load aggregator wants the actual aggregated demand over this region to match a desired aggregated demand profile. Our approach utilizes the average consensus algorithm to distribute portions of the desired aggregated demand to each EMC in a decentralized fashion. The allocated portion corresponds to each building's aforementioned local power consumption target which its EMC then uses to schedule the in-building appliances. The result will be an aggregated demand over this region that more closely reaches the desired demand. Numerical results show that our scheme can alleviate the mismatch between the actual aggregated demand and the desired aggregated demand profile. C1 [Chen, Chen; Wang, Jianhui] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Kishore, Shalinee] Lehigh Univ, Dept Elect & Comp Engn, Bethlehem, PA 18015 USA. RP Chen, C (reprint author), Argonne Natl Lab, Decis & Informat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM morningchen@anl.gov; jianhui.wang@anl.gov; skishore@lehigh.edu FU U.S. Department of Energy Office of Electricity Delivery and Energy Reliability; Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX Manuscript received June 19, 2013; revised November 01, 2013, January 10, 2014, and February 13, 2014; accepted February 16, 2014. Date of publication March 12, 2014; date of current version August 15, 2014. This work was supported by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (Argonne). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. Paper no. TPWRS-00802-2013. NR 36 TC 20 Z9 22 U1 4 U2 17 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD SEP PY 2014 VL 29 IS 5 BP 2219 EP 2228 DI 10.1109/TPWRS.2014.2307474 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA AO2XL UT WOS:000341190700023 ER PT J AU Dorfler, F Jovanovic, MR Chertkov, M Bullo, F AF Doerfler, Florian Jovanovic, Mihailo R. Chertkov, Michael Bullo, Francesco TI Sparsity-Promoting Optimal Wide-Area Control of Power Networks SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Alternating direction method of multipliers; inter-area modes; sparsity-promoting control; wide-area control ID DAMPING CONTROL; ELECTRICAL NETWORKS; DESIGN; SYSTEM; OSCILLATIONS; ROBUST; SELECTION; SIGNALS; GAINS; DELAY AB Inter-area oscillations in bulk power systems are typically poorly controllable by means of local decentralized control. Recent research efforts have been aimed at developing wide-area control strategies that involve communication of remote signals. In conventional wide-area control, the control structure is fixed a priori typically based on modal criteria. In contrast, here we employ the recently-introduced paradigm of sparsity-promoting optimal control to simultaneously identify the optimal control structure and optimize the closed-loop performance. To induce a sparse control architecture, we regularize the standard quadratic performance index with an l(1)-penalty on the feedback matrix. The quadratic objective functions are inspired by the classic slow coherency theory and are aimed at imitating homogeneous networks without inter-area oscillations. We use the New England power grid model to demonstrate that the proposed combination of the sparsity-promoting control design with the slow coherency objectives performs almost as well as the optimal centralized control while only making use of a single wide-area communication link. In addition to this nominal performance, we also demonstrate that our control strategy yields favorable robustness margins and that it can be used to identify a sparse control architecture for control design via alternative means. C1 [Doerfler, Florian] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. [Jovanovic, Mihailo R.] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA. [Chertkov, Michael] LANL, Div Theory, Los Alamos, NM 87544 USA. [Chertkov, Michael] LANL, Ctr Nonlinear Studies, Los Alamos, NM 87544 USA. [Chertkov, Michael] New Mexico Consortium, Los Alamos, NM 87544 USA. [Bullo, Francesco] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA. RP Dorfler, F (reprint author), Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. EM dorfler@seas.ucla.edu; mihailo@umn.edu; chertkov@lanl.gov; bullo@engineering.ucsb.edu RI Bullo, Francesco/B-8146-2013; Chertkov, Michael/O-8828-2015; OI Chertkov, Michael/0000-0002-6758-515X FU NSF [IIS-0904501, CPS-1135819, CMMI-09-27720] FX This material is based in part upon work supported by the NSF grants IIS-0904501, CPS-1135819, and CMMI-09-27720. A preliminary and abbreviated version of this document has been presented in [1]. Paper no. TPWRS-00900-2013. NR 49 TC 16 Z9 16 U1 0 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD SEP PY 2014 VL 29 IS 5 BP 2281 EP 2291 DI 10.1109/TPWRS.2014.2304465 PG 11 WC Engineering, Electrical & Electronic SC Engineering GA AO2XL UT WOS:000341190700029 ER PT J AU Wang, ZY Wang, JH AF Wang, Zhaoyu Wang, Jianhui TI Time-Varying Stochastic Assessment of Conservation Voltage Reduction Based on Load Modeling SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Conservation voltage reduction; Kolmogorov-Smirnov (K-S) test; load model identification; recursive least square; stochastic modeling ID ENERGY; CVR AB This paper presents a time-varying stochastic technique to assess conservation voltage reduction (CVR) effects based on load modeling. A time-varying exponential load model is developed to represent voltage dependences of loads. The recursive least square (RLS) method is applied to identify model parameters in a recursive way. CVR factors can be calculated using the identified model parameters. The time-varying stochastic model for CVR effects can then be constructed by the Kolmogorov-Smirnov (K-S) test. The proposed CVR assessment method is applied to one-year measurement data from a utility company. The calculated CVR factors are verified by a Euclidian distance-based comparison method. Stochastic models of CVR effects in each time window are constructed. Compared with previous efforts on assessing CVR effects, the proposed method does not require control groups or assumptions of linear relationships between the load and its impact factors. The probabilistic nature of CVR effects is also fully considered. C1 [Wang, Zhaoyu] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. [Wang, Jianhui] Argonne Natl Lab, Lemont, IL 60439 USA. RP Wang, ZY (reprint author), Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. EM zhaoyuwang@gatech.edu; jianhui.wang@anl.gov FU U.S. Department of Energy Office of Science laboratory [DE AC02-06CH11357]; U.S. Department of Energy Office of Electricity Delivery -and Energy Reliability FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up non-exclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. This work was supported by the U.S. Department of Energy Office of Electricity Delivery -and Energy Reliability. Paper no. TPWRS-00919-2013. NR 33 TC 2 Z9 2 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD SEP PY 2014 VL 29 IS 5 BP 2321 EP 2328 DI 10.1109/TPWRS.2014.2304641 PG 8 WC Engineering, Electrical & Electronic SC Engineering GA AO2XL UT WOS:000341190700033 ER PT J AU Donadee, J Wang, JH AF Donadee, Jonathan Wang, Jianhui TI AGC Signal Modeling for Energy Storage Operations SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Automatic generation control (AGC); energy storage; forecasting; state of charge AB Energy storage resources(ESRs) are being used for secondary frequency regulation in the bulk electric power grid. In order to optimize the economic scheduling of an ESR using look-ahead model predictive control, predictive models of the automatic generation control (AGC) signal and its effect on an ESR's state of charge are needed. In this letter, we suggest a straightforward and effective procedure for forecasting the next state of charge for an ESR that provides regulation service in a liberalized market setting. C1 [Donadee, Jonathan] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA. [Wang, Jianhui] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. RP Donadee, J (reprint author), Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA. EM jdonadee@andrew.cmu.edu; jianhui.wang@anl.gov FU U.S. Department of Energy Office of Electricity Delivery and Energy Reliability FX This work was supported by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability. Paper no. PESL-00106-2013. NR 5 TC 2 Z9 2 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD SEP PY 2014 VL 29 IS 5 BP 2567 EP 2568 DI 10.1109/TPWRS.2014.2301592 PG 2 WC Engineering, Electrical & Electronic SC Engineering GA AO2XL UT WOS:000341190700058 ER PT J AU Kamath, C El-dasher, B Gallegos, GF King, WE Sisto, A AF Kamath, Chandrika El-dasher, Bassem Gallegos, Gilbert F. King, Wayne E. Sisto, Aaron TI Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W SO INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY LA English DT Article DE 316L stainless steel; Keyhole-mode laser melting; Additive manufacturing; Powder-bed fusion; Selective laser melting; Direct metal laser sintering ID STAINLESS-STEEL; QUALITY AB Selective laser melting is a powder-based, additive-manufacturing process where a three-dimensional part is produced, layer by layer, by using a high-energy laser beam to fuse the metallic powder particles. A particular challenge in this process is the selection of appropriate process parameters that result in parts with desired properties. In this study, we describe an approach to selecting parameters for high-density (> 99 %) parts using 316L stainless steel. Though there has been significant success in achieving near-full density for 316L parts, this work has been limited to laser powers < 225 W. We discuss how we can exploit prior knowledge, design of computational experiments using a simple model of laser melting, and single-track experiments to determine the process parameters for use at laser powers up to 400 W. Our results show that, at higher power values, there is a large range of scan speeds over which the relative density remains > 99 %, with the density reducing rapidly at high speeds due to insufficient melting, and less rapidly at low speeds due to the effect of voids created as the process enters keyhole mode. C1 [Kamath, Chandrika; El-dasher, Bassem; Gallegos, Gilbert F.; King, Wayne E.