FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Cabantous, S Nguyen, HB Pedelacq, JD Koraichi, F Chaudhary, A Ganguly, K Lockard, MA Favre, G Terwilliger, TC Waldo, GS AF Cabantous, Stephanie Nguyen, Hau B. Pedelacq, Jean-Denis Koraichi, Faten Chaudhary, Anu Ganguly, Kumkum Lockard, Meghan A. Favre, Gilles Terwilliger, Thomas C. Waldo, Geoffrey S. TI A New Protein-Protein Interaction Sensor Based on Tripartite Split-GFP Association SO SCIENTIFIC REPORTS LA English DT Article ID GREEN FLUORESCENT PROTEIN; IN-VIVO; COMPLEMENTATION ANALYSIS; CELLS; VITRO; ASSAY; VISUALIZATION; RAPAMYCIN; COMPLEX AB Monitoring protein-protein interactions in living cells is key to unraveling their roles in numerous cellular processes and various diseases. Previously described split-GFP based sensors suffer from poor folding and/or self-assembly background fluorescence. Here, we have engineered a micro-tagging system to monitor protein-protein interactions in vivo and in vitro. The assay is based on tripartite association between two twenty amino-acids long GFP tags, GFP10 and GFP11, fused to interacting protein partners, and the complementary GFP1-9 detector. When proteins interact, GFP10 and GFP11 self-associate with GFP1-9 to reconstitute a functional GFP. Using coiled-coils and FRB/FKBP12 model systems we characterize the sensor in vitro and in Escherichia coli. We extend the studies to mammalian cells and examine the FK-506 inhibition of the rapamycin-induced association of FRB/FKBP12. The small size of these tags and their minimal effect on fusion protein behavior and solubility should enable new experiments for monitoring protein-protein association by fluorescence. C1 [Cabantous, Stephanie; Koraichi, Faten; Favre, Gilles] Univ Toulouse, Inst Claudius Regaud, Canc Res Ctr Toulouse, INSERM UMR1037, F-31052 Toulouse, France. [Nguyen, Hau B.; Ganguly, Kumkum; Terwilliger, Thomas C.; Waldo, Geoffrey S.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Pedelacq, Jean-Denis] CNRS, Inst Pharmacol & Biol Struct, F-31077 Toulouse, France. [Pedelacq, Jean-Denis] Univ Toulouse, F-31052 Toulouse, France. [Pedelacq, Jean-Denis] UPS, IPBS, F-31077 Toulouse, France. [Chaudhary, Anu] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA. [Lockard, Meghan A.] Rockefeller Univ, New York, NY 10065 USA. RP Cabantous, S (reprint author), Univ Toulouse, Inst Claudius Regaud, Canc Res Ctr Toulouse, INSERM UMR1037, F-31052 Toulouse, France. EM cabantous.stephanie@claudiusregaud.fr; waldo@lanl.gov RI Pedelacq, Jean-Denis/C-6053-2011; FAVRE, Gilles/K-9189-2014; Cabantous, Stephanie/M-3282-2014; Terwilliger, Thomas/K-4109-2012 OI FAVRE, Gilles/0000-0002-2344-1883; Cabantous, Stephanie/0000-0002-8406-9421; Terwilliger, Thomas/0000-0001-6384-0320 FU split-GFP technologies; Los Alamos National Laboratories; Department of Energy and LANS, L.L.C. FX The authors declare competing financial interests. The split-GFP technologies are the subject of domestic and foreign patent applications by Los Alamos National Laboratories on behalf of the Department of Energy and LANS, L.L.C. NR 30 TC 27 Z9 27 U1 5 U2 40 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD OCT 4 PY 2013 VL 3 AR 2854 DI 10.1038/srep02854 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 228UH UT WOS:000325216000001 PM 24092409 ER PT J AU Xu, H Pratt, ST AF Xu, Hong Pratt, S. T. TI Photoionization Cross Section of the Propargyl Radical and Some General Ideas for Estimating Radical Cross Sections SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID PHOTOFRAGMENT TRANSLATIONAL SPECTROSCOPY; PHOTOELECTRON-SPECTROSCOPY; MASS-SPECTROMETRY; 193 NM; IONIZATION; VINYL; PHOTODISSOCIATION; COMBUSTION; PHOTOABSORPTION; ABSORPTION AB A combination of velocity map ion imaging, mass spectrometry, and a laser-based vacuum ultraviolet light source was used to perform a new measurement of the absolute photoionization cross section of the propargyl radical. The measurements are in good agreement with the recent determination of Savee et al. [J. Chem. Phys. 2012, 136, 134307], and significantly larger than an earlier determination. The results are discussed and rationalized in terms of some general ideas about absolute photoionization cross sections. The potential utility of these ideas is illustrated by using recent cross section measurements for a number of molecular radicals, including methyl, allyl and 2-propenyl, phenyl, and vinyl. C1 [Xu, Hong; Pratt, S. T.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Pratt, ST (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM stpratt@anl.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH11357] FX We thank S. T. Manson, B. Ruscic, and L. B. Harding for helpful discussions. We also thank one of the referees for preventing an embarassing omission in the references. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under contract No. DE-AC02-06CH11357. NR 69 TC 7 Z9 7 U1 9 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 EI 1520-5215 J9 J PHYS CHEM A JI J. Phys. Chem. A PD OCT 3 PY 2013 VL 117 IS 39 BP 9331 EP 9342 DI 10.1021/jp309874q PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 243EV UT WOS:000326300600004 PM 23181426 ER PT J AU Harpham, MR Stickrath, AB Zhang, XY Huang, J Mara, MW Chen, LX Liu, DJ AF Harpham, Michael R. Stickrath, Andrew B. Zhang, Xiaoyi Huang, Jier Mara, Michael W. Chen, Lin X. Liu, Di-Jia TI Photodissociation Structural Dynamics of TrirutheniumDodecacarbonyl Investigated by X-ray Transient Absorption Spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID SOLUTION SCATTERING REVEALS; TRIRUTHENIUM DODECACARBONYL; PHOTOCHEMICAL FRAGMENTATION; MOLECULAR-STRUCTURE; COMPLEXES; RU3(CO)12; RU-3(CO)(12); PHOTOLYSIS; ISOMERIZATION; XAS AB The molecular and electronic structures of the transient intermediates generated from the photolysis of trirutheniumdodecacarbonyl, Ru-3(CO)(12) by ultrafast UV (351 nm) laser excitation were investigated using X-ray transient absorption (XTA) spectroscopy. The electronic configuration change and nuclear rearrangement after the dissociation of carbonyls were observed at ruthenium K-edge X-ray absorption near edge structure and X-ray absorption fine structure spectra. Analysis of XTA data, acquired after 100, 200, and 400 ps and 300 ns time delay following the photoexcitation, identified the presence of three intermediate species with Ru-3(CO)(10) being the most dominating one The results set an example of applying XTA in capturing both transient electronic and nuclear configurations in metal clusters simulating catalysts in chemical reactions. C1 [Harpham, Michael R.; Stickrath, Andrew B.; Huang, Jier; Mara, Michael W.; Chen, Lin X.; Liu, Di-Jia] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. [Zhang, Xiaoyi] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA. [Mara, Michael W.; Chen, Lin X.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Chen, LX (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Lemont, IL 60439 USA. EM lchen@anl.gov; djliu@anl.gov FU Office of Science of the Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-AC02-06CH11357] FX This contribution is dedicated to Professor Takeshi Oka, a celebrated scientist, educator, and, among many other important recognitions, the discoverer of H3+, the smallest equilateral triangle molecule. This work was supported by the Office of Science of the Department of Energy under Contract No. DE-AC02-05CH11231. The use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The chemistry laboratory facilities used in this research are supported by funding from the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Contracts DE-AC02-06CH11357. NR 23 TC 6 Z9 6 U1 1 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 EI 1520-5215 J9 J PHYS CHEM A JI J. Phys. Chem. A PD OCT 3 PY 2013 VL 117 IS 39 BP 9807 EP 9813 DI 10.1021/jp312663q PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 243EV UT WOS:000326300600060 PM 23697577 ER PT J AU Nickels, JD Sakai, VG Sokolov, AP AF Nickels, Jonathan D. Sakai, Victoria Garcia Sokolov, Alexei P. TI Dynamics in Protein Powders on the Nanosecond-Picosecond Time Scale Are Dominated by Localized Motions SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID INCOHERENT-NEUTRON-SCATTERING; ELASTIC RESOLUTION SPECTROSCOPY; METHYL-GROUP DYNAMICS; HYDRATION WATER; CONFORMATIONAL DYNAMICS; BIOLOGICAL SAMPLES; ENERGY RESOLUTION; MOLECULAR MOTIONS; TRANSFER-RNA; SIDE-CHAIN AB We present analysis of nanosecond-picosecond dynamics of Green Fluorescence Protein (GFP) using neutron scattering data obtained on three spectrometers. GFP has a beta-barrel structure that differs significantly from the structure of other globular proteins and is thought to result in a more rigid local environment. Despite this difference, our analysis reveals that the dynamics of GFP are similar to dynamics of other globular proteins such as lysozyme and myoglobin. We suggest that the same general concept of protein dynamics may be applicable to all these proteins. The dynamics of dry protein are dominated by methyl group rotations, while hydration facilitates localized diffusion-like motions in the protein. The latter has an extremely broad relaxation spectrum. The nanosecond-picosecond dynamics of both dry and hydrated GFP are localized to distances of similar to 1-3.5 angstrom, in contrast to the longer range diffusion of hydration water. C1 [Nickels, Jonathan D.; Sokolov, Alexei P.] Oak Ridge Natl Lab, Joint Inst Neutron Sci, Oak Ridge, TN 37831 USA. [Nickels, Jonathan D.; Sokolov, Alexei P.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Sakai, Victoria Garcia] Rutherford Appleton Lab, ISIS Neutron & Muon Facil, Sci & Technol Facil Council, Didcot OX11 0QX, Oxon, England. RP Sokolov, AP (reprint author), Oak Ridge Natl Lab, Joint Inst Neutron Sci, Oak Ridge, TN 37831 USA. EM sokolov@utk.edu RI Nickels, Jonathan/I-1913-2012 OI Nickels, Jonathan/0000-0001-8351-7846 FU Office of Basic Energy Sciences, US Department of Energy through the EPSCoR [DE-FG02-08ER46528]; Spallation Neutron Source through UT-Battelle FX This work was supported by the Office of Basic Energy Sciences, US Department of Energy through the EPSCoR grant, DE-FG02-08ER46528. Authors also acknowledge financial support from Spallation Neutron Source through UT-Battelle. NR 63 TC 14 Z9 14 U1 1 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 3 PY 2013 VL 117 IS 39 BP 11548 EP 11555 DI 10.1021/jp4058884 PG 8 WC Chemistry, Physical SC Chemistry GA 243EZ UT WOS:000326301000015 PM 24007515 ER PT J AU Beberwyck, BJ Surendranath, Y Alivisatos, AP AF Beberwyck, Brandon J. Surendranath, Yogesh Alivisatos, A. Paul TI Cation Exchange: A Versatile Tool for Nanomaterials Synthesis SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CDSE QUANTUM DOTS; ION-EXCHANGE; SEEDED GROWTH; SEMICONDUCTOR NANOCRYSTALS; CORE/SHELL NANOCRYSTALS; HETEROSTRUCTURED NANOCRYSTALS; COLLOIDAL NANOCRYSTALS; DOPED NANOCRYSTALS; OPTICAL-PROPERTIES; ZNS AB The development of nanomaterials for next generation photonic, optoelectronic, and catalytic applications requires a robust synthetic toolkit for systematically tuning composition, phase, and morphology at nanometer length scales. While de novo synthetic methods for preparing nanomaterials from molecular precursors have advanced considerably in recent years, postsynthetic modifications of these preformed nanostructures have enabled the stepwise construction of complex nanomaterials. Among these postsynthetic transformations, cation exchange reactions, in which the cations ligated within a nanocrystal host lattice are substituted with those in solution, have emerged as particularly powerful tools for fine-grained control over nanocrystal composition and phase. In this feature article, we review the fundamental thermodynamic and kinetic basis for cation exchange reactions in colloidal semiconductor nanocrystals and highlight its synthetic versatility for accessing nanomaterials intractable by direct synthetic methods from molecular precursors. Unlike analogous ion substitution reactions in extended solids, cation exchange reactions at the nanoscale benefit from rapid reaction rates and facile modulation of reaction thermodynamics via selective ion coordination in solution. The preservation of the morphology of the initial nanocrystal template upon exchange, coupled with stoichiometric control over the extent of reaction, enables the formation of nanocrystals with compositions, morphologies, and crystal phases that are not readily accessible by conventional synthetic methods. C1 [Beberwyck, Brandon J.; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Surendranath, Yogesh; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Beberwyck, Brandon J.; Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Surendranath, Yogesh] Univ Calif Berkeley, Miller Inst Basic Res Sci, Berkeley, CA 94720 USA. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM alivis@berkeley.edu RI Alivisatos , Paul /N-8863-2015 OI Alivisatos , Paul /0000-0001-6895-9048 FU Physical Chemistry of Inorganic Nanostructures Program [KC3103]; Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy [DE-AC02-05CH11231]; Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF); ORISE-ORAU under DOE [DE-AC05-06OR23100]; Miller Institute for Basic Research in Science FX This work and APA support provided by the Physical Chemistry of Inorganic Nanostructures Program, KC3103, Director, Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy under contract DE-AC02-05CH11231. B.J.B. acknowledges support from the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009 and administered by ORISE-ORAU under DOE contract number DE-AC05-06OR23100. Y.S. acknowledges the Miller Institute for Basic Research in Science for a postdoctoral fellowship. We thank the many past and present group members whose research has contributed to the development of cation exchange in semiconductor nanocrystals. NR 82 TC 106 Z9 106 U1 21 U2 184 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 EI 1932-7455 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 3 PY 2013 VL 117 IS 39 BP 19759 EP 19770 DI 10.1021/jp405989z PG 12 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 243EW UT WOS:000326300700001 ER PT J AU Knight, DA Zidan, R Lascola, R Mohtadi, R Ling, C Sivasubramanian, P Kaduk, JA Hwang, SJ Samanta, D Jena, P AF Knight, Douglas A. Zidan, Ragaiy Lascola, Robert Mohtadi, Rana Ling, Chen Sivasubramanian, PremKumar Kaduk, James A. Hwang, Son-Jong Samanta, Devleena Jena, Puru TI Synthesis, Characterization, and Atomistic Modeling of Stabilized Highly Pyrophoric Al(BH4)(3) via the Formation of the Hypersalt K[Al(BH4)(4)] SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; IONIZATION-POTENTIALS; ALUMINUM BOROHYDRIDE; ELECTRON-AFFINITIES; SUPERHALOGENS; SPECTRA; NMR; DECOMPOSITION AB The recent discovery Of a new. class, of negative ions called hyperhalogens allows us to characterize this complex as belonging to a unique class of materials called hypersalts. Hyperhalogen materials are important while serving as the building blocks for the development of new materials having enhanced magnetic or oxidative properties. One prime example of a hyperhalogen is the Al(BH4)(4)(-) anion. Aluminum borohydride (17 wt % H) in itself is a volatile, pyrophoric compound that has a tendency to release diborane at room; temperature, making its handling difficult and very undesirable for use in practical applications. Here we report that the combination of Al(BH4)(3) with the alkaline metal borohydride KBH4 results in the formation of a new compound KAl(BH4)(4) which is a white solid that. exhibits remarkable thermal stability up to 154 degrees C and has the typical makeup of a. hypersalt material. Using :a variety of characterization tools and. theoretical calculations, we study and analyze the physical characteristics of this compound and show its potential for stabilizing high hydrogen capacity, energetic materials. C1 [Knight, Douglas A.; Zidan, Ragaiy; Lascola, Robert] Westinghouse Savannah River Co, Savannah River Lab, Hydrogen Technol Res Lab, Aiken, SC 29808 USA. [Mohtadi, Rana; Ling, Chen; Sivasubramanian, PremKumar] Toyota Res Inst North Amer, Mat Res Dept, Ann Arbor, MI 48105 USA. [Kaduk, James A.] Poly Crystallog Inc, Naperville, IL 60540 USA. [Hwang, Son-Jong] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Samanta, Devleena; Jena, Puru] Virginia Commonwealth Univ, Dept Phys, Richmond, VA 23284 USA. RP Zidan, R (reprint author), Westinghouse Savannah River Co, Savannah River Lab, Hydrogen Technol Res Lab, Aiken, SC 29808 USA. EM Ragaiy.Zidan@sml.doe.gov; Rana.Mohtadi@tema.toyota.com OI Lascola, Robert/0000-0002-6784-5644; Knight, David/0000-0001-5510-6265 FU Toyota Research Institute of North America; National Science Foundation (NSF) [9724240]; MRSEC Program of the NSF [DMR-520565]; Savannah River Nuclear Solutions, LLC [DE-AC09-08SR22470]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-11ER46827]; U.S. DOE [DE-AC02-06CH11357] FX D.A.K. thanks Dr. Gilbert M. Brown (ORNL) for his invaluable mentoring and leadership in Dr. Knight's early years of studying hydrogen storage materials. R.L., D.A.K., and R.Z. thank the Toyota Research Institute of North America for financial support through a Cooperative Research and Development Agreement, Dr. Patrick O'Rourke and Mr. David Missimer (SRNL) for assistance with XRD measurements, and Mr. Joseph Wheeler (SRNL) for assistance with laboratory operations. R.M., C.L., J.K., and P.S. thank Emmanuel Soignard at the University of Arizona for assisting in running and analyzing sample at the APS facility. The NMR facility at Caltech was supported by the National Science Foundation (NSF) under Grant 9724240 and partially supported by the MRSEC Program of the NSF under Award DMR-520565. This manuscript has been authored by Savannah River Nuclear Solutions, LLC, under Contract DE-AC09-08SR22470 with the U.S. Department of Energy. P..J. acknowledges the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award DE-FG02-11ER46827 for partial support. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract DE-AC02-06CH11357. NR 44 TC 23 Z9 23 U1 4 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 3 PY 2013 VL 117 IS 39 BP 19905 EP 19915 DI 10.1021/jp407230a PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 243EW UT WOS:000326300700014 ER PT J AU Martin, RL Shahrak, MN Swisher, JA Simon, CM Sculley, JP Zhou, HC Smit, B Haranczyk, M AF Martin, Richard L. Shahrak, Mahdi Niknam Swisher, Joseph A. Simon, Cory M. Sculley, Julian P. Zhou, Hong-Cai Smit, Berend Haranczyk, Maciej TI Modeling Methane Adsorption in Interpenetrating Porous Polymer Networks SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID METAL-ORGANIC FRAMEWORKS; CARBON-DIOXIDE CAPTURE; RETICULAR CHEMISTRY; NETS; GAS; SURFACE AB Porous polymer networks (PPNs) are a class of porous materials of particular interest in a variety of energy-related applications because of their stability, high surface areas, and gas uptake capacities. Computationally derived structures for five recently synthesized PPN frameworks, PPN-2, -3, -4, -5, and -6, were generated for various topologies, optimized using semiempirical electronic structure methods, and evaluated using classical grand canonical Monte Carlo simulations. We show that a key factor in modeling the methane uptake performance of these materials is whether, and how, these material frameworks interpenetrate and demonstrate a computational approach for predicting the presence, degree, and nature of interpenetration in PPNs that enables the reproduction of experimental adsorption data. C1 [Martin, Richard L.; Haranczyk, Maciej] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Shahrak, Mahdi Niknam] Quchan Inst Engn & Technol, Dept Chem Engn, Quchan, Iran. [Shahrak, Mahdi Niknam; Swisher, Joseph A.; Simon, Cory M.; Smit, Berend] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Sculley, Julian P.; Zhou, Hong-Cai] Texas A&M Univ, Dept Chem, College Stn, TX 77842 USA. RP Haranczyk, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. EM mharanczyk@lbl.gov RI Smit, Berend/B-7580-2009; Zhou, Hong-Cai/A-3009-2011; EFRC, CGS/I-6680-2012; Haranczyk, Maciej/A-6380-2014; Sculley, Julian/D-3494-2009; Martin, Richard/C-7129-2013; Stangl, Kristin/D-1502-2015 OI Smit, Berend/0000-0003-4653-8562; Zhou, Hong-Cai/0000-0002-9029-3788; Simon, Cory/0000-0002-8181-9178; Haranczyk, Maciej/0000-0001-7146-9568; Martin, Richard/0000-0001-9858-2608; FU U.S. Department of Energy Advanced Research Projects Agency-Energy (ARPA-E) [DE-AR0000249]; Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001015]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [DE-FG02-12ER16362]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX R.L.M., M.H., and J.P.S were supported by the U.S. Department of Energy Advanced Research Projects Agency-Energy (ARPA-E) under Award DE-AR0000249. H.-C. Z. were supported as part of the Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award DE-SC0001015. C.M.S. and B.S. are supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Award DE-FG02-12ER16362. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract DE-AC02-05CH11231. NR 28 TC 10 Z9 10 U1 1 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 EI 1932-7455 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 3 PY 2013 VL 117 IS 39 BP 20037 EP 20042 DI 10.1021/jp406918d PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 243EW UT WOS:000326300700028 ER PT J AU Ward, MJ Han, WQ Sham, TK AF Ward, Matthew James Han, Wei-Qiang Sham, Tsun-Kong TI Nitridation Temperature Effects on Electronic and Chemical Properties of (Ga1-xZnx)(N1-xOx) Solid Solution Nanocrystals SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID VISIBLE-LIGHT-DRIVEN; MIXED-OXIDE NANOPARTICLES; PHOTOCATALYTIC ACTIVITY; BAND-GAP; OXYNITRIDE PHOTOCATALYST; CORE/SHELL NANOPARTICLES; CRYSTAL-STRUCTURE; WATER; ABSORPTION; COCATALYST AB Solid solution nanocrystals of gallium nitride-zinc oxide have been realized as potential photocatalysts for visible light driven overall water splitting. The band gap of these materials has been found to narrow further into the visible region as a function of increasing zinc oxide concentration, and thus, it is desirable to synthesize zinc oxide-rich gallium nitride-zinc oxide solid solutions. In this paper, we discuss the effects of using nitridation temperature to control zinc oxide content on the electronic and chemical properties of gallium nitride-zinc oxide solid solution nanostructures. The effect of nitridation temperature was studied using X-ray absorption fine structure (XAFS), including both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), and X-ray excited optical luminescence (XEOL). It was determined that using nitridation temperature as a method of controlling zinc oxide concentration results in solid solutions with poor crystallinity, phase separation, and mixed surface oxide formation. These findings suggest that many complications arise from using nitridation temperature to control zinc oxide concentration in gallium nitride-zinc oxide solid solutions, and thus, it is possible that the resultant materials would exhibit poor photocatalytic activity. C1 [Ward, Matthew James; Sham, Tsun-Kong] Univ Western Ontario, Dept Chem, London, ON N6A 5B7, Canada. [Han, Wei-Qiang] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Sham, TK (reprint author), Univ Western Ontario, Dept Chem, London, ON N6A 5B7, Canada. EM tsham@uwo.ca RI Han, WQ/E-2818-2013 FU NSERC; NRC; CIHR; University of Saskatchewan; US DOE - Basic Energy Sciences; University of Washington; Simon Fraser University; Advanced Photon Source; US DOE, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; CRC; CFI; OIT; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Ontario Graduate Scholarship (OGS); Queen Elizabeth II Graduate Scholarship in Science and Technology (QEIIGSST) programs; ASPIRE and Graduate Thesis Research Award (GTRA) programs of UWO FX Synchrotron research was carried out at the Canadian Light Source (CLS) and PNC/XSD at the Advanced Photon Source (APS). Research at CLS is supported by NSERC, NRC, CIHR, and the University of Saskatchewan. PNC/XSD at the APS, and research at these facilities, is supported by the US DOE - Basic Energy Sciences, NSERC, the University of Washington, Simon Fraser University, and the Advanced Photon Source. Use of the Advanced Photon Source is also supported by the US DOE, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. Research at the University of Western Ontario (UWO) is supported by NSERC, CRC, CFI, and OIT. Part of this research was carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02-98CH10886. M.J.W. acknowledges the financial support of the Ontario Graduate Scholarship (OGS) and the Queen Elizabeth II Graduate Scholarship in Science and Technology (QEIIGSST) programs, and the ASPIRE and Graduate Thesis Research Award (GTRA) programs of UWO. We thank Tom Regier (CLS) and Robert Gordon (PNC) for their help with synchrotron experiments. NR 42 TC 6 Z9 6 U1 6 U2 61 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 3 PY 2013 VL 117 IS 39 BP 20332 EP 20342 DI 10.1021/jp406990n PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 243EW UT WOS:000326300700063 ER PT J AU Cuisinier, M Cabelguen, PE Evers, S He, G Kolbeck, M Garsuch, A Bolin, T Balasubramanian, M Nazar, LF AF Cuisinier, Marine Cabelguen, Pierre-Etienne Evers, Scott He, Guang Kolbeck, Mason Garsuch, Arnd Bolin, Trudy Balasubramanian, Mahalingam Nazar, Linda F. TI Sulfur Speciation in Li-S Batteries Determined by Operando X-ray Absorption Spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID LITHIUM-SULFUR; DISCHARGE PROCESS; CATHODE; REDUCTION; ELECTROLYTES; POLYSULFIDES; DIFFRACTION; PERFORMANCE; COMPOSITES; ELECTRODES AB Among the Most challenging I. issues in electrochemical energy storage is developing insightful in situ probes of redox processes for a working cell. This is particularly true for. cells that operate on the basis of chemical transformations such as Li-S and Li-O-2, where the factors that govern capacity and cycling stability are difficult to access owing to the amorphous nature of the intermediate species. Here, we investigate cathodes for the Li-S cell comprised of sulfur-imbibed robust spherical carbon shells with tailored porosity that exhibit excellent cycling stability. Their highly regular nanoscale dimensions and thin carbon shells allow highly uniform electrochemical response and further enable direct monitoring of sulfur speciation Within the cell over the entire redox range by operand X-ray absorption spectroscopy on the S K-edge. The results reveal the first detailed evidence of the mechanisms of sulfur redox chemistry on cycling, showing how sulfur fraction (under utilization) and sulfide precipitation impact Capacity. Such information is critical for promoting improvements in Li-S batteries. C1 [Cuisinier, Marine; Cabelguen, Pierre-Etienne; Evers, Scott; He, Guang; Kolbeck, Mason; Nazar, Linda F.] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada. [Garsuch, Arnd] BASF SE, D-67056 Ludwigshafen, Germany. [Bolin, Trudy; Balasubramanian, Mahalingam] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Nazar, LF (reprint author), Univ Waterloo, Dept Chem, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada. EM lfnazar@uwaterloo.ca RI Nazar, Linda/H-2736-2014; He, Guang/B-2967-2017; OI Nazar, Linda/0000-0002-3314-8197; Cuisinier, Marine/0000-0002-0690-9755 FU BASF International Scientific Network for Electrochemistry and Batteries; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The research was supported by the BASF International Scientific Network for Electrochemistry and Batteries. We thank Dr. N. Coombs, University of Toronto, for acquisition of the TEM and L. Spencer and G. Goward, McMaster University, for solid-state NMR facilities. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 37 TC 120 Z9 120 U1 21 U2 189 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD OCT 3 PY 2013 VL 4 IS 19 BP 3227 EP 3232 DI 10.1021/jz401763d PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 243EX UT WOS:000326300800008 ER PT J AU Feng, G Li, S Presser, V Cummings, PT AF Feng, Guang Li, Song Presser, Volker Cummings, Peter T. TI Molecular Insights into Carbon Supercapacitors Based on Room-Temperature Ionic Liquids SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID ELECTRICAL DOUBLE-LAYER; ONION-LIKE CARBON; ELECTROCHEMICAL ENERGY-STORAGE; DIFFERENTIAL CAPACITANCE; PORE-SIZE; PSEUDOCAPACITIVE CONTRIBUTIONS; DYNAMICS SIMULATION; GRAPHITE-ELECTRODES; SUBNANOMETER PORES; CHARGE STORAGE AB The performance of supercapacitors is determined by the electrical double layers (EDLs) formed at electrolyte/electrode interfaces To understand the energy storage mechanism underlying supercapacitors, molecular dynamics (MD) simulations were used to study the capacitive behavior of carbon based supercapacitors with room temperature ionic liquid (RTIL) electrolytes The performance of porous supetcapacitors was found to be correlated with the ion/pore size and applied voltage. supercapacitors composed of RTILs on the outer, positively curved surfaces of onion like carbons (OLCs) or carbon nanotubes (CNTS) exhibited Significant effects on capacitance and the distinctive feature that differential capacitance varies only weakly with voltage. Investigations of temperature influence revealed a positive temperature dependence of capacitance for OLC-based supercapacitors and a weak dependence of capacitance on temperature for CNT-based supercapacitors, in line with experimental observations. Molecular insights into RTIL-based supercapacitors, reviewed in this Perspective, could facilitate the design and development of a new generation of energy storage devices. C1 [Feng, Guang; Li, Song; Cummings, Peter T.] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37235 USA. [Presser, Volker] INM Leibniz Inst New Mat, Energy Mat Grp, D-66123 Saarbrucken, Germany. [Presser, Volker] Univ Saarland, D-66123 Saarbrucken, Germany. [Cummings, Peter T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Cummings, PT (reprint author), Vanderbilt Univ, Dept Chem & Biomol Engn, 221 Kirkland Hall, Nashville, TN 37235 USA. EM peter.cummings@vanderbilt.edu RI Presser, Volker/F-1975-2010; Li, Song/D-1026-2013; Feng, Guang/D-8989-2011; OI Presser, Volker/0000-0003-2181-0590; Feng, Guang/0000-0001-6659-9181 FU Fluid Interface Reactions, Structures, and Transport (FIRST) Center, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; German Federal Ministry for Research and Education (BMBF) [03EK3013] FX This work was supported as part of the Fluid Interface Reactions, Structures, and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. We acknowledge the National Energy Research supercomputing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. G.F. appreciates the Palmetto Cluster at Clemson University for providing computer time to complete most simulations performed for this work. V.P. acknowledges funding from the German Federal Ministry for Research and Education (BMBF) in support of the nanoEES3D project (Award Number 03EK3013) as part of the strategic funding initiative energy storage framework. V.P. thanks Eduard Arzt (INM) for continuous support. NR 79 TC 49 Z9 49 U1 6 U2 105 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD OCT 3 PY 2013 VL 4 IS 19 BP 3367 EP 3376 DI 10.1021/jz4014163 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 243EX UT WOS:000326300800030 ER PT J AU Braun, J Bansal, P AF Braun, James Bansal, Pradeep TI Highlights from the 2012 Purdue Conferences SO HVAC&R RESEARCH LA English DT Editorial Material C1 [Braun, James] Purdue Univ, W Lafayette, IN 47907 USA. [Bansal, Pradeep] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Braun, J (reprint author), Purdue Univ, W Lafayette, IN 47907 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1078-9669 EI 1938-5587 J9 HVAC&R RES JI HVAC&R Res. PD OCT 3 PY 2013 VL 19 IS 7 SI SI BP 766 EP 766 DI 10.1080/10789669.2013.835589 PG 1 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 240CD UT WOS:000326071400002 ER PT J AU Shen, B Rice, K Vineyard, EA Liu, W AF Shen, Bo Rice, Keith Vineyard, Edward A. Liu, Wendy TI Development of 20 integrated energy efficiency ratio rooftop units-system modeling and building energy simulations SO HVAC&R RESEARCH LA English DT Article AB Based on a detailed steady-state system and component modeling, a rooftop unit system design was developed that is can achieve an integrated energy efficiency rating higher than 20. Fin-and-tube and microchannel heat exchangers were modeled using a segment-to-segment approach, and an AHRI 10-coefficient compressor map used to simulate compressor performance. The system modeling is based on a component-based modeling approach, which facilitates flexible simulation of complicated system configurations. Starting with a baseline system having integrated energy efficiency rating of 16.6, numerous technical options were extensively investigated, i.e., varying compressor sizes, heat exchanger fin densities, fin-and-tube or microchannel heat exchanger, suction line heat exchanger, desiccant wheel, tandem compressor (TD), variable-speed compressor (VS), and condenser evaporative pre-cooling; an innovative system configuration was developed by combining a tandem compression system with a variable-speed compression system. The combined system can achieve a high integrated energy efficiency ratio as well as process the outdoor ventilation air over an extensive range. The design concept for a 20-ton (70.4-kW) unit, as well as a 10-ton (35.2-kW) unit was successfully evaluated. All selected components are readily accessible on the market, and performance predictions were validated against existing rooftop unit products at the rating condition. This article illustrates a potentially cost-effective high integrated energy efficiency ratio rooftop unit design. In addtion, extensive building energy simulations were conducted using EnergyPlus to predict seasonal energy saving potentials and peak power reductions using the high integrated energy efficiency ratio rooftop unit in 16U.S. cities in comparison to a rooftop unit with a minimum efficiency. C1 [Shen, Bo; Rice, Keith; Vineyard, Edward A.] Oak Ridge Natl Lab, Bldg Technol Res & Integrat Ctr, Oak Ridge, TN 37831 USA. [Liu, Wendy] Ingersoll Rand Inc, Trane Co, Clarksville, TN USA. RP Shen, B (reprint author), Oak Ridge Natl Lab, Bldg Technol Res & Integrat Ctr, POB 2008 MS6070, Oak Ridge, TN 37831 USA. EM shenb@ornl.gov OI Vineyard, Edward/0000-0003-4695-7441 NR 9 TC 0 Z9 0 U1 0 U2 11 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1078-9669 EI 1938-5587 J9 HVAC&R RES JI HVAC&R Res. PD OCT 3 PY 2013 VL 19 IS 7 SI SI BP 836 EP 846 DI 10.1080/10789669.2013.826064 PG 11 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 240CD UT WOS:000326071400009 ER PT J AU Shen, B Mahderekal, I Vineyard, EA AF Shen, Bo Mahderekal, Isaac Vineyard, Edward A. TI System modeling and building energy simulations of gas engine driven heat pump SO HVAC&R RESEARCH LA English DT Article AB To improve the system performance of a gas engine driven heat pump system, an analytical modeling and experimental study has been made by using a desiccant system in cooling operation (particularly in high-humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The overall performance of a gas engine driven heat pump system has been simulated with a detailed vapor compression heat pump system design model. The modeling includes (1) a gas engine driven heat pump cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) a gas engine driven heat pump cycle in cooling mode with a desiccant system regenerated by waste heat from the engine incorporated, and (3) a gas engine driven heat pump cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using the desiccant system, the sensible heat ratio can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% at rated operating conditions. In addtion, using EnergyPlus, building energy simulations have been conducted to assess annual energy consumptions of the gas engine driven heat pump in 16U.S. cities, and the performances are compared to a baseline unit that has a electrically driven air conditioner with the seasonal coefficient of performance of 4.1 for space cooling and a gas furnace with 90% fuel efficiency for space heating. C1 [Shen, Bo; Mahderekal, Isaac; Vineyard, Edward A.] Oak Ridge Natl Lab, Bldg Technol Res & Integrat Ctr, Oak Ridge, TN 37831 USA. RP Shen, B (reprint author), Oak Ridge Natl Lab, Bldg Technol Res & Integrat Ctr, POB 2008 MS6070, Oak Ridge, TN 37831 USA. EM shenb@ornl.gov OI Vineyard, Edward/0000-0003-4695-7441 NR 11 TC 1 Z9 1 U1 1 U2 18 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1078-9669 EI 1938-5587 J9 HVAC&R RES JI HVAC&R Res. PD OCT 3 PY 2013 VL 19 IS 7 SI SI BP 847 EP 856 DI 10.1080/10789669.2013.832360 PG 10 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 240CD UT WOS:000326071400010 ER PT J AU Zhou, SY Copeland, EJ Easther, R Finkel, H Mou, ZG Saffin, PM AF Zhou, Shuang-Yong Copeland, Edmund J. Easther, Richard Finkel, Hal Mou, Zong-Gang Saffin, Paul M. TI Gravitational waves from oscillon preheating SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Cosmology of Theories beyond the SM; Solitons Monopoles and Instantons; Nonperturbative Effects ID SCALAR FIELD; INFLATION AB Oscillons are long-lived, localized excitations of nonlinear scalar fields which may be copiously produced during preheating after inflation, leading to a possible oscillon-dominated phase in the early Universe. For example, this can happen after axion monodromy inflation, on which we run our simulations. We investigate the stochastic gravitational wave background associated with an oscillon-dominated phase. An isolated oscillon is spherically symmetric and does not radiate gravitational waves, and we show that the flux of gravitational radiation generated between oscillons is also small. However, a significant stochastic gravitational wave background may be generated during preheating itself (i.e, when oscillons are forming), and in this case the characteristic size of the oscillons is imprinted on the gravitational wave power spectrum, which has multiple, distinct peaks. C1 [Zhou, Shuang-Yong; Copeland, Edmund J.; Mou, Zong-Gang; Saffin, Paul M.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Zhou, Shuang-Yong] SISSA, I-34136 Trieste, Italy. [Zhou, Shuang-Yong] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Easther, Richard] Univ Auckland, Dept Phys, Auckland, New Zealand. [Finkel, Hal] Argonne Natl Lab, Argonne Leadership Comp Facil, Lemont, IL 60439 USA. RP Zhou, SY (reprint author), Univ Nottingham, Sch Phys & Astron, Univ Pk, Nottingham NG7 2RD, England. EM zhou.sy234@gmail.com; ed.copeland@nottingham.ac.uk; r.easther@auckland.ac.nz; hfinkel@anl.gov; ppxzm1@nottingham.ac.uk; paul.saffin@nottingham.ac.uk OI Copeland, Edmund/0000-0003-3959-6051; Saffin, Paul/0000-0002-4290-3377; Easther, Richard/0000-0002-7233-665X FU Royal Society; STFC; Leverhulme Trust; European Research Council under the European Union [306425]; Marie Curie Career Integration [303537]; U.S. Department of Energy, Basic Energy Sciences, Office of Science [DE-AC02-06CH11357] FX We would like to thank Mustafa A. Amin, Paul Tognarelli and Wei Xue for helpful discussions. EJC would like to thank the Royal Society, STFC and Leverhulme Trust for financial support. SYZ acknowledges partial financial support from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) / ERC Grant Agreement no 306425 "Challenging General Relativity", and from the Marie Curie Career Integration Grant LIMITSOFGR-2011-TPS Grant Agreement no 303537. HJF is supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under contract # DE-AC02-06CH11357. We would like to thank the High Performance Computing facility at the University of Nottingham for running of our simulations. NR 64 TC 14 Z9 14 U1 0 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD OCT 3 PY 2013 IS 10 AR 026 DI 10.1007/JHEP10(2013)026 PG 19 WC Physics, Particles & Fields SC Physics GA 231PQ UT WOS:000325429700001 ER PT J AU Segovia, J Entem, DR Fernandez, F AF Segovia, J. Entem, D. R. Fernandez, F. TI Strong charmonium decays in a microscopic model SO NUCLEAR PHYSICS A LA English DT Article DE Hadronic decay; Heavy quarkonia; Potential models ID PAIR-CREATION MODEL; QUARK-MODEL; E&E ANNIHILATION; MESONS AB Although the spectra of heavy quarkonium systems have been successfully explained by certain QCD motivated potential models, their strong decays are still an open problem. We perform a microscopic calculation of vector charmonium strong decays into open-charm mesons where the q (q) over bar pairs are created from the same interquark interactions acting in the quark model that has been used to describe its spectrum, and also its leptonic and radiative decays. We compare the numerical results with those predicted by the P-3(0) decay model and with the available experimental data, and discuss the possible influence on the strong widths of the different terms of the potential. A comparison with other predictions from similar microscopic decay models is also included. Although the model gives a fair description of the charmonium spectrum, the microscopic calculation of the decay widths does not provide any improvement of the results obtained with the phenomenological P-3(0) model. (C) 2013 Elsevier B.V. All rights reserved. C1 Univ Salamanca, Grp Fis Nucl, E-37008 Salamanca, Spain. Univ Salamanca, IUFFyM, E-37008 Salamanca, Spain. RP Segovia, J (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM jorge.segonza@gmail.com RI Entem, David/H-8435-2014; Segovia, Jorge/C-7202-2015 OI Entem, David/0000-0003-2376-6255; Segovia, Jorge/0000-0001-5838-7103 FU Ministerio de Ciencia y Tecnologia [FPA2010-21750-0O2-02]; European Community, Research Infrastructure Integrating Activity 'Study of Strongly Interacting Matter' [283286]; Spanish Ingenio-Consolider 2010 Program [C5D2007-00042]; US Department of Energy; Office of Nuclear Physics [AC02-06CH11357] FX This work has been partially funded by Ministerio de Ciencia y Tecnologia under Contract No. FPA2010-21750-0O2-02, by the European Community, Research Infrastructure Integrating Activity 'Study of Strongly Interacting Matter' (HadronPhysics3), Grant No. 283286, by the Spanish Ingenio-Consolider 2010 Program CPAN (C5D2007-00042), and also in part by the US Department of Energy, Office of Nuclear Physics, under contract DE-AC02-06CH11357. NR 33 TC 8 Z9 8 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD OCT 3 PY 2013 VL 915 BP 125 EP 141 DI 10.1016/j.nuclphysa.2013.07.004 PG 17 WC Physics, Nuclear SC Physics GA 225JQ UT WOS:000324959600008 ER PT J AU Greenman, L Whitley, HD Whaley, B AF Greenman, Loren Whitley, Heather D. Whaley, Birgitta TI Large-scale atomistic density functional theory calculations of phosphorus-doped silicon quantum bits SO PHYSICAL REVIEW B LA English DT Article ID SPIN RESONANCE EXPERIMENTS; ELECTRONIC-STRUCTURE; TRANSITION; SYSTEMS; COMPUTATION; INTERFACES; COMPLEXES; COMPUTER; DONORS; STATES AB We present density functional theory calculations of phosphorus dopants in bulk silicon and of several properties relating to their use as spin qubits for quantum computation. Rather than a mixed pseudopotential or a Heitler-London approach, we have used an explicit treatment for the phosphorus donor and examined the detailed electronic structure of the system as a function of the isotropic doping fraction, including lattice relaxation due to the presence of the impurity. Doping electron densities (rho(doped) - rho(bulk)) and spin densities (rho(up arrow) - rho(down arrow)) are examined in order to study the properties of the dopant electron as a function of the isotropic doping fraction. Doping potentials (V-doped - V-bulk) are also calculated for use in calculations of the scattering cross sections of the phosphorus dopants, which are important in the understanding of electrically detected magnetic resonance experiments. We find that the electron density around the dopant leads to nonspherical features in the doping potentials, such as trigonal lobes in the (001) plane at energy scales of +12 eV near the nucleus and of -700 meV extending away from the dopants. These features are generally neglected in effective mass theory and will affect the coupling between the donor electron and the phosphorus nucleus. Our density functional calculations reveal detail in the densities and potentials of the dopants which are not evident in calculations that do not include explicit treatment of the phosphorus donor atom and relaxation of the crystal lattice. These details can also be used to parametrize tight-binding models for simulation of large-scale devices. C1 [Greenman, Loren; Whaley, Birgitta] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Greenman, Loren; Whaley, Birgitta] Univ Calif Berkeley, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. [Whitley, Heather D.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA USA. RP Greenman, L (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM whaley@berkeley.edu OI Whitley, Heather/0000-0002-2344-8698 FU UC Lab Fees Research Program; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors wish to acknowledge insight due to conversations with Dr. Vincenzo Lordi (Lawrence Livermore National Laboratory). Additionally, we wish to thank our experimental collaborators in the group of Dr. Thomas Schenkel (Lawrence Berkeley National Laboratory), especially Dr. Cheuk Chi Lo and Christoph Weis, for helpful conversations and direction. This work was supported by the UC Lab Fees Research Program under a grant to the University of California, Berkeley and Lawrence Livermore National Laboratory. It was also performed in part (H.D.W.) under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 65 TC 4 Z9 4 U1 1 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 3 PY 2013 VL 88 IS 16 AR 165102 DI 10.1103/PhysRevB.88.165102 PG 10 WC Physics, Condensed Matter SC Physics GA 228KK UT WOS:000325184800001 ER PT J AU Nelson, LJ Ozolins, V Reese, CS Zhou, F Hart, GLW AF Nelson, Lance J. Ozolins, Vidvuds Reese, C. Shane Zhou, Fei Hart, Gus L. W. TI Cluster expansion made easy with Bayesian compressive sensing SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; UNCERTAINTY PRINCIPLES; ALLOYS; SYSTEMS; METALS; DESIGN AB Long-standing challenges in cluster expansion (CE) construction include choosing how to truncate the expansion and which crystal structures to use for training. Compressive sensing (CS), which is emerging as a powerful tool for model construction in physics, provides a mathematically rigorous framework for addressing these challenges. A recently-developed Bayesian implementation of CS (BCS) provides a parameterless framework, a vast speed-up over current CE construction techniques, and error estimates on model coefficients. Here, we demonstrate the use of BCS to build cluster expansion models for several binary alloy systems. The speed of the method and the accuracy of the resulting fits are shown to be far superior than state-of-the-art evolutionary methods for all alloy systems shown. When combined with high-throughput first-principles frameworks, the implications of BCS are that hundreds of lattice models can be automatically constructed, paving the way to high-throughput thermodynamic modeling of alloys. C1 [Nelson, Lance J.; Hart, Gus L. W.] Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA. [Ozolins, Vidvuds] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. [Reese, C. Shane] Brigham Young Univ, Dept Stat, Provo, UT 84602 USA. [Zhou, Fei] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Nelson, LJ (reprint author), Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA. RI Ozolins, Vidvuds/D-4578-2009; Zhou, Fei/D-1938-2010 OI Zhou, Fei/0000-0001-9659-4648 FU NSF [DMR-0908753, ATM-0934490, DMR-1106024]; US DOE [DE-AC020-5CH11231, DE-AC52-07NA27344] FX G.L.W.H. and L.J.N. are grateful for financial support from the NSF, DMR-0908753. C. S. R. is grateful for financial support from the NSF, ATM-0934490. F.Z. and V.O. gratefully acknowledge financial support from the NSF under Award No. DMR-1106024 and use of computing resources at the National Energy Research Scientific Computing Center, which is supported by the US DOE under Contract No. DE-AC020-5CH11231. F.Z. is supported by the US DOE under Contract No. DE-AC52-07NA27344. NR 52 TC 10 Z9 10 U1 1 U2 40 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD OCT 3 PY 2013 VL 88 IS 15 AR 155105 DI 10.1103/PhysRevB.88.155105 PG 10 WC Physics, Condensed Matter SC Physics GA 228JW UT WOS:000325183300002 ER PT J AU Ravelo, R Germann, TC Guerrero, O An, Q Holian, BL AF Ravelo, R. Germann, T. C. Guerrero, O. An, Q. Holian, B. L. TI Shock-induced plasticity in tantalum single crystals: Interatomic potentials and large-scale molecular-dynamics simulations SO PHYSICAL REVIEW B LA English DT Article ID EMBEDDED-ATOM METHOD; CENTERED-CUBIC METALS; EQUATION-OF-STATE; TRANSITION-METALS; BCC METALS; ATOMISTIC SIMULATION; VACANCY FORMATION; FCC METALS; DEFORMATION; TEMPERATURE AB We report on large-scale nonequilibrium molecular dynamics simulations of shock wave compression in tantalum single crystals. Two new embedded atom method interatomic potentials of Ta have been developed and optimized by fitting to experimental and density functional theory data. The potentials reproduce the isothermal equation of state of Ta up to 300 GPa. We examined the nature of the plastic deformation and elastic limits as functions of crystal orientation. Shock waves along (100), (110), and (111) exhibit elastic-plastic two-wave structures. Plastic deformation in shock compression along (110) is due primarily to the formation of twins that nucleate at the shock front. The strain-rate dependence of the flow stress is found to be orientation dependent, with (110) shocks exhibiting the weaker dependence. Premelting at a temperature much below that of thermodynamic melting at the shock front is observed in all three directions for shock pressures above about 180 GPa. C1 [Ravelo, R.] Univ Texas El Paso, Dept Phys, El Paso, TX 79968 USA. [Ravelo, R.] Univ Texas El Paso, Mat Res Inst, El Paso, TX 79968 USA. [Ravelo, R.] Los Alamos Natl Lab, Computat Phys Div X, Los Alamos, NM 87545 USA. [Germann, T. C.; Holian, B. L.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Guerrero, O.] Univ Texas El Paso, Dept Phys, El Paso, TX 79968 USA. [An, Q.] CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA. RP Ravelo, R (reprint author), Univ Texas El Paso, Dept Phys, El Paso, TX 79968 USA. EM rravelo@utep.edu; tcg@lanl.gov; oguerrero@miners.utep.edu; anqi@caltech.edu; blh@lanl.gov OI Germann, Timothy/0000-0002-6813-238X FU U.S. Department of Energy (DOE) [DE-AC52-06NA25396]; Laboratory Directed Research and Development program; Air Force Office of Scientific Research under AFOSR [FA9550-12-1-0476] FX The authors would like to thank Jonathan Boettger, James E. Hammerberg, and Davis Tonks for useful discussions and valuable comments. Work at Los Alamos was performed under the auspices of the U.S. Department of Energy (DOE) under Contract No. DE-AC52-06NA25396 and was supported by the Laboratory Directed Research and Development program. R. R. acknowledges support from the Air Force Office of Scientific Research under AFOSR Award No. FA9550-12-1-0476. NR 80 TC 35 Z9 35 U1 5 U2 61 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 3 PY 2013 VL 88 IS 13 AR 134101 DI 10.1103/PhysRevB.88.134101 PG 17 WC Physics, Condensed Matter SC Physics GA 228IT UT WOS:000325180100001 ER PT J AU Tsvelik, AM Yin, WG AF Tsvelik, A. M. Yin, Wei-Guo TI Possible realization of a multichannel Kondo model in a system of magnetic chains SO PHYSICAL REVIEW B LA English DT Article ID IMPURITIES; ORBITALS; DYNAMICS; METALS AB We discuss a possible realization of overscreened N-channel Kondo model in quasi-one-dimensional magnets. We suggest that it is feasible to have arrangements for N from 2 to 6 and discuss the related quantum chemistry problems. C1 [Tsvelik, A. M.; Yin, Wei-Guo] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Tsvelik, AM (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RI Yin, Weiguo/A-9671-2014 OI Yin, Weiguo/0000-0002-4965-5329 FU US Department of Energy (DOE), Division of Materials Science [DE-AC02-98CH10886] FX The work at Brookhaven National Laboratory was supported by the US Department of Energy (DOE), Division of Materials Science, under Contract No. DE-AC02-98CH10886. NR 23 TC 3 Z9 3 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 3 PY 2013 VL 88 IS 14 AR 144401 DI 10.1103/PhysRevB.88.144401 PG 5 WC Physics, Condensed Matter SC Physics GA 228JM UT WOS:000325182100003 ER PT J AU Hopper, CS Delayen, JR AF Hopper, C. S. Delayen, J. R. TI Superconducting spoke cavities for high-velocity applications SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB To date, superconducting spoke cavities have been designed, developed, and tested for particle velocities up to beta(0) similar to 0.6, but there is a growing interest in possible applications of multispoke cavities for high-velocity applications. We have explored the design parameter space for low-frequency, high-velocity, double-spoke superconducting cavities in order to determine how each design parameter affects the electromagnetic properties, in particular the surface electromagnetic fields and the shunt impedance. We present detailed design for cavities operating at 325 and 352 MHz and optimized for beta(0) = 0.82 and 1. C1 [Hopper, C. S.] Old Dominion Univ, Dept Phys, Ctr Accelerator Sci, Norfolk, VA 23529 USA. Thomas Jefferson Natl Accelerator Facil, Accelerator Div, Newport News, VA 23606 USA. RP Hopper, CS (reprint author), Old Dominion Univ, Dept Phys, Ctr Accelerator Sci, Norfolk, VA 23529 USA. EM chopp002@odu.edu; jdelayen@odu.edu FU U.S. Department of Energy [DE-SC0004094]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We would like to thank Subashini De Silva, HyeKyoung Park, and Rocio Olave for their assistance with the various simulation software used in this research and useful discussions. This work has been supported by the U.S. Department of Energy Award No. DE-SC0004094. This research used resources of the National Energy Research Scientific Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 43 TC 1 Z9 1 U1 3 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD OCT 3 PY 2013 VL 16 IS 10 AR 102001 DI 10.1103/PhysRevSTAB.16.102001 PG 20 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 230QO UT WOS:000325357400001 ER PT J AU Wang, L Safranek, J Cai, Y Corbett, J Hettel, RO Raubenheimer, TO Schmerge, J Sebek, J AF Wang, L. Safranek, J. Cai, Y. Corbett, J. Hettel, R. O. Raubenheimer, T. O. Schmerge, J. Sebek, J. TI Beam ion instability: Measurement, analysis, and simulation SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB A weak vertical coupled-bunch instability with oscillation amplitude of the order of a few mu m has been observed in SPEAR3 at nominal vacuum pressure. The instability becomes stronger with increasing neutral gas pressure as observed by turning off vacuum pumps, and becomes weaker when the vertical beam emittance is increased. These observations indicate that the vertical beam motion is driven by ions trapped in the periodic potential of the electron beam. In this paper we present a series of comprehensive beam measurements, impedance-based stability analysis, and numerical simulations of beam-ion interactions in SPEAR3. The effects of vacuum pressure, gas species, beam current, bunch fill pattern, chromaticity, and vertical beam emittance are investigated. C1 [Wang, L.; Safranek, J.; Cai, Y.; Corbett, J.; Hettel, R. O.; Raubenheimer, T. O.; Schmerge, J.; Sebek, J.] SLAC, Menlo Pk, CA 94025 USA. RP Wang, L (reprint author), SLAC, MS 66,2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. FU DOE [DE-AC02-76SF00515] FX The authors would like to acknowledge the SPEAR3 operations team for invaluable support during the measurements and thank Rodney Pak for providing the vacuum data. We also thank D. Teytelman for providing the bunch-by-bunch measurement data in the time domain. This work is supported by DOE contract No. DE-AC02-76SF00515. NR 12 TC 3 Z9 3 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD OCT 3 PY 2013 VL 16 IS 10 AR 104402 DI 10.1103/PhysRevSTAB.16.104402 PG 14 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 230QO UT WOS:000325357400002 ER PT J AU Deng, YX Josberger, E Jin, JH Rousdari, AF Helms, BA Zhong, C Anantram, MP Rolandi, M AF Deng, Yingxin Josberger, Erik Jin, Jungho Rousdari, Anita Fadavi Helms, Brett A. Zhong, Chao Anantram, M. P. Rolandi, Marco TI H+-type and OH--type biological protonic semiconductors and complementary devices SO SCIENTIFIC REPORTS LA English DT Article ID HYDROGEN-BONDED CHAINS; ELECTRICAL-CONDUCTION; TRANSPORT; MEMBRANES; CHANNEL; WATER; BIOENERGETICS; TRANSISTORS; MECHANISMS; EXCHANGE AB Proton conduction is essential in biological systems. Oxidative phosphorylation in mitochondria, proton pumping in bacteriorhodopsin, and uncoupling membrane potentials by the antibiotic Gramicidin are examples. In these systems, H+ hop along chains of hydrogen bonds between water molecules and hydrophilic residues - proton wires. These wires also support the transport of OH- as proton holes. Discriminating between H+ and OH- transport has been elusive. Here, H+ and OH- transport is achieved in polysaccharide-based proton wires and devices. AH(+)-OH- junction with rectifying behaviour and H+-type and OH--type complementary field effect transistors are demonstrated. We describe these devices with a model that relates H+ and OH- to electron and hole transport in semiconductors. In turn, the model developed for these devices may provide additional insights into proton conduction in biological systems. C1 [Deng, Yingxin; Josberger, Erik; Jin, Jungho; Zhong, Chao; Rolandi, Marco] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. [Josberger, Erik; Anantram, M. P.] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA. [Rousdari, Anita Fadavi] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, CA USA. [Helms, Brett A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Rolandi, M (reprint author), Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. EM rolandi@uw.edu RI Zhong, Chao/F-3484-2010; Foundry, Molecular/G-9968-2014; OI Zhong, Chao/0000-0002-6638-3652; Deng, Yingxin/0000-0003-4091-6462; Helms, Brett/0000-0003-3925-4174 FU National Science Foundation Career Award [DMR-1150630]; 3M Untenured Faculty Award; University of Washington CGF award; Coulter Foundation Grant; NSF; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX Support for this research was provided by a National Science Foundation Career Award (DMR-1150630), a 3M Untenured Faculty Award, a University of Washington CGF award, and a Coulter Foundation Grant. Part of the work was performed at the University of Washington Centre for Nanotechnology, which is part of the NSF-Funded NNIN. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 47 TC 27 Z9 27 U1 5 U2 44 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD OCT 3 PY 2013 VL 3 AR 2481 DI 10.1038/srep02481 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 227SC UT WOS:000325133300001 PM 24089083 ER PT J AU Badger, J Lal, J Harder, R Inouye, H Gleber, SC Vogt, S Robinson, I Makowski, L AF Badger, John Lal, Jyotsana Harder, Ross Inouye, Hideyo Gleber, S. Charlotte Vogt, Stefan Robinson, Ian Makowski, Lee TI Three-dimensional Imaging of Crystalline Inclusions Embedded in Intact Maize Stalks SO SCIENTIFIC REPORTS LA English DT Article ID X-RAY CRYSTALLOGRAPHY; CALCIUM-OXALATE; PLANTS; PHASE AB Mineral inclusions in biomass are attracting increased scrutiny due to their potential impact on processing methods designed to provide renewable feedstocks for the production of chemicals and fuels. These inclusions are often sculpted by the plant into shapes required to support functional roles that include the storage of specific elements, strengthening of the plant structure, and providing a defense against pathogens and herbivores. In situ characterization of these inclusions faces substantial challenges since they are embedded in an opaque, complex polymeric matrix. Here we describe the use of Bragg coherent diffraction imaging (BCDI) to study mineral inclusions within intact maize stalks. Three-dimensional BCDI data sets were collected and used to reconstruct images of mineral inclusions at 50-100 nm resolution. Asymmetries in the intensity distributions around the Bragg peaks provided detailed information about the deformation fields within these crystal particles revealing lattice defects that result in distinct internal crystal domains. C1 [Badger, John] DeltaG Technol, San Diego, CA 92122 USA. [Lal, Jyotsana; Harder, Ross; Gleber, S. Charlotte; Vogt, Stefan] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Inouye, Hideyo; Makowski, Lee] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA. [Robinson, Ian] UCL, London Ctr Nanotechnol, London WC1E 6BT, England. [Robinson, Ian] Res Complex Harwell, Oxford OX11 0FA, England. RP Makowski, L (reprint author), Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA. EM makowski@ece.neu.edu RI ID, BioCAT/D-2459-2012; Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013 OI Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513 FU Center for Direct Catalytic Conversion of Biomass; Energy Frontier Research Center; U.S. Department of Energy; Office of Science; Basic Energy Sciences [DE-SC0000997]; ERC [227711]; US Department of Energy; Office of Basic Energy Sciences; National Cancer Institute [Y1-CO-1020]; National Institute of General Medical Science [Y1-GM-1104]; National Institutes of Health [RR-08630]; U.S. Department of Energy (DOE) Office of Science; U.S. DOE [DE-AC02-06CH11357] FX Thiswork was supported as part of the Center for Direct Catalytic Conversion of Biomass to Biofuels, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0000997. I. R. was supported by ERC Advanced Grant 227711 'nanosculpture'. C3Bio is supported by the US Department of Energy, Office of Basic Energy Sciences. We would like to thank Robert F. Fischetti and David Gore for assistance in collection of the WAXS data. GM/CA CAT has been funded in whole or in part with Federal funds from the National Cancer Institute (Y1-CO-1020) and the National Institute of General Medical Science (Y1-GM-1104). BioCAT is a National Institutes of Health-supported Research Center (RR-08630). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U. S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 28 TC 0 Z9 0 U1 3 U2 18 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD OCT 3 PY 2013 VL 3 AR 2843 DI 10.1038/srep02843 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 227TA UT WOS:000325136200001 PM 24091898 ER PT J AU Liu, CJ Sun, JM Smith, C Wang, Y AF Liu, Changjun Sun, Junming Smith, Colin Wang, Yong TI A study of ZnxZryOz mixed oxides for direct conversion of ethanol to isobutene SO APPLIED CATALYSIS A-GENERAL LA English DT Article DE Isobutene; Bio-ethanol; Mixed oxide; Acid-base ID ACETONE CONVERSION; ACIDIC PROPERTIES; SURFACE-ACIDITY; HZSM-5 ZEOLITE; BIO-ETHANOL; CATALYSTS; PYRIDINE; TEMPERATURE; HYDROGEN; PROPENE AB ZnxZryOz mixed oxides were studied for direct conversion of ethanol to isobutene. Reaction conditions (temperature, residence time, ethanol molar fraction, steam to carbon ratio), catalyst composition, and pretreatment conditions were investigated, aiming at high-yield production of isobutene under industrially relevant conditions. An isobutene yield of 79% was achieved with an ethanol molar fraction of 8.3% at 475 degrees C on fresh Zn1Zr8O17 catalysts. Further durability and regeneration tests revealed that the catalyst exhibited very slow deactivation via coking formation with isobutene yield maintained above 75% for more than 10 h time-on-stream. More importantly, the catalysts activity in terms of isobutene yield can be readily recovered after in situ calcination in air at 550 degrees C for 2.5 h. XRD, TPO, IR analysis of adsorbed pyridine (IR-Py), and nitrogen sorption have been used to characterize the surface physical/chemical properties to correlate the structure and performance of the catalysts. (C) 2013 Elsevier B.V. All rights reserved. C1 [Liu, Changjun; Sun, Junming; Smith, Colin; Wang, Yong] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. [Wang, Yong] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. RP Sun, JM (reprint author), Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. EM Junming.sun@wsu.edu; Yong.Wang@pnnl.gov RI Sun, Junming/B-3019-2011; Liu, Changjun/M-3272-2013 OI Sun, Junming/0000-0002-0071-9635; Liu, Changjun/0000-0003-3735-4112 FU Archer Daniels Midland (ADM) Company; US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL) FX We gratefully acknowledge the Archer Daniels Midland (ADM) Company for the support of this work. We also acknowledge the financial support from the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Part of the research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). NR 26 TC 15 Z9 15 U1 6 U2 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-860X EI 1873-3875 J9 APPL CATAL A-GEN JI Appl. Catal. A-Gen. PD OCT 2 PY 2013 VL 467 BP 91 EP 97 DI 10.1016/j.apcata.2013.07.011 PG 7 WC Chemistry, Physical; Environmental Sciences SC Chemistry; Environmental Sciences & Ecology GA 263JC UT WOS:000327803900012 ER PT J AU Kumar, A Miller, JT Mukasyan, AS Wolf, EE AF Kumar, A. Miller, J. T. Mukasyan, A. S. Wolf, E. E. TI In situ XAS and FTIR studies of a multi-component Ni/Fe/Cu catalyst for hydrogen production from ethanol SO APPLIED CATALYSIS A-GENERAL LA English DT Article DE XAS studies; Ni/Fe/Cu catalyst; Ethanol Hydrogen ID IRON-OXIDE NANOPARTICLES; COMBUSTION SYNTHESIS; CARBON NANOTUBES; PARTICLE-SIZE; METHANOL; EXAFS; CHEMISORPTION; OXIDATION; SURFACES; NI(111) AB Multicomponent catalysts containing Ni, Fe, Cu active for ethanol reforming reactions, prepared by solution combustion synthesis are characterized by multiple techniques such as ex situ XRD, XPS, and in situ XAFS and FTIR. XRD results indicate copper to be present in the reduced state as Cu-Ni bimetal while nickel and iron are observed to be partially in a spinel NiFe2O4 structure. In situ XANES and XAFS analysis show a change in Ni, Fe and Cu oxidation states during reaction. Cu, which was fully reduced before reaction, became partly oxidized upon exposure to ethanol and oxygen. Ni is mostly (75%) reduced and does not seem to change its oxidation state during the reaction. Fe is not present in metallic form after reduction and during the reaction, but some change in the oxidation state from Fe(II) to Fe(III) occurred during the reaction. XPS and SEM images indicate the formation of carbon filament on the spent catalyst. XPS results also indicate the enrichment of surface by Fe and Cu during the reduction of the catalyst. Based on the activity and characterization results obtained, and literature review, the role of predominant phases during ethanol decomposition reaction is proposed. (C) 2013 Elsevier B.V. All rights reserved. C1 [Kumar, A.; Mukasyan, A. S.; Wolf, E. E.] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA. [Miller, J. T.] Argonne Natl Lab, Div Chem Sci, Argonne, IL 60439 USA. RP Wolf, EE (reprint author), Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA. EM ewolf@nd.edu RI BM, MRCAT/G-7576-2011; OI Kumar, Anand/0000-0003-1378-4986; Mukasyan, Alexander/0000-0001-8866-0043 FU NSF [0730190]; Notre Dame Integrated Imaging Facility; U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We gratefully acknowledge funding from NSF grant 0730190 for support of this work. This work was also partially supported by Notre Dame Integrated Imaging Facility. Use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences, under contract DE-AC02-06CH11357. NR 41 TC 14 Z9 14 U1 6 U2 76 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-860X EI 1873-3875 J9 APPL CATAL A-GEN JI Appl. Catal. A-Gen. PD OCT 2 PY 2013 VL 467 BP 593 EP 603 DI 10.1016/j.apcata.2013.07.032 PG 11 WC Chemistry, Physical; Environmental Sciences SC Chemistry; Environmental Sciences & Ecology GA 263JC UT WOS:000327803900069 ER PT J AU Malliakas, CD Chung, DY Claus, H Kanatzidis, MG AF Malliakas, Christos D. Chung, Duck Young Claus, Helmut Kanatzidis, Mercouri G. TI Superconductivity in the Narrow-Gap Semiconductor CsBi4Te6 SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID THERMOELECTRIC-MATERIAL; STRUCTURAL EVOLUTION; PHASE HOMOLOGIES; STATE; CHALCOGENIDES; TEMPERATURE; TELLURIDE; DESIGN AB Superconductivity was discovered in the narrow-gap semiconductor CsBi4Te6. A superconducting transition around 4.4 K was observed for p-type samples in temperature-dependent resistivity and magnetic susceptibility data Stoichiometric CsBi4Te6 is not a superconductor. A remarkably high critical field of similar to 10 T was estimated from the field dependent resistivity data The strongly anisotropic CsBi4Te6 system is monoclinic and the first member of a larger homologous series Cs-4[Bi2n+4Te3n+6] that exhibits unconventional superconductivity, suggesting that proper doping of the homologous series may create a novel class of superconductors from semiconductors. C1 [Malliakas, Christos D.; Chung, Duck Young; Claus, Helmut; Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Kanatzidis, MG (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM m-kanatzidis@northwestern.edu FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 24 TC 19 Z9 19 U1 5 U2 69 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 2 PY 2013 VL 135 IS 39 BP 14540 EP 14543 DI 10.1021/ja407530u PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 243EU UT WOS:000326300500019 PM 24028315 ER PT J AU Minasian, SG Keith, JM Batista, ER Boland, KS Kozimor, SA Martin, RL Shuh, DK Tyliszczak, T Vernon, LJ AF Minasian, Stefan G. Keith, Jason M. Batista, Enrique R. Boland, Kevin S. Kozimor, Stosh A. Martin, Richard L. Shuh, David K. Tyliszczak, Tolek Vernon, Louis J. TI Carbon K-Edge X-ray Absorption Spectroscopy and Time-Dependent Density Functional Theory Examination of Metal-Carbon Bonding in Metallocene Dichlorides SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ELECTRON-PARAMAGNETIC-RESONANCE; ENERGY-LOSS SPECTROSCOPY; INNER-SHELL EXCITATION; FINE-STRUCTURE NEXAFS; PHOTOELECTRON-SPECTRA; BENT METALLOCENES; ORGANOMETALLIC COMPOUNDS; GROUP-4 METALLOCENES; ORGANOTITANIUM COMPLEXES; MOLECULAR-STRUCTURES AB Metal-carbon covalence in (C5H5)(2)MCl2 (M = Ti, Zr, Hf) has been evaluated using carbon K-edge X-ray absorption spectroscopy (XAS) as well as ground state and time dependent hybrid density functional theory (DFT and TDDFT). Differences in orbital mixing were determined experimentally using, transmission XAS of thin crystalline material with a scanning transmission X-ray microscope (STXM). Moving down the periodic table (Ti to Hf) has a marked effect on the experimental transition intensities associated with the low-lying antibonding 1a(1)* and 1b(2)* orbitals. The peak intensities, which are directly related to the M-(C5H5) orbital mixing coefficients, increase from 0.08(1) and 0.26(3) for (C5H5)(2)TiCl2 to 0.31(3) and 0.75(8) for (C5H5)(2)ZrCl2, and finally to 0.54(5) and 0.83(8) for (C5H5)(2)HfCl2. The experimental trend toward increased peak intensity for transitions associated with 1a(1)* and 1b(2)* orbitals agrees with the calculated TDDFT oscillator strengths [0.10 and 0.21, (C5H5)(2)TiCl2; 0.21 and 0.73, (C5H5)(2)ZrCl2; 0.35 and 0.69, (C5H5)(2)HfCl2] and with the amount of C 2p character obtained from the Mulliken populations for the antibonding 1a(1)* and 1b(2)* orbitals [8.2 and 23.4%, (C5H5)(2)TiCl2; 15.3 and 39.7%, (C5H5)(2)ZrCl2; 20.1 and 50.9%, (C5H5)(2)HfCl2]. The excellent agreement between experiment, theory, and recent Cl K-edge XAS and DFT measurements shows that C 2p orbital mixing is enhanced for the diffuse Hf (5d) and Zr (4d) atomic orbitals in relation to the more localized Ti (3d) orbitals. These results provide insight into how changes in M Cl orbital mixing within the metallocene wedge are correlated with periodic trends in covalent bonding between the metal and the cyclopentadienide ancillary ligands. C1 [Minasian, Stefan G.; Shuh, David K.; Tyliszczak, Tolek] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Minasian, Stefan G.; Keith, Jason M.; Batista, Enrique R.; Boland, Kevin S.; Kozimor, Stosh A.; Martin, Richard L.; Vernon, Louis J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Batista, ER (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM erb@lanl.gov; stosh@lanl.gov; rlmartin@lanl.gov; dkshuh@lbl.gov RI Vernon, Louis/K-9729-2016 OI Vernon, Louis/0000-0001-5379-7488 FU Heavy Element Chemistry Program at LANL by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy; Heavy Element Chemistry Program at LBNL by the Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy [DE-AC02-05CH11231]; Condensed Phase and Interfacial Molecular Sciences Program of the aforementioned Division of the U.S. Department of Energy at LBNL [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Berkeley Actinide Postdoctoral Fellowship; Glenn T. Seaborg Institute Postdoctoral Fellowships; Director's Postdoctoral Fellowships; National Nuclear Security Administration of U.S. Department of Energy [DE-AC52-06NA25396] FX This work was supported under the Heavy Element Chemistry Program at LANL by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy, and at LBNL by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy (contract DE-AC02-05CH11231). Beam line 11.0.2 at the Advanced Light Source was supported by the Director, Office of Science, Office of Basic Energy Sciences Division of Chemical Sciences, Geosciences, and Biosciences; and the Condensed Phase and Interfacial Molecular Sciences Program of the aforementioned Division of the U.S. Department of Energy at LBNL under Contract No. DE-AC02-05CH11231. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Parts of this work were supported at LBNL by the Berkeley Actinide Postdoctoral Fellowship (S.G.M.), and at LANL by Glenn T. Seaborg Institute Postdoctoral Fellowships (S.G.M.) and Director's Postdoctoral Fellowships (J.M.K.). Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (contract DE-AC52-06NA25396). NR 93 TC 15 Z9 15 U1 0 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 EI 1520-5126 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 2 PY 2013 VL 135 IS 39 BP 14731 EP 14740 DI 10.1021/ja405844j PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 243EU UT WOS:000326300500043 PM 24047199 ER PT J AU Lin, YL Roux, B AF Lin, Yen-Lin Roux, Benoit TI Computational Analysis of the Binding Specificity of Gleevec to Abl, c-Kit, Lck, and c-Src Tyrosine Kinases SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; FREE-ENERGY CALCULATIONS; CHRONIC MYELOGENOUS LEUKEMIA; CHRONIC MYELOID-LEUKEMIA; GASTROINTESTINAL STROMAL TUMORS; HISTOGRAM ANALYSIS METHOD; BCR-ABL; BLAST CRISIS; RESTRAINING POTENTIALS; COMPUTER-SIMULATIONS AB Gleevec, a well-known cancer therapeutic agent, is an effective inhibitor of several tyrosine kinases, including Abl and c-Kit, but displays less potency to inhibit closely homologous tyrosine kinases, such as Lck and c-Src. Because many structural features of the binding site are highly conserved in these homologous kinases, the molecular determinants responsible for the binding specificity of Gleevec remain poorly understood. To address this issue, free energy perturbation molecular dynamics (FEP/MD) simulations with explicit solvent was used to compute the binding affinity of Gleevec to Abl, c-Kit, Lck, and c-Src. The results of the FEP/MD calculations are in good agreement with experiments, enabling a detailed and quantitative dissection of the absolute binding free energy in terms of various thermodynamic contributions affecting the binding specificity of Gleevec to the kinases. Dominant binding free energy contributions arises from the van der Waals dispersive interaction, compensating about two-thirds of the unfavorable free energy penalty associated with the loss of translational, rotational, and conformational freedom of the ligand upon binding. In contrast, the contributions from electrostatic and repulsive interactions nearly cancel out due to solvent effects. Furthermore, the calculations show the importance of the conformation of the kinase activation loop. Among the kinases examined, Abl provides the most favorable binding environment for Gleevec via optimal protein ligand interactions and a small free energy cost for loss of the translational, rotational, and conformational freedom upon ligand binding. The FEP/MD calculations additionally reveal that Lck and c-Src provide similar nonbinding interactions with the bound-Gleevec, but the former pays less entropic penalty for the ligand losing its translational, rotational, and conformational motions to bind, examining the empirically observed differential binding affinities of Gleevec between the two Src-family kinases. C1 [Lin, Yen-Lin; Roux, Benoit] Univ Chicago, Gordon Ctr Integrat Sci, Dept Biochem & Mol Biol, Chicago, IL 60637 USA. [Roux, Benoit] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Roux, B (reprint author), Univ Chicago, Gordon Ctr Integrat Sci, Dept Biochem & Mol Biol, 929 57th St, Chicago, IL 60637 USA. EM roux@uchicago.edu FU National Cancer Institute of the National Institutes of Health (NIH) [CAO93577]; National Science Foundation (NSF) [MCB-0920261]; NSF [OCI-1053575]; Biological Sciences Division of the University of Chicago and Argonne National Laboratory through NIH [S10 RR029030-01] FX This research was supported by the National Cancer Institute of the National Institutes of Health (NIH) through grant CAO93577 and by National Science Foundation (NSF) through grant MCB-0920261. The computations were made possible by the Extreme Science and Engineering Discovery Environment (XSEDE) supported through NSF Grant OCI-1053575 and by additional resources provided by the Computation Institute and the Biological Sciences Division of the University of Chicago and Argonne National Laboratory through NIH grant S10 RR029030-01. The authors are grateful to Dr. Yilin Meng and Dr. Yun Lao for helpful discussions and two anonymous reviewers for their constructive comments. NR 84 TC 22 Z9 22 U1 2 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 2 PY 2013 VL 135 IS 39 BP 14741 EP 14753 DI 10.1021/ja405939x PG 13 WC Chemistry, Multidisciplinary SC Chemistry GA 243EU UT WOS:000326300500044 PM 24001034 ER PT J AU Lu, GR Wu, YN Jiang, YY Wang, S Hou, YN Guan, XQ Brunzelle, J Sirinupong, N Sheng, SJ Li, CY Yang, Z AF Lu, Guorong Wu, Yanning Jiang, Yuanyuan Wang, Shuo Hou, Yuning Guan, Xiaoqing Brunzelle, Joseph Sirinupong, Nualpun Sheng, Shijie Li, Chunying Yang, Zhe TI Structural Insights into Neutrophilic Migration Revealed by the Crystal Structure of the Chemokine Receptor CXCR2 in Complex with the First PDZ Domain of NHERF1 SO PLOS ONE LA English DT Article ID TRANSMEMBRANE CONDUCTANCE REGULATOR; BINDING; SPECIFICITY; PROTEINS; CFTR; INFLAMMATION; INHIBITION; REFINEMENT; MECHANISM; PARTNERS AB Neutrophil plays an essential role in host defense against infection, but uncontrolled neutrophilic infiltration can cause inflammation and severe epithelial damage. We recently showed that CXCR2 formed a signaling complex with NHERF1 and PLC-2, and that the formation of this complex was required for intracellular calcium mobilization and neutrophilic transepithelial migration. To uncover the structural basis of the complex formation, we report here the crystal structure of the NHERF1 PDZ1 domain in complex with the C-terminal sequence of CXCR2 at 1.16 angstrom resolution. The structure reveals that the CXCR2 peptide binds to PDZ1 in an extended conformation with the last four residues making specific side chain interactions. Remarkably, comparison of the structure to previously studied PDZ1 domains has allowed the identification of PDZ1 ligand-specific interactions and the mechanisms that govern PDZ1 target selection diversities. In addition, we show that CXCR2 can bind both NHERF1 PDZ1 and PDZ2 in pulldown experiments, consistent with the observation that the peptide binding pockets of these two PDZ domains are highly structurally conserved. The results of this study therefore provide structural basis for the CXCR2-mediated neutrophilic migration and could have important clinical applications in the prevention and treatment of numerous neutrophil-dependent inflammatory disorders. C1 [Lu, Guorong; Wu, Yanning; Jiang, Yuanyuan; Wang, Shuo; Hou, Yuning; Guan, Xiaoqing; Li, Chunying; Yang, Zhe] Wayne State Univ, Dept Biochem & Mol Biol, Sch Med, Detroit, MI 48202 USA. [Brunzelle, Joseph] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Sirinupong, Nualpun] Prince Songkla Univ, Nutraceut & Funct Food Res & Dev Ctr, Hat Yai, Songkhla, Thailand. [Sheng, Shijie] Wayne State Univ, Sch Med, Dept Pathol, Detroit, MI 48201 USA. RP Li, CY (reprint author), Wayne State Univ, Dept Biochem & Mol Biol, Sch Med, Detroit, MI 48202 USA. EM cl@med.wayne.edu; zyang@med.wayne.edu FU Leukemia Research Foundation; Aplastic Anemia & MDS International Foundation; Elsa U. Pardee Foundation; American Heart Association FX This study was supported by the Leukemia Research Foundation (to ZY) and the Aplastic Anemia & MDS International Foundation (to ZY), as well as the Elsa U. Pardee Foundation (to CL) and American Heart Association (to CL). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 45 TC 9 Z9 9 U1 0 U2 6 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD OCT 2 PY 2013 VL 8 IS 10 AR e76219 DI 10.1371/journal.pone.0076219 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 231RG UT WOS:000325434500053 PM 24098448 ER PT J AU Cai, H Dunn, JB Wang, ZC Han, J Wang, MQ AF Cai, Hao Dunn, Jennifer B. Wang, Zhichao Han, Jeongwoo Wang, Michael Q. TI Life-cycle energy use and greenhouse gas emissions of production of bioethanol from sorghum in the United States SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Grain sorghum; Sweet sorghum; Forage sorghum; Ethanol; Life-cycle analysis; Greenhouse gas emissions ID LAND-USE CHANGE; SOIL ORGANIC-CARBON; SWEET SORGHUM; ETHANOL-PRODUCTION; CELLULOSIC ETHANOL; GRAIN-SORGHUM; STALK JUICE; FERMENTATION; FEEDSTOCK; CORN AB Background: The availability of feedstock options is a key to meeting the volumetric requirement of 136.3 billion liters of renewable fuels per year beginning in 2022, as required in the US 2007 Energy Independence and Security Act. Life-cycle greenhouse gas (GHG) emissions of sorghum-based ethanol need to be assessed for sorghum to play a role in meeting that requirement. Results: Multiple sorghum-based ethanol production pathways show diverse well-to-wheels (WTW) energy use and GHG emissions due to differences in energy use and fertilizer use intensity associated with sorghum growth and differences in the ethanol conversion processes. All sorghum-based ethanol pathways can achieve significant fossil energy savings. Relative to GHG emissions from conventional gasoline, grain sorghum-based ethanol can reduce WTW GHG emissions by 35% or 23%, respectively, when wet or dried distillers grains with solubles (DGS) is the co-product and fossil natural gas (FNG) is consumed as the process fuel. The reduction increased to 56% or 55%, respectively, for wet or dried DGS co-production when renewable natural gas (RNG) from anaerobic digestion of animal waste is used as the process fuel. These results do not include land-use change (LUC) GHG emissions, which we take as negligible. If LUC GHG emissions for grain sorghum ethanol as estimated by the US Environmental Protection Agency (EPA) are included (26 g CO(2)e/MJ), these reductions when wet DGS is co-produced decrease to 7% or 29% when FNG or RNG is used as the process fuel. Sweet sorghum-based ethanol can reduce GHG emissions by 71% or 72% without or with use of co-produced vinasse as farm fertilizer, respectively, in ethanol plants using only sugar juice to produce ethanol. If both sugar and cellulosic bagasse were used in the future for ethanol production, an ethanol plant with a combined heat and power (CHP) system that supplies all process energy can achieve a GHG emission reduction of 70% or 72%, respectively, without or with vinasse fertigation. Forage sorghum-based ethanol can achieve a 49% WTW GHG emission reduction when ethanol plants meet process energy demands with CHP. In the case of forage sorghum and an integrated sweet sorghum pathway, the use of a portion of feedstock to fuel CHP systems significantly reduces fossil fuel consumption and GHG emissions. Conclusions: This study provides new insight into life-cycle energy use and GHG emissions of multiple sorghum-based ethanol production pathways in the US. Our results show that adding sorghum feedstocks to the existing options for ethanol production could help in meeting the requirements for volumes of renewable, advanced and cellulosic bioethanol production in the US required by the EPA's Renewable Fuel Standard program. C1 [Cai, Hao; Dunn, Jennifer B.; Wang, Zhichao; Han, Jeongwoo; Wang, Michael Q.] Argonne Natl Lab, Div Energy Syst, Syst Assessment Grp, Argonne, IL 60439 USA. RP Cai, H (reprint author), Argonne Natl Lab, Div Energy Syst, Syst Assessment Grp, 9700 S Cass Ave, Argonne, IL 60439 USA. EM hcai@anl.gov RI Cai, Hao/A-1975-2016 FU Bioenergy Technology Office of the Office of Energy Efficiency and Renewable Energy, US Department of Energy [DE-AC02-06CH11357] FX This study was supported by the Bioenergy Technology Office of the Office of Energy Efficiency and Renewable Energy, US Department of Energy, under Contract DE-AC02-06CH11357. We are grateful to Zia Haq, Kristen Johnson, and Alicia Lindauer of that office for their support and guidance. We are grateful for technical suggestions and clarifications by Drs. Travis Thorson and Steve Maliszewski from USDA NASS, Mr. Scott Staggenborg from Chromatin Inc., and Greg Krissek from ICM, Inc. on sorghum farming and sorghum-based ethanol production-related issues. We thank Prof. Vara Prasad from Kansas State University for sharing us with their data on sorghum farming. The authors are solely responsible for the contents of this article. NR 49 TC 8 Z9 9 U1 6 U2 79 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD OCT 2 PY 2013 VL 6 AR 141 DI 10.1186/1754-6834-6-141 PG 15 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 231DG UT WOS:000325392700001 PM 24088388 ER PT J AU Jia, JY Teaney, D AF Jia, Jiangyong Teaney, Derek TI Study on initial geometry fluctuations via participant plane correlations in heavy ion collisions: part SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID NUCLEAR COLLISIONS AB Further investigation of the participant plane correlations within a Glauber model framework is presented, focusing on correlations between three or four participant planes of different order. A strong correlation is observed for cos(2 Phi(*)(2) + 3 Phi(*)(3) - 5 Phi(*)(5) ) which is a reflection of the elliptic shape of the overlap region. The correlation between the corresponding experimental event plane angles can be easily measured. Strong correlations of similar geometric origin are also observed for cos(2 Phi(2)* + 4 Phi(*)(4) - 6 Phi(*)(6)), cos(2 Phi(*)(2) - 3 Phi(*)(3) - 4 Phi(*)(4) + 5 Phi(*)(5)), cos(6 Phi(*)(2) + 3 Phi(*)(3) - 4 Phi(*)(4) - 5 Phi(*)(5)), cos(Phi(*)(1) - 2 Phi(*)(2) - 3 Phi(*)(3) + 4 Phi(*)(4)), cos(Phi(*)(1) + 6 Phi(*)(2) - 3 Phi(*)(3) - 4 Phi(*)(4)), and cos(Phi(*)(1) + 2 Phi(*)(2) + 3 Phi(*)(3) - 6 Phi(*)(6)), which are also measurable. Experimental measurements of the corresponding event plane correlators in heavy ion collisions at RHIC and the LHC may improve our understanding of the physics underlying the measured higher order flow harmonics. C1 [Jia, Jiangyong] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Jia, Jiangyong] Brookhaven Natl Lab, Dept Phys, Upton, NY 11796 USA. [Teaney, Derek] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Jia, JY (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM jjia@bnl.gov FU NSF [PHY-1305037, PHY-1019387]; DOE [DE-FG02-08ER41540] FX This research is supported by NSF under grant number PHY-1305037, PHY-1019387 and DOE under grant number DE-FG02-08ER41540. NR 16 TC 9 Z9 9 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 J9 EUR PHYS J C JI Eur. Phys. J. C PD OCT 2 PY 2013 VL 73 IS 10 AR 2558 DI 10.1140/epjc/s10052-013-2558-8 PG 7 WC Physics, Particles & Fields SC Physics GA 230QJ UT WOS:000325356900001 ER PT J AU Ang, R Nakayama, K Yin, WG Sato, T Lei, HC Petrovic, C Takahashi, T AF Ang, R. Nakayama, K. Yin, W. -G. Sato, T. Lei, Hechang Petrovic, C. Takahashi, T. TI Electronic structure of the iron chalcogenide KFeAgTe2 revealed by angle-resolved photoemission spectroscopy SO PHYSICAL REVIEW B LA English DT Article ID SUPERCONDUCTIVITY; GAP; INSULATOR; CS AB We have performed angle-resolved photoemission spectroscopy (ARPES) of KFeAgTe2, and revealed the absence of band crossing at the Fermi level (E-F) indicative of the unconventional insulating nature of this material. Comparison of the ARPES-derived band dispersions with the first-principles calculations based on local density approximation and the inclusion of electron correlation U demonstrated that the ground state of KFeAgTe2 is not a simple band insulator. And also, our fitting result on the ARPES experimental density of states near E-F plausibly excludes the possibility of Anderson insulator. We suggest that KFeAgTe2 is most likely a Mott insulator or a Hund insulator, providing a deep insight into the insulating ground state. C1 [Ang, R.; Takahashi, T.] Tohoku Univ, Adv Inst Mat Res, WPI Res Ctr, Sendai, Miyagi 9808577, Japan. [Nakayama, K.; Sato, T.; Takahashi, T.] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808577, Japan. [Yin, W. -G.; Lei, Hechang; Petrovic, C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Yin, WG (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM wyin@bnl.gov; t.takahashi@arpes.phys.tohoku.ac.jp RI Yin, Weiguo/A-9671-2014; Ang, Ran/D-3020-2013; Takahashi, Takashi/E-5080-2010; Nakayama, Kosuke/F-7897-2011; Sato, Takafumi/E-5094-2010; Petrovic, Cedomir/A-8789-2009; LEI, Hechang/H-3278-2016 OI Yin, Weiguo/0000-0002-4965-5329; Ang, Ran/0000-0001-6402-064X; Petrovic, Cedomir/0000-0001-6063-1881; FU Japan Society for the Promotion of Science; Japan Science and Technology Agency-Core Research for Evolutional Science and Technology; Ministry of Education, Culture, Sports, Science, and Technology of Japan; WPI Research Center, Advanced Institute for Materials Research of Japan; US DOE, Office of Basic Energy Science [DE-AC02-98CH10886]; Center for Emergent Superconductivity; Energy Frontier Research Center; US DOE, Office for Basic Energy Science FX This work was supported by grants from the Japan Society for the Promotion of Science; Japan Science and Technology Agency-Core Research for Evolutional Science and Technology; Ministry of Education, Culture, Sports, Science, and Technology of Japan; WPI Research Center, Advanced Institute for Materials Research of Japan; US DOE, Office of Basic Energy Science, under Contract No. DE-AC02-98CH10886; and in part by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the US DOE, Office for Basic Energy Science (H.L. and C.P). NR 37 TC 2 Z9 2 U1 4 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 2 PY 2013 VL 88 IS 15 AR 155102 DI 10.1103/PhysRevB.88.155102 PG 5 WC Physics, Condensed Matter SC Physics GA 228JT UT WOS:000325183000001 ER PT J AU Aaltonen, T Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Appel, JA Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Auerbach, B Aurisano, A Azfar, F Badgett, W Bae, T Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauce, M Bedeschi, F Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Bland, KR Blumenfeld, B Bocci, A Bodek, A Bortoletto, D Boudreau, J Boveia, A Brigliadori, L Bromberg, C Brucken, E Budagov, J Budd, HS Burkett, K Busetto, G Bussey, P Butti, P Buzatu, A Calamba, A Camarda, S Campanelli, M Canelli, F Carls, B Carlsmith, D Carosi, R Carrillo, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chen, YC Chertok, M Chiarelli, G Chlachidze, G Cho, K Chokheli, D Ciocci, MA Clark, A Clarke, C Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Cremonesi, M Cruz, D Cuevas, J Culbertson, R d'Ascenzo, N Datta, M De Barbaro, P Demortier, L Deninno, M d'Errico, M Devoto, F Di Canto, A Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dorigo, M Driutti, A Ebina, K Edgar, R Elagin, A Erbacher, R Errede, S Esham, B Eusebi, R Farrington, S Ramos, JPF Field, R Flanagan, G Forrest, R Franklin, M Freeman, JC Frisch, H Funakoshi, Y Garfinkel, AF Garosi, P Gerberich, H Gerchtein, E Giagu, S Giakoumopoulou, V Gibson, K Ginsburg, CM Giokaris, N Giromini, P Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldin, D Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Lopez, OG Gorelov, I Goshaw, AT Goulianos, K Gramellini, E Grinstein, S Grosso-Pilcher, C Group, RC da Costa, JG Hahn, SR Han, JY Happacher, F Hara, K Hare, M Harr, RF Harrington-Taber, T Hatakeyama, K Hays, C Heinrich, J Herndon, M Hocker, A Hong, Z Hopkins, W Hou, S Hughes, RE Husemann, U Hussein, M Huston, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jindariani, S Jones, M Joo, KK Jun, SY Junk, TR Kambeitz, M Kamon, T Karchin, PE Kasmi, A Kato, Y Ketchum, W Keung, J Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YJ Kim, YK Kimura, N Kirby, M Knoepfel, K Kondo, K Kong, DJ Konigsberg, J Kotwal, AV Kreps, M Kroll, J Kruse, M Kuhr, T Kurata, M Laasanen, AT Lammel, S Lancaster, M Lannon, K Latino, G Lee, HS Lee, JS Leo, S Leone, S Lewis, JD Limosani, A Lipeles, E Lister, A Liu, H Liu, Q Liu, T Lockwitz, S Loginov, A Luca, A Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R Madrak, R Maestro, P Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, P Martinez, M Matera, K Mattson, ME Mazzacane, A Mazzanti, P McNulty, R Mehta, A Mehtala, P Mesropian, C Miao, T Mietlicki, D Mitra, A Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, MJ Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakano, I Napier, A Nett, J Neu, C Nigmanov, T Nodulman, L Noh, SY Norniella, O Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Ortolan, L Pagliarone, C Palencia, E Palni, P Papadimitriou, V Parker, W Pauletta, G Paulini, M Paus, C Phillips, TJ Piacentino, G Pianori, E Pilot, J Pitts, K Plager, C Pondrom, L Poprocki, S Potamianos, K Pranko, A Prokoshin, F Ptohos, F Punzi, G Ranjan, N Fernandez, IR Renton, P Rescigno, M Rimondi, F Ristori, L Robson, A Rodriguez, T Rolli, S Ronzani, M Roser, R Rosner, JL Ruffini, F Ruiz, A Russ, J Rusu, V Sakumoto, WK Sakurai, Y Santi, L Sato, K Saveliev, V Savoy-Navarro, A Schlabach, P Schmidt, EE Schwarz, T Scodellaro, L Scuri, F Seidel, S Seiya, Y Semenov, A Sforza, F Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shochet, M Shreyber-Tecker, I Simonenko, A Sinervo, P Sliwa, K Smith, JR Snider, FD Song, H Sorin, V Stancari, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Sudo, Y Sukhanov, A Suslov, I Takemasa, K Takeuchi, Y Tang, J Tecchio, M Teng, PK Thom, J Thomson, E Thukral, V Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Ukegawa, F Uozumi, S Vazquez, F Velev, G Vellidis, C Vernieri, C Vidal, M Vilar, R Vizan, J Vogel, M Volpi, G Wagner, P Wallny, R Wang, SM Warburton, A Waters, D Wester, WC Whiteson, D Wicklund, AB Wilbur, S Williams, HH Wilson, JS Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, H Wright, T Wu, X Wu, Z Yamamoto, K Yamato, D Yang, T Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Zanetti, AM Zeng, Y Zhou, C Zucchelli, S AF Aaltonen, T. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Appel, J. A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Auerbach, B. Aurisano, A. Azfar, F. Badgett, W. Bae, T. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauce, M. Bedeschi, F. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Bland, K. R. Blumenfeld, B. Bocci, A. Bodek, A. Bortoletto, D. Boudreau, J. Boveia, A. Brigliadori, L. Bromberg, C. Brucken, E. Budagov, J. Budd, H. S. Burkett, K. Busetto, G. Bussey, P. Butti, P. Buzatu, A. Calamba, A. Camarda, S. Campanelli, M. Canelli, F. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Cho, K. Chokheli, D. Ciocci, M. A. Clark, A. Clarke, C. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Cremonesi, M. Cruz, D. Cuevas, J. Culbertson, R. d'Ascenzo, N. Datta, M. De Barbaro, P. Demortier, L. Deninno, M. d'Errico, M. Devoto, F. Di Canto, A. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dorigo, M. Driutti, A. Ebina, K. Edgar, R. Elagin, A. Erbacher, R. Errede, S. Esham, B. Eusebi, R. Farrington, S. Fernandez Ramos, J. P. Field, R. Flanagan, G. Forrest, R. Franklin, M. Freeman, J. C. Frisch, H. Funakoshi, Y. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerchtein, E. Giagu, S. Giakoumopoulou, V. Gibson, K. Ginsburg, C. M. Giokaris, N. Giromini, P. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldin, D. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez Lopez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gramellini, E. Grinstein, S. Grosso-Pilcher, C. Group, R. C. da Costa, J. Guimaraes Hahn, S. R. Han, J. Y. Happacher, F. Hara, K. Hare, M. Harr, R. F. Harrington-Taber, T. Hatakeyama, K. Hays, C. Heinrich, J. Herndon, M. Hocker, A. Hong, Z. Hopkins, W. Hou, S. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jindariani, S. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kambeitz, M. Kamon, T. Karchin, P. E. Kasmi, A. Kato, Y. Ketchum, W. Keung, J. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. J. Kim, Y. K. Kimura, N. Kirby, M. Knoepfel, K. Kondo, K. Kong, D. J. Konigsberg, J. Kotwal, A. V. Kreps, M. Kroll, J. Kruse, M. Kuhr, T. Kurata, M. Laasanen, A. T. Lammel, S. Lancaster, M. Lannon, K. Latino, G. Lee, H. S. Lee, J. S. Leo, S. Leone, S. Lewis, J. D. Limosani, A. Lipeles, E. Lister, A. Liu, H. Liu, Q. Liu, T. Lockwitz, S. Loginov, A. Luca, A. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. Madrak, R. Maestro, P. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, P. Martinez, M. Matera, K. Mattson, M. E. Mazzacane, A. Mazzanti, P. McNulty, R. Mehta, A. Mehtala, P. Mesropian, C. Miao, T. Mietlicki, D. Mitra, A. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Mukherjee, A. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakano, I. Napier, A. Nett, J. Neu, C. Nigmanov, T. Nodulman, L. Noh, S. Y. Norniella, O. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Ortolan, L. Pagliarone, C. Palencia, E. Palni, P. Papadimitriou, V. Parker, W. Pauletta, G. Paulini, M. Paus, C. Phillips, T. J. Piacentino, G. Pianori, E. Pilot, J. Pitts, K. Plager, C. Pondrom, L. Poprocki, S. Potamianos, K. Pranko, A. Prokoshin, F. Ptohos, F. Punzi, G. Ranjan, N. Redondo Fernandez, I. Renton, P. Rescigno, M. Rimondi, F. Ristori, L. Robson, A. Rodriguez, T. Rolli, S. Ronzani, M. Roser, R. Rosner, J. L. Ruffini, F. Ruiz, A. Russ, J. Rusu, V. Sakumoto, W. K. Sakurai, Y. Santi, L. Sato, K. Saveliev, V. Savoy-Navarro, A. Schlabach, P. Schmidt, E. E. Schwarz, T. Scodellaro, L. Scuri, F. Seidel, S. Seiya, Y. Semenov, A. Sforza, F. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shochet, M. Shreyber-Tecker, I. Simonenko, A. Sinervo, P. Sliwa, K. Smith, J. R. Snider, F. D. Song, H. Sorin, V. Stancari, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Sudo, Y. Sukhanov, A. Suslov, I. Takemasa, K. Takeuchi, Y. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thomson, E. Thukral, V. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Ukegawa, F. Uozumi, S. Vazquez, F. Velev, G. Vellidis, C. Vernieri, C. Vidal, M. Vilar, R. Vizan, J. Vogel, M. Volpi, G. Wagner, P. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Wester, W. C., III Whiteson, D. Wicklund, A. B. Wilbur, S. Williams, H. H. Wilson, J. S. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, H. Wright, T. Wu, X. Wu, Z. Yamamoto, K. Yamato, D. Yang, T. Yang, U. K. Yang, Y. C. Yao, W-M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Zanetti, A. M. Zeng, Y. Zhou, C. Zucchelli, S. CA CDF Collaboration TI Indirect measurement of sin(2)theta(W) (M-W) using e(+)e(-) pairs in the Z-boson region with p(p)over-bar collisions at a center-of-momentum energy of 1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID ELECTROMAGNETIC CALORIMETER; SEMIANALYTICAL PROGRAM; RADIATIVE-CORRECTIONS; HADRON CALORIMETER; MONTE-CARLO; UPGRADE; ANNIHILATION; COLLIDERS; ZFITTER; PHOTOS AB Drell-Yan lepton pairs are produced in the process p (p) over bar -> e(+)e(-) + X through an intermediate gamma*/Z boson. The lepton angular distributions are used to provide information on the electroweak-mixing parameter sin(2)theta(W) via its observable effective-leptonic sisin(2)theta(W), or sin(2)theta(lept)(eff). A new method to infer sin(2)theta(W) or, equivalently, the W-boson mass MW in the on-shell scheme, is developed and tested using a previous CDF Run II measurement of angular distributions from electron pairs in a sample corresponding to 2.1 fb(-1) of integrated luminosity from p (p) over bar collisions at a center-of-momentum energy of 1.96 TeV. The value of ssin(2)theta(lept)(eff) is found to be 0.2328 +/- 0.0011. Within a specified context of the standard model, this results in sin(2)theta(W) = 0.2246 +/- 0.0011, which corresponds to a W-boson mass of 80.297 +/- 0.055 GeV/c2, in agreement with previous determinations in electron-position collisions and at the Tevatron collider. C1 [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Auerbach, B.; Nodulman, L.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.] Univ Athens, GR-15771 Athens, Greece. [Camarda, S.; Cavalli-Sforza, M.; Grinstein, S.; Martinez, M.; Ortolan, L.; Sorin, V.] Univ Autonoma Barcelona, ICREA, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Bland, K. R.; Dittmann, J. R.; Hatakeyama, K.; Kasmi, A.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Gramellini, E.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Shalhout, S. Z.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Casal, B.; Cuevas, J.; Gomez, G.; Palencia, E.; Ruiz, A.; Scodellaro, L.; Vilar, R.; Vizan, J.] Univ Cantabria, Inst Fis Cantabria, CSIC, E-39005 Santander, Spain. [Calamba, A.; Jang, D.; Jun, S. Y.; Paulini, M.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Boveia, A.; Canelli, F.; Frisch, H.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Rosner, J. L.; Shochet, M.; Tang, J.; Wilbur, S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Slovak Acad Sci, Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Goshaw, A. T.; Kotwal, A. V.; Kruse, M.; Limosani, A.; Oh, S. H.; Phillips, T. J.; Yu, G. B.; Zeng, Y.; Zhou, C.] Duke Univ, Durham, NC 27708 USA. [Anastassov, A.; Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Behari, S.; Beretvas, A.; Burkett, K.; Canelli, F.; Chlachidze, G.; Convery, M. E.; Corbo, M.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; Di Ruzza, B.; Freeman, J. C.; Gerchtein, E.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harrington-Taber, T.; Hocker, A.; Hopkins, W.; James, E.; Jayatilaka, B.; Jindariani, S.; Junk, T. R.; Kilminster, B.; Kirby, M.; Knoepfel, K.; Lammel, S.; Lewis, J. D.; Liu, T.; Lukens, P.; Madrak, R.; Mazzacane, A.; Miao, T.; Moed, S.; Moon, C. S.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Poprocki, S.; Ristori, L.; Roser, R.; Rusu, V.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Snider, F. D.; Stancari, M.; Stentz, D.; Sukhanov, A.; Thom, J.; Tonelli, D.; Torretta, D.; Velev, G.; Vellidis, C.; Wester, W. C., III; Wilson, P.; Wittich, P.; Wolbers, S.; Yang, T.; Yeh, G. P.; Yi, K.; Yoh, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Konigsberg, J.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Luca, A.; Ptohos, F.; Torre, S.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Flanagan, G.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Buzatu, A.; Robson, A.; St Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Catastini, P.; Franklin, M.; da Costa, J. Guimaraes] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Carls, B.; Cavaliere, V.; Errede, S.; Esham, B.; Gerberich, H.; Matera, K.; Norniella, O.; Pitts, K.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Blumenfeld, B.; Giurgiu, G.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Kambeitz, M.; Kreps, M.; Kuhr, T.; Lueck, J.; Muller, Th.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Ewha Womans Univ, Seoul 120750, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Lujan, P.; Lys, J.; Potamianos, K.; Pranko, A.; Yao, W-M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [D'Onofrio, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Campanelli, M.; Cerrito, L.; Lancaster, M.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez Ramos, J. P.; Gonzalez Lopez, O.; Redondo Fernandez, I.] Ctr Invest Energet Medioambient & Tecnol, E-28040 Madrid, Spain. [Gomez-Ceballos, G.; Goncharov, M.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Edgar, R.; Mietlicki, D.; Schwarz, T.; Tecchio, M.; Wilson, J. S.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Hussein, M.; Huston, J.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber-Tecker, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Palni, P.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Hughes, R. E.; Lannon, K.; Pilot, J.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Yamamoto, K.; Yamato, D.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Oakes, L.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bauce, M.; Busetto, G.; d'Errico, M.; Lucchesi, D.; Totaro, P.] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Bauce, M.; Busetto, G.; d'Errico, M.; Lucchesi, D.] Univ Padua, I-35131 Padua, Italy. [Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Pianori, E.; Rodriguez, T.; Thomson, E.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Butti, P.; Carosi, R.; Chiarelli, G.; Ciocci, M. A.; Cremonesi, M.; Di Canto, A.; Donati, S.; Garosi, P.; Introzzi, G.; Latino, G.; Leo, S.; Leone, S.; Maestro, P.; Marino, P.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Ronzani, M.; Ruffini, F.; Scuri, F.; Sforza, F.; Trovato, M.; Vernieri, C.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Butti, P.; Di Canto, A.; Donati, S.; Punzi, G.; Ronzani, M.; Sforza, F.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Ciocci, M. A.; Garosi, P.; Latino, G.; Maestro, P.; Ruffini, F.] Univ Siena, I-56127 Pisa, Italy. [Marino, P.; Morello, M. J.; Trovato, M.; Vernieri, C.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Introzzi, G.] INFN Pavia, I-27100 Pavia, Italy. [Introzzi, G.] Univ Pavia, I-27100 Pavia, Italy. [Boudreau, J.; Gibson, K.; Nigmanov, T.; Shepard, P. F.; Song, H.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Barnes, V. E.; Bortoletto, D.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Liu, Q.; Ranjan, N.; Vidal, M.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Budd, H. S.; De Barbaro, P.; Han, J. Y.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA. [Giagu, S.; Iori, M.; Margaroli, F.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Asaadi, J.; Aurisano, A.; Cruz, D.; Elagin, A.; Eusebi, R.; Goldin, D.; Hong, Z.; Kamon, T.; Nett, J.; Thukral, V.; Toback, D.] Texas A&M Univ, Mitchell Inst Fundamental Phys & Astron, College Stn, TX 77843 USA. [Casarsa, M.; Cauz, D.; Dorigo, M.; Driutti, A.; Pagliarone, C.; Pauletta, G.; Santi, L.; Zanetti, A. M.] Ist Nazl Fis Nucl Trieste Udine, I-34127 Trieste, Italy. [Dorigo, M.] Univ Trieste, I-34127 Trieste, Italy. [Cauz, D.; Pauletta, G.; Santi, L.] Univ Udine, I-33100 Udine, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Sato, K.; Shimojima, M.; Sudo, Y.; Takemasa, K.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.] Tufts Univ, Medford, MA 02155 USA. [Group, R. C.; Liu, H.; Neu, C.; Oksuzian, I.] Univ Virginia, Charlottesville, VA 22906 USA. [Arisawa, T.; Ebina, K.; Funakoshi, Y.; Kimura, N.; Kondo, K.; Naganoma, J.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Clarke, C.; Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Herndon, M.; Parker, W.; Pondrom, L.] Univ Wisconsin, Madison, WI 53706 USA. [Husemann, U.; Lockwitz, S.; Loginov, A.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Warburton, Andreas/N-8028-2013; ciocci, maria agnese /I-2153-2015; Kim, Soo-Bong/B-7061-2014; Robson, Aidan/G-1087-2011; maestro, paolo/E-3280-2010; Chiarelli, Giorgio/E-8953-2012; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Punzi, Giovanni/J-4947-2012; Grinstein, Sebastian/N-3988-2014; Russ, James/P-3092-2014; vilar, rocio/P-8480-2014; Cavalli-Sforza, Matteo/H-7102-2015; Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Marino, Pietro/N-7030-2015; song, hao/I-2782-2012; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Paulini, Manfred/N-7794-2014 OI Warburton, Andreas/0000-0002-2298-7315; ciocci, maria agnese /0000-0003-0002-5462; maestro, paolo/0000-0002-4193-1288; Chiarelli, Giorgio/0000-0001-9851-4816; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Punzi, Giovanni/0000-0002-8346-9052; Grinstein, Sebastian/0000-0002-6460-8694; Russ, James/0000-0001-9856-9155; Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924; Marino, Pietro/0000-0003-0554-3066; song, hao/0000-0002-3134-782X; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Paulini, Manfred/0000-0002-6714-5787 FU U.S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean World Class University Program; National Research Foundation of Korea; Science and Technology Facilities Council; Royal Society, UK; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio, Spain; Slovak RD Agency; Academy of Finland; Australian Research Council (ARC); EU community Marie Curie Fellowship [302103] FX We thank T. Riemann for useful discussions and help on ZFITTER. We thank D. Wackeroth for useful discussions and help on the ZGRAD2 calculation. We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; the Australian Research Council (ARC); and the EU community Marie Curie Fellowship contract 302103. NR 39 TC 12 Z9 12 U1 2 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT 2 PY 2013 VL 88 IS 7 AR 072002 DI 10.1103/PhysRevD.88.072002 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 228FC UT WOS:000325170200001 ER PT J AU Androic, D Armstrong, DS Asaturyan, A Averett, T Balewski, J Beaufait, J Beminiwattha, RS Benesch, J Benmokhtar, F Birchall, J Carlini, RD Cates, GD Cornejo, JC Covrig, S Dalton, MM Davis, CA Deconinck, W Diefenbach, J Dowd, JF Dunne, JA Dutta, D Duvall, WS Elaasar, M Falk, WR Finn, JM Forest, T Gaskell, D Gericke, MTW Grames, J Gray, VM Grimm, K Guo, F Hoskins, JR Johnston, K Jones, D Jones, M Jones, R Kargiantoulakis, M King, PM Korkmaz, E Kowalski, S Leacock, J Leckey, J Lee, AR Lee, JH Lee, L MacEwan, S Mack, D Magee, JA Mahurin, R Mammei, J Martin, JW McHugh, MJ Meekins, D Mei, J Michaels, R Micherdzinska, A Mkrtchyan, A Mkrtchyan, H Morgan, N Myers, KE Narayan, A Ndukum, LZ Nelyubin, V Nuruzzaman van Oers, WTH Opper, AK Page, SA Pan, J Paschke, KD Phillips, SK Pitt, ML Poelker, M Rajotte, JF Ramsay, WD Roche, J Sawatzky, B Seva, T Shabestari, MH Silwal, R Simicevic, N Smith, GR Solvignon, P Spayde, DT Subedi, A Subedi, R Suleiman, R Tadevosyan, V Tobias, WA Tvaskis, V Waidyawansa, B Wang, P Wells, SP Wood, SA Yang, S Young, RD Zhamkochyan, S AF Androic, D. Armstrong, D. S. Asaturyan, A. Averett, T. Balewski, J. Beaufait, J. Beminiwattha, R. S. Benesch, J. Benmokhtar, F. Birchall, J. Carlini, R. D. Cates, G. D. Cornejo, J. C. Covrig, S. Dalton, M. M. Davis, C. A. Deconinck, W. Diefenbach, J. Dowd, J. F. Dunne, J. A. Dutta, D. Duvall, W. S. Elaasar, M. Falk, W. R. Finn, J. M. Forest, T. Gaskell, D. Gericke, M. T. W. Grames, J. Gray, V. M. Grimm, K. Guo, F. Hoskins, J. R. Johnston, K. Jones, D. Jones, M. Jones, R. Kargiantoulakis, M. King, P. M. Korkmaz, E. Kowalski, S. Leacock, J. Leckey, J. Lee, A. R. Lee, J. H. Lee, L. MacEwan, S. Mack, D. Magee, J. A. Mahurin, R. Mammei, J. Martin, J. W. McHugh, M. J. Meekins, D. Mei, J. Michaels, R. Micherdzinska, A. Mkrtchyan, A. Mkrtchyan, H. Morgan, N. Myers, K. E. Narayan, A. Ndukum, L. Z. Nelyubin, V. Nuruzzaman van Oers, W. T. H. Opper, A. K. Page, S. A. Pan, J. Paschke, K. D. Phillips, S. K. Pitt, M. L. Poelker, M. Rajotte, J. F. Ramsay, W. D. Roche, J. Sawatzky, B. Seva, T. Shabestari, M. H. Silwal, R. Simicevic, N. Smith, G. R. Solvignon, P. Spayde, D. T. Subedi, A. Subedi, R. Suleiman, R. Tadevosyan, V. Tobias, W. A. Tvaskis, V. Waidyawansa, B. Wang, P. Wells, S. P. Wood, S. A. Yang, S. Young, R. D. Zhamkochyan, S. CA Qweak Collaboration TI First Determination of the Weak Charge of the Proton SO PHYSICAL REVIEW LETTERS LA English DT Article ID STRANGE FORM-FACTORS; SYMMETRY BREAKING; NEUTRAL-CURRENT; ANAPOLE MOMENT; NUCLEON; SCATTERING; CESIUM; MODEL AB The Q(weak) experiment has measured the parity-violating asymmetry in (e) over right arrowp elastic scattering at Q(2) = 0.025 (GeV/c)(2), employing 145 mu A of 89% longitudinally polarized electrons on a 34.4 cm long liquid hydrogen target at Jefferson Lab. The results of the experiment's commissioning run, constituting approximately 4% of the data collected in the experiment, are reported here. From these initial results, the measured asymmetry is A(ep) = -279 +/- 35 (stat) +/- 31 (syst) ppb, which is the smallest and most precise asymmetry ever measured in (e) over right arrowp scattering. The small Q(2) of this experiment has made possible the first determination of the weak charge of the proton Q(W)(p) by incorporating earlier parity-violating electron scattering (PVES) data at higher Q(2) to constrain hadronic corrections. The value of Q(W)(p) obtained in this way is Q(W)(p) (PVES) = 0.064 +/- 0.012, which is in good agreement with the standard model prediction of Q(W)(p) (SM) = 0.0710 +/- 0.0007. When this result is further combined with the Cs atomic parity violation (APV) measurement, significant constraints on the weak charges of the up and down quarks can also be extracted. That PVES + APV analysis reveals the neutron's weak charge to be Q(W)(n) (PVES + APV) = -0.975 +/- 0.010. C1 [Androic, D.; Seva, T.] Univ Zagreb, HR-10002 Zagreb, Croatia. [Armstrong, D. S.; Averett, T.; Carlini, R. D.; Cornejo, J. C.; Deconinck, W.; Dowd, J. F.; Finn, J. M.; Gray, V. M.; Hoskins, J. R.; Leckey, J.; Lee, J. H.; Magee, J. A.; Yang, S.] Coll William & Mary, Williamsburg, VA 23185 USA. [Asaturyan, A.; Mkrtchyan, A.; Mkrtchyan, H.; Tadevosyan, V.; Zhamkochyan, S.] Yerevan Phys Inst, AI Alikhanyan Natl Sci Lab, Yerevan 0036, Armenia. [Balewski, J.; Guo, F.; Kowalski, S.; Rajotte, J. F.] MIT, Cambridge, MA 02139 USA. [Beaufait, J.; Benesch, J.; Carlini, R. D.; Covrig, S.; Jones, M.; Mack, D.; Meekins, D.; Mei, J.; Michaels, R.; Poelker, M.; Sawatzky, B.; Smith, G. R.; Solvignon, P.; Suleiman, R.; Wood, S. A.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Beminiwattha, R. S.; King, P. M.; Lee, J. H.; Roche, J.; Waidyawansa, B.] Ohio Univ, Athens, OH 45701 USA. [Benmokhtar, F.] Christopher Newport Univ, Newport News, VA 23606 USA. [Birchall, J.; Falk, W. R.; Gericke, M. T. W.; Lee, L.; MacEwan, S.; Mahurin, R.; van Oers, W. T. H.; Page, S. A.; Pan, J.; Ramsay, W. D.; Wang, P.] Univ Manitoba, Winnipeg, MB R3T 2N2, Canada. [Cates, G. D.; Dalton, M. M.; Jones, D.; Kargiantoulakis, M.; Nelyubin, V.; Paschke, K. D.; Silwal, R.; Tobias, W. A.] Univ Virginia, Charlottesville, VA 22903 USA. [Davis, C. A.; Lee, L.; van Oers, W. T. H.; Ramsay, W. D.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Diefenbach, J.; Nuruzzaman] Hampton Univ, Hampton, VA 23668 USA. [Dunne, J. A.; Dutta, D.; Narayan, A.; Ndukum, L. Z.; Nuruzzaman; Shabestari, M. H.; Subedi, A.] Mississippi State Univ, Mississippi State, MS 39762 USA. [Duvall, W. S.; Lee, A. R.; Mammei, J.; Morgan, N.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Elaasar, M.] Southern Univ New Orleans, New Orleans, LA 70126 USA. [Forest, T.] Idaho State Univ, Pocatello, ID 83209 USA. [Forest, T.; Grimm, K.; Johnston, K.; Simicevic, N.; Wells, S. P.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Jones, R.] Univ Connecticut, Storrs, CT 06269 USA. [Korkmaz, E.] Univ No British Columbia, Prince George, BC V2N 4Z9, Canada. [Martin, J. W.; Nelyubin, V.; Tvaskis, V.] Univ Winnipeg, Winnipeg, MB R3B 2E9, Canada. [McHugh, M. J.; Micherdzinska, A.; Myers, K. E.; Opper, A. K.; Subedi, R.] George Washington Univ, Washington, DC 20052 USA. [Phillips, S. K.] Univ New Hampshire, Durham, NH 03824 USA. [Spayde, D. T.] Hendrix Coll, Conway, AR 72032 USA. [Young, R. D.] Univ Adelaide, Adelaide, SA 5005, Australia. RP Carlini, RD (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM carlini@jlab.org RI Young, Ross/H-8207-2012; Mesick, Katherine/M-3495-2014; Dalton, Mark/B-5380-2016; Narayan, Amrendra/Q-3243-2016; Androic, Darko/A-7482-2008; Beminiwattha, Rakitha/K-5685-2013; OI Jones, Richard/0000-0002-1410-6012; Gray, Valerie/0000-0002-4254-4298; Mesick, Katherine/0000-0001-6138-1474; Dalton, Mark/0000-0001-9204-7559; Narayan, Amrendra/0000-0003-3814-9559; King, Paul/0000-0002-3448-2306; Beminiwattha, Rakitha/0000-0002-1473-1651; Deconinck, Wouter/0000-0003-4033-6716; Cornejo, Juan Carlos/0000-0002-0124-3237 FU DOE [DE-AC05-06OR23177]; U.S. Department of Energy (DOE); Natural Sciences and Engineering Research Council of Canada (NSERC); National Science Foundation (NSF) FX This work was supported by DOE Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC operates Thomas Jefferson National Accelerator Facility. Construction and operating funding for the experiment was provided through the U.S. Department of Energy (DOE), the Natural Sciences and Engineering Research Council of Canada (NSERC), and the National Science Foundation (NSF) with university matching contributions from the College of William and Mary, Virginia Tech, George Washington University, and Louisiana Tech University. We wish to thank the staff of JLab, TRIUMF, and Bates, as well as our undergraduate students, for their vital support during this challenging experiment. We are also indebted to J. D. Bowman, W. Melnitchouk, A. W. Thomas, P. G. Blunden, N. L. Hall, J. Erler, and M. J. Ramsey-Musolf for many useful discussions. NR 54 TC 49 Z9 50 U1 3 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 2 PY 2013 VL 111 IS 14 AR 141803 DI 10.1103/PhysRevLett.111.141803 PG 7 WC Physics, Multidisciplinary SC Physics GA 230UW UT WOS:000325369600002 PM 24152148 ER PT J AU Huang, B Xiang, HJ Wei, SH AF Huang, Bing Xiang, H. J. Wei, Su-Huai TI Chemical Functionalization of Silicene: Spontaneous Structural Transition and Exotic Electronic Properties SO PHYSICAL REVIEW LETTERS LA English DT Article ID GRAPHENE; HYDROGENATION; GRAPHITE; OXIDE AB The use of newly discovered silicene for various optoelectronic applications depends largely on the possibility of controlling its electronic properties by chemical functionalization. To investigate this possibility, we systemically study the structural and electronic properties of chemically functionalized silicene by employing first-principles calculations combined with the cluster expansion approach. Interestingly, we find that chemically functionalized epitaxial silicene is generally accompanied by a spontaneous structural transition, which originates from the preference of sp(3) hybridization of silicon. To realized continuously tunable band gaps, chemical functionalization of freestanding silicene at similar to 900 K is proposed. Finally, we predict that metastable silicene can also be used as an important host material to produce novel functional materials via substitutional doping. For example, the discovered ordered Si8P4 could be a strong candidate for thin-film solar cell absorbers beyond bulk Si. C1 [Huang, Bing; Xiang, H. J.; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Xiang, H. J.] Fudan Univ, Minist Educ, Key Lab Computat Phys Sci, State Key Lab Surface Phys, Shanghai 200433, Peoples R China. [Xiang, H. J.] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. RP Huang, B (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Bing.Huang@nrel.gov; Suhuai.Wei@nrel.gov RI Huang, Bing/D-8941-2011; Xiang, Hongjun/I-4305-2016 OI Huang, Bing/0000-0001-6735-4637; Xiang, Hongjun/0000-0002-9396-3214 FU U.S. Department of Energy [DE-AC36-08GO28308]; NSFC; Special Funds for Major State Basic Research; FANEDD; Eastern Scholar program FX The work at NREL is supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308. H. X. also acknowledges the support by NSFC, the Special Funds for Major State Basic Research, FANEDD, and Eastern Scholar program. NR 32 TC 26 Z9 26 U1 9 U2 92 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 2 PY 2013 VL 111 IS 14 AR 145502 DI 10.1103/PhysRevLett.111.145502 PG 5 WC Physics, Multidisciplinary SC Physics GA 230UW UT WOS:000325369600013 PM 24138253 ER PT J AU Wang, ZX Lin, ZH Holod, I Heidbrink, WW Tobias, B Van Zeeland, M Austin, ME AF Wang, Zhixuan Lin, Zhihong Holod, Ihor Heidbrink, W. W. Tobias, Benjamin Van Zeeland, Michael Austin, M. E. TI Radial Localization of Toroidicity-Induced Alfven Eigenmodes SO PHYSICAL REVIEW LETTERS LA English DT Article ID DIII-D TOKAMAK; PLASMAS; INSTABILITIES; SIMULATIONS; EXCITATION; PARTICLES; TRANSPORT; DRIVEN AB Linear gyrokinetic simulation of fusion plasmas finds a radial localization of the toroidal Alfven eigenmodes (TAEs) due to the nonperturbative energetic particle (EP) contribution. The EP-driven TAE has a radial mode width much smaller than that predicted by the magnetohydrodynamic theory. The TAE radial position stays around the strongest EP pressure gradients when the EP profile evolves. The nonperturbative EP contribution is also the main cause for the breaking of the radial symmetry of the ballooning mode structure and for the dependence of the TAE frequency on the toroidal mode number. These phenomena are beyond the picture of the conventional magnetohydrodynamic theory. C1 [Wang, Zhixuan; Lin, Zhihong; Holod, Ihor; Heidbrink, W. W.] Univ Calif Irvine, Irvine, CA 92697 USA. [Tobias, Benjamin] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Van Zeeland, Michael] Gen Atom Co, San Diego, CA 92186 USA. [Austin, M. E.] Univ Texas Austin, Austin, TX 78712 USA. RP Lin, ZH (reprint author), Univ Calif Irvine, Irvine, CA 92697 USA. EM zhihongl@uci.edu RI Holod, Ihor/G-2801-2015 FU U.S. Department of Energy (DOE) SciDAC GSEP center FX The authors acknowledge useful discussions with L. Chen, W. Deng, Y. Xiao, H. Zhang, and W. Zhang. This work is supported by the U.S. Department of Energy (DOE) SciDAC GSEP center. Simulations are performed using supercomputers at NERSC and ORNL. NR 33 TC 35 Z9 35 U1 2 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 2 PY 2013 VL 111 IS 14 AR 145003 DI 10.1103/PhysRevLett.111.145003 PG 5 WC Physics, Multidisciplinary SC Physics GA 230UW UT WOS:000325369600008 PM 24138247 ER PT J AU Lu, ZT Mueller, P Drake, GWF Nortershauser, W Pieper, SC Yan, ZC AF Lu, Z. -T. Mueller, P. Drake, G. W. F. Noertershaeuser, W. Pieper, Steven C. Yan, Z. -C. TI Colloquium: Laser probing of neutron-rich nuclei in light atoms SO REVIEWS OF MODERN PHYSICS LA English DT Article ID INTERACTION CROSS-SECTIONS; ELASTIC ELECTRON-SCATTERING; HALO NUCLEI; MATTER DISTRIBUTIONS; INTERMEDIATE-ENERGY; INVERSE KINEMATICS; QUANTUM CHEMISTRY; RYDBERG STATES; ISOTOPE SHIFT; GROUND-STATE AB The neutron-rich He-6 and He-8 isotopes exhibit an exotic nuclear structure that consists of a tightly bound He-4-like core with additional neutrons orbiting at a relatively large distance, forming a halo. Recent experimental efforts have succeeded in laser trapping and cooling these short-lived, rare helium atoms and have measured the atomic isotope shifts along the He-4-He-6-He-8 chain by performing laser spectroscopy on individual trapped atoms. Meanwhile, the few-electron atomic structure theory, including relativistic and QED corrections, has reached a comparable degree of accuracy in the calculation of the isotope shifts. In parallel efforts, also by measuring atomic isotope shifts, the nuclear charge radii of lithium and beryllium isotopes have been studied. The techniques employed were resonance ionization spectroscopy on neutral, thermal lithium atoms and collinear laser spectroscopy on beryllium ions. Combining advances in both atomic theory and laser spectroscopy, the charge radii of these light halo nuclei have now been determined for the first time independent of nuclear structure models. The results are compared with the values predicted by a number of nuclear structure calculations and are used to guide our understanding of the nuclear forces in the extremely neutron-rich environment. C1 [Lu, Z. -T.; Mueller, P.] Argonne Natl Lab, Div Phys, Lemont, IL 60439 USA. [Lu, Z. -T.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Lu, Z. -T.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Drake, G. W. F.] Univ Windsor, Dept Phys, Windsor, ON N9B 3P4, Canada. [Noertershaeuser, W.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Pieper, Steven C.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Yan, Z. -C.] Chinese Acad Sci, State Key Lab Magnet Resonance & Atom & Mol Phys, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China. [Yan, Z. -C.] Chinese Acad Sci, Ctr Cold Atom Phys, Wuhan 430071, Peoples R China. [Yan, Z. -C.] Univ New Brunswick, Dept Phys, Fredericton, NB E3B 5A3, Canada. RP Lu, ZT (reprint author), Argonne Natl Lab, Div Phys, Lemont, IL 60439 USA. EM lu@anl.gov RI Mueller, Peter/E-4408-2011; Yan, Zong-Chao/F-6668-2014; Nortershauser, Wilfried/A-6671-2013 OI Mueller, Peter/0000-0002-8544-8191; Nortershauser, Wilfried/0000-0001-7432-3687 FU Department of Energy, Office of Nuclear Physics [DEAC02-06CH11357]; Helmholtz Association [VH-NG-148]; BMBF [05P12RDCIC]; NSERC of Canada; SHARCnet of Canada; ACEnet of Canada; CAS/SAFEA International Partnership Program for Creative Research Teams FX We thank P. Maris for supplying results before publication. We thank W. Nazarewicz and T. P. O'Connor for supplying figures. We thank R. V. F. Janssens, D. C. Morton, and W. Nazarewicz for their helpful comments. Z.-T. L., P. M., and S. P. acknowledge the support of the Department of Energy, Office of Nuclear Physics, under Contract No. DEAC02-06CH11357. W. N. acknowledges the support of the Helmholtz Association (Contract No. VH-NG-148) and the BMBF (Contract No. 05P12RDCIC). G. W. F. D. and Z.-C. Y. acknowledge the support of NSERC, SHARCnet, and ACEnet of Canada and the CAS/SAFEA International Partnership Program for Creative Research Teams. NR 111 TC 25 Z9 25 U1 2 U2 36 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0034-6861 EI 1539-0756 J9 REV MOD PHYS JI Rev. Mod. Phys. PD OCT 2 PY 2013 VL 85 IS 4 BP 1383 EP 1400 DI 10.1103/RevModPhys.85.1383 PG 18 WC Physics, Multidisciplinary SC Physics GA 230PV UT WOS:000325355200001 ER PT J AU Nisoli, C Moessner, R Schiffer, P AF Nisoli, Cristiano Moessner, Roderich Schiffer, Peter TI Colloquium: Artificial spin ice: Designing and imaging magnetic frustration SO REVIEWS OF MODERN PHYSICS LA English DT Article ID ISING PYROCHLORE MAGNETS; GEOMETRICAL FRUSTRATION; SUPERCONDUCTING RINGS; ENTROPY; MONOPOLES; DISORDER; DYNAMICS; ARRAYS; ENERGY; TEMPERATURE AB Frustration, the presence of competing interactions, is ubiquitous in the physical sciences and is a source of degeneracy and disorder, which in turn gives rise to new and interesting physical phenomena. Perhaps nowhere does it occur more simply than in correlated spin systems, where it has been studied in the most detail. In disordered magnetic materials, frustration leads to spinglass phenomena, with analogies to the behavior of structural glasses and neural networks. In structurally ordered magnetic materials, it has also been the topic of extensive theoretical and experimental studies over the past two decades. Such geometrical frustration has opened a window to a wide range of fundamentally new exotic behavior. This includes spin liquids in which the spins continue to fluctuate down to the lowest temperatures, and spin ice, which appears to retain macroscopic entropy even in the low-temperature limit where it enters a topological Coulomb phase. In the past seven years a new perspective has opened in the study of frustration through the creation of artificial frustrated magnetic systems. These materials consist of arrays of lithographically fabricated single-domain ferromagnetic nanostructures that behave like giant Ising spins. The nanostructures' interactions can be controlled through appropriate choices of their geometric properties and arrangement on a (frustrated) lattice. The degrees of freedom of the material can not only be directly tuned, but also individually observed. Experimental studies have unearthed intriguing connections to the out-of-equilibrium physics of disordered systems and nonthermal "granular" materials, while revealing strong analogies to spin ice materials and their fractionalized magnetic monopole excitations, lending the enterprise a distinctly interdisciplinary flavor. The experimental results have also been closely coupled to theoretical and computational analyses, facilitated by connections to classic models of frustrated magnetism, whose hitherto unobserved aspects have here found an experimental realization. Considerable experimental and theoretical progress in this field is reviewed here, including connections to other frustrated phenomena, and future vistas for progress in this rapidly expanding field are outlined. C1 [Nisoli, Cristiano] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Moessner, Roderich] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany. [Schiffer, Peter] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Schiffer, Peter] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. RP Nisoli, C (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Schiffer, Peter/0000-0002-6430-6549; Nisoli, Cristiano/0000-0003-0053-1023 FU U.S. Department of Energy at LANL [DEAC52-06NA253962]; LDRD [20120516ER]; U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-SC0005313] FX We are grateful to our collaborators and all the members of the artificial spin ice community for many insightful discussions and especially to Ian Gilbert and Gunnar Moller for a careful reading of the manuscript. C. N. was supported by the U.S. Department of Energy at LANL under Contract No. DEAC52-06NA253962 and LDRD Grant No. 20120516ER. R. M. especially thanks Gunnar Moller for collaborations on artificial spin ice. P. S. has been supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Grant No. DE-SC0005313. NR 117 TC 98 Z9 98 U1 11 U2 117 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0034-6861 EI 1539-0756 J9 REV MOD PHYS JI Rev. Mod. Phys. PD OCT 2 PY 2013 VL 85 IS 4 BP 1473 EP 1490 DI 10.1103/RevModPhys.85.1473 PG 18 WC Physics, Multidisciplinary SC Physics GA 230PV UT WOS:000325355200004 ER PT J AU Zang, HD Yan, L Li, MX He, L Gai, Z Ivanov, I Wang, M Chiang, L Urbas, A Hu, B AF Zang, Huidong Yan, Liang Li, Mingxing He, Lei Gai, Zheng Ivanov, Ilia Wang, Min Chiang, Long Urbas, Augustine Hu, Bin TI Magneto-Dielectric Effects Induced by Optically-Generated Intermolecular Charge-Transfer States in Organic Semiconducting Materials SO SCIENTIFIC REPORTS LA English DT Article ID SOLAR-CELLS; PHOTOVOLTAIC PROCESSES; ROOM-TEMPERATURE; TRIPLET-STATES; DIPOLE-MOMENT; POLYMER-FILMS; SINGLET; FIELD; RECOMBINATION; DEVICES AB Traditionally, magneto-dielectric effects have been developed by combining ferroelectric and magnetic materials. Here, we show a magneto-dielectric effect from optically-generated intermolecular charge-transfer states in an organic semiconducting donor:acceptor (PVK:TCNB) system. We observe in magnetic field effects of photoluminescence that a magnetic field can change singlet/triplet population ratio in intermolecular charge-transfer states. Furthermore, our theoretical analysis and experimental evidence indicate that the singlets and triplets in charge-transfer states have stronger and weaker electrical polarizations, respectively. Therefore, the observed magneto-dielectric effect can be attributed to magnetically-dependent singlet/triplet ratio in intermolecular charge-transfer states. In principle, a magneto-dielectric effect can be generated through two different channels based on magneto-polarization and magneto-current effects when the singlet/triplet ratio in intermolecular charge-transfer states is changed by a magnetic field. We find, from the simulation of dielectric effects, that magneto-polarization and magneto-current effects play primary and secondary roles in the generation of magneto-dielectric effect. C1 [Zang, Huidong; Yan, Liang; Li, Mingxing; He, Lei; Hu, Bin] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Gai, Zheng; Ivanov, Ilia] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Wang, Min; Chiang, Long] Univ Massachusetts, Inst Nanosci & Engn Technol, Dept Chem, Lowell, MA 01854 USA. [Urbas, Augustine] AF Res Lab, Dayton, OH USA. RP Hu, B (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM bhu@utk.edu RI Gai, Zheng/B-5327-2012; Hu, Bin/A-2954-2015; Yan, Liang/H-6471-2011; ivanov, ilia/D-3402-2015 OI Gai, Zheng/0000-0002-6099-4559; Hu, Bin/0000-0002-1573-7625; Yan, Liang/0000-0003-4122-7466; ivanov, ilia/0000-0002-6726-2502 FU Air Force Office of Scientific Research (AFOSR) [FA9550-11-1-0082]; NSF [ECCS-0644945]; Asian Office of Aerospace Research and Development (AOARD); Center for Nanophase Materials Sciences [CNMS2012-106, CNMS2012-107]; Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy FX The authors would like to acknowledge the financial supports from Air Force Office of Scientific Research (AFOSR) under the grant number FA9550-11-1-0082 and from NSF Under grant number ECCS-0644945. The authors also want to acknowledge the support from The Asian Office of Aerospace Research and Development (AOARD). This research was partially conducted at the Center for Nanophase Materials Sciences based on user project (CNMS2012-106 and CNMS2012-107), which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. NR 61 TC 11 Z9 11 U1 2 U2 61 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD OCT 2 PY 2013 VL 3 AR 2812 DI 10.1038/srep02812 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 227PX UT WOS:000325126900001 PM 24084983 ER PT J AU Uxa, S Belas, E Grill, R Praus, P James, RB AF Uxa, S. Belas, E. Grill, R. Praus, P. James, R. B. TI Effect of contact preparation on the profile of the electric field in CdZnTe detectors SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID TRANSIENT-CURRENT TECHNIQUE; RADIATION DETECTORS; CHARGE COLLECTION; NUCLEAR-DETECTORS; SPACE-CHARGE; CDTE; POLARIZATION; ENERGY; GAMMA; GAP AB We used the transient-current technique to delineate the effects of different contact metals on the formation of space charge and on the profiles of the electric field in CdZnTe radiation detectors. In contrast to existing results on the polarization of semiconductor radiation detectors, we find that detectors with ohmic (Au/Au) contacts may experience a larger distortion of the internal electric field than those having Schottky (Au/In) contacts. We explain this difference by postulating the presence of a deep hole trap, E-T, below the Fermi energy E-F, which captures holes generated by the weakly injecting Au anode. The observed behaviour was described successfully by a numerical model relating the energy difference between E-T and E-F and the band bending at the contacts. We also present results on aging effects that limit the detector's performance and stability over long times. C1 [Uxa, S.; Belas, E.; Grill, R.; Praus, P.] Charles Univ Prague, Fac Math & Phys, Inst Phys, CZ-12116 Prague 2, Czech Republic. [James, R. B.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Uxa, S (reprint author), Charles Univ Prague, Fac Math & Phys, Inst Phys, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic. EM uxa@karlov.mff.cuni.cz RI Praus, Petr/D-8792-2017; OI Praus, Petr/0000-0002-8272-0858; Grill, Roman/0000-0002-4615-8909 FU Charles University in Prague [SVV-2013-267306]; Grant Agency of the Czech Republic [102/13/13671S]; Technological Agency of the Czech Republic [TE01020445] FX This work was supported by the grant SVV-2013-267306 of the Charles University in Prague, by the Grant Agency of the Czech Republic under contract No 102/13/13671S, and by the grant TE01020445 of the Technological Agency of the Czech Republic. One of us (RBJ) wishes to acknowledge the US Department of Energy's Office of Defense Nonproliferation R&D. NR 25 TC 1 Z9 1 U1 3 U2 44 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 EI 1361-6463 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD OCT 2 PY 2013 VL 46 IS 39 AR 395102 DI 10.1088/0022-3727/46/39/395102 PG 6 WC Physics, Applied SC Physics GA 223MT UT WOS:000324810400004 ER PT J AU Chamberlin, SE Wang, Y Lopata, K Kaspar, TC Cohn, AW Gamelin, DR Govind, N Sushko, PV Chambers, SA AF Chamberlin, Sara E. Wang, Yong Lopata, Kenneth Kaspar, Tiffany C. Cohn, Alicia W. Gamelin, Daniel R. Govind, Niranjan Sushko, Peter V. Chambers, Scott A. TI Optical absorption and spectral photoconductivity in alpha-(Fe1-xCrx)(2)O-3 solid-solution thin films SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID WATER; ALPHA-FE2O3; PHOTOCATALYSIS; OXIDES AB Hematite, alpha-Fe2O3, is an attractive narrow gap oxide for consideration as an efficient visible light photocatalyst, with significant potential for band gap engineering via doping. We examine optical absorption in alpha-(Fe1-xCrx)(2)O-3 epitaxial films and explain the observed excitations, and the nature of the band gap dependence on x, through first-principles calculations. The calculated and measured optical band gap becomes smaller than that of bulk alpha-Fe2O3 and reaches a minimum as the Cr cation fraction increases to 50%. The lowest energy transitions in the mixed-metal alloys involve electron excitation from occupied Cr 3d orbitals to unoccupied Fe 3d orbitals, and they result in a measurable photocurrent. The onset of alpha-Fe2O3 photoconductivity can be reduced by nearly 0.5 eV (to 1.60 eV) through addition of Cr. C1 [Chamberlin, Sara E.; Wang, Yong; Kaspar, Tiffany C.; Chambers, Scott A.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Lopata, Kenneth; Govind, Niranjan] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Cohn, Alicia W.; Gamelin, Daniel R.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. [Sushko, Peter V.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Sushko, Peter V.] UCL, London Ctr Nanotechnol, London WC1E 6BT, England. RP Chamberlin, SE (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM sa.chambers@pnnl.gov RI Sushko, Peter/F-5171-2013 OI Sushko, Peter/0000-0001-7338-4146 FU US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; William R Wiley Distinguished Postdoctoral Fellowship Program at EMSL; Scientific Discovery through Advanced Computing program; US Department of Energy, Office of Science, Advanced Scientific Computing Research (and Basic Energy Sciences) [DE-SC0008666]; Department of Energy's Office of Biological and Environmental Research; US National Science Foundation [CHE-1213283]; Royal Society FX SEC acknowledges Greg Exarhos for his assistance performing optical absorption experiments. SEC, YW, TCK, and SAC were supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; KL is supported by the William R Wiley Distinguished Postdoctoral Fellowship Program at EMSL; NG acknowledges support from the Scientific Discovery through Advanced Computing program funded by the US Department of Energy, Office of Science, Advanced Scientific Computing Research (and Basic Energy Sciences) under award number DE-SC0008666. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. Financial support is acknowledged from the US National Science Foundation (CHE-1213283) (AWC and DRG), and the Royal Society (PVS). NR 21 TC 20 Z9 20 U1 0 U2 51 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 2 PY 2013 VL 25 IS 39 AR 392002 DI 10.1088/0953-8984/25/39/392002 PG 6 WC Physics, Condensed Matter SC Physics GA 216TJ UT WOS:000324307000002 PM 24002907 ER PT J AU Liu, B Xiao, HY Zhang, Y Weber, WJ AF Liu, B. Xiao, H. Y. Zhang, Y. Weber, W. J. TI Ab initio molecular dynamics simulations of overlapping recoil events in ThO2 SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID PSEUDOPOTENTIALS; THORIUM; STATE AB Ab initio molecular dynamics is used to study defect production and interactions from overlapping atomic recoil events in thoria. The pre-existing defects, charge redistribution, and structural distortion from an initial recoil event significantly affect the dynamics of defect production processes that occur from a subsequent overlapping recoil event. The final defect configurations and increase in system energy are dependent on the incident directions and sequence of the recoils. A linear relationship between system potential energy and charge transfer at the distance of closest approach between the recoil and atomic nuclei demonstrates the important role of charge transfer in the response of thoria to single and overlapping recoils. C1 [Liu, B.; Zhang, Y.; Weber, W. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Xiao, H. Y.; Zhang, Y.; Weber, W. J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Liu, B (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM liub2@ornl.gov; wjweber@utk.edu RI Weber, William/A-4177-2008; Liu, Bin/N-9955-2014 OI Weber, William/0000-0002-9017-7365; FU Materials Science of Actinides, an Energy Frontier Research Center; Office of Basic Energy Sciences, US Department of Energy FX This work was supported as part of the Materials Science of Actinides, an Energy Frontier Research Center funded by the Office of Basic Energy Sciences, US Department of Energy. The theoretical calculations were performed using the supercomputer resources at the National Energy Research Scientific Computing Center located at Lawrence Berkeley National Laboratory. NR 20 TC 4 Z9 4 U1 0 U2 22 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 2 PY 2013 VL 25 IS 39 AR 395004 DI 10.1088/0953-8984/25/39/395004 PG 6 WC Physics, Condensed Matter SC Physics GA 216TJ UT WOS:000324307000006 PM 23999052 ER PT J AU Marinica, MC Ventelon, L Gilbert, MR Proville, L Dudarev, SL Marian, J Bencteux, G Willaime, F AF Marinica, M-C Ventelon, Lisa Gilbert, M. R. Proville, L. Dudarev, S. L. Marian, J. Bencteux, G. Willaime, F. TI Interatomic potentials for modelling radiation defects and dislocations in tungsten SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID BCC TRANSITION-METALS; AB-INITIO CALCULATIONS; FINNIS-SINCLAIR POTENTIALS; EMBEDDED-ATOM METHOD; SCREW-DISLOCATION; CORE-STRUCTURE; SINGLE-CRYSTALS; ALPHA-FE; BOND-ORDER; IRON AB We have developed empirical interatomic potentials for studying radiation defects and dislocations in tungsten. The potentials use the embedded atom method formalism and are fitted to a mixed database, containing various experimentally measured properties of tungsten and ab initio formation energies of defects, as well as ab initio interatomic forces computed for random liquid configurations. The availability of data on atomic force fields proves critical for the development of the new potentials. Several point and extended defect configurations were used to test the transferability of the potentials. The trends predicted for the Peierls barrier of the 1/2 < 111 > screw dislocation are in qualitative agreement with ab initio calculations, enabling quantitative comparison of the predicted kink-pair formation energies with experimental data. C1 [Marinica, M-C; Ventelon, Lisa; Proville, L.; Willaime, F.] CEA, DEN, Serv Rech Met Phys, F-91191 Gif Sur Yvette, France. [Gilbert, M. R.; Dudarev, S. L.] EURATOM, CCFE Fus Assoc, Culham Ctr Fus Energy, Abingdon OX14 3DB, Oxon, England. [Marian, J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Bencteux, G.] EDF R&D SINETICS, F-92141 Clamart, France. RP Marinica, MC (reprint author), CEA, DEN, Serv Rech Met Phys, F-91191 Gif Sur Yvette, France. EM mihai-cosmin.marinica@cea.fr RI Marinica, Mihai -Cosmin/C-7058-2009; OI Gilbert, Mark/0000-0001-8935-1744 FU GENCI-[CCRT/CINES] [x2013096821, x2013096973]; RCUK Energy Programme [EP/I501045]; European Communities [EP/H018921/1]; EURATOM staff mobility programme FX This work was performed using HPC resources from GENCI-[CCRT/CINES] (Grants x2013096821 and x2013096973). Part of this work was performed using HPC resources from 5th PRACE access on MareNostrum III at BSC under the DIMAIM project. This work was also partly funded by the RCUK Energy Programme under grant EP/I501045 and the European Communities under Contracts of Association between EURATOM and CEA, and EURATOM and CCFE, under programme grant EP/H018921/1 'Materials for Fission and Fusion Power', and also by the EURATOM staff mobility programme. The views and opinions expressed herein do not necessarily reflect those of the European Commission. This work was carried out within the framework of the European Fusion Development Agreement. We would like to thank Dr D R Mason for useful discussions. NR 73 TC 34 Z9 35 U1 7 U2 46 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 2 PY 2013 VL 25 IS 39 AR 395502 DI 10.1088/0953-8984/25/39/395502 PG 15 WC Physics, Condensed Matter SC Physics GA 216TJ UT WOS:000324307000019 PM 24002176 ER PT J AU Paudyal, D Pathak, AK Pecharsky, VK Gschneidner, KA AF Paudyal, Durga Pathak, Arjun K. Pecharsky, V. K. Gschneidner, K. A., Jr. TI Understanding and prediction of electronic-structure-driven physical behaviors in rare-earth compounds SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID TEMPERATURE HEAT-CAPACITIES; MAGNETIC-PROPERTIES; SPIN-REORIENTATION; THERMAL-PROPERTIES; SINGLE-CRYSTAL; LDA+U METHOD; HOAL2; FIELD; EXCITATIONS; TRANSITION AB Rare-earth materials, due to their unique magnetic properties, are important for fundamental and technological applications such as advanced magnetic sensors, magnetic data storage, magnetic cooling and permanent magnets. For an understanding of the physical behaviors of these materials, first principles techniques are one of the best theoretical tools to explore the electronic structure and evaluate exchange interactions. However, first principles calculations of the crystal field splitting due to intra-site electron-electron correlations and the crystal environment in the presence of exchange splitting in rare-earth materials are rarely carried out despite the importance of these effects. Here we consider rare-earth dialuminides as model systems and show that the low temperature anomalies observed in these systems are due to the variation of both exchange and crystal field splitting leading to anomalous intra-site correlated-4f and itinerant-5d electronic states near the Fermi level. From calculations supported by experiments we uncover that HoAl2 is unique among rare-earth dialuminides, in that it undergoes a cubic to orthorhombic distortion leading to a spin reorientation. Calculations of a much more extended family of mixed rare-earth dialuminides reveal an additional degree of complexity: the effective quadrupolar moment of the lanthanides changes sign as a function of lanthanide concentration, leading to a change in the sign of the anisotropy constant. At this point the quadrupolar interactions are effectively reduced to zero, giving rise to lattice instability and leading to new phenomena. This study shows a clear picture that accurate evaluation of the exchange, crystal field splitting and shape of the charge densities allows one to understand, predict and control the physical behaviors of rare-earth materials. C1 [Paudyal, Durga; Pathak, Arjun K.; Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. [Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Paudyal, D (reprint author), Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. EM durga@ameslab.gov FU US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; [DE-AC02-07CH11358] FX This work was supported by the US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. The research was performed at the Ames Laboratory. Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 39 TC 7 Z9 7 U1 1 U2 27 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 2 PY 2013 VL 25 IS 39 AR 396002 DI 10.1088/0953-8984/25/39/396002 PG 8 WC Physics, Condensed Matter SC Physics GA 216TJ UT WOS:000324307000027 PM 23999405 ER PT J AU Unger, S Mathis, A Wilkinson, R AF Unger, Shem Mathis, Alicia Wilkinson, Robert TI A Comparison of Sperm Health in Declining and Stable Populations of Hellbenders (Cryptobranchus alleganiensis alleganiensis and C.a. bishopi) SO AMERICAN MIDLAND NATURALIST LA English DT Article ID SEXUAL-DIFFERENTIATION; XENOPUS-LAEVIS; SEMEN QUALITY; ATRAZINE; FROGS; CRYOPRESERVATION; ALLEGHENIENSIS; SPERMATOZOA; SALAMANDER; HISTORY AB Animals in many freshwater habitats are experiencing decreased recruitment due to declines in reproductive health. Both subspecies of a long-lived aquatic salamander, (Cryptobranchus alleganiensis alleganiensis and C.a. bishopi) have experienced severe population declines characterized by low recruitment. For many states throughout their geographic range, captive propagation and translocation are the only remaining form of management given the severity of declines. These captive rearing programs should rely on techniques to assess male reproductive health, which are currently lacking. In this study, we compared the sperm health (motility, viability, and concentration) of male hellbenders from declining and stable populations. Sperm motility and viability were similar among populations, but sperm concentrations (sp/ml) were significantly lower in declining Missouri populations than in hellbenders from populations with higher recruitment in the southeast. Sperm from Ozark hellbenders was successfully cryopreserved but with low post thaw motilities. This method for assessing male reproductive health provides the first baseline comparative study among populations of this cryptic species in decline and has broad implications for use in monitoring male health across the distribution of the eastern hellbender. C1 [Unger, Shem] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29803 USA. [Mathis, Alicia; Wilkinson, Robert] Missouri State Univ, Dept Biol, Springfield, MO 65897 USA. RP Unger, S (reprint author), Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29803 USA. EM cryptobranchus11@gmail.com FU United States Fish Wildlife; Missouri State University FX Funding for this project came from the United States Fish Wildlife and Missouri State University. Individuals were sampled with the permission of the Missouri Department of Conservation (#11505), North Carolina Wildlife Resources Commission (#2002-ES84), and Georgia Department of Natural Resources (#14781). We thank Dr. Dennis Schmidt and his graduate students for help with methods. In addition we thank Ben Wheeler, Jeff Briggler, Amy Salveter, Kelly Irwin, and the staff at Mammoth Springs Hatchery for their assistance. We thank John Jensen, and all graduate students who helped sample for hellbenders. NR 47 TC 2 Z9 2 U1 4 U2 20 PU AMER MIDLAND NATURALIST PI NOTRE DAME PA UNIV NOTRE DAME, BOX 369, ROOM 295 GLSC, NOTRE DAME, IN 46556 USA SN 0003-0031 EI 1938-4238 J9 AM MIDL NAT JI Am. Midl. Nat. PD OCT PY 2013 VL 170 IS 2 BP 382 EP 392 DI 10.1674/0003-0031-170.2.382 PG 11 WC Biodiversity Conservation; Ecology SC Biodiversity & Conservation; Environmental Sciences & Ecology GA AK1WP UT WOS:000338209500014 ER PT J AU Cho, KT Albertus, P Battaglia, V Kojic, A Srinivasan, V Weber, AZ AF Cho, Kyu Taek Albertus, Paul Battaglia, Vincent Kojic, Aleksandar Srinivasan, Venkat Weber, Adam Z. TI Optimization and Analysis of High-Power Hydrogen/Bromine-Flow Batteries for Grid-Scale Energy Storage SO ENERGY TECHNOLOGY LA English DT Article DE economics; energy storage; hydrogen-bromine flow battery; redox batteries; optimization ID H-2/BR-2 FUEL-CELL; NAFION MEMBRANES; PERFORMANCE; TRIBROMIDE; TRANSPORT AB For storage of grid-scale electrical energy, redox-flow batteries (RFBs) are considered promising technologies. This paper explores the influence of electrolyte composition and ion transport on cell performance by using an integrated approach of experiments and cost modeling. In particular, the impact of the area-specific resistance on system capability is elucidated for the hydrogen/bromine RFB. The experimental data demonstrate very good performance with 1.46 W cm(-2) peak power and 4 A cm(-2) limiting current density at ambient conditions for an optimal cell design and reactant concentrations. The data and cost model results show that higher concentrations of RFB reactants do not necessarily result in lower capital cost as there is a tradeoff between cell performance and storage (tank) requirements. In addition, the discharge time and overall efficiency demonstrate nonlinear effects on system cost, with a 3 to 4 hour minimum discharge time showing a key transition to a plateau in terms of cost for typical RFB systems. The presented results are applicable to many different RFB chemistries and technologies and highlight the importance of ohmic effects and associated area-specific resistance on RFB viability. C1 [Cho, Kyu Taek; Battaglia, Vincent; Srinivasan, Venkat; Weber, Adam Z.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Albertus, Paul; Kojic, Aleksandar] Robert Bosch Res & Technol Ctr, Palo Alto, CA USA. RP Weber, AZ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM azweber@lbl.gov FU Advanced Research Projects Agency-Energy (ARPA-E) of the U.S. Department of Energy [DE-AC02-05CH11231, DE-ARDE-AR0000137]; Robert Bosch LLC FX The authors thank Dr. Kevin Gallagher for his help and discussions with the BatPaC simulations, and Dr. Ryan Balliet for helpful discussions. This work was funded by the Advanced Research Projects Agency-Energy (ARPA-E) of the U.S. Department of Energy (contract no. DE-AC02-05CH11231 for LBNL and DE-ARDE-AR0000137 for Robert Bosch LLC) with cost share provided by Robert Bosch LLC. NR 40 TC 27 Z9 27 U1 3 U2 30 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 2194-4288 EI 2194-4296 J9 ENERGY TECHNOL-GER JI Energy Technol. PD OCT PY 2013 VL 1 IS 10 BP 596 EP 608 DI 10.1002/ente.201300108 PG 13 WC Energy & Fuels SC Energy & Fuels GA AK3TN UT WOS:000338347700005 ER PT J AU Fente, A Suderow, H Vieira, S Nemes, NM Garcia-Hernandez, M Bud'ko, SL Canfield, PC AF Fente, A. Suderow, H. Vieira, S. Nemes, N. M. Garcia-Hernandez, M. Bud'ko, S. L. Canfield, P. C. TI Low temperature magnetic transitions of single crystal HoBi SO SOLID STATE COMMUNICATIONS LA English DT Article DE Holmium; Bismuth; Single crystal; Magnetic transitions ID PHASE-DIAGRAMS; SUPERCONDUCTIVITY; COEXISTENCE; PNICTIDES; PRESSURE; BEHAVIOR; LATTICE; MODEL; HEAT; HOSB AB We present resistivity, specific heat and magnetization measurements in high quality single crystals of HoBi, with a residual resistivity ratio of 126. We find, from the temperature and field dependence of the magnetization, an antiferromagnetic transition at 5.7 K, which evolves, under magnetic fields, into a series of up to five metamagnetic phases. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Fente, A.; Suderow, H.; Vieira, S.] Univ Autonoma Madrid, Dept Fis Mat Condensada, Inst Ciencia Mat Nicolas Cabrera, Lab Bajas Temp, E-28049 Madrid, Spain. [Fente, A.; Suderow, H.; Vieira, S.] Univ Autonoma Madrid, Inst Fis Mat Condensada IFIMAC, E-28049 Madrid, Spain. [Fente, A.; Suderow, H.; Vieira, S.; Nemes, N. M.; Garcia-Hernandez, M.] UAM CSIC, Unidad Asociada Bajas Temp & Altos Campos Magnet, E-28049 Madrid, Spain. [Nemes, N. M.; Garcia-Hernandez, M.] CSIC, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain. [Bud'ko, S. L.; Canfield, P. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Bud'ko, S. L.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Suderow, H (reprint author), Univ Autonoma Madrid, Dept Fis Mat Condensada, Inst Ciencia Mat Nicolas Cabrera, Lab Bajas Temp, Cantoblanco, E-28049 Madrid, Spain. EM hermann.suderow@uam.es RI Suderow, Hermann/L-6612-2013; Canfield, Paul/H-2698-2014; Garcia-Hernandez, Mar/J-9520-2014; vieira, sebastian/L-5216-2014 OI Suderow, Hermann/0000-0002-5902-1880; Garcia-Hernandez, Mar/0000-0002-5987-0647; vieira, sebastian/0000-0002-3854-1377 FU Spanish MINECO [CSD2007-00010, FIS2011-23488, MAT2011-27470-C02-02]; Comunidad de Madrid through program Nanobiomagnet; US Department of Energy, Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-07CH11358] FX We thank discussions with J.V. Alvarez. This work was supported by the Spanish MINECO (Consolider Ingenio Molecular Nanoscience CSD2007-00010 program, FIS2011-23488 and MAT2011-27470-C02-02), by the Comunidad de Madrid through program Nanobiomagnet. We also acknowledge Banco Santander and NanoSc-COST program. Work at the Ames Laboratory was supported by the US Department of Energy, Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract no. DE-AC02-07CH11358. NR 27 TC 2 Z9 2 U1 4 U2 25 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 EI 1879-2766 J9 SOLID STATE COMMUN JI Solid State Commun. PD OCT PY 2013 VL 171 BP 59 EP 63 DI 10.1016/j.ssc.2013.07.027 PG 5 WC Physics, Condensed Matter SC Physics GA 240ZM UT WOS:000326136200014 ER PT J AU Raulo, A Hennard, G Sowinska, M James, RB Fauler, A Freier, J Held, A Fiederle, M AF Raulo, A. Hennard, G. Sowinska, M. James, R. B. Fauler, A. Freier, J. Held, A. Fiederle, M. TI Effects of Annealing on Bulk Properties of CdTe Detectors SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Large area CdTe detectors; material characterization; non-destructive testing; resistivity and mu-tau mapping; spectroscopy; Te inclusions ID TRAVELING HEATER METHOD; RADIATION DETECTORS; SINGLE-CRYSTALS; BRIDGMAN METHOD; TE INCLUSIONS; CDZNTE; GROWTH; DEFECTS; PERFORMANCE; SCATTERING AB The various crystal growing methods (Low Pressure Bridgman, High Pressure Bridgman, Horizontal Bridgman, Physical Vapor Transport, Travelling Heater Method-THM) and the subsequent bulk and surface treatments can greatly affect the performances of CdTe as well as CdZnTe based X-ray detectors. For this investigation THM was chosen as a low temperature growth process where the crystals have relatively low number of defects and less impurity incorporation from the crucible. Surface (i.e., electrode and electrode-bulk material interface) characteristics have been already investigated [1], [2], aiming at understanding the effects of annealing on the electrode deposition. Here bulk effects, including an analysis of the Te inclusion distribution, on CdTe wafers obtained starting from as-grown or subsequently annealed standard or large area ingots have been investigated by IR imaging, resistivity and electron mobility mappings as well as spectroscopic characterization. The results of these measurements are presented and correlated with the detector performances of hundreds of samples. The main observed effects of the annealing are a reduction of the large size (>10 mu m) Te inclusions and a peaking of the resistivity and electron mu-tau products, though in this last case around worse average values, over the entire wafers, that lead to a significant reduction of the spread in the electron transit times, and at the end to better spectroscopic performances. C1 [Raulo, A.; Hennard, G.; Sowinska, M.] EURORAD, F-67201 Eckbolsheim Strasbourg, France. [James, R. B.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Fauler, A.; Freier, J.; Held, A.; Fiederle, M.] Univ Freiburg, Freiburger Mat Forschungszentrum, D-79104 Freiburg, Germany. RP Raulo, A (reprint author), EURORAD, F-67201 Eckbolsheim Strasbourg, France. EM adelaide.raulo@gmail.com; m.sowinska@eurorad.com; rjames@bnl.gov; michael.fiederle@fmf.uni-freiburg.de OI Held, Alexander/0000-0002-8516-5407 FU European project LACX FX Manuscript received September 20, 2012; revised January 25, 2013 and May 08, 2013; accepted September 07, 2013. Date of publication September 30, 2013; date of current version October 09, 2013. This work was supported in part by European project LACX. NR 27 TC 2 Z9 2 U1 1 U2 35 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD OCT PY 2013 VL 60 IS 5 BP 3815 EP 3823 DI 10.1109/TNS.2013.2282371 PN 3 PG 9 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AE6CU UT WOS:000334077100007 ER PT J AU Yoon, M Robin, DS AF Yoon, M. Robin, D. S. TI Method of Computing First-, Second-, and Third-Order Transfer Coefficients for Arbitrary Fields SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Beam optics; third-order map; transfer matrix AB For given arbitrary electromagnetic fields, an analytical method to obtain transfer coefficients up to the third order in phase-space coordinates is described in this paper. The method is based on numerical tracking of a number of representative particles followed by the least-square minimization. The result is applied to an arbitrary beamline consisting of linear and nonlinear beam-optical elements and favorably compared with the numerical particle tracking. Transfer coefficients obtained with our method are also compared with those obtained from an existing computer code. C1 [Yoon, M.] POSTECH, Dept Phys, Gyeongbuk 790784, South Korea. [Robin, D. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Yoon, M (reprint author), POSTECH, Dept Phys, Gyeongbuk 790784, South Korea. EM moohyun@postech.ac.kr FU POSTECH Basic Science Research Institute Grant; Institute for Basic Science (IBS); National Research Foundation of Korea (NRF); Korea government (MSIP) [2012M2B2A9A02029704]; Director Office of Science of the U.S. Department of Energy [DE-AC02- 05CH11231] FX Manuscript received February 27, 2013; revised May 13, 2013 and July 14, 2013; accepted August 04, 2013. Date of publication September 04, 2013; date of current version October 09, 2013. This work was supported by POSTECH Basic Science Research Institute Grant, Institute for Basic Science (IBS), and National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2012M2B2A9A02029704). The work was also supported by the Director Office of Science of the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. NR 7 TC 1 Z9 1 U1 3 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD OCT PY 2013 VL 60 IS 5 BP 3837 EP 3842 DI 10.1109/TNS.2013.2277726 PN 3 PG 6 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AE6CU UT WOS:000334077100010 ER PT J AU Cates, J Hayward, J Zhang, XD AF Cates, Joshua Hayward, Jason Zhang, Xiaodong TI Significant Increases in Light Extraction From YAP:Ce Scintillators With a Uniform Surface Taper Modification at the Exit Boundary SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Light collection; light extraction; surface modification ID CRYSTALS AB A technique for increasing light extraction out of scintillation crystals has been developed by introducing a uniform surface taper at the exit boundary of thin YAP:Ce scintillators. This taper was introduced by precision machining pyramidal structures on the scintillator's surface on a scale significantly larger than the scale typical of surface roughness. Light extraction out of the crystal is increased because the surface modification significantly reduces the chance that light can be incident on the crystal's exit boundary at an angle greater than the critical angle for total internal reflection. For the best case, a factor of 4.8 increase in light collection was measured without optical coupling, relative to the same crystal with a normal, polished exit boundary. The characteristics of the etched surfaces were precisely quantified, and measured increases in light collection relative to a polished surface are presented. Gains in light extraction are interpreted through detailed light transport simulations, and good agreement between predicted and measured light collection was observed. C1 [Cates, Joshua; Hayward, Jason; Zhang, Xiaodong] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Hayward, Jason] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Cates, J (reprint author), Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. EM jcates7@utk.edu; jhayward@utk.edu; zhangxd@lzu.edu.cn FU US Department of Homeland Security, Domestic Nuclear Detection Office [2010-DN-077-ARI044-02] FX This work was supported by the US Department of Homeland Security, Domestic Nuclear Detection Office, under competitively awarded Grant Award 2010-DN-077-ARI044-02. This support does not constitute an express or implied endorsement on the part of the Government. NR 9 TC 0 Z9 0 U1 1 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD OCT PY 2013 VL 60 IS 5 BP 3995 EP 4001 DI 10.1109/TNS.2013.2280434 PN 3 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AE6CU UT WOS:000334077100028 ER PT J AU Chichester, DL Watson, SM Johnson, JT AF Chichester, David L. Watson, Scott M. Johnson, James T. TI Comparison of BCF-10, BCF-12, and BCF-20 Scintillating Fibers for Use in a 1-Dimensional Linear Sensor SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Fiber optics; radiation detectors; radiation monitoring; time-domain analysis ID NEUTRON DETECTOR; DOSIMETRY; SYSTEM AB One-dimensional fiber-bundle arrays may prove useful in a number of radiation sensing applications where radiation detection over large areas is needed. Tests have been performed to evaluate the light generation and transmission characteristics of 15-meter long, 10-fiber bundles of BCF-10, BCF-12, and BCF-20 scintillating fibers (Saint Gobain) exposed to collimated gamma-ray sources. The test set-up used one R9800 (Hamamatsu) photomultiplier tube (PMT) at each end, with a high-speed waveform digitizer to collect data. Time constraints were imposed on the waveform data to perform time-of-flight analysis of the events in the fiber bundles, eliminating spurious noise pulses in the high gain PMTs and also allowing 1-dimensional localization of interactions along the lengths of the fiber bundles. Measurements show that the spatial response of these three fibers is linear over at least 15-m lengths and that, with the equipment used here, the spatial resolution for events irradiating 1 cm of fiber (using a collimated source) ranges from 50 cm to 60 cm over the entire length of the bundles. The efficiency for detecting events varies along the length of the arrays, with the sensitivity at the midpoint (half of the distance) of an array ranging from similar to 2X to similar to 3X the efficiency at the ends, depending on the length of the fiber-bundle array and the self-absorption factor for each fiber's scintillation light. Compared to prior work, a 20-fold improvement in detection sensitivity has been shown for this technique, most likely due to improved optical coupling and improved signal analysis. C1 [Chichester, David L.; Watson, Scott M.; Johnson, James T.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Chichester, DL (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM david.chichester@inl.gov; scott.watson@inl.gov; james.johnson@inl.gov RI Johnson, James/B-9689-2017 OI Johnson, James/0000-0002-3434-4413 FU Idaho National Laboratory's Laboratory for Directed Research and Development (LDRD) program; U.S. Department of Energy by Battelle Energy Alliance under DOE [DE-AC07-05-ID14517] FX This work was supported by Idaho National Laboratory's Laboratory for Directed Research and Development (LDRD) program. Idaho National Laboratory is operated for the U.S. Department of Energy by Battelle Energy Alliance under DOE contract DE-AC07-05-ID14517. NR 28 TC 1 Z9 1 U1 1 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD OCT PY 2013 VL 60 IS 5 BP 4015 EP 4021 DI 10.1109/TNS.2013.2277799 PN 3 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA AE6CU UT WOS:000334077100031 ER PT J AU Brown, TJ Conrad, SH Beyeler, WE Glass, RJ AF Brown, Theresa J. Conrad, Stephen H. Beyeler, Walter E. Glass, Robert J. TI Complex adaptive systems engineering and risk reduction SO PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-ENGINEERING SUSTAINABILITY LA English DT Article DE dynamics; infrastructure planning; sustainability AB Complex adaptive systems are central to many persistent problems locally and globally. In cases where the effects of a policy play out slowly and propagate through interdependencies with other systems, the broader view and understanding gained from complex adaptive system analyses allow us to recognise the causal relationships involved and solve persistent system-level issues. This is particularly true with the risks due to climate change, economic crises, energy disruptions and food insecurity. Climate change and the challenge of addressing the resulting global risks provides a common set of problems on which to build a global community of practice that utilises earth systems' engineering approaches and sustainability goals to understand and resolve problems in complex adaptive systems of systems. Structural adaptation under environmental stress, simple rules for entity interactions and condition-dependent behaviours are key attributes of complex systems. These attributes provide the means for creating models that behave the way the real system does and for the same reasons, improving understanding and designing effective solutions. This paper presents general concepts for infrastructure adaptation and examples of successful applications of an expanded engineering process for complex systems of systems. C1 [Brown, Theresa J.; Conrad, Stephen H.; Beyeler, Walter E.; Glass, Robert J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Brown, TJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 16 TC 1 Z9 1 U1 2 U2 9 PU ICE PUBLISHING PI WESTMINISTER PA INST CIVIL ENGINEERS, 1 GREAT GEORGE ST, WESTMINISTER SW 1P 3AA, ENGLAND SN 1478-4629 EI 1751-7680 J9 P I CIVIL ENG-ENG SU JI Proc. Inst. Civ. Eng.-Eng. Sustain. PD OCT PY 2013 VL 166 IS 5 BP 293 EP 300 DI 10.1680/ensu.12.00036 PG 8 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Civil SC Science & Technology - Other Topics; Engineering GA AE0HC UT WOS:000333643400009 ER PT J AU Hernandez, SC Ray, AK Taylor, CD AF Hernandez, S. C. Ray, A. K. Taylor, C. D. TI Quantum size effects in alpha-plutonium (020) surface layers SO SOLID STATE COMMUNICATIONS LA English DT Article DE Actinides; Electronic structures; Surface energy; Work function ID AUGMENTED-WAVE METHOD; STRUCTURAL STABILITIES; PLANE-WAVE; AB-INITIO; DELTA-PU; ADSORPTION; METALS; ENERGIES; NP AB We present a systematic first principles density functional theory (OFT) based study of the (020) surface of alpha-plutonium using the projector-augmented-wave formalism as implemented in the Vienna Ab Initio Simulation Package (VASP). The surface was modeled by a periodic slab geometry comprised of anti-ferromagnetic atomic layers, with a thickness of up to ten atomic layers. The total and cohesive energies indicate a monotonically decreasing and increasing slope to the bulk values, respectively. The surface energies, in contrast to the work functions, exhibit a significant oscillatory pattern indicating persistent quantum size effects and possible magnetic frustration as well as other effects. The 5f electron density of states indicates progressive delocalization with increasing slab thickness. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Hernandez, S. C.; Ray, A. K.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Taylor, C. D.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Ray, AK (reprint author), Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. EM akr@uta.edu FU Welch Foundation [Y-1525]; Louis Stokes Alliances for Minority Participation Bridge to Doctorate (LSAMP-BD) Program; Los Alamos National Laboratory's Seaborg Summer Fellowship Program; LANL LDRD Directed Research Program (Daniel Schwartz) FX Finally, this work is partially supported by the Welch Foundation (Grant no, Y-1525), the Louis Stokes Alliances for Minority Participation Bridge to Doctorate (LSAMP-BD) Program, and the Los Alamos National Laboratory's Seaborg Summer Fellowship Program. C. D. T. acknowledges support from the LANL LDRD Directed Research Program (Daniel Schwartz). S.C.H. would also like to gratefully acknowledge discussions with Dr. R. Atta-Fynn, Computational support from the Texas Advanced Computing Center is also gratefully acknowledged. NR 40 TC 0 Z9 0 U1 1 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 EI 1879-2766 J9 SOLID STATE COMMUN JI Solid State Commun. PD OCT PY 2013 VL 172 BP 29 EP 32 DI 10.1016/j.ssc.2013.08.016 PG 4 WC Physics, Condensed Matter SC Physics GA AB8DF UT WOS:000332019600007 ER PT J AU Beekman, C Siemons, W Ward, TZ Chi, M Howe, J Biegalski, MD Balke, N Maksymovych, P Farrar, AK Romero, JB Gao, P Pan, XQ Tenne, DA Christen, HM AF Beekman, C. Siemons, W. Ward, T. Z. Chi, M. Howe, J. Biegalski, M. D. Balke, N. Maksymovych, P. Farrar, A. K. Romero, J. B. Gao, P. Pan, X. Q. Tenne, D. A. Christen, H. M. TI Phase Transitions, Phase Coexistence, and Piezoelectric Switching Behavior in Highly Strained BiFeO3 Films SO ADVANCED MATERIALS LA English DT Article ID THIN-FILMS AB Highly strained BiFeO3 films transition into a true tetragonal state at 430 degrees C but remain polar to much higher temperatures (similar to 800 degrees C). Piezoelectric switching is only possible up to 300 degrees C, i.e., at temperatures for which strain stabilizes the stripe- like coexistence of multiple polymorphs. C1 [Beekman, C.; Siemons, W.; Ward, T. Z.; Chi, M.; Howe, J.; Christen, H. M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Biegalski, M. D.; Balke, N.; Maksymovych, P.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Farrar, A. K.; Romero, J. B.; Tenne, D. A.] Boise State Univ, Dept Phys, Boise, ID 83725 USA. [Gao, P.; Pan, X. Q.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. RP Christen, HM (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM christenhm@ornl.gov RI Tenne, Dmitri/C-3294-2009; Gao, Peng/B-4675-2012; Howe, Jane/G-2890-2011; Christen, Hans/H-6551-2013; Balke, Nina/Q-2505-2015; Chi, Miaofang/Q-2489-2015; Maksymovych, Petro/C-3922-2016; Ward, Thomas/I-6636-2016 OI Tenne, Dmitri/0000-0003-2697-8958; Christen, Hans/0000-0001-8187-7469; Balke, Nina/0000-0001-5865-5892; Chi, Miaofang/0000-0003-0764-1567; Maksymovych, Petro/0000-0003-0822-8459; Ward, Thomas/0000-0002-1027-9186 FU DOE-BES; NSF [DMR-1006136, DMR-0820404, DMR-0723032]; Department of Energy (DOE) [DE-FG02-07ER46416]; U.S. Department of Energy (DOE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division; Scientific User Facilities Division FX Research supported in part by the U.S. Department of Energy (DOE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division (authors C. B., W. S., T. Z. W., J. H., and H. M. C.: film growth, XRD, AFM, PFM) and the Scientific User Facilities Division (author M. C.: TEM). User projects were supported at ORNL's Shared Research Equipment (ShaRE) User Program (SEM) and the Center for Nanophase Materials Research (CNMS, high-temperature XRD, AFM, PFM), which are both also sponsored by DOE-BES. Raman studies at Boise State University were supported by NSF under grant DMR-1006136. Initial electron microscopy work performed at the University of Michigan was supported by the Department of Energy (DOE) under the grant DE-FG02-07ER46416 and by the National Science Foundation under DMR-0820404 (PG) and DMR-0723032 (TEM instrument). NR 23 TC 33 Z9 33 U1 7 U2 109 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD OCT PY 2013 VL 25 IS 39 BP 5561 EP + DI 10.1002/adma.201302066 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AC2KZ UT WOS:000332331300002 PM 23847158 ER PT J AU Ganti, A Somma, R AF Ganti, Anand Somma, Rolando TI ON THE GAP OF HAMILTONIANS FOR THE ADIABATIC SIMULATION OF QUANTUM CIRCUITS SO INTERNATIONAL JOURNAL OF QUANTUM INFORMATION LA English DT Article DE Quantum computation; adiabatic state transformations; quantum circuits ID EVOLUTION AB The time or cost of simulating a quantum circuit by adiabatic evolution is determined by the spectral gap of the Hamiltonians involved in the simulation. In "standard" constructions based on Feynman's Hamiltonian, such a gap decreases polynomially with the number of gates in the circuit, L. Because a larger gap implies a smaller cost, we study the limits of spectral gap amplification in this context. We show that, under some assumptions on the ground states and the cost of evolving with the Hamiltonians (which apply to the standard constructions), an upper bound on the gap of the order 1= L follows. In addition, if the Hamiltonians satisfy a frustration-free property, the upper bound is of the order 1= L-2. Our proofs use recent results on adiabatic state transformations, spectral gap amplification, and the simulation of continuoustime quantum query algorithms. They also consider a reduction from the unstructured search problem, whose lower bound in the oracle cost translates into the upper bounds in the gaps. The impact of our results is that improving the gap beyond that of standard constructions (i. e. 1= L-2), if possible, is challenging. C1 [Ganti, Anand] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Somma, Rolando] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Somma, R (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM aganti@sandia.gov; somma@lanl.gov NR 36 TC 0 Z9 0 U1 0 U2 2 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0219-7499 EI 1793-6918 J9 INT J QUANTUM INF JI Int. J. Quantum Inf. PD OCT PY 2013 VL 11 IS 7 AR 1350063 DI 10.1142/S0219749913500639 PG 14 WC Computer Science, Theory & Methods; Physics, Particles & Fields; Physics, Mathematical SC Computer Science; Physics GA AA6YM UT WOS:000331244200002 ER PT J AU Taylor, E Chen, ST Tao, J Wu, LJ Zhu, YM Chen, JY AF Taylor, Eric Chen, Shutang Tao, Jing Wu, Lijun Zhu, Yimei Chen, Jingyi TI Synthesis of Pt-Cu Nanodendrites through Controlled Reduction Kinetics for Enhanced Methanol Electro-Oxidation SO CHEMSUSCHEM LA English DT Article DE alloys; copper; methanol oxidation; nanoparticles; platinum ID SUPERIOR ELECTROCATALYTIC ACTIVITY; ONE-POT SYNTHESIS; BIMETALLIC NANODENDRITES; OXYGEN REDUCTION; CATALYTIC-PROPERTIES; FUEL-CELLS; PLATINUM; GROWTH; NANOPARTICLES; NANOCRYSTALS C1 [Taylor, Eric; Chen, Shutang; Chen, Jingyi] Univ Arkansas, Dept Chem & Biochem, Fayetteville, AR 72701 USA. [Tao, Jing; Wu, Lijun; Zhu, Yimei] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Taylor, E (reprint author), Univ Arkansas, Dept Chem & Biochem, Fayetteville, AR 72701 USA. EM chenj@uark.edu RI Chen, Jingyi/E-7168-2010 OI Chen, Jingyi/0000-0003-0012-9640 FU Ralph E. Powe Jr. Faculty Enhancement Award; University of Arkansas; US Department of Energy (Basic Energy Sciences); Materials Science and Engineering Division [DE-AC02-98CH10886] FX This work was supported in part by the Ralph E. Powe Jr. Faculty Enhancement Award and start- up funds from the University of Arkansas awarded to J.C. The work at Brookhaven National Laboratory was supported by the US Department of Energy (Basic Energy Sciences) and by the Materials Science and Engineering Division under Contract No. DE-AC02-98CH10886. NR 36 TC 31 Z9 31 U1 4 U2 65 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD OCT PY 2013 VL 6 IS 10 SI SI BP 1863 EP 1867 DI 10.1002/cssc.201300527 PG 5 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA AA1US UT WOS:000330881800001 PM 24106043 ER PT J AU Xiao, CX Maligal-Ganesh, RV Li, T Qi, ZY Guo, ZY Brashler, KT Goes, S Li, XL Goh, TW Winans, RE Huang, WY AF Xiao, Chaoxian Maligal-Ganesh, Raghu V. Li, Tao Qi, Zhiyuan Guo, Zhiyong Brashler, Kyle T. Goes, Shannon Li, Xinle Goh, Tian Wei Winans, Randall E. Huang, Wenyu TI High-Temperature-Stable and Regenerable Catalysts: Platinum Nanoparticles in Aligned Mesoporous Silica Wells SO CHEMSUSCHEM LA English DT Article DE dehydrogenation; heterogeneous catalysis; mesoporous materials; nanoparticles; platinum ID STRUCTURE SENSITIVITY; OXIDATIVE DEHYDROGENATION; GOLD NANOPARTICLES; SURFACE-AREA; SHELL; CORE; SIZE; CYCLOHEXANE; SPHERES; NANOSTRUCTURES AB We report the synthesis, structural characterization, thermal stability study, and regeneration of nanostructured catalysts made of 2.9 nm Pt nanoparticles sandwiched between a 180 nm SiO2 core and a mesoporous SiO2 shell. The SiO2 shell consists of 2.5 nm channels that are aligned perpendicular to the surface of the SiO2 core. The nanostructure mimics Pt nanoparticles that sit in mesoporous SiO2 wells (Pt@MSWs). By using synchrotron-based small-angle X-ray scattering, we were able to prove the ordered structure of the aligned mesoporous shell. By using high-temperature cyclohexane dehydrogenation as a model reaction, we found that the Pt@MSWs of different well depths showed stable activity at 500 degrees C after the induction period. Conversely, a control catalyst, SiO2-sphere-supported Pt nanoparticles without a mesoporous SiO2 shell (Pt/SiO2), was deactivated. We deliberately deactivated the Pt@MSWs catalyst with a 50 nm deep well by using carbon deposition induced by a low H-2/cyclohexane ratio. The deactivated Pt@MSWs catalyst was regenerated by calcination at 500 degrees C with 20% O-2 balanced with He. After the regeneration treatments, the activity of the Pt@MSWs catalyst was fully restored. Our results suggest that the nanostructured catalysts-Pt nanoparticles confined inside mesoporous SiO2 wells-are stable and regenerable for treatments and reactions that require high temperatures. C1 [Xiao, Chaoxian; Maligal-Ganesh, Raghu V.; Qi, Zhiyuan; Guo, Zhiyong; Brashler, Kyle T.; Goes, Shannon; Li, Xinle; Goh, Tian Wei; Huang, Wenyu] Iowa State Univ, Ames Lab, US DOE, Dept Chem, Ames, IA 50011 USA. [Li, Tao; Winans, Randall E.] Argonne Natl Lab, Xray Sci Div, Lemont, IL 60439 USA. RP Xiao, CX (reprint author), Iowa State Univ, Ames Lab, US DOE, Dept Chem, Ames, IA 50011 USA. EM whuang@iastate.edu RI li, tao/K-8911-2012; Xiao, Chaoxian/E-7339-2013; li, xinle/B-8285-2016; Goh, Tian Wei/G-3463-2016; Huang, Wenyu/L-3784-2014 OI li, tao/0000-0001-5454-1468; Xiao, Chaoxian/0000-0002-4012-0539; li, xinle/0000-0001-5747-4029; Goh, Tian Wei/0000-0002-4141-3392; Huang, Wenyu/0000-0003-2327-7259 FU Ames Laboratory; Iowa State University [DE-AC02-07CH11358]; Institute for Atom-Efficient Chemical Transformations (IACT), an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC0206CH-11357] FX We thank the Ames Laboratory (Royalty Account) and Iowa State University for startup funds. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. This material is also based upon work supported as part of the Institute for Atom-Efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences. Work at the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC0206CH-11357. We thank Gordon J. Miller for use of his XRD instrument and Igor I. Slowing for use of his gas adsorption analyzer and ICP-AES apparatus. NR 53 TC 13 Z9 13 U1 3 U2 59 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD OCT PY 2013 VL 6 IS 10 SI SI BP 1915 EP 1922 DI 10.1002/cssc.201300524 PG 8 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA AA1US UT WOS:000330881800009 PM 24039118 ER PT J AU Lv, T Wang, Y Choi, SI Chi, MF Tao, J Pan, LK Huang, CZ Zhu, YM Xia, YN AF Lv, Tian Wang, Yi Choi, Sang-Il Chi, Miaofang Tao, Jing Pan, Likun Huang, Cheng Zhi Zhu, Yimei Xia, Younan TI Controlled Synthesis of Nanosized Palladium icosahedra and Their Catalytic Activity towards Formic-Acid Oxidation SO CHEMSUSCHEM LA English DT Article DE electrochemistry; nanostructures; oxidation; palladium; synthesis design ID SHAPE-CONTROLLED SYNTHESIS; ASSISTED N,N-DIMETHYLFORMAMIDE REDUCTION; WATER-BASED SYNTHESIS; AG CORE-SHELL; PD NANOPARTICLES; ETHYLENE EPOXIDATION; GOLD NANOPARTICLES; OPTICAL-PROPERTIES; TWINNED STRUCTURE; POLYOL SYNTHESIS AB Pd icosahedra with sizes controlled in the range of 5-35 nm were synthesized in high purity through a combination of polyol reduction and seed-mediated growth. The Pd icosahedra were obtained with purity >94% and uniform sizes controlled in the range of 5-17 nm by using ethylene glycol as both the reductant and solvent. The studies indicate that the formation of Pd nanocrystals with an icosahedral shape was very sensitive to the reaction kinetics. The success of this synthesis relies on the use of HCl to manipulate the reaction kinetics and thus control the twin structure and shape of the resultant nanocrystals. The size of the Pd icosahedra could be further increased up to 35 nm by seed-mediated growth, with 17 nm Pd icosahedra serving as seeds. The multiply twinned Pd icosahedra could grow into larger sizes, and their shape and multiply twinned structure were preserved. Thanks to the presence of twin defects, the Pd icosahedra showed a catalytic current density towards formic-acid oxidation that was 1.9 and 11.6 times higher than that of single-crystal Pd octahedra, which were also fully covered by {111} facets, and commercial Pd/C, respectively. C1 [Lv, Tian; Wang, Yi; Choi, Sang-Il; Xia, Younan] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA. [Lv, Tian; Wang, Yi; Choi, Sang-Il; Xia, Younan] Emory Univ, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Lv, Tian; Wang, Yi; Choi, Sang-Il; Xia, Younan] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Lv, Tian; Pan, Likun] E China Normal Univ, Dept Phys, Minist Educ, Engn Res Ctr Nanophoton & Adv Instruments, Shanghai 200062, Peoples R China. [Wang, Yi; Huang, Cheng Zhi] Southwest Univ, Sch Chem & Chem Engn, Educ Minist, Key Lab Luminescence & Real Time Anal, Chongqing 400715, Peoples R China. [Chi, Miaofang] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37830 USA. [Tao, Jing; Zhu, Yimei] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Lv, T (reprint author), Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA. EM younan.xia@bme.gatech.edu RI Choi, Sang-Il/N-7571-2013; Pan, Likun/F-7232-2012; Xia, Younan/E-8499-2011; Chi, Miaofang/Q-2489-2015 OI Pan, Likun/0000-0001-9294-1972; Chi, Miaofang/0000-0003-0764-1567 FU US Department of Energy (DOE) from the University of Wisconsin at Madison [DE-FG02-05ER15731]; National Science Foundation (NSF) [DMR-1215034]; Georgia Institute of Technology; East China Normal University; Southwest University; China Scholarship Council (CSC); DOE, Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-98CH10886]; Shared Research Equipment User Program; DOE-BES FX This work was supported in part by a US Department of Energy (DOE) subcontract from the University of Wisconsin at Madison (DE-FG02-05ER15731), a grant from the National Science Foundation (NSF) (DMR-1215034), and start-up funds from the Georgia Institute of Technology. As jointly supervised PhD candidates from East China Normal University and Southwest University, T.L. and Y.W. were also partially supported by the China Scholarship Council (CSC). Part of the electron microscopy work was performed at BNL supported by the DOE, Basic Energy Sciences, Materials Sciences and Engineering Division (DE-AC02-98CH10886), and at ORNL by the Shared Research Equipment User Program sponsored by DOE-BES. NR 72 TC 25 Z9 25 U1 5 U2 101 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD OCT PY 2013 VL 6 IS 10 SI SI BP 1923 EP 1930 DI 10.1002/cssc.201300479 PG 8 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA AA1US UT WOS:000330881800010 PM 24106017 ER PT J AU An, CH Wang, JZ Liu, JX Wang, ST Sun, YG AF An, Changhua Wang, Jizhuang Liu, Junxue Wang, Shutao Sun, Yugang TI Hollow AgI:Ag Nanoframes as Solar Photocatalysts for Hydrogen Generation from Water Reduction SO CHEMSUSCHEM LA English DT Article DE hydrogen; nanostructures; photochemistry; silver; water splitting ID VISIBLE-LIGHT; ROOM-TEMPERATURE; CATION-EXCHANGE; CADMIUM IONS; NANOPARTICLES; SURFACE; CO2; ARCHITECTURE; EFFICIENT; AGCL AB A facile strategy based on the principle of the Kirkendall effect has been developed to synthesize hollow nanoframes and nanoshells of AgI:Ag composites through the controlled anion-exchange reaction between I- ions and solid AgBr:Ag (or AgCl:Ag) nanoparticles that serve as templates. Regardless of the morphologies of the template nanoparticles, they can be chemically transformed to hollow AgI: Ag structures with morphologies similar to those of the templates. The synthesized hollow AgI: Ag nanostructures can be used as efficient photocatalysts for H-2 generation from water reduction and the decomposition of organic pollutants owing to the enhanced absorption of visible light by the Ag components in the hybrid nanostructures. The hollow nanostructures exhibit a higher photocatalytic performance than the corresponding solid nanoparticles possibly because of the large surface area and unique AgI/Ag interfaces associated with the hollow nanostructures. C1 [An, Changhua; Wang, Jizhuang; Liu, Junxue; Wang, Shutao] China Univ Petr, Coll Chem Engn, State Key Lab Heavy Oil, Qingdao 266580, Peoples R China. [An, Changhua; Wang, Jizhuang; Liu, Junxue; Wang, Shutao] China Univ Petr, Coll Sci, Qingdao 266580, Peoples R China. [Sun, Yugang] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP An, CH (reprint author), China Univ Petr, Coll Chem Engn, State Key Lab Heavy Oil, Qingdao 266580, Peoples R China. EM anchh@upc.edu.cn; ygsun@anl.gov RI Sun, Yugang /A-3683-2010; Liu, Junxue/L-8206-2013 OI Sun, Yugang /0000-0001-6351-6977; Liu, Junxue/0000-0001-8349-1017 FU National Natural Science Foundation of China [21001116]; Fundamental Research Funds for the Central Universities; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Grant No. 21001116) and the Fundamental Research Funds for the Central Universities. The use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 43 TC 9 Z9 9 U1 3 U2 97 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD OCT PY 2013 VL 6 IS 10 SI SI BP 1931 EP 1937 DI 10.1002/cssc.201300463 PG 7 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA AA1US UT WOS:000330881800011 PM 24105996 ER PT J AU Yeager, MP Du, WX Wang, Q Deskins, NA Sullivan, M Bishop, B Su, D Xu, WQ Senanayake, SD Si, R Hanson, J Teng, XW AF Yeager, Matthew P. Du, Wenxin Wang, Qi Deskins, N. Aaron Sullivan, Matthew Bishop, Brendan Su, Dong Xu, Wenqian Senanayake, Sanjaya D. Si, Rui Hanson, Jonathan Teng, Xiaowei TI Pseudocapacitive Hausmannite Nanoparticles with (101) Facets: Synthesis, Characterization, and Charge-Transfer Mechanism SO CHEMSUSCHEM LA English DT Article DE manganese; redox chemistry; supercapacitors; X-ray absorption spectroscopy; X-ray diffraction ID RAY-ABSORPTION SPECTROSCOPY; LITHIUM-ION BATTERIES; ELECTROCHEMICAL CAPACITORS; MANGANESE OXIDE; MN3O4 NANORODS; TIO2 ANATASE; SUPERCAPACITOR ELECTRODES; HYDROTHERMAL SYNTHESIS; MAGNETIC-PROPERTIES; GRAPHENE SHEETS AB Hausmannite Mn3O4 octahedral nanoparticles of 18.3 +/- 7.0 nm with (101) facets have been prepared by an oxygen-mediated growth. The electrochemical properties of the Mn3O4 particles as pseudocapacitive cathode materials were characterized both in half-cells and in button-cells. The Mn3O4 nanoparticles exhibited a high mass-specific capacitance of 261 Fg(-1), which was calculated from cyclic voltammetry analyses, and a capacitive retention of 78% after 10000 galvanostatic charge-discharge cycles. The charge-transfer mechanisms of the Mn3O4 nanoparticles were further studied by using synchrotron-based in situ X-ray absorption near edge spectroscopy and XRD. Both measurements showed concurrently that throughout the potential window of 0-1.2 V (vs. Ag/AgCl), a stable spinel structure of Mn3O4 remained, and a reversible electrochemical conversion between tetrahedral [(MnO4)-O-II] and octahedral [(MnO6)-O-III] units accounted for the redox activity. Density functional theory calculations further corroborated this mechanism by confirming the enhanced redox stability afforded by the abundant and exposed (101) facets of Mn3O4 octahedra. C1 [Yeager, Matthew P.; Du, Wenxin; Sullivan, Matthew; Bishop, Brendan; Teng, Xiaowei] Univ New Hampshire, Dept Chem Engn, Durham, NH 03824 USA. [Wang, Qi] SUNY Binghamton, Dept Chem, Binghamton, NY 13902 USA. [Deskins, N. Aaron] Worcester Polytech Inst, Dept Chem Engn, Worcester, MA 01609 USA. [Su, Dong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Xu, Wenqian; Senanayake, Sanjaya D.; Si, Rui; Hanson, Jonathan] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Yeager, MP (reprint author), Univ New Hampshire, Dept Chem Engn, Durham, NH 03824 USA. EM xw.teng@unh.edu RI Deskins, Nathaniel/H-3954-2012; Du, Wenxin/P-9195-2014; Senanayake, Sanjaya/D-4769-2009; Su, Dong/A-8233-2013 OI Senanayake, Sanjaya/0000-0003-3991-4232; Su, Dong/0000-0002-1921-6683 FU University of New Hampshire; US Department of Education, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Synchrotron Catalysis Consortium [DE-FG02-05ER15688] FX This work is supported in part by the University of New Hampshire (XT, MY, WD, MS, BB). Research was performed in part at the NSLS and Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Education, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Beam lines X19A are partly supported by the Synchrotron Catalysis Consortium (DE-FG02-05ER15688). NR 72 TC 7 Z9 7 U1 5 U2 78 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD OCT PY 2013 VL 6 IS 10 SI SI BP 1983 EP 1992 DI 10.1002/cssc.201300027 PG 10 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA AA1US UT WOS:000330881800015 PM 23650213 ER PT J AU Chung, TL Ishida, Y Chayama, K Imamura, M Hiraga, N Uprichard, SL Perelson, AS Dahari, H AF Chung, Tje Lin Ishida, Yuji Chayama, Kazuaki Imamura, Michio Hiraga, Nobuhiko Uprichard, Susan L. Perelson, Alan S. Dahari, Harel TI Multiscale mathematical modeling of HBV kinetics in humanized chimeric mice during treatment with lamivudine and/or pegylated interferon-alpha-2a SO HEPATOLOGY LA English DT Meeting Abstract CT 64th Annual Meeting and Postgraduate Course of the American-Association-for-the-Study-of-Liver-Diseases CY NOV 01-05, 2013 CL Washington, DC SP Amer Assoc Study Liver Dis C1 [Chung, Tje Lin; Uprichard, Susan L.; Dahari, Harel] Loyola Univ, Med Ctr, Dept Med, Div Hepatol, Maywood, IL 60153 USA. [Chung, Tje Lin] Goethe Univ Frankfurt, Inst Biostat & Math Modeling, Dept Med, D-60054 Frankfurt, Germany. [Ishida, Yuji; Chayama, Kazuaki; Imamura, Michio; Hiraga, Nobuhiko] Hiroshima Univ, Inst Biomed & Hlth Sci, Dept Gastroenterol & Metab, Hiroshima, Japan. [Perelson, Alan S.; Dahari, Harel] Los Alamos Natl Lab, Los Alamos, NM USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0270-9139 EI 1527-3350 J9 HEPATOLOGY JI Hepatology PD OCT PY 2013 VL 58 SU 1 SI SI MA 936 BP 655A EP 655A PG 1 WC Gastroenterology & Hepatology SC Gastroenterology & Hepatology GA 297JR UT WOS:000330252203104 ER PT J AU Guedj, J Rotman, Y Cotler, S Schmid, P Albrecht, J Haynes-Williams, V Liang, TJ Hoofnagle, JH Heller, T Dahari, H AF Guedj, Jeremie Rotman, Yaron Cotler, Scott Schmid, Peter Albrecht, Jeff Haynes-Williams, Vanessa Liang, T. Jake Hoofnagle, Jay H. Heller, Theo Dahari, Harel TI Understanding early serum hepatitis D virus and hepatitis B surface antigen kinetics during pegylated interferon-alpha therapy via mathematical modeling SO HEPATOLOGY LA English DT Meeting Abstract CT 64th Annual Meeting and Postgraduate Course of the American-Association-for-the-Study-of-Liver-Diseases CY NOV 01-05, 2013 CL Washington, DC SP Amer Assoc Study Liver Dis C1 [Guedj, Jeremie; Dahari, Harel] Los Alamos Natl Lab, Los Alamos, NM USA. [Guedj, Jeremie] Univ Paris Diderot, INSERM, UMR 738, F-75018 Paris, France. [Rotman, Yaron; Haynes-Williams, Vanessa; Liang, T. Jake; Hoofnagle, Jay H.; Heller, Theo] NIDDK, Liver Dis Branch, NIH, Bethesda, MD 20892 USA. [Cotler, Scott; Dahari, Harel] Loyola Univ, Med Ctr, Dept Med, Div Hepatol, Maywood, IL 60153 USA. [Schmid, Peter; Albrecht, Jeff] Natl Inst Genet, Los Alamos, NM USA. RI Guedj, Jeremie/A-6842-2017 OI Guedj, Jeremie/0000-0002-5534-5482 NR 0 TC 1 Z9 1 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0270-9139 EI 1527-3350 J9 HEPATOLOGY JI Hepatology PD OCT PY 2013 VL 58 SU 1 SI SI MA 998 BP 688A EP 689A PG 2 WC Gastroenterology & Hepatology SC Gastroenterology & Hepatology GA 297JR UT WOS:000330252203165 ER PT J AU Canini, L DebRoy, S Marino, Z Crespo, G Navasa, M D'Amato, M Cotler, S Forns, X Perelson, AS Dahari, H AF Canini, Laetitia DebRoy, Swati Marino, Zoe Crespo, Gonzalo Navasa, Miquel D'Amato, Massimo Cotler, Scott Forns, Xavier Perelson, Alan S. Dahari, Harel TI Hepatitis C virus kinetic comparison between non-cirrhotic patients and patients awaiting liver transplantation treated with intravenous silibinin monotherapy SO HEPATOLOGY LA English DT Meeting Abstract CT 64th Annual Meeting and Postgraduate Course of the American-Association-for-the-Study-of-Liver-Diseases CY NOV 01-05, 2013 CL Washington, DC SP Amer Assoc Study Liver Dis C1 [Canini, Laetitia; Perelson, Alan S.] Los Alamos Natl Lab, Los Alamos, NM USA. [DebRoy, Swati; Cotler, Scott; Dahari, Harel] Loyola Univ, Med Ctr, Dept Med, Maywood, IL 60153 USA. [DebRoy, Swati] Univ Missouri, Dept Math & Stat, Kansa Citymaywood, MO USA. [Marino, Zoe; Crespo, Gonzalo; Navasa, Miquel; Forns, Xavier] IDIBAPS, CIBERehd, Liver Unit, Barcelona, Spain. [D'Amato, Massimo] Rottapharm, Monza, Italy. NR 0 TC 1 Z9 1 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0270-9139 EI 1527-3350 J9 HEPATOLOGY JI Hepatology PD OCT PY 2013 VL 58 SU 1 SI SI MA 1124 BP 758A EP 758A PG 1 WC Gastroenterology & Hepatology SC Gastroenterology & Hepatology GA 297JR UT WOS:000330252203290 ER PT J AU Singh, S Lowell, RP Lewis, KC AF Singh, Shreya Lowell, Robert P. Lewis, Kayla C. TI Numerical modeling of phase separation at Main Endeavour Field, Juan de Fuca Ridge SO GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS LA English DT Article DE Main Endeavour Field; hydrothermal systems; phase separation; numerical modeling ID MIDOCEAN RIDGE; HYDROTHERMAL SYSTEMS; VENT FIELD; HEAT-FLUX; SPREADING CENTERS; SEGMENT; FLUIDS; DYNAMICS; CONVECTION; NACL-H2O AB Before being disrupted by a magmatic event in 1999, the vent temperatures and salinities along the axis of the Main Endeavour Field on the Juan de Fuca Ridge exhibited a quasi-steady spatial gradient in which the southern vent fluids were hotter and less saline than the northern vent fluids. We present 2-D numerical models of two phase flow in a NaCl-H2O system to understand these gradients. We consider homogenous permeability models with a range of bottom boundary temperature distributions and heterogeneous permeability models by imposing layer 2A extrusives with a constant bottom boundary temperature distribution. The aim is to understand the impact of both bottom boundary temperature and layer 2A permeability on hydrothermal fluids and to determine what combination of these controlling factors could cause the observed trend. We find that variations in bottom boundary temperature alone cannot explain the span of surface temperatures and salinities measured at the Main Endeavour Field. Heterogeneous permeability within layer 2A that has higher overall permeability in the northern part of the vent field than the southern part can reproduce the observed north to south temperature gradient, but such a permeability distribution cannot reproduce the observed salinity gradient. We conclude that both deep-seated heterogeneous permeability, perhaps localized by a fault zone, and a heterogeneous layer 2A are required to produce the trend of temperatures and salinities in vent fluids at the Main Endeavour Field prior to the 1999 event. C1 [Singh, Shreya; Lowell, Robert P.] Virginia Polytech Inst & State Univ, Dept Geosci, Blacksburg, VA 24061 USA. [Lewis, Kayla C.] Los Alamos Natl Lab, Dept Computat Earth Sci, Los Alamos, NM 87545 USA. RP Singh, S (reprint author), Virginia Polytech Inst & State Univ, Dept Geosci, Blacksburg, VA 24061 USA. EM rlowell@vt.edu FU NSF [OCE-0819084, OCE-0926418, OCE-0818783] FX We thank the Associate Editor Ed Baker and two anonymous reviewers for the helpful comments on the original draft of this paper. This research was supported in part by NSF grants OCE-0819084 and OCE-0926418 to R. P. L and OCE-0818783 to K. C. L. NR 54 TC 7 Z9 7 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1525-2027 J9 GEOCHEM GEOPHY GEOSY JI Geochem. Geophys. Geosyst. PD OCT PY 2013 VL 14 IS 10 BP 4021 EP 4034 DI 10.1002/ggge.20249 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 301KO UT WOS:000330531400008 ER PT J AU Clague, DA Dreyer, BM Paduan, JB Martin, JF Chadwick, WW Caress, DW Portner, RA Guilderson, TP McGann, ML Thomas, H Butterfield, DA Embley, RW AF Clague, David A. Dreyer, Brian M. Paduan, Jennifer B. Martin, Julie F. Chadwick, William W. Caress, David W. Portner, Ryan A. Guilderson, Thomas P. McGann, Mary L. Thomas, Hans Butterfield, David A. Embley, Robert W. TI Geologic history of the summit of Axial Seamount, Juan de Fuca Ridge SO GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS LA English DT Article DE Axial Seamount; Juan de Fuca Ridge; geologic; mapping; lava flows ID EAST PACIFIC RISE; LAVA-FLOW MORPHOLOGY; RA-226 TH-230 DISEQUILIBRIUM; NORTHERN CLEFT SEGMENT; APRIL 2011 ERUPTION; MID-ATLANTIC RIDGE; MIDOCEAN RIDGE; SHEET FLOWS; EXPLOSIVE ERUPTIONS; BATHYMETRIC SURVEYS AB Multibeam (1 m resolution) and side scan data collected from an autonomous underwater vehicle, and lava samples, radiocarbon-dated sediment cores, and observations of flow contacts collected by remotely operated vehicle were combined to reconstruct the geologic history and flow emplacement processes on Axial Seamount's summit and upper rift zones. The maps show 52 post-410 CE lava flows and 20 precaldera lava flows as old as 31.2 kyr, the inferred age of the caldera. Clastic deposits 1-2 m thick accumulated on the rims postcaldera. Between 31 ka and 410 CE, there are no known lava flows near the summit. The oldest postcaldera lava (410 CE) is a pillow cone SE of the caldera. Two flows erupted on the W rim between similar to 800 and 1000 CE. From 1220 to 1300 CE, generally small eruptions of plagioclase phyric, depleted, mafic lava occurred in the central caldera and on the east rim. Larger post-1400 CE eruptions produced inflated lobate flows of aphyric, less-depleted, and less mafic lava on the upper rift zones and in the N and S caldera. All caldera floor lava flows, and most uppermost rift zone flows, postdate 1220 CE. Activity shifted from the central caldera to the upper S rift outside the caldera, to the N rift and caldera floor, and then to the S caldera and uppermost S rift, where two historical eruptions occurred in 1998 and 2011. The average recurrence interval deduced from the flows erupted over the last 800 years is statistically identical to the 13 year interval between historical eruptions. C1 [Clague, David A.; Paduan, Jennifer B.; Caress, David W.; Portner, Ryan A.; Thomas, Hans] Monterey Bay Aquarium Res Inst, Moss Landing, CA 95039 USA. [Dreyer, Brian M.; Guilderson, Thomas P.] Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95064 USA. [Chadwick, William W.] Oregon State Univ, CIMRS, Newport, OR USA. [Guilderson, Thomas P.] LLNL, Ctr Accelerator Mass Spectrometry, Livermore, CA USA. [McGann, Mary L.] US Geol Survey, Menlo Pk, CA USA. [Butterfield, David A.] JISAO PMEL, Seattle, WA USA. [Embley, Robert W.] NOAA, PMEL, Hatfield Marine Sci Ctr, Newport, OR USA. RP Clague, DA (reprint author), Monterey Bay Aquarium Res Inst, Moss Landing, CA 95039 USA. EM clague@mbari.org RI Butterfield, David/H-3815-2016; OI Butterfield, David/0000-0002-1595-9279; Dreyer, Brian/0000-0003-0992-6929; Caress, David/0000-0002-6596-9133 FU David and Lucile Packard Foundation; U. S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NSF [OCE-1061176, OCE-1060515]; PMEL [3993] FX This study could not have been done without the support, hard work, and professionalism of the ships' captains and crews on the R/V Western Flyer and the R/V Zephyr and the ROV teams for Tiburon and Doc Ricketts. The dive programs benefitted from the assistance at sea of numerous colleagues and graduate students. The AUV missions in 2006-2008 were conducted off the R/V Thompson and the R/V Atlantis and their ships' crews were instrumental in successful launches and recoveries of the still developmental AUV. Chief Scientist Jim Holden graciously made the ship time available to us to launch and recover the AUV in 2008. AUV team members Doug Conlin and Duane Thompson assisted with operations during the years of AUV data collection. John Delaney and Deb Kelley kindly provided access to their Simrad EM302 data collected in late summer 2011; the multibeam amplitude data identified the high-backscatter flows on the west flank of the caldera better than in prior data sets. We thank Alice Davis at MBARI and Robert Oscarson at the U.S. Geological Survey in Menlo Park, and Sarah Roeske, Brian Joy, and Nick Botto at University of California at Davis for assistance with microprobe analyses. DAC, JBP, JFM, DWC, HT, and RAP; collection of the AUV multibeam data in 2006-2008 off the R/V Thompson and the R/V Atlantis and in 2009 and 2011 off the R/V Zephyr; postcruise AUV data processing; and ROV dives using Tiburon in 2005 and 2006 and Doc Ricketts in 2009 and 2011 off the R/V Western Flyer were supported by grants to MBARI from the David and Lucile Packard Foundation. A portion of this work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Final integration of the sample data with the AUV maps was also supported by NSF grants OCE-1061176 to BMD and OCE-1060515 to DAC and PMEL contribution number 3993. NR 105 TC 12 Z9 12 U1 1 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1525-2027 J9 GEOCHEM GEOPHY GEOSY JI Geochem. Geophys. Geosyst. PD OCT PY 2013 VL 14 IS 10 BP 4403 EP 4443 DI 10.1002/ggge.20240 PG 41 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 301KO UT WOS:000330531400031 ER PT J AU Hainfeld, JF Smilowitz, HM O'Connor, MJ Dilmanian, FA Slatkin, DN AF Hainfeld, James F. Smilowitz, Henry M. O'Connor, Michael J. Dilmanian, Farrokh Avraham Slatkin, Daniel N. TI Gold nanoparticle imaging and radiotherapy of brain tumors in mice SO NANOMEDICINE LA English DT Article DE brain tumor; cancer; contrast agent; dose enhancement; glioma; gold nanoparticle; imaging; microcomputed tomography; radiotherapy; x-ray ID SYNCHROTRON STEREOTACTIC RADIOTHERAPY; RADIATION-THERAPY; DOSE ENHANCEMENT; IN-VIVO; MALIGNANT GLIOMA; MONTE-CARLO; F98 GLIOMA; CANCER; CELLS; GLIOBLASTOMA AB Aim: To test intravenously injected gold nanoparticles for x-ray imaging and radiotherapy enhancement of large, imminently lethal, intracerebral malignant gliomas. Materials & methods: Gold nanoparticles approximately 11 nm in size were injected intravenously and brains imaged using microcomputed tomography. A total of 15 h after an intravenous dose of 4 g Au/kg was administered, brains were irradiated with 30 Gy 100 kVp x-rays. Results: Gold uptake gave a 19: 1 tumor to normal brain ratio with 1.5% w/w gold in tumor, calculated to increase local radiation dose by approximately 300%. Mice receiving gold and radiation (30 Gy) demonstrated 50% long term (>1 year) tumor-free survival, whereas all mice receiving radiation only died. Conclusion: Intravenously injected gold nanoparticles cross the blood-tumor barrier, but are largely blocked by the normal blood-brain barrier, enabling high-resolution computed tomography tumor imaging. Gold radiation enhancement significantly improved long-term survival compared with radiotherapy alone. This approach holds promise to improve therapy of human brain tumors and other cancers. C1 [Hainfeld, James F.; O'Connor, Michael J.; Slatkin, Daniel N.] Nanoprobes Inc, Unit 1, Yaphank, NY 11980 USA. [Smilowitz, Henry M.] Univ Connecticut, Ctr Hlth, Dept Cell Biol, Farmington, CT 06030 USA. [Dilmanian, Farrokh Avraham] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Dilmanian, Farrokh Avraham] SUNY Stony Brook, Hlth Sci Ctr, Dept Radiat Oncol, Stony Brook, NY 11794 USA. [Dilmanian, Farrokh Avraham] SUNY Stony Brook, Hlth Sci Ctr, Dept Neurol, Stony Brook, NY 11794 USA. RP Hainfeld, JF (reprint author), Nanoprobes Inc, Unit 1, 95 Horseblock Rd, Yaphank, NY 11980 USA. EM hainfeld@nanoprobes.com FU NIH [1R43CA134074] FX This work was supported in part by NIH grant 1R43CA134074 to J Hainfeld, who is a part owner of Nanoprobes, Inc. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. NR 38 TC 72 Z9 78 U1 2 U2 73 PU FUTURE MEDICINE LTD PI LONDON PA UNITEC HOUSE, 3RD FLOOR, 2 ALBERT PLACE, FINCHLEY CENTRAL, LONDON, N3 1QB, ENGLAND SN 1743-5889 EI 1748-6963 J9 NANOMEDICINE-UK JI Nanomedicine PD OCT PY 2013 VL 8 IS 10 BP 1601 EP 1609 DI 10.2217/NNM.12.165 PG 9 WC Biotechnology & Applied Microbiology; Nanoscience & Nanotechnology SC Biotechnology & Applied Microbiology; Science & Technology - Other Topics GA 299DD UT WOS:000330374400011 PM 23265347 ER PT J AU Chung, DJ Park, D Myers, K Grass, J Kiley, P Landick, R Keles, S AF Chung, Dongjun Park, Dan Myers, Kevin Grass, Jeffrey Kiley, Patricia Landick, Robert Keles, Suenduez TI dPeak: High Resolution Identification of Transcription Factor Binding Sites from PET and SET ChIP-Seq Data SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID PROTEIN-DNA INTERACTIONS; GENOME-WIDE; ESCHERICHIA-COLI; IN-VIVO; E. COLI; PROMOTERS; MOTIF AB Chromatin immunoprecipitation followed by high throughput sequencing (ChIP-Seq) has been successfully used for genome-wide profiling of transcription factor binding sites, histone modifications, and nucleosome occupancy in many model organisms and humans. Because the compact genomes of prokaryotes harbor many binding sites separated by only few base pairs, applications of ChIP-Seq in this domain have not reached their full potential. Applications in prokaryotic genomes are further hampered by the fact that well studied data analysis methods for ChIP-Seq do not result in a resolution required for deciphering the locations of nearby binding events. We generated single-end tag (SET) and paired-end tag (PET) ChIP-Seq data for sigma(70) factor in Escherichia coli (E. coli). Direct comparison of these datasets revealed that although PET assay enables higher resolution identification of binding events, standard ChIP-Seq analysis methods are not equipped to utilize PET-specific features of the data. To address this problem, we developed dPeak as a high resolution binding site identification (deconvolution) algorithm. dPeak implements a probabilistic model that accurately describes ChIP-Seq data generation process for both the SET and PET assays. For SET data, dPeak outperforms or performs comparably to the state-of-the-art high-resolution ChIP-Seq peak deconvolution algorithms such as PICS, GPS, and GEM. When coupled with PET data, dPeak significantly outperforms SET-based analysis with any of the current state-of-the-art methods. Experimental validations of a subset of dPeak predictions from sigma(70) PET ChIP-Seq data indicate that dPeak can estimate locations of binding events with as high as 2 to 21 bp resolution. Applications of dPeak to sigma(70) ChIP-Seq data in E. coli under aerobic and anaerobic conditions reveal closely located promoters that are differentially occupied and further illustrate the importance of high resolution analysis of ChIP-Seq data. C1 [Chung, Dongjun; Keles, Suenduez] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA. [Park, Dan; Myers, Kevin; Kiley, Patricia] Univ Wisconsin, Dept Biomol Chem, Madison, WI USA. [Grass, Jeffrey; Landick, Robert] Univ Wisconsin, Dept Biochem, Madison, WI 53705 USA. [Grass, Jeffrey; Kiley, Patricia; Landick, Robert] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI USA. [Landick, Robert] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. [Keles, Suenduez] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI USA. RP Chung, DJ (reprint author), Yale Univ, Dept Biostat, New Haven, CT 06520 USA. EM keles@stat.wisc.edu OI Chung, Dongjun/0000-0002-8072-5671 FU National Institutes of Health [HG006716, HG007019, HG003747, GM045844, GM38660]; National Science Foundation [MCB0640642]; US Department of Energy Great Lakes Bioenergy Research Center (DOE Office of Science) [BER DE-FC02-07ER64494]; US Department of Energy BACTER Program [DE-FG02-04ER25627]; University of Wisconsin-Madison National Institutes of Health [5T32GM08349] FX This research was supported by National Institutes of Health Grants to SK (HG006716, HG007019, HG003747)), PK (GM045844), and RL (GM38660), the National Science Foundation (MCB0640642), the US Department of Energy Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494), the US Department of Energy BACTER Program (KM and DP; DE-FG02-04ER25627), and the University of Wisconsin-Madison National Institutes of Health Biotechnology Training Grant (KM; 5T32GM08349). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 38 TC 7 Z9 7 U1 0 U2 4 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD OCT PY 2013 VL 9 IS 10 AR e1003246 DI 10.1371/journal.pcbi.1003246 PG 13 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 298WN UT WOS:000330355300009 PM 24146601 ER PT J AU Park, DM Akhtar, MS Ansari, AZ Landick, R Kiley, PJ AF Park, Dan M. Akhtar, Md Sohail Ansari, Aseem Z. Landick, Robert Kiley, Patricia J. TI The Bacterial Response Regulator ArcA Uses a Diverse Binding Site Architecture to Regulate Carbon Oxidation Globally SO PLOS GENETICS LA English DT Article ID ESCHERICHIA-COLI K-12; DEPENDENT ACID RESISTANCE; OXIDASE CYDAB OPERON; CHIP-SEQ DATA; GENE-EXPRESSION; 2-COMPONENT SYSTEM; DNA-BINDING; REDOX REGULATION; TRANSCRIPTIONAL REGULATION; SIGNAL-TRANSDUCTION AB Despite the importance of maintaining redox homeostasis for cellular viability, how cells control redox balance globally is poorly understood. Here we provide new mechanistic insight into how the balance between reduced and oxidized electron carriers is regulated at the level of gene expression by mapping the regulon of the response regulator ArcA from Escherichia coli, which responds to the quinone/quinol redox couple via its membrane-bound sensor kinase, ArcB. Our genome-wide analysis reveals that ArcA reprograms metabolism under anaerobic conditions such that carbon oxidation pathways that recycle redox carriers via respiration are transcriptionally repressed by ArcA. We propose that this strategy favors use of catabolic pathways that recycle redox carriers via fermentation akin to lactate production in mammalian cells. Unexpectedly, bioinformatic analysis of the sequences bound by ArcA in ChIP-seq revealed that most ArcA binding sites contain additional direct repeat elements beyond the two required for binding an ArcA dimer. DNase I footprinting assays suggest that non-canonical arrangements of cis-regulatory modules dictate both the length and concentration-sensitive occupancy of DNA sites. We propose that this plasticity in ArcA binding site architecture provides both an efficient means of encoding binding sites for ArcA, sigma(70)-RNAP and perhaps other transcription factors within the same narrow sequence space and an effective mechanism for global control of carbon metabolism to maintain redox homeostasis. C1 [Park, Dan M.; Kiley, Patricia J.] Univ Wisconsin Madison, Dept Biomol Chem, Madison, WI USA. [Akhtar, Md Sohail; Ansari, Aseem Z.; Landick, Robert] Univ Wisconsin Madison, Dept Biochem, Madison, WI USA. [Landick, Robert] Univ Wisconsin Madison, Dept Bacteriol, Madison, WI USA. [Landick, Robert] Univ Wisconsin Madison, Great Lakes Bioenergy Res Ctr, Madison, WI USA. RP Park, DM (reprint author), Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA 94550 USA. EM pjkiley@wisc.edu FU NSF [MCB0640642]; NIH [GM045844]; DOE BACTER Program [DE-FG02-04ER25627]; DOE Great Lakes Bioenergy Research Center (DOE Office of Science) [BER DE-FC02-07ER64494] FX This work was funded by grants from the NSF (MCB0640642) to RL, and NIH to PJK (GM045844). DMP was supported by the DOE BACTER Program, (DE-FG02-04ER25627). This work was also funded in part by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494). HT sequencing was provided by the UW-Madison Biotechnology Center. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 114 TC 30 Z9 30 U1 6 U2 22 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7404 J9 PLOS GENET JI PLoS Genet. PD OCT PY 2013 VL 9 IS 10 AR e1003839 DI 10.1371/journal.pgen.1003839 PG 18 WC Genetics & Heredity SC Genetics & Heredity GA 299AR UT WOS:000330367200022 PM 24146625 ER PT J AU Jiang, SS Yao, J Ma, KW Zhou, HB Song, JK He, SY Ma, WB AF Jiang, Shushu Yao, Jian Ma, Ka-Wai Zhou, Huanbin Song, Jikui He, Sheng Yang Ma, Wenbo TI Bacterial Effector Activates Jasmonate Signaling by Directly Targeting JAZ Transcriptional Repressors SO PLOS PATHOGENS LA English DT Article ID PLANT IMMUNE-SYSTEM; PV. TOMATO DC3000; PSEUDOMONAS-SYRINGAE; PHYTOTOXIN CORONATINE; ARABIDOPSIS-THALIANA; PROTEIN INTERACTIONS; REGULATED DEFENSE; INNATE IMMUNITY; III EFFECTORS; VIRULENCE AB Gram-negative bacterial pathogens deliver a variety of virulence proteins through the type III secretion system (T3SS) directly into the host cytoplasm. These type III secreted effectors (T3SEs) play an essential role in bacterial infection, mainly by targeting host immunity. However, the molecular basis of their functionalities remains largely enigmatic. Here, we show that the Pseudomonas syringae T3SE HopZ1a, a member of the widely distributed YopJ effector family, directly interacts with jasmonate ZIM-domain (JAZ) proteins through the conserved Jas domain in plant hosts. JAZs are transcription repressors of jasmonate (JA)-responsive genes and major components of the jasmonate receptor complex. Upon interaction, JAZs can be acetylated by HopZ1a through a putative acetyltransferase activity. Importantly, P. syringae producing the wild-type, but not a catalytic mutant of HopZ1a, promotes the degradation of HopZ1-interacting JAZs and activates JA signaling during bacterial infection. Furthermore, HopZ1a could partially rescue the virulence defect of a P. syringae mutant that lacks the production of coronatine, a JA-mimicking phytotoxin produced by a few P. syringae strains. These results highlight a novel example by which a bacterial effector directly manipulates the core regulators of phytohormone signaling to facilitate infection. The targeting of JAZ repressors by both coronatine toxin and HopZ1 effector suggests that the JA receptor complex is potentially a major hub of host targets for bacterial pathogens. C1 [Jiang, Shushu; Ma, Ka-Wai; Zhou, Huanbin; Ma, Wenbo] Univ Calif Riverside, Dept Plant Pathol & Microbiol, Riverside, CA 92521 USA. [Jiang, Shushu; Ma, Ka-Wai; Ma, Wenbo] Univ Calif Riverside, Ctr Plant Cell Biol, Riverside, CA 92521 USA. [Yao, Jian; He, Sheng Yang] Michigan State Univ, DOE Plant Res Lab, E Lansing, MI 48824 USA. [Song, Jikui] Univ Calif Riverside, Dept Biochem, Riverside, CA 92521 USA. [He, Sheng Yang] Howard Hughes Med Inst, Chevy Chase, MA USA. [Ma, Wenbo] Univ Calif Riverside, Inst Integrat Genom, Riverside, CA 92521 USA. RP Jiang, SS (reprint author), Univ Calif Riverside, Dept Plant Pathol & Microbiol, Riverside, CA 92521 USA. EM wenbo.ma@ucr.edu FU NSF (IOS) [0847870]; USDA Agriculture Experimental Station Research Support Allocation Process; UCR-Los Alamos National Laboratory Collaborative Program; NIH [R01AI068718]; DOE (the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science) [DE-FG02-91ER20021]; Gordon and Betty Moore Foundation; UC-Riverside FX This work is supported by grants from NSF (IOS#0847870), USDA Agriculture Experimental Station Research Support Allocation Process, and UCR-Los Alamos National Laboratory Collaborative Program to WM, and NIH (R01AI068718) and DOE (the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science; DE-FG02-91ER20021, in support of bacterial and plant growth infrastructure) to SYH. Research in SYH's lab is also supported by the Gordon and Betty Moore Foundation. JS is supported by start-up fund from UC-Riverside. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 58 TC 55 Z9 59 U1 8 U2 40 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7374 J9 PLOS PATHOG JI PLoS Pathog. PD OCT PY 2013 VL 9 IS 10 AR e1003715 DI 10.1371/journal.ppat.1003715 PG 12 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA 299GJ UT WOS:000330383800082 PM 24204266 ER PT J AU Lee, K Gu, SY Jin, L Le, TTN Cheng, LW Strotmeier, J Kruel, AM Yao, GR Perry, K Rummel, A Jin, RS AF Lee, Kwangkook Gu, Shenyan Jin, Lei Thi Tuc Nghi Le Cheng, Luisa W. Strotmeier, Jasmin Kruel, Anna Magdalena Yao, Guorui Perry, Kay Rummel, Andreas Jin, Rongsheng TI Structure of a Bimodular Botulinum Neurotoxin Complex Provides Insights into Its Oral Toxicity SO PLOS PATHOGENS LA English DT Article ID NONTOXIC-NONHEMAGGLUTININ COMPONENT; A PROGENITOR TOXINS; SUGAR-BINDING SITES; CELL-LINE CACO-2; CLOSTRIDIUM-BOTULINUM; SEROTYPE-D; MOLECULAR COMPOSITION; EPITHELIAL BARRIER; HA PROTEINS; HEMAGGLUTININ AB Botulinum neurotoxins (BoNTs) are produced by Clostridium botulinum and cause the fatal disease botulism, a flaccid paralysis of the muscle. BoNTs are released together with several auxiliary proteins as progenitor toxin complexes (PTCs) to become highly potent oral poisons. Here, we report the structure of a similar to 760 kDa 14-subunit large PTC of serotype A (L-PTC/A) and reveal insight into its absorption mechanism. Using a combination of X-ray crystallography, electron microscopy, and functional studies, we found that L-PTC/A consists of two structurally and functionally independent sub-complexes. A hetero-dimeric 290 kDa complex protects BoNT, while a hetero-dodecameric 470 kDa complex facilitates its absorption in the harsh environment of the gastrointestinal tract. BoNT absorption is mediated by nine glycan-binding sites on the dodecameric sub-complex that forms multivalent interactions with carbohydrate receptors on intestinal epithelial cells. We identified monosaccharides that blocked oral BoNT intoxication in mice, which suggests a new strategy for the development of preventive countermeasures for BoNTs based on carbohydrate receptor mimicry. C1 [Lee, Kwangkook; Gu, Shenyan; Yao, Guorui; Jin, Rongsheng] Univ Calif Irvine, Dept Physiol & Biophys, Irvine, CA 92717 USA. [Jin, Lei] Sanford Burnham Med Res Inst, Infect & Inflammatory Dis Ctr, La Jolla, CA USA. [Thi Tuc Nghi Le; Strotmeier, Jasmin; Kruel, Anna Magdalena; Rummel, Andreas] Medizin Hsch Hannover, Inst Toxikol, Hannover, Germany. [Cheng, Luisa W.] USDA, ARS, Western Reg Res Ctr, Foodborne Contaminants Res Unit, Albany, CA 94710 USA. [Perry, Kay] Cornell Univ, Argonne Natl Lab, NE CAT, Argonne, IL USA. [Perry, Kay] Cornell Univ, Argonne Natl Lab, Dept Chem & Chem Biol, Argonne, IL USA. [Jin, Rongsheng] Sanford Burnham Med Res Inst, Neurosci Aging & Stem Cell Ctr, La Jolla, CA USA. RP Lee, K (reprint author), Univ Calif Irvine, Dept Physiol & Biophys, Irvine, CA 92717 USA. EM rummel.andreas@mh-hannover.de; r.jin@uci.edu RI Jin, Rongsheng/M-7797-2013; OI Jin, Rongsheng/0000-0003-0348-7363; Perry, Kay/0000-0002-4046-1704 FU National Institute of Allergy and Infectious Diseases (NIAID) [5R01AI091823, U54 AI065359]; Deutsche Forschungsgemeinschaft [DFG Exzellenzinitiative GSC 108]; Swiss Federal Office for Civil Protection (BABS) [353003325]; United States Department of Agriculture CRIS project [5325-42000-048-00D]; National Center for Research Resources (NCRR) [5P41RR015301-10]; National Institute of General Medical Sciences (NIGMS) [8 P41 GM103403-10]; U.S. Department of Energy (DOE) [DE-AC02-06CH11357]; DOE Office of Biological and Environmental Research; NIGMS [P41GM103393]; NCRR [P41RR001209]; NIH at UCLA [1S10RR23057]; NIH; Deutsche Forschungsgemeinschaft DFG FX This work was supported in part by National Institute of Allergy and Infectious Diseases (NIAID) grants (5R01AI091823 to RJ and U54 AI065359 to LWC), by the Deutsche Forschungsgemeinschaft (DFG Exzellenzinitiative GSC 108 to TTNL), by the Swiss Federal Office for Civil Protection (BABS #353003325 to AR), and by the United States Department of Agriculture CRIS project (5325-42000-048-00D to LWC). NE-CAT at the Advanced Photon Source (APS) is supported by grants from the National Center for Research Resources (NCRR, 5P41RR015301-10), the National Institute of General Medical Sciences (NIGMS, 8 P41 GM103403-10), and the U.S. Department of Energy (DOE, DE-AC02-06CH11357). Stanford Synchrotron Radiation Lightsource is supported by the DOE Office of Biological and Environmental Research, the NIGMS (including P41GM103393), and the NCRR (P41RR001209). We acknowledge the use of the EM facility at the Electron Imaging Center for NanoMachines supported by NIH (1S10RR23057 to Dr. Z. Hong Zhou) at UCLA, and the UCSD Cryo-EM Facility, which is supported by NIH grants to Dr. Timothy S. Baker and a gift from the Agouron Institute to UCSD. Publication charges were supported in part by the Deutsche Forschungsgemeinschaft DFG in the framework of the program "Open Access Publishing" at Medizinische Hochschule Hannover. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 64 TC 37 Z9 37 U1 2 U2 9 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7366 EI 1553-7374 J9 PLOS PATHOG JI PLoS Pathog. PD OCT PY 2013 VL 9 IS 10 AR e1003690 DI 10.1371/journal.ppat.1003690 PG 13 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA 299GJ UT WOS:000330383800059 PM 24130488 ER PT J AU Wijewardana, V Kristoff, J Xu, CL Ma, DZ Haret-Richter, G Stock, JL Policicchio, BB Mobley, AD Nusbaum, R Aamer, H Trichel, A Ribeiro, RM Apetrei, C Pandrea, I AF Wijewardana, Viskam Kristoff, Jan Xu, Cuiling Ma, Dongzhu Haret-Richter, George Stock, Jennifer L. Policicchio, Benjamin B. Mobley, Adam D. Nusbaum, Rebecca Aamer, Hadega Trichel, Anita Ribeiro, Ruy M. Apetrei, Cristian Pandrea, Ivona TI Kinetics of Myeloid Dendritic Cell Trafficking and Activation: Impact on Progressive, Nonprogressive and Controlled SIV Infections SO PLOS PATHOGENS LA English DT Article ID SIMIAN IMMUNODEFICIENCY VIRUS; AFRICAN-GREEN MONKEYS; CD4(+) T-CELLS; PRIMARY HIV-1 INFECTION; NONHUMAN PRIMATE HOSTS; IN-VIVO REPLICATION; RHESUS MACAQUES; IMMUNE ACTIVATION; LYMPHOID-TISSUE; GASTROINTESTINAL-TRACT AB We assessed the role of myeloid dendritic cells (mDCs) in the outcome of SIV infection by comparing and contrasting their frequency, mobilization, phenotype, cytokine production and apoptosis in pathogenic (pigtailed macaques, PTMs), nonpathogenic (African green monkeys, AGMs) and controlled (rhesus macaques, RMs) SIVagmSab infection. Through the identification of recently replicating cells, we demonstrated that mDC mobilization from the bone marrow occurred in all species postinfection, being most prominent in RMs. Circulating mDCs were depleted with disease progression in PTMs, recovered to baseline values after the viral peak in AGMs, and significantly increased at the time of virus control in RMs. Rapid disease progression in PTMs was associated with low baseline levels and incomplete recovery of circulating mDCs during chronic infection. mDC recruitment to the intestine occurred in all pathogenic scenarios, but loss of mucosal mDCs was associated only with progressive infection. Sustained mDC immune activation occurred throughout infection in PTMs and was associated with increased bystander apoptosis in blood and intestine. Conversely, mDC activation occurred only during acute infection in nonprogressive and controlled infections. Postinfection, circulating mDCs rapidly became unresponsive to TLR7/8 stimulation in all species. Yet, stimulation with LPS, a bacterial product translocated in circulation only in SIV-infected PTMs, induced mDC hyperactivation, apoptosis and excessive production of proinflammatory cytokines. After infection, spontaneous production of proinflammatory cytokines by mucosal mDCs increased only in progressor PTMs. We thus propose that mDCs promote tolerance to SIV in the biological systems that lack intestinal dysfunction. In progressive infections, mDC loss and excessive activation of residual mDCs by SIV and additional stimuli, such as translocated microbial products, enhance generalized immune activation and inflammation. Our results thus provide a mechanistic basis for the role of mDCs in the pathogenesis of AIDS and elucidate the causes of mDC loss during progressive HIV/SIV infections. C1 [Wijewardana, Viskam; Kristoff, Jan; Xu, Cuiling; Ma, Dongzhu; Haret-Richter, George; Stock, Jennifer L.; Policicchio, Benjamin B.; Mobley, Adam D.; Nusbaum, Rebecca; Aamer, Hadega; Trichel, Anita; Apetrei, Cristian; Pandrea, Ivona] Univ Pittsburgh, Sch Med, Ctr Vaccine Res, Pittsburgh, PA 15213 USA. [Wijewardana, Viskam; Ma, Dongzhu; Aamer, Hadega; Apetrei, Cristian] Univ Pittsburgh, Sch Med, Dept Microbiol & Mol Genet, Pittsburgh, PA USA. [Haret-Richter, George; Pandrea, Ivona] Univ Pittsburgh, Sch Med, Dept Pathol, Pittsburgh, PA USA. [Stock, Jennifer L.; Policicchio, Benjamin B.] Univ Pittsburgh, Grad Sch Publ Hlth, Dept Infect Dis & Microbiol, Pittsburgh, PA 15261 USA. [Mobley, Adam D.] Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA. [Ribeiro, Ruy M.] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM USA. RP Wijewardana, V (reprint author), Univ Pittsburgh, Sch Med, Ctr Vaccine Res, Pittsburgh, PA 15213 USA. EM pandrea@pitt.edu RI Haret-Richter, George S/G-3563-2015; OI Wijewardana, Viskam/0000-0002-5787-8792; Ribeiro, Ruy/0000-0002-3988-8241 FU NIH/NIAID/NCRR [R01 RR025781, RO1 9R01HL117715-08, R01 AI065325] FX This work was supported by NIH/NIAID/NCRR grants R01 RR025781 (CA/IP) RO1 9R01HL117715-08 (IP) and R01 AI065325 (CA). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 89 TC 20 Z9 20 U1 0 U2 8 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7374 J9 PLOS PATHOG JI PLoS Pathog. PD OCT PY 2013 VL 9 IS 10 AR e1003600 DI 10.1371/journal.ppat.1003600 PG 18 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA 299GJ UT WOS:000330383800004 PM 24098110 ER PT J AU Peterson, C Dawson, A Grosse, SD Riehle-Colarusso, T Olney, RS Tanner, JP Kirby, RS Correia, JA Watkins, SM Cassell, CH AF Peterson, Cora Dawson, April Grosse, Scott D. Riehle-Colarusso, Tiffany Olney, Richard S. Tanner, Jean Paul Kirby, Russell S. Correia, Jane A. Watkins, Sharon M. Cassell, Cynthia H. TI Hospitalizations, Costs, and Mortality among Infants with Critical Congenital Heart Disease: How Important Is Timely Detection? SO BIRTH DEFECTS RESEARCH PART A-CLINICAL AND MOLECULAR TERATOLOGY LA English DT Article DE heart defects; congenital; pediatrics; costs and cost analysis; birth defects surveillance ID BIRTH-DEFECTS SURVEILLANCE; PULSE OXIMETRY; NEWBORN-INFANTS; SCREENING-TEST; DIAGNOSIS; STRATEGIES; PROGRAMS; FLORIDA; ROLES AB BACKGROUND: Critical congenital heart disease (CCHD) was recently added to the U. S. Recommended Uniform Screening Panel for newborns. States considering screening requirements may want more information about the potential impact of screening. This study examined potentially avoidable mortality among infants with late detected CCHD and assessed whether late detection was associated with increased hospital resource use during infancy. METHODS: This was a state-wide, population-based, observational study of infants with CCHD (n = 3603) born 1998 to 2007 identified by the Florida Birth Defects Registry. We examined 12 CCHD conditions that are targets of newborn screening. Late detection was defined as CCHD diagnosis after the birth hospitalization. Deaths potentially avoidable through screening were defined as those that occurred outside a hospital following birth hospitalization discharge and those that occurred within 3 days of an emergency readmission. RESULTS: For 23% (n = 825) of infants, CCHD was not detected during the birth hospitalization. Death occurred among 20% (n = 568/2,778) of infants with timely detected CCHD and 8% (n = 66/825) of infants with late detected CCHD, unadjusted for clinical characteristics. Potentially preventable deaths occurred in 1.8% (n = 15/825) of infants with late detected CCHD (0.4% of all infants with CCHD). In multivariable models adjusted for selected characteristics, late CCHD detection was significantly associated with 52% more admissions, 18% more hospitalized days, and 35% higher inpatient costs during infancy. CONCLUSION: Increased CCHD detection at birth hospitals through screening may lead to decreased hospital costs and avoid some deaths during infancy. Additional studies conducted after screening implementation are needed to confirm these findings. (C) 2013 Wiley Periodicals, Inc. C1 [Peterson, Cora; Dawson, April; Grosse, Scott D.; Riehle-Colarusso, Tiffany; Olney, Richard S.; Cassell, Cynthia H.] Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, Atlanta, GA 30329 USA. [Dawson, April] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Tanner, Jean Paul; Kirby, Russell S.] Univ S Florida, Coll Publ Hlth, Dept Community & Family Hlth, Birth Defects Surveillance Program, Tampa, FL USA. [Correia, Jane A.; Watkins, Sharon M.] Florida Dept Hlth, Florida Birth Defects Registry, Bur Epidemiol, Div Dis Control & Hlth Protect, Tallahassee, FL USA. RP Peterson, C (reprint author), Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, 1600 Clifton Rd NE,Mailstop E-86, Atlanta, GA 30329 USA. EM cora.peterson@cdc.hhs.gov OI Peterson, Cora/0000-0001-7955-0977 FU March of Dimes Foundation [5-FY09-533]; Centers for Disease Control and Prevention (CDC); Oak Ridge Institute for Science and Education; U.S. Department of Energy; CDC FX Research Grant No. # 5-FY09-533 from the March of Dimes Foundation supported various aspects of this project, including database development. This study was also supported by appointments to the Research Participation Program at the Centers for Disease Control and Prevention (CDC) administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and CDC. Neither funder was involved in decisions regarding design, analysis, or interpretation of study results. NR 30 TC 16 Z9 17 U1 0 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1542-0752 EI 1542-0760 J9 BIRTH DEFECTS RES A JI Birth Defects Res. Part A-Clin. Mol. Teratol. PD OCT PY 2013 VL 97 IS 10 BP 664 EP 672 DI 10.1002/bdra.23165 PG 9 WC Developmental Biology; Toxicology SC Developmental Biology; Toxicology GA 296HW UT WOS:000330176900007 PM 24000201 ER PT J AU Ricca, BL Venugopalan, G Fletcher, DA AF Ricca, Benjamin L. Venugopalan, Gautham Fletcher, Daniel A. TI To pull or be pulled: parsing the multiple modes of mechanotransduction SO CURRENT OPINION IN CELL BIOLOGY LA English DT Article ID SINGLE-CELL RESPONSE; TENSIONAL HOMEOSTASIS; MECHANICAL-STRESS; FOCAL ADHESIONS; BRANCHING MORPHOGENESIS; CYTOSKELETAL TENSION; EXTRACELLULAR-MATRIX; ARTICULAR-CARTILAGE; NUCLEAR TRANSPORT; EPITHELIAL-CELLS AB A cell embedded in a multicellular organism will experience a wide range of mechanical stimuli over the course of its life. Fluid flows and neighboring cells actively exert stresses on the cell, while the cell's environment presents a set of passive mechanical properties that constrain its physical behavior. Cells respond to these varied mechanical cues through biological responses that regulate activities such as differentiation, morphogenesis, and proliferation, as well as material responses involving compression, stretching, and relaxation. Here, we break down recent studies of mechanotransduction on the basis of the input mechanical stimuli acting upon the cell and the output response of the cell. This framework provides a useful starting point for identifying overlaps in molecular players and sensing modalities, and it highlights how different timescales involved in biological and material responses to mechanical inputs could serve as a means for filtering important mechanical signals from noise. C1 [Ricca, Benjamin L.; Venugopalan, Gautham; Fletcher, Daniel A.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Ricca, Benjamin L.; Venugopalan, Gautham; Fletcher, Daniel A.] Univ Calif Berkeley, Biophys Program, Berkeley, CA 94720 USA. [Fletcher, Daniel A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Fletcher, DA (reprint author), Univ Calif Berkeley, Dept Bioengn, 648 Stanley Hall, Berkeley, CA 94720 USA. EM fletch@berkeley.edu FU NSF [CMMI-1235569]; NIH [R01 GM074751, F32 GM101911] FX We are grateful to Dr. Alba Diz Munoz, Dr. Michael V. D'Ambrosio, and Win Pin Ng in the Fletcher Lab for helpful comments on this manuscript. This work was supported by grants from NSF (CMMI-1235569) and NIH (R01 GM074751, F32 GM101911). NR 72 TC 9 Z9 9 U1 0 U2 27 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0955-0674 EI 1879-0410 J9 CURR OPIN CELL BIOL JI Curr. Opin. Cell Biol. PD OCT PY 2013 VL 25 IS 5 BP 558 EP 564 DI 10.1016/j.ceb.2013.06.002 PG 7 WC Cell Biology SC Cell Biology GA 294FY UT WOS:000330030200007 PM 23830123 ER PT J AU Kozyra, JU Manchester, WB Escoubet, CP Lepri, ST Liemohn, MW Gonzalez, WD Thomsen, MW Tsurutani, BT AF Kozyra, J. U. Manchester, W. B. Escoubet, C. P. Lepri, S. T. Liemohn, M. W. Gonzalez, W. D. Thomsen, M. W. Tsurutani, B. T. TI Earth's collision with a solar filament on 21 January 2005: Overview SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE magnetic reconnection; magnetotail; plasma sheet; solar filament; coronal mass ejection ID CORONAL MASS EJECTION; 1-2 SEPTEMBER 1859; MAGNETIC CLOUDS; GEOSYNCHRONOUS ORBIT; GEOMAGNETIC STORMS; INTERPLANETARY CONDITIONS; AUGUST 4; WIND; ENERGY; PLASMA AB On 21 January 2005, one of the fastest interplanetary coronal mass ejections (ICME) of solar cycle 23, containing exceptionally dense plasma directly behind the sheath, hit the magnetosphere. We show from charge-state analysis that this material was a piece of the erupting solar filament and further, based on comparisons to the simulation of a fast CME, that the unusual location of the filament material was a consequence of three processes. As the ICME decelerated, the momentum of the dense filament material caused it to push through the flux rope toward the nose. Diverging nonradial flows in front of the filament moved magnetic flux to the sides of the ICME. At the same time, reconnection between the leading edge of the ICME and the sheath magnetic fields worked to peel away the outer layers of the flux rope creating a remnant flux rope and a trailing region of newly opened magnetic field lines. These processes combined to move the filament material into direct contact with the ICME sheath region. Within 1 h after impact and under northward interplanetary magnetic field (IMF) conditions, a cold dense plasma sheet formed within the magnetosphere from the filament material. Dense plasma sheet material continued to move through the magnetosphere for more than 6 h as the filament passed by the Earth. Densities were high enough to produce strong diamagnetic stretching of the magnetotail despite the northward IMF conditions and low levels of magnetic activity. The disruptions from the filament collision are linked to an array of unusual features throughout the magnetosphere, ionosphere, and atmosphere. These results raise questions about whether rare collisions with solar filaments may, under the right conditions, be a factor in producing even more extreme events. C1 [Kozyra, J. U.; Manchester, W. B.; Lepri, S. T.; Liemohn, M. W.] Univ Michigan, AOSS Dept, Ann Arbor, MI 48109 USA. [Escoubet, C. P.] ESA ESTEC, Noordwijk, Netherlands. [Gonzalez, W. D.] Natl Inst Space Res, Sao Jose Dos Campos, Brazil. [Thomsen, M. W.] Los Alamos Natl Lab, Los Alamos, NM USA. [Tsurutani, B. T.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Kozyra, JU (reprint author), Univ Michigan, AOSS Dept, 1414-A Space Res Bldg.,2455 Hayward St, Ann Arbor, MI 48109 USA. EM jukozyra@umich.edu RI Lepri, Susan/I-8611-2012; Liemohn, Michael/H-8703-2012; Manchester, Ward/I-9422-2012 OI Liemohn, Michael/0000-0002-7039-2631; FU NASA [NNX10AQ34C, NNH09AK621, NNH11AR241, NNX07AT186]; NSF [ATM-0903596]; University of Michigan FX The authors would like to acknowledge support for the research under NASA (NNX10AQ34C, NNH09AK621, NNH11AR241, and NNX07AT186) and NSF (ATM-0903596) grants. This work was partially supported by the University of Michigan. Portions of this research were performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Thanks to Ruth Skoug and Heather Elliott for providing reprocessed ACE solar wind parameters. NR 85 TC 7 Z9 7 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT PY 2013 VL 118 IS 10 BP 5967 EP 5978 DI 10.1002/jgra.50567 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 296JH UT WOS:000330180600001 ER PT J AU Wang, CP Yue, C Zaharia, S Xing, XY Lyons, L Angelopoulos, V Nagai, T Lui, T AF Wang, Chih-Ping Yue, Chao Zaharia, Sorin Xing, Xiaoyan Lyons, Larry Angelopoulos, Vassilis Nagai, Tsugunobu Lui, Tony TI Empirical modeling of plasma sheet pressure and three-dimensional force-balanced magnetospheric magnetic field structure: 1. Observation SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE plasma pressure; magnetic field; Geotail THEMIS ID EQUATORIAL PLANE; MAGNETOTAIL; INSTRUMENT; BOUNDARY AB A three-dimensional (3-D) magnetic field configuration in force balance with a realistic plasma pressure distribution can provide more accurate evaluation of the role of magnetic field on plasma sheet dynamics and M-I coupling. We used Geotail and Time History of Events and Macroscale Interactions During Substorms (THEMIS) data to establish an empirical model for nightside equatorial isotropic plasma pressure to r=30 R-E for Kp=0-5 and for solar wind dynamic pressure (P-SW)=1.5 and 3 nPa. The model pressure is used in the companion paper for modeling a 3-D force-balanced pressure and magnetic field equilibrium. Larger convection during higher Kp drives the plasma sheet further earthward, resulting in larger increase of pressure and pressure gradient at smaller radial distance. On the other hand, magnetosphere compression by increasing P-SW enhances pressure and pressure gradient mainly in the tail plasma sheet. While both pressure and radial gradients are enhanced with increasing Kp or P-SW, there is no significant azimuthal pressure variation statistically under all Kp and P-SW conditions. The empirical pressures well reproduce these statistical profiles with very high correlation coefficients. Additionally, comparisons with pressure gradients computed using two simultaneous measurements from two THEMIS spacecraft show reasonable agreement. Furthermore, our model provides more accurate pressure gradients than previous empirical models. The model magnetic field distributions obtained in the companion paper from requiring force balance with these empirical pressure profiles are also found to be consistent with the magnetic field observations, indicating that our equilibria well represent realistic 3-D pressure and magnetic field configurations. C1 [Wang, Chih-Ping; Yue, Chao; Xing, Xiaoyan; Lyons, Larry] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. [Zaharia, Sorin] Los Alamos Natl Lab, Los Alamos, NM USA. [Angelopoulos, Vassilis] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. [Nagai, Tsugunobu] Tokyo Inst Technol, Tokyo 152, Japan. [Lui, Tony] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. RP Wang, CP (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. EM cat@atmos.ucla.edu RI Yue, Chao/C-2535-2015 OI Yue, Chao/0000-0001-9720-5210 FU NASA [NNX11AJ12G, NNX12AD11G, NNH10AP09I, NAS5-02099, NNX12AP62G]; NSF [ATM-0819864, ATM-1003595, 1131873, 1203460]; IGPPS Program at Los Alamos National Laboratory; DLR [50 OC 0302]; ISSI International Teams Program: Plasma Entry and Transport in the Plasma Sheet FX The work by C.-P. Wang, C. Yue, X. Xing, and L. R. Lyons has been supported by NASA grant NNX11AJ12G and NNX12AD11G and NSF grant ATM-0819864 and ATM-1003595. The work by S.G. Zaharia has been supported by NSF grants 1131873 and 1203460, NASA grant NNH10AP09I, and by the IGPPS Program at Los Alamos National Laboratory. We acknowledge NASA contract NAS5-02099 for THEMIS, and C.W. Carlson and J.P. McFadden for the use of ESA data, D. Larson and R.P. Lin for use of the SST data, and K.H. Glassmeier, U. Auster, and W. Baumjohann for the use of FGM data provided under DLR contract 50 OC 0302. The work by A.T. Lui has been supported by NASA grant NNX12AP62G to the Johns Hopkins University Applied Physics Laboratory. We think T. Mukai at ISAS and CDAWeb for the use of the Geotail LEP data. The Geotail magnetic field data are provided through the DARTS system by ISAS. We thank Jon Vandegriff of the Applied Physics Laboratory for providing the Geotail EPIC data. We thank J.H. King, N. Papatashvilli at AdnetSystems, NASA GSFC, and CDAWeb for providing the OMNI data. Kp index was provided by World Data Center for Geomagnetism, Kyoto. We thank the support of ISSI International Teams Program: Plasma Entry and Transport in the Plasma Sheet. NR 31 TC 2 Z9 2 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT PY 2013 VL 118 IS 10 BP 6154 EP 6165 DI 10.1002/jgra.50585 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 296JH UT WOS:000330180600017 ER PT J AU Yue, C Wang, CP Zaharia, SG Xing, XY Lyons, L AF Yue, Chao Wang, Chih-Ping Zaharia, Sorin G. Xing, Xiaoyan Lyons, Larry TI Empirical modeling of plasma sheet pressure and three-dimensional force-balanced magnetospheric magnetic field structure: 2. Modeling SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE force-balanced magnetic field; plasma sheet; plasma pressure; current density; field-aligned current ID INTERCHANGE INSTABILITY; BALLOONING INSTABILITY; ALIGNED CURRENTS; SUBSTORM ONSET; EQUILIBRIUM; CONVECTION; AMPTE/CCE; PROTONS; TRIAD AB The magnetic field configuration is crucial to plasma sheet dynamics and magnetosphere-ionosphere coupling. In this study we established 3-D force-balanced magnetic fields and investigated configuration changes with Kp and solar wind dynamic pressure (P-SW). Pressure distributions from the empirical model developed in Wang et al. (2013) were used for obtaining the force-balanced field. Based on our model results, we found that (1) higher P-SW mainly enhances pressure in the tail plasma sheet, while larger convection during higher Kp drives plasma sheet further earthward, resulting in a pressure increase closer to the Earth; (2) comparing with the magnetic field changes due to increasing P-SW, the Kp associated pressure enhancement causes the azimuthal current density (J) peak and field-aligned currents (FACs) to move deeper earthward, the magnetic field to decrease further near Earth but increase more in the tail, and field lines to stretch more significantly; (3) as Kp and P-SW change, the whole plasma sheet remains stable to interchange instability but may be ballooning unstable in the midnight region at X between -15 and -10 R-E; (4) the force-balanced configurations are characteristically different from the non-force-balanced Tsyganenko 89 (T89) magnetic field. A region of positive dBz/dz in the near-Earth region, which has been observed, is seen in our field but not in T89. On the other hand, a local equatorial Bz minimum is predicted by T89 but not by our model. J bifurcation appears in the near-Earth region as a result of our J configuration being approximately aligned with field lines, while the T89 J everywhere decreases monotonically with increasing Z by construction. C1 [Yue, Chao; Wang, Chih-Ping; Xing, Xiaoyan; Lyons, Larry] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. [Zaharia, Sorin G.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Yue, C (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. EM yuechao@atmos.ucla.edu RI Yue, Chao/C-2535-2015 OI Yue, Chao/0000-0001-9720-5210 FU NASA [NNX11AJ12G, NNX09AQ41H, NNX08A135G, NNH10AP09I]; NSF [ATM-0819864, ATM-1003595, 1131873, 1203460]; IGPPS program at Los Alamos through a LANL/UCLA collaborative grant; IGPPS Program at Los Alamos National Laboratory FX The work by C.-P. Wang, C. Yue, X. Xing, and L. R. Lyons at UCLA has been supported by NASA grants NNX11AJ12G, NNX09AQ41H, and NNX08A135G, and NSF grants ATM-0819864 and ATM-1003595, as well as the IGPPS program at Los Alamos through a LANL/UCLA collaborative grant. The work by S. G. Zaharia has been supported by NSF grants 1131873 and 1203460, NASA grant NNH10AP09I and by the IGPPS Program at Los Alamos National Laboratory. NR 53 TC 9 Z9 9 U1 1 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT PY 2013 VL 118 IS 10 BP 6166 EP 6175 DI 10.1002/2013JA018943 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 296JH UT WOS:000330180600018 ER PT J AU Tu, WC Cunningham, GS Chen, Y Henderson, MG Camporeale, E Reeves, GD AF Tu, Weichao Cunningham, G. S. Chen, Y. Henderson, M. G. Camporeale, E. Reeves, G. D. TI Modeling radiation belt electron dynamics during GEM challenge intervals with the DREAM3D diffusion model SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE Radiation belt electrons; 3D diffusion model; DREAM3D; GEM challenge ID PITCH-ANGLE SCATTERING; ION-CYCLOTRON WAVES; INNER MAGNETOSPHERE; RELATIVISTIC ELECTRONS; RESONANT DIFFUSION; GEOMAGNETIC STORMS; CRRES OBSERVATIONS; MAGNETIC STORMS; ACCELERATION; FIELD AB As a response to the Geospace Environment Modeling (GEM) Global Radiation Belt Modeling Challenge, a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects Satellite (CRRES) mission, 15 August to 15 October 1990 and 1 February to 31 July 1991. The 3D diffusion model, developed as part of the Dynamic Radiation Environment Assimilation Model (DREAM) project, includes radial, pitch angle, and momentum diffusion and mixed pitch angle-momentum diffusion, which are driven by dynamic wave databases from the statistical CRRES wave data, including plasmaspheric hiss, lower-band, and upper-band chorus. By comparing the DREAM3D model outputs to the CRRES electron phase space density (PSD) data, we find that, with a data-driven boundary condition at L-max=5.5, the electron enhancements can generally be explained by radial diffusion, though additional local heating from chorus waves is required. Because the PSD reductions are included in the boundary condition at L-max=5.5, our model captures the fast electron dropouts over a large L range, producing better model performance compared to previous published results. Plasmaspheric hiss produces electron losses inside the plasmasphere, but the model still sometimes overestimates the PSD there. Test simulations using reduced radial diffusion coefficients or increased pitch angle diffusion coefficients inside the plasmasphere suggest that better wave models and more realistic radial diffusion coefficients, both inside and outside the plasmasphere, are needed to improve the model performance. Statistically, the results show that, with the data-driven outer boundary condition, including radial diffusion and plasmaspheric hiss is sufficient to model the electrons during geomagnetically quiet times, but to best capture the radiation belt variations during active times, pitch angle and momentum diffusion from chorus waves are required. C1 [Tu, Weichao; Cunningham, G. S.; Chen, Y.; Henderson, M. G.; Reeves, G. D.] Los Alamos Natl Lab, Sci & Appl Grp, Los Alamos, NM 87545 USA. [Camporeale, E.] Los Alamos Natl Lab, Appl Math & Plasma Phys Grp, Los Alamos, NM USA. RP Tu, WC (reprint author), Los Alamos Natl Lab, Sci & Appl Grp, POB 1663, Los Alamos, NM 87545 USA. EM wtu@lanl.gov RI Tu, Weichao/B-6507-2011; Reeves, Geoffrey/E-8101-2011; Henderson, Michael/A-3948-2011; OI Tu, Weichao/0000-0003-4547-3269; Reeves, Geoffrey/0000-0002-7985-8098; Henderson, Michael/0000-0003-4975-9029; Cunningham, Gregory/0000-0001-8819-4345 FU US Department of Energy through the LANL Laboratory Directed Research and Development (LDRD) Program FX We gratefully acknowledge the support of the US Department of Energy through the LANL Laboratory Directed Research and Development (LDRD) Program for this work. NR 77 TC 37 Z9 37 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT PY 2013 VL 118 IS 10 BP 6197 EP 6211 DI 10.1002/jgra.50560 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 296JH UT WOS:000330180600021 ER PT J AU Moore, TE Chandler, MO Buzulukova, N Collinson, GA Kepko, EL Garcia-Sage, KS Henderson, MG Sitnov, MI AF Moore, T. E. Chandler, M. O. Buzulukova, N. Collinson, G. A. Kepko, E. L. Garcia-Sage, K. S. Henderson, M. G. Sitnov, M. I. TI "Snowplow" injection front effects SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE plasma; injection; front; substorm; plasmasphere; trough ID NEAR-EARTH MAGNETOTAIL; INNER MAGNETOSPHERE; ION ENERGIZATION; PLASMA SHEET; ART.; DYNAMICS; CLUSTER; EVENTS; MOTION; COLD AB As the Polar spacecraft apogee precessed through the magnetic equator in 2001, Polar encountered numerous substorm events in the region between geosynchronous orbit and 10 R-E geocentric distance; most of them in the plasma sheet boundary layers. Of these, a small number was recorded near the neutral sheet in the evening sector. Polar/Thermal Ion Dynamics Experiment provides a unique perspective on the lowest-energy ion plasma, showing that these events exhibited a damped wavelike character, initiated by a burst of radially outward flow transverse to the local magnetic field at similar to 80km/s. They then exhibit strongly damped cycles of inward/outward flow with a period of several minutes. After one or two cycles, they culminated in a hot plasma electron and ion injection, quite similar to those observed at geosynchronous orbit. Cold plasmaspheric plasmas comprise the outward flow cycles, while the inward flow cycles contain counterstreaming field-parallel polar wind-like flows. The observed wavelike structure, preceding the arrival of an earthward moving substorm injection front, suggests an outward displacement driven by the inward motion at local times closer to midnight, that is, a snowplow effect. The damped in/out flows are consistent with interchange oscillations driven by the arrival at the observed local time by an injection originating at greater radius and local time. C1 [Moore, T. E.; Buzulukova, N.; Collinson, G. A.; Kepko, E. L.; Garcia-Sage, K. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Chandler, M. O.] NASA, Marshall Space Flight Ctr, Huntsville, AL USA. [Buzulukova, N.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Henderson, M. G.] Los Alamos Natl Lab, Los Alamos, NM USA. [Sitnov, M. I.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. RP Moore, TE (reprint author), NASA, Goddard Space Flight Ctr, Code 670, Greenbelt, MD 20771 USA. EM thomas.e.moore@nasa.gov RI Kepko, Larry/D-7747-2012; Sitnov, Mikhail/H-2316-2016; Henderson, Michael/A-3948-2011 OI Kepko, Larry/0000-0002-4911-8208; Henderson, Michael/0000-0003-4975-9029 FU Polar-Wind-Geotail (Global Geospace) Program; Goddard Heliophysics Science Division; Magnetospheric Multiscale Mission Project FX The authors acknowledge support from the Polar-Wind-Geotail (Global Geospace) Program, the Goddard Heliophysics Science Division, the Magnetospheric Multiscale Mission Project, and other sources. For the ground magnetometer data, we gratefully acknowledge the following: CARISMA, Ian Mann; CANMOS; The S-RAMP Database, K. Yumoto, and K. Shiokawa; SuperMAG, Jesper W. Gjerloev. NR 37 TC 4 Z9 4 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT PY 2013 VL 118 IS 10 BP 6478 EP 6488 DI 10.1002/jgra.50573 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 296JH UT WOS:000330180600044 ER PT J AU Tierney, D Briggs, MS Fitzpatrick, G Chaplin, VL Foley, S McBreen, S Connaughton, V Xiong, S Byrne, D Carr, M Bhat, PN Fishman, GJ Greiner, J Kippen, RM Meegan, CA Paciesas, WS Preece, RD von Kienlin, A Wilson-Hodge, C AF Tierney, D. Briggs, M. S. Fitzpatrick, G. Chaplin, V. L. Foley, S. McBreen, S. Connaughton, V. Xiong, S. Byrne, D. Carr, M. Bhat, P. N. Fishman, G. J. Greiner, J. Kippen, R. M. Meegan, C. A. Paciesas, W. S. Preece, R. D. von Kienlin, A. Wilson-Hodge, C. TI Fluence distribution of terrestrial gamma ray flashes observed by the Fermi Gamma-ray Burst Monitor SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE tgf AB The observed ray fluence distribution of terrestrial gamma ray flashes (TGFs) detected by the Fermi Gamma-ray Burst Monitor (GBM) is altered by instrumental effects. We perform corrections for dead time, pulse pileup, and detection efficiency in a model-independent manner. A sample of 106 GBM TGFs is selected to include both TGFs that triggered GBM and weaker TGFs found using an off-line search. Detector dead time and pulse pileup lower the observed fluence of each TGF and the detection efficiency causes weaker TGFs to have a lower probability of detection than brighter TGFs. Monte Carlo simulations are performed in each case to correct for these effects. The corrected fluence distribution is well fit with a power law of index =-2.200.13. This is consistent with previous estimates using other techniques. Neither a high-fluence cutoff nor a low-fluence limit is found. The fluence distribution is also expressed in units of TGF h(-1) km(-2) versus photons cm(-2) per TGF. C1 [Tierney, D.; Fitzpatrick, G.; Foley, S.; McBreen, S.; Byrne, D.; Carr, M.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Briggs, M. S.; Chaplin, V. L.; Connaughton, V.; Xiong, S.; Bhat, P. N.; Preece, R. D.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Briggs, M. S.; Connaughton, V.; Preece, R. D.] Univ Alabama, Dept Phys, Huntsville, AL 35899 USA. [Fishman, G. J.] Jacobs Engn Inc, Huntsville, AL USA. [Greiner, J.; von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM USA. [Meegan, C. A.; Paciesas, W. S.] NASA, George C Marshall Space Flight Ctr, Univ Space Res Assoc, Huntsville, AL 35812 USA. [Wilson-Hodge, C.] NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA. RP Tierney, D (reprint author), Univ Coll Dublin, Sch Phys, Stillorgan Rd, Dublin 4, Ireland. EM david.tierney@ucd.ie OI Preece, Robert/0000-0003-1626-7335 FU Science Foundation Ireland [09-RFP-AST-2400]; Irish Research Council; Irish Research Council for Science, Engineering and Technology; Marie Curie Actions; Programme for Research in Third Level Institutions (PRTLI); European Regional Development Fund FX D.T. acknowledges support from Science Foundation Ireland under grant 09-RFP-AST-2400. G.F. acknowledges the support of the Irish Research Council. S.F. acknowledges the support of the Irish Research Council for Science, Engineering and Technology, cofunded by Marie Curie Actions under FP7. D.B. acknowledges support from the Programme for Research in Third Level Institutions (PRTLI) Cycle 5 and from the European Regional Development Fund. We thank the anonymous reviewers for helpful suggestions during the refereeing process. NR 25 TC 8 Z9 8 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT PY 2013 VL 118 IS 10 BP 6644 EP 6650 DI 10.1002/jgra.50580 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 296JH UT WOS:000330180600058 ER PT J AU Collier, N North, M AF Collier, Nicholson North, Michael TI Parallel agent-based simulation with Repast for High Performance Computing SO SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL LA English DT Article DE agent-based modeling and simulation; simulation framework; high-performance computing; parallel and distributed computing ID DISTRIBUTED SIMULATION; MODELS; TIME AB In the last decade, agent-based modeling and simulation (ABMS) has been applied to a variety of domains, demonstrating the potential of this technique to advance science, engineering, and policy analysis. However, realizing the full potential of ABMS to find breakthrough research results requires far greater computing capability than is available through current ABMS tools. The Repast for High Performance Computing (Repast HPC) project addresses this need by developing a useful and useable next-generation ABMS system explicitly focusing on larger-scale distributed computing platforms. Repast HPC is intended to smooth the path from small-scale simulations to large-scale distributed simulations through the use of a Logo-like system. This article's contribution is its detailed presentation of the implementation of Repast HPC as a useful and usable framework, a complete ABMS platform developed explicitly for larger-scale distributed computing systems that leverages modern C++ techniques and the ReLogo language. C1 [Collier, Nicholson; North, Michael] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. RP Collier, N (reprint author), Argonne Natl Lab, Decis & Informat Sci Div, 9700 South Cass Ave, Argonne, IL 60439 USA. EM ncollier@anl.gov FU US Department of Energy Office of Science [DE-AC02-06CH11357] FX This research was partially supported by the US Department of Energy Office of Science under Contract No. DE-AC02-06CH11357. NR 38 TC 15 Z9 15 U1 0 U2 12 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0037-5497 EI 1741-3133 J9 SIMUL-T SOC MOD SIM JI Simul.-Trans. Soc. Model. Simul. Int. PD OCT PY 2013 VL 89 IS 10 SI SI BP 1215 EP 1235 DI 10.1177/0037549712462620 PG 21 WC Computer Science, Interdisciplinary Applications; Computer Science, Software Engineering SC Computer Science GA 296YW UT WOS:000330222500005 ER PT J AU Kumar, A Falcao, VR Sayre, RT AF Kumar, Anil Falcao, Vanessa R. Sayre, Richard T. TI Evaluating nuclear transgene expression systems in Chlamydomonas reinhardtii SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS LA English DT Article DE Chlamydomonas; Transgene expression; psaD; Transformation efficiency; Luciferase; Butyrylcholinesterase ID GENE-EXPRESSION; PLANT-CELLS; HUMAN BUTYRYLCHOLINESTERASE; ILLEGITIMATE RECOMBINATION; TOBACCO CHLOROPLASTS; DISULFIDE BONDS; FOREIGN GENE; TRANSFORMATION; DNA; PROTEIN AB Chlamydomonas offers several potential advantages as a single-celled autotrophic recombinant protein production system including: facile transformation systems for all three genomes, low production costs, and the ability to secrete proteins. However, transgene expression levels from the nuclear genome of Chlamydomonas are often inadequate for industrial applications. With the objective of optimizing nuclear transgene expression, we surveyed transgene (luciferase) expression driven by seven different nuclear gene promoters and three different transcription terminators. The results demonstrate that in addition to the choice of nuclear gene promoters used, transcriptional terminators can have strong influence on transgene expression. We show that the psaD terminator improved transgene expression when paired with a variety of different gene promoters. Among those tested, the psaD-psaD promoter-terminator expression cassette gave the highest expression levels. This expression cassette was then used to express a human protein of pharmaceutical value, human butyrylcholinesterase (huBuChE). Chlamydomonas cells were able to accumulate the luciferase-huBuChE fusion protein to 0.4% of total soluble protein levels, which is comparable to the expression levels of the same protein obtained in plants. In addition, this study found that the form (linear or supercoiled) of the transforming DNA used for Chlamydomonas transformation had significant impact on the transformation efficiency and the level of transgene expression and stability. These results demonstrate that transgene expression in Chlamydomonas can potentially be scaled for commercial production of recombinant proteins. Published by Elsevier B.V. C1 [Kumar, Anil; Falcao, Vanessa R.; Sayre, Richard T.] Donald Danforth Plant Sci Ctr, St Louis, MO 63132 USA. [Kumar, Anil] Ohio State Univ, Dept Plant Cellular & Mol Biol, Columbus, OH 43210 USA. [Sayre, Richard T.] New Mexico Consortium, Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Sayre, RT (reprint author), New Mexico Consortium, Los Alamos Natl Lab, 4200 W Jemez Rd, Los Alamos, NM 87544 USA. EM rsayre@newmexicoconsortoium.org OI Sayre, Richard/0000-0002-3153-7084 FU National Institute of Health from the Medical Research Institute of Chemical Defense [U54 NSO58183-W81XWH-07-2-0024]; USAF-OSR FX This work was supported by the National Institute of Health grant U54 NSO58183-W81XWH-07-2-0024 from the Medical Research Institute of Chemical Defense for Vanessa Falcao and by the USAF-OSR for Anil Kumar awarded to Richard Sayre. NR 63 TC 7 Z9 7 U1 4 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-9264 J9 ALGAL RES JI Algal Res. PD OCT PY 2013 VL 2 IS 4 BP 321 EP 332 DI 10.1016/j.algal.2013.09.002 PG 12 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 294KS UT WOS:000330045300002 ER PT J AU Johnson, MC Palou-Rivera, I Frank, ED AF Johnson, Michael C. Palou-Rivera, Ignasi Frank, Edward D. TI Energy consumption during the manufacture of nutrients for algae cultivation SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS LA English DT Article DE Algae; Life-cycle analysis; Greenhouse gas emissions; Fertilizers; Nutrients AB The effect of nutrient production on life cycle analysis (LCA) of energy use and greenhouse gas emissions for algal biofuels can be significant, yet recent algal biofuel LCAs vary significantly in their estimates for contributions from fertilizer production. Given the uncertainty in emissions associated with fertilizer manufacturing and the possibility that they play a significant role in algae LCA, this report examined nitrogen and phosphorus fertilizer production in the U.S. byway of a detailed examination and analysis of published data. We found that the energy use and emissions of algae fertilizers derive from the manufacturing of just a few key reagents, namely ammonia and phosphoric acid. Under the assumption that large-scale algae growth will utilize commodity chemicals, the life cycle inventory centers on a few processes. We report relatively consistent values in the literature for these processes, suggest representative values to use in future LCA work, and discuss proper handling of fossil carbon in urea. (C) 2013 Elsevier B.V. All rights reserved. C1 [Johnson, Michael C.; Palou-Rivera, Ignasi; Frank, Edward D.] Argonne Natl Lab, Ctr Transportat Res, Argonne, IL 60439 USA. RP Frank, ED (reprint author), Argonne Natl Lab, Ctr Transportat Res, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mcjohnson@anl.gov; palou@uwalumni.com; efrank@anl.gov RI Frank, Edward/A-8865-2012 FU Biomass Technology Office in the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy; US Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX We are grateful to Joyce Yang, Zia Haq, Kristen Johnson, Christy Sterner, and Michael Wang for their guidance and insights. We also thank Paul Blowers, Robert Handler, and Jennifer Dunn for their comments on an early draft. This work was sponsored by the Biomass Technology Office in the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a US Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The US Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 41 TC 15 Z9 15 U1 2 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-9264 J9 ALGAL RES JI Algal Res. PD OCT PY 2013 VL 2 IS 4 BP 426 EP 436 DI 10.1016/j.algal.2013.08.003 PG 11 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 294KS UT WOS:000330045300014 ER PT J AU Elliott, DC Hart, TR Schmidt, AJ Neuenschwander, GG Rotness, LJ Olarte, MV Zacher, AH Albrecht, KO Hallen, RT Holladay, JE AF Elliott, Douglas C. Hart, Todd R. Schmidt, Andrew J. Neuenschwander, Gary G. Rotness, Leslie J. Olarte, Mariefel V. Zacher, Alan H. Albrecht, Karl O. Hallen, Richard T. Holladay, Johnathan E. TI Process development for hydrothermal liquefaction of algae feedstocks in a continuous-flow reactor SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS LA English DT Article DE Hydrothermal; Liquefaction; Catalyst; Hydrotreating; Gasification; Aqueous phase ID THERMOCHEMICAL LIQUEFACTION; MICROALGAE CULTIVATION; BIO-OIL; GASIFICATION; CATALYSTS; BIOMASS; PRODUCT; BIOFUEL; WATER AB Wet algae slurries can be converted into an upgradeable biocrude by hydrothermal liquefaction (HTL). High levels of carbon conversion to gravity separable biocrude product were accomplished at relatively low temperature (350 degrees C) in a continuous-flow, pressurized (sub-critical liquid water) environment (20 MPa). As opposed to earlierwork in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent and biomass trace components were removed by processing steps so that they did not cause process difficulties. High conversions were obtained even with high slurry concentrations of up to 35 wt.% of dry solids. Catalytic hydrotreating was effectively applied for hydrodeoxygenation, hydrodenitrogenation, and hydrodesulfurization of the biocrude to form liquid hydrocarbon fuel. Catalytic hydrothermal gasification was effectively applied for HTL byproductwater cleanup and fuel gas production from water soluble organics, allowing the water to be considered for recycle of nutrients to the algae growth ponds. As a result, high conversion of algae to liquid hydrocarbon and gas products was found with low levels of organic contamination in the byproduct water. All three process steps were accomplished in bench-scale, continuous-flow reactor systems such that design data for process scale-up was generated. (C) 2013 Elsevier B.V. All rights reserved. C1 [Elliott, Douglas C.; Hart, Todd R.; Schmidt, Andrew J.; Neuenschwander, Gary G.; Rotness, Leslie J.; Olarte, Mariefel V.; Zacher, Alan H.; Albrecht, Karl O.; Hallen, Richard T.; Holladay, Johnathan E.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Elliott, DC (reprint author), Pacific NW Natl Lab, POB 999,MSIN P8-60, Richland, WA 99352 USA. EM dougc.elliott@pnnl.gov RI Olarte, Mariefel/D-3217-2013; OI Olarte, Mariefel/0000-0003-2989-1110; Hart, Todd/0000-0001-8013-0689 FU U.S. Department of Energy through its Bioenergy Technologies Office (BETO) via the National Alliance for Advanced Biofuels and Bioproducts (NAABB); U.S. Department of Energy by Battelle [DE-AC06-76RL01830]; BETO FX The authors acknowledge the support for this research provided by the U.S. Department of Energy through its Bioenergy Technologies Office (BETO) via the National Alliance for Advanced Biofuels and Bioproducts (NAABB). Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract DE-AC06-76RL01830. We gratefully acknowledge the participation of our process licensee, Genifuel Corporation and the other participants in the NAABB (also funded by BETO) who provided the algae feedstocks for our tests. NR 34 TC 93 Z9 95 U1 10 U2 123 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-9264 J9 ALGAL RES JI Algal Res. PD OCT PY 2013 VL 2 IS 4 BP 445 EP 454 DI 10.1016/j.algal.2013.08.005 PG 10 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 294KS UT WOS:000330045300016 ER PT J AU Zhu, YH Albrecht, KO Elliott, DC Hallen, RT Jones, SB AF Zhu, Yunhua Albrecht, Karl O. Elliott, Douglas C. Hallen, Richard T. Jones, Susanne B. TI Development of hydrothermal liquefaction and upgrading technologies for lipid-extracted algae conversion to liquid fuels SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS LA English DT Article DE Microalgae; Lipid extracted algae; Hydrothermal liquefaction; Upgrading; Techno-economic ID LIFE-CYCLE ASSESSMENT; FAST PYROLYSIS; TECHNOECONOMIC ANALYSIS; BIOFUEL PRODUCTION; BIO-OIL; BIOMASS; MICROALGAE; GASIFICATION; FEEDSTOCKS; BIODIESEL AB Bench-scale tests were performed for lipid-extracted microalgae (LEA) conversion to liquid fuels via hydrothermal liquefaction (HTL) and upgrading processes. Process simulation and economic analysis for a large-scale LEA HTL and upgrading system were developed based on the best available experimental results. The system assumed an LEA feed rate of 608 dry metric tons/day and that the feedstock was converted to a crude HTL bio-oil and further upgraded via hydrotreating and hydrocracking to produce liquid fuels, mainly alkanes. Performance and cost results demonstrated that HTL and upgrading is effective for converting LEA to liquid fuels. The liquid fuels annual yield was estimated to be 26.9 million gallon gasoline-equivalent (GGE) and the overall energy efficiency on a higher heating value (HHV) basis was estimated to be 69.5%. The variation range of the minimum fuel selling price (MFSP) was estimated to be $2.07 to $7.11/GGE by combining the effects of selected process factors. Key factors affecting the production cost were identified to be the LEA feedstock cost, final products yields, and the upgrading equipment cost. The impact of plant scale on MFSP was also investigated. (C) 2013 Elsevier B. V. All rights reserved. C1 [Zhu, Yunhua; Albrecht, Karl O.; Elliott, Douglas C.; Hallen, Richard T.; Jones, Susanne B.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Zhu, YH (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM yunhua.zhu@pnnl.gov FU U.S. Department of Energy [DE-EE0003046]; U.S. Department of Energy by Battelle [DE-AC05-76RL01830] FX The authors would like to acknowledge funding of this work by the U.S. Department of Energy under Contract DE-EE0003046 awarded to the National Alliance for Advanced Biofuels and Bioproducts (NAABB) through its Bioenergy Technologies Office. The authors also acknowledge with appreciation the NAABB partners for providing the feedstock sample and feedstock compositional data. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830. NR 45 TC 39 Z9 41 U1 7 U2 73 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-9264 J9 ALGAL RES JI Algal Res. PD OCT PY 2013 VL 2 IS 4 BP 455 EP 464 DI 10.1016/j.algal.2013.07.003 PG 10 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 294KS UT WOS:000330045300017 ER PT J AU Saeed, A Najam-ul-Haq, M Jabeen, F Svec, F AF Saeed, Adeela Najam-ul-Haq, Muhammad Jabeen, Fahmida Svec, Frantisek TI High Affinity Phosphopeptides Enrichment and Desalting of Biological Materials on Newly Engineered Poly(Glycidyl Propargyl Ether/Divinyl Benzene) SO ANALYTICAL CHEMISTRY LA English DT Article ID PHOSPHOPROTEOME ANALYSIS; MASS-SPECTROMETRY; QUANTITATIVE PHOSPHOPROTEOMICS; SELECTIVE ENRICHMENT; MALDI-MS; CHROMATOGRAPHY; MELDI; FABRICATION; PEPTIDES; PROTEINS AB The new synthetic polymers have a key role to play in the separation science. The derivatization of these polymers has made them an efficient class of substrate, having unique properties and the selectively tailored surface chemistries for target molecules. The deeper and detailed characterization of selectivity and sensitivity offered by these polymer materials. In complex sample types has become feasible due to the enhanced present work, a bifunctional monomer glycidyl propargyl ether (GPE) is thermally polymerized with divinylbenzene to form poly(GPE/DVB). Some of the physical and chemical properties are characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR). The synthesized polymer is further derivatized to IMAC (immobilized metal ion affinity chromatography) and is investigated by loading different metal ions (Fe3+, Ti4+, Zr4+, and La3+). The trypsin-digested products of phosphoproteins, such as casein, nonfat milk, egg yolk, and human blood serum, are used to explore its phosphopeptide enrichment ability from complex samples followed by the off-line MALDI-MS analysis. Furthermore, polymeric reversed phase (RP) is created by octadecyl amine (ODA) to be employed in the desalting of complex mixtures and the results are compared with commercially available ZipTip C-18 and Aspire RP30 Desalting Tip. Serum profiling of healthy and diseased samples demonstrates the potential of this new polymer to impart in the disease diagnosis. Ovarian carcinoma serum samples are used for the detection of phosphopeptides based biomarkers. C1 [Saeed, Adeela; Najam-ul-Haq, Muhammad; Jabeen, Fahmida] Bahauddin Zakariya Univ, Div Analyt Chem, Inst Chem Sci, Multan 60800, Pakistan. [Saeed, Adeela; Svec, Frantisek] EO Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Najam-ul-Haq, M (reprint author), Bahauddin Zakariya Univ, Div Analyt Chem, Inst Chem Sci, Multan 60800, Pakistan. EM najamulhaq@bzu.edu.pk RI Najam-ul-Haq, Muhammad/I-7276-2015; Foundry, Molecular/G-9968-2014 FU Higher Education Commission (HEC) of Pakistan FX This work is supported by the Higher Education Commission (HEC) of Pakistan. Furthermore, the authors declare that they have no conflict of interest. NR 62 TC 11 Z9 12 U1 10 U2 87 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD OCT 1 PY 2013 VL 85 IS 19 BP 8979 EP 8986 DI 10.1021/ac4015484 PG 8 WC Chemistry, Analytical SC Chemistry GA 294BN UT WOS:000330017500017 PM 24006948 ER PT J AU Kandziolka, M Charlton, JJ Kravchenko, II Bradshaw, JA Merkulov, IA Sepaniak, MJ Lavrik, NV AF Kandziolka, Michael Charlton, Jennifer J. Kravchenko, Ivan I. Bradshaw, James A. Merkulov, Igor A. Sepaniak, Michael J. Lavrik, Nickolay V. TI Silicon Nanopillars As a Platform for Enhanced Fluorescence Analysis SO ANALYTICAL CHEMISTRY LA English DT Article ID IMMUNOFLUORESCENCE ASSAY; CHIP; DIAGNOSTICS; ARRAYS AB The importance of fluorescent detection in many fields is well established. While advancements in instrumentation and the development of brighter fluorophore have increased sensitivity and lowered the detection limits of the method, additional gains can be made by manipulating the local electromagnetic field. Herein we take advantage of silicon nanopillars that exhibit optical resonances and field enhancement on their surfaces and demonstrate their potential in improving performance of biomolecular fluorescent assays. We use electron beam lithography and wafer scale processes to create silicon nanoscale pillars with dimensions that can be tuned to maximize fluorescence enhancement in a particular spectral region. Performance of the nanopillar based fluorescent assay was quantified using two model bioaffinity systems (biotinstreptavidin and immunoglobulin G-antibody) as well as covalent binding of fluorescently tagged bovine serum albumin (BSA). The effects of pillar geometry and number of pillars in arrays were evaluated. Color specific and pillar diameter dependent enhancement of fluorescent signals is clearly demonstrated using green and red labels (FITC, DyLight 488, Alexa 568, and Alexa 596). The ratios of the on pillar to off pillar signals normalized by the nominal increase in surface area due to nanopillars were found to be 43, 75, and 292 for the IgG-antibody assay, streptavidin-biotin system, and covalently attached BSA, respectively. Applicability of the presented approaches to the detection of small numbers of molecules was evaluated using highly diluted labeled proteins and also control experiments without biospecific analytes. Our analysis indicates that detection of fewer than 10 tagged proteins is possible. C1 [Kandziolka, Michael; Kravchenko, Ivan I.; Merkulov, Igor A.; Lavrik, Nickolay V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Charlton, Jennifer J.; Sepaniak, Michael J.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Sepaniak, MJ (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM msepaniak@utk.edu; lavriknv@ornl.gov RI Kravchenko, Ivan/K-3022-2015; Lavrik, Nickolay/B-5268-2011 OI Kravchenko, Ivan/0000-0003-4999-5822; Lavrik, Nickolay/0000-0002-9543-5634 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; National Science Foundation [CHE-1144947]; University of Tennessee FX This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. This material is based on work supported in part by the National Science Foundation under Grant CHE-1144947 with the University of Tennessee. NR 39 TC 10 Z9 10 U1 4 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD OCT 1 PY 2013 VL 85 IS 19 BP 9031 EP 9038 DI 10.1021/ac401500y PG 8 WC Chemistry, Analytical SC Chemistry GA 294BN UT WOS:000330017500023 PM 23984845 ER PT J AU Ai, Y Sanders, CK Marrone, BL AF Ai, Ye Sanders, Claire K. Marrone, Babetta L. TI Separation of Escherichia coli Bacteria from Peripheral Blood Mononuclear Cells Using Standing Surface Acoustic Waves SO ANALYTICAL CHEMISTRY LA English DT Article ID MICROFLUIDIC CHANNELS; SAMPLE PREPARATION; PARTICLE; MICROPARTICLES; FLOW AB A microfluidic device was developed to separate heterogeneous particle or cell mixtures in a continuous flow using acoustophoresis. In this device, two identical surface acoustic waves (SAWs) generated by interdigital transducers (IDTs) propagated toward a microchannel, which accordingly built up a standing surface acoustic wave (SSAW) field across the channel. A numerical model, coupling a piezoelectric effect in the solid substrate and acoustic pressure in the fluid, was developed to provide a better understanding of SSAW-based particle manipulation. It was found that the pressure nodes across the channel were individual planes perpendicular to the solid substrate. In the separation experiments, two side sheath flows hydrodynamically focused the injected particle or cell mixtures into a very narrow stream along the centerline. Particles flowing through the SSAW field experienced an acoustic radiation force that highly depends on the particle properties. As a result, dissimilar particles or cells were laterally attracted toward the pressure nodes at different magnitudes, and were eventually switched to different outlets. Two types of fluorescent microspheres with different sizes were successfully separated using the developed device. In addition, Escherichia coli bacteria premixed in peripheral blood mononuclear cells (PBMCs) were also efficiently isolated using the SSAW-base separation technique. Flow cytometric analysis on the collected samples found that the purity of separated E. coli bacteria was 95.65%. C1 [Ai, Ye] Singapore Univ Technol & Design, Singapore 138682, Singapore. [Sanders, Claire K.; Marrone, Babetta L.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RP Ai, Y (reprint author), Singapore Univ Technol & Design, Singapore 138682, Singapore. EM aiye@sutd.edu.sg; blm@lanl.gov RI Ai, Ye/F-3411-2011 OI Ai, Ye/0000-0001-8638-1649 FU National Center for Research Resources; National Institute of General Medical Sciences of the National Institutes of Health through the National Flow Cytometry Resource [P41 RR01315]; Laboratory Directed Research and Development award from Los Alamos National Laboratory [20130239ER]; International Design Center from Singapore University of Technology and Design-Massachusetts Institute of Technology Alliance [IDG11300101] FX This work was supported by the National Center for Research Resources and the National Institute of General Medical Sciences of the National Institutes of Health (Grant P41 RR01315) through the National Flow Cytometry Resource (B.L.M.), by a Laboratory Directed Research and Development award (20130239ER) from Los Alamos National Laboratory (B.L.M.) and, in part, by the International Design Center (Grant IDG11300101) from Singapore University of Technology and Design-Massachusetts Institute of Technology Alliance (Y.A.). This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility, and we gratefully acknowledge Jon Kevin Baldwin for the assistance of Cr/Au deposition. We also would like to thank Patricia S. Langan for providing TGP expressing E. coli. NR 35 TC 34 Z9 34 U1 8 U2 66 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD OCT 1 PY 2013 VL 85 IS 19 BP 9126 EP 9134 DI 10.1021/ac4017715 PG 9 WC Chemistry, Analytical SC Chemistry GA 294BN UT WOS:000330017500035 PM 23968497 ER PT J AU Shi, TJ Fillmore, TL Gao, YQ Zhao, R He, JT Schepmoes, AA Nicora, CD Wu, CC Chambers, JL Moore, RJ Kagan, J Srivastava, S Liu, AY Rodland, KD Liu, T Camp, DG Smith, RD Qian, WJ AF Shi, Tujin Fillmore, Thomas L. Gao, Yuqian Zhao, Rui He, Jintang Schepmoes, Athena A. Nicora, Carrie D. Wu, Chaochao Chambers, Justin L. Moore, Ronald J. Kagan, Jacob Srivastava, Sudhir Liu, Alvin Y. Rodland, Karin D. Liu, Tao Camp, David G., II Smith, Richard D. Qian, Wei-Jun TI Long-Gradient Separations Coupled with Selected Reaction Monitoring for Highly Sensitive, Large Scale Targeted Protein Quantification in a Single Analysis SO ANALYTICAL CHEMISTRY LA English DT Article ID TANDEM MASS-SPECTROMETRY; PEPTIDE IMMUNOAFFINITY ENRICHMENT; LIQUID-CHROMATOGRAPHY; PLASMA-PROTEINS; BIOMARKER DISCOVERY; PROTEOMIC ANALYSIS; ANTIBODY-FREE; HUMAN SERUM; QUANTITATION; REVEALS AB Long-gradient separations coupled to tandem mass spectrometry (MS) were recently demonstrated to provide a deep proteome coverage for global proteomics; however, such long-gradient separations have not been explored for targeted proteomics. Herein, we investigate the potential performance of the long-gradient separations coupled with selected reaction monitoring (LG-SRM) for targeted protein quantification. Direct comparison of LG-SRM (5 h gradient) and conventional liquid chromatography (LC)-SRM (45 min gradient) showed that the long-gradient separations significantly reduced background interference levels and provided an 8- to 100-fold improvement in limit of quantification (LOQ) for target proteins in human female serum. On the basis of at least one surrogate peptide per protein, an LOQ of 10 ng/mL was achieved for the two spiked proteins in nondepleted human serum. The LG-SRM detection of seven out of eight endogenous plasma. proteins expressed at ng/mL or subng/mL levels in clinical patient sera was also demonstrated. A correlation coefficient of > 0.99 was observed for the results of LG-SRM and enzyme-linked immunosorbent assay (ELISA) measurements for prostate-specific antigen (PSA) in selected patient sera. Further enhancement of LG-SRM sensitivity was achieved by applying front-end IgY14 immunoaffinity depletion. Besides improved sensitivity, LG-SRM potentially offers much higher multiplexing capacity than conventional LC-SRM due to an increase in average peak widths (similar to 3-fold) for a 300 min gradient compared to a 45 min gradient. Therefore, LG-SRM holds great potential for bridging the gap between global and targeted proteomics due to its advantages in both sensitivity and multiplexing capacity. C1 [Shi, Tujin; Gao, Yuqian; He, Jintang; Schepmoes, Athena A.; Nicora, Carrie D.; Wu, Chaochao; Chambers, Justin L.; Moore, Ronald J.; Rodland, Karin D.; Liu, Tao; Camp, David G., II; Smith, Richard D.; Qian, Wei-Jun] Pacific NW Natl Lab, Biol Sci Div, Richland, WA 99352 USA. [Fillmore, Thomas L.; Zhao, Rui] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Kagan, Jacob; Srivastava, Sudhir] NCI, Canc Prevent Div, Rockville, MD 20892 USA. [Liu, Alvin Y.] Univ Washington, Dept Urol, Seattle, WA 98195 USA. RP Shi, TJ (reprint author), Pacific NW Natl Lab, Biol Sci Div, Richland, WA 99352 USA. EM tujin.shi@pnnl.gov; weijun.qian@pnnl.gov RI Smith, Richard/J-3664-2012; Shi, Tujin/O-1789-2014 OI Smith, Richard/0000-0002-2381-2349; FU NIH [DP2OD006668, U24CA160019, U01CA111244, P41GM103493]; NCI Early Detection Research Network Interagency Agreement [Y01-CN-05013-29]; DOE; DOE [DE-AC05-76RL0 1830] FX We thank Drs. Lori Sokoll and Daniel Chan at the Johns Hopkins Medical Institutions for providing the clinical serum samples. Portions of this work were supported by the NIH New Innovator Award Program DP2OD006668, U24CA160019, U01CA111244, and P41GM103493 and NCI Early Detection Research Network Interagency Agreement Y01-CN-05013-29. The experimental work described herein was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE and located at Pacific Northwest National Laboratory, which is operated by Battelle Memorial Institute for the DOE under Contract DE-AC05-76RL0 1830. NR 56 TC 20 Z9 20 U1 2 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD OCT 1 PY 2013 VL 85 IS 19 BP 9196 EP 9203 DI 10.1021/ac402105s PG 8 WC Chemistry, Analytical SC Chemistry GA 294BN UT WOS:000330017500044 PM 24004026 ER PT J AU Lu, ZM Noonan, D Crittenden, J Jeong, H Wang, DL AF Lu, Zhongming Noonan, Douglas Crittenden, John Jeong, Hyunju Wang, Dali TI Use of Impact Fees To Incentivize Low-Impact Development and Promote Compact Growth SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID AGENT-BASED ANALYSIS; RESIDENTIAL SUBDIVISIONS; URBAN SYSTEMS; OPEN SPACE; LAND-USE; PERFORMANCE; MANAGEMENT; VALUATION; PATTERNS; FEATURES AB Low-impact development (LID) is an innovative stormwater management strategy that restores the predevelopment hydrology to prevent increased stormwater runoff from land development. Integrating LID into residential subdivisions and increasing population density by building more compact living spaces (e.g., apartment homes) can result in a more sustainable city by reducing stormwater runoff, saving infrastructural cost, increasing the number of affordable homes, and supporting public transportation. We develop an agent-based model (ABM) that describes the interactions between several decision-makers (i.e., local government, a developer, and homebuyers) and fiscal drivers (e.g., property taxes, impact fees). The model simulates the development of nine square miles of greenfield land. A more sustainable development (MSD) scenario introduces an impact fee that developers must pay if they choose not to use LID to build houses or apartment homes. Model simulations show homeowners selecting apartment homes 60% or 35% of the time after 30 years of development in MSD or business as usual (BAU) scenarios, respectively. The increased adoption of apartment homes results from the lower cost of using LID and improved quality of life for apartment homes relative to single-family homes. The MSD scenario generates more tax revenue and water savings than does BAU. A time-dependent global sensitivity analysis quantifies the importance of socioeconomic variables on the adoption rate of apartment homes. The top influential factors are the annual pay rates (or capital recovery factor) for single-family houses and apartment homes. The ABM can be used by city managers and policymakers for scenario exploration in accordance with local conditions to evaluate the effectiveness of impact fees and other policies in promoting LID and compact growth. C1 [Lu, Zhongming; Crittenden, John; Jeong, Hyunju] Georgia Inst Technol, Sch Civil & Environm Engn, Brook Byers Inst Sustainable Syst, Atlanta, GA 30332 USA. [Noonan, Douglas] Indiana Univ, Publ Policy Inst, Sch Publ & Environm Affairs, Indianapolis, IN 46202 USA. [Wang, Dali] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Wang, Dali] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. RP Crittenden, J (reprint author), Georgia Inst Technol, Sch Civil & Environm Engn, Brook Byers Inst Sustainable Syst, Atlanta, GA 30332 USA. EM john.crittenden@ce.gatech.edu FU National Science Foundation for Resilient and Sustainable Infrastructures (RESIN); Brook Byers Institute for Sustainable Systems; Hightower Chair; Georgia Research Alliance FX Financial support from the National Science Foundation for Resilient and Sustainable Infrastructures (RESIN) is gratefully acknowledged. This work was also partially supported by Brook Byers Institute for Sustainable Systems, the Hightower Chair and Georgia Research Alliance. The authors wish to thank Kathryn Jonell, Arka Pandit, and Xuewei Yu, for help in revising the paper. Finally, we would like to thank all of the anonymous reviewers and their comments. NR 43 TC 4 Z9 4 U1 8 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD OCT 1 PY 2013 VL 47 IS 19 BP 10744 EP 10752 DI 10.1021/es304924w PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 295CT UT WOS:000330094900005 PM 23815440 ER PT J AU Dubinsky, EA Conrad, ME Chakraborty, R Bill, M Borglin, SE Hollibaugh, JT Mason, OU Piceno, YM Reid, FC Stringfellow, WT Tom, LM Hazen, TC Andersen, GL AF Dubinsky, Eric A. Conrad, Mark E. Chakraborty, Romy Bill, Markus Borglin, Sharon E. Hollibaugh, James T. Mason, Olivia U. Piceno, Yvette M. Reid, Francine C. Stringfellow, William T. Tom, Lauren M. Hazen, Terry C. Andersen, Gary L. TI Succession of Hydrocarbon-Degrading Bacteria in the Aftermath of the Deepwater Horizon Oil Spill in the Gulf of Mexico SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID OXYGEN ANOMALY REVEALS; COMMUNITY STRUCTURE; MICROBIAL RESPONSE; GEN. NOV.; SEA; FLAVOBACTERIA; DIVERSITY; DYNAMICS; FATE; DEGRADATION AB The Deepwater Horizon oil spill produced large subsurface plumes of dispersed oil and gas in the Gulf of Mexico that stimulated growth of psychrophilic, hydrocarbon degrading bacteria. We tracked succession of plume bacteria before, during and after the 83-day spill to determine the microbial response and biodegradation potential throughout the incident. Dominant bacteria shifted substantially over time and were dependent on relative quantities of different hydrocarbon fractions. Unmitigated flow from the wellhead early in the spill resulted in the highest proportions of n-alkanes and cycloalkanes at depth and corresponded with dominance by Oceanospirillaceae and Pseudomonas. Once partial capture of oil and gas began 43 days into the spill, petroleum hydrocarbons decreased, the fraction of aromatic hydrocarbons increased, and Colwellia, Cycloclasticus, and Pseudoalteromonas increased in dominance. Enrichment of Methylomonas coincided with positive shifts in the delta C-13 values of methane in the plume and indicated significant methane oxidation occurred earlier than previously reported. Anomalous oxygen depressions persisted at plume depths for over six weeks after well shut-in and were likely caused by common marine heterotrophs associated with degradation of high-molecular-weight organic matter, including Methylophaga. Multiple hydrocarbon-degrading bacteria operated simultaneously throughout the spill, but their relative importance was controlled by changes in hydrocarbon supply. C1 [Dubinsky, Eric A.; Conrad, Mark E.; Chakraborty, Romy; Bill, Markus; Borglin, Sharon E.; Mason, Olivia U.; Piceno, Yvette M.; Reid, Francine C.; Stringfellow, William T.; Tom, Lauren M.; Hazen, Terry C.; Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Hollibaugh, James T.] Univ Georgia, Dept Marine Sci, Athens, GA 30602 USA. [Mason, Olivia U.] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA. [Hazen, Terry C.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. RP Andersen, GL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd MS 70A-3317, Berkeley, CA 94720 USA. EM glandersen@lbl.gov RI Stringfellow, William/O-4389-2015; Borglin, Sharon/I-1013-2016; Dubinsky, Eric/D-3787-2015; Chakraborty, Romy/D-9230-2015; Tom, Lauren/E-9739-2015; Andersen, Gary/G-2792-2015; Conrad, Mark/G-2767-2010; Piceno, Yvette/I-6738-2016; Bill, Markus/D-8478-2013; Hazen, Terry/C-1076-2012 OI Stringfellow, William/0000-0003-3189-5604; Dubinsky, Eric/0000-0002-9420-6661; Chakraborty, Romy/0000-0001-9326-554X; Andersen, Gary/0000-0002-1618-9827; Piceno, Yvette/0000-0002-7915-4699; Bill, Markus/0000-0001-7002-2174; Hazen, Terry/0000-0002-2536-9993 FU University of California at Berkeley, Energy Biosciences Institute to Lawrence Berkeley National Laboratory under U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [OCE-0943278]; NASA FX This work was supported by a subcontract from the University of California at Berkeley, Energy Biosciences Institute to Lawrence Berkeley National Laboratory under U.S. Department of Energy contract DE-AC02-05CH11231 and by National Science Foundation award OCE-0943278 to J.T.H. The R/V Cape Hatteras cruise was supported by NASA grants to Steve Lohrenz and Wei-jun Cai; we thank them for providing the opportunity to collect samples, and we thank Bradley Tolar for processing samples from this cruise. We thank Krystle Chavarria, Julian Fortney, Dominique Joyner, Regina Lamendella, Jeny Lim, Rachel Mackelprang, Kelly Wetmore, and Cindy Wu for assistance with sample collection, Jiawen Huang, Angelica Pettenato and Jakk Wong for assistance with culturing, and Theresa Pollard for logistical support. We thank the captain, crew, and science teams aboard the R/V Ocean Veritas, R/V Brooks McCall, and R/V Ferrel for all their efforts. NR 37 TC 58 Z9 60 U1 11 U2 117 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD OCT 1 PY 2013 VL 47 IS 19 BP 10860 EP 10867 DI 10.1021/es401676y PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 295CT UT WOS:000330094900017 PM 23937111 ER PT J AU Hu, HY Lin, H Zheng, W Rao, B Feng, XB Liang, LY Elias, DA Gu, BH AF Hu, Haiyan Lin, Hui Zheng, Wang Rao, Balaji Feng, Xinbin Liang, Liyuan Elias, Dwayne A. Gu, Baohua TI Mercury Reduction and Cell-Surface Adsorption by Geobacter sulfurreducens PCA SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID DISSOLVED ORGANIC-MATTER; EXTRACELLULAR ELECTRON-TRANSFER; C-TYPE CYTOCHROMES; MICROBIAL REDUCTION; ANOXIC ENVIRONMENTS; REDUCING BACTERIA; GASEOUS MERCURY; NATURAL-WATERS; HG-II; METHYLATION AB Both reduction and surface adsorption of mercuric mercury [Hg(II)] are found to occur simultaneously on G. sulfurreducens PCA cells under dark, anaerobic conditions. Reduction of Hg(II) to elemental Hg(0) initially follows a pseudo-first order kinetics with a half-life of <2 h in the presence of 50 nM Hg(II) and 10(11) cells L-1 in a phosphate buffer (pH 7.4). Multiple gene deletions of the outer membrane cytochromes in this organism resulted in a decrease in reduction rate from similar to 0.3 to 0.05 h(-1), and reduction was nearly absent with heat-killed cells or in the cell filtrate. Adsorption of Hg(II) by cells is found to compete with, and thus inhibit, Hg(II) reduction. Depending on the Hg to cell ratio, maximum Hg(II) reduction was observed at about 5 x 10(-19) mol Hg cell(-1), but reduction terminated at a low Hg to cell ratio (<10(-20) mol Hg cell(-1)). This inhibitory effect is attributed to bonding between Hg(II) and the thiol (-SH) functional groups on cells and validated by experiments in which the sorbed Hg(II) was readily exchanged by thiols (e.g., glutathione) but not by carboxylate compounds such as ethylenediamine-tetraacetate (EDTA). We suggest that coupled Hg(II) cell interactions, i.e., reduction and surface binding, could be important in controlling Hg species transformation and bioavailability and should therefore be considered in microbial Hg(II) uptake and methylation studies. C1 [Hu, Haiyan] Chinese Acad Sci, Guangzhou Inst Geochem, State Key Lab Organ Geochem, Guangzhou 510640, Guangdong, Peoples R China. [Hu, Haiyan; Lin, Hui; Zheng, Wang; Rao, Balaji; Liang, Liyuan; Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37830 USA. [Feng, Xinbin] Chinese Acad Sci, Inst Geochem, State Key Lab Environm Geochem, Guiyang 550002, Guizhou, Peoples R China. [Elias, Dwayne A.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Gu, BH (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37830 USA. EM gub1@ornl.gov RI Elias, Dwayne/B-5190-2011; Feng, Xinbin/F-4512-2011; Liang, Liyuan/O-7213-2014; Gu, Baohua/B-9511-2012 OI Elias, Dwayne/0000-0002-4469-6391; Feng, Xinbin/0000-0002-7462-8998; Liang, Liyuan/0000-0003-1338-0324; Gu, Baohua/0000-0002-7299-2956 FU Office of Biological and Environmental Research, Office of Science, US Department of Energy (DOE) as part of the Mercury Science Focus Area Program at ORNL; DOE [DE-AC05-00OR22725] FX We thank D. R. Lovley and colleagues at the University of Massachusetts, Amherst, for providing the Geobacter deletion mutant, J. Schaefer (Princeton University) for valuable input concerning microbial experiments, and H. Guo (University of Tennessee, Knoxville) and M. Drake, X. Yin, R. Hurt Jr., and Y. Qian (ORNL) for technical assistance. This research was sponsored by the Office of Biological and Environmental Research, Office of Science, US Department of Energy (DOE) as part of the Mercury Science Focus Area Program at ORNL, which is managed by UT-Battelle LLC for the DOE under contract DE-AC05-00OR22725. NR 49 TC 18 Z9 20 U1 8 U2 77 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD OCT 1 PY 2013 VL 47 IS 19 BP 10922 EP 10930 DI 10.1021/es400527m PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 295CT UT WOS:000330094900024 PM 24020841 ER PT J AU Deng, W Cardenas, MB Kirk, MF Altman, SJ Bennett, PC AF Deng, Wen Cardenas, M. Bayani Kirk, Matthew F. Altman, Susan J. Bennett, Philip C. TI Effect of Permeable Biofilm on Micro- And Macro-Scale Flow and Transport in Bioclogged Pores SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID PSEUDOMONAS-FLUORESCENS BIOFILMS; POROUS-MEDIA; HYDRAULIC CONDUCTIVITY; PHYSICAL-PROPERTIES; GROWTH; HYDRODYNAMICS; SIMULATIONS; REDUCTION; STRENGTH; IMPACT AB Simulations of coupled flow around and inside biofilms in pores were conducted to study the effect of porous biofilm on micro- and macro-scale flow and transport. The simulations solved the Navier-Stokes equations coupled with the Brinkman equation representing flow in the pore space and biofilm, respectively, and the advection-diffusion equation. Biofilm structure and distribution were obtained from confocal microscope images. The bulk permeability (k) of bioclogged porous media depends on biofilm permeability (k(br)) following a sigmoidal curve on a log-log scale. The upper and lower limits of the curve are the k of biofilm-free media and of bioclogged media with impermeable biofilms, respectively. On the basis of this, a model is developed that predicts k based solely on k(br) and biofilm volume ratio. The simulations show that k(br) has a significant impact on the shear stress distribution, and thus potentially affects biofilm erosion and detachment. The sensitivity of flow fields to k(br) directly translated to effects on the transport fields by affecting the relative distribution of where advection and diffusion dominated. Both k(br) and biofilm volume ratio affect the shape of breakthrough curves. C1 [Deng, Wen; Cardenas, M. Bayani; Bennett, Philip C.] Univ Texas Austin, Dept Geol Sci, Austin, TX 78712 USA. [Kirk, Matthew F.; Altman, Susan J.] Sandia Natl Labs, Dept Geochem, Albuquerque, NM 87185 USA. [Kirk, Matthew F.] Kansas State Univ, Dept Geol, Manhattan, KS 66506 USA. RP Deng, W (reprint author), Univ Texas Austin, Dept Geol Sci, Austin, TX 78712 USA. EM wendeng@utexas.edu RI Kirk, Matthew/A-3274-2013; Deng, Wen/D-3689-2016; Cardenas, Meinhard Bayani/B-4940-2011 OI Cardenas, Meinhard Bayani/0000-0001-6270-3105 FU Center for Frontiers of Subsurface Energy Security (CFSES), an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001114]; Geology Foundation of the University of Texas; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security (CFSES), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DE-SC0001114. Matching funding was provided by the Geology Foundation of the University of Texas. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. We thank three anonymous reviewers for their help in improving our manuscript. NR 30 TC 6 Z9 6 U1 4 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD OCT 1 PY 2013 VL 47 IS 19 BP 11092 EP 11098 DI 10.1021/es402596v PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 295CT UT WOS:000330094900044 PM 23971830 ER PT J AU Hatt, JK Ritalahti, KM Ogles, DM Lebron, CA Loffler, FE AF Hatt, Janet K. Ritalahti, Kirsti M. Ogles, Dora M. Lebron, Carmen A. Loeffler, Frank E. TI Design and Application of an Internal Amplification Control to Improve Dehalococcoides mccartyi 165 rRNA Gene Enumeration by qPCR SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID REAL-TIME PCR; POLYMERASE-CHAIN-REACTION; VINYL-CHLORIDE; REDUCTIVE DECHLORINATION; CONTAMINATED SUBSURFACE; ANAEROBIC BACTERIUM; DIAGNOSTIC PCR; GROOVE BINDER; TETRACHLOROETHENE; QUANTIFICATION AB Dehalococcoides mccartyi (Dhc) strains are keystone bacteria for reductive dechlorination of chlorinated ethenes to nontoxic ethene in contaminated aquifers. Enumeration of Dhc biomarker genes using quantitative real-time PCR (qPCR) in groundwater is a key component of site assessment and bioremediation monitoring. Unfortunately, standardized qPCR procedures that recognize impaired measurements due to PCR inhibition, low template DNA concentrations, or analytical error are not available, thus limiting confidence in qPCR data. To improve contemporary approaches for enumerating Dhc in environmental samples, multiplex qPCR assays were designed to quantify the Dhc 16S rRNA gene and one of two different internal amplification controls (IACs): a modified Dhc 16S rRNA gene fragment (Dhc*) and the firefly luciferase gene luc. The Dhc* IAC exhibited competitive inhibition in qPCR with the Dhc 16S rRNA gene template when the ratio of either target was 100-fold greater than the other target. A multiplex qPCR assay with the luc IAC avoided competitive inhibition and accurately quantified Dhc abundances ranging from similar to 10 to 10(7) 16S rRNA gene copies per reaction. The addition of similar to 10(6) E. coli luc IAC to simulated groundwater amended with the Dhc-containing consortium KB-1 yielded reproducible luc counts after DNA extraction and multiplex qPCR enumeration. The application of the luc IAC assay improved Dhc biomarker gene quantification from simulated groundwater samples and is a valuable approach for "ground truthing" qPCR data obtained in different laboratories, thus reducing ambiguity associated with qPCR enumeration and reproducibility. C1 [Hatt, Janet K.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Ritalahti, Kirsti M.; Loeffler, Frank E.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Loeffler, Frank E.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Ogles, Dora M.] Microbial Insights, Knoxville, TN 37932 USA. [Lebron, Carmen A.] Naval Facil Engn Command, Engn Serv Ctr, Port Hueneme, CA 93043 USA. [Ritalahti, Kirsti M.; Loeffler, Frank E.] Oak Ridge Natl Lab, Univ Tennessee & Oak Ridge Natl Lab UT ORNL Joint, Oak Ridge, TN 37831 USA. [Ritalahti, Kirsti M.; Loeffler, Frank E.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Loffler, FE (reprint author), Univ Tennessee, Dept Microbiol, M409 Walters Life Sci Bldg, Knoxville, TN 37996 USA. EM frank.loeffler@utk.edu RI Loeffler, Frank/M-8216-2013 FU Strategic Environmental Research and Development Program (SERDP) [ER-1561] FX This research was supported by the Strategic Environmental Research and Development Program (SERDP) (project ER-1561). We thank Elizabeth Edwards of the University of Toronto for providing consortium KB-1 samples and Allan Nevins for helping to construct pDhc*-16S. NR 41 TC 7 Z9 7 U1 5 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD OCT 1 PY 2013 VL 47 IS 19 BP 11131 EP 11138 DI 10.1021/es4019817 PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 295CT UT WOS:000330094900049 PM 24053159 ER PT J AU Jardine, PM Stewart, MA Barnett, MO Basta, NT Brooks, SC Fendorf, S Mehlhorn, TL AF Jardine, P. M. Stewart, M. A. Barnett, M. O. Basta, N. T. Brooks, S. C. Fendorf, S. Mehlhorn, T. L. TI Influence of Soil Geochemical and Physical Properties on Chromium(VI) Sorption and Bioaccessibility SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID DISSOLVED ORGANIC-CARBON; HEALTH-RISK ASSESSMENT; HEXAVALENT CHROMIUM; CHROMATE REDUCTION; GASTRIC FLUID; IRON-OXIDE; CR(VI); MECHANISMS; ADSORPTION; BIOAVAILABILITY AB The Department of Defense (DoD) is faced with the daunting task of possible remediation of numerous soil-Cr(VI) contaminated sites throughout the continental U.S. The primary risk driver at these sites is hand-to-mouth ingestion of contaminated soil by children. In the following study we investigate the impact of soil geochemical and physical properties on the sorption and bioaccessibility of Cr(VI) in a vast array of soils relevant to neighboring DoD sites. For the 35 soils used in this study, A-horizon soils typically sorbed significantly more Cr(VI) relative to B-horizon soils. Multiple linear regression analysis suggested that Cr(VI) sorption increased with increasing soil total organic C (TOC) and decreasing soil pH. The bioaccessibility of total Cr (Cr-T) and Cr(VI) on the soils decreased with increasing soil TOC content. As the soil TOC content approached 0.4%, the bioaccessibility of soil bound Cr systematically decreased from approximately 65 to 10%. As the soil TOC content increased from 0.4 to 4%, the bioaccessibility of Cr(VI) and CrT remained relatively constant at approximately 4% and 10%, respectively. X-ray absorption near edge structure ()CANES) spectroscopy suggested that Cr(VI) reduction to Cr(III) was prevalent and that the redox transformation of Cr(VI) increased with increasing soil TOC. XANES confirmed that nearly all bioaccessible soil Cr was the Cr(VI) moiety. Multiple linear regression analysis suggested that the bioaccessibility of Cr(VI) and its reduced counterpart Cr(III), decreased with increasing soil TOC and increasing soil pH. This is consistent with the observation that the reduction reaction and formation of Cr(III) increased with increasing soil TOC and that Cr(III) was significantly less bioaccessible relative to Cr(VI). The model was found to adequately describe CrT bioaccessibility in soils from DoD facilities where Cr(VI) contaminated sites were present. The results of this study illustrate the importance of soil properties on Cr(VI) sorption and bioassessability and help define what soil types have the greatest risk associated with Cr(VI) exposure. C1 [Jardine, P. M.; Stewart, M. A.] Univ Tennessee, Inst Sustained & Secure Environm, Biosyst Engn & Soil Sci Dept, Knoxville, TN 37996 USA. [Barnett, M. O.] Auburn Univ, Dept Civil Engn, Auburn, AL 36849 USA. [Basta, N. T.] Ohio State Univ, Sch Environm & Nat Resources, Columbus, OH 43210 USA. [Brooks, S. C.; Mehlhorn, T. L.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Fendorf, S.] Stanford Univ, Stanford, CA 94305 USA. RP Jardine, PM (reprint author), Univ Tennessee, Inst Sustained & Secure Environm, Biosyst Engn & Soil Sci Dept, Knoxville, TN 37996 USA. EM pjardine@utk.edu RI Brooks, Scott/B-9439-2012 OI Brooks, Scott/0000-0002-8437-9788 NR 49 TC 9 Z9 11 U1 3 U2 87 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD OCT 1 PY 2013 VL 47 IS 19 BP 11241 EP 11248 DI 10.1021/es401611h PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 295CT UT WOS:000330094900062 PM 23941581 ER PT J AU Novak, S Drobne, D Vaccari, L Kiskinova, M Ferraris, P Birarda, G Remskar, M Hocevar, M AF Novak, Sara Drobne, Damjana Vaccari, Lisa Kiskinova, Maya Ferraris, Paolo Birarda, Giovanni Remskar, Maja Hocevar, Matej TI Effect of Ingested Tungsten Oxide (WOx) Nanofibers on Digestive Gland Tissue of Porcellio scaber (Isopoda, Crustacea): Fourier Transform Infrared (FTIR) Imaging SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID OXIDATIVE STRESS; MULTIVARIATE-ANALYSIS; IR MICROSPECTROSCOPY; LIPID-ACCUMULATION; HEPG2 CELLS; SPECTROSCOPY; TOXICITY; NANOPARTICLES; ACTIVATION; EXPOSURE AB Tungsten nanofibers are recognized as biologically potent. We study deviations in molecular composition between normal and digestive gland tissue of WOx nanofibers (nano-WOx) fed invertebrate Porcellio scaber (Iosopda, Crustacea) and revealed mechanisms of nano-WOx effect in vivo. Fourier Transform Infrared (FTIR) imaging performed on digestive gland epithelium was supplemented by toxicity and cytotoxicity analyses as well as scanning electron microscopy (SEM) of the surface of the epithelium. The difference in the spectra of the Nano-WOx treated and control cells showed up in the central region of the cells and were related to lipid peroxidation, and structural changes of nucleic acids. The conventional toxicity parameters failed to show toxic effects of nano-WOx, whereas the cytotoxicity biomarkers and SEM investigation of digestive gland epithelium indicated sporadic effects of nanofibers. Since toxicological and cytological measurements did not highlight severe effects, the biochemical alterations evidenced by FTIR imaging have been explained as the result of cell protection (acclimation) mechanisms to unfavorable conditions and indication of a nonhomeostatic state, which can lead to toxic effects. C1 [Novak, Sara; Drobne, Damjana] Univ Ljubljana, Dept Biol, Biotech Fac, Ljubljana, Slovenia. [Drobne, Damjana] Ctr Excellence Adv Mat & Technol Future CO NAMAST, Ljubljana, Slovenia. [Drobne, Damjana] Ctr Excellence Nanosci & Nanotechnol Nanoctr, Ljubljana, Slovenia. [Vaccari, Lisa; Kiskinova, Maya; Ferraris, Paolo] Elettra Sincrotrone Trieste, Trieste, Italy. [Birarda, Giovanni] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Remskar, Maja] Jozef Stefan Inst, Dept Condensed Matter Phys, Ljubljana 1000, Slovenia. [Hocevar, Matej] Inst Met & Technol, Ljubljana 1000, Slovenia. RP Drobne, D (reprint author), Univ Ljubljana, Dept Biol, Biotech Fac, Ljubljana, Slovenia. EM damjana.drobne@bf.uni-lj.si FU Slovenian Research Agency [J1-4109]; FP EU Project "NANOVALID" [263147]; NANOMILE [310451]; Friuli Venezia Giulia Region: Nanotox [0060-2009] FX Work of PhD student Sara Novak was supported by Slovenian Research Agency within the framework of young researchers. Part of work was conducted within research projects financed by Slovenian Research Agency (J1-4109) and within the seventh FP EU Project "NANOVALID" (Contract No.263147) and "NANOMILE" (Contract No. 310451). We thank G.W.A. Milne for editorial assistance. Lisa Vaccari and M. Kiskinova acknowledge the grant from Friuli Venezia Giulia Region: Nanotox 0060-2009. We thank Janez Jelenc for synthesis of nanomaterial used in the study. NR 44 TC 1 Z9 2 U1 1 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD OCT 1 PY 2013 VL 47 IS 19 BP 11284 EP 11292 DI 10.1021/es402364w PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 295CT UT WOS:000330094900067 PM 23952740 ER PT J AU Baran, R Ivanova, NN Jose, N Garcia-Pichel, F Kyrpides, NC Gugger, M Northen, TR AF Baran, Richard Ivanova, Natalia N. Jose, Nick Garcia-Pichel, Ferran Kyrpides, Nikos C. Gugger, Muriel Northen, Trent R. TI Functional Genomics of Novel Secondary Metabolites from Diverse Cyanobacteria Using Untargeted Metabolomics SO MARINE DRUGS LA English DT Article DE cyanobacteria; metabolomics; mass spectrometry; MS; MS; betaines; oligosaccharides ID GAMMA-GLUTAMYL-TRANSPEPTIDASE; SYNECHOCOCCUS-SP. PCC-7002; ESCHERICHIA-COLI; DATABASE; SCALE; GLUCOSYLGLYCEROL; MOLECULES; DISCOVERY; SEQUENCE; SYNTHASE AB Mass spectrometry-based metabolomics has become a powerful tool for the detection of metabolites in complex biological systems and for the identification of novel metabolites. We previously identified a number of unexpected metabolites in the cyanobacterium Synechococcus sp. PCC 7002, such as histidine betaine, its derivatives and several unusual oligosaccharides. To test for the presence of these compounds and to assess the diversity of small polar metabolites in other cyanobacteria, we profiled cell extracts of nine strains representing much of the morphological and evolutionary diversification of this phylum. Spectral features in raw metabolite profiles obtained by normal phase liquid chromatography coupled to mass spectrometry (MS) were manually curated so that chemical formulae of metabolites could be assigned. For putative identification, retention times and MS/MS spectra were cross-referenced with those of standards or available sprectral library records. Overall, we detected 264 distinct metabolites. These included indeed different betaines, oligosaccharides as well as additional unidentified metabolites with chemical formulae not present in databases of metabolism. Some of these metabolites were detected only in a single strain, but some were present in more than one. Genomic interrogation of the strains revealed that generally, presence of a given metabolite corresponded well with the presence of its biosynthetic genes, if known. Our results show the potential of combining metabolite profiling and genomics for the identification of novel biosynthetic genes. C1 [Baran, Richard; Jose, Nick; Northen, Trent R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Ivanova, Natalia N.; Kyrpides, Nikos C.] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. [Garcia-Pichel, Ferran] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA. [Gugger, Muriel] Inst Pasteur, Collect Cyanobacteria, F-75724 Paris 15, France. RP Northen, TR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, 1 Cyclotron Rd,MS977R0181A, Berkeley, CA 94720 USA. EM RBaran@lbl.gov; nnivanova@lbl.gov; njose40707@gmail.com; ferran@asu.edu; nckyrpides@lbl.gov; muriel.gugger@pasteur.fr; TRNorthen@lbl.gov RI Kyrpides, Nikos/A-6305-2014; OI Kyrpides, Nikos/0000-0002-6131-0462; Northen, Trent/0000-0001-8404-3259; Ivanova, Natalia/0000-0002-5802-9485 FU U.S Department of Energy [DE-AC02-05CH11231]; Institut Pasteur FX This work was supported by the U.S Department of Energy under Contract No. DE-AC02-05CH11231 and the Institut Pasteur. NR 63 TC 12 Z9 12 U1 1 U2 29 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1660-3397 J9 MAR DRUGS JI Mar. Drugs PD OCT PY 2013 VL 11 IS 10 BP 3617 EP 3631 DI 10.3390/md11103617 PG 15 WC Chemistry, Medicinal SC Pharmacology & Pharmacy GA 274QZ UT WOS:000328622500003 PM 24084783 ER PT J AU Balaguru, K Leung, LR Yoon, JH AF Balaguru, Karthik Leung, L. Ruby Yoon, Jin-ho TI Oceanic control of Northeast Pacific hurricane activity at interannual timescales SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE thermocline depth; sea surface temperature; upper-ocean heat content; Northeast Pacific hurricanes; interannual variability; ocean-atmosphere interactions; ocean dynamics ID TROPICAL CYCLONE ACTIVITY; TEMPERATURE; VARIABILITY; GENESIS; INDEX AB Sea surface temperature (SST) is not the only oceanic parameter that can play a key role in the interannual variability of Northeast Pacific hurricane activity. Using several observational data sets and the statistical technique of multiple linear regression analysis, we show that, along with SST, the thermocline depth (TD) plays an important role in hurricane activity at interannual timescales in this basin. Based on the parameter that dominates, the ocean basin can be divided into two sub-regions. In the Southern sub-region, which includes the hurricane main development area, interannual variability of the upper-ocean heat content (OHC) is primarily controlled by TD variations. Consequently, the interannual variability in the hurricane power dissipation index (PDI), which is a measure of the intensity of hurricane activity, is driven by that of the TD. On the other hand, in the Northern sub-region, SST exerts the major control over the OHC variability and, in turn, the PDI. Our study suggests that both SST and TD have a significant influence on the Northeast Pacific hurricane activity at interannual timescales and that their respective roles are more clearly delineated when sub-regions along an approximate north-south demarcation are considered rather than the basin as a whole. C1 [Balaguru, Karthik; Leung, L. Ruby; Yoon, Jin-ho] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99354 USA. RP Balaguru, K (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99354 USA. EM Karthik.Balaguru@pnnl.gov RI YOON, JIN-HO/A-1672-2009 OI YOON, JIN-HO/0000-0002-4939-8078 FU Office of Science of the US Department of Energy; Battelle Memorial Institute [DE-AC05-76RL01830] FX This research was supported by the Office of Science of the US Department of Energy as part of the Regional and Global Climate Modeling program. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. NR 33 TC 10 Z9 10 U1 3 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD OCT-DEC PY 2013 VL 8 IS 4 AR 044009 DI 10.1088/1748-9326/8/4/044009 PG 7 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 288IJ UT WOS:000329604900016 ER PT J AU Bond-Lamberty, B AF Bond-Lamberty, Ben TI Global vegetation model diversity and the risks of climate-driven ecosystem shifts SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article ID FOREST AB Climate change is modifying global biogeochemical cycles, and is expected to exert increasingly large effects in the future. How these changes will affect and interact with the structure and function of particular ecosystems is unclear, both because of scientific uncertainties and the very diversity of global vegetation models in use. Writing in ERL, Warszawski et al (2013 Environ. Res. Lett. 8 044018) aggregate results from a group of models, across a range of emissions scenarios and climate data, to investigate these risks. Although the models frequently disagree about which specific regions are at risk, they consistently predict a greater chance of ecosystem restructuring with more warming; this risk roughly doubles between a 2 and 3 degrees C increase in global mean temperature. The innovative work of Warszawski et al represents an important first step towards fully consistent multi-model, multi-scenario assessments of the future risks to global ecosystems. C1 Pacific NW Natl Lab, Joint Global Change Res Inst, DOE, College Pk, MD 20740 USA. RP Bond-Lamberty, B (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, DOE, 5825 Univ Res Ct 3500, College Pk, MD 20740 USA. EM bondlamberty@pnnl.gov RI Bond-Lamberty, Ben/C-6058-2008 OI Bond-Lamberty, Ben/0000-0001-9525-4633 FU Terrestrial Ecosystem Science program at the US Department of Energy FX BB-L was supported by the Terrestrial Ecosystem Science program at the US Department of Energy. NR 11 TC 0 Z9 0 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD OCT-DEC PY 2013 VL 8 IS 4 AR 041004 DI 10.1088/1748-9326/8/4/041004 PG 2 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 288IJ UT WOS:000329604900004 ER PT J AU Crane-Droesch, A Abiven, S Jeffery, S Torn, MS AF Crane-Droesch, Andrew Abiven, Samuel Jeffery, Simon Torn, Margaret S. TI Heterogeneous global crop yield response to biochar: a meta-regression analysis SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE biochar; meta-analysis; crop yield; agriculture; carbon sequestration; soil ID BLACK CARBON; SOIL FERTILITY; METAANALYSIS; CHARCOAL; ECOLOGY; MODEL; SCALE AB Biochar may contribute to climate change mitigation at negative cost by sequestering photosynthetically fixed carbon in soil while increasing crop yields. The magnitude of biochar's potential in this regard will depend on crop yield benefits, which have not been well-characterized across different soils and biochars. Using data from 84 studies, we employ meta-analytical, missing data, and semiparametric statistical methods to explain heterogeneity in crop yield responses across different soils, biochars, and agricultural management factors, and then estimate potential changes in yield across different soil environments globally. We find that soil cation exchange capacity and organic carbon were strong predictors of yield response, with low cation exchange and low carbon associated with positive response. We also find that yield response increases over time since initial application, compared to non-biochar controls. High reported soil clay content and low soil pH were weaker predictors of higher yield response. No biochar parameters in our dataset-biochar pH, percentage carbon content, or temperature of pyrolysis-were significant predictors of yield impacts. Projecting our fitted model onto a global soil database, we find the largest potential increases in areas with highly weathered soils, such as those characterizing much of the humid tropics. Richer soils characterizing much of the world's important agricultural areas appear to be less likely to benefit from biochar. C1 [Crane-Droesch, Andrew; Torn, Margaret S.] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA. [Abiven, Samuel] Univ Zurich, Dept Geog, CH-8006 Zurich, Switzerland. [Jeffery, Simon] Wageningen Univ, Dept Soil Qual, NL-6700 AP Wageningen, Netherlands. [Torn, Margaret S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Energy & Resources Grp, Berkeley, CA 94720 USA. RP Crane-Droesch, A (reprint author), Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA. EM andrewcd@berkeley.edu RI Torn, Margaret/D-2305-2015; OI Jeffery, Simon/0000-0003-1014-9100; Abiven, Samuel/0000-0002-5663-0912 FU Office of Science, Office of Biological and Environmental Research, Climate and Environmental Science Division, of the US Department of Energy [DE-AC02-05CH11231]; Marie Curie CIG [GA 526/09/1762]; Swiss National Foundation for Science; US National Science Foundation [OCI-1053575] FX This work was partly supported by the Director, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Science Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231 as part of the Terrestrial Ecosystem Science Program, as well as the Marie Curie CIG grant (No. GA 526/09/1762), and the Swiss National Foundation for Science. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by US National Science Foundation grant number OCI-1053575. We also acknowledge helpful comments from Professor Dr Michael W I Schmidt. NR 46 TC 35 Z9 35 U1 10 U2 100 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD OCT-DEC PY 2013 VL 8 IS 4 AR 044049 DI 10.1088/1748-9326/8/4/044049 PG 8 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 288IJ UT WOS:000329604900056 ER PT J AU Fisk, JP Hurtt, GC Chambers, JQ Zeng, H Dolan, KA Negron-Juarez, RI AF Fisk, J. P. Hurtt, G. C. Chambers, J. Q. Zeng, H. Dolan, K. A. Negron-Juarez, R. I. TI The impacts of tropical cyclones on the net carbon balance of eastern US forests (1851-2000) SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE tropical cyclones; carbon cycle; land-atmosphere interactions; ecological disturbances ID ATLANTIC HURRICANE ACTIVITY; CLIMATE PACEMAKER; REGIONAL IMPACTS; RECENT INCREASE; NEW-ENGLAND; INTENSITY; FUTURE; SINK; SEQUESTRATION; LANDSCAPE AB In temperate forests of the eastern US, tropical cyclones are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Substantial progress has been made to quantify forest damage and resulting gross carbon emissions from tropical cyclones. However, the net effect of storms on the carbon balance of forests depends not only on the biomass lost in single events, but also on the uptake during recovery from a mosaic of past events. This study estimates the net impacts of tropical cyclones on the carbon balance of US forests over the period 1851-2000. To track both disturbance and recovery and to isolate the effects of storms, a modeling framework is used combining gridded historical estimates of mortality and damage with a mechanistic model using an ensemble approach. The net effect of tropical cyclones on the carbon balance is shown to depend strongly on the spatial and temporal scales of analysis. On average, tropical cyclones contribute a net carbon source over latter half of the 19th century. However, throughout much of the 20th century a regional carbon sink is estimated resulting from periods of forest recovery exceeding damage. The large-scale net annual flux resulting from tropical cyclones varies by up to 50 Tg C yr(-1), an amount equivalent to 17%-36% of the US forest carbon sink. C1 [Fisk, J. P.; Hurtt, G. C.; Dolan, K. A.] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. [Chambers, J. Q.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Climate Sci Dept, Berkeley, CA 94720 USA. [Zeng, H.] Univ Toronto, Fac Forestry, Toronto, ON M5S 3B3, Canada. [Negron-Juarez, R. I.] Tulane Univ, New Orleans, LA 70118 USA. RP Fisk, JP (reprint author), Univ Maryland, Dept Geog Sci, 2181 LeFrak Hall, College Pk, MD 20742 USA. EM fisk@umd.edu RI Chambers, Jeffrey/J-9021-2014; Negron-Juarez, Robinson/I-6289-2016 OI Chambers, Jeffrey/0000-0003-3983-7847; FU National Aeronautics and Space Administration (NASA); US Department of Energy's Office of Science (BER) through Coastal Center of the National Institute for Climatic Change Research (NICCR) at Tulane University; Office of Science, Office of Biological and Environmental Research, Climate and Environmental Science Division, of the US Department of Energy [DE-AC02-05CH11231] FX This research was supported by the National Aeronautics and Space Administration (NASA), the US Department of Energy's Office of Science (BER) through the Coastal Center of the National Institute for Climatic Change Research (NICCR) at Tulane University, and Director, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Science Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231 to Berkeley Lab. NR 34 TC 6 Z9 6 U1 0 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD OCT-DEC PY 2013 VL 8 IS 4 AR 045017 DI 10.1088/1748-9326/8/4/045017 PG 6 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 288IJ UT WOS:000329604900081 ER PT J AU Genet, H McGuire, AD Barrett, K Breen, A Euskirchen, ES Johnstone, JF Kasischke, ES Melvin, AM Bennett, A Mack, MC Rupp, TS Schuur, AEG Turetsky, MR Yuan, F AF Genet, H. McGuire, A. D. Barrett, K. Breen, A. Euskirchen, E. S. Johnstone, J. F. Kasischke, E. S. Melvin, A. M. Bennett, A. Mack, M. C. Rupp, T. S. Schuur, A. E. G. Turetsky, M. R. Yuan, F. TI Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE ecosystem model; fire severity; permafrost; organic layer; soil carbon; boreal forest ID HIGH-LATITUDE ECOSYSTEMS; MIXEDWOOD BOREAL FOREST; THERMAL DYNAMICS; AIR-TEMPERATURE; ORGANIC-MATTER; PERMAFROST; VULNERABILITY; IMPACT; REGIME; SEQUESTRATION AB There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layer caused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness of 1.1 m on average by 2100. The combination of warming and fire led to a simulated cumulative loss of 9.6 kgC m 2 on average by 2100. Our analysis suggests that ecosystem carbon storage in boreal forests in interior Alaska is particularly vulnerable, primarily due to the combustion of organic layer thickness in fire and the related increase in active layer thickness that exposes previously protected permafrost soil carbon to decomposition. C1 [Genet, H.; Euskirchen, E. S.] Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK 99775 USA. [McGuire, A. D.] Univ Alaska Fairbanks, US Geol Survey, Alaska Cooperat Fish & Wildlife Res Unit, Fairbanks, AK 99775 USA. [Barrett, K.] US Geol Survey, Alaska Sci Ctr, Anchorage, AK 99507 USA. [Breen, A.; Bennett, A.; Rupp, T. S.] Univ Alaska Fairbanks, Int Arctic Res Ctr, Network Alaska & Arctic Planning, Fairbanks, AK 99775 USA. [Johnstone, J. F.] Univ Saskatchewan, Dept Biol, Northern Plant Ecol Lab, Saskatoon, SK S7N 5E2, Canada. [Kasischke, E. S.] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. [Melvin, A. M.; Mack, M. C.; Schuur, A. E. G.] Univ Florida, Dept Biol, Gainesville, FL 32611 USA. [Turetsky, M. R.] Univ Guelph, Dept Integrat Biol, Ecosyst Anal Lab, Guelph, ON N1G 2W1, Canada. [Yuan, F.] Oak Ridge Natl Lab, Div Environm Sci, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. RP Genet, H (reprint author), Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK 99775 USA. EM hgenet@alaska.edu RI Johnstone, Jill/C-9204-2009 OI Johnstone, Jill/0000-0001-6131-9339 FU Department of Defense Strategic Environmental Research and Development Program [RC-2109]; US Geological Survey; Arctic, Western Alaska, and Northwest Boreal Landscape Conservation Cooperatives in Alaska through the Integrated Ecosystem Model for Alaska and Northwest Canada project; National Science Foundation; USDA Forest Service through the Bonanza Creek Long Term Ecological Research Program FX This research was support from (1) the Department of Defense Strategic Environmental Research and Development Program (RC-2109), (2) the US Geological Survey and the Arctic, Western Alaska, and Northwest Boreal Landscape Conservation Cooperatives in Alaska through the Integrated Ecosystem Model for Alaska and Northwest Canada project, and (3) the National Science Foundation and the USDA Forest Service through the Bonanza Creek Long Term Ecological Research Program. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government. NR 102 TC 15 Z9 16 U1 3 U2 93 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD OCT-DEC PY 2013 VL 8 IS 4 AR 045016 DI 10.1088/1748-9326/8/4/045016 PG 13 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 288IJ UT WOS:000329604900080 ER PT J AU Xie, Y Liu, YG AF Xie, Yu Liu, Yangang TI A new approach for simultaneously retrieving cloud albedo and cloud fraction from surface-based shortwave radiation measurements SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE cloud albedo; cloud fraction; shortwave radiation measurement ID ATMOSPHERIC RADIATION; ARM SITE; MODEL; SGP; CLIMATOLOGY; SCATTERING; FEEDBACKS; ALGORITHM; PROGRAM; BUDGET AB Surface-based measurements of shortwave (SW) radiative fluxes contain valuable information on cloud properties, but have not been fully used to infer those properties. Here a new analytical approach is presented that simultaneously infers cloud albedo and cloud fraction from surface-based measurements of total and direct radiative fluxes. An inspection of the analytical formulation reveals that cloud fraction is primarily determined by the relative cloud radiative forcing for the direct radiation, defined as the difference between the clear-sky and all-sky direct downwelling radiative fluxes normalized by the clear-sky direct downwelling radiative fluxes, while cloud albedo is primarily determined by the ratio of the relative cloud radiative forcing for the total downwelling radiation to the relative cloud radiative forcing for the direct radiation. The new analytical approach is validated using synthetic measurements generated by the rapid radiative transfer model (RRTM) algorithm with known cloud inputs and some surface-and satellite-based measurements. The effect of cloud absorption is further corrected based on a suite of numerical experiments. The new approach demonstrates the utility of partitioning total radiation into direct and diffuse radiation, and eliminates the potential contamination of errors in existing approaches that retrieve cloud fraction and cloud albedo separately. C1 [Xie, Yu; Liu, Yangang] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. RP Xie, Y (reprint author), Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. EM yxie@bnl.gov RI Liu, Yangang/H-6154-2011 FU Earth Systems Modeling (ESM) program via the FASTER project; Atmospheric Science Research (ASR) program of the US Department of Energy FX This work is supported by the Earth Systems Modeling (ESM) program via the FASTER project (www.bnl.gov/faster), and the Atmospheric Science Research (ASR) program of the US Department of Energy. NR 35 TC 5 Z9 5 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD OCT-DEC PY 2013 VL 8 IS 4 AR 044023 DI 10.1088/1748-9326/8/4/044023 PG 9 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 288IJ UT WOS:000329604900030 ER PT J AU Nishida, EE Foster, JT Briseno, PE AF Nishida, Erik E. Foster, John T. Briseno, Peter E. TI Constant strain rate testing of a G10 laminate composite through optimized Kolsky bar pulse-shaping techniques SO JOURNAL OF COMPOSITE MATERIALS LA English DT Article DE G10; FR4; high strain rate; Kolsky bar; split-Hopkinson bar; pulse shaping ID HOPKINSON PRESSURE BAR AB Pulse-shaping techniques have been used for many years now in Kolsky bar testing of brittle materials. The use of pulse shapers allow the experimentalist to conduct high strain rate tests on brittle materials while ensuring that the sample will achieve a state of dynamic stress equilibrium before it fails, as well as to achieve a constant strain rate loading state for a large portion of the test. The process of choosing the appropriate pulse-shaper system has typically been one of trail-and-error, sometimes requiring many experimental trails to achieve optimal results. Advances in analytic modeling of Kolsky bar tests now make it possible, in an a priori fashion, to design a pulse-shaper system to produce a known constant strain rate experiment. This article describes the approach of coupling these analytic models to an optimization technique to quickly find a pulse-shaper system that will produce an experiment at a known constant strain rate. Experiments were conducted and the model predictions compared to resulting strain rate histories for a G10 material. Stress-strain curves for G10 are presented at three different strain rates in both the in-plane and out-of-plane loading configurations with respect to the laminate plys. The G10 material is not found to be rate sensitive in either its strength or failure properties. C1 [Nishida, Erik E.] Sandia Natl Labs, Livermore, CA 94550 USA. [Foster, John T.; Briseno, Peter E.] Univ Texas San Antonio, Dept Mech Engn, San Antonio, TX 78249 USA. RP Foster, JT (reprint author), Univ Texas San Antonio, Dept Mech Engn, One UTSA Circle, San Antonio, TX 78249 USA. EM john.foster@utsa.edu RI Foster, John/K-5291-2016 OI Foster, John/0000-0002-7173-4728 FU Sandia National Laboratories; United States Department of Energy [DE-AC04-94AL85000]; National Science Foundation [HRD-0932339] FX This work was partially supported by Sandia National Laboratories. Sandia is a mulitprogram laboratory operated by Sandia Corporation, a Lockeed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. This was additionally based in part upon work supported by the National Science Foundation under Grant Number HRD-0932339. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. NR 15 TC 0 Z9 0 U1 0 U2 7 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0021-9983 EI 1530-793X J9 J COMPOS MATER JI J. Compos Mater. PD OCT PY 2013 VL 47 IS 23 BP 2955 EP 2963 DI 10.1177/0021998312460263 PG 9 WC Materials Science, Composites SC Materials Science GA 287ME UT WOS:000329545100009 ER PT J AU Barnhart, WD Lohman, RB Mellors, RJ AF Barnhart, William D. Lohman, Rowena B. Mellors, Robert J. TI Active accommodation of plate convergence in Southern Iran: Earthquake locations, triggered aseismic slip, and regional strain rates SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article DE InSAR; Iran earthquakes; aseismic slip; strain rate budgets; continental collision ID SIMPLY FOLDED BELT; ZAGROS CONTINENTAL COLLISION; GPS MEASUREMENTS; MICROEARTHQUAKE SEISMICITY; RADAR INTERFEROMETRY; CRUSTAL STRUCTURE; COSEISMIC SLIP; GEODETIC DATA; TRAVEL-TIMES; MIDDLE-EAST AB We present a catalog of interferometric synthetic aperture radar (InSAR) constraints on deformation that occurred during earthquake sequences in southern Iran between 1992 and 2011, and explore the implications on the accommodation of large-scale continental convergence between Saudi Arabia and Eurasia within the Zagros Mountains. The Zagros Mountains, a salt-laden fold-and-thrust belt involving similar to 10km of sedimentary rocks overlying Precambrian basement rocks, have formed as a result of ongoing continental collision since 10-20Ma that is currently occurring at a rate of similar to 3cm/yr. We first demonstrate that there is a biased misfit in earthquake locations in global catalogs that likely results from neglect of 3-D velocity structure. Previous work involving two M similar to 6 earthquakes with well-recorded aftershocks has shown that the deformation observed with InSAR may represent triggered slip on faults much shallower than the primary earthquake, which likely occurred within the basement rocks (>10km depth). We explore the hypothesis that most of the deformation observed with InSAR spanning earthquake sequences is also due to shallow, triggered slip above a deeper earthquake, effectively doubling the moment release for each event. We quantify the effects that this extra moment release would have on the discrepancy between seismically and geodetically constrained moment rates in the region, finding that even with the extra triggered fault slip, significant aseismic deformation during the interseismic period is necessary to fully explain the convergence between Eurasia and Saudi Arabia. C1 [Barnhart, William D.; Lohman, Rowena B.] Cornell Univ, Inst Study Continents, Dept Earth & Atmospher Sci, Ithaca, NY 14853 USA. [Barnhart, William D.] US Geol Survey, Natl Earthquake Informat Ctr, Golden, CO 80401 USA. [Mellors, Robert J.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Barnhart, WD (reprint author), US Geol Survey, Natl Earthquake Informat Ctr, Golden, CO 80401 USA. EM wbarnhart@usgs.gov RI Lohman, Rowena/C-2324-2013; Mellors, Robert/K-7479-2014; Barnhart, William/L-9446-2015 OI Lohman, Rowena/0000-0001-7240-3165; Mellors, Robert/0000-0002-2723-5163; FU American Chemical Society Petroleum Research Fund [49877-DNI8]; NASA graduate fellowship [NNX09AO30H] FX Envisat and ERS SAR imagery were provided through a Category-1 proposal through the European Space Agency. ALOS imagery was provided by the Japanese Space Agency through the Alaska Satellite Facility. This work was funded in part by the American Chemical Society Petroleum Research Fund, grant 49877-DNI8. W.D.B. was partially funded through NASA graduate fellowship NNX09AO30H. We thank the Editor and four anonymous reviewers for insightful comments that improved this manuscript. NR 82 TC 7 Z9 7 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD OCT PY 2013 VL 118 IS 10 BP 5699 EP 5711 DI 10.1002/jgrb.50380 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 292AV UT WOS:000329874900037 ER PT J AU Aad, G Abajyan, T Abbott, B Abdallah, J Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Addy, TN Adelman, J Adomeit, S Adye, T Aefsky, S Agatonovic-Jovin, T Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmad, A Ahsan, M Aielli, G Akesson, TPA Akimoto, G Akimov, AV Alam, MA Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alio, L Alison, J Allbrooke, BMM Allison, LJ Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alonso, F Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Ammosov, VV Dos Santos, SPA Amorim, A Amoroso, S Amram, N Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, R Aoki, M Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Arfaoui, S Arguin, JF Argyropoulos, S Arik, E Arik, M Armbruster, AJ Arnaez, O Arnal, V Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ask, S Asman, B Asquith, L Assamagan, K Astalos, R Astbury, A Atkinson, M Atlay, NB Auerbach, B Auge, E Augsten, K Aurousseau, M Avolio, G Axen, D Azuelos, G Azuma, Y Baak, MA Bacci, C Bach, AM Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, S Balek, P Balli, F Banas, E Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, R da Costa, JBG Bartoldus, R Barton, AE Bartsch, V Bassalat, A Basye, A Bates, RL Batkova, L Batley, JR Battistin, M Bauer, F Bawa, HS Beale, S Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Bege, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belloni, A Beloborodov, OL Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernard, C Bernat, P Bernhard, R Bernius, C Bernlochner, FU Berry, T Bertella, C Bertolucci, F Besana, MI Besjes, GJ Bessidskaia, O Besson, N Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Bittner, B Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blocki, J Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boek, TT Boelaert, N Bogaerts, JA Bogdanchikov, AG Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Bolnet, NM Bomben, M Bona, M Boonekamp, M Bordoni, S Borer, C Borisov, A Borissov, G Borri, M Borroni, S Bortfeldt, JJ Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Bouchami, J Boudreau, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouid, S Boveia, A Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Branchini, P Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Bremer, J Brendlinger, K Brenner, R Bressler, S Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Broggi, F Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brost, E Brown, G Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchanan, J Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buehrer, F Bugge, L Bulekov, O Bundock, AC Bunse, M Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Buscher, V Bussey, P Buszello, CP Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Buzatu, A Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Caso, C Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Cataldi, G Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, B Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chan, K Chang, P Chapleau, B Chapman, JD Chapman, JW Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, X Chen, Y Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Choudalakis, G Chouridou, S Chow, BKB Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirilli, M Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Clemens, JC Clement, B Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coelli, S Coffey, L Cogan, JG Coggeshall, J Colas, J Cole, B Cole, S Colijn, AP Collins-Tooth, C Collot, J Colombo, T Colon, G Compostellam, G Muino, PC Coniavitis, E Conidi, MC Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, R Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Courneyea, L Cowan, G Cox, BE Cranmer, K Crepe-Renaudin, S Crescioli, F Cristinziani, M Crosetti, G Cuciuc, CM Almenar, CC Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dallaire, F Dallapiccola, C Dam, M Damiani, DS Daniells, AC Dao, V Darbo, G Darlea, GL Darmora, S Dassoulas, JA Davey, W David, C Davidek, T Davies, E Davies, M Davignon, O Davison, AR Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S de Graat, J De Groot, N de Jong, P De la Taille, C De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD De Zorzi, G Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Degenhardt, J Del Peso, J Del Prete, T Delemontex, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demilly, A Demirkoz, B Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Donato, C Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dinut, F Dionisi, C Pita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobos, D Dobson, E Dodd, J Doglioni, C Doherty, T Dohmae, T Doi, Y Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donini, J Dopke, J Doria, A Dos Anjos, A Dotti, A Dova, MT Doyle, AT Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Duda, D Dudarev, A Dudziak, F Duflot, L Dufour, MA Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Dwuznik, M Ebke, J Edson, W Edwards, CA Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Engelmann, R Engl, A Erdmann, J Ereditato, A Eriksson, D Ernis, G Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Facini, G Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, R Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Ferencei, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, J Fisher, MJ Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Bustos, ACF Flowerdew, MJMJ Martin, TF Formica, A Forti, A Fortin, D Fournier, D Fox, H Francavilla, P Franchini, M Franchino, S Francis, D Franklin, M Franz, S Fraternali, M Fratina, S French, ST Friedrich, C Friedrich, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galster, G Gan, KK Gandrajula, RP Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gillman, AR Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giuliani, C Giunta, M Gjelsten, BK Gkialas, I Gladilin, LK Glasman, C Glatzer, J Glazov, A Glonti, GL Goblirsch-Kolb, M Goddard, JR Godfrey, J Godlewski, J Goebel, M Goeringer, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramstad, E Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guescini, F Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gunther, J Guo, J Gupta, S Gutierrez, P Ortiz, NGG Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haefner, P Hageboeck, S Hajduk, Z Hakobyan, H Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Han, L Hanagaki, K Hanawa, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hard, AS Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Hartert, J Hartjes, E Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Hejbal, J Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Herbert, GH Hernandez, CM Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hofmann, JI Hohlfeld, M Holmgren, SO Holzbauer, JL Hong, TM van Huysduynen, LH Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Hu, D Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huettmann, A Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Lakovidis, G Ibragimov, I Iconomidou-Fayard, L Idarraga, J Iengo, P Lgonkina, O Ikegami, Y Ikematsu, K Ikeno, M Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Janus, M Jared, RC Jarlskog, G Jeanty, L Jeng, GY Plante, IJL Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jungst, RM Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kajomovitz, E Kalinin, S Kama, S Kanaya, N Kaneda, M Kaneti, S Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karastathis, N Karnevskiy, M Karpov, SN Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Keener, PT Kehoe, R Keil, M Keller, JS Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kitamura, T Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klemetti, M Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klinkby, EB Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kodys, P Koenig, S Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohn, F Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Koneke, K Konig, AC Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretzschmar, J Kreutzfeldt, K Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MK Kruskal, M Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Lablak, S Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laier, H Laisne, E Lambourne, L Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, C Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Larner, A Lassnig, M Laurelli, P Lavorini, V Lavrijsen, W Laycock, P Le, BT Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, CA Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, G Lefebvre, M Legendre, M Legger, F Leggett, C Lehan, A Lehmacher, M Miotto, GL Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leone, R Leonhardt, K Leontsinis, S Leroy, C Lessard, JR Lester, CG Lester, CM Leveque, J Levin, D Levinson, LJ Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, S Li, X Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Limper, M Lin, SC Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loevschall-Jensen, AE Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, RE Lopes, L Mateos, DL Paredes, BL Lorenz, JJ Martinez, NL Losada, M Loscutoff, P Losty, MJ Lou, X Lounis, A Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Lukas, W Luminari, L Lund, E Lundberg, JJ Lundberg, O Lund-Jensen, B Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macek, B Miguens, JM Macina, D Mackeprang, R Madar, R Madaras, RJ Maddocks, HJ Mader, WF Madsen, A Maeno, M Maeno, T Magnoni, L Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A De Andrade, LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marques, CN Marroquima, F Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, JP Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Matsunaga, H Matsushita, T Mattig, P Mattig, S Mattmann, J Mattravers, C Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazzaferro, L Mazzanti, M Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meehan, S Meera-Lebbai, R Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Navas, LM Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Meyer, J Michal, S Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Moya, MM Minashvili, IA Mincer, AI Mindura, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitani, T Mitrevski, J Mitsou, VA Mitsui, S Miyagawa, PS Mjornmark, JU Moa, T Moeller, V Mohapatra, S Mohr, W Molander, S Moles-Valls, R Molfetas, A Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, E Monzani, S Moore, RW Herrera, CM Moraes, A Morange, N Morel, J Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Moritz, S Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, T Mueller, T Muenstermann, D Munwes, Y Quijada, JAM Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Napier, A Narayan, R Nash, M Nattermann, T Naumann, T Navarro, G Neal, HA Nechaeva, PY Neep, TJ Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neusiedl, A Neves, RM Nevski, R Newcomer, FM Newman, PR Nguyen, DH Hong, VNT Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Novakova, J Nozaki, M Nozka, L Ntekas, K Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakes, LB Oakham, FG Oberlack, H Ocariz, J Ochi, A Ochoa, MI Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ottersbach, JP Ouchrif, M Ouellette, EA Ould-Saada, E Ouraou, A Oussoren, KP Ouyanga, Q Ovcharova, A Owen, M Owen, S Ozcana, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Paleari, CP Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Papadelis, A Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parodi, F Parsons, JA Parzefall, U Pashapour, S Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, M Lopez, SP Morales, MIP Peleganchuk, SV Pelikan, D Peng, H Penning, B Penson, A Penwell, J Perepelitsa, DV Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petteni, M Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Piec, SM Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pizio, C Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Prabhu, R Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Price, D Price, J Price, LE Prieur, D Primavera, M Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Prudent, X Przybycien, M Przysiezniak, H Psoroulas, S Ptacek, E Puesche, E Puldon, D Purohit, M Puzo, P Pylypchenko, Y Qian, J Quadt, A Quarrie, DR Quayle, WB Quilty, D Radeka, V Radescu, V Radloff, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Rammes, M Randle-Conde, AS Rangel-Smith, C Rao, K Rauscher, F Rave, TC Ravenscroft, T Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reinsch, A Reisinger, I Relich, M Rembser, C Ren, ZL Renaud, A Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richter, R Richter-Was, E Ridel, M Rieck, P Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Ritsch, E Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodrigues, L Roe, A Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Romeo, G Adam, ER Rompotis, N Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Roster, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Ruckstuhl, N Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rumyantsev, L Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ruzicka, P Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Saddique, A Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salek, D Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarrazin, B Sarri, F Sartisohn, G Sasaki, O Sasaki, Y Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Sawyer, C Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Schaarschmidt, J Schacht, P Schaefer, D Schaelicke, A Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, C Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Scutti, F Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Sherwood, P Shimizu, S Shimojima, M Shin, T Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidorov, D Sidoti, A Siegert, F Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skottowe, HP Skovpen, KY Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, KM Smizanska, M Smolek, K Snesarev, AA Snidero, G Snow, J Snyder, S Sobie, R Sodomka, J Soifer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Solovyev, V Soni, N Sood, A Sopko, V Sopko, B Sosebee, M Soualah, R Soueid, P Soukharev, AM South, D Spagnolo, S Spano, F Spearman, WR Spighi, R Spigo, G Spousta, M Spreitzer, T Spurlock, B Denis, RDS Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Staude, A Stavina, P Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoerig, K Stoicea, G Stonjek, S Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Stugu, B Stumer, I Stupak, J Sturm, P Styles, NA Su, D Subramania, HS Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Tackmann, K Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tamsett, MC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tani, K Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teinturier, M Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tic, T Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomlinson, L Tomoto, M Tompkins, L Toms, K Tonoyan, A Topfel, C Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Triplett, N Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tudorache, A Tudorache, V Tuggle, JM Tuna, AN Turchikhin, S Turecek, D Cakir, IT Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Urbaniec, D Urquijo, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Vahsen, S Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Berg, R Van Der Deijl, PC van der Geer, R van der Graaf, H Van Der Leeuw, R van der Ster, D van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I Vanadia, M Vandelli, W Vaniachine, A Vankov, P Vannucci, F Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Schroeder, TV Veatch, J Veloso, F Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Virzi, J Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Vykydal, Z Wagner, W Wagner, P Wahrmund, S Wakabayashi, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watanabe, I Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Webb, S Weber, MS Webster, JS Weidberg, AR Weigell, P Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Wetter, J Whalen, K White, A White, MJ White, R White, S Whiteson, D Whittington, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildaueri, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Williams, S Willis, W Willocq, S Wilson, JA Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wittig, T Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wong, WC Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wraight, K Wright, M Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wyatt, TR Wynne, BM Xella, S Xiao, M Xu, C Xu, D Xu, L Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamaguchi, Y Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, UK Yang, Y Yang, Z Yanush, S Yao, L Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yen, AL Yildirim, E Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, J Yuan, L Yurkewicz, A Zabinski, B Zaidan, R Zaitsev, AM Zambito, S Zanello, L Zanzi, D Zaytsev, A Zeitnitz, C Zeman, M Zemla, A Zenin, O Zenis, T Zerwas, D della Porta, GZ Zhang, D Zhang, H Zhang, J Zhang, L Zhang, X Zhang, Z Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zibell, A Zieminska, D Zimin, NI Zimmermann, C Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zitoun, R Zivkovic, L Zobernig, G Zoccoli, A Nedden, MZ Zurzolo, G Zutshi, V Zwalinski, L AF Aad, G. Abajyan, T. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Addy, T. N. Adelman, J. Adomeit, S. Adye, T. Aefsky, S. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahmad, A. Ahsan, M. Aielli, G. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alam, M. A. Albert, J. Albrand, S. Alconada Verzini, M. J. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alio, L. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alonso, F. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Amaral Coutinho, Y. Amelung, C. Ammosov, V. V. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amram, N. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angelidakis, S. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, R. Aoki, M. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Arfaoui, S. Arguin, J-F. Argyropoulos, S. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Astbury, A. Atkinson, M. Atlay, N. B. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Avolio, G. Axen, D. Azuelos, G. Azuma, Y. Baak, M. A. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagiacchi, P. Bagnaia, P. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, S. Balek, P. Balli, F. Banas, E. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, R. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartsch, V. Bassalat, A. Basye, A. Bates, R. L. Batkova, L. Batley, J. R. Battistin, M. Bauer, F. Bawa, H. S. Beale, S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Bege, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belloni, A. Beloborodov, O. L. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernard, C. Bernat, P. Bernhard, R. Bernius, C. Bernlochner, F. U. Berry, T. Bertella, C. Bertolucci, F. Besana, M. I. Besjes, G. J. Bessidskaia, O. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Bittner, B. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blocki, J. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boek, T. T. Boelaert, N. Bogaerts, J. A. Bogdanchikov, A. G. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bomben, M. Bona, M. Boonekamp, M. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borri, M. Borroni, S. Bortfeldt, J. J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouid, S. Boveia, A. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Branchini, P. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Bremer, J. Brendlinger, K. Brenner, R. Bressler, S. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Broggi, F. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brost, E. Brown, G. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchanan, J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buehrer, F. Bugge, L. Bulekov, O. Bundock, A. C. Bunse, M. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Buescher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Buzatu, A. Byszewski, M. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cameron, D. Caminada, L. M. Caminal Armadans, R. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Caso, C. Castaneda-Miranda, E. Castelli, A. Castillo Gimenez, V. Castro, N. F. Cataldi, G. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chan, K. Chang, P. Chapleau, B. Chapman, J. D. Chapman, J. W. Charlton, D. G. Chavda, V. Barajas, C. A. Chavez Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, X. Chen, Y. Cheng, Y. Cheplakov, A. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiefari, G. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Choudalakis, G. Chouridou, S. Chow, B. K. B. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Cirilli, M. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Clemens, J. C. Clement, B. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coelli, S. Coffey, L. Cogan, J. G. Coggeshall, J. Colas, J. Cole, B. Cole, S. Colijn, A. P. Collins-Tooth, C. Collot, J. Colombo, T. Colon, G. Compostellam, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, R. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Courneyea, L. Cowan, G. Cox, B. E. Cranmer, K. Crepe-Renaudin, S. Crescioli, F. Cristinziani, M. Crosetti, G. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Cunha Sargedas De Sousa, M. J. Da Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dallaire, F. Dallapiccola, C. Dam, M. Damiani, D. S. Daniells, A. C. Dao, V. Darbo, G. Darlea, G. L. Darmora, S. Dassoulas, J. A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De la Taille, C. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie De Zorzi, G. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Degenhardt, J. Del Peso, J. Del Prete, T. Delemontex, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demilly, A. Demirkoz, B. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dinut, F. Dionisi, C. Pita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Do Valle Wemans, A. Doan, T. K. O. Dobos, D. Dobson, E. Dodd, J. Doglioni, C. Doherty, T. Dohmae, T. Doi, Y. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dotti, A. Dova, M. T. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Duda, D. Dudarev, A. Dudziak, F. Duflot, L. Dufour, M-A. Duguid, L. Duehrssen, M. Dunford, M. Yildiz, H. Duran Dueren, M. Dwuznik, M. Ebke, J. Edson, W. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Engelmann, R. Engl, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernis, G. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Espinal Curull, X. Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Facini, G. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, R. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Ferencei, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, J. Fisher, M. J. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Bustos, A. C. Florez Flowerdew, M. J. M. J. Martin, T. Fonseca Formica, A. Forti, A. Fortin, D. Fournier, D. Fox, H. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Friedrich, C. Friedrich, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gandrajula, R. P. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gianotti, F. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gillman, A. R. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giuliani, C. Giunta, M. Gjelsten, B. K. Gkialas, I. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glonti, G. L. Goblirsch-Kolb, M. Goddard, J. R. Godfrey, J. Godlewski, J. Goebel, M. Goeringer, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstroem, P. Grahn, K-J. Gramstad, E. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guescini, F. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gunther, J. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hard, A. S. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Hartert, J. Hartjes, E. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Hejbal, J. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Herbert, G. H. Hernandez, C. M. Hernandez Jimenez, Y. Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hofmann, J. I. Hohlfeld, M. Holmgren, S. O. Holzbauer, J. L. Hong, T. M. van Huysduynen, L. Hooft Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huettmann, A. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Lakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Lgonkina, O. Ikegami, Y. Ikematsu, K. Ikeno, M. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Janus, M. Jared, R. C. Jarlskog, G. Jeanty, L. Jeng, G. -Y. Plante, I. Jen-La Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jungst, R. M. Jussel, P. Juste Rozas, A. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalinin, S. Kama, S. Kanaya, N. Kaneda, M. Kaneti, S. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karastathis, N. Karnevskiy, M. Karpov, S. N. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Keener, P. T. Kehoe, R. Keil, M. Keller, J. S. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kitamura, T. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koenig, S. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Koeneke, K. Konig, A. C. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretzschmar, J. Kreutzfeldt, K. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. K. Kruskal, M. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Lablak, S. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laier, H. Laisne, E. Lambourne, L. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larner, A. Lassnig, M. Laurelli, P. Lavorini, V. Lavrijsen, W. Laycock, P. Le, B. T. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legendre, M. Legger, F. Leggett, C. Lehan, A. Lehmacher, M. Miotto, G. Lehmann Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leone, R. Leonhardt, K. Leontsinis, S. Leroy, C. Lessard, J-R. Lester, C. G. Lester, C. M. Leveque, J. Levin, D. Levinson, L. J. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, S. Li, X. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Lorenz, J. J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Losty, M. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Lukas, W. Luminari, L. Lund, E. Lundberg, J. J. Lundberg, O. Lund-Jensen, B. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Macina, D. Mackeprang, R. Madar, R. Madaras, R. J. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, M. Maeno, T. Magnoni, L. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Manhaes de Andrade Filho, L. Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marques, C. N. Marroquima, F. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, J. P. Martin, T. A. Martin, V. J. Latour, B. Martin dit Martinez, H. Martinez, M. Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Matsunaga, H. Matsushita, T. Maettig, P. Maettig, S. Mattmann, J. Mattravers, C. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazzaferro, L. Mazzanti, M. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meehan, S. Meera-Lebbai, R. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mendoza Navas, L. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P Meyer, J. Meyer, J. Michal, S. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano Moya, M. Minashvili, I. A. Mincer, A. I. Mindura, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitani, T. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Moeller, V. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Molfetas, A. Moenig, K. Monini, C. Monk, J. Monnier, E. Montejo Berlingen, J. Monticelli, E. Monzani, S. Moore, R. W. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Moreno, D. Moreno Llacer, M. Morettini, P. Morgenstern, M. Morii, M. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Mueller, T. Muenstermann, D. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Napier, A. Narayan, R. Nash, M. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neusiedl, A. Neves, R. M. Nevski, R. Newcomer, F. M. Newman, P. R. Nguyen, D. H. Hong, V. Nguyen Thi Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Novakova, J. Nozaki, M. Nozka, L. Ntekas, K. Nuncio-Quiroz, A. E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakes, L. B. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Ochoa, M. I. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ottersbach, J. P. Ouchrif, M. Ouellette, E. A. Ould-Saada, E. Ouraou, A. Oussoren, K. P. Ouyanga, Q. Ovcharova, A. Owen, M. Owen, S. Ozcana, V. E. Ozturk, N. Pachal, K. Pacheco Pages, A. Padilla Aranda, C. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Paleari, C. P. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Papadelis, A. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pashapour, S. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedersen, M. Pedraza Lopez, S. Morales, M. I. Pedraza Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penson, A. Penwell, J. Perepelitsa, D. V. Cavalcanti, T. Perez Codina, E. Perez Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petteni, M. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Piec, S. M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pizio, C. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Porten Bueso, X. Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Prabhu, R. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Prudent, X. Przybycien, M. Przysiezniak, H. Psoroulas, S. Ptacek, E. Puesche, E. Puldon, D. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Quadt, A. Quarrie, D. R. Quayle, W. B. Quilty, D. Radeka, V. Radescu, V. Radloff, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Rammes, M. Randle-Conde, A. S. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reinsch, A. Reisinger, I. Relich, M. Rembser, C. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richter, R. Richter-Was, E. Ridel, M. Rieck, P. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Ritsch, E. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodrigues, L. Roe, A. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romeo, G. Romero Adam, E. Rompotis, N. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Roster, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Ruckstuhl, N. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rumyantsev, L. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ruzicka, P. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Saddique, A. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salek, D. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarrazin, B. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, Y. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Sawyer, C. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaelicke, A. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwartzman, A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Sherwood, P. Shimizu, S. Shimojima, M. Shin, T. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinnari, L. A. Skottowe, H. P. Skovpen, K. Yu. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snow, J. Snyder, S. Sobie, R. Sodomka, J. Soifer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Solovyev, V. Soni, N. Sood, A. Sopko, V. Sopko, B. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Spagnolo, S. Spano, F. Spearman, W. R. Spighi, R. Spigo, G. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Staude, A. Stavina, P. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoerig, K. Stoicea, G. Stonjek, S. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Styles, N. A. Su, D. Subramania, H. S. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tamsett, M. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tani, K. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Tavares Delgado, A. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teinturier, M. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tic, T. Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Tonoyan, A. Topfel, C. Topilin, N. D. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Triplett, N. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tudorache, A. Tudorache, V. Tuggle, J. M. Tuna, A. N. Turchikhin, S. Turecek, D. Cakir, I. Turk Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Urbaniec, D. Urquijo, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. Van Berg, R. Van Der Deijl, P. C. van der Geer, R. van der Graaf, H. Van Der Leeuw, R. van der Ster, D. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. Vanadia, M. Vandelli, W. Vaniachine, A. Vankov, P. Vannucci, F. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloso, F. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, W. Wagner, P. Wahrmund, S. Wakabayashi, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watanabe, I. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Webb, S. Weber, M. S. Webster, J. S. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Wetter, J. Whalen, K. White, A. White, M. J. White, R. White, S. Whiteson, D. Whittington, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildaueri, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Williams, S. Willis, W. Willocq, S. Wilson, J. A. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wittig, T. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wong, W. C. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wraight, K. Wright, M. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wyatt, T. R. Wynne, B. M. Xella, S. Xiao, M. Xu, C. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamaguchi, Y. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, U. K. Yang, Y. Yang, Z. Yanush, S. Yao, L. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yen, A. L. Yildirim, E. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zambito, S. Zanello, L. Zanzi, D. Zaytsev, A. Zeitnitz, C. Zeman, M. Zemla, A. Zenin, O. Zenis, T. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, H. Zhang, J. Zhang, L. Zhang, X. Zhang, Z. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zibell, A. Zieminska, D. Zimin, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zobernig, G. Zoccoli, A. Nedden, M. zur Zurzolo, G. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC SO PHYSICS LETTERS B LA English DT Article ID PROTON-PROTON COLLISIONS; HADRON COLLIDERS; QCD CORRECTIONS; STANDARD MODEL; TRANSVERSE-MOMENTUM; MASSLESS PARTICLES; BROKEN SYMMETRIES; CROSS-SECTIONS; ROOT-S=7 TEV; NNLO QCD AB Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H -> gamma gamma, H -> ZZ* -> 4l and H -> WW* -> l nu l nu. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of root s = 7 TeV and root s = 8 TeV, corresponding to an integrated luminosity of about 25 fb(-1). Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson. (C) 2013 CERN. Published by Elsevier B.V. All rights reserved. C1 [Jackson, P.; Soni, N.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA, Australia. [Edson, W.; Ernst, J.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Chan, K.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Sbrizzi, A.; Subramania, H. S.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Petit, E.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Zitoun, R.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Petit, E.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Zitoun, R.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Feng, E. J.; Fernando, W.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Cowan, G.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Leone, R.; Loch, P.; O'grady, F.; Paleari, C. P.; Ruehr, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Hernandez, C. M.; Maeno, M.; Nilsson, P.; Ozturk, N.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Lakovidis, G.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Huseynov, N.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Pacheco Pages, A.; Padilla Aranda, C.; Porten Bueso, X.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Pacheco Pages, A.; Padilla Aranda, C.; Porten Bueso, X.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Krstic, J.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Agatonovic-Jovin, T.; Bozovic-Jelisavcic, I.; Cirkovic, P.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Calafiura, P.; Caminada, L. M.; Cerri, A.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Marshall, Z.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Calafiura, P.; Caminada, L. M.; Cerri, A.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Marshall, Z.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Aliev, M.; Kuutmann, E. Bergeaas; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Nikiforov, A.; Rieck, P.; Schulz, H.; Wendland, D.; Nedden, M. zur] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Ancu, L. S.; Beck, H. P.; Borer, C.; Cervelli, A.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Schneider, B.; Sciacca, F. G.; Topfel, C.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Ancu, L. S.; Beck, H. P.; Borer, C.; Cervelli, A.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Schneider, B.; Sciacca, F. G.; Topfel, C.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Mahout, G.; Mclaughlan, T.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, E.; Arik, M.; Istin, S.; Ozcana, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Bellagamba, L.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Grafstroem, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] INFN Sez Bologna, Bologna, Italy. [Bindi, M.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstroem, P.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Romano, M.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Abajyan, T.; Arslan, O.; Backhaus, M.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Glatzer, J.; Gonella, L.; Haefner, P.; Hageboeck, S.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Liebal, J.; Limbach, C.; Loddenkoetter, T.; Mergelmeyer, S.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. E.; Pohl, D.; Psoroulas, S.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Stillings, J. A.; Therhaag, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Urquijo, P.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Daya-Ishmukhametova, R. K.; Fitzgerald, E. A.; Gozpinar, S.; Pomeroy, D.; Sciolla, G.; Zambito, S.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Amaral Coutinho, Y.; Caloba, L. P.; Maidantchik, C.; Marroquima, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio De Janeiro COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Fed Univ Juiz de Fora UFJF, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Bege, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Hu, X.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Nevski, R.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Pleier, M. -A.; Polychronakos, V.; Pravahan, R.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Triplett, N.; Undrus, A.; Wenaus, T.; Ye, S.; Zaytsev, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dinut, F.; Pita, P.; Dita, S.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Mueller, T.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Koffas, T.; Lacey, J.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Anastopoulos, C.; Andari, N.; Anghinolfi, F.; Avolio, G.; Baak, M. A.; Backes, M.; Banfi, D.; Battistin, M.; Bellomo, M.; Beltramello, O.; Berge, D.; Bianco, M.; Bogaerts, J. A.; Boyd, J.; Bremer, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Barajas, C. A. Chavez; Childers, J. T.; Chromek-Burckhart, D.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dopke, J.; Dudarev, A.; Duehrssen, M.; Ellis, N.; Elsing, M.; Fabre, C.; Facini, G.; Farthouat, P.; Fassnacht, P.; Franchino, S.; Francis, D.; Froidevaux, D.; Garonne, V.; Gianotti, F.; Gillberg, D.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jansen, H.; Jenni, P.; Jungst, R. M.; Kaneda, M.; Klioutchnikova, T.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mapelli, L.; Martin, B.; Messina, A.; Meyer, J.; Michal, S.; Molfetas, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Petersen, J.; Pommes, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Raymond, M.; Rembser, C.; Rodrigues, L.; Roe, S.; Salek, D.; Salzburger, A.; Savu, D. O.; Scanlon, T.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Simonyan, M.; Solans, C. A.; Spigo, G.; Stewart, G. A.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Boveia, A.; Canelli, F.; Cheng, Y.; Choudalakis, G.; Fiascaris, M.; Gardner, R. W.; Plante, I. Jen-La; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Tuggle, J. M.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Cottin, G.; Diaz, M. A.] Pontificia Univ Catolica Chile, Dipartimento Fis, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Huang, Y.; Jin, S.; Lu, F.; Ouyanga, Q.; Shan, L. Y.; Wang, J.; Xu, D.; Yao, L.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Chen, S.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; Ma, L. L.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Anderson, K. J.; Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Phys Corpusculaire Lab, Clermont Ferrand, France. [Anderson, K. J.; Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Anderson, K. J.; Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Photochim Mol & Macromol Lab, CNRS, IN2P3, F-63177 Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Cole, B.; Dodd, J.; Guo, J.; Hu, D.; Hughes, E. W.; Nikiforou, N.; Parsons, J. A.; Penson, A.; Perepelitsa, D. V.; Reale, V. Perez; Scherzer, M. I.; Spousta, M.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Boelaert, N.; Dam, M.; Galster, G.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Loevschall-Jensen, A. E.; Mackeprang, R.; Mehlhase, S.; Monk, J.; Petersen, T. C.; Pingel, A.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindura, B.; Przybycien, M.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Cao, T.; Yagci, K. Dindar; Firan, A.; Hoffman, J.; Joffe, D.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Rios, R. R.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Izen, J. M.; Lou, X.; Namasivayam, H.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Bloch, I.; Borroni, S.; Dassoulas, J. A.; Dietrich, J.; Ferrara, V.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Hiller, K. H.; Huettmann, A.; Belenguer, M. Jimenez; Johnert, S.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lisovyi, M.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Peters, R. F. Y.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.; Zhu, H.] DESY, Hamburg, Germany. [Argyropoulos, S.; Bloch, I.; Borroni, S.; Dassoulas, J. A.; Dietrich, J.; Ferrara, V.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Hiller, K. H.; Huettmann, A.; Belenguer, M. Jimenez; Johnert, S.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lisovyi, M.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Peters, R. F. Y.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Esch, H.; Goessling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Reisinger, I.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Czodrowski, P.; Friedrich, R.; Grohs, J. P.; Kobel, M.; Leonhardt, K.; Mader, W. F.; Morgenstern, M.; Prudent, X.; Rudolph, C.; Schnoor, U.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B.; Finelli, K. D.; Ko, B. R.; Kotwal, A.; Kruse, M. K.; Li, S.; Liu, M.; Oh, S. H.; Pollard, C. S.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Bristow, T. M.; Buckley, A. G.; Clark, P. J.; Debenedetti, C.; Edwards, N. C.; Walls, F. M. Garay; Harrington, R. D.; Korn, A.; Martin, V. J.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Schaelicke, A.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.] INFN Lab Nazl Frascati, Frascati, Italy. [Aad, G.; Amoroso, S.; Barber, T.; Bernhard, R.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Christov, A.; Consorti, V.; Di Simone, A.; Fehling-Kaschek, M.; Flechl, M.; Giuliani, C.; Hartert, J.; Herten, G.; Jakobs, K.; Jenni, P.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Madar, R.; Mahboubi, K.; Mohr, W.; Parzefall, U.; Rammensee, M.; Rave, T. C.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Ungaro, F. C.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Winkelmann, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alexandre, G.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Toro, R. Camacho; Clark, A.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Latour, B. Martin dit; Mermod, P.; Herrera, C. Mora; Muenstermann, D.; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Pasztor, G.; Picazio, A.; Pohl, M.; Rosbach, K.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Caso, C.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; Denis, R. D. St.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Blumenschein, U.; Brandt, O.; Evangelakou, D.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Hensel, C.; Kawamura, G.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Meyer, J.; Morel, J.; Nackenhorst, O.; Pashapour, S.; Peters, R. F. Y.; Quadt, A.; Roe, A.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Schroeder, T. Vazquez; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Brown, J.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Le, B. T.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Sun, X.; Trocme, B.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Brown, J.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Le, B. T.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Sun, X.; Trocme, B.] CNRS, IN2P3, Grenoble, France. [Albrand, S.; Brown, J.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Le, B. T.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Sun, X.; Trocme, B.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Jeanty, L.; Mateos, D. Lopez; Mercurio, K. M.; Mills, C.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Andrei, V.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Hanke, P.; Hofmann, J. I.; Khomich, A.; Kluge, E. -E.; Laier, H.; Lang, V. S.; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kugel, A.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Evans, H.; Gagnon, P.; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Price, D.; Whittington, D.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Franz, S.; Jussel, P.; Kneringer, E.; Lukas, W.; Nagai, K.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Cinca, D.; Gandrajula, R. P.; Halladjian, G.; Limper, M.; Mallik, U.; Mandrysch, R.; Morange, N.; Pylypchenko, Y.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Ruiz-Martinez, A.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Huseynov, N.; Karpov, S. N.; Kazarinov, M. Y.; Kharchenko, D.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimin, N. I.] Joint Inst Nucl Res Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Inamaru, Y.; King, M.; Kishimoto, T.; Kitamura, T.; Kurashige, H.; Kurumida, R.; Matsushita, T.; Ochi, A.; Shimizu, S.; Takeda, H.; Tani, K.; Watanabe, I.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alconada Verzini, M. J.; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, E.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Alconada Verzini, M. J.; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, E.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Allison, L. J.; Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Salamanna, G.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dobson, E.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Lambourne, L.; Nash, M.; Nurse, E.; Ochoa, M. I.; Pilkington, A. D.; Prabhu, R.; Sherwood, P.; Simmons, B.; Taylor, C.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Bernius, C.; Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.; Sircar, A.; Subramaniam, R.; Tamsett, M. C.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Jarlskog, G.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.; Wielers, M.] Lund Univ, Fysiska Inst, Lund, Sweden. [Arnal, V.; Barreiro, R.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Llorente Merino, J.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Arnaez, O.; Blum, W.; Buescher, V.; Caputo, R.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Goeringer, C.; Handel, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Huelsing, T. A.; Ji, W.; Karnevskiy, M.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moreno, D.; Moritz, S.; Mueller, T.; Neusiedl, A.; Poettgen, R.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Forti, A.; Howarth, J.; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Robinson, J. E. M.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Alio, L.; Barbero, M.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Maurer, J.; Monnier, E.; Nagai, Y.; Odier, J.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Alio, L.; Barbero, M.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Maurer, J.; Monnier, E.; Nagai, Y.; Odier, J.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Puesche, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, R.; Dufour, M-A.; Klemetti, M.; Mantifel, R.; Robertson, S. H.; Schram, M.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Diglio, S.; Hamano, K.; Jennens, D.; Kubota, T.; Limosani, A.; Hanninger, G. Nunes; Shao, Q. T.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Chelstowska, M. A.; Cirilli, M.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, L.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Qian, J.; Scheirich, D.; Searcy, J.; Thun, R. P.; Walch, S.; Wilson, A.; Wooden, G.; Wu, Y.; Xu, L.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Ge, P.; Hauser, R.; Hayden, D.; Holzbauer, J. L.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; True, P.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alessandria, F.; Alimonti, G.; Andreazza, A.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Citterio, M.; Coelli, S.; Consonni, S. M.; Costa, G.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Mandelli, L.; Mazzanti, M.; Meloni, F.; Meroni, C.; Perini, L.; Pizio, C.; Resconi, S.; Rivoltella, G.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Volpini, G.] INFN Sez Milano, Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Favareto, A.; Meloni, F.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Simoniello, R.; Turra, R.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Asbah, N.; Azuelos, G.; Bouchami, J.; Dallaire, F.; Davies, M.; Gauthier, L.; Giunta, M.; Leroy, C.; Martin, J. P.; Rezvani, R.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Beale, S.; Becker, S.; Biebel, O.; Bortfeldt, J. J.; Calfayan, P.; Chow, B. K. B.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Heller, C.; Hertenberger, R.; Legger, F.; Lorenz, J. J.; Mann, A.; Meineck, C.; Nunnemann, T.; Oakes, L. B.; Rauscher, F.; Reznicek, P.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Schmitt, C.; Staude, A.; Vladoiu, D.; Walker, R.; Will, J. Z.; Wittkowski, J.; Zibell, A.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bittner, B.; Bronner, J.; Capriotti, D.; Compostellam, G.; Cortiana, G.; Flowerdew, M. J. M. J.; Giovannini, P.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Macchiolo, A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Oberlack, H.; Pahl, C.; Pospelov, G. E.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Stern, S.; Stonjek, S.; Vanadia, M.; von der Schmitt, H.; Weigell, P.; Wildaueri, A.; Zanzi, D.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Negri, A.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Negri, A.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] INFN Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; della Volpe, D.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Dao, V.; De Groot, N.; Filthaut, F.; Klok, P. F.; Konig, A. C.; Salvucci, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, E.; Hessey, N. P.; Hod, N.; Lgonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Oussoren, K. P.; Pani, P.; Ruckstuhl, N.; Ta, D.; Valencic, N.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] Nikhef Natl Inst Subatom Phys, Amsterdam, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, E.; Hessey, N. P.; Hod, N.; Lgonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Oussoren, K. P.; Pani, P.; Ruckstuhl, N.; Ta, D.; Valencic, N.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] Univ Amsterdam, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; Cole, S.; de Lima, J. G. Rocha; Suhr, C.; Yurkewicz, A.; Zutshi, V.] Univ Illinois, Dept Phys, De Kalb, IL USA. [Anisenkov, A. V.; Beloborodov, O. L.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Skovpen, K. Yu.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Budick, B.; Cranmer, K.; Haas, A.; van Huysduynen, L. Hooft; Kaplan, B.; Konoplich, R.; Krasznahorkay, A.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.] NYU, Dept Phys, New York, NY 10003 USA. [Fisher, M. J.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Solc, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Hrabovsky, M.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Reinsch, A.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Auge, E.; Bassalat, A.; Binet, S.; Bourdarios, C.; De la Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Auge, E.; Bassalat, A.; Binet, S.; Bourdarios, C.; De la Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Nomachi, M.; Okamura, W.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Cameron, D.; Gjelsten, B. K.; Gramstad, E.; Lund, E.; Ould-Saada, E.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Smestad, L.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Boddy, C. R.; Buchanan, J.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Dafinca, A.; Davies, E.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; King, R. S. B.; Kogan, L. A.; Larner, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Mattravers, C.; Nickerson, R. B.; Pachal, K.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Young, C. J. S.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] INFN Sez Pavia, Pavia, Italy. [Conta, C.; Fraternali, M.; Livan, M.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Degenhardt, J.; Fratina, S.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Keener, P. T.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Newcomer, F. M.; Olivito, D.; Ospanov, R.; Reece, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Van Berg, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Giannetti, P.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] INFN Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Giannetti, P.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Savinov, V.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Cunha Sargedas De Sousa, M. J. Da; Do Valle Wemans, A.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Maio, A.; Maneira, J.; Marques, C. N.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Tavares Delgado, A.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Bohm, J.; Chudoba, J.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Dos Santos, D. Roda; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Gunther, J.; Jakubek, J.; Kohout, Z.; Kral, V.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, Prague, Czech Republic. [Balek, P.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Torregrosa, E. Fullana; Kodys, P.; Leitner, R.; Novakova, J.; Pleskot, V.; Rybar, M.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Ivashin, A. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Burke, S.; Davies, E.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Haywood, S. J.; Kirk, J.; Mattravers, C.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, R.; Artoni, G.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Dionisi, C.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Rossi, E.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vari, R.; Veneziano, S.; Zanello, L.] INFN Sez Roma I, Rome, Italy. [Artoni, G.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Zorzi, G.; Dionisi, C.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Rossi, E.; Camillocci, E. Solfaroli; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Liberti, B.; Marchese, F.; Mazzaferro, L.; Salamon, A.; Santonico, R.] INFN Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Marchese, F.; Mazzaferro, L.; Messina, A.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Branchini, P.; Ceradini, F.; Di Luise, S.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Stanescu, C.; Trovatelli, M.] INFN Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Luise, S.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Trovatelli, M.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Fac Sci Ain Chock, Reseau Univ Phys Hautes Energies, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA, Fac Sci Semlalia, Marrakech, Morocco. [Boutouid, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Boutouid, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Abreu, H.; Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Grabas, H. M. X.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Legendre, M.; Maiani, C.; Mal, P.; Ramos, J. A. Manjarres; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J-P; Mijovic, L.; Mountricha, E.; Hong, V. Nguyen Thi; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Resende, B.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.; Xu, C.] CEA Saclay Commissariat Energie Atom & Energies, DSM IRFU Inst Rech Lois Fondamentales Univers, Gif Sur Yvette, France. [Damiani, D. S.; Grillo, A. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Keller, J. S.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Roster, R.; Rothberg, J.; Verducci, M.; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Paredes, B. Lopez; Mcfayden, J. A.; Miyagawa, P. S.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tua, A.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Ibragimov, I.; Ikematsu, K.; Rammes, M.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Dawe, E.; Godfrey, J.; Kvita, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Trottier-McDonald, M.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Hansson, P.; Kagan, M.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Batkova, L.; Blazek, T.; Federic, P.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Carrillo-Montoya, G. D.; Leney, K. J. C.; Garcia, B. R. Mellado; Quayle, W. B.; Ruan, X.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Asman, B.; Bendtz, K.; Bessidskaia, O.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Holmgren, S. O.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, J. J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Papadelis, A.; Petridis, A.; Plucinski, P.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Abulaiti, Y.; Asman, B.; Bendtz, K.; Bessidskaia, O.; Clement, C.; Gellerstedt, K.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, J. J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Arfaoui, S.; DeWilde, B.; Engelmann, R.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Puldon, D.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Ahmad, A.; Arfaoui, S.; DeWilde, B.; Engelmann, R.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Puldon, D.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Castillo, I. Santoyo; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Bangert, A.; Black, C. W.; Cuthbert, C.; Jeng, G. -Y.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, C. A.; Lee, S. C.; Li, B.; Lin, S. C.; Liu, B.; Liu, D.; Mazini, R.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, J.; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Di Mattia, A.; Kajomovitz, E.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soifer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkialas, I.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Ishitsuka, M.; Jinnouchi, O.; Kanno, T.; Kuze, M.; Nagai, R.; Nobe, T.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Bailey, D. C.; Brelier, B.; Farooque, T.; Fatholahzadeh, B.; Ilic, N.; Keung, J.; Krieger, P.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Spreitzer, T.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Koutsman, A.; Losty, M. J.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Bustos, A. C. Florez; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Kurata, M.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Napier, A.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Mendoza Navas, L.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Farrell, S.; Gerbaudo, D.; Eschrich, I. Gough; Lankford, A. J.; Magnoni, L.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Pinamonti, M.; Shaw, K.; Soualah, R.] INFN Grp Collegato Udine, Udine, Italy. [Acharya, B. S.; Soualah, R.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Shaw, K.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Pelikan, D.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, R.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, R.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, R.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, R.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, R.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] CSIC, Valencia, Spain. [Axen, D.; Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Loh, C. W.; Mills, W. J.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; Courneyea, L.; David, C.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; Marino, C. P.; Martyniuk, A. C.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Farrington, S. M.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Kimura, N.; Mitani, T.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Chen, X.; Dos Anjos, A.; Castillo, L. R. Flores; Gutzwiller, O.; Hard, A. S.; Jared, R. C.; Ji, H.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Morales, M. I. Pedraza; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Redelbach, A.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Barisonzi, M.; Becker, K.; Becks, K. H.; Beermann, T. A.; Boek, J.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Maettig, P.; Mechtel, M.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Sturm, P.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] Inst Natl Phys Nucl & Phys Particules IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, CFNUL, P-1699 Lisbon, Portugal. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beloborodov, O. L.; Maximov, D. A.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Carvalho, J.; Fiolhais, M. C. N.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Do Valle Wemans, A.] Univ Nova Lisboa, Dept Fis, Caparica, Portugal. [Do Valle Wemans, A.] Univ Nova Lisboa, CEFITEC Fac Ciencias & Tecnol, Caparica, Portugal. [Gkialas, I.; Papageorgiou, K.] Univ Aegean, Dept Financial & Management Engn, Chios, Greece. [Grinstein, S.; Juste Rozas, A.; Martinez, M.] ICREA, Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Kono, T.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Pasztor, G.; Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. RP Ammosov, VV (reprint author), State Res Ctr Inst High Energy Phys, Protvino, Russia. RI Fassi, Farida/F-3571-2016; la rotonda, laura/B-4028-2016; Karyukhin, Andrey/J-3904-2014; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Monzani, Simone/D-6328-2017; Grancagnolo, Francesco/K-2857-2015; Korol, Aleksandr/A-6244-2014; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Olshevskiy, Alexander/I-1580-2016; BESSON, NATHALIE/L-6250-2015; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; Goncalo, Ricardo/M-3153-2016; Gerbaudo, Davide/J-4536-2012; Gladilin, Leonid/B-5226-2011; Andreazza, Attilio/E-5642-2011; Carvalho, Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Fullana Torregrosa, Esteban/A-7305-2016; Buttar, Craig/D-3706-2011; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Pacheco Pages, Andres/C-5353-2011; Ferrer, Antonio/H-2942-2015; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Akimov, Andrey/N-1769-2015; Tikhomirov, Vladimir/M-6194-2015; Yang, Haijun/O-1055-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Boyko, Igor/J-3659-2013; Nozka, Libor/G-5550-2014; Nemecek, Stanislav/G-5931-2014; Solfaroli Camillocci, Elena/J-1596-2012; Lee, Jason/B-9701-2014; Robson, Aidan/G-1087-2011; Smirnova, Oxana/A-4401-2013; Gabrielli, Alessandro/H-4931-2012; Zimmermann, Claus/E-9598-2014; Fabbri, Laura/H-3442-2012; Brooks, William/C-8636-2013; Villa, Mauro/C-9883-2009; Ji, Haoshuang/F-4525-2014; Kepka, Oldrich/G-6375-2014; Lokajicek, Milos/G-7800-2014; Jakoubek, Tomas/G-8644-2014; Staroba, Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; de Groot, Nicolo/A-2675-2009; Hejbal, Jiri/H-1358-2014; Marcisovsky, Michal/H-1533-2014; Mikestikova, Marcela/H-1996-2014; Lysak, Roman/H-2995-2014; Kuday, Sinan/C-8528-2014; Snesarev, Andrey/H-5090-2013; Tomasek, Lukas/G-6370-2014; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Warburton, Andreas/N-8028-2013; Turchikhin, Semen/O-1929-2013; Moraes, Arthur/F-6478-2010; Peleganchuk, Sergey/J-6722-2014; Ferrando, James/A-9192-2012; Bosman, Martine/J-9917-2014; Castro, Nuno/D-5260-2011; Wemans, Andre/A-6738-2012; Demirkoz, Bilge/C-8179-2014; Gutierrez, Phillip/C-1161-2011; Ventura, Andrea/A-9544-2015; Livan, Michele/D-7531-2012; De, Kaushik/N-1953-2013; Mitsou, Vasiliki/D-1967-2009; White, Ryan/E-2979-2015; Joergensen, Morten/E-6847-2015; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Mir, Lluisa-Maria/G-7212-2015; Garcia, Jose /H-6339-2015; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014 OI Belanger-Champagne, Camille/0000-0003-2368-2617; Vazquez Schroeder, Tamara/0000-0002-9780-099X; Chen, Chunhui /0000-0003-1589-9955; Walsh, Brian/0000-0003-1689-2309; Price, Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247; Smirnov, Sergei/0000-0002-6778-073X; Wang, Kuhan/0000-0002-6151-0034; Grohsjean, Alexander/0000-0003-0748-8494; La Rosa, Alessandro/0000-0001-6291-2142; Beck, Hans Peter/0000-0001-7212-1096; Salamanna, Giuseppe/0000-0002-0861-0052; Prokofiev, Kirill/0000-0002-2177-6401; Veneziano, Stefano/0000-0002-2598-2659; Lacasta, Carlos/0000-0002-2623-6252; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Vos, Marcel/0000-0001-8474-5357; Casadei, Diego/0000-0002-3343-3529; Mendes Saraiva, Joao Gentil/0000-0002-7006-0864; Pina, Joao /0000-0001-8959-5044; Hays, Chris/0000-0003-2371-9723; Gauzzi, Paolo/0000-0003-4841-5822; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Weber, Michele/0000-0002-2770-9031; Fassi, Farida/0000-0002-6423-7213; la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Volpi, Guido/0000-0003-1058-8883; Santos, Helena/0000-0003-1710-9291; Coccaro, Andrea/0000-0003-2368-4559; Della Volpe, Domenico/0000-0001-8530-7447; Wolters, Helmut/0000-0002-9588-1773; Karyukhin, Andrey/0000-0001-9087-4315; Anjos, Nuno/0000-0002-0018-0633; Smestad, Lillian/0000-0002-0244-8736; Giordani, Mario/0000-0002-0792-6039; Karpov, Sergey/0000-0002-2230-5353; Capua, Marcella/0000-0002-2443-6525; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Doria, Alessandra/0000-0002-5381-2649; Veloso, Filipe/0000-0002-5956-4244; Gomes, Agostinho/0000-0002-5940-9893; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Troncon, Clara/0000-0002-7997-8524; Grancagnolo, Francesco/0000-0002-9367-3380; Dell'Asta, Lidia/0000-0002-9601-4225; Korol, Aleksandr/0000-0001-8448-218X; Maio, Amelia/0000-0001-9099-0009; Fiolhais, Miguel/0000-0001-9035-0335; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672; Olshevskiy, Alexander/0000-0002-8902-1793; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; Goncalo, Ricardo/0000-0002-3826-3442; Gerbaudo, Davide/0000-0002-4463-0878; Gladilin, Leonid/0000-0001-9422-8636; Andreazza, Attilio/0000-0001-5161-5759; Carvalho, Joao/0000-0002-3015-7821; Mashinistov, Ruslan/0000-0001-7925-4676; Fullana Torregrosa, Esteban/0000-0003-3082-621X; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Pacheco Pages, Andres/0000-0001-8210-1734; Ferrer, Antonio/0000-0003-0532-711X; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Camarri, Paolo/0000-0002-5732-5645; Tikhomirov, Vladimir/0000-0002-9634-0581; Gorelov, Igor/0000-0001-5570-0133; Boyko, Igor/0000-0002-3355-4662; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Lee, Jason/0000-0002-2153-1519; Smirnova, Oxana/0000-0003-2517-531X; Gabrielli, Alessandro/0000-0001-5346-7841; Fabbri, Laura/0000-0002-4002-8353; Brooks, William/0000-0001-6161-3570; Villa, Mauro/0000-0002-9181-8048; Mikestikova, Marcela/0000-0003-1277-2596; Kuday, Sinan/0000-0002-0116-5494; Tomasek, Lukas/0000-0002-5224-1936; Svatos, Michal/0000-0002-7199-3383; Warburton, Andreas/0000-0002-2298-7315; Turchikhin, Semen/0000-0001-6506-3123; Moraes, Arthur/0000-0002-5157-5686; Peleganchuk, Sergey/0000-0003-0907-7592; Ferrando, James/0000-0002-1007-7816; Bosman, Martine/0000-0002-7290-643X; Castro, Nuno/0000-0001-8491-4376; Wemans, Andre/0000-0002-9669-9500; Ventura, Andrea/0000-0002-3368-3413; Livan, Michele/0000-0002-5877-0062; De, Kaushik/0000-0002-5647-4489; Mitsou, Vasiliki/0000-0002-1533-8886; White, Ryan/0000-0003-3589-5900; Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582; Mir, Lluisa-Maria/0000-0002-4276-715X; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq; FAPESP, Brazil; NSERC; NRC; CFI, Canada; CERN; CONICYT, Chile; CAS; MOST; NSFC, China; COLCIENCIAS, Colombia; MSMT CR; MPO CR; VSC CR, Czech Republic; DNRF; DNSRC; Lundbeck Foundation, Denmark; EPLANET; ERC; NSRF; European Union; IN2P3-CNRS; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF; DFG; HGF; MPG; AvH Foundation, Germany; GSRT; NSRF, Greece; ISF; MINERVA; GIF; DIP; Benoziyo Center, Israel; INFN, Italy; MEXT; JSPS, Japan; CNRST, Morocco; FOM; NWO, Netherlands; BRF; RCN, Norway; MNiSW, Poland; GRICES; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS; MIZS, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC; Wallenberg Foundation, Sweden; SER; SNSF; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC; Royal Society; Leverhulme Trust, United Kingdom; DOE; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 120 TC 287 Z9 288 U1 24 U2 235 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD OCT PY 2013 VL 726 IS 1-3 BP 88 EP 119 DI 10.1016/j.physletb.2013.08.010 PG 32 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 245RT UT WOS:000326482200014 ER PT J AU Aad, G Abajyan, T Abbott, B Abdallah, JJ Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Addy, TN Adelman, J Adomeit, S Adye, T Aefsky, S Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmad, A Ahsan, M Aielli, G Akesson, TPA Akimoto, G Akimov, AV Alam, MA Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alio, L Alison, JJ Allbrooke, BMM Allison, LJ Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alonso, F Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Ammosov, VV Dos Santos, SPA Amorim, A Amoroso, S Amram, N Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, E Aoki, M Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Arfaoui, S Arguin, JF Argyropoulos, S Arik, E Arik, M Armbruster, AJ Arnaez, O Arnal, V Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ask, S Asman, B Asquith, L Assamagan, K Astalos, R Astbury, A Atkinson, M Atlay, NB Auerbach, B Auge, E Augsten, K Aurousseau, M Avolio, G Axen, D Azuelos, G Azuma, Y Baak, MA Bacci, C Bach, AM Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, S Balek, P Balli, F Banas, E Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartsch, V Bassalat, A Basye, A Bates, RL Batkova, L Batley, JR Battistin, M Bauer, F Bawa, HS Beale, S Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belloni, A Beloborodova, OL Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernard, C Bernat, P Bernhard, R Bernius, C Bernlochner, FU Berry, T Bertella, C Bertolucci, F Besana, MI Besjes, GJ Bessidskaia, O Besson, N Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Bittner, B Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blocki, J Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boek, TT Boelaert, N Bogaerts, JA Bogdanchikov, AG Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Bolnet, NM Bomben, M Bona, M Boonekamp, M Bordoni, S Borer, C Borisov, A Borissov, G Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Bouchami, J Boudreau, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Branchini, P Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Bremer, J Brendlinger, K Brenner, R Bressler, S Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Broggi, F Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brost, E Brown, G Brown, J De Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchanan, J Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buehrer, F Bugge, L Bulekov, O Bundock, AC Bunse, M Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Buscher, V Bussey, P Buszello, CP Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Buzatu, A Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Cavet, S Toro, RC Camarri, P Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Canale, V Canelli, E Canepa, A Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Caso, C Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Cataldi, G Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, B Cerqueira, AS Cerri, A Cerrito, L Cerutti, E Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chan, K Chang, P Chapleau, B Chapman, JD Chapman, JW Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, X Chen, Y Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitana, A Chizhov, MV Choudalakis, G Chouridou, S Chow, BKB Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirilli, M Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Clemens, JC Clement, B Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coelli, S Coffey, L Cogan, JG Coggeshall, J Colas, J Cole, B Cole, S Colijn, AP Collins-Tooth, C Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Courneyea, L Cowan, G Cox, BE Cranmer, K Crepe-Renaudin, S Crescioli, E Cristinziani, M Crosettia'b, G Cuciuc, CM Almenar, CC Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A De Sousa, MJDCS Da Via, C Dabrowski, W Dafinca, A Dai, T Dallaire, F Dallapiccola, C Dam, M Damiani, DS Daniells, AC Dao, V Darbo, G Darlea, GL Darmora, S Dassoulas, JA Davey, W David, C Davidek, T Davies, E Davies, M Davignon, O Davison, AR Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K De Asmundis, R De Castro, S De Cecco, S de Graat, J De Groot, N De Jong, P De la Taille, C De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV De Zorzi, G Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Degenhardt, J Del Peso, J Del Prete, T Delemontex, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M Della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demilly, A Demirkoz, B Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Donato, C Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dinut, F Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, ADV Doan, TKO Dobos, D Dobson, E Dodd, J Doglioni, C Doherty, T Dohmae, T Doi, Y Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donini, J Dopke, J Doria, A Dos Anjos, A Dotti, A Dova, MT Doyle, AT Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Duda, D Dudarev, A Dudziak, F Duflot, L Dufour, MA Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Dwuznik, M Ebke, J Edson, W Edwards, CA Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Engelmann, R Engl, A Erdmann, J Ereditato, A Eriksson, D Ernis, G Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Facini, G Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Ferencei, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodia, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, E Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, J Fisher, MJ Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Bustos, ACF Flowerdew, MJ Martin, TF Formica, A Forti, A Fortin, D Fournier, D Fox, H Francavilla, P Franchini, M Franchino, S Francis, D Franklin, M Franz, S Fraternali, M Fratina, S French, ST Friedrich, C Friedrich, E Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galster, G Gan, KK Gandrajula, RP Gao, YS Walls, FMG Garberson, E Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gillman, AR Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giuliani, C Giunta, M Gjelsten, BK Gkialas, I Gladilin, LK Glasman, C Glatzer, J Glazov, A Glonti, GL Goblirsch-Kolb, M Goddard, JR Godfrey, J Godlewski, J Goebel, M Goeringer, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramstad, E Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guescini, E Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gunther, J Guo, J Gupta, S Gutierrez, P Ortiz, NGG Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haefner, P Hageboeck, S Hajduk, Z Hakobyan, H Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Han, L Hanagaki, K Hanawa, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hard, AS Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Hartert, J Hartjes, F Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Hejbal, J Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Herbert, GH Hernandez, CM Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, R Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hofmann, JI Hohlfeld, M Holmgren, SO Holzbauer, JL Hong, TM Van Huysduynen, LH Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Hu, D Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huettmann, A Huffman, TB Hughes, EW Hughes, G Huhtinen, M Huelsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikematsu, K Ikeno, M Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Lodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istina, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, M Jackson, R Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Janus, M Jared, RC Jarlskog, G Jeanty, L Jeng, GY Plante, IJL Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jorge, PM Joshi, KD Jovicevic, J Agatonovic-Jovin, T Ju, X Jung, CA Jungst, RM Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kajomovitz, E Kalinin, S Kama, S Kanaya, N Kaneda, M Kaneti, S Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karastathis, N Karnevskiy, M Karpov, SN Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Keener, PT Kehoe, R Keil, M Keller, JS Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-Zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB King, SB Kirk, JJ Kiryunin, AE Kishimoto, T Kisielewska, D Kitamura, T Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klemetti, M Klimek, R Klimentov, A Klingenberg, R Klinger, JA Klinkby, EB Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kuth, S Kneringer, E Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kodys, P Koenig, S Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohn, F Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Koneke, K Konig, AC Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretzschmar, J Kreutzfeldt, K Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MK Kruskal, M Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J Kwee, R La Rosa, A La Rotondaa, L Labarga, L Lablak, S Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laier, H Laisne, E Lambourne, L Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, C Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Larner, A Lassnig, M Laurelli, P Lavorini, V Lavrijsen, W Laycock, R Le, BT Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, CA Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, G Lefebvre, M Legendre, M Legger, F Leggett, C Lehan, A Lehmacher, M Miotto, GL Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leone, R Leonhardt, K Leontsinis, S Leroy, C Lessard, JR Lester, CG Lester, CM Leveque, J Levin, D Levinson, LJ Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, S Li, X Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Limper, M Lin, SC Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, JB Liu, K Liu, L Liu, M Liu, M Liub, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loevschall-Jensen, AE Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, RE Lopes, L Mateos, DL Paredes, BL Lorenz, J Martinez, NL Losada, M Loscutoff, P Losty, MJ Lou, X Lounis, A Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Lukas, W Luminari, L Lund, E Lundberg, J Lundberg, O Lund-Jensen, B Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macek, B Miguens, JM Macina, D Mackeprang, R Madar, R Madaras, RJ Maddocks, HJ Mader, WF Madsen, A Maeno, M Maeno, T Magnoni, L Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A De Andrade, LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marques, CN Marroquim, F Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, JP Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Matsunaga, H Matsushita, T Mattig, P Mattig, S Mattmann, J Mattravers, C Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazzaferro, L Mazzanti, M Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meehan, S Meera-Lebbai, R Mehlhase, S Mehta, A Meiera, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Navas, LM Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Meyer, J Michal, S Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Moya, MM Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitani, T Mitrevski, J Mitsou, VA Mitsui, S Miyagawa, PS Mjornmark, JU Moa, T Moeller, V Mohapatra, S Mohr, W Molander, S Moles-Valls, R Molfetas, A Monig, K Monini, C Monk, J Monnier, E Berlingen, TM Monticelli, F Monzani, S Moore, RW Herrera, CM Moraes, A Morange, N Morel, J Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Moritz, S Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, TJ Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, T Mueller, T Muenstermann, D Munwes, Y Quijada, JAM Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Napier, A Narayan, R Nash, M Nattermann, T Naumann, T Navarro, G Neal, HA Nechaeva, PY Neep, TJ Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neusiedl, A Neves, RM Nevski, P Newcomer, FM Newman, PR Nguyen, DH Hong, VNT Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Novakova, J Nozaki, M Nozka, L Ntekas, K Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakes, LB Oakham, FG Oberlack, H Ocariz, J Ochi, A Ochoa, MI Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ottersbach, JP Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Owen, S Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Paleari, CP Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Papadelis, A Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parodi, F Parsons, JA Parzefall, U Pashapour, S Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, M Lopez, SP Morales, MIP Peleganchuk, SV Pelikan, D Peng, H Penning, B Penson, A Penwell, J Perepelitsa, DV Cavalcanti, TP Codina, EP Garia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petteni, M Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Piec, SM Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pizio, C Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Prabhu, R Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Price, D Price, J Price, LE Prieur, D Primavera, M Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Prudent, X Przybycien, M Przysiezniak, H Psoroulas, S Ptacek, E Pueschel, E Puldon, D Purohit, M Puzo, P Pylypchenko, Y Qian, J Quadt, A Quarrie, DR Quayle, WB Quilty, D Radeka, V Radescu, V Radloff, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Rammes, M Randle-Conde, AS Rangel-Smith, C Rao, K Rauscher, F Rave, TC Ravenscroft, T Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reinsch, A Reisinger, I Relich, M Rembser, C Ren, ZL Renaud, A Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richter, R Richter-Was, E Ridel, M Rieck, P Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Ritsch, E Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodrigues, L Roe, A Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Romeo, G Adam, ER Rompotis, N Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Ruckstuhl, N Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rumyantsev, L Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ruzicka, P Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Saddique, A Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamona, A Saleem, M Salek, D Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, JJ Martinez, VS Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarrazin, B Sarri, F Sartisohn, G Sasaki, O Sasaki, Y Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savinov, V Savu, DO Sawyer, C Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Schaarschmidt, JJ Schacht, P Schaefer, D Schaelicke, A Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, C Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schuh, N Schultens, MJ Schultz-Coulona, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Scutti, F Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Sherwood, P Shimizu, S Shimojima, M Shin, T Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidorov, D Sidoti, A Siegert, F Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skottowe, HP Skovpen, KY Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, KM Smizanska, M Smolek, K Snesarev, AA Snidero, G Snow, J Snyder, S Sobie, R Sodomka, J Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Solovyev, V Soni, N Sood, A Sopko, V Sopko, B Sosebee, M Soualah, R Soueid, P Soukharev, AM South, D Spagnolo, S Spano, F Spearman, WR Spighi, R Spigo, G Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Staude, A Stavina, P Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoerig, K Stoicea, G Stonjek, S Stradling, AR Straessner, A Strandberg, JJ Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Stugu, B Stumer, I Stupak, J Sturm, P Styles, NA Su, D Subramania, H Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Tackmann, K Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tamsett, MC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tani, K Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teinturier, M Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tic, T Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, R Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomlinson, L Tomoto, M Tompkins, L Toms, K Tonoyan, A Topfel, C Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, E Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Triplett, N Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tudorache, A Tudorache, V Tuggle, JM Tuna, AN Turchikhin, S Turecek, D Cakir, IT Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, E Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Urbaniec, D Urquijo, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Vahsen, S Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Berg, R Van Der Deijl, PC van der Geer, R van der Graaf, H Van Der Leeuw, R van der Ster, D Van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I Vanadia, M Vandelli, W Vaniachine, A Vankov, P Vannucci, F Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Schroeder, TV Veatch, J Veloso, F Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Virzi, J Vitells, O Viti, M Vivarelli, I Vague, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Vykydal, Z Wagner, W Wagner, P Wahrmund, S Wakabayashi, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watanabe, I Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Webb, S Weber, MS Webster, JS Weidberg, AR Weigell, P Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Wetter, J Whalen, K White, A White, MJ White, R White, S Whiteson, D Whittington, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Williams, S Willis, W Willocq, S Wilson, JA Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wittig, T Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wong, WC Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wraight, K Wright, M Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wyatt, TR Wynne, BM Xella, S Xiao, M Xu, C Xu, D Xu, L Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamaguchi, Y Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, UK Yang, Y Yang, Z Yanush, S Yao, L Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yen, AL Yildirim, E Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, J Yuan, L Yurkewicz, A Zabinski, B Zaidan, R Zaitsev, AM Zambito, S Zanello, L Zanzi, D Zaytsev, A Zeitnitz, C Zeman, M Zemla, A Zenin, O Zenis, T Zerwas, D della Porta, GZ Zhang, D Zhang, H Zhang, J Zhang, L Zhang, X Zhang, Z Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zibell, A Zieminska, D Zimin, NI Zimmermann, C Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zitoun, R Zivkovic, L Zobernig, G Zoccoli, A zur Nedden, M Zurzolo, G Zutshi, V Zwalinski, L AF Aad, G. Abajyan, T. Abbott, B. Abdallah, J. J. Khalek, S. Abdel Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Addy, T. N. Adelman, J. Adomeit, S. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahmad, A. Ahsan, M. Aielli, G. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alam, M. A. Albert, J. Albrand, S. Verzini, M. J. Alconada Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alio, L. Alison, J. J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alonso, F. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Coutinho, Y. Amaral Amelung, C. Ammosov, V. V. Dos Santos, S. P. Amor Amorim, A. Amoroso, S. Amram, N. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angelidakis, S. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, E. Aoki, M. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Arfaoui, S. Arguin, J-F. Argyropoulos, S. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Astbury, A. Atkinson, M. Atlay, N. B. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Avolio, G. Axen, D. Azuelos, G. Azuma, Y. Baak, M. A. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagiacchi, P. Bagnaia, P. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, S. Balek, P. Balli, F. Banas, E. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartsch, V. Bassalat, A. Basye, A. Bates, R. L. Batkova, L. Batley, J. R. Battistin, M. Bauer, F. Bawa, H. S. Beale, S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belloni, A. Beloborodova, O. L. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernard, C. Bernat, P. Bernhard, R. Bernius, C. Bernlochner, F. U. Berry, T. Bertella, C. Bertolucci, F. Besana, M. I. Besjes, G. J. Bessidskaia, O. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Bittner, B. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blocki, J. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boek, T. T. Boelaert, N. Bogaerts, J. A. Bogdanchikov, A. G. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bomben, M. Bona, M. Boonekamp, M. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Branchini, P. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Bremer, J. Brendlinger, K. Brenner, R. Bressler, S. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Broggi, F. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brost, E. Brown, G. Brown, J. De Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchanan, J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buehrer, F. Bugge, L. Bulekov, O. Bundock, A. C. Bunse, M. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Buescher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Buzatu, A. Byszewski, M. Urban, S. Cabrera Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Cavet, S. Toro, R. Camacho Camarri, P. Cameron, D. Caminada, L. M. Armadans, R. Caminal Campana, S. Campanelli, M. Canale, V. Canelli, E. Canepa, A. Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Caso, C. Castaneda-Miranda, E. Castelli, A. Gimenez, V. Castillo Castro, N. F. Cataldi, G. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, E. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chan, K. Chang, P. Chapleau, B. Chapman, J. D. Chapman, J. W. Charlton, D. G. Chavda, V. Barajas, C. A. Chavez Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, X. Chen, Y. Cheng, Y. Cheplakov, A. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiefari, G. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitana, A. Chizhov, M. V. Choudalakis, G. Chouridou, S. Chow, B. K. B. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Cirilli, M. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Clemens, J. C. Clement, B. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coelli, S. Coffey, L. Cogan, J. G. Coggeshall, J. Colas, J. Cole, B. Cole, S. Colijn, A. P. Collins-Tooth, C. Collot, J. Colombo, T. Colon, G. Compostella, G. Muino, P. Conde Coniavitis, E. Conidi, M. C. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Courneyea, L. Cowan, G. Cox, B. E. Cranmer, K. Crepe-Renaudin, S. Crescioli, F. Cristinziani, M. Crosetti, G. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. De Sousa, M. J. Da Cunha Sargedas Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dallaire, F. Dallapiccola, C. Dam, M. Damiani, D. S. Daniells, A. C. Dao, V. Darbo, G. Darlea, G. L. Darmora, S. Dassoulas, J. A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. De Asmundis, R. De Castro, S. De Cecco, S. de Graat, J. De Groot, N. De Jong, P. De la Taille, C. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie De Zorzi, G. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Degenhardt, J. Del Peso, J. Del Prete, T. Delemontex, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. Della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demilly, A. Demirkoz, B. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dinut, F. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobos, D. Dobson, E. Dodd, J. Doglioni, C. Doherty, T. Dohmae, T. Doi, Y. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dotti, A. Dova, M. T. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Duda, D. Dudarev, A. Dudziak, F. Duflot, L. Dufour, M-A. Duguid, L. Duehrssen, M. Dunford, M. Yildiz, H. Duran Dueren, M. Dwuznik, M. Ebke, J. Edson, W. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Engelmann, R. Engl, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernis, G. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Curull, X. Espinal Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Facini, G. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Ferencei, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodia, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, E. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, J. Fisher, M. J. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Bustos, A. C. Florez Flowerdew, M. J. Martin, T. Fonseca Formica, A. Forti, A. Fortin, D. Fournier, D. Fox, H. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Friedrich, C. Friedrich, E. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gandrajula, R. P. Gao, Y. S. Walls, F. M. Garay Garberson, E. Garcia, C. Navarro, J. E. Garcia Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gianotti, F. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gillman, A. R. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giuliani, C. Giunta, M. Gjelsten, B. K. Gkialas, I. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glonti, G. L. Goblirsch-Kolb, M. Goddard, J. R. Godfrey, J. Godlewski, J. Goebel, M. Goeringer, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. de la Hoz, S. Gonzalez Parra, G. Gonzalez Silva, M. L. Gonzalez Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstrom, P. Grahn, K-J. Gramstad, E. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guescini, E. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gunther, J. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hard, A. S. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Hartert, J. Hartjes, F. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Hejbal, J. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Herbert, G. H. Hernandez, C. M. Jimenez, Y. Hernandez Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, R. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hofmann, J. I. Hohlfeld, M. Holmgren, S. O. Holzbauer, J. L. Hong, T. M. Van Huysduynen, L. Hooft Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huettmann, A. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikematsu, K. Ikeno, M. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Lodice, M. Iordanidou, K. Ippolito, V. Quiles, A. Irles Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istina, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, M. Jackson, R. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Janus, M. Jared, R. C. Jarlskog, G. Jeanty, L. Jeng, G. -Y. Plante, I. Jen-La Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Agatonovic-Jovin, T. Ju, X. Jung, C. A. Jungst, R. M. Jussel, P. Rozas, A. Juste Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalinin, S. Kama, S. Kanaya, N. Kaneda, M. Kaneti, S. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karastathis, N. Karnevskiy, M. Karpov, S. N. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Keener, P. T. Kehoe, R. Keil, M. Keller, J. S. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-Zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kitamura, T. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klimek, R. Klimentov, A. Klingenberg, R. Klinger, J. A. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Kluge, E. -E. Kluit, P. Kuth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koenig, S. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Koeneke, K. Konig, A. C. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Kopke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretzschmar, J. Kreutzfeldt, K. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. K. Kruskal, M. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwee, R. La Rosa, A. La Rotondaa, L. Labarga, L. Lablak, S. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laier, H. Laisne, E. Lambourne, L. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larner, A. Lassnig, M. Laurelli, P. Lavorini, V. Lavrijsen, W. Laycock, R. Le, B. T. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legendre, M. Legger, F. Leggett, C. Lehan, A. Lehmacher, M. Miotto, G. Lehmann Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leone, R. Leonhardt, K. Leontsinis, S. Leroy, C. Lessard, J. -R. Lester, C. G. Lester, C. M. Leveque, J. Levin, D. Levinson, L. J. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, S. Li, X. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liub, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Losty, M. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Lukas, W. Luminari, L. Lund, E. Lundberg, J. Lundberg, O. Lund-Jensen, B. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macek, B. Miguens, J. Machado Macina, D. Mackeprang, R. Madar, R. Madaras, R. J. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, M. Maeno, T. Magnoni, L. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. De Andrade Filho, L. Manhaes Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marques, C. N. Marroquim, F. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, J. P. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, H. Martinez, M. Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Matsunaga, H. Matsushita, T. Maettig, P. Maettig, S. Mattmann, J. Mattravers, C. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazzaferro, L. Mazzanti, M. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meehan, S. Meera-Lebbai, R. Mehlhase, S. Mehta, A. Meiera, K. Meineck, C. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Navas, L. Mendoza Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Michal, S. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Moya, M. Minano Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitani, T. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Moeller, V. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Molfetas, A. Monig, K. Monini, C. Monk, J. Monnier, E. Berlingen, T. Montejo Monticelli, F. Monzani, S. Moore, R. W. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, T. J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Mueller, T. Muenstermann, D. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Napier, A. Narayan, R. Nash, M. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neusiedl, A. Neves, R. M. Nevski, P. Newcomer, F. M. Newman, P. R. Nguyen, D. H. Hong, V. Nguyen Thi Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Novakova, J. Nozaki, M. Nozka, L. Ntekas, K. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakes, L. B. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Ochoa, M. I. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Oliveira, M. Damazio, D. Oliveira Garcia, E. Oliver Olivito, D. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ottersbach, J. P. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Owen, S. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Aranda, C. Padilla Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Paleari, C. P. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Papadelis, A. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pashapour, S. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedersen, M. Lopez, S. Pedraza Morales, M. I. Pedraza Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penson, A. Penwell, J. Perepelitsa, D. V. Cavalcanti, T. Perez Codina, E. Perez Garcia-Estan, M. T. Perez Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petteni, M. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Piec, S. M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pizio, C. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Prabhu, R. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Prudent, X. Przybycien, M. Przysiezniak, H. Psoroulas, S. Ptacek, E. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Quadt, A. Quarrie, D. R. Quayle, W. B. Quilty, D. Radeka, V. Radescu, V. Radloff, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Rammes, M. Randle-Conde, A. S. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reinsch, A. Reisinger, I. Relich, M. Rembser, C. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richter, R. Richter-Was, E. Ridel, M. Rieck, P. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Ritsch, E. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodrigues, L. Roe, A. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romeo, G. Adam, E. Romero Rompotis, N. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Ruckstuhl, N. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rumyantsev, L. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ruzicka, P. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Saddique, A. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamona, A. Saleem, M. Salek, D. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. J. Martinez, V. Sanchez Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarrazin, B. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, Y. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savinov, V. Savu, D. O. Sawyer, C. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. J. Schacht, P. Schaefer, D. Schaelicke, A. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schuh, N. Schultens, M. J. Schultz-Coulona, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwartzman, A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Sherwood, P. Shimizu, S. Shimojima, M. Shin, T. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinnari, L. A. Skottowe, H. P. Skovpen, K. Yu. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snow, J. Snyder, S. Sobie, R. Sodomka, J. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Solovyev, V. Soni, N. Sood, A. Sopko, V. Sopko, B. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Spagnolo, S. Spano, F. Spearman, W. R. Spighi, R. Spigo, G. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Staude, A. Stavina, P. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoerig, K. Stoicea, G. Stonjek, S. Stradling, A. R. Straessner, A. Strandberg, J. J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Styles, N. A. Su, D. Subramania, HS. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tamsett, M. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tani, K. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teinturier, M. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tic, T. Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, R. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Tonoyan, A. Topfel, C. Topilin, N. D. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, E. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Triplett, N. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tudorache, A. Tudorache, V. Tuggle, J. M. Tuna, A. N. Turchikhin, S. Turecek, D. Cakir, I. Turk Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, E. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Urbaniec, D. Urquijo, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls Van Berg, R. Van Der Deijl, P. C. van der Geer, R. van der Graaf, H. Van Der Leeuw, R. van der Ster, D. Van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. Vanadia, M. Vandelli, W. Vaniachine, A. Vankov, P. Vannucci, F. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloso, F. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vague, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, W. Wagner, P. Wahrmund, S. Wakabayashi, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watanabe, I. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Webb, S. Weber, M. S. Webster, J. S. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Wetter, J. Whalen, K. White, A. White, M. J. White, R. White, S. Whiteson, D. Whittington, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Williams, S. Willis, W. Willocq, S. Wilson, J. A. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wittig, T. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wong, W. C. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wraight, K. Wright, M. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wyatt, T. R. Wynne, B. M. Xella, S. Xiao, M. Xu, C. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamaguchi, Y. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, U. K. Yang, Y. Yang, Z. Yanush, S. Yao, L. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yen, A. L. Yildirim, E. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zambito, S. Zanello, L. Zanzi, D. Zaytsev, A. Zeitnitz, C. Zeman, M. Zemla, A. Zenin, O. Zenis, T. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, H. Zhang, J. Zhang, L. Zhang, X. Zhang, Z. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zibell, A. Zieminska, D. Zimin, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zobernig, G. Zoccoli, A. zur Nedden, M. Zurzolo, G. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Evidence for the spin-0 nature of the Higgs boson using ATLAS data SO PHYSICS LETTERS B LA English DT Article DE Higgs boson; Spin; Parity ID MASSLESS PARTICLES; BROKEN SYMMETRIES; LHC; DETECTOR; MASSES AB Studies of the spin and parity quantum numbers of the Higgs boson are presented, based on protonproton collision data collected by the ATLAS experiment at the LHC. The Standard Model spin-parity J(P) = 0(+) hypothesis is compared with alternative hypotheses using the Higgs boson decays H -> gamma gamma, H -> ZZ* -> 4l and H -> WW* -> l nu l nu, as well as the combination of these channels. The analysed dataset corresponds to an integrated luminosity of 20.7 fb(-1) collected at a centre-of-mass energy of root s = 8 TeV. For the H -> ZZ* -> 4l decay mode the dataset corresponding to an integrated luminosity of 4.6 fb(-1) collected at root s = 7 TeV is included. The data are compatible with the Standard Model J(P) = 0+ quantum numbers for the Higgs boson, whereas all alternative hypotheses studied in this Letter, namely some specific J(P) = 0(-), 1(+), 1(-), 2(+) models, are excluded at confidence levels above 97.8%. This exclusion holds independently of the assumptions on the coupling strengths to the Standard Model particles and in the case of the J(P) = 2(+) model, of the relative fractions of gluon-fusion and quark-antiquark production of the spin-2 particle. The data thus provide evidence for the spin-0 nature of the Higgs boson, with positive parity being strongly preferred. (C) 2013 CERN. Published by Elsevier B.V. All rights reserved. C1 [Ammosov, V. V.; Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Ivashin, A. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] State Res Ctr, Inst High Energy Phys, Protvino, Russia. [Jackson, R.; Soni, N.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA, Australia. [Edson, W.; Ernst, J.; Guindon, S.; Jain, V.; Usai, G.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Chan, K.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Scanlon, T.; Subramania, HS.; Vague, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Petit, E.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Zitoun, R.] CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Petit, E.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Zitoun, R.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Fernando, W.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Leone, R.; Loch, P.; O'grady, F.; Paleari, C. P.; Ruehr, F.; Shupe, M. A.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Cote, D.; Dam, M.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Hernandez, C. M.; Maeno, M.; Nilsson, P.; Ozturk, N.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Khalil-Zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J. J.; Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Demirkoz, B.; Curull, X. Espinal; Francavilla, P.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Berlingen, T. Montejo; Nadal, J.; Pages, A. Pacheco; Aranda, C. Padilla; Bueso, X. Portell; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Abdallah, J. J.; Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Demirkoz, B.; Curull, X. Espinal; Francavilla, P.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Berlingen, T. Montejo; Nadal, J.; Pages, A. Pacheco; Aranda, C. Padilla; Bueso, X. Portell; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Krstic, J.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Cirkovic, P.; Agatonovic-Jovin, T.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Bach, A. M.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Calafiura, P.; Caminada, L. M.; Cerri, A.; Cerutti, E.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Marshall, Z.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yu, D. R.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA USA. [Bach, A. M.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Calafiura, P.; Caminada, L. M.; Cerri, A.; Cerutti, E.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Marshall, Z.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Aliev, M.; Kuutmann, E. Bergeaas; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Nikiforov, A.; Rieck, P.; Schulz, H.; Wendland, D.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Ancu, L. S.; Beck, H. P.; Borer, C.; Cervelli, A.; Ereditato, A.; Flick, T.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Schneider, B.; Sciacca, F. G.; Topfel, C.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Ancu, L. S.; Beck, H. P.; Borer, C.; Cervelli, A.; Ereditato, A.; Flick, T.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Schneider, B.; Sciacca, F. G.; Topfel, C.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Mahout, G.; Mclaughlan, T.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, E.; Arik, M.; Istina, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Bellagamba, L.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Grafstrom, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] INFN Sez Bologna, Bologna, Italy. [Bindi, M.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Romano, M.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis Astron, Bologna, Italy. [Abajyan, T.; Arslan, O.; Backhaus, M.; Bechtle, P.; Brock, I.; Cristinziani, M.; Daniells, A. C.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Glatzer, J.; Gonella, L.; Haefner, P.; Hageboeck, S.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Liebal, J.; Limbach, C.; Loddenkoetter, T.; Mergelmeyer, S.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Pohl, D.; Psoroulas, S.; Sarrazin, B.; Schaetzel, S.; Schmieden, K.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Stillings, J. A.; Therhaag, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Urquijo, P.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Helary, L.; Kruskal, M.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Daya-Ishmukhametova, R. K.; Fitzgerald, E. A.; Gozpinar, S.; Pomeroy, D.; Sciolla, G.; Zambito, S.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio De Janeiro COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; De Andrade Filho, L. Manhaes] Fed Univ Juiz de Fora UFJF, Juiz De Fora, MG, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Hu, X.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Pleier, M. -A.; Polychronakos, V.; Pravahan, R.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Stumer, I.; Takai, H.; Triplett, N.; Undrus, A.; Wenaus, T.; Ye, S.; Zaytsev, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitana, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dinut, F.; Dita, P.; Dita, S.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. [Dallapiccola, C.; Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Silva, M. L. Gonzalez; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Mueller, T.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Koffas, T.; Lacey, J.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Anastopoulos, C.; Andari, N.; Anghinolfi, F.; Avolio, G.; Baak, M. A.; Backes, M.; Banfi, D.; Battistin, M.; Bellomo, M.; Beltramello, O.; Berge, D.; Bogaerts, J. A.; Bremer, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Barajas, C. A. Chavez; Childers, J. T.; Chromek-Burckhart, D.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dopke, J.; Dudarev, A.; Duehrssen, M.; Ellis, N.; Elsing, M.; Fabre, C.; Facini, G.; Farthouat, P.; Fassnacht, P.; Franchino, S.; Francis, D.; Froidevaux, D.; Garonne, V.; Gianotti, F.; Gillberg, D.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jansen, H.; Jungst, R. M.; Kaneda, M.; Klioutchnikova, T.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, L.; Mapelli, L.; Martin, B.; Messina, A.; Meyer, J.; Michal, S.; Molfetas, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Petersen, J.; Pommes, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Raymond, M.; Rembser, C.; Rodrigues, L.; Roe, S.; Salek, D.; Salzburger, A.; Sawyer, C.; Scannicchio, D. A.; Schlenker, S.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stewart, G. A.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; Van Eldik, N.; Vandelli, W.; Vigne, R.; Volpini, G.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J. J.; Anderson, K. J.; Boveia, A.; Canelli, E.; Cheng, Y.; Choudalakis, G.; Fiascaris, M.; Gardner, R. W.; Plante, I. Jen-La; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Tuggle, J. M.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Huang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Wang, J.; Xu, D.; Yao, L.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, K.; Liu, M.; Liub, Y.; Peng, H.; Xu, C.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; Ma, L. L.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Cavet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Cavet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Cavet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Cole, B.; Dodd, J.; Guo, J.; Hu, D.; Hughes, E. W.; Nikiforou, N.; Parsons, J. A.; Penson, A.; Perepelitsa, D. V.; Reale, V. Perez; Schiavi, C.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Boelaert, N.; Galster, G.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Loevschall-Jensen, A. E.; Mackeprang, R.; Mehlhase, S.; Monk, J.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Dolejsi, J.; La Rotondaa, L.; Lavorini, V.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; La Rotondaa, L.; Lavorini, V.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartmento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; Blocki, J.; De Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.; Zemla, A.] Polish Acad Sci, Hemyk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Cao, T.; Yagci, K. Dindar; Firan, A.; Hoffman, J.; Joffe, D.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Rios, R. R.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Izen, J. M.; Lou, X.; Namasivayam, H.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Bloch, I.; Borroni, S.; Damiani, D. S.; Dassoulas, J. A.; Dietrich, J.; Ferrara, V.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Hiller, K. H.; Huettmann, A.; Belenguer, M. Jimenez; Johnert, S.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lisovyi, M.; Lobodzinska, E.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Maettig, S.; Medinnis, M.; Monig, K.; Naumann, T.; Cavalcanti, T. Perez; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.; Zhu, H.] DESY, Hamburg, Germany. [Argyropoulos, S.; Bloch, I.; Borroni, S.; Damiani, D. S.; Dassoulas, J. A.; Dietrich, J.; Ferrara, V.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Hiller, K. H.; Huettmann, A.; Belenguer, M. Jimenez; Johnert, S.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lisovyi, M.; Lobodzinska, E.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Maettig, S.; Medinnis, M.; Monig, K.; Naumann, T.; Cavalcanti, T. Perez; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Esch, H.; Goessling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Reisinger, I.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Czodrowski, P.; Friedrich, E.; Grohs, J. P.; Kobel, M.; Leonhardt, K.; Mader, W. F.; Morgenstern, M.; Prudent, X.; Rudolph, C.; Schnoor, U.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B.; Finelli, K. D.; Ko, B. R.; Kotwal, A.; Kruse, M. K.; Li, S.; Liu, M.; Oh, S. H.; Pollard, C. S.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; Debenedetti, C.; Edwards, N. C.; Walls, F. M. Garay; Harrington, R. D.; Korn, A.; Martin, V. J.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Schaepe, S.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Aad, G.; Amoroso, S.; Barber, T.; Bernhard, R.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Christov, A.; Consorti, V.; Di Simone, A.; Fehling-Kaschek, M.; Flechl, M.; Giuliani, C.; Hartert, J.; Herten, G.; Jakobs, K.; Jenni, P.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Madar, R.; Mahboubi, K.; Mohr, W.; Parzefall, U.; Rammensee, M.; Rave, T. C.; Rurikova, Z.; Ruthmann, N.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Ungaro, F. C.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Winkelmann, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alexandre, G.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Toro, R. Camacho; Clark, A.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Guescini, E.; Iacobucci, G.; Katre, A.; La Rosa, A.; Latour, B. Martin Dit; Mermod, P.; Herrera, C. Mora; Muenstermann, D.; Nektarijevic, S.; Nikolics, K.; Pasztor, G.; Picazio, A.; Pohl, M.; Rosbach, K.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Dallaire, F.; Darbo, G.; Parodia, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schieck, J.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Caso, C.; Parodia, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schieck, J.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Bierwagen, K.; Blumenschein, U.; Brandt, O.; Evangelakou, D.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Hensel, C.; Kawamura, G.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Meyer, J.; Morel, J.; Nackenhorst, O.; Pashapour, S.; Peters, R. F. Y.; Quadt, A.; Roe, A.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Schroeder, T. Vazquez; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Brown, J.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Le, B. T.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Sun, X.; Trocme, B.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Brown, J.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Le, B. T.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Sun, X.; Trocme, B.] CNRS, IN2P3, Grenoble, France. [Albrand, S.; Brown, J.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Le, B. T.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Sun, X.; Trocme, B.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Jeanty, L.; Kagan, M.; Mateos, D. Lopez; Mercurio, K. M.; Mills, C.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Andrei, V.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Hanke, P.; Hofmann, J. I.; Khomich, A.; Kluge, E. -E.; Laier, H.; Lang, V. S.; Lendermann, V.; Meiera, K.; Mueller, F.; Poddar, S.; Schegelsky, V. A.; Schultz-Coulona, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Kasieczka, G.; Narayan, R.; Schaefer, U.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Phys Inst, Heidelberg, Germany. [Colombo, T.; Kugel, A.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Evans, H.; Gagnon, P.; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Price, D.; Whittington, D.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Franz, S.; Jussel, P.; Kneringer, E.; Lukas, W.; Nagai, K.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teikhenphys, Innsbruck, Austria. [Cinca, D.; Gandrajula, R. P.; Halladjian, G.; Limper, M.; Mallik, U.; Mandrysch, R.; Morange, N.; Pylypchenko, Y.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Ruiz-Martinez, A.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Deliyergiyev, M.; Demichev, M.; Dolejsi, J.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Huseynov, N.; Karpov, S. N.; Kazarinov, M. Y.; Kharchenko, D.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimin, N. I.] Joint Inst Nucl Res Dubna, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Feng, E. J.; Inamaru, Y.; King, M.; Kishimoto, T.; Kitamura, T.; Kurashige, H.; Kurumida, R.; Matsushita, T.; Ochi, A.; Shimizu, S.; Takeda, H.; Tani, K.; Watanabe, I.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Argentina. [Allison, L. J.; Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Gorini, E.; Grancagnolo, F.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Bianco, M.; Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, R.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, R.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Salamanna, G.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Brooks, T.; Cantrill, R.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; Edwards, C. A.; George, S.; Gibson, S. M.; Goncalo, R.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, London, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dobson, E.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Lambourne, L.; Nash, M.; Nurse, E.; Ochoa, M. I.; Pilkington, A. D.; Prabhu, R.; Rutherfoord, J. P.; Sherwood, P.; Simmons, B.; Taylor, C.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Bernius, C.; Dhullipudi, R.; Greenwood, Z. D.; Saxon, D. H.; Sircar, A.; Subramaniam, R.; Tamsett, M. C.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Jarlskog, G.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.; Wielers, M.] Lund Univ, Inst Fys, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Dell'Asta, L.; Glasman, C.; Labarga, L.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Arnaez, O.; Blum, W.; Buescher, V.; Caputo, R.; Dolejsi, J.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Goeringer, C.; Handel, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Huelsing, T. A.; Ji, W.; Karnevskiy, M.; Kleinknecht, K.; Koenig, S.; Kopke, L.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moreno, D.; Moritz, S.; Mueller, T.; Neusiedl, A.; Poettgen, R.; Sander, H. G.; Schaffer, A. C.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Forti, A.; Howarth, J.; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marx, M.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Robinson, J. E. M.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Alio, L.; Barbero, M.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Maurer, J.; Monnier, E.; Nagai, Y.; Odier, J.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, E.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Alio, L.; Barbero, M.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Maurer, J.; Monnier, E.; Nagai, Y.; Odier, J.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, E.; Ughetto, M.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dufour, M-A.; Klemetti, M.; Mantifel, R.; Robertson, S. H.; Schram, M.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Diglio, S.; Hamano, K.; Jennens, D.; Kubota, T.; Limosani, A.; Hanninger, G. Nunes; Shao, Q. T.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Chelstowska, M. A.; Cirilli, M.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, L.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Qian, J.; Schernau, M.; Searcy, J.; Thun, R. P.; Walch, S.; Wilson, A.; Wooden, G.; Wu, Y.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Hauser, R.; Hayden, D.; Holzbauer, J. L.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; True, P.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alessandria, F.; Alimonti, G.; Andreazza, A.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Citterio, M.; Coelli, S.; Consonni, S. M.; Costa, G.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Mazzanti, M.; Meloni, F.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Andreazza, A.; Besana, M. I.; Carminati, L.; Consonni, S. M.; Fanti, M.; Favareto, A.; Meloni, F.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Simoniello, R.; Turra, R.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Asbah, N.; Azuelos, G.; Bouchami, J.; Davies, M.; Gauthier, L.; Giunta, M.; Leroy, C.; Martin, J. P.; Rezvani, R.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Inst Phys, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.] MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Beale, S.; Becker, S.; Biebel, O.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Heller, C.; Hertenberger, R.; Legger, F.; Lorenz, J.; Mann, A.; Meineck, C.; Oakes, L. B.; Rauscher, F.; Reznicek, P.; Ruschke, A.; Sanders, M. P.; Schamberger, R. D.; Schillo, C.; Schmitt, C.; Staude, A.; Vladoiu, D.; Walker, R.; Will, J. Z.; Wittkowski, J.; Zibell, A.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bittner, B.; Bronner, J.; Capriotti, D.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Giovannini, P.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kuth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Macchiolo, A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Oberlack, H.; Pahl, C.; Pospelov, G. E.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schaefer, D.; Schwegler, Ph.; Sforza, F.; Stern, S.; Stonjek, S.; Vanadia, M.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; De Asmundis, R.; Della Pietra, M.; Della Volpe, D.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Univ Naples Federico II, INFN Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; Della Volpe, D.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Dai, T.; Dao, V.; De Groot, N.; Filthaut, E.; Klok, P. F.; Konig, A. C.; Salvucci, A.] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, Nikhef, NL-6525 ED Nijmegen, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Castelli, A.; Colijn, A. P.; De Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Oussoren, K. P.; Pani, P.; Ruckstuhl, N.; Ta, D.; Valencic, N.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] Nikhef Natl Inst Subatom Phys, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; Cole, S.; de Lima, J. G. Rocha; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A. V.; Beloborodova, O. L.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Skovpen, K. Yu.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Budick, B.; Cranmer, K.; Haas, A.; Van Huysduynen, L. Hooft; Kaplan, B.; Konoplich, R.; Krasznahorkay, A.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.] NYU, Dept Phys, New York, NY 10003 USA. [Fisher, M. J.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, T. J.; Nagarkar, A.; Pignotti, D. T.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Hrabovsky, M.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Reinsch, A.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Auge, E.; Bassalat, A.; Binet, S.; Bourdarios, C.; De la Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Sauvan, J. B.; Schacht, P.; Schaile, D.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Auge, E.; Bassalat, A.; Binet, S.; Bourdarios, C.; De la Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Sauvan, J. B.; Schacht, P.; Schaile, D.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Nomachi, M.; Okamura, W.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Cameron, D.; Gjelsten, B. K.; Gramstad, E.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Smestad, L.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Boddy, C. R.; Buchanan, J.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Dafinca, A.; Davies, E.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; King, R. S. B.; Kogan, L. A.; Larner, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Mattravers, C.; Nickerson, R. B.; Pachal, K.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Sawyer, L.; Short, D.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Young, C. J. S.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Univ Pavia, INFN Sez Pavia, I-27100 Pavia, Italy. [Conta, C.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Degenhardt, J.; Dell'Acqua, A.; Fratina, S.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Keener, P. T.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Newcomer, F. M.; Olivito, D.; Ospanov, R.; Reece, R.; Sbarra, C.; Schaelicke, A.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Van Berg, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Ryabov, Y. F.; Scheirich, D.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Giannetti, P.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Univ Pisa, INFN Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Giannetti, P.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Savu, D. O.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Dos Santos, S. P. Amor; Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Wemans, A. Do Valle; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Maio, A.; Maneira, J.; Marques, C. N.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao Fis Expt Particulas, P-1000 Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Bohm, J.; Chudoba, J.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Dos Santos, D. Roda; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Gunther, J.; Jakubek, J.; Kohout, Z.; Kral, V.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Torregrosa, E. Fullana; Kodys, P.; Leitner, R.; Novakova, J.; Pleskot, V.; Rybar, M.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Ivashin, A. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Haywood, S. J.; Kirk, J. J.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, E.; Artoni, G.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Dionisi, C.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Rossi, E.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vari, R.; Veneziano, S.; Zanello, L.] Univ Roma La Sapienza, INFN Sez Roma 1, Rome, Italy. [Artoni, G.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Zorzi, G.; Dionisi, C.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Rossi, E.; Camillocci, E. Solfaroli; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Liberti, B.; Marchese, F.; Mazzaferro, L.; Salamona, A.; Santonico, R.] Univ Roma Tor Vergata, INFN Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Marchese, F.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Branchini, P.; Ceradini, F.; Di Luise, S.; Di Micco, B.; Farilla, A.; Graziani, E.; Lodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Stanescu, C.; Trovatelli, M.] Univ Roma Tre, INFN Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Luise, S.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Trovatelli, M.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA, Marrakech, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier & LPTPM, Fac Sci, Oujda, Morocco. [El Moursli, R. Cherkaoui] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Abreu, H.; Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Grabas, H. M. X.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Legendre, M.; Maiani, C.; Mal, P.; Ramos, J. A. Manjarres; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J-P.; Mijovic, L.; Hong, V. Nguyen Thi; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Resende, B.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] CEA Saclay Commissariat Energie Atom & Energies A, DSM IRFU Inst Rech Lois Fondamentales Univers, Gif Sur Yvette, France. [Grillo, A. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Keller, J. S.; Lubatti, H. J.; Rompotis, N.; Rosten, R.; Rothberg, J.; Verducci, M.; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, R.; Johansson, P.; Korolkova, E. V.; Paredes, B. Lopez; Mcfayden, J. A.; Miyagawa, P. S.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tua, A.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Ibragimov, I.; Ikematsu, K.; Rammes, M.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Dawe, E.; Godfrey, J.; Kvita, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Trottier-McDonald, M.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Hansson, P.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Batkova, L.; Blazek, T.; Federic, P.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, T. M.; Carrillo-Montoya, G. D.; Leney, K. J. C.; Garcia, B. R. Mellado; Quayle, W. B.; Ruan, X.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Asman, B.; Bendtz, K.; Bessidskaia, O.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Holmgren, S. O.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, R.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Papadelis, A.; Petridis, A.; Plucinski, P.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaiti, Y.; Asman, B.; Bendtz, K.; Bessidskaia, O.; Clement, C.; Gellerstedt, K.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, R.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J. J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Arfaoui, S.; DeWilde, B.; Engelmann, R.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Puldon, D.; Rijssenbeek, M.; Scharf, V.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Ahmad, A.; Arfaoui, S.; DeWilde, B.; Engelmann, R.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Puldon, D.; Rijssenbeek, M.; Scharf, V.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Castillo, I. Santoyo; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Bangert, A.; Black, C. W.; Cuthbert, C.; Jeng, G. -Y.; Patel, N. D.; Saavedra, A. F.; Schaarschmidt, J. J.; Varvell, K. E.; Watson, I. J.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, C. A.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Mazini, R.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, J.; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Di Mattia, A.; Kajomovitz, E.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkialas, I.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Papageorgiou, K.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.; Petridou, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Ishitsuka, M.; Jinnouchi, O.; Kanno, T.; Kuze, M.; Nagai, R.; Nobe, T.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Bailey, D. C.; Brelier, B.; Farooque, T.; Fatholahzadeh, B.; Ilic, N.; Keung, J.; Krieger, P.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savinov, V.; Sinervo, P.; Spreitzer, T.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Chekulaev, S. V.; Fortin, D.; Koutsman, A.; Losty, M. J.; Oram, C. J.; Codina, E. Perez; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Bustos, A. C. Florez; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Kurata, M.; Ukegawa, E.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Napier, A.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Navas, L. Mendoza; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Farrell, S.; Gerbaudo, D.; Eschrich, I. Gough; Lankford, A. J.; Magnoni, L.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scarcella, M.; Scherzer, M. I.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Pinamonti, M.; Shaw, K.; Soualah, R.] INFN Grp Coll Udine, Udine, Italy. [Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Shaw, K.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Pelikan, D.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J. J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J. J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Dolejsi, J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J. J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J. J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J. J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] CSIC, Valencia, Spain. [Axen, D.; Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Loh, C. W.; Mills, W. J.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; Courneyea, L.; David, C.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J. -R.; Marino, C. P.; Martyniuk, A. C.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Farrington, S. M.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Kimura, N.; Mitani, T.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Chen, X.; Dolejsi, J.; Dos Anjos, A.; Castillo, L. R. Flores; Gutzwiller, O.; Hard, A. S.; Jared, R. C.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Morales, M. I. Pedraza; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Barisonzi, M.; Becker, K.; Becks, K. H.; Beermann, T. A.; Boek, J.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Maettig, P.; Mechtel, M.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Sturm, P.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, E.; Golling, T.; Guest, D.; Henrichs, A.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Tipton, R.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London WC2R 2LS, England. [Aguilar-Saavedra, J. A.] LIP, Lab Instrumentacao & Fis Expt Particulas, P-1000 Lisbon, Portugal. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, CFNUL, Lisbon, Portugal. [Apolle, R.; Davies, E.; Mattravers, C.; Nash, M.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Savinov, V.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beloborodova, O. L.; Maximov, D. A.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Carvalho, J.; Fiolhais, M. C. N.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Dhullipudi, R.; Greenwood, Z. D.; Saxon, D. H.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Wemans, A. Do Valle] Univ Nova Lisboa, Dept Fis, Caparica, Portugal. [Wemans, A. Do Valle] Univ Nova Lisboa, CEFITEC, Fac Ciencias Tecnol, Caparica, Portugal. [Ge, P.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Gkialas, I.; Papageorgiou, K.] Univ Aegean, Dept Financial & Management Engn, Chios, Greece. [Grinstein, S.; Rozas, A. Juste; Martinez, M.] ICREA, Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Huseynov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Jenni, P.] CERN, Geneva, Switzerland. [Kono, T.; Wildt, M. A.] Univ Hamburg, Inst Phys Expt, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Li, B.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Liu, K.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Messina, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Mountricha, E.; Xu, C.] CEA Saclay Commissariat Energie Atom & Energies, DSM RFU Inst Rech Lois Fondament Univers, F-91191 Gif Sur Yvette, France. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Pasztor, G.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Peters, R. F. Y.] DESY, Hamburg, Germany. [Peters, R. F. Y.] DESY, Zeuthen, Germany. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Spousta, M.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Tamsett, M. C.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Vickey, T.] Univ Oxford, Dept Phys, Oxford, England. [Xu, L.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. RP Ammosov, VV (reprint author), State Res Ctr, Inst High Energy Phys, Protvino, Russia. RI Boyko, Igor/J-3659-2013; Solfaroli Camillocci, Elena/J-1596-2012; Lee, Jason/B-9701-2014; Robson, Aidan/G-1087-2011; Smirnova, Oxana/A-4401-2013; Gabrielli, Alessandro/H-4931-2012; Zimmermann, Claus/E-9598-2014; Fabbri, Laura/H-3442-2012; Brooks, William/C-8636-2013; Villa, Mauro/C-9883-2009; Ji, Haoshuang/F-4525-2014; Ferrando, James/A-9192-2012; Nozka, Libor/G-5550-2014; Nemecek, Stanislav/G-5931-2014; Kepka, Oldrich/G-6375-2014; Lokajicek, Milos/G-7800-2014; Jakoubek, Tomas/G-8644-2014; Staroba, Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; de Groot, Nicolo/A-2675-2009; Hejbal, Jiri/H-1358-2014; Marcisovsky, Michal/H-1533-2014; Mikestikova, Marcela/H-1996-2014; Lysak, Roman/H-2995-2014; Kuday, Sinan/C-8528-2014; Snesarev, Andrey/H-5090-2013; Tomasek, Lukas/G-6370-2014; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Warburton, Andreas/N-8028-2013; Turchikhin, Semen/O-1929-2013; Moraes, Arthur/F-6478-2010; Peleganchuk, Sergey/J-6722-2014; Bosman, Martine/J-9917-2014; Castro, Nuno/D-5260-2011; Grinstein, Sebastian/N-3988-2014; Wemans, Andre/A-6738-2012; Demirkoz, Bilge/C-8179-2014; Gutierrez, Phillip/C-1161-2011; Ventura, Andrea/A-9544-2015; Livan, Michele/D-7531-2012; De, Kaushik/N-1953-2013; Mitsou, Vasiliki/D-1967-2009; White, Ryan/E-2979-2015; Joergensen, Morten/E-6847-2015; Riu, Imma/L-7385-2014; Mir, Lluisa-Maria/G-7212-2015; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Akimov, Andrey/N-1769-2015; Tikhomirov, Vladimir/M-6194-2015; Yang, Haijun/O-1055-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; Andreazza, Attilio/E-5642-2011; Carvalho, Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Fullana Torregrosa, Esteban/A-7305-2016; Buttar, Craig/D-3706-2011; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Pacheco Pages, Andres/C-5353-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Olshevskiy, Alexander/I-1580-2016; BESSON, NATHALIE/L-6250-2015; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Goncalo, Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; Gerbaudo, Davide/J-4536-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Monzani, Simone/D-6328-2017; Juste, Aurelio/I-2531-2015; Grancagnolo, Francesco/K-2857-2015; Korol, Aleksandr/A-6244-2014; Karyukhin, Andrey/J-3904-2014; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; McKee, Shawn/B-6435-2012; Fassi, Farida/F-3571-2016; OI Boyko, Igor/0000-0002-3355-4662; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Lee, Jason/0000-0002-2153-1519; Smirnova, Oxana/0000-0003-2517-531X; Gabrielli, Alessandro/0000-0001-5346-7841; Fabbri, Laura/0000-0002-4002-8353; Brooks, William/0000-0001-6161-3570; Villa, Mauro/0000-0002-9181-8048; Ferrando, James/0000-0002-1007-7816; Mikestikova, Marcela/0000-0003-1277-2596; Kuday, Sinan/0000-0002-0116-5494; Tomasek, Lukas/0000-0002-5224-1936; Svatos, Michal/0000-0002-7199-3383; Warburton, Andreas/0000-0002-2298-7315; Turchikhin, Semen/0000-0001-6506-3123; Moraes, Arthur/0000-0002-5157-5686; Peleganchuk, Sergey/0000-0003-0907-7592; Bosman, Martine/0000-0002-7290-643X; Castro, Nuno/0000-0001-8491-4376; Grinstein, Sebastian/0000-0002-6460-8694; Wemans, Andre/0000-0002-9669-9500; Ventura, Andrea/0000-0002-3368-3413; Livan, Michele/0000-0002-5877-0062; De, Kaushik/0000-0002-5647-4489; Mitsou, Vasiliki/0000-0002-1533-8886; White, Ryan/0000-0003-3589-5900; Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582; Mir, Lluisa-Maria/0000-0002-4276-715X; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Camarri, Paolo/0000-0002-5732-5645; Tikhomirov, Vladimir/0000-0002-9634-0581; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; Andreazza, Attilio/0000-0001-5161-5759; Carvalho, Joao/0000-0002-3015-7821; Mashinistov, Ruslan/0000-0001-7925-4676; Fullana Torregrosa, Esteban/0000-0003-3082-621X; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Pacheco Pages, Andres/0000-0001-8210-1734; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672; Olshevskiy, Alexander/0000-0002-8902-1793; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Gauzzi, Paolo/0000-0003-4841-5822; Gerbaudo, Davide/0000-0002-4463-0878; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Chromek-Burckhart, Doris/0000-0003-4243-3288; Sawyer, Lee/0000-0001-8295-0605; Juste, Aurelio/0000-0002-1558-3291; Begel, Michael/0000-0002-1634-4399; Mincer, Allen/0000-0002-6307-1418; Troncon, Clara/0000-0002-7997-8524; Bailey, David C/0000-0002-7970-7839; Chen, Hucheng/0000-0002-9936-0115; Qian, Jianming/0000-0003-4813-8167; Nisati, Aleandro/0000-0002-5080-2293; Cataldi, Gabriella/0000-0001-8066-7718; Vari, Riccardo/0000-0002-2814-1337; Gray, Heather/0000-0002-5293-4716; Thomson, Mark/0000-0002-2654-9005; Grancagnolo, Francesco/0000-0002-9367-3380; Dell'Asta, Lidia/0000-0002-9601-4225; Korol, Aleksandr/0000-0001-8448-218X; Maio, Amelia/0000-0001-9099-0009; Fiolhais, Miguel/0000-0001-9035-0335; Karyukhin, Andrey/0000-0001-9087-4315; Anjos, Nuno/0000-0002-0018-0633; Smestad, Lillian/0000-0002-0244-8736; Giordani, Mario/0000-0002-0792-6039; Karpov, Sergey/0000-0002-2230-5353; Capua, Marcella/0000-0002-2443-6525; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; McKee, Shawn/0000-0002-4551-4502; Doria, Alessandra/0000-0002-5381-2649; Veloso, Filipe/0000-0002-5956-4244; Gomes, Agostinho/0000-0002-5940-9893; Fassi, Farida/0000-0002-6423-7213; Osculati, Bianca Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Volpi, Guido/0000-0003-1058-8883; Santos, Helena/0000-0003-1710-9291; Coccaro, Andrea/0000-0003-2368-4559; Haas, Andrew/0000-0002-4832-0455; Galhardo, Bruno/0000-0003-0641-301X; Casadei, Diego/0000-0002-3343-3529; Wolters, Helmut/0000-0002-9588-1773; Vos, Marcel/0000-0001-8474-5357; Mendes Saraiva, Joao Gentil/0000-0002-7006-0864; Pina, Joao /0000-0001-8959-5044; Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Weber, Michele/0000-0002-2770-9031; Wang, Kuhan/0000-0002-6151-0034; Grohsjean, Alexander/0000-0003-0748-8494; La Rosa, Alessandro/0000-0001-6291-2142; Beck, Hans Peter/0000-0001-7212-1096; Salamanna, Giuseppe/0000-0002-0861-0052; Prokofiev, Kirill/0000-0002-2177-6401; Veneziano, Stefano/0000-0002-2598-2659; Lacasta, Carlos/0000-0002-2623-6252; Vazquez Schroeder, Tamara/0000-0002-9780-099X; Chen, Chunhui /0000-0003-1589-9955; Price, Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247; Smirnov, Sergei/0000-0002-6778-073X; Walsh, Brian/0000-0003-1689-2309; Cristinziani, Markus/0000-0003-3893-9171 FU ANPCyT, Argentina; YerPhl, Armenia; ARC, Australia; BMWF; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq; FAPESP, Brazil; NSERC; NRC; CFI, Canada; CERN; CONICYT, Chile; CAS; MOST; NSFC, China; COLCIENCIAS, Colombia; MSMT CR; MPO CR; VSC CR, Czech Republic; DNRF; DNSRC; Lundbeck Foundation, Denmark; EPLANET; ERC; NSRF; European Union; IN2P3-CNRS; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF; DFG; HGF; MPG; AvH Foundation, Germany; GSRT; NSRF, Greece; ISF; MINERVA; GIF; DIP; Benoziyo Center, Israel; INFN, Italy; MEXT; JSPS, Japan; CNRST, Morocco; FOM; NWO, Netherlands; BRF; RCN, Norway; MNiSW, Poland; GRICES; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS; MIZS, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC; Wallenberg Foundation, Sweden; SER; SNSF; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC; Royal Society; Leverhulme Trust, United Kingdom; DOE; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhl, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 36 TC 238 Z9 239 U1 22 U2 186 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD OCT PY 2013 VL 726 IS 1-3 BP 120 EP 144 DI 10.1016/j.physletb.2013.08.026 PG 25 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 245RT UT WOS:000326482200015 ER PT J AU Abelev, B Adam, J Adamova, D Adare, AM Aggarwal, MM Rinella, GA Agnello, M Agocs, AG Agostinelli, A Ahammed, Z Ahmad, N Masoodi, AA Ahmed, I Ahn, SA Ahn, SU Aimo, I Aiola, S Ajaz, M Akindinov, A Aleksandrov, D Alessandro, B Alexandre, D Alici, A Alkin, A Alme, J Alt, T Altini, V Altinpinar, S Altsybeev, I Prado, CAG Andrei, C Andronic, A Anguelov, V Anielski, J Antitle, T Antinori, F Antonioli, P Aphecetche, L Appelshauser, H Arbor, N Arcelli, S Armesto, N Arnaldi, R Aronsson, T Arsene, IC Arslandok, M Augustinus, A Averbeck, R Awes, TC Aysto, JB Azmi, MD Bach, M Badala, A Baek, YW Bailhache, R Bala, R Baldisseri, A Pedrosa, FBDS Ban, J Baral, RC Barbera, R Barile, F Barnafoldi, GG Barnby, LS Barret, V Bartke, J Basile, M Bastid, N Basu, S Bathen, B Batigne, G Batyunya, B Batzing, PC Baumann, C Bearden, IG Beck, H Bedda, C Behera, NK Belikov, I Bellini, F Bellwied, R Belmont-Moreno, E Bencedi, G Beole, S Berceanu, I Bercuci, A Berdnikov, Y Berenyi, D Bergognon, AAE Bertens, RA Berzano, D Betev, L Bhasin, A Bhati, AK Bhom, J Bianchi, L Bianchi, N Bielcik, J Bielcikova, J Bilandzic, A Bjelogrlic, S Blanco, F Blanco, F Blau, D Blume, C Bock, F Bogdanov, A Boggild, H Bogolyubsky, M Boldizsar, L Bombara, M Book, J Borel, H Borissov, A Bornschein, J Botje, M Botta, E Bottger, S Braidot, E Braun-Munzinger, P Bregant, M Breitner, T Broker, TA Browning, TA Broz, M Brun, R Bruna, E Bruno, GE Budnikov, D Buesching, H Bufalino, S Buncic, P Busch, O Buthelezi, Z Caffarri, D Cai, X Caines, H Caliva, A Villar, EC Camerini, P Roman, VC Romeo, GC Carena, F Carena, W Carminati, F Diaz, AC Castellanos, JC Casula, EAR Catanescu, V Cavicchioli, C Sanchez, CC Cepila, J Cerello, P Chang, B Chapeland, S Charvet, JL Chattopadhyay, S Chattopadhyay, S Cherney, M Cheshkov, C Cheynis, B Barroso, VC Chinellato, DD Chochula, P Chojnacki, M Choudhury, S Christakoglou, R Christensen, CH Christiansen, P Chujo, T Chung, SU Cicalo, C Cifarelli, L Cindolo, F Cleymans, J Colamaria, F Colella, D Collu, A Colocci, M Balbastre, GC del Valle, ZC Connors, ME Contin, G Contreras, JG Cormier, TM Morales, YC Cortese, P Maldonado, IC Cosentino, MR Costa, F Crochet, P Albino, RC Cuautle, E Cunqueiro, L Dainese, A Dang, R Danu, A Das, K Das, D Das, I Dash, A Dash, S De, S Delagrange, H Deloff, A Denes, E Deppman, A de Barros, GOV De Caro, A de Cataldo, G de Cuveland, J De Falco, A De Gruttola, D De Marco, N De Pasquale, S de Rooij, R Corchero, MAD Dietel, T Divia, R Di Bari, D Di Giglio, C Di Liberto, S Di Mauro, A Di Nezza, P Djuvsland, O Dobrin, A Dobrowolski, T Donigus, B Dordic, O Dubey, AK Dubla, A Ducroux, L Dupieux, P Majumdar, AKD Erasmo, GD Elia, D Emschermann, D Engel, H Erazmus, B Erdal, HA Eschweiler, D Espagnon, B Estienne, M Esumi, S Evans, D Evdokimov, S Eyyubova, G Fabris, D Faivre, J Falchieri, D Fantoni, A Fasel, M Fehlker, D Feldkamp, L Felea, D Feliciello, A Feofilov, G Tellez, AF Ferreiro, EG Ferretti, A Festanti, A Figiel, J Figueredo, MAS Filchagin, S Finogeev, D Fionda, FM Fiore, EM Floratos, E Floris, M Foertsch, S Foka, P Fokin, S Fragiacomo, E Francescon, A Frankenfeld, U Fuchs, U Furget, C Girard, MF Gaardhoje, JJ Gagliardi, M Gago, A Gallio, M Gangadharan, DR Ganoti, R Garabatos, C Garcia-Solis, E Gargiulo, C Garishvili, I Gerhard, J Germain, M Gheata, A Gheata, M Ghidini, B Ghosh, P Gianotti, P Giubellino, P Gladysz-Dziadus, E Glassel, P Goerlich, L Gomez, R Gonzalez-Zamora, P Gorbunov, S Gotovac, S Graczykowski, LK Grajcarek, R Grelli, A Grigoras, C Grigoras, A Grigoriev, V Grigoryan, A Grigoryan, S Grinyov, B Grion, N Grosse-Oetringhaus, JF Grossiord, JY Grosso, R Guber, F Guernane, R Guerzoni, B Guilbaud, M Gulbrandsen, K Gulkanyan, H Gunji, T Gupta, A Gupta, R Khan, KH Haake, R Haaland, O Hadjidakis, C Haiduc, M Hamagaki, H Hamar, G Hanratty, LD Hansen, A Harris, JW Harton, A Hatzifotiadou, D Hayashi, S Hayrapetyan, A Heckel, ST Heide, M Helstrup, H Herghelegiu, A Corral, GH Herrmann, N Hess, BA Hetland, KF Hicks, B Hippolyte, B Hori, Y Hristov, P Hrivnacova, I Huang, M Humanic, TJ Hutter, D Hwang, DS Ichou, R Ilkaev, R Ilkiv, I Inaba, M Incani, E Innocenti, GM Ionita, C Ippolitov, M Irfan, M Ivanov, V Ivanov, M Ivanytskyi, O Jachalkowski, A Jahnke, C Jang, HJ Janik, MA Jayarathna, PHSY Jena, S Bustamante, RTJ Jones, PG Jung, H Jusko, A Kalcher, S Kalinak, P Kalliokoski, T Kalweit, A Kang, JH Kaplin, V Kar, S Uysal, AK Karavichev, O Karavicheva, T Karpechev, E Kazantsev, A Kebschull, U Keidel, R Ketzer, B Khan, SA Khan, P Khan, MM Khanzadeev, A Kharlov, Y Kileng, B Kim, JS Kim, DW Kim, DJ Kim, S Kim, B Kim, T Kim, M Kim, M Kirsch, S Kisel, I Kiselev, S Kisiel, A Kiss, G Klay, JL Klein, J Klein-Bosing, C Kluge, A Knichel, ML Knospe, AG Kobdaj, C Kohler, MK Kollegger, T Kolojvari, A Kondratiev, V Kondratyeva, N Konevskikh, A Kovalenko, V Kowalski, M Kox, S Meethaleveedu, GK Kral, J Kralik, I Kramer, F Kravcakova, A Krelina, M Kretz, M Krivda, M Krizek, F Krus, M Kryshen, E Krzewicki, M Kucera, V Kucheriaev, Y Kugathasan, T Kuhn, C Kuijer, PG Kulakov, I Kumar, J Kurashvili, P Kurepin, AB Kurepin, A Kuryakin, A Kushpil, S Kushpil, V Kweon, MJ Kwon, Y de Guevara, PL Fernandes, CL Lakomov, I Langoy, R Lara, C Lardeux, A La Pointe, SL La Rocca, P Lea, R Lechman, M Lee, SC Lee, GR Legrand, I Lehnert, J Lemmon, RC Lenhardt, M Lenti, V Monzon, IL Levai, P Li, S Lien, J Lietava, R Lindal, S Lindenstruth, V Lippmann, C Lisa, MA Ljunggren, HM Lodato, DF Loenne, PI Loggins, VR Loginov, V Lohner, D Loizides, C Loo, KK Lopez, X Torres, EL Lovhoiden, G Lu, XG Luettig, P Lunardon, M Luo, J Luparello, G Luzzi, C Jacobs, PM Ma, R Maevskaya, A Mager, M Mahapatra, DP Maire, A Malaev, M Cervantes, IM Malinina, L Mal'Kevich, D Malzacher, P Mamonov, A Manceau, L Manko, V Manso, F Manzari, V Marchisone, M Mares, J Margagliotti, GV Margotti, A Marin, A Markert, C Marquard, M Martashvili, I Martin, NA Martinengo, P Martinez, MI Garcia, GM Blanco, JM Martynov, Y Mas, A Masciocchi, S Masera, M Masoni, A Massacrier, L Mastroserio, A Matyja, A Mazer, J Mazumder, R Mazzoni, MA Meddi, F Menchaca-Rocha, A Perez, JM Meres, M Miake, Y Mikhaylov, K Milano, L Milosevic, J Mischke, A Mishra, AN Miskowiec, D Mitu, C Mlynarz, J Mohanty, B Molnar, L Zetina, LM Monteno, M Montes, E Moon, T Morando, M De Godoy, DAM Moretto, S Morreale, A Morsch, A Muccifora, V Mudnic, E Muhuri, S Mukherjee, M Muller, H Munhoz, MG Murray, S Musa, L Nandi, BK Nania, R Nappi, E Nattrass, C Nayak, TK Nazarenko, S Nedosekin, A Nicassio, M Niculescu, M Nielsen, BS Nikolaev, S Nikulin, S Nikulin, V Nilsen, BS Nilsson, MS Noferini, F Nomokonov, P Nooren, G Nyanin, A Nyatha, A Nystrand, J Oeschler, H Oh, SK Oh, S Olah, L Oleniacz, J Da Silva, ACO Onderwaater, J Oppedisano, C Velasquez, AO Oskarsson, A Otwinowski, J Oyama, K Pachmayer, Y Pachr, M Pagano, R Paic, G Painke, F Pajares, C Pal, SK Palaha, A Palmeri, A Papikyan, V Pappalardo, GS Park, WJ Passfeld, A Patalakha, DI Paticchio, V Paul, B Pawlak, T Peitzmann, T Da Costa, HP De Oliveira, EP Peresunko, D Lara, CEP Perrino, D Peryt, W Pesci, A Pestov, Y Petracek, V Petran, M Petris, M Petrov, P Petrovici, M Petta, C Piano, S Pikna, M Piillot, P Pinazza, O Pinsky, L Pitz, N Piyarathna, DB Planinic, M Ploskon, M Pluta, J Pochybova, S Podesta-Lerma, PLM Poghosyan, MG Polichtchouk, B Poljak, N Pop, A Porteboeuf-Houssais, S Pospisil, V Potukuchi, B Prasad, SK Preghenella, R Prino, F Pruneau, CA Pshenichnov, I Puddu, G Punin, V Putschke, J Qvigstad, H Rachevski, A Rademakers, A Rak, J Rakotozafindrabe, A Ramello, L Raniwala, S Raniwala, R Rasanen, SS Rascanu, BT Rathee, D Rauch, W Rauf, AW Razazi, V Read, KF Real, JS Redlich, K Reed, RJ Rehman, A Reichelt, P Reicher, M Reidt, F Renfordt, R Reolon, AR Reshetin, A Rettig, F Revol, JP Reygers, K Riccati, L Ricci, RA Richert, T Richter, M Riedler, P Riegler, W Riggi, F Rivetti, A Cahuantzi, MR Manso, AR Roed, K Rogochaya, E Rohni, S Rohr, D Rohrich, D Romita, R Ronchetti, F Rosnet, P Rossegger, S Rossi, A Roy, P Roy, C Montero, AJR Rui, R Russo, R Ryabinkin, E Rybicki, A Sadovsky, S Safarik, K Sahoo, R Sahu, PK Saini, J Sakaguchi, H Sakai, S Sakata, D Salgado, CA Salzwedel, J Sambyal, S Samsonov, V Castro, XS Sandor, L Sandoval, A Sano, M Santagati, G Santoro, R Sarkar, D Scapparone, E Scarlassara, F Scharenberg, RP Schiaua, C Schicker, R Schmidt, C Schmidt, HR Schuchmann, S Schukraft, J Schulc, M Schuster, T Schutz, Y Schwarz, K Schweda, K Scioli, G Scomparin, E Scott, R Scott, PA Segato, G Selyuzhenkov, I Seo, J Serci, S Serradilla, E Sevcenco, A Shabetai, A Shabratova, G Shahoyan, R Sharma, S Sharma, N Shigaki, K Shtejer, K Sibiriak, Y Siddhanta, S Siemiarczuk, T Silvermyr, D Silvestre, C Simatovic, G Singaraju, R Singh, R Singha, S Singhal, V Sinha, BC Sinha, T Sitar, B Sitta, M Skaali, TB Skjerdal, K Smakal, R Smirnov, N Snellings, RJM Sogaard, C Soltz, R Song, M Song, J Soos, C Soramel, F Spacek, M Sputowska, I Spyropoulou-Stassinaki, M Srivastava, BK Stachel, J Stan, I Stefanek, G Steinpreis, M Stenlund, E Steyn, G Stiller, JH Stocco, D Stolpovskiy, M Strmen, P Suaide, AAP Vasquez, MAS Sugitate, T Suire, C Suleymanov, M Sultanov, R Sumbera, M Susa, T Symons, TJM de Toledo, AS Szarka, I Szczepankiewicz, A Szymanski, M Takahashi, J Tangaro, MA Takaki, JDT Peloni, AT Martinez, AT Tauro, A Munoz, GT Telesca, A Terrevoli, C Ter Minasyan, A Thader, J Thomas, D Tieulent, R Timmins, AR Toia, A Torii, H Trubnikov, V Trzaska, WH Tsuji, T Tumkin, A Turrisi, R Tveter, TS Ulery, J Ullaland, K Ulrich, J Uras, A Urciuoli, GM Usai, GL Vajzer, M Vala, M Palomo, LV Vyvre, RV Vannucci, L Van Hoorne, JW van Leeuwen, M Vargas, A Varma, R Vasileiou, M Vasiliev, A Vechernin, V Veldhoen, M Venaruzzo, M Vercellin, E Vergara, S Vernet, R Verweij, M Vickovic, L Viesti, G Viinikainen, J Vilakazi, Z Baillie, OV Vinogradov, A Vinogradov, L Vinogradov, Y Virgili, T Viyogi, YP Vodopyanov, A Volkl, MA Voloshin, S Voloshin, K Volpe, G von Haller, B Vorobyev, I Vranic, D Vrlakova, J Vulpescu, B Vyushin, A Wagner, B Wagner, V Wagner, J Wang, Y Wang, Y Wang, M Watanabe, D Watanabe, K Weber, M Wessels, JP Westerhoff, U Wiechula, J Wikne, J Wilde, M Wilk, G Wilkinson, J Williams, MCS Windelband, B Winn, M Xiang, C Yaldo, CG Yamaguchi, Y Yang, H Yang, P Yang, S Yano, S Yasnopolskiy, S Yi, J Yin, Z Yoo, IK Yushmanov, I Zaccolo, V Zach, C Zampolli, C Zaporozhets, S Zarochentsev, A Zavada, P Zaviyalov, N Zbroszczyk, H Zelnicek, P Zgura, IS Zhalov, M Zhang, F Zhang, Y Zhang, H Zhang, X Zhou, D Zhou, Y Zhou, F Zhu, X Zhu, J Zhu, J Zhu, H Zichichi, A Zimmermann, MB Zimmermann, A Zinovjev, G Zoccarato, Y Zynovyev, M Zyzak, M AF Abelev, B. Adam, J. Adamova, D. Adare, A. M. Aggarwal, M. M. Rinella, G. Aglieri Agnello, M. Agocs, A. G. Agostinelli, A. Ahammed, Z. Ahmad, N. Masoodi, A. Ahmad Ahmed, I. Ahn, S. A. Ahn, S. U. Aimo, I. Aiola, S. Ajaz, M. Akindinov, A. Aleksandrov, D. Alessandro, B. Alexandre, D. Alici, A. Alkin, A. Alme, J. Alt, T. Altini, V. Altinpinar, S. Altsybeev, I. Prado, C. Alves Garcia Andrei, C. Andronic, A. Anguelov, V. Anielski, J. Antitle, T. Antinori, F. Antonioli, P. Aphecetche, L. Appelshaeuser, H. Arbor, N. Arcelli, S. Armesto, N. Arnaldi, R. Aronsson, T. Arsene, I. C. Arslandok, M. Augustinus, A. Averbeck, R. Awes, T. C. Aeystoe, J. Azmi, M. D. Bach, M. Badala, A. Baek, Y. W. Bailhache, R. Bala, R. Baldisseri, A. Pedrosa, F. Baltasar Dos Santos Ban, J. Baral, R. C. Barbera, R. Barile, F. Barnafoeldi, G. G. Barnby, L. S. Barret, V. Bartke, J. Basile, M. Bastid, N. Basu, S. Bathen, B. Batigne, G. Batyunya, B. Batzing, P. C. Baumann, C. Bearden, I. G. Beck, H. Bedda, C. Behera, N. K. Belikov, I. Bellini, F. Bellwied, R. Belmont-Moreno, E. Bencedi, G. Beole, S. Berceanu, I. Bercuci, A. Berdnikov, Y. Berenyi, D. Bergognon, A. A. E. Bertens, R. A. Berzano, D. Betev, L. Bhasin, A. Bhati, A. K. Bhom, J. Bianchi, L. Bianchi, N. Bielcik, J. Bielcikova, J. Bilandzic, A. Bjelogrlic, S. Blanco, F. Blanco, F. Blau, D. Blume, C. Bock, F. Bogdanov, A. Boggild, H. Bogolyubsky, M. Boldizsar, L. Bombara, M. Book, J. Borel, H. Borissov, A. Bornschein, J. Botje, M. Botta, E. Boettger, S. Braidot, E. Braun-Munzinger, P. Bregant, M. Breitner, T. Broker, T. A. Browning, T. A. Broz, M. Brun, R. Bruna, E. Bruno, G. E. Budnikov, D. Buesching, H. Bufalino, S. Buncic, P. Busch, O. Buthelezi, Z. Caffarri, D. Cai, X. Caines, H. Caliva, A. Calvo Villar, E. Camerini, P. Canoa Roman, V. Romeo, G. Cara Carena, F. Carena, W. Carminati, F. Diaz, A. Casanova Castellanos, J. Castillo Casula, E. A. R. Catanescu, V. Cavicchioli, C. Ceballos Sanchez, C. Cepila, J. Cerello, P. Chang, B. Chapeland, S. Charvet, J. L. Chattopadhyay, S. Chattopadhyay, S. Cherney, M. Cheshkov, C. Cheynis, B. Barroso, V. Chibante Chinellato, D. D. Chochula, P. Chojnacki, M. Choudhury, S. Christakoglou, P. Christensen, C. H. Christiansen, P. Chujo, T. Chung, S. U. Cicalo, C. Cifarelli, L. Cindolo, F. Cleymans, J. Colamaria, F. Colella, D. Collu, A. Colocci, M. Balbastre, G. Conesa del Valle, Z. Conesa Connors, M. E. Contin, G. Contreras, J. G. Cormier, T. M. Morales, Y. Corrales Cortese, P. Cortes Maldonado, I. Cosentino, M. R. Costa, F. Crochet, P. Cruz Albino, R. Cuautle, E. Cunqueiro, L. Dainese, A. Dang, R. Danu, A. Das, K. Das, D. Das, I. Dash, A. Dash, S. De, S. Delagrange, H. Deloff, A. Denes, E. Deppman, A. de Barros, G. O. V. De Caro, A. de Cataldo, G. de Cuveland, J. De Falco, A. De Gruttola, D. De Marco, N. De Pasquale, S. de Rooij, R. Diaz Corchero, M. A. Dietel, T. Divia, R. Di Bari, D. Di Giglio, C. Di Liberto, S. Di Mauro, A. Di Nezza, P. Djuvsland, O. Dobrin, A. Dobrowolski, T. Doenigus, B. Dordic, O. Dubey, A. K. Dubla, A. Ducroux, L. Dupieux, P. Majumdar, A. K. Dutta Erasmo, G. D. Elia, D. Emschermann, D. Engel, H. Erazmus, B. Erdal, H. A. Eschweiler, D. Espagnon, B. Estienne, M. Esumi, S. Evans, D. Evdokimov, S. Eyyubova, G. Fabris, D. Faivre, J. Falchieri, D. Fantoni, A. Fasel, M. Fehlker, D. Feldkamp, L. Felea, D. Feliciello, A. Feofilov, G. Fernandez Tellez, A. Ferreiro, E. G. Ferretti, A. Festanti, A. Figiel, J. Figueredo, M. A. S. Filchagin, S. Finogeev, D. Fionda, F. M. Fiore, E. M. Floratos, E. Floris, M. Foertsch, S. Foka, P. Fokin, S. Fragiacomo, E. Francescon, A. Frankenfeld, U. Fuchs, U. Furget, C. Girard, M. Fusco Gaardhoje, J. J. Gagliardi, M. Gago, A. Gallio, M. Gangadharan, D. R. Ganoti, R. Garabatos, C. Garcia-Solis, E. Gargiulo, C. Garishvili, I. Gerhard, J. Germain, M. Gheata, A. Gheata, M. Ghidini, B. Ghosh, P. Gianotti, P. Giubellino, P. Gladysz-Dziadus, E. Glaessel, P. Goerlich, L. Gomez, R. Gonzalez-Zamora, P. Gorbunov, S. Gotovac, S. Graczykowski, L. K. Grajcarek, R. Grelli, A. Grigoras, C. Grigoras, A. Grigoriev, V. Grigoryan, A. Grigoryan, S. Grinyov, B. Grion, N. Grosse-Oetringhaus, J. F. Grossiord, J. -Y Grosso, R. Guber, F. Guernane, R. Guerzoni, B. Guilbaud, M. Gulbrandsen, K. Gulkanyan, H. Gunji, T. Gupta, A. Gupta, R. Khan, K. H. Haake, R. Haaland, O. Hadjidakis, C. Haiduc, M. Hamagaki, H. Hamar, G. Hanratty, L. D. Hansen, A. Harris, J. W. Harton, A. Hatzifotiadou, D. Hayashi, S. Hayrapetyan, A. Heckel, S. T. Heide, M. Helstrup, H. Herghelegiu, A. Herrera Corral, G. Herrmann, N. Hess, B. A. Hetland, K. F. Hicks, B. Hippolyte, B. Hori, Y. Hristov, P. Hrivnacova, I. Huang, M. Humanic, T. J. Hutter, D. Hwang, D. S. Ichou, R. Ilkaev, R. Ilkiv, I. Inaba, M. Incani, E. Innocenti, G. M. Ionita, C. Ippolitov, M. Irfan, M. Ivanov, V. Ivanov, M. Ivanytskyi, O. Jachalkowski, A. Jahnke, C. Jang, H. J. Janik, M. A. Jayarathna, P. H. S. Y. Jena, S. Jimenez Bustamante, R. T. Jones, P. G. Jung, H. Jusko, A. Kalcher, S. Kalinak, P. Kalliokoski, T. Kalweit, A. Kang, J. H. Kaplin, V. Kar, S. Uysal, A. Karasu Karavichev, O. Karavicheva, T. Karpechev, E. Kazantsev, A. Kebschull, U. Keidel, R. Ketzer, B. Khan, S. A. Khan, P. Khan, M. M. Khanzadeev, A. Kharlov, Y. Kileng, B. Kim, J. S. Kim, D. W. Kim, D. J. Kim, S. Kim, B. Kim, T. Kim, M. Kim, M. Kirsch, S. Kisel, I. Kiselev, S. Kisiel, A. Kiss, G. Klay, J. L. Klein, J. Klein-Boesing, C. Kluge, A. Knichel, M. L. Knospe, A. G. Kobdaj, C. Koehler, M. K. Kollegger, T. Kolojvari, A. Kondratiev, V. Kondratyeva, N. Konevskikh, A. Kovalenko, V. Kowalski, M. Kox, S. Meethaleveedu, G. Koyithatta Kral, J. Kralik, I. Kramer, F. Kravcakova, A. Krelina, M. Kretz, M. Krivda, M. Krizek, F. Krus, M. Kryshen, E. Krzewicki, M. Kucera, V. Kucheriaev, Y. Kugathasan, T. Kuhn, C. Kuijer, P. G. Kulakov, I. Kumar, J. Kurashvili, P. Kurepin, A. B. Kurepin, A. Kuryakin, A. Kushpil, S. Kushpil, V. Kweon, M. J. Kwon, Y. Ladron de Guevara, P. Lagana Fernandes, C. Lakomov, I. Langoy, R. Lara, C. Lardeux, A. La Pointe, S. L. La Rocca, P. Lea, R. Lechman, M. Lee, S. C. Lee, G. R. Legrand, I. Lehnert, J. Lemmon, R. C. Lenhardt, M. Lenti, V. Leon Monzon, I. Levai, P. Li, S. Lien, J. Lietava, R. Lindal, S. Lindenstruth, V. Lippmann, C. Lisa, M. A. Ljunggren, H. M. Lodato, D. F. Loenne, P. I. Loggins, V. R. Loginov, V. Lohner, D. Loizides, C. Loo, K. K. Lopez, X. Lopez Torres, E. Lovhoiden, G. Lu, X. -G. Luettig, P. Lunardon, M. Luo, J. Luparello, G. Luzzi, C. Jacobs, P. M. Ma, R. Maevskaya, A. Mager, M. Mahapatra, D. P. Maire, A. Malaev, M. Maldonado Cervantes, I. Malinina, L. Mal'Kevich, D. Malzacher, P. Mamonov, A. Manceau, L. Manko, V. Manso, F. Manzari, V. Marchisone, M. Mares, J. Margagliotti, G. V. Margotti, A. Marin, A. Markert, C. Marquard, M. Martashvili, I. Martin, N. A. Martinengo, P. Martinez, M. I. Garcia, G. Martinez Blanco, J. Martin Martynov, Y. Mas, A. Masciocchi, S. Masera, M. Masoni, A. Massacrier, L. Mastroserio, A. Matyja, A. Mazer, J. Mazumder, R. Mazzoni, M. A. Meddi, F. Menchaca-Rocha, A. Perez, J. Mercado Meres, M. Miake, Y. Mikhaylov, K. Milano, L. Milosevic, J. Mischke, A. Mishra, A. N. Miskowiec, D. Mitu, C. Mlynarz, J. Mohanty, B. Molnar, L. Montano Zetina, L. Monteno, M. Montes, E. Moon, T. Morando, M. Moreira De Godoy, D. A. Moretto, S. Morreale, A. Morsch, A. Muccifora, V. Mudnic, E. Muhuri, S. Mukherjee, M. Mueller, H. Munhoz, M. G. Murray, S. Musa, L. Nandi, B. K. Nania, R. Nappi, E. Nattrass, C. Nayak, T. K. Nazarenko, S. Nedosekin, A. Nicassio, M. Niculescu, M. Nielsen, B. S. Nikolaev, S. Nikulin, S. Nikulin, V. Nilsen, B. S. Nilsson, M. S. Noferini, F. Nomokonov, P. Nooren, G. Nyanin, A. Nyatha, A. Nystrand, J. Oeschler, H. Oh, S. K. Oh, . S. Olah, L. Oleniacz, J. Oliveira Da Silva, A. C. Onderwaater, J. Oppedisano, C. Velasquez, A. Ortiz Oskarsson, A. Otwinowski, J. Oyama, K. Pachmayer, Y. Pachr, M. Pagano, R. Paic, G. Painke, F. Pajares, C. Pal, S. K. Palaha, A. Palmeri, A. Papikyan, V. Pappalardo, G. S. Park, W. J. Passfeld, A. Patalakha, D. I. Paticchio, V. Paul, B. Pawlak, T. Peitzmann, T. Da Costa, H. Pereira Pereira De Oliveira Filho, E. Peresunko, D. Lara, C. E. Perez Perrino, D. Peryt, W. Pesci, A. Pestov, Y. Petracek, V. Petran, M. Petris, M. Petrov, P. Petrovici, M. Petta, C. Piano, S. Pikna, M. Piillot, P. Pinazza, O. Pinsky, L. Pitz, N. Piyarathna, D. B. Planinic, M. Ploskon, M. Pluta, J. Pochybova, S. Podesta-Lerma, P. L. M. Poghosyan, M. G. Polichtchouk, B. Poljak, N. Pop, A. Porteboeuf-Houssais, S. Pospisil, V. Potukuchi, B. Prasad, S. K. Preghenella, R. Prino, F. Pruneau, C. A. Pshenichnov, I. Puddu, G. Punin, V. Putschke, J. Qvigstad, H. Rachevski, A. Rademakers, A. Rak, J. Rakotozafindrabe, A. Ramello, L. Raniwala, S. Raniwala, R. Raesaenen, S. S. Rascanu, B. T. Rathee, D. Rauch, W. Rauf, A. W. Razazi, V. Read, K. F. Real, J. S. Redlich, K. Reed, R. J. Rehman, A. Reichelt, P. Reicher, M. Reidt, F. Renfordt, R. Reolon, A. R. Reshetin, A. Rettig, F. Revol, J. -P. Reygers, K. Riccati, L. Ricci, R. A. Richert, T. Richter, M. Riedler, P. Riegler, W. Riggi, F. Rivetti, A. Rodriguez Cahuantzi, M. Manso, A. Rodriguez Roed, K. Rogochaya, E. Rohni, S. Rohr, D. Roehrich, D. Romita, R. Ronchetti, F. Rosnet, P. Rossegger, S. Rossi, A. Roy, P. Roy, C. Rubio Montero, A. J. Rui, R. Russo, R. Ryabinkin, E. Rybicki, A. Sadovsky, S. Safarik, K. Sahoo, R. Sahu, P. K. Saini, J. Sakaguchi, H. Sakai, S. Sakata, D. Salgado, C. A. Salzwedel, J. Sambyal, S. Samsonov, V. Sanchez Castro, X. Sandor, L. Sandoval, A. Sano, M. Santagati, G. Santoro, R. Sarkar, D. Scapparone, E. Scarlassara, F. Scharenberg, R. P. Schiaua, C. Schicker, R. Schmidt, C. Schmidt, H. R. Schuchmann, S. Schukraft, J. Schulc, M. Schuster, T. Schutz, Y. Schwarz, K. Schweda, K. Scioli, G. Scomparin, E. Scott, R. Scott, P. A. Segato, G. Selyuzhenkov, I. Seo, J. Serci, S. Serradilla, E. Sevcenco, A. Shabetai, A. Shabratova, G. Shahoyan, R. Sharma, S. Sharma, N. Shigaki, K. Shtejer, K. Sibiriak, Y. Siddhanta, S. Siemiarczuk, T. Silvermyr, D. Silvestre, C. Simatovic, G. Singaraju, R. Singh, R. Singha, S. Singhal, V. Sinha, B. C. Sinha, T. Sitar, B. Sitta, M. Skaali, T. B. Skjerdal, K. Smakal, R. Smirnov, N. Snellings, R. J. M. Sogaard, C. Soltz, R. Song, M. Song, J. Soos, C. Soramel, F. Spacek, M. Sputowska, I. Spyropoulou-Stassinaki, M. Srivastava, B. K. Stachel, J. Stan, I. Stefanek, G. Steinpreis, M. Stenlund, E. Steyn, G. Stiller, J. H. Stocco, D. Stolpovskiy, M. Strmen, P. Suaide, A. A. P. Vasquez, M. A. Subieta Sugitate, T. Suire, C. Suleymanov, M. Sultanov, R. Sumbera, M. Susa, T. Symons, T. J. M. Szanto de Toledo, A. Szarka, I. Szczepankiewicz, A. Szymanski, M. Takahashi, J. Tangaro, M. A. Takaki, J. D. Tapia Peloni, A. Tarantola Martinez, A. Tarazona Tauro, A. Tejeda Munoz, G. Telesca, A. Terrevoli, C. Ter Minasyan, A. Thaeder, J. Thomas, D. Tieulent, R. Timmins, A. R. Toia, A. Torii, H. Trubnikov, V. Trzaska, W. H. Tsuji, T. Tumkin, A. Turrisi, R. Tveter, T. S. Ulery, J. Ullaland, K. Ulrich, J. Uras, A. Urciuoli, G. M. Usai, G. L. Vajzer, M. Vala, M. Palomo, L. Valencia Vyvre, R. Vande Vannucci, L. Van Hoorne, J. W. van Leeuwen, M. Vargas, A. Varma, R. Vasileiou, M. Vasiliev, A. Vechernin, V. Veldhoen, M. Venaruzzo, M. Vercellin, E. Vergara, S. Vernet, R. Verweij, M. Vickovic, L. Viesti, G. Viinikainen, J. Vilakazi, Z. Baillie, O. Villalobos Vinogradov, A. Vinogradov, L. Vinogradov, Y. Virgili, T. Viyogi, Y. P. Vodopyanov, A. Voelkl, M. A. Voloshin, S. Voloshin, K. Volpe, G. von Haller, B. Vorobyev, I. Vranic, D. Vrlakova, J. Vulpescu, B. Vyushin, A. Wagner, B. Wagner, V. Wagner, J. Wang, Y. Wang, Y. Wang, M. Watanabe, D. Watanabe, K. Weber, M. Wessels, J. P. Westerhoff, U. Wiechula, J. Wikne, J. Wilde, M. Wilk, G. Wilkinson, J. Williams, M. C. S. Windelband, B. Winn, M. Xiang, C. Yaldo, C. G. Yamaguchi, Y. Yang, H. Yang, P. Yang, S. Yano, S. Yasnopolskiy, S. Yi, J. Yin, Z. Yoo, I. -K. Yushmanov, I. Zaccolo, V. Zach, C. Zampolli, C. Zaporozhets, S. Zarochentsev, A. Zavada, P. Zaviyalov, N. Zbroszczyk, H. Zelnicek, P. Zgura, I. S. Zhalov, M. Zhang, F. Zhang, Y. Zhang, H. Zhang, X. Zhou, D. Zhou, Y. Zhou, F. Zhu, X. Zhu, J. Zhu, J. Zhu, H. Zichichi, A. Zimmermann, M. B. Zimmermann, A. Zinovjev, G. Zoccarato, Y. Zynovyev, M. Zyzak, M. CA ALICE Collaboration TI Long-range angular correlations of pi, K and p in p-Pb collisions at root s(NN)=5.02 TeV SO PHYSICS LETTERS B LA English DT Article ID PROTON-PROTON COLLISIONS; TRANSVERSE-MOMENTUM; TRIANGULAR FLOW; PPB COLLISIONS; ELLIPTIC FLOW; LHC; DEPENDENCE; MULTIPLICITY; ANISOTROPY; DETECTOR AB Angular correlations between unidentified charged trigger particles and various species of charged associated particles (unidentified particles, pions, kaons, protons and antiprotons) are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV in the transverse-momentum range 0.3 < p(T) < 4 GeV/c. The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range vertical bar n(lab)vertical bar < 0.8. Fourier coefficients are extracted from the long-range correlations projected onto the azimuthal angle difference and studied as a function of p(T) and in intervals of event multiplicity. In high-multiplicity events, the second-order coefficient for protons, 4, is observed to be smaller than that for pions, v(2)(pi), up to about p(T) = 2 GeV/c. To reduce correlations due to jets, the per-trigger yield measured in low-multiplicity events is subtracted from that in high-multiplicity events. A two-ridge structure is obtained for all particle species. The Fourier decomposition of this structure shows that the second-order coefficients for pions and kaons are similar. The v(2)(p) is found to be smaller at low P-T and larger at higher p(T) than v(2)(pi), with a crossing occurring at about 2 GeV/c. This is qualitatively similar to the elliptic-flow pattern observed in heavy-ion collisions. A mass ordering effect at low transverse momenta is consistent with expectations from hydrodynamic model calculations assuming a collectively expanding system. (C) 2013 CERN. Published by Elsevier B.V. All rights reserved. C1 [Grigoryan, A.; Gulkanyan, H.; Hayrapetyan, A.; Papikyan, V.] Yerevan Phys Inst Fdn, AI Alikhanyan Natl Sci Lab, Yerevan, Armenia. [Cortes Maldonado, I.; Fernandez Tellez, A.; Martinez, M. I.; Rodriguez Cahuantzi, M.; Tejeda Munoz, G.; Vargas, A.; Vergara, S.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Alkin, A.; Grinyov, B.; Ivanytskyi, O.; Martynov, Y.; Trubnikov, V.; Zinovjev, G.; Zynovyev, M.] Bogolyubov Inst Theoret Phys, Kiev, Ukraine. [Pestov, Y.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Klay, J. L.] Calif Polytechn State Univ, San Luis Obispo, CA USA. [Cai, X.; Dang, R.; Li, S.; Luo, J.; Wang, Y.; Wang, M.; Xiang, C.; Yang, P.; Yin, Z.; Zhang, F.; Zhang, Y.; Zhang, H.; Zhang, X.; Zhou, D.; Zhou, F.; Zhu, X.; Zhu, J.; Zhu, H.] Cent China Normal Univ, Wuhan 430070, Peoples R China. [Vernet, R.] Ctr Calcul IN2P3, Villeurbanne, France. [Ceballos Sanchez, C.; Lopez Torres, E.; Shtejer, K.] Ctr Aplicaciones Tecnol Desarrollo Nucl CEADEN, Havana, Cuba. [Blanco, F.; Diaz Corchero, M. A.; Gonzalez-Zamora, P.; Montes, E.; Serradilla, E.] CEADEN, Madrid, Spain. [Canoa Roman, V.; Contreras, J. G.; Cruz Albino, R.; Gomez, R.; Herrera Corral, G.; Montano Zetina, L.] Ctr Invest & Estudios Avanzados CINVESTAV, Mexico City, DF, Mexico. [Alici, A.; Cifarelli, L.; De Caro, A.; De Gruttola, D.; Noferini, F.; Preghenella, R.; Santoro, R.; Zichichi, A.] Ctr Fermi Museo Storico Fis Ctr Studi Rich Enrico, Rome, Italy. [Garcia-Solis, E.; Harton, A.] Chicago State Univ, Chicago, IL USA. [Baldisseri, A.; Borel, H.; Castellanos, J. Castillo; Charvet, J. L.; Da Costa, H. Pereira; Rakotozafindrabe, A.; Yang, H.] IRFU, Commissariat Energie Atom, Saclay, France. [Ahmed, I.; Ajaz, M.; Khan, K. H.; Rauf, A. W.; Suleymanov, M.] CIIT Ctr Hlth Res, Islamabad, Pakistan. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Rubio Montero, A. J.; Salgado, C. A.] Univ Santiago Compostela, Dept Fis Particulas & IGFAE, Santiago De Compostela, Spain. [Ahmad, N.; Masoodi, A. Ahmad; Azmi, M. D.; Irfan, M.; Khan, M. M.] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India. [Altinpinar, S.; Djuvsland, O.; Fehlker, D.; Haaland, O.; Huang, M.; Lien, J.; Loenne, P. I.; Nystrand, J.; Rehman, A.; Roed, K.; Roehrich, D.; Skjerdal, K.; Ullaland, K.; Wagner, B.; Yang, S.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Gangadharan, D. R.; Humanic, T. J.; Lisa, M. A.; Salzwedel, J.; Steinpreis, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Hwang, D. S.; Kim, S.] Sejong Univ, Dept Phys, Seoul, South Korea. [Batzing, P. C.; Dordic, O.; Eyyubova, G.; Lindal, S.; Lovhoiden, G.; Milosevic, J.; Nilsson, M. S.; Qvigstad, H.; Richter, M.; Roed, K.; Skaali, T. B.; Tveter, T. S.; Wikne, J.] Univ Oslo, Dept Phys, Oslo, Norway. [Casula, E. A. R.; Collu, A.; De Falco, A.; Incani, E.; Puddu, G.; Razazi, V.; Serci, S.; Usai, G. L.] Dipartimento Fis Univ, Cagliari, Italy. [Casula, E. A. R.; Collu, A.; De Falco, A.; Incani, E.; Puddu, G.; Razazi, V.; Serci, S.; Usai, G. L.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [Camerini, P.; Contin, G.; Lea, R.; Margagliotti, G. V.; Rui, R.; Venaruzzo, M.] Dipartimento Fis Univ, Trieste, Italy. [Camerini, P.; Contin, G.; Lea, R.; Margagliotti, G. V.; Rui, R.; Venaruzzo, M.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Beole, S.; Berzano, D.; Bianchi, L.; Botta, E.; Morales, Y. Corrales; Ferretti, A.; Gagliardi, M.; Gallio, M.; Innocenti, G. M.; Marchisone, M.; Masera, M.; Milano, L.; Russo, R.; Vasquez, M. A. Subieta; Vercellin, E.] Dipartimento Fis Univ, Turin, Italy. [Beole, S.; Berzano, D.; Bianchi, L.; Botta, E.; Morales, Y. Corrales; Ferretti, A.; Gagliardi, M.; Gallio, M.; Innocenti, G. M.; Marchisone, M.; Masera, M.; Milano, L.; Russo, R.; Vasquez, M. A. Subieta; Vercellin, E.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Meddi, F.] Univ Sapienza, Dipartimento Fis, Rome, Italy. [Meddi, F.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Agostinelli, A.; Arcelli, S.; Basile, M.; Bellini, F.; Cifarelli, L.; Colocci, M.; Falchieri, D.; Guerzoni, B.; Scioli, G.; Zichichi, A.] Astron Univ, Dipartimento Fis, Bologna, Italy. [Agostinelli, A.; Arcelli, S.; Basile, M.; Bellini, F.; Cifarelli, L.; Colocci, M.; Falchieri, D.; Guerzoni, B.; Scioli, G.; Zichichi, A.] Sezione 1NFN, Bologna, Italy. [Barbera, R.; Jachalkowski, A.; La Rocca, P.; Petta, C.; Riggi, F.; Santagati, G.] Astron Univ, Dipartimento Fis, Catania, Italy. [Barbera, R.; Jachalkowski, A.; La Rocca, P.; Petta, C.; Riggi, F.; Santagati, G.] Sezione 1NFN, Catania, Italy. [Caffarri, D.; Festanti, A.; Francescon, A.; Lunardon, M.; Morando, M.; Moretto, S.; Scarlassara, F.; Segato, G.; Soramel, F.; Viesti, G.] Astron Univ, Dipartimento Fis, Padua, Italy. [Caffarri, D.; Festanti, A.; Francescon, A.; Lunardon, M.; Morando, M.; Moretto, S.; Scarlassara, F.; Segato, G.; Soramel, F.; Viesti, G.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Pagano, R.; Virgili, T.] ER Caianiello Univ, Dipartimento Fis, Salerno, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Pagano, R.; Virgili, T.] Grp Collegato INFN, Salerno, Italy. [Cortese, P.; Ramello, L.; Sitta, M.] Univ Piemonte Orientale, Dipartimento Sci Innovaz Tecnol, Alessandria, Italy. [Cortese, P.; Ramello, L.; Sitta, M.] Grp Collegato INFN, Alessandria, Italy. [Altini, V.; Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; Di Bari, D.; Di Giglio, C.; Erasmo, G. D.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Mastroserio, A.; Nicassio, M.; Perrino, D.; Tangaro, M. A.; Terrevoli, C.] Dipartimento Int Fis M Merlin, Bari, Italy. [Altini, V.; Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; Di Bari, D.; Di Giglio, C.; Erasmo, G. D.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Mastroserio, A.; Nicassio, M.; Perrino, D.; Tangaro, M. A.; Terrevoli, C.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Christiansen, P.; Ljunggren, H. M.; Velasquez, A. Ortiz; Oskarsson, A.; Richert, T.; Sogaard, C.; Stenlund, E.] Lund Univ, Div Expt High Energy Phys, Lund, Sweden. [Hess, B. A.; Schmidt, H. R.; Wiechula, J.] Eberhard Karts Univ Tubingen, Tubingen, Germany. [Rinella, G. Aglieri; Augustinus, A.; Pedrosa, F. Baltasar Dos Santos; Betev, L.; Brun, R.; Buncic, P.; Canoa Roman, V.; Carena, F.; Carena, W.; Carminati, F.; Cavicchioli, C.; Chapeland, S.; Barroso, V. Chibante; Chochula, P.; del Valle, Z. Conesa; Costa, F.; Divia, R.; Di Mauro, A.; Erazmus, B.; Floris, M.; Francescon, A.; Fuchs, U.; Gargiulo, C.; Gheata, A.; Gheata, M.; Giubellino, P.; Grigoras, C.; Grigoras, A.; Grosse-Oetringhaus, J. F.; Grosso, R.; Hayrapetyan, A.; Hristov, P.; Ionita, C.; Kalweit, A.; Kluge, A.; Kobdaj, C.; Kugathasan, T.; Lechman, M.; Legrand, I.; Luzzi, C.; Mager, M.; Markert, C.; Martinengo, P.; Milano, L.; Morsch, A.; Musa, L.; Niculescu, M.; Pinazza, O.; Poghosyan, M. G.; Rademakers, A.; Rauch, W.; Reidt, F.; Revol, J. -P.; Riedler, P.; Riegler, W.; Rossegger, S.; Rossi, A.; Safarik, K.; Santoro, R.; Schukraft, J.; Schutz, Y.; Shahoyan, R.; Soos, C.; Szczepankiewicz, A.; Martinez, A. Tarazona; Tauro, A.; Telesca, A.; Vyvre, R. Vande; Van Hoorne, J. W.; Volpe, G.; von Haller, B.; Vranic, D.; Zimmermann, M. B.] European Org Nucl Res CERN, Geneva, Switzerland. [Alme, J.; Erdal, H. A.; Helstrup, H.; Hetland, K. F.; Kileng, B.] Bergen Univ Coll, Fac Engn, Bergen, Norway. [Broz, M.; Meres, M.; Pikna, M.; Sitar, B.; Strmen, P.; Szarka, I.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Adam, J.; Bielcik, J.; Cepila, J.; Kravcakova, A.; Krelina, M.; Krizek, F.; Krus, M.; Pachr, M.; Petran, M.; Pospisil, V.; Schulc, M.; Smakal, R.; Spacek, M.; Wagner, V.; Zach, C.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic. [Bombara, M.; Kravcakova, A.; Vrlakova, J.] Safarik Univ, Fac Sci, Kosice, Slovakia. [Alt, T.; Bach, M.; Bornschein, J.; de Cuveland, J.; Eschweiler, D.; Gerhard, J.; Gorbunov, S.; Hutter, D.; Kalcher, S.; Kirsch, S.; Kisel, I.; Kollegger, T.; Kretz, M.; Lindenstruth, V.; Painke, F.; Rettig, F.; Rohr, D.; Toia, A.] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, D-60054 Frankfurt, Germany. [Baek, Y. W.; Jung, H.; Kim, J. S.; Kim, D. W.; Kim, M.; Lee, S. C.; Oh, S. K.] Gangneung Wonju Natl Univ, Kangnung, South Korea. [Krizek, F.] HIP, Helsinki, Finland. [Sakaguchi, H.; Shigaki, K.; Sugitate, T.; Yano, S.] Hiroshima Univ, Hiroshima, Japan. [Behera, N. K.; Dash, S.; Jena, S.; Meethaleveedu, G. Koyithatta; Kumar, J.; Nandi, B. K.; Nyatha, A.; Varma, R.] Indian Inst Technol Bombay IIT, Mumbai, Maharashtra, India. [del Valle, Z. Conesa; Das, I.; Espagnon, B.; Hadjidakis, C.; Hrivnacova, I.; Lakomov, I.; Suire, C.; Takaki, J. D. Tapia; Palomo, L. Valencia] Univ Paris 11, CNRS IN2P3, Inst Phys Nucl Orsay IPNO, Orsay, France. [Boettger, S.; Breitner, T.; Engel, H.; Kebschull, U.; Lara, C.; Ulrich, J.; Zelnicek, P.] Goethe Univ Frankfurt, Inst Informat, D-60054 Frankfurt, Germany. [Appelshaeuser, H.; Arslandok, M.; Bailhache, R.; Baumann, C.; Beck, H.; Blume, C.; Book, J.; Broker, T. A.; Buesching, H.; Doenigus, B.; Heckel, S. T.; Ketzer, B.; Kramer, F.; Kulakov, I.; Lehnert, J.; Luettig, P.; Marquard, M.; Pitz, N.; Rascanu, B. T.; Reichelt, P.; Renfordt, R.; Schuchmann, S.; Peloni, A. Tarantola; Ulery, J.; Zyzak, M.] Goethe Univ Frankfurt, Inst Kernphys, D-60054 Frankfurt, Germany. [Oeschler, H.] Tech Univ Darmstadt, Inst Kernphys, Darmstadt, Germany. [Anielski, J.; Bathen, B.; Dietel, T.; Emschermann, D.; Feldkamp, L.; Haake, R.; Heide, M.; Klein-Boesing, C.; Passfeld, A.; Wessels, J. P.; Westerhoff, U.; Wilde, M.; Zimmermann, M. B.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Belikov, I.; Hippolyte, B.; Kuhn, C.; Molnar, L.; Roy, C.; Sanchez Castro, X.] Univ Strasbourg, CNRS IN2P3, Inst Pluridisciplinaire Hubert Curien IPHC, Strasbourg, France. [Bogolyubsky, M.; Evdokimov, S.; Kharlov, Y.; Patalakha, D. I.; Polichtchouk, B.; Sadovsky, S.; Stolpovskiy, M.] Inst High Energy Phys, Protvino, Russia. [Finogeev, D.; Guber, F.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Konevskikh, A.; Kurepin, A. B.; Kurepin, A.; Maevskaya, A.; Pshenichnov, I.; Reshetin, A.] Acad Sci, Inst Nucl Res, Moscow, Russia. [Bertens, R. A.; Bjelogrlic, S.; Caliva, A.; de Rooij, R.; Dobrin, A.; Dubla, A.; Grelli, A.; La Pointe, S. L.; Lodato, D. F.; Luparello, G.; Mischke, A.; Nooren, G.; Peitzmann, T.; Poljak, N.; Reicher, M.; Snellings, R. J. M.; Thomas, D.; van Leeuwen, M.; Veldhoen, M.; Verweij, M.; Yang, H.; Zhou, Y.] Univ Utrecht, Inst Subat Phys, Utrecht, Netherlands. [Akindinov, A.; Kiselev, S.; Mal'Kevich, D.; Mikhaylov, K.; Nedosekin, A.; Sultanov, R.; Voloshin, K.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Ban, J.; Kalinak, P.; Kralik, I.; Krivda, M.; Sandor, L.; Vala, M.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Mares, J.; Zavada, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Baral, R. C.; Mahapatra, D. P.; Sahu, P. K.] Inst Phys, Bhubaneswar 751007, Orissa, India. [Danu, A.; Felea, D.; Gheata, M.; Haiduc, M.; Mitu, C.; Niculescu, M.; Sevcenco, A.; Stan, I.; Zgura, I. S.] ISS, Bucharest, Romania. [Cuautle, E.; Jimenez Bustamante, R. T.; Ladron de Guevara, P.; Maldonado Cervantes, I.; Paic, G.; Sanchez Castro, X.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Belmont-Moreno, E.; Menchaca-Rocha, A.; Sandoval, A.; Serradilla, E.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico. [Buthelezi, Z.; Foertsch, S.; Murray, S.; Steyn, G.; Vilakazi, Z.] Natl Res Fdn, IThemba LABS, Somerset West, NJ, South Africa. [Batyunya, B.; Grigoryan, S.; Malinina, L.; Mikhaylov, K.; Nomokonov, P.; Rogochaya, E.; Shabratova, G.; Vala, M.; Vodopyanov, A.; Zaporozhets, S.] Joint Nucl Res Inst, Dubna, Russia. [Ahn, S. A.; Ahn, S. U.; Jang, H. J.; Kim, D. W.] Korea Inst Sci & Technol Informat, Taejon, South Korea. [Uysal, A. Karasu] KTO Karatay Univ, Konya, Turkey. [Uysal, A. Karasu] Univ Clermont Ferrand, CNRS IN2P3, Lab Phys Corpusculaire LPC, Clermont Ferrand, France. [Arbor, N.; Balbastre, G. Conesa; Faivre, J.; Furget, C.; Guernane, R.; Kox, S.; Real, J. S.; Silvestre, C.] Univ Grenoble 1, CNRS IN2P3, Inst Polytechn Grenoble, Lab Phys Subat & Cosmol LPSC, Grenoble, France. [Bianchi, N.; Diaz, A. Casanova; Cunqueiro, L.; Di Nezza, P.; Fantoni, A.; Gianotti, P.; Muccifora, V.; Reolon, A. R.; Ronchetti, F.; Sakai, S.] INFN, Nazl Frascati Lab, Frascati, Italy. [Ricci, R. A.; Vannucci, L.] INFN, Lab Nazl Legnaro, Legnaro, Italy. [Bock, F.; Braidot, E.; Cosentino, M. R.; Loizides, C.; Jacobs, P. M.; Ploskon, M.; Sakai, S.; Symons, T. J. M.; Zhang, X.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Abelev, B.; Garishvili, I.; Soltz, R.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Bogdanov, A.; Grigoriev, V.; Kaplin, V.; Kondratyeva, N.; Loginov, V.; Ter Minasyan, A.] Moscow Phys Engn Inst, Moscow, Russia. [Deloff, A.; Dobrowolski, T.; Ilkiv, I.; Kurashvili, P.; Redlich, K.; Siemiarczuk, T.; Stefanek, G.; Wilk, G.] Natl Ctr Nucl Studies, Warsaw, Poland. [Andrei, C.; Berceanu, I.; Bercuci, A.; Catanescu, V.; Herghelegiu, A.; Petris, M.; Petrovici, M.; Pop, A.; Schiaua, C.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Mohanty, B.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Bearden, I. G.; Bilandzic, A.; Boggild, H.; Chojnacki, M.; Christensen, C. H.; Gaardhoje, J. J.; Gulbrandsen, K.; Hansen, A.; Nielsen, B. S.; Zaccolo, V.