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Sisto, Aaron] Stanford Univ, Stanford, CA 94305 USA. RP Kamath, C (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM kamath2@llnl.gov FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development Program at LLNL [13-SI-002] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 13-SI-002. NR 24 TC 21 Z9 21 U1 6 U2 61 PU SPRINGER LONDON LTD PI LONDON PA 236 GRAYS INN RD, 6TH FLOOR, LONDON WC1X 8HL, ENGLAND SN 0268-3768 EI 1433-3015 J9 INT J ADV MANUF TECH JI Int. J. Adv. Manuf. Technol. PD SEP PY 2014 VL 74 IS 1-4 BP 65 EP 78 DI 10.1007/s00170-014-5954-9 PG 14 WC Automation & Control Systems; Engineering, Manufacturing SC Automation & Control Systems; Engineering GA AN6AN UT WOS:000340675500006 ER PT J AU Hendricks, TL Splitter, DA Ghandhi, JB AF Hendricks, Terry L. Splitter, Derek A. Ghandhi, Jaal B. TI Experimental investigation of piston heat transfer under conventional diesel and reactivity-controlled compression ignition combustion regimes SO INTERNATIONAL JOURNAL OF ENGINE RESEARCH LA English DT Article DE Piston temperature; heat flux; thermocouples; reactivity-controlled compression ignition; wireless telemetry ID ENGINE AB The piston of a heavy-duty single-cylinder research engine was instrumented with 11 fast-response surface thermocouples, and a commercial wireless telemetry system was used to transmit the signals from the moving piston. The raw thermocouple data were processed using an inverse heat conduction method that included Tikhonov regularization to recover transient heat flux. By applying symmetry, the data were compiled to provide time-resolved spatial maps of the piston heat flux and surface temperature. A detailed comparison was made between conventional diesel combustion and reactivity-controlled compression ignition combustion operations at matched conditions of load, speed, boost pressure, and combustion phasing. The integrated piston heat transfer was found to be 24% lower, and the mean surface temperature was 25 degrees C lower for reactivity-controlled compression ignition operation as compared to conventional diesel combustion, in spite of the higher peak heat release rate. Lower integrated piston heat transfer for reactivity-controlled compression ignition was found over all the operating conditions tested. The results showed that increasing speed decreased the integrated heat transfer for conventional diesel combustion and reactivity-controlled compression ignition. The effect of the start of injection timing was found to strongly influence conventional diesel combustion heat flux, but had a negligible effect on reactivity-controlled compression ignition heat flux, even in the limit of near top dead center high-reactivity fuel injection timings. These results suggest that the role of the high-reactivity fuel injection does not significantly affect the thermal environment even though it is important for controlling the ignition timing and heat release rate shape. The integrated heat transfer and the dynamic surface heat flux were found to be insensitive to changes in boost pressure for both conventional diesel combustion and reactivity-controlled compression ignition. However, for reactivity-controlled compression ignition, the mean surface temperature increased with changes in boost suggesting that equivalence ratio affects steady-state heat transfer. C1 [Hendricks, Terry L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Splitter, Derek A.; Ghandhi, Jaal B.] Univ Wisconsin, Madison, WI USA. [Splitter, Derek A.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Hendricks, TL (reprint author), Sandia Natl Labs, POB 5800,MS-1183, Albuquerque, NM 87185 USA. EM tlhendr@sandia.gov OI Splitter, Derek/0000-0001-7404-4047 FU Caterpillar Inc. FX Support for this work was provided by Caterpillar Inc. NR 46 TC 6 Z9 6 U1 5 U2 26 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1468-0874 EI 2041-3149 J9 INT J ENGINE RES JI Int. J. Engine Res. PD SEP PY 2014 VL 15 IS 6 BP 684 EP 705 DI 10.1177/1468087413512310 PG 22 WC Thermodynamics; Engineering, Mechanical; Transportation Science & Technology SC Thermodynamics; Engineering; Transportation GA AN9QI UT WOS:000340942100004 ER PT J AU Trost, J Zigan, L Leipertz, A Sahoo, D Miles, PC AF Trost, Johannes Zigan, Lars Leipertz, Alfred Sahoo, Dipankar Miles, Paul C. TI Fuel concentration imaging inside an optically accessible diesel engine using 1-methylnaphthalene planar laser-induced fluorescence SO INTERNATIONAL JOURNAL OF ENGINE RESEARCH LA English DT Article DE Laser-induced fluorescence; 1-methylnaphthalene; pilot injection; EGR; low-temperature combustion ID IC ENGINES; TEMPERATURE; COMBUSTION; TRACERS; ALKANE; LIF AB The performance and emissions of modern automotive diesel engines are highly dependent on the application of pilot injection technology. This technology also appears well suited for application to low-temperature combustion strategies. In this study, the first results of a new quantitative planar laser-induced fluorescence equivalence ratio measurement technique of pilot injections inside an optically accessible diesel engine are presented using 1-methylnaphthalene as a tracer in a mixture of the diesel primary reference fuels, n-hexadecane (cetane) and 2,2,4,4,6,8,8-heptamethylnonane (isocetane). This combination overcomes the shortcomings of mismatched fuel volatility and density associated with commonly used toluene/n-heptane/iso-octane planar laser-induced fluorescence techniques. A tracer characterization in a flow cell and a calibration in the internal combustion engine are performed. The internal combustion engine measurements illustrate the mixture formation process for a pilot injection. Even at low injection mass of 3 mg, a strong penetration of the pilot is observed; fuel hits the piston bowl wall and is redirected upward to the cylinder head. Small amounts of fuel are also found to have penetrated into the bottom of the piston bowl. At top dead center, the pilot injection is still not completely homogeneously distributed in the piston bowl, and local equivalence ratios of Phi > 1 are found in the bowl. C1 [Trost, Johannes; Zigan, Lars; Leipertz, Alfred] Univ Erlangen Nurnberg, LTT, D-91058 Erlangen, Germany. [Trost, Johannes; Zigan, Lars; Leipertz, Alfred] Univ Erlangen Nurnberg, Erlangen Grad Sch Adv Opt Technol SAOT, D-91058 Erlangen, Germany. [Sahoo, Dipankar; Miles, Paul C.] Sandia Natl Labs, Livermore, CA USA. RP Leipertz, A (reprint author), Univ Erlangen Nurnberg, LTT, Weichselgarten 8, D-91058 Erlangen, Germany. EM sek@ltt.uni-erlangen.de FU US Department of Energy (Office of Vehicle Technologies); General Motors Corporation [FI083070326]; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Erlangen Graduate School in Advanced Optical Technologies (SAOT) at the Friedrich-Alexander-Universitat Erlangen-Nurnberg, Germany - German National Science Foundation (DFG) FX Support for this research was provided by the US Department of Energy (Office of Vehicle Technologies) and General Motors Corporation (agreement no. FI083070326). Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research was also financially supported by the Erlangen Graduate School in Advanced Optical Technologies (SAOT) at the Friedrich-Alexander-Universitat Erlangen-Nurnberg, Germany, which is funded by the German National Science Foundation (DFG) within the framework of the Excellence Initiative of the German Federal and State Governments to Promote Science and Research at German Universities. NR 49 TC 4 Z9 4 U1 1 U2 15 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1468-0874 EI 2041-3149 J9 INT J ENGINE RES JI Int. J. Engine Res. PD SEP PY 2014 VL 15 IS 6 BP 741 EP 750 DI 10.1177/1468087413515658 PG 10 WC Thermodynamics; Engineering, Mechanical; Transportation Science & Technology SC Thermodynamics; Engineering; Transportation GA AN9QI UT WOS:000340942100008 ER PT J AU Tas, N Prestat, E McFarland, JW Wickland, KP Knight, R Berhe, AA Jorgenson, T Waldrop, MP Jansson, JK AF Tas, Neslihan Prestat, Emmanuel McFarland, Jack W. Wickland, Kimberley P. Knight, Rob Berhe, Asmeret Asefaw Jorgenson, Torre Waldrop, Mark P. Jansson, Janet K. TI Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest SO ISME JOURNAL LA English DT Article DE boreal forest; climate change; metagenomics; microbial community response; permafrost; wildfire ID SOIL BACTERIAL COMMUNITIES; INTERIOR ALASKA; CLIMATE-CHANGE; ORGANIC-MATTER; C-13 NMR; CARBON; DIVERSITY; ECOSYSTEM; WILDFIRE; TRANSFORMATIONS AB Permafrost soils are large reservoirs of potentially labile carbon (C). Understanding the dynamics of C release from these soils requires us to account for the impact of wildfires, which are increasing in frequency as the climate changes. Boreal wildfires contribute to global emission of greenhouse gases (GHG-CO2, CH4 and N2O) and indirectly result in the thawing of near-surface permafrost. In this study, we aimed to define the impact of fire on soil microbial communities and metabolic potential for GHG fluxes in samples collected up to 1m depth from an upland black spruce forest near Nome Creek, Alaska. We measured geochemistry, GHG fluxes, potential soil enzyme activities and microbial community structure via 16SrRNA gene and metagenome sequencing. We found that soil moisture, C content and the potential for respiration were reduced by fire, as were microbial community diversity and metabolic potential. There were shifts in dominance of several microbial community members, including a higher abundance of candidate phylum AD3 after fire. The metagenome data showed that fire had a pervasive impact on genes involved in carbohydrate metabolism, methanogenesis and the nitrogen cycle. Although fire resulted in an immediate release of CO2 from surface soils, our results suggest that the potential for emission of GHG was ultimately reduced at all soil depths over the longer term. Because of the size of the permafrost C reservoir, these results are crucial for understanding whether fire produces a positive or negative feedback loop contributing to the global C cycle. C1 [Tas, Neslihan; Prestat, Emmanuel; Jansson, Janet K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Ecol, Div Earth Sci, Berkeley, CA 94720 USA. [McFarland, Jack W.; Waldrop, Mark P.] US Geol Survey, Menlo Pk, CA 94025 USA. [Wickland, Kimberley P.] US Geol Survey, Boulder, CO USA. [Knight, Rob] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA. [Knight, Rob] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Knight, Rob] Univ Colorado, Dept Comp Sci, Boulder, CO 80309 USA. [Knight, Rob] Univ Colorado, BioFrontiers Inst, Boulder, CO 80309 USA. [Berhe, Asmeret Asefaw] Univ Calif Merced, Sch Nat Sci, Merced, CA USA. [Jorgenson, Torre] Alaska Ecosci, Fairbanks, AK USA. [Jansson, Janet K.] Joint Genome Inst, Walnut Creek, CA USA. [Jansson, Janet K.] Joint BioEnergy Inst, Emeryville, CA USA. RP Jansson, JK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Ecol, Div Earth Sci, One Cyclotron Rd,MS 70A-3317, Berkeley, CA 94720 USA. EM jrjansson@lbl.gov RI Berhe, Asmeret Asefaw/D-4179-2011; Tas, Neslihan/D-1172-2015; Knight, Rob/D-1299-2010; OI Berhe, Asmeret Asefaw/0000-0002-6986-7943; Waldrop, Mark/0000-0003-1829-7140; Wickland, Kimberly/0000-0002-6400-0590 FU Office of Science, Office of Biological and Environmental Research, Climate and Environmental Science Division, of the US Department of Energy as part of the Terrestrial Ecosystem Science Program to Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Keck Foundation (Earth Microbiome Project); United States Geological Survey (USGS) FX This work was supported in part by the Director, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Science Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231 as part of the Terrestrial Ecosystem Science Program to Lawrence Berkeley National Laboratory, the Keck Foundation (Earth Microbiome Project; http: //www.earthmicrobiome.org) and the United States Geological Survey (USGS). NR 63 TC 26 Z9 26 U1 10 U2 119 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD SEP PY 2014 VL 8 IS 9 BP 1904 EP 1919 DI 10.1038/ismej.2014.36 PG 16 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA AO3EV UT WOS:000341212600013 PM 24722629 ER PT J AU Banta, AB Cuff, ME Lin, H Myers, AR Ross, W Joachimiak, A Gourse, RL AF Banta, Amy B. Cuff, Marianne E. Lin, Hueylie Myers, Angela R. Ross, Wilma Joachimiak, Andrzej Gourse, Richard L. TI Structure of the RNA Polymerase Assembly Factor Crl and Identification of Its Interaction Surface with Sigma S SO JOURNAL OF BACTERIOLOGY LA English DT Article ID ESCHERICHIA-COLI; STATIONARY-PHASE; ACTIVATES TRANSCRIPTION; SECONDARY-STRUCTURE; PROTEIN; RECOGNITION; SUBUNIT; BINDING; MODEL; PURIFICATION AB Bacteria utilize multiple sigma factors that associate with core RNA polymerase (RNAP) to control transcription in response to changes in environmental conditions. In Escherichia coli and Salmonella enterica, Crl positively regulates the sigma(S) regulon by binding to sigma(S) to promote its association with core RNAP. We recently characterized the determinants in sigma(S) responsible for specific binding to Crl. However, little is known about the determinants in Crl required for this interaction. Here, we present the X-ray crystal structure of a Crl homolog from Proteus mirabilis in conjunction with in vivo and in vitro approaches that probe the Crl-sigma(S) interaction in E. coli. We show that the P. mirabilis, Vibrio harveyi, and E. coli Crl homologs function similarly in E. coli, indicating that Crl structure and function are likely conserved throughout gammaproteobacteria. We utilize phylogenetic conservation and bacterial two-hybrid analyses to predict residues in Crl important for the interaction with sigma(S). The results of p-benzoylphenylalanine (BPA)-mediated UV cross-linking studies further support the model in which an evolutionarily conserved central cleft is the surface on Crl that binds to sigma(S). Within this conserved binding surface, we identify a key residue in Crl that is critical for activation of E sigma(S)-dependent transcription in vivo and in vitro. Our study provides a physical basis for understanding the sigma(S)-Crl interaction. C1 [Banta, Amy B.; Lin, Hueylie; Myers, Angela R.; Ross, Wilma; Gourse, Richard L.] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. [Cuff, Marianne E.; Joachimiak, Andrzej] Argonne Natl Lab, Midwest Ctr Struct Genom, Biosci Div, Argonne, IL 60439 USA. RP Gourse, RL (reprint author), Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. EM rgourse@bact.wisc.edu FU National Institutes of Health (NIH) [R37 GM37048]; NIH Predoctoral Training Grant [T32 GM07215]; Protein Structure Initiative of the National Institutes of Health [GM074942, GM094585]; U.S. Department of Energy, Basic Energy Sciences, Office of Sciences; Office of Biological and Environmental Research [DE-AC02-06CH11357] FX This work was supported by National Institutes of Health (NIH) grant R37 GM37048 (to R.L.G.), by NIH Predoctoral Training Grant T32 GM07215 (to A.B.B. and A.R.M.), and by the Protein Structure Initiative of the National Institutes of Health (Midwest Center for Structural Genomics; GM074942 and GM094585 [to A.J.]). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Sciences, and the use of Structural Biology Center beamline 19-ID was supported by the Office of Biological and Environmental Research under contract DE-AC02-06CH11357. NR 55 TC 5 Z9 5 U1 0 U2 5 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 EI 1098-5530 J9 J BACTERIOL JI J. Bacteriol. PD SEP PY 2014 VL 196 IS 18 BP 3279 EP 3288 DI 10.1128/JB.01910-14 PG 10 WC Microbiology SC Microbiology GA AO3MG UT WOS:000341233500008 PM 25002538 ER PT J AU Mittal, S AF Mittal, Sparsh TI A SURVEY OF TECHNIQUES FOR MANAGING AND LEVERAGING CACHES IN GPUs SO JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS LA English DT Article DE GPU (graphics processing unit); GPGPU (general purpose GPU); cache memory; performance; energy efficiency; classification ID LAST-LEVEL CACHE; PERFORMANCE; GPGPUS; ARCHITECTURE; DIVERGENCE; PROCESSOR; BRANCH; POWER AB Initially introduced as special-purpose accelerators for graphics applications, graphics processing units (GPUs) have now emerged as general purpose computing platforms for a wide range of applications. To address the requirements of these applications, modern GPUs include sizable hardware-managed caches. However, several factors, such as unique architecture of GPU, rise of CPU-GPU heterogeneous computing, etc., demand effective management of caches to achieve high performance and energy efficiency. Recently, several techniques have been proposed for this purpose. In this paper, we survey several architectural and system-level techniques proposed for managing and leveraging GPU caches. We also discuss the importance and challenges of cache management in GPUs. The aim of this paper is to provide the readers insights into cache management techniques for GPUs and motivate them to propose even better techniques for leveraging the full potential of caches in the GPUs of tomorrow. C1 Oak Ridge Natl Lab, Future Technol Grp, Oak Ridge, TN 37830 USA. RP Mittal, S (reprint author), Oak Ridge Natl Lab, Future Technol Grp, Oak Ridge, TN 37830 USA. EM mittals@ornl.gov NR 64 TC 6 Z9 6 U1 1 U2 4 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-1266 EI 1793-6454 J9 J CIRCUIT SYST COMP JI J. Circuits Syst. Comput. PD SEP PY 2014 VL 23 IS 8 AR 1430002 DI 10.1142/S0218126614300025 PG 15 WC Computer Science, Hardware & Architecture; Engineering, Electrical & Electronic SC Computer Science; Engineering GA AO3OS UT WOS:000341242600001 ER PT J AU Allen, JC Pitz, WJ Fisher, BT AF Allen, James C. Pitz, William J. Fisher, Brian T. TI Experimental and Computational Study of n-Heptane Autoignition in a Direct-Injection Constant-Volume Combustion Chamber SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article ID RAPID COMPRESSION MACHINE; CONCENTRATION-TIME-HISTORIES; IGNITION DELAY TIMES; QUALITY TESTER IQT; SHOCK-TUBE; HCCI COMBUSTION; ISOOCTANE IGNITION; CHEMICAL-KINETICS; CONTROLLABLE EGR; PREMIXED FLAMES AB The purpose of this study was to characterize experimental n-heptane combustion behavior in a direct-injection constant-volume combustion chamber (DI-CVCC), using chamber pressure to infer ignition delay and heat-release rate. Measurements generally displayed expected trends and indicated entirely premixed combustion with no mixing-controlled phase. A significant finding was the observation of negative temperature coefficient (NTC) behavior. Comparing results with CHEMKIN-PRO simulations, it was found that a homogeneous combustion model was reasonably accurate for ignition delays longer than 5 ms. The combination of NTC behavior and homogeneous fuel-air mixtures suggests that this DI-CVCC can be useful for validation of chemical-kinetic mechanisms. C1 [Allen, James C.; Fisher, Brian T.] Univ Alabama, Dept Mech Engn, Tuscaloosa, AL 35487 USA. [Pitz, William J.] Lawrence Livermore Natl Lab, Div Chem Sci, Phys & Life Sci Directorate, Livermore, CA 94551 USA. RP Fisher, BT (reprint author), Univ Alabama, Dept Mech Engn, POB 870276, Tuscaloosa, AL 35487 USA. EM jallen2@crimson.ua.edu; pitz1@llnl.gov; bfisher@eng.ua.edu FU U.S. Department of Energy, Office of Vehicle Technologies; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The work at LLNL was supported by U.S. Department of Energy, Office of Vehicle Technologies, program manager Gurpreet Singh, and performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 36 TC 0 Z9 0 U1 5 U2 24 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 EI 1528-8919 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD SEP PY 2014 VL 136 IS 9 AR 091510 DI 10.1115/1.4027194 PG 8 WC Engineering, Mechanical SC Engineering GA AN7KD UT WOS:000340777400013 ER PT J AU Zhao, HW Quan, SP Dai, MZ Pomraning, E Senecal, PK Xue, QL Battistoni, M Som, S AF Zhao, Hongwu Quan, Shaoping Dai, Meizhong Pomraning, Eric Senecal, P. K. Xue, Qingluan Battistoni, Michele Som, Sibendu TI Validation of a Three-Dimensional Internal Nozzle Flow Model Including Automatic Mesh Generation and Cavitation Effects SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article AB Fuel injectors often experience cavitation due to regions of extremely low pressure. In this work, a cavitation modeling method is implemented in the CONVERGE computational fluid dynamics (CFD) code in order to model the flow in fuel injectors. The CONVERGE code includes a Cartesian mesh based flow solver. In this solver, a volume of fluid (VOF) method is used to simulate the multiphase flow. The cavitation model is based on a flash-boiling method with rapid heat transfer between the liquid and vapor phases. In this method, a homogeneous relaxation model is used to describe the rate at which the instantaneous quality, the mass fraction of vapor in a two-phase mixture, will tend towards its equilibrium value. The model is first validated with the nozzle flow case of Winklhofer by comparing the mass flow rate with experimentally measured values at different outlet pressures. The cavitation contour shape is also compared with the experimental observations. Flow in the Engine Combustion Network Spray-A nozzle configuration is simulated. The mesh dependency is also studied in this work followed by validation against discharge coefficient data. Finally, calculations of a five-hole injector, including moving needle effects, are compared to experimental measurements. C1 [Zhao, Hongwu; Quan, Shaoping; Dai, Meizhong; Pomraning, Eric; Senecal, P. K.] Convergent Sci Inc, Middleton, WI 53562 USA. [Xue, Qingluan; Battistoni, Michele; Som, Sibendu] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Battistoni, Michele] Univ Perugia, I-06125 Perugia, Italy. RP Zhao, HW (reprint author), Convergent Sci Inc, Middleton, WI 53562 USA. RI Battistoni, Michele/M-9194-2014 OI Battistoni, Michele/0000-0001-6807-9657 NR 15 TC 4 Z9 4 U1 2 U2 25 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 EI 1528-8919 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD SEP PY 2014 VL 136 IS 9 AR 092603 DI 10.1115/1.4027193 PG 10 WC Engineering, Mechanical SC Engineering GA AN7KD UT WOS:000340777400026 ER PT J AU Tritschler, VK Olson, BJ Lele, SK Hickel, S Hu, XY Adams, NA AF Tritschler, V. K. Olson, B. J. Lele, S. K. Hickel, S. Hu, X. Y. Adams, N. A. TI On the Richtmyer-Meshkov instability evolving from a deterministic multimode planar interface SO JOURNAL OF FLUID MECHANICS LA English DT Article DE shock waves; turbulent mixing ID RAYLEIGH-TAYLOR INSTABILITY; LARGE-EDDY SIMULATIONS; INERTIAL CONFINEMENT FUSION; LARGE-SCALE STRUCTURE; RUNGE-KUTTA SCHEMES; ISOTROPIC TURBULENCE; MIXING TRANSITION; MACH NUMBER; HOMOGENEOUS TURBULENCE; NUMERICAL-SIMULATION AB We investigate the shock-induced turbulent mixing between a light and a heavy gas, where a Richtmyer-Meshkov instability (RMI) is initiated by a shock wave with Mach number Ma = 1.5. The prescribed initial conditions define a deterministic multimode interface perturbation between the gases, which can be imposed exactly for different simulation codes and resolutions to allow for quantitative comparison. Well-resolved large-eddy simulations are performed using two different and independently developed numerical methods with the objective of assessing turbulence structures, prediction uncertainties and convergence behaviour. The two numerical methods differ fundamentally with respect to the employed subgrid-scale regularisation, each representing state-of-the-art approaches to RMI. Unlike previous studies, the focus of the present investigation is to quantify the uncertainties introduced by the numerical method, as there is strong evidence that subgrid-scale regularisation and truncation errors may have a significant effect on the linear and nonlinear stages of the RMI evolution. Fourier diagnostics reveal that the larger energy-containing scales converge rapidly with increasing mesh resolution and thus are in excellent agreement for the two numerical methods. Spectra of gradient-dependent quantities, such as enstrophy and scalar dissipation rate, show stronger dependences on the small-scale flow field structures as a consequence of truncation error effects, which for one numerical method are dominantly dissipative and for the other dominantly dispersive. Additionally, the study reveals details of various stages of RMI, as the flow transitions from large-scale nonlinear entrainment to fully developed turbulent mixing. The growth rates of the mixing zone widths as obtained by the two numerical methods are similar to t(7/12) before re-shock and similar to(t - t(0))(2/7) long after re-shock. The decay rate of turbulence kinetic energy is consistently similar to(t - t(0))(-10/7) at late times, where the molecular mixing fraction approaches an asymptotic limit Theta approximate to 0.85. The anisotropy measure < a >(xyz) approaches an asymptotic limit of approximate to 0.04, implying that no full recovery of isotropy within the mixing zone is obtained, even after re-shock. Spectra of density, turbulence kinetic energy, scalar dissipation rate and enstrophy are presented and show excellent agreement for the resolved scales. The probability density function of the heavy-gas mass fraction and vorticity reveal that the light-heavy gas composition within the mixing zone is accurately predicted, whereas it is more difficult to capture the long-term behaviour of the vorticity. C1 [Tritschler, V. K.; Hickel, S.; Hu, X. Y.; Adams, N. A.] Tech Univ Munich, Inst Aerodynam & Fluid Mech, D-85747 Garching, Germany. [Tritschler, V. K.; Lele, S. K.] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA. [Olson, B. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Tritschler, VK (reprint author), Tech Univ Munich, Inst Aerodynam & Fluid Mech, D-85747 Garching, Germany. EM volker.tritschler@aer.mw.tum.de RI Hickel, Stefan/H-4022-2011; HU, Xiangyu/B-6532-2009; Adams, Nikolaus/H-7247-2014 OI Hickel, Stefan/0000-0002-7463-9531; HU, Xiangyu/0000-0003-0932-6659; Adams, Nikolaus/0000-0001-5048-8639 FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (GCS,www.gauss-centre.eu) for providing computing time on the GCS Supercomputer SuperMUC at Leibniz Supercomputing Centre (LRZ,www.lrz.de). This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract number DE-AC52-07NA27344. V.K.T. gratefully acknowledges the support of the TUM Graduate School. B.J.O. thanks A. Cook and W. Cabot for valuable insight and for use of the Miranda code. NR 80 TC 11 Z9 11 U1 1 U2 26 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 EI 1469-7645 J9 J FLUID MECH JI J. Fluid Mech. PD SEP PY 2014 VL 755 BP 429 EP 462 DI 10.1017/jfm.2014.436 PG 34 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA AO2EP UT WOS:000341128600025 ER PT J AU Kolla, H Hawkes, ER Kerstein, AR Swaminathan, N Chen, JH AF Kolla, H. Hawkes, E. R. Kerstein, A. R. Swaminathan, N. Chen, J. H. TI On velocity and reactive scalar spectra in turbulent premixed flames SO JOURNAL OF FLUID MECHANICS LA English DT Article DE turbulence simulation; turbulence theory; turbulent reacting flows ID QUANTITIES LIKE TEMPERATURE; JET FLAMES; ISOTROPIC TURBULENCE; NUMERICAL-SIMULATION; BOUNDARY-CONDITIONS; LENGTH SCALES; FLOWS; DISSIPATION; CONDUCTIVITY; REGIME AB Kinetic energy and reactive scalar spectra in turbulent premixed flames are studied from compressible three-dimensional direct numerical simulations (DNS) of a temporally evolving rectangular slot-jet premixed flame, a statistically one-dimensional configuration. The flames correspond to a lean premixed hydrogen-air mixture at an equivalence ratio of 0.7, preheated to 700 K and at 1 atm, and three DNS are considered with a fixed jet Reynolds number of 10 000 and a jet Damkohler number varying between 0.13 and 0.54. For the study of spectra, motivated by the need to account for density change, which can be locally strong in premixed flames, a new density-weighted definition for two-point velocity/scalar correlations is proposed. The density-weighted two-point correlation tensor retains the essential properties of its constant-density (incompressible) counterpart and recovers the density-weighted Reynolds stress tensor in the limit of zero separation. The density weighting also allows the derivation of balance equations for velocity and scalar spectrum functions in the wavenumber space that illuminate physics unique to combusting flows. Pressure-dilatation correlation is a source of kinetic energy at high wavenumbers and, analogously, reaction rate-scalar fluctuation correlation is a high-wavenumber source of scalar energy. These results are verified by the spectra constructed from the DNS data. The kinetic energy spectra show a distinct inertial range with a -5/3 scaling followed by a 'diffusive-reactive' range at higher wavenumbers. The exponential drop-off in this range shows a distinct inflection in the vicinity of the wavenumber corresponding to a laminar flame thickness, delta(L), and this is attributed to the contribution from the pressure-dilatation term in the energy balance in wavenumber space. Likewise, a clear spike in spectra of major reactant species (hydrogen) arising from the reaction-rate term is observed at wavenumbers close to delta(L). It appears that in the inertial range classical scaling laws for the spectra involving the Kolmogorov scale are applicable, but in the high-wavenumber range where chemical reactions have a strong signature the laminar flame thickness produces a better collapse. It is suggested that a full scaling should perhaps involve the Kolmogorov scale, laminar flame thickness, Damkohler number and Karlovitz number. C1 [Kolla, H.; Chen, J. H.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA. [Hawkes, E. R.] Univ New S Wales, Sch Mech & Mfg Engn, Sydney, NSW, Australia. [Swaminathan, N.] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England. RP Kolla, H (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA. EM hnkolla@sandia.gov RI Swaminathan, N/A-7468-2008; Hawkes, Evatt/C-5307-2012 OI Swaminathan, N/0000-0003-3338-0698; Hawkes, Evatt/0000-0003-0539-7951 FU Office of Science of the US Department of Energy [DE-AC05-00OR22725]; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy; US Department of Energy SciDAC Program; US DOE [DE-AC04-94AL85000] FX We are very grateful to the reviewers for their comments and suggestions, which have considerably improved our paper, in particular to one of the referees who corrected some errors in our equations. Computational support for this project was supported by, and this research used resources of, the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the US Department of Energy under contract DE-AC05-00OR22725. The work at Sandia National Laboratories (SNL) was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy and by the US Department of Energy SciDAC Program. SNL is a multi-programme laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US DOE under Contract DE-AC04-94AL85000. NR 38 TC 10 Z9 10 U1 0 U2 5 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 EI 1469-7645 J9 J FLUID MECH JI J. Fluid Mech. PD SEP PY 2014 VL 754 BP 456 EP 487 DI 10.1017/jfm.2014.392 PG 32 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA AO2BH UT WOS:000341120000019 ER EF