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Botje, M.; Christakoglou, P.; Kuijer, P. G.; Lara, C. E. Perez; Manso, A. Rodriguez] Natl Inst Subat Phys, Amsterdam, Netherlands. [Adamova, D.; Bielcikova, J.; Krizek, F.; Kucera, V.; Kushpil, S.; Kushpil, V.; Sumbera, M.; Vajzer, M.] Acad Sci Czech Republic, Inst Nucl Phys, Rezu Prahy, Czech Republic. [Awes, T. C.; Ganoti, R.; Silvermyr, D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Berdnikov, Y.; Ivanov, V.; Khanzadeev, A.; Kryshen, E.; Malaev, M.; Nikulin, V.; Samsonov, V.; Zhalov, M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Cherney, M.; Nilsen, B. S.] Creighton Univ, Dept Phys, Omaha, NE 68178 USA. [Aggarwal, M. M.; Bhati, A. K.; Rathee, D.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Floratos, E.; Spyropoulou-Stassinaki, M.; Vasileiou, M.] Univ Athens, Dept Phys, Athens, Greece. [Azmi, M. D.; Cleymans, J.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Bala, R.; Bhasin, A.; Gupta, A.; Gupta, R.; Potukuchi, B.; Rohni, S.; Sambyal, S.; Sharma, S.; Singh, R.] Univ Jammu, Dept Phys, Jammu 180004, India. [Raniwala, S.; Raniwala, R.] Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India. [Anguelov, V.; Bock, F.; Busch, O.; Fasel, M.; Glaessel, P.; Grajcarek, R.; Herrmann, N.; Klein, J.; Kweon, M. J.; Lohner, D.; Lu, X. -G.; Maire, A.; Perez, J. Mercado; Oeschler, H.; Oyama, K.; Pachmayer, Y.; Reidt, F.; Reygers, K.; Schicker, R.; Stachel, J.; Stiller, J. H.; Wang, Y.; Wilkinson, J.; Windelband, B.; Winn, M.; Zimmermann, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Aimo, I.] Politecn Torino, Turin, Italy. [Browning, T. A.; Scharenberg, R. P.; Srivastava, B. K.] Purdue Univ, W Lafayette, IN 47907 USA. [Chung, S. U.; Seo, J.; Song, J.; Yi, J.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Andronic, A.; Arsene, I. C.; Averbeck, R.; Bedda, C.; Braun-Munzinger, P.; Doenigus, B.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Ivanov, M.; Knichel, M. L.; Krzewicki, M.; Lenhardt, M.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Onderwaater, J.; Otwinowski, J.; Park, W. J.; Romita, R.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Thaeder, J.; Vranic, D.; Wagner, J.] GSI Helmholtzzentrum Schwerionenforschung, ExtreMe Matter Inst EMMI, Darmstadt, Germany. [Andronic, A.; Arsene, I. C.; Averbeck, R.; Bedda, C.; Braun-Munzinger, P.; Doenigus, B.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Ivanov, M.; Knichel, M. L.; Krzewicki, M.; Lenhardt, M.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Onderwaater, J.; Otwinowski, J.; Park, W. J.; Romita, R.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Thaeder, J.; Vranic, D.; Wagner, J.] GSI Helmholtzzentrum Schwerionenforschung, Div Res, Darmstadt, Germany. [Antitle, T.; Planinic, M.; Poljak, N.; Simatovic, G.; Susa, T.] Rudjer Boskovic Inst, Zagreb, Croatia. [Budnikov, D.; Filchagin, S.; Ilkaev, R.; Kuryakin, A.; Mamonov, A.; Nazarenko, S.; Punin, V.; Tumkin, A.; Vinogradov, Y.; Vyushin, A.; Zaviyalov, N.] Russian Fed Nucl Ctr VNIIEF, Sarov, Russia. [Aleksandrov, D.; Blau, D.; Fokin, S.; Ippolitov, M.; Kazantsev, A.; Kucheriaev, Y.; Manko, V.; Nikolaev, S.; Nikulin, S.; Nyanin, A.; Peresunko, D.; Ryabinkin, E.; Sibiriak, Y.; Ter Minasyan, A.; Vasiliev, A.; Vinogradov, A.; Yasnopolskiy, S.; Yushmanov, I.] Russian Res Ctr Kurchatov Inst, Moscow, Russia. [Chattopadhyay, S.; Das, K.; Das, D.; Majumdar, A. K. Dutta; Khan, P.; Paul, B.; Roy, P.; Sinha, T.] Saha Inst Nucl Phys, Kolkata, India. [Alexandre, D.; Barnby, L. S.; Evans, D.; Hanratty, L. D.; Jones, P. G.; Jusko, A.; Krivda, M.; Lee, G. R.; Lietava, R.; Palaha, A.; Petrov, P.; Scott, P. A.; Baillie, O. Villalobos] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Calvo Villar, E.; Gago, A.] Pontificia Univ Catol Peru, Dept Ciencias, Sect Fis, Lima, Peru. [de Cataldo, G.; Elia, D.; Lenti, V.; Manzari, V.; Nappi, E.; Paticchio, V.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Alici, A.; Antonioli, P.; Romeo, G. Cara; Cindolo, F.; Hatzifotiadou, D.; Margotti, A.; Nania, R.; Noferini, F.; Pesci, A.; Pinazza, O.; Preghenella, R.; Scapparone, E.; Williams, M. C. S.; Zampolli, C.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Cicalo, C.; Masoni, A.; Siddhanta, S.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [Badala, A.; Palmeri, A.; Pappalardo, G. S.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Antinori, F.; Dainese, A.; Fabris, D.; Toia, A.; Turrisi, R.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [Di Liberto, S.; Mazzoni, M. A.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Fragiacomo, E.; Grion, N.; Piano, S.; Rachevski, A.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Agnello, M.; Aimo, I.; Alessandro, B.; Arnaldi, R.; Bala, R.; Bruna, E.; Bufalino, S.; Cerello, P.; De Marco, N.; Feliciello, A.; Manceau, L.; Monteno, M.; Oppedisano, C.; Prino, F.; Riccati, L.; Rivetti, A.; Scomparin, E.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Aphecetche, L.; Batigne, G.; Bergognon, A. A. E.; Bregant, M.; Delagrange, H.; Erazmus, B.; Estienne, M.; Germain, M.; Lardeux, A.; Garcia, G. Martinez; Blanco, J. Martin; Mas, A.; Massacrier, L.; Piillot, P.; Schutz, Y.; Shabetai, A.; Stocco, D.] Univ Nantes, SUBATECH, Nantes, France. [Kobdaj, C.] Suranaree Univ Technol, Nakhon Ratchasima, Thailand. [Gotovac, S.; Mudnic, E.; Vickovic, L.] Tech Univ Split FESB, Split, Croatia. [Bartke, J.; Figiel, J.; Gladysz-Dziadus, E.; Goerlich, L.; Kowalski, M.; Matyja, A.; Rybicki, A.; Sputowska, I.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Knospe, A. G.; Markert, C.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Gomez, R.; Leon Monzon, I.; Podesta-Lerma, P. L. M.] Univ Autanoma Sinaloa, Culiacan, Mexico. [Prado, C. Alves Garcia; Deppman, A.; de Barros, G. O. V.; Figueredo, M. A. S.; Jahnke, C.; Lagana Fernandes, C.; Moreira De Godoy, D. A.; Munhoz, M. G.; Oliveira Da Silva, A. C.; Pereira De Oliveira Filho, E.; Suaide, A. A. P.; Szanto de Toledo, A.] Univ Sao Paulo, BR-09500900 Sao Paulo, Brazil. [Dash, A.; Takahashi, J.] Univ Estadual Campinas UNICAMP, Campinas, Brazil. [Bellwied, R.; Blanco, F.; Chinellato, D. D.; Jayarathna, P. H. S. Y.; Jena, S.; Pinsky, L.; Piyarathna, D. B.; Timmins, A. R.; Weber, M.] Univ Houston, Houston, TX USA. [Aeystoe, J.; Chang, B.; Kalliokoski, T.; Kim, D. J.; Kral, J.; Loo, K. K.; Morreale, A.; Rak, J.; Trzaska, W. H.; Viinikainen, J.] Univ Jyvaskyla, Jyvaskyla, Finland. [Martashvili, I.; Mazer, J.; Nattrass, C.; Read, K. F.; Scott, R.; Sharma, N.] Univ Tennessee, Knoxville, TN USA. [Gunji, T.; Hamagaki, H.; Hayashi, S.; Hori, Y.; Torii, H.; Tsuji, T.; Yamaguchi, Y.] Univ Tokyo, Tokyo, Japan. [Bhom, J.; Chujo, T.; Esumi, S.; Inaba, M.; Miake, Y.; Sakata, D.; Sano, M.; Watanabe, D.; Watanabe, K.] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Cheshkov, C.; Cheynis, B.; Ducroux, L.; Grossiord, J. -Y; Guilbaud, M.; Tieulent, R.; Uras, A.; Zoccarato, Y.] Univ Lyon 1, CNRS IN2P3, F-69622 Villeurbanne, France. [Altsybeev, I.; Feofilov, G.; Kolojvari, A.; Kondratiev, V.; Kovalenko, V.; Vechernin, V.; Vinogradov, L.; Vorobyev, I.; Zarochentsev, A.] St Petersburg State Univ, V Fock Inst Phys, St Petersburg, Russia. [Ahammed, Z.; Basu, S.; Chattopadhyay, S.; Choudhury, S.; De, S.; Dubey, A. K.; Ghosh, P.; Kar, S.; Khan, S. A.; Mohanty, B.; Muhuri, S.; Mukherjee, M.; Nayak, T. K.; Pal, S. K.; Saini, J.; Sarkar, D.; Singaraju, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata, India. [Langoy, R.; Lien, J.] Vestfold Univ Coll, Tonsberg, Norway. [Graczykowski, L. K.; Janik, M. A.; Kisiel, A.; Oleniacz, J.; Pawlak, T.; Peryt, W.; Pluta, J.; Szymanski, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Borissov, A.; Cormier, T. M.; Dobrin, A.; Loggins, V. R.; Mlynarz, J.; Prasad, S. K.; Pruneau, C. A.; Putschke, J.; Verweij, M.; Voloshin, S.; Yaldo, C. G.] Wayne State Univ, Detroit, MI USA. [Agocs, A. G.; Barnafoeldi, G. G.; Bencedi, G.; Berenyi, D.; Boldizsar, L.; Denes, E.; Hamar, G.; Kiss, G.; Levai, P.; Molnar, L.; Olah, L.; Pochybova, S.] Hungarian Acad Sci, Wigner Res Ctr Phys, Budapest, Hungary. [Adare, A. M.; Aiola, S.; Aronsson, T.; Caines, H.; Connors, M. E.; Harris, J. W.; Hicks, B.; Ma, R.; Oh, . S.; Reed, R. J.; Schuster, T.; Smirnov, N.] Yale Univ, New Haven, CT USA. [Kang, J. H.; Kim, B.; Kim, T.; Kim, M.; Kwon, Y.; Moon, T.; Song, M.] Yonsei Univ, Seoul 120749, South Korea. [Keidel, R.] ZTT, Fachhochschule Worms, Worms, Germany. [Malinina, L.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Milosevic, J.] Univ Belgrade, Fac Sci, YU-11000 Belgrade, Serbia. [Milosevic, J.] Univ Belgrade, Fac Vinca, Inst Nucl Sci, Belgrade, Serbia. [Oh, S. K.] Konkuk Univ, Seoul, South Korea. [Redlich, K.] Univ Wroclaw, Inst Theoret Phys, PL-50138 Wroclaw, Poland. RP Abelev, B (reprint author), Yerevan Phys Inst Fdn, AI Alikhanyan Natl Sci Lab, Yerevan, Armenia. RI Guber, Fedor/I-4271-2013; Bielcikova, Jana/G-9342-2014; Barnby, Lee/G-2135-2010; Kovalenko, Vladimir/C-5709-2013; Aiola, Salvatore/I-4136-2013; Takahashi, Jun/B-2946-2012; Castillo Castellanos, Javier/G-8915-2013; Bregant, Marco/I-7663-2012; Wagner, Vladimir/G-5650-2014; Sevcenco, Adrian/C-1832-2012; Kucera, Vit/G-8459-2014; Vajzer, Michal/G-8469-2014; Krizek, Filip/G-8967-2014; Blau, Dmitry/H-4523-2012; Yang, Hongyan/J-9826-2014; Cosentino, Mauro/L-2418-2014; Bearden, Ian/M-4504-2014; Sumbera, Michal/O-7497-2014; Felea, Daniel/C-1885-2012; Barnafoldi, Gergely Gabor/L-3486-2013; Peitzmann, Thomas/K-2206-2012; Kharlov, Yuri/D-2700-2015; Mitu, Ciprian/E-6733-2011; Ahmed, Ijaz/E-9144-2015; Usai, Gianluca/E-9604-2015; Salgado, Carlos A./G-2168-2015; Bruna, Elena/C-4939-2014; Karasu Uysal, Ayben/K-3981-2015; HAMAGAKI, HIDEKI/G-4899-2014; Altsybeev, Igor/K-6687-2013; Vinogradov, Leonid/K-3047-2013; Kondratiev, Valery/J-8574-2013; Vechernin, Vladimir/J-5832-2013; Graczykowski, Lukasz/O-7522-2015; Janik, Malgorzata/O-7520-2015; feofilov, grigory/A-2549-2013; Adamova, Dagmar/G-9789-2014; Christensen, Christian/D-6461-2012; De Pasquale, Salvatore/B-9165-2008; Chinellato, David/D-3092-2012; de Cuveland, Jan/H-6454-2016; Kurepin, Alexey/H-4852-2013; Jena, Deepika/P-2873-2015; Jena, Satyajit/P-2409-2015; Akindinov, Alexander/J-2674-2016; Nattrass, Christine/J-6752-2016; Suaide, Alexandre/L-6239-2016; Deppman, Airton/J-5787-2014; Pshenichnov, Igor/A-4063-2008; Inst. of Physics, Gleb Wataghin/A-9780-2017; Ferreiro, Elena/C-3797-2017; Armesto, Nestor/C-4341-2017; Ferretti, Alessandro/F-4856-2013; Martinez Hernandez, Mario Ivan/F-4083-2010; Vickovic, Linda/F-3517-2017; Fernandez Tellez, Arturo/E-9700-2017; OI Guber, Fedor/0000-0001-8790-3218; Barnby, Lee/0000-0001-7357-9904; Kovalenko, Vladimir/0000-0001-6012-6615; Aiola, Salvatore/0000-0001-6209-7627; Takahashi, Jun/0000-0002-4091-1779; Castillo Castellanos, Javier/0000-0002-5187-2779; Sevcenco, Adrian/0000-0002-4151-1056; Cosentino, Mauro/0000-0002-7880-8611; Bearden, Ian/0000-0003-2784-3094; Sumbera, Michal/0000-0002-0639-7323; Felea, Daniel/0000-0002-3734-9439; Peitzmann, Thomas/0000-0002-7116-899X; Usai, Gianluca/0000-0002-8659-8378; Salgado, Carlos A./0000-0003-4586-2758; Bruna, Elena/0000-0001-5427-1461; Karasu Uysal, Ayben/0000-0001-6297-2532; Altsybeev, Igor/0000-0002-8079-7026; Vinogradov, Leonid/0000-0001-9247-6230; Kondratiev, Valery/0000-0002-0031-0741; Vechernin, Vladimir/0000-0003-1458-8055; Janik, Malgorzata/0000-0002-3356-3438; feofilov, grigory/0000-0003-3700-8623; Christensen, Christian/0000-0002-1850-0121; De Pasquale, Salvatore/0000-0001-9236-0748; Chinellato, David/0000-0002-9982-9577; de Cuveland, Jan/0000-0003-0455-1398; Kurepin, Alexey/0000-0002-1851-4136; Jena, Deepika/0000-0003-2112-0311; Jena, Satyajit/0000-0002-6220-6982; Akindinov, Alexander/0000-0002-7388-3022; Nattrass, Christine/0000-0002-8768-6468; Suaide, Alexandre/0000-0003-2847-6556; Deppman, Airton/0000-0001-9179-6363; Pshenichnov, Igor/0000-0003-1752-4524; Ferreiro, Elena/0000-0002-4449-2356; Armesto, Nestor/0000-0003-0940-0783; Ferretti, Alessandro/0000-0001-9084-5784; Martinez Hernandez, Mario Ivan/0000-0002-8503-3009; Vickovic, Linda/0000-0002-9820-7960; Fernandez Tellez, Arturo/0000-0003-0152-4220; Mohanty, Bedangadas/0000-0001-9610-2914; Gago Medina, Alberto Martin/0000-0002-0019-9692; Riggi, Francesco/0000-0002-0030-8377; Dainese, Andrea/0000-0002-2166-1874; Paticchio, Vincenzo/0000-0002-2916-1671; Monteno, Marco/0000-0002-3521-6333; Bhasin, Anju/0000-0002-3687-8179; SANTORO, ROMUALDO/0000-0002-4360-4600; Scarlassara, Fernando/0000-0002-4663-8216; Turrisi, Rosario/0000-0002-5272-337X; Beole', Stefania/0000-0003-4673-8038 NR 69 TC 130 Z9 131 U1 3 U2 73 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD OCT PY 2013 VL 726 IS 1-3 BP 164 EP 177 DI 10.1016/j.physletb.2013.08.024 PG 14 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 245RT UT WOS:000326482200018 ER PT J AU Scandale, W Arduini, G Butcher, M Cerutti, F Gilardoni, S Lari, L Lechner, A Losito, R Masi, A Mereghetti, A Metral, E Mirarchi, D Montesano, S Redaelli, S Schoofs, P Smirnov, G Bagli, E Bandiera, L Baricordi, S Dalpiaz, P Guidi, V Mazzolari, A Vincenzi, D Claps, G Dabagov, S Hampai, D Murtas, F Cavoto, G Garattini, M Iacoangeli, F Ludovici, L Santacesaria, R Valente, P Galluccio, F Afonin, AG Bulgakov, MK Chesnokov, YA Maisheev, VA Yazynin, IA Kovalenko, AD Taratin, AM Uzhinskiy, VV Gavrikov, YA Ivanov, YM Lapina, LP Ferguson, W Fulcher, J Hall, G Pesaresi, M Raymond, M Previtali, V AF Scandale, W. Arduini, G. Butcher, M. Cerutti, F. Gilardoni, S. Lari, L. Lechner, A. Losito, R. Masi, A. Mereghetti, A. Metral, E. Mirarchi, D. Montesano, S. Redaelli, S. Schoofs, P. Smirnov, G. Bagli, E. Bandiera, L. Baricordi, S. Dalpiaz, P. Guidi, V. Mazzolari, A. Vincenzi, D. Claps, G. Dabagov, S. Hampai, D. Murtas, F. Cavoto, G. Garattini, M. Iacoangeli, F. Ludovici, L. Santacesaria, R. Valente, P. Galluccio, F. Afonin, A. G. Bulgakov, M. K. Chesnokov, Yu. A. Maisheev, V. A. Yazynin, I. A. Kovalenko, A. D. Taratin, A. M. Uzhinskiy, V. V. Gavrikov, Yu. A. Ivanov, Yu. M. Lapina, L. P. Ferguson, W. Fulcher, J. Hall, G. Pesaresi, M. Raymond, M. Previtali, V. TI Optimization of the crystal assisted collimation of the SPS beam SO PHYSICS LETTERS B LA English DT Article DE Accelerator; Beam collimation; Crystal; Channeling AB The possibility for optimization of crystal assisted collimation has been studied at the CERN SPS for stored beams of protons and Pb ions with 270 GeV/c per unit charge. A bent silicon crystal used as a primary collimator deflects halo particles in the channeling regime, directing them into a tungsten absorber. In channeling conditions a strong reduction of off-momentum particle numbers produced in the crystal and absorber, which form collimation leakage, has been observed in the first high dispersion (HD) area downstream. The present study shows that the collimation leakage is minimal for some values of the absorber offset relative to the crystal. The optimal offset value is larger for Pb ions because of their considerably larger ionization losses in the crystal, which cause large increases of particle betatron oscillation amplitudes. The optimal absorber offset allows obtaining maximal efficiency of crystal-assisted collimation. (C) 2013 Elsevier B.V. All rights reserved. C1 [Scandale, W.; Arduini, G.; Butcher, M.; Cerutti, F.; Gilardoni, S.; Lari, L.; Lechner, A.; Losito, R.; Masi, A.; Mereghetti, A.; Metral, E.; Mirarchi, D.; Montesano, S.; Redaelli, S.; Schoofs, P.; Smirnov, G.] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland. [Scandale, W.] Univ Paris 11, Lab Accelerateur Lineaire LAL, Orsay, France. [Bagli, E.; Bandiera, L.; Baricordi, S.; Dalpiaz, P.; Guidi, V.; Mazzolari, A.; Vincenzi, D.] Univ Ferrara, Dipartimento Fis, INFN Sez Ferrara, I-44100 Ferrara, Italy. [Claps, G.; Dabagov, S.; Hampai, D.; Murtas, F.] INFN LNF, I-00044 Rome, Italy. [Scandale, W.; Cavoto, G.; Garattini, M.; Iacoangeli, F.; Ludovici, L.; Santacesaria, R.; Valente, P.] INFN Sez Roma, I-00185 Rome, Italy. [Galluccio, F.] INFN Sez Napoli, Naples, Italy. [Afonin, A. G.; Bulgakov, M. K.; Chesnokov, Yu. A.; Maisheev, V. A.; Yazynin, I. A.] Inst High Energy Phys, RU-142284 Protvino, Moscow Region, Russia. [Kovalenko, A. D.; Taratin, A. M.; Uzhinskiy, V. V.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. [Ivanov, Yu. M.; Lapina, L. P.; Ferguson, W.] Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad Regio, Russia. [Ferguson, W.; Fulcher, J.; Hall, G.; Pesaresi, M.; Raymond, M.] Univ London Imperial Coll Sci Technol & Med, London, England. [Previtali, V.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Lari, L.] Inst Fis Corpuscular CSIC IFIC, Valencia, Spain. RP Taratin, AM (reprint author), Joint Inst Nucl Res, Joliot Curie 6, Dubna 141980, Moscow Region, Russia. EM alexander.taratin@cern.ch RI Bagli, Enrico/E-5906-2012; valente, paolo/A-6640-2010; Ludovici, Lucio/F-5917-2011; Murtas, Fabrizio/B-5729-2012; Dabagov, Sultan/M-6425-2015; Mazzolari, Andrea/A-1100-2017; OI Bagli, Enrico/0000-0003-3913-7701; valente, paolo/0000-0002-5413-0068; Ludovici, Lucio/0000-0003-1970-9960; Dabagov, Sultan/0000-0003-3087-1205; Mazzolari, Andrea/0000-0003-0804-6778; Hampai, Dariush/0000-0002-8881-0520; Murtas, Fabrizio/0000-0002-7041-6541; Cavoto, Gianluca/0000-0003-2161-918X; guidi, vincenzo/0000-0001-9726-8481 FU CERN EN-STI; BE-AOP groups; Russian Foundation for Basic Research [05-02-17622, 06-02-16912]; RF President Foundation [SS-3383.2010.2]; LHC Program of Presidium of Russian Academy of Sciences; MIUR [FIRB RBFR085M0L_001/I11J10000090001]; Eu-CARD program [GA 227579]; UK Science and Technology Research Council; [RFBR-CERN 12-02-91532] FX We wish to acknowledge the strong support of the CERN EN-STI and BE-AOP groups. We also acknowledge the partial support by the Russian Foundation for Basic Research Grants 05-02-17622 and 06-02-16912, the RF President Foundation Grant SS-3383.2010.2, the "LHC Program of Presidium of Russian Academy of Sciences" and the grant RFBR-CERN 12-02-91532. G. Cavoto, F. Iacoangeli and R. Santacesaria acknowledge the support from MIUR (grant FIRB RBFR085M0L_001/I11J10000090001). Work supported by the Eu-CARD program GA 227579, within the "Collimators and Materials for High Power Beams" work package (Colmat-WP). The Imperial College group gratefully acknowledges support from the UK Science and Technology Research Council. NR 10 TC 8 Z9 8 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD OCT PY 2013 VL 726 IS 1-3 BP 182 EP 186 DI 10.1016/j.physletb.2013.08.028 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 245RT UT WOS:000326482200020 ER PT J AU Solovieva, E Chistov, R Adachi, I Asner, DM Aushev, T Bakich, AM Bala, A Bhardwaj, V Bhuyan, B Bischofberger, M Bondar, A Bonvicini, G Bozek, A Bracko, M Browder, TE Chekelian, V Chen, A Cheon, BG Chilikin, K Cho, K Chobanova, V Choi, Y Cinabro, D Dalseno, J Danilov, M Dolezal, Z Drasal, Z Drutskoy, A Dutta, D Eidelman, S Epifanov, D Farhat, H Fast, JE Ferber, T Gaur, V Ganguly, S Gillard, R Goh, YM Golob, B Haba, J Hoshi, Y Hou, WS Hsiung, YB Huschle, M Hyun, HJ Iijima, T Ishikawa, A Itoh, R Iwasaki, Y Julius, T Kah, DH Kang, JH Kawasaki, T Kiesling, C Kim, DY Kim, HO Kim, JB Kim, KT Kim, MJ Kim, YJ Kinoshita, K Klucar, J Ko, BR Kodys, P Korpar, S Kouzes, RT Krizan, P Krokovny, P Kuhr, T Kumar, R Kumita, T Kuzmin, A Kwon, YJ Lange, JS Lee, SH Li, J Li, Y Liventsev, D Lukin, P Matvienko, D Miyata, H Mizuk, R Mohanty, GB Mussa, R Nakano, E Nakao, M Nedelkovska, E Nisar, NK Nishida, S Nitoh, O Ogawa, S Okuno, S Olsen, SL Pakhlov, P Pakhlova, G Park, H Park, HK Pedlar, TK Pestotnik, R Petric, M Piilonen, LE Prothmann, K Ritter, M Rohrken, M Rostomyan, A Ryu, S Sahoo, H Saito, T Sakai, Y Sandilya, S Santel, D Santelj, L Sanuki, T Savinov, V Schneider, O Schnell, G Schwanda, C Senyo, K Sevior, ME Shapkin, M Shen, CP Shibata, TA Shiu, JG Shwartz, B Sibidanov, A Singh, JB Smerkol, P Sohn, YS Sokolov, A Stanic, S Staric, M Sumihama, M Tamponi, U Tanaka, S Tanida, K Tatishvili, G Teramoto, Y Tikhomirov, I Tsuboyama, T Uchida, M Uehara, S Uglov, T Unno, Y Uno, S Urquijo, P Usov, Y Van Hulse, C Varner, G Varvell, KE Vinokurova, A Wagner, MN Wang, CH Wang, MZ Wang, P Watanabe, M Watanabe, Y Williams, KM Won, E Yabsley, BD Yamashita, Y Yashchenko, S Yook, Y Zhang, ZP Zhilich, V Zupanc, A AF Solovieva, E. Chistov, R. Adachi, I. Asner, D. M. Aushev, T. Bakich, A. M. Bala, A. Bhardwaj, V. Bhuyan, B. Bischofberger, M. Bondar, A. Bonvicini, G. Bozek, A. Bracko, M. Browder, T. E. Chekelian, V. Chen, A. Cheon, B. G. Chilikin, K. Cho, K. Chobanova, V. Choi, Y. Cinabro, D. Dalseno, J. Danilov, M. Dolezal, Z. Drasal, Z. Drutskoy, A. Dutta, D. Eidelman, S. Epifanov, D. Farhat, H. Fast, J. E. Ferber, T. Gaur, V. Ganguly, S. Gillard, R. Goh, Y. M. Golob, B. Haba, J. Hoshi, Y. Hou, W. S. Hsiung, Y. B. Huschle, M. Hyun, H. J. Iijima, T. Ishikawa, A. Itoh, R. Iwasaki, Y. Julius, T. Kah, D. H. Kang, J. H. Kawasaki, T. Kiesling, C. Kim, D. Y. Kim, H. O. Kim, J. B. Kim, K. T. Kim, M. J. Kim, Y. J. Kinoshita, K. Klucar, J. Ko, B. R. Kodys, P. Korpar, S. Kouzes, R. T. Krizan, P. Krokovny, P. Kuhr, T. Kumar, R. Kumita, T. Kuzmin, A. Kwon, Y. -J. Lange, J. S. Lee, S. -H. Li, J. Li, Y. Liventsev, D. Lukin, P. Matvienko, D. Miyata, H. Mizuk, R. Mohanty, G. B. Mussa, R. Nakano, E. Nakao, M. Nedelkovska, E. Nisar, N. K. Nishida, S. Nitoh, O. Ogawa, S. Okuno, S. Olsen, S. L. Pakhlov, P. Pakhlova, G. Park, H. Park, H. K. Pedlar, T. K. Pestotnik, R. Petric, M. Piilonen, L. E. Prothmann, K. Ritter, M. Roehrken, M. Rostomyan, A. Ryu, S. Sahoo, H. Saito, T. Sakai, Y. Sandilya, S. Santel, D. Santelj, L. Sanuki, T. Savinov, V. Schneider, O. Schnell, G. Schwanda, C. Senyo, K. Sevior, M. E. Shapkin, M. Shen, C. P. Shibata, T. -A. Shiu, J. -G. Shwartz, B. Sibidanov, A. Singh, J. B. Smerkol, P. Sohn, Y. -S. Sokolov, A. Stanic, S. Staric, M. Sumihama, M. Tamponi, U. Tanaka, S. Tanida, K. Tatishvili, G. Teramoto, Y. Tikhomirov, I. Tsuboyama, T. Uchida, M. Uehara, S. Uglov, T. Unno, Y. Uno, S. Urquijo, P. Usov, Y. Van Hulse, C. Varner, G. Varvell, K. E. Vinokurova, A. Wagner, M. N. Wang, C. H. Wang, M. -Z. Wang, P. Watanabe, M. Watanabe, Y. Williams, K. M. Won, E. Yabsley, B. D. Yamashita, Y. Yashchenko, S. Yook, Y. Zhang, Z. P. Zhilich, V. Zupanc, A. CA Belle Collaboration TI Evidence for (B)over-bar(s)(0) -> Lambda(+)(c)(Lambda)over-bar pi(-) SO PHYSICS LETTERS B LA English DT Article ID BARYON-ANTIBARYON; B-DECAYS AB Using 121.4 fb(-1) of data collected with the Belle detector at the Y(5S) resonance at the KEKB asymmetric-energy e(+)e(-) collider, we report evidence for the (B) over bar (0)(s) -> Lambda(+)(c)(Lambda) over bar pi(-) decay mode with a measured branching fraction (3.6 +/- 1.1[stat](-0.5)(+0.3)[syst.] +/- 0.9[Lambda(+)(c)] +/- 0.7[N-(B) over bar s0]) x 10(-4) and a significance of 4.4 standard deviations. This is the first evidence for a baryonic B-s(0) decay. (C) 2013 Elsevier B.V. All rights reserved. C1 [Asner, D. M.; Bakich, A. M.; Bala, A.; Bischofberger, M.; Bozek, A.; Van Hulse, C.] Univ Basque Country UPV EHU, Bilbao 48080, Spain. [Bonvicini, G.; Urquijo, P.] Univ Bonn, D-53115 Bonn, Germany. [Bondar, A.; Eidelman, S.; Krokovny, P.; Kuzmin, A.; Lukin, P.; Matvienko, D.; Shwartz, B.; Usov, Y.; Vinokurova, A.; Zhilich, V.] Budker Inst Nucl Phys SB RAS, Novosibirsk 630090, Russia. [Bondar, A.; Eidelman, S.; Krokovny, P.; Kuzmin, A.; Lukin, P.; Matvienko, D.; Shwartz, B.; Usov, Y.; Vinokurova, A.; Zhilich, V.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Dolezal, Z.; Drasal, Z.; Kodys, P.] Charles Univ Prague, Fac Math & Phys, CR-12116 Prague, Czech Republic. [Kinoshita, K.; Santel, D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Ferber, T.; Rostomyan, A.; Yashchenko, S.] Deutsch Elekt Synchrotron, D-22607 Hamburg, Germany. [Lange, J. S.; Wagner, M. N.] Univ Giessen, D-35392 Giessen, Germany. [Sumihama, M.] Gifu Univ, Gifu 5011193, Japan. [Bhardwaj, V.; Bischofberger, M.; Cheon, B. G.; Goh, Y. M.; Unno, Y.] Hanyang Univ, Seoul 133791, South Korea. [Browder, T. E.; Sahoo, H.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Adachi, I.; Bonvicini, G.; Haba, J.; Itoh, R.; Iwasaki, Y.; Liventsev, D.; Nakao, M.; Nishida, S.; Sakai, Y.; Tanaka, S.; Tsuboyama, T.; Uehara, S.; Uno, S.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Schnell, G.] Ikerbasque, Bilbao 48011, Spain. [Bhuyan, B.; Bozek, A.; Dutta, D.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Wang, P.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Shapkin, M.; Sokolov, A.] Inst High Energy Phys, Protvino 142281, Russia. [Schwanda, C.] Inst High Energy Phys, A-1050 Vienna, Austria. [Mussa, R.; Tamponi, U.] INFN Sez Torino, I-10125 Turin, Italy. [Solovieva, E.; Chistov, R.; Asner, D. M.; Aushev, T.; Chilikin, K.; Danilov, M.; Drutskoy, A.; Mizuk, R.; Pakhlov, P.; Pakhlova, G.; Tikhomirov, I.; Uglov, T.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Bala, A.; Bracko, M.; Golob, B.; Klucar, J.; Korpar, S.; Krizan, P.; Pestotnik, R.; Petric, M.; Santelj, L.; Smerkol, P.; Staric, M.] Jozef Stefan Inst, Ljubljana 1000, Slovenia. [Okuno, S.; Watanabe, Y.] Kanagawa Univ, Yokohama, Kanagawa 2218686, Japan. [Huschle, M.; Kuhr, T.; Roehrken, M.; Zupanc, A.] Karlsruher Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Cho, K.; Kim, Y. J.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Kim, J. B.; Kim, K. T.; Ko, B. R.; Lee, S. -H.; Won, E.] Korea Univ, Seoul 136713, South Korea. [Hyun, H. J.; Kah, D. H.; Kim, H. O.; Kim, M. J.; Park, H.; Park, H. K.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Schneider, O.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Bakich, A. M.; Golob, B.; Krizan, P.] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. [Pedlar, T. K.] Luther Coll, Decorah, IA 52101 USA. [Bracko, M.; Korpar, S.] Univ Maribor, SLO-2000 Maribor, Slovenia. [Chekelian, V.; Chobanova, V.; Dalseno, J.; Kiesling, C.; Nedelkovska, E.; Prothmann, K.; Ritter, M.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Julius, T.; Sevior, M. E.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Danilov, M.; Drutskoy, A.; Mizuk, R.; Pakhlov, P.] Moscow Phys Engn Inst, Moscow 115409, Russia. [Uglov, T.] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia. [Iijima, T.; Shen, C. P.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648602, Japan. [Iijima, T.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648602, Japan. Nara Womens Univ, Nara 6308506, Japan. [Chen, A.] Natl Cent Univ, Chungli 32054, Taiwan. [Wang, C. H.] Natl United Univ, Miaoli 36003, Taiwan. [Hou, W. S.; Hsiung, Y. B.; Shiu, J. -G.; Wang, M. -Z.] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Yamashita, Y.] Nippon Dent Univ, Niigata 9518580, Japan. [Kawasaki, T.; Miyata, H.; Watanabe, M.] Niigata Univ, Niigata 9502181, Japan. [Stanic, S.] Univ Nova Gorica, Nova Gorica 5000, Slovenia. [Nakano, E.; Teramoto, Y.] Osaka City Univ, Osaka 5588585, Japan. [Fast, J. E.; Kouzes, R. T.; Tatishvili, G.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Savinov, V.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Kumar, R.] Punjab Agr Univ, Ludhiana 141004, Punjab, India. [Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Li, J.; Olsen, S. L.; Ryu, S.; Tanida, K.] Seoul Natl Univ, Seoul 151742, South Korea. [Kim, D. Y.] Soongsil Univ, Seoul 156743, South Korea. [Choi, Y.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Sibidanov, A.; Varvell, K. E.; Yabsley, B. D.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Gaur, V.; Mohanty, G. B.; Nisar, N. K.; Sandilya, S.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Dalseno, J.; Prothmann, K.] Tech Univ Munich, Excellence Cluster Universe, D-85748 Garching, Germany. [Ogawa, S.] Toho Univ, Funabashi, Chiba 2748510, Japan. [Hoshi, Y.] Tohoku Gakuin Univ, Tagajo, Miyagi 9858537, Japan. [Ishikawa, A.; Saito, T.; Sanuki, T.] Tohoku Univ, Sendai, Miyagi 9808578, Japan. [Epifanov, D.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Shibata, T. -A.; Uchida, M.] Tokyo Inst Technol, Tokyo 1528550, Japan. [Kumita, T.] Tokyo Metropolitan Univ, Tokyo 1920397, Japan. [Nitoh, O.] Tokyo Univ Agr & Technol, Tokyo 1848588, Japan. [Li, Y.; Piilonen, L. E.; Williams, K. M.] Virginia Polytech Inst & State Univ, CNP, Blacksburg, VA 24061 USA. [Cinabro, D.; Farhat, H.; Ganguly, S.; Gillard, R.] Wayne State Univ, Detroit, MI 48202 USA. [Senyo, K.] Yamagata Univ, Yamagata 9908560, Japan. [Kang, J. H.; Kwon, Y. -J.; Sohn, Y. -S.; Yook, Y.] Yonsei Univ, Seoul 120749, South Korea. RP Solovieva, E (reprint author), Inst Theoret & Expt Phys, Moscow 117218, Russia. EM esolov@itep.ru RI Nitoh, Osamu/C-3522-2013; Ishikawa, Akimasa/G-6916-2012; Pakhlov, Pavel/K-2158-2013; Uglov, Timofey/B-2406-2014; Danilov, Mikhail/C-5380-2014; Mizuk, Roman/B-3751-2014; Krokovny, Pavel/G-4421-2016; Chilikin, Kirill/B-4402-2014; Chistov, Ruslan/B-4893-2014; Drutskoy, Alexey/C-8833-2016; Pakhlova, Galina/C-5378-2014; Solovieva, Elena/B-2449-2014 OI Pakhlov, Pavel/0000-0001-7426-4824; Uglov, Timofey/0000-0002-4944-1830; Danilov, Mikhail/0000-0001-9227-5164; Krokovny, Pavel/0000-0002-1236-4667; Chilikin, Kirill/0000-0001-7620-2053; Chistov, Ruslan/0000-0003-1439-8390; Drutskoy, Alexey/0000-0003-4524-0422; Pakhlova, Galina/0000-0001-7518-3022; Solovieva, Elena/0000-0002-5735-4059 FU Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan; Japan Society for the promotion of Science (JSPS); Tau-Lepton Physics Research Center of Nagoya University; Australian Research Council; Australian Department of Industry, Innovation, Science and Research; National Natural Science Foundation of China [10575109, 10775142, 10875115, 10825524]; Ministry of Education, Youth and Sports of the Czech Republic [LA10033, MSM0021620859]; Department of Science and Technology of India; Ministry Education Science and Technology; National Research Foundation of Korea; NSDC of the Korea Institute of Science and Technology Information; Polish Ministry of Science and Higher Education; Ministry of Education and Science of the Russian Federation; Russian Federal Agency for Atomic Energy; Slovenian Research Agency; Swiss National Science Foundation; National Science Council; Ministry of Education of Taiwan; U.S. Department of Energy; National Science Foundation; MEXT for Science Research in a Priority Area ("New Development of Flavor Physics"); JSPS for Creative Scientific Research ("Evolution of Taulepton Physics") FX We thank the KEKB group for the excellent operation of the accelerator, the KEK cryogenics group for the efficient operation of the solenoid, and the KEK computer group and the National Institute of Informatics for valuable computing and SINET4 network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council and the Australian Department of Industry, Innovation, Science and Research; the National Natural Science Foundation of China under contract Nos. 10575109, 10775142, 10875115 and 10825524; the Ministry of Education, Youth and Sports of the Czech Republic under contract Nos. LA10033 and MSM0021620859; the Department of Science and Technology of India; the BK21 and WCU program of the Ministry Education Science and Technology, National Research Foundation of Korea, and NSDC of the Korea Institute of Science and Technology Information; the Polish Ministry of Science and Higher Education; the Ministry of Education and Science of the Russian Federation and the Russian Federal Agency for Atomic Energy; the Slovenian Research Agency; the Swiss National Science Foundation; the National Science Council and the Ministry of Education of Taiwan; and the U.S. Department of Energy and the National Science Foundation. This work is supported by a Grant-in-Aid from MEXT for Science Research in a Priority Area ("New Development of Flavor Physics"), and from JSPS for Creative Scientific Research ("Evolution of Taulepton Physics"). NR 52 TC 1 Z9 1 U1 3 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD OCT PY 2013 VL 726 IS 1-3 BP 206 EP 210 DI 10.1016/j.physletb.2013.08.057 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 245RT UT WOS:000326482200023 ER PT J AU Bzdak, A Bozek, P AF Bzdak, Adam Bozek, Piotr TI Contributions to the event-by-event charge asymmetry dependence for the elliptic flow of pi(+) and pi(-) in heavy-ion collisions SO PHYSICS LETTERS B LA English DT Article AB We discuss various contributions to the event-by-event charge asymmetry dependence of pi(+) and pi(-) elliptic flow, recently measured by the STAR Collaboration at RHIC. It is shown that under general assumptions, the difference between v(2)(+) and v(2)(-) at a given fluctuating value of an asymmetry parameter, A, is a linear function of A, as observed in the preliminary data. We discuss two mechanisms that are qualitatively consistent with the experimental data and result in a signal of the correct order of magnitude. Our subsequent hydrodynamic calculations, assuming local charge conservation at freeze-out, yield a qualitative and partial quantitative understanding of the observed signal, so offering a detailed test of the hydrodynamic model in heavy-ion collisions. (C) 2013 Elsevier B.V. All rights reserved. C1 [Bzdak, Adam] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Bozek, Piotr] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Bozek, Piotr] Inst Nucl Phys, PL-31342 Krakow, Poland. RP Bzdak, A (reprint author), Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. EM abzdak@bnl.gov; piotr.bozek@ifj.edu.pl RI Bozek, Piotr/A-5031-2012 OI Bozek, Piotr/0000-0001-6050-4380 FU RIKEN-BNL Research Center; National Science Centre, Poland [DEC-2012/05/B/ST2/02528]; PL-Grid infrastructure FX We thank H.-U. Yee for interesting discussions. Remarks by V. Koch and L. McLerran are highly appreciated. W. Broniowski graciously helped us in modifying the THERMINATOR code. A.B. is supported through the RIKEN-BNL Research Center. The work is partly supported by the National Science Centre, Poland, grant DEC-2012/05/B/ST2/02528, and PL-Grid infrastructure. NR 28 TC 13 Z9 13 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD OCT PY 2013 VL 726 IS 1-3 BP 239 EP 243 DI 10.1016/j.physletb.2013.08.003 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 245RT UT WOS:000326482200029 ER PT J AU Huang, JR Kang, ZB Vitev, I AF Huang, Jinrui Kang, Zhong-Bo Vitev, Ivan TI Inclusive b-jet production in heavy ion collisions at the LHC SO PHYSICS LETTERS B LA English DT Article ID QCD MATTER; MOMENTUM DEPENDENCE; ATLAS DETECTOR; ROOT-S=7 TEV; ENERGY-LOSS; RADIATION; GLUONS; LENGTH; QUARKS AB Theoretical and experimental advances in understanding light jet production and modification in Pb + Pb reactions at root s(NN) = 2.76 TeV have been a highlight of the LHC heavy ion program. At the same time, the detailed mechanisms of heavy quark propagation and energy loss in dense QCD matter are not yet fully understood. With this motivation, we present theoretical predictions for the nuclear-induced attenuation of the differential cross section for inclusive b-jet production in heavy ion collisions at the LHC for comparison to upcoming data. We find that for transverse momenta p(T) greater than or similar to 75 GeV both hadronization and mass effects are negligible and this attenuation is comparable to the one observed for light jets. We discuss how the detailed b-jet quenching patterns can be used to gain new insight into the in-medium heavy flavor dynamics. (C) 2013 Elsevier B.V. All rights reserved. C1 [Huang, Jinrui; Kang, Zhong-Bo; Vitev, Ivan] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Kang, ZB (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM jinruih@lanl.gov; zkang@lanl.gov; ivitev@lanl.gov RI Kang, Zhongbo/P-3645-2014 FU US Department of Energy, Office of Science; LDRD program at LANL FX We thank Kun Liu, Tao Liu, Yaxian Mao, Feng Wei, and Zhenyu Ye for very helpful discussions. This research is supported by the US Department of Energy, Office of Science, and in part by the LDRD program at LANL. NR 62 TC 26 Z9 26 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD OCT PY 2013 VL 726 IS 1-3 BP 251 EP 256 DI 10.1016/j.physletb.2013.08.009 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 245RT UT WOS:000326482200031 ER PT J AU Bzdak, A Skokov, V AF Bzdak, Adam Skokov, Vladimir TI Average transverse momentum of hadrons in proton-nucleus collisions in the wounded nucleon model SO PHYSICS LETTERS B LA English DT Article ID P-PB COLLISIONS; ANGULAR-CORRELATIONS; PPB COLLISIONS; HIGH-ENERGIES; LONG-RANGE; SIDE; TEV AB In the wounded nucleon model, a proton-nucleus (p+A) collision is a superposition of independent nucleon-nucleon collisions. We use this model to calculate the average transverse momentum of pions, kaons and protons in high energy p+A collisions. For the same number of produced particles, because the number of participants differs, in the wounded nucleon model the transverse momentum of hadrons can differ between p+p and p+A collisions. In this model we find that the average transverse momentum in high multiplicity p+A collisions depends weakly on the number of produced particles, and underestimates the preliminary experimental data at the LHC. The difference is small for pions and greater for kaons and protons. The magnitude of this difference is consistent with hydrodynamic expectations. (C) 2013 Elsevier B.V. All rights reserved. C1 [Bzdak, Adam] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Skokov, Vladimir] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Skokov, Vladimir] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. RP Skokov, V (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM abzdak@bnl.gov; vskokov@bnl.gov OI Skokov, Vladimir/0000-0001-7619-1796 FU RIKEN-BNL Research Center; U.S. Department of Energy [DE-AC02-98CH10886] FX We thank Larry McLerran, Robert Pisarski and Raju Venugopalan for stimulating discussions and constructive criticism. A.B. is supported through the RIKEN-BNL Research Center. V.S. is supported by the U.S. Department of Energy under contract #DE-AC02-98CH10886. NR 33 TC 10 Z9 10 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD OCT PY 2013 VL 726 IS 1-3 BP 408 EP 411 DI 10.1016/j.physletb.2O13.08.021 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 245RT UT WOS:000326482200059 ER PT J AU Himpsel, FJ Cook, PL de la Torre, G Garcia-Lastra, JM Gonzalez-Moreno, R Guo, JH Hamers, RJ Kronawitter, CX Johnson, PS Ortega, JE Pickup, D Ragoussi, ME Rogero, C Rubio, A Ruther, RE Vayssieres, L Yang, W Zegkinoglou, I AF Himpsel, F. J. Cook, P. L. de la Torre, G. Garcia-Lastra, J. M. Gonzalez-Moreno, R. Guo, J. -H. Hamers, R. J. Kronawitter, C. X. Johnson, P. S. Ortega, J. E. Pickup, D. Ragoussi, M. -E. Rogero, C. Rubio, A. Ruther, R. E. Vayssieres, L. Yang, W. Zegkinoglou, I. TI Design of solar cell materials via soft X-ray spectroscopy SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE Solar cell; Photovoltaics; X-ray absorption spectroscopy; Band offset; Dye molecule; Diamond ID ELECTRONIC-STRUCTURE; DIAMOND(111); PHTHALOCYANINE; ABSORPTION; EMISSION; SURFACES; HEMATITE; EXCITON; FILMS AB This overview illustrates how spectroscopy with soft X-rays can assist the development of new materials and new designs for solar cells. The starting point is the general layout of a solar cell, which consists of a light absorber sandwiched between an electron donor and an electron acceptor. There are four relevant energy levels that can be measured with a combination of X-ray absorption spectroscopy and photoelectron spectroscopy, as illustrated for an organic dye as absorber attached to a p-doped diamond film as donor. Systematic measurements of organometallic dyes (phthalocyanines and porphyrins) as a function of the metal atom are presented for the metal 2p and N 1s absorption edges. In combination with density functional theory one can discern trends that are useful for tailoring absorber molecules. A customized porphyrin molecule is investigated that combines an absorber with a donor and a linker to an oxide acceptor. The bridge to device fabrication is crossed by correlating spectroscopic features with the photocurrent in hematite photoanodes for water splitting. For speeding up the development of new materials and designs of solar cells a feedback loop between spectroscopy, theory, synthesis and device fabrication is envisioned. (C) 2012 Elsevier B.V. All rights reserved. C1 [Himpsel, F. J.; Johnson, P. S.; Zegkinoglou, I.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Cook, P. L.] Univ Wisconsin, Dept Nat Sci, Superior, WI 54880 USA. [de la Torre, G.; Ragoussi, M. -E.] Univ Autonoma Madrid, Fac Ciencias, Dept Quim Organ, E-28049 Madrid, Spain. [Garcia-Lastra, J. M.; Gonzalez-Moreno, R.; Ortega, J. E.; Pickup, D.; Rogero, C.; Rubio, A.] Univ Basque Country, Dept Fis Aplicada 1, DIPC, Ctr Fis Mat,CSIC UPV,EHU,MPC, San Sebastian 20018, Spain. [Garcia-Lastra, J. M.] Tech Univ Denmark, Ctr Atom Scale Mat Design, Dept Phys, DK-2800 Lyngby, Denmark. [Guo, J. -H.; Yang, W.; Zegkinoglou, I.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Hamers, R. J.; Ruther, R. E.] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. [Kronawitter, C. X.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Ruther, R. E.; Vayssieres, L.] Xi An Jiao Tong Univ, Sch Energy & Power Engn, State Key Lab Multiphase Flow Power Engn, Int Res Ctr Renewable Energy, Xian 710049, Peoples R China. RP Himpsel, FJ (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. EM fhimpsel@wisc.edu RI Garcia Lastra, Juan Maria/A-9996-2010; Rubio, Angel/A-5507-2008; ortega, enrique/I-4445-2012; Yang, Wanli/D-7183-2011; Zegkinoglou, Ioannis/H-2343-2013; DONOSTIA INTERNATIONAL PHYSICS CTR., DIPC/C-3171-2014; Ruther, Rose/I-9207-2016; Hamers, Robert/C-6466-2008; CSIC-UPV/EHU, CFM/F-4867-2012; OI Garcia Lastra, Juan Maria/0000-0001-5311-3656; Rubio, Angel/0000-0003-2060-3151; Yang, Wanli/0000-0003-0666-8063; Ruther, Rose/0000-0002-1391-902X; Hamers, Robert/0000-0003-3821-9625; Rogero, Celia/0000-0002-2812-8853 FU NSF [CHE-1026245, DMR-1121288, DMR-0537588, CHE-0613010, CHE-0911543]; DOE [DE-SC0006931, DE-AC02-05CH11231, DE-FG02-01ER45917]; Spanish Ministerio de Economia y Competitividad [MAT2010-21156-C03-01, C03-03, PIB2010US-00652]; Basque Government [IT-257-07] FX This work was supported by the NSF with the awards CHE-1026245, DMR-1121288 (MRSEC), and DMR-0537588 (SRC), by the DOE under the contracts DE-SC0006931, DE-AC02-05CH11231 (ALS), and DE-FG02-01ER45917 (end station), by the Spanish Ministerio de Economia y Competitividad (MAT2010-21156-C03-01, C03-03, and PIB2010US-00652), and by the Basque Government (IT-257-07). RER and RJH acknowledge support from the NSF with grants CHE-0613010 and CHE-0911543. NR 47 TC 7 Z9 7 U1 2 U2 46 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 EI 1873-2526 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD OCT PY 2013 VL 190 SI SI BP 2 EP 11 DI 10.1016/j.elspec.2012.10.002 PN A PG 10 WC Spectroscopy SC Spectroscopy GA 285EQ UT WOS:000329376800002 ER PT J AU Bar, M Pookpanratana, S Weinhardt, L Wilks, RG Schubert, BA Marsen, B Unold, T Blum, M Krause, S Zhang, Y Ranasinghe, A Ramanathan, K Repins, I Contreras, MA Nishiwaki, S Liu, X Paudel, NR Fuchs, O Niesen, TP Yang, W Karg, F Compaan, AD Shafarman, WN Noufi, R Schock, HW Heske, C AF Baer, M. Pookpanratana, S. Weinhardt, L. Wilks, R. G. Schubert, B. A. Marsen, B. Unold, T. Blum, M. Krause, S. Zhang, Y. Ranasinghe, A. Ramanathan, K. Repins, I. Contreras, M. A. Nishiwaki, S. Liu, X. Paudel, N. R. Fuchs, O. Niesen, T. P. Yang, W. Karg, F. Compaan, A. D. Shafarman, W. N. Noufi, R. Schock, H. -W. Heske, C. TI Soft X-rays shedding light on thin-film solar cell surfaces and interfaces SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE Thin-film solar cells; Soft X-ray spectroscopy; Electron spectroscopy; Surfaces and interfaces ID ELECTRICAL-PROPERTIES; DEVICE PERFORMANCE; BAND OFFSET; HETEROJUNCTION; CDTE; CHALCOPYRITE; CUINSE2; CU2ZNSNS4; GAP; CDS AB Thin-film solar cells based on compound semiconductors consist of a multilayer structure with various interfaces and contain a multitude of elements and impurities, etc. A rapid progress of these photovoltaic technologies can only be achieved by an insight-driven optimization/development. Hence it is crucial to characterize and understand the relationship between the chemical and electronic properties of these components. This paper reviews some examples of our recent work characterizing compound semiconductor thin films using laboratory- and synchrotron-based electron and soft X-ray spectroscopic characterization methods. It is demonstrated how these different analytical techniques are extraordinarily powerful to reveal the material characteristics from many different perspectives, ultimately resulting in a comprehensive picture of the related electronic and chemical properties. As examples, the paper will discuss the electronic surface structure of chalcopyrite thin-film solar cell absorbers, the chemical structure of the CdS/chalcopyrite interface, present the band alignment at the CdS/kesterite interface, and report on how post-deposition treatments cause chemical interaction/interdiffusion processes in CdTe/CdS thin-film solar cell structures. (C) 2012 Elsevier B.V. All rights reserved. C1 [Baer, M.; Wilks, R. G.; Schubert, B. A.; Marsen, B.; Unold, T.; Schock, H. -W.] Helmholtz Zentrum Berlin Mat & Energie GmbH HZB, D-14109 Berlin, Germany. [Baer, M.] Brandenburg Tech Univ Cottbus, Inst Phys & Chem, D-03046 Cottbus, Germany. [Baer, M.; Pookpanratana, S.; Weinhardt, L.; Blum, M.; Krause, S.; Zhang, Y.; Ranasinghe, A.; Heske, C.] Univ Nevada, Las Vegas UNLV, Dept Chem, Las Vegas, NV 89154 USA. [Weinhardt, L.; Heske, C.] Karlsruhe Inst Technol, Inst Photon Sci & Synchrotron Radiat, D-76344 Eggenstein Leopoldshafen, Germany. [Weinhardt, L.; Heske, C.] Karlsruhe Inst Technol, ANKA Synchrotron Radiat Facil, D-76344 Eggenstein Leopoldshafen, Germany. [Zhang, Y.] Xiamen Univ, Dept Phys, Xiamen 361005, Fujian, Peoples R China. [Ramanathan, K.; Repins, I.; Contreras, M. A.; Noufi, R.] NREL, Golden, CO 80401 USA. [Nishiwaki, S.; Shafarman, W. N.] Univ Delaware, IEC, Newark, DE 19716 USA. [Liu, X.; Paudel, N. R.; Compaan, A. D.] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. [Liu, X.] Chinese Acad Sci, Inst Elect Engn, Beijing 100190, Peoples R China. [Fuchs, O.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Niesen, T. P.; Karg, F.] AVANCIS GmbH & Co KG, D-81739 Munich, Germany. [Yang, W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, ALS, Berkeley, CA 94720 USA. [Heske, C.] Karlsruhe Inst Technol, Inst Chem Technol & Polymer Chem, D-76128 Karlsruhe, Germany. RP Bar, M (reprint author), Helmholtz Zentrum Berlin Mat & Energie GmbH HZB, D-14109 Berlin, Germany. EM marcus.baer@helmholtz-berlin.de RI Krause, Stefan/A-1281-2011; Yang, Wanli/D-7183-2011; OI Yang, Wanli/0000-0003-0666-8063; Unold, Thomas/0000-0002-5750-0693 FU Department of Energy (DOE) [DE-AC02-05CH11231]; NREL [XXL-5-44205-12, ADJ-1-30630-12]; DOE-SAI University Photovoltaic Process and Product Development program; DFG Emmy-Noether-Programm and the Impuls- und Vernetzungsfonds of the Helmholtz-Association [VH-NG-423] FX The ALS is supported by the Department of Energy (DOE), Basic Energy Sciences, Contract No. DE-AC02-05CH11231. Financial support from NREL under Subcontract Nos. XXL-5-44205-12 and ADJ-1-30630-12 and by the DOE-SAI University Photovoltaic Process and Product Development program is greatly acknowledged. M. Bar also thanks the DFG Emmy-Noether-Programm and the Impuls- und Vernetzungsfonds of the Helmholtz-Association (VH-NG-423) for sponsorship. NR 68 TC 2 Z9 2 U1 2 U2 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 EI 1873-2526 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD OCT PY 2013 VL 190 SI SI BP 47 EP 53 DI 10.1016/j.elspec.2012.10.004 PN A PG 7 WC Spectroscopy SC Spectroscopy GA 285EQ UT WOS:000329376800007 ER PT J AU Yang, WL Liu, XS Qiao, RM Olalde-Velasco, P Spear, JD Roseguo, L Pepper, JX Chuang, Y Denlinger, JD Hussain, Z AF Yang, Wanli Liu, Xiaosong Qiao, Ruimin Olalde-Velasco, Paul Spear, Jonathan D. Roseguo, Louis Pepper, John X. Chuang, Yi-de Denlinger, Jonathan D. Hussain, Zahid TI Key electronic states in lithium battery materials probed by soft X-ray spectroscopy SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE Soft X-ray spectroscopy; Key electronic state; Lithium ion battery; Anode; Cathode; Solid electrolyte interphase (SEI) ID LI-ION BATTERIES; LONG CYCLE LIFE; CATHODE MATERIALS; HIGH-CAPACITY; NEGATIVE-ELECTRODE; ABSORPTION-SPECTROSCOPY; ELECTROCHEMICAL-CELLS; MANGANESE OXIDES; SILICON POWDER; ANODES AB The formidable challenges for developing a safe, low-cost, high-capacity, and high-power battery necessitate employing advanced tools that are capable of directly probing the key electronic states relevant to battery performance. Synchrotron based soft X-ray spectroscopy directly measures both the occupied and unoccupied states in the vicinity of the Fermi level, including transition-metal-3d and anion-p states. This article presents the basic concepts on how fundamental physics in electronic structure could provide valuable information for lithium-ion battery applications. We then discuss some of our recent studies on transition-metal oxide based cathodes, silicon based anode, and solid-electrolyte-interphase through soft X-ray absorption and emission spectroscopy. We argue that spectroscopic results reveal the evolution of electronic states for fingerprinting, understanding, and optimizing lithium-ion battery operations. Published by Elsevier B.V. C1 [Yang, Wanli; Liu, Xiaosong; Qiao, Ruimin; Olalde-Velasco, Paul; Spear, Jonathan D.; Roseguo, Louis; Pepper, John X.; Chuang, Yi-de; Denlinger, Jonathan D.; Hussain, Zahid] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Yang, WL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. EM WLYang@lbl.gov RI Qiao, Ruimin/E-9023-2013; Yang, Wanli/D-7183-2011 OI Yang, Wanli/0000-0003-0666-8063 FU Laboratory Directed Research and Development (LDRD) at Lawrence Berkeley National Laboratory (LBNL); Office of Science, Office of Basic Energy Sciences, of the U.S. DOE [DE-AC02-05CH11231]; Berkeley Lab CSEE; ALS FX Works reviewed here are achieved through broad international collaborations. In particular, we would like to thank G. Liu, L.W. Wang, J. Liu, T.J. Richardson, I.T. Lucas, R. Kostecki, T. Chin, and S.J. Harris at Berkeley, and H. Li in China for the works and discussions on battery materials. Spectroscopy works were partially supported by Laboratory Directed Research and Development (LDRD) at Lawrence Berkeley National Laboratory (LBNL). The Advanced Light Source (ALS) is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. DOE under Contract No. DE-AC02-05CH11231. L.R. is supported by Berkeley Lab CSEE. X.L. acknowledges the ALS postdoctoral fellowship program. NR 99 TC 26 Z9 26 U1 4 U2 70 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 EI 1873-2526 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD OCT PY 2013 VL 190 SI SI BP 64 EP 74 DI 10.1016/j.elspec.2013.03.008 PN A PG 11 WC Spectroscopy SC Spectroscopy GA 285EQ UT WOS:000329376800009 ER PT J AU Fuoss, P Chang, KC You, H AF Fuoss, Paul Chang, Kee-Chul You, Hoydoo TI In situ X-ray studies of film cathodes for solid oxide fuel cells SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE Solid oxide fuel cell (SOFC); Cathode; X-ray reflectivity; TXRF; CTR; USAX ID ABSORPTION FINE-STRUCTURE; COBALT IRON-OXIDE; LATTICE EXPANSION; EPITAXIAL-GROWTH; THIN-FILMS; SCATTERING; SURFACE; XANES; DIFFRACTION AB Synchrotron-based X-ray techniques have been used to study in situ the structural and chemical changes of film cathodes during half-cell operations. The X-ray techniques used include X-ray reflectivity (XR), total-reflection X-ray fluorescence (TXRF), high-resolution diffraction (HRD), ultra-small angle X-ray scattering (USAXS). The epitaxial thin film model cathodes for XR, TXRF, and HRD measurements are made by pulse laser deposition and porous film cathodes for USAX measurements are made by screen printing technique. The experimental results reviewed here include A-site and B-site segregations, lattice expansion, oxidation-state changes during cell operations and liquid-phase infiltration and coarsening of cathode to electrolyte backbone. Published by Elsevier B.V. C1 [Fuoss, Paul; Chang, Kee-Chul; You, Hoydoo] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Fuoss, P (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM fuoss@anl.gov; hyou@anl.gov RI Chang, Kee-Chul/O-9938-2014; You, Hoydoo/A-6201-2011 OI Chang, Kee-Chul/0000-0003-1775-2148; You, Hoydoo/0000-0003-2996-9483 FU U.S. Department of Energy, Office of Fossil Energy; Office of Basic Energy Science [DE-AC02-06CH11357] FX This work and one of us (KC) was supported by U.S. Department of Energy, Office of Fossil Energy, and two of us (PF and HY) and use of the Advanced Photon Source, were supported by Office of Basic Energy Science, under Contract no. DE-AC02-06CH11357. NR 58 TC 6 Z9 6 U1 2 U2 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 EI 1873-2526 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD OCT PY 2013 VL 190 SI SI BP 75 EP 83 DI 10.1016/j.elspec.2013.02.003 PN A PG 9 WC Spectroscopy SC Spectroscopy GA 285EQ UT WOS:000329376800010 ER PT J AU Crumlin, EJ Bluhm, H Liu, Z AF Crumlin, Ethan J. Bluhm, Hendrik Liu, Zhi TI In situ investigation of electrochemical devices using ambient pressure photoelectron spectroscopy SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE Electrochemistry; In situ photoelectron spectroscopy (APXPS); Fuel cells; Lithium-air battery ID OXIDE FUEL-CELLS; RECHARGEABLE LITHIUM BATTERIES; INDUCED OXYGEN SPILLOVER; LI-AIR BATTERIES; SURFACE SCIENCE; CARBONATE ELECTROLYTES; SOLID ELECTROLYTES; RAMAN-SPECTROSCOPY; ORGANIC-SOLVENTS; METAL-ELECTRODES AB Heterogeneous chemical reactions at interfaces play an important role in electrochemical devices. Here we discuss the investigation of vapor/solid interfaces using ambient pressure X-ray photoelectron spectroscopy (APXPS), which provides the capability to simultaneously measure both the chemical composition and the electrical potential. The technical bases for these measurements are discussed and its application demonstrated for investigations of model solid oxide fuel cell devices and Li-O-2 batteries. Published by Elsevier B.V. C1 [Crumlin, Ethan J.; Liu, Zhi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Bluhm, Hendrik] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Bluhm, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM hbluhm@lbl.gov; zliu2@lbl.gov RI Liu, Zhi/B-3642-2009 OI Liu, Zhi/0000-0002-8973-6561 FU Office of Energy Research, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; ALS FX The Advanced Light Source and Beamlines 9.3.2 and 11.0.2 are supported by the Director, Office of Energy Research, Office of Basic Energy Sciences of the U.S. Department of Energy under contracts No. DE-AC02-05CH11231. E.J.C. acknowledges the support of the ALS Postdoctoral Fellowship Program. NR 89 TC 30 Z9 30 U1 6 U2 81 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 EI 1873-2526 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD OCT PY 2013 VL 190 SI SI BP 84 EP 92 DI 10.1016/j.elspec.2013.03.002 PN A PG 9 WC Spectroscopy SC Spectroscopy GA 285EQ UT WOS:000329376800011 ER PT J AU Bora, DK Hu, YL Thiess, S Erat, S Feng, XF Mukherjee, S Fortunato, G Gaillard, N Toth, R Gajda-Schrantz, K Drube, W Gratzel, M Guo, JH Zhu, JF Constable, EC Sarma, DD Wang, HX Braun, A AF Bora, Debajeet K. Hu, Yelin Thiess, Sebastian Erat, Selma Feng, Xuefei Mukherjee, Sumanta Fortunato, Giuseppino Gaillard, Nicolas Toth, Rita Gajda-Schrantz, Krisztina Drube, Wolfgang Graetzel, Michael Guo, Jinghua Zhu, Junfa Constable, Edwin C. Sarma, D. D. Wang, Hongxin Braun, Artur TI Between photocatalysis and photosynthesis: Synchrotron spectroscopy methods on molecules and materials for solar hydrogen generation SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE XAFS; VB-PES; Photoelectrochemistry; Artificial photosynthesis; Valence band; Hole doping; Charge transfer; Solar fuels; Solar hydrogen; Photocatalysis; Resonant photoemission; Photo-electrochemistry; X-ray absorption; RIXS; HAX-PES; AP-XPS; NRVS; Surface defects; Bulk defects; Hydrogenase; Hematite; Tungsten oxide; Water splitting ID RAY PHOTOELECTRON-SPECTROSCOPY; VIBRATIONAL SPECTROSCOPY; PHOTOEMISSION-SPECTROSCOPY; WATER OXIDATION; DEFECT STATES; SURFACE; NANOCRYSTALLITES; ENERGY; FILMS; IRON AB Energy research is to a large extent materials research, encompassing the physics and chemistry of materials, including their synthesis, processing toward components and design toward architectures, allowing for their functionality as energy devices, extending toward their operation parameters and environment, including also their degradation, limited life, ultimate failure and potential recycling. In all these stages, X-ray and electron spectroscopy are helpful methods for analysis, characterization and diagnostics for the engineer and for the researcher working in basic science.This paper gives a short overview of experiments with X-ray and electron spectroscopy for solar energy and water splitting materials and addresses also the issue of solar fuel, a relatively new topic in energy research. The featured systems are iron oxide and tungsten oxide as photoanodes, and hydrogenases as molecular systems. We present surface and subsurface studies with ambient pressure XPS and hard X-ray XPS, resonant photoemission, light induced effects in resonant photoemission experiments and a photo-electrochemical in situ/operando NEXAFS experiment in a liquid cell, and nuclear resonant vibrational spectroscopy (NRVS). (C) 2012 Elsevier B.V. All rights reserved. C1 [Bora, Debajeet K.; Hu, Yelin; Erat, Selma; Toth, Rita; Gajda-Schrantz, Krisztina; Braun, Artur] Empa, Swiss Fed Labs Mat Sci & Technol, Lab High Performance Ceram, CH-8600 Dubendorf, Switzerland. [Bora, Debajeet K.; Constable, Edwin C.] Univ Basel, Dept Chem, CH-4052 Basel, Switzerland. [Bora, Debajeet K.; Feng, Xuefei; Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Hu, Yelin; Graetzel, Michael] Ecole Polytech Fed Lausanne, Lab Photon & Interfaces, CH-1005 Lausanne, Switzerland. [Thiess, Sebastian; Drube, Wolfgang] Deutsch Elektronen Synchrotron DESY, D-22603 Hamburg, Germany. [Erat, Selma] Toros Univ, Fac Engn, Elect Elect Dept, TR-33140 Mersin, Turkey. [Feng, Xuefei; Zhu, Junfa] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Peoples R China. [Mukherjee, Sumanta; Sarma, D. D.] Indian Inst Sci, Solid State & Struct Chem Unit, Bangalore 560012, Karnataka, India. [Fortunato, Giuseppino] Empa, Swiss Fed Labs Mat Sci & Technol, Lab Adv Fibers, CH-9014 St Gallen, Switzerland. [Gaillard, Nicolas] Univ Hawaii Manoa, Hawaii Nat Energy Inst, Honolulu, HI 96822 USA. [Gajda-Schrantz, Krisztina] Univ Szeged, Dept Inorgan & Analyt Chem, Environm Chem Res Grp, H-6720 Szeged, Hungary. [Sarma, D. D.] CSIR NISE, New Delhi, India. [Wang, Hongxin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Wang, Hongxin] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. RP Braun, A (reprint author), Empa, Swiss Fed Labs Mat Sci & Technol, Lab High Performance Ceram, CH-8600 Dubendorf, Switzerland. EM artur.braun@alumni.ethz.ch RI Bora, Debajeet/C-1951-2009; Toth, Rita/L-1418-2015; Zhu, Junfa/E-4020-2010; Gaillard, Nicolas/M-3713-2016; BRAUN, Artur/A-1154-2009; Bora, Debajeet/C-6511-2017 OI Bora, Debajeet/0000-0001-6466-7734; Constable, Edwin/0000-0003-4916-4041; Zhu, Junfa/0000-0003-0888-4261; BRAUN, Artur/0000-0002-6992-7774; Bora, Debajeet/0000-0001-6466-7734 FU Swiss Federal Office of Energy [152316101883, 153613-102809, 153476-102691]; European Community [227179]; Swiss NSF [206021-121306, 200021-132126, IKZ-133944, 200021-137868]; SNF [139698]; Sciex project [10.013]; VELUX Foundation; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Federal Ministry of Education and Research (BMBF) [051KS7UM1, 05K10UMA, 05KS7WW3, 05K10WW1]; Helmholtz Zentrum Berlin [20121-111500]; Office of Science/BES, of the U.S. DoE [DE-AC02-05CH11231]; Indo-Swiss project ISJRP [138 864]; NIH [GM-65440]; US Department of Energy FX The research leading to these results received funding from the Swiss Federal Office of Energy contracts 152316101883, 153613-102809, and 153476-102691, European Community's Seventh Framework Program Novel Materials for Energy Applications Grant No. 227179 (Nanostructured Photoelectrodes for Energy Conversion, NanoPEC); the Swiss NSF Grants R'Equip #206021-121306 (Fundamental Aspects of Photocatalysis and Photo-electrochemistry/Basic Research Instrumentation for Functional Characterization), #200021-132126 (Defects in the bulk and on surfaces and interfaces of metal oxides with photo-electrochemical properties: In situ photoelectrochemical and resonant X-ray and electron spectroscopy studies), #IKZ-133944 (Oxide heterointerfaces in assemblies for photo-electrochemical applications), #200021-137868 (Reactiondiffusion processes for the growth of patterned structures and architectures: A bottom-up approach for photo-electrochemical electrodes). R.T. is funded by the SNF Marie Heim-Vogtlin Fellowship #139698 (Self-organization processes to pattern thin films: A bottom-up approach for photoelectrodes). K.G.-S. is supported by Sciex project #10.013 (Nanobio-Interfaces for Photocatalytic Solar Hydrogen) and by the VELUX Foundation (Biomimetic photo-electrochemical cells for solar hydrogen generation).; The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The HAXPES instrument at PETRA III is jointly operated by the University of Wurzburg (R. Claessen), the University of Mainz (C. Felser) and DESY. Funding by the Federal Ministry of Education and Research (BMBF) under contracts 051KS7UM1, 05K10UMA, 05KS7WW3, and 05K10WW1 is gratefully acknowledged. The Helmholtz Zentrum Berlin is acknowledged for granting synchrotron beamtime under application number 20121-111500 at the SoLIAS U49-2/PGM-1 end station operated by Technische Universitat Darmstadt. Dr. Wolfram Calvet is acknowledged for support at the SoLiAS endstation. The ALS is supported by the Director, Office of Science/BES, of the U.S. DoE, No. DE-AC02-05CH11231. S.M. and D.D.S. acknowledge Mission on Nano Science and Technology (Nano Mission) program, Government of India, for the access to PETRA III facilities. Collaboration of A.B. and D.D.S is based on Indo-Swiss project ISJRP #138 864 (Electronic origin of Cr poisoning in ceramic fuel cell cathodes). NRVS was performed at APS and SPring-8 under leadership of Dr. S.P. Cramer of UC Davis and LBN, supported by NIH (GM-65440) and US Department of Energy - both to Dr. Cramer. A.B. is particularly indebted to Prof. Dr. Andreas Luzzi and Prof. Thomas Graule for supporting his PEC research and Dr. Elena Rozhkova (ANL) and Prof. Xile Hu (EPFL) for support of the protein based research. Reflectometry was performed by Dr. Tzu-Wen Huang, Empa. NR 55 TC 8 Z9 8 U1 8 U2 116 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 EI 1873-2526 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD OCT PY 2013 VL 190 SI SI BP 93 EP 105 DI 10.1016/j.elspec.2012.11.009 PN A PG 13 WC Spectroscopy SC Spectroscopy GA 285EQ UT WOS:000329376800012 ER PT J AU Weinhardt, L Blum, M Fuchs, O Pookpanratana, S George, K Cole, B Marsen, B Gaillard, N Miller, E Ahn, KS Shet, S Yan, Y Al-Jassim, MM Denlinger, JD Yang, W Bar, M Heske, C AF Weinhardt, L. Blum, M. Fuchs, O. Pookpanratana, S. George, K. Cole, B. Marsen, B. Gaillard, N. Miller, E. Ahn, K. -S. Shet, S. Yan, Y. Al-Jassim, M. M. Denlinger, J. D. Yang, W. Baer, M. Heske, C. TI Soft X-ray and electron spectroscopy to determine the electronic structure of materials for photoelectrochemical hydrogen production SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE Photoelectrochemistry; Hydrogen production; Band edge positions; In situ; Photoelectron spectroscopy; X-ray emission spectroscopy ID P-TYPE ZNO; TUNGSTEN-OXIDE FILMS; WO3 THIN-FILMS; EMISSION SPECTROSCOPY; WATER; CELL; HETEROJUNCTION; CONDUCTION; POSITIONS; TRIOXIDE AB To optimize materials and devices for solar photoelectrochemical hydrogen production, a detailed understanding of the chemical and electronic properties, in particular at the reactive surfaces and interfaces, is needed. In this review article we will show how electron and soft X-ray spectroscopies can provide such information. We will present exemplary studies using X-ray photoelectron spectroscopy, soft X-ray emission spectroscopy, UV photoelectron spectroscopy, and inverse photoemission. While the first two techniques mainly give insight into the chemical properties at and near the surface, the latter two methods allow us to derive the electronic levels relevant for photoelectrochemical water splitting at the surface of the investigated material. Ultimately, the ideal experiment would be performed in situ, in which the device is studied under working conditions, i.e., in a liquid environment and under illumination. We will give a short outlook on how this can be achieved experimentally under the strict requirements of the measurement environment. (C) 2012 Elsevier B.V. All rights reserved. C1 [Weinhardt, L.; Heske, C.] Karlsruhe Inst Technol, Inst Photon Sci & Synchrotron Radiat, D-76344 Eggenstein Leopoldshafen, Germany. [Weinhardt, L.; Heske, C.] Karlsruhe Inst Technol, ANKA Synchrotron Radiat Facil, D-76344 Eggenstein Leopoldshafen, Germany. [Weinhardt, L.; Blum, M.; Pookpanratana, S.; George, K.; Baer, M.; Heske, C.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Fuchs, O.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Cole, B.; Marsen, B.; Gaillard, N.; Miller, E.] Univ Hawaii, Sch Ocean, Hawaii Nat Energy Inst, Manoa, HI 96822 USA. [Ahn, K. -S.; Shet, S.; Yan, Y.; Al-Jassim, M. M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Denlinger, J. D.; Yang, W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Baer, M.] Helmholtz Zentrum Berlin Mat & Energie GmbH, Solar Energy Res, D-14109 Berlin, Germany. [Baer, M.] Brandenburg Tech Univ Cottbus, Inst Phys & Chem, D-03046 Cottbus, Germany. [Heske, C.] Karlsruhe Inst Technol, Inst Chem Technol & Polymer Chem, D-76128 Karlsruhe, Germany. RP Weinhardt, L (reprint author), Karlsruhe Inst Technol, Inst Photon Sci & Synchrotron Radiat, Hermann v Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany. EM L.Weinhardt@kit.edu RI Yang, Wanli/D-7183-2011; Gaillard, Nicolas/M-3713-2016 OI Yang, Wanli/0000-0003-0666-8063; FU Department of Energy [RF-05-HFS-006, DE-FG36-03GO13063]; UNLV [RF-05-SHGR-004, DE-FG36-03GO13062]; Nevada System of Higher Education under SFFA [NSHE 07-100]; Impuls- und Vernetzungsfonds of the Helmholtz-Association [VH-NG-423]; [NFH-8-88502-01]; [DE-AC36-99GO10337]; [DE-AC36-08GO28308] FX We acknowledge funding by the Department of Energy under subcontracts UNLV #RF-05-HFS-006 (grant no. DE-FG36-03GO13063), UNLV #RF-05-SHGR-004 (grant no. DE-FG36-03GO13062), and NFH-8-88502-01 (prime contract DE-AC36-99GO10337 and DE-AC36-08GO28308), as well as by the Nevada System of Higher Education under SFFA No. NSHE 07-100. Ma.B. also thanks the Impuls- und Vernetzungsfonds of the Helmholtz-Association (VH-NG-423). NR 57 TC 3 Z9 3 U1 0 U2 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 EI 1873-2526 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD OCT PY 2013 VL 190 SI SI BP 106 EP 112 DI 10.1016/j.elspec.2012.11.015 PN A PG 7 WC Spectroscopy SC Spectroscopy GA 285EQ UT WOS:000329376800013 ER PT J AU Fadley, CS AF Fadley, Charles S. TI Hard X-ray photoemission with angular resolution and standing-wave excitation SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE Photoemission; Hard X-ray photoemission; Hard X-ray photoelectron diffraction; Angle-resolved photoemission; HARPES; Standing wave ID ANGLE-RESOLVED PHOTOEMISSION; BULK ELECTRONIC-STRUCTURE; VALENCE-BAND; PHOTOELECTRON DIFFRACTION; SPECTROSCOPY; GRAPHITE; EMISSION; TUNGSTEN AB Several aspects of hard X-ray photoemission that make use of angular resolution and/or standing-wave excitation are discussed. These include hard X-ray angle-resolved photoemission (HARPES) from valence levels, which has the capability of determining bulk electronic structure in a momentum-resolved way; hard X-ray photoelectron diffraction (HXPD), which shows promise for studying element-specific bulk atomic structure, including dopant site occupations; and standing wave studies of the composition and chemical states of buried layers and interfaces. Beyond this, standing wave photoemission can be used to derive element-specific densities of states. Some recent examples relevant to all of these aspects are discussed. (C) 2013 Elsevier B.V. All rights reserved. C1 [Fadley, Charles S.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Fadley, Charles S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Fadley, CS (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. EM fadley@physics.ucdavis.edu FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; Army Research Office MURI grant [W911-NF-09-1-0398] FX With the exception of the delta-layer study described in Fig. 12, the work in the author's group discussed here has been supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The delta-layer study was supported by Army Research Office MURI grant W911-NF-09-1-0398. Travel support for some of the experiments reported here has also been provided by the Julich Research Center, Peter Grunberg Institute. NR 58 TC 14 Z9 14 U1 0 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 EI 1873-2526 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD OCT PY 2013 VL 190 BP 165 EP 179 DI 10.1016/j.elspec.2013.06.008 PN B PG 15 WC Spectroscopy SC Spectroscopy GA 285ER UT WOS:000329376900007 ER PT J AU Weiland, C Rumaiz, AK Lysaght, P Karlin, B Woicik, JC Fischer, D AF Weiland, C. Rumaiz, A. K. Lysaght, P. Karlin, B. Woicik, J. C. Fischer, D. TI NIST high throughput variable kinetic energy hard X-ray photoelectron spectroscopy facility SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE HAXPES; Photoelectron spectroscopy; Synchrotron techniques ID THERMAL-STABILITY; DIAMOND; BEAMLINE; SPECTRA; TIO2; SI AB We present an overview of the National Institute of Standards and Technology beamline X24A at the National Synchrotron Light Source at Brookhaven National Lab and recent work performed at the facility. The beamline is equipped for HAXPES measurements, with an energy range from 2.1 to 6 keV with Si(1 1 1) crystals. Recent measurements performed at the beamline include non-destructive depth dependent variable kinetic energy measurements of dielectric and semiconductor films and interfaces for microelectronics applications, band alignment at buried interfaces, and the electronic structure of bulk-like materials. The design and operation of the current beamline will be discussed, as well as the future NIST beamline at NSLS II. (C) 2013 Elsevier B.V. All rights reserved. C1 [Weiland, C.; Karlin, B.; Woicik, J. C.; Fischer, D.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. [Rumaiz, A. K.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Lysaght, P.] SEMATECH, Albany, NY 12203 USA. RP Weiland, C (reprint author), Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. EM cweiland@bnl.gov NR 30 TC 8 Z9 8 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 EI 1873-2526 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD OCT PY 2013 VL 190 BP 193 EP 200 DI 10.1016/j.elspec.2013.04.008 PN B PG 8 WC Spectroscopy SC Spectroscopy GA 285ER UT WOS:000329376900010 ER PT J AU Tumuluru, JS Sokhansanj, S Bandyopadhyay, S Bawa, AS AF Tumuluru, Jaya Shankar Sokhansanj, Shahab Bandyopadhyay, Sukumar Bawa, Amarender Singh TI STORAGE, NUTRITIONAL AND SENSORY PROPERTIES OF HIGH-FAT FISH AND RICE FLOUR COEXTRUDATES SO JOURNAL OF FOOD PROCESSING AND PRESERVATION LA English DT Article ID STRUCTURAL-PROPERTIES; SORPTION ISOTHERMS; WATER ACTIVITY; EXTRUSION; INGREDIENTS; ACCEPTANCE; STABILITY; PRODUCTS; BLENDS; MEAT AB The present research is on understanding the storage, nutritional and sensory characteristics of high-fat fish (khoira) and rice flour coextrudates at storage temperature of 30C. The extruder processing conditions used are barrel temperature (200C), screw speed (109rpm), fish content of feed (44%) and feed moisture content (39%). Sorption isotherm data indicated that the safe a(w) level was about 0.4-0.7. Guggenheim -Anderson -de Boer model described the sorption data adequately with an r(2) value of 0.99. During the initial 15 days of storage, there was a loss of vitamin A and total tocopherols by 64.4 and 20.6%, and an increase in peroxides and free fatty acid content by about 116mg/kg and 21.7%. The nonlinear mathematical model developed has adequately described the changes in nutritional and storage properties. Sensory attributes indicated that the product fried for 15s was most acceptable. PRACTICAL APPLICATIONSNovel extruded product from underutilized species of high fat fish and rice flour are gaining importance in developing countries. Storage, nutritional and sensory properties of these products are important for designing the storage conditions and in producing products which are nutritionally acceptable from consumer's point of view. Mathematical models to predict the changes in storage and nutritional properties with respect to storage environment and time can be a great value to understand the stability and storability for human consumption. C1 [Tumuluru, Jaya Shankar; Sokhansanj, Shahab] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada. [Tumuluru, Jaya Shankar] Idaho Natl Lab, Biofuels & Renewable Energies Technol Dept, Idaho Falls, ID 83415 USA. [Sokhansanj, Shahab] Oakridge Natl Lab, Enviromental Sci Div, Oak Ridge, TN USA. [Tumuluru, Jaya Shankar; Bandyopadhyay, Sukumar] Indian Inst Technol, Agr & Food Engn Dept, Kharagpur 721302, W Bengal, India. [Bawa, Amarender Singh] Def Food Res Lab, Mysore 570011, Karnataka, India. RP Tumuluru, JS (reprint author), Univ British Columbia, Dept Chem & Biol Engn, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada. EM JayaShankar.Tumuluru@inl.gov OI Maity, Tanushree/0000-0002-3208-8655 NR 42 TC 0 Z9 0 U1 0 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0145-8892 EI 1745-4549 J9 J FOOD PROCESS PRES JI J. Food Process Preserv. PD OCT PY 2013 VL 37 IS 5 BP 684 EP 693 DI 10.1111/j.1745-4549.2012.00698.x PG 10 WC Food Science & Technology SC Food Science & Technology GA 283ZR UT WOS:000329286100036 ER PT J AU Men, DJ Patel, MK Usov, IO Pivin, JC Porter, JR Mecartney, ML AF Men, Danju Patel, Maulik K. Usov, Igor O. Pivin, J. C. Porter, John R. Mecartney, Martha L. TI Radiation Damage of LaMgAl11O19 and CeMgAl11O19 Magnetoplumbite SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID ARGON IONS; IRRADIATION; HREM; BAFE12O19; CERAMICS; HIBONITE; CRYSTALS; ALUMINA; SPINEL; TRACKS AB Studies of radiation damage in magnetoplumbite-type LaMgAl11O19 and CeMgAl11O19 are reported. Ion irradiation was conducted on ceramic composites containing a LaMgAl11O19 phase at 500 degrees C with 10MeV Au+ ions and on ceramic composites containing CeMgAl11O19 phase at 800 degrees C with 92MeV Xe+ ions. The radiation response of these similar LnMgAl(11)O(19) (Ln=La and Ce) hexaaluminate magnetoplumbite phases was evaluated using transmission electron microscopy (TEM) and X-ray diffraction (XRD). LaMgAl11O19 was amorphized by 10MeV Au ions with swelling of the structure within an approximate 2m radiation depth from the irradiation surface. CeMgAl11O19 did not amorphize after 92MeV Xe-ion irradiation, but ion track damage contrast is seen in approximately 5m of the irradiated depth. SRIM Monte-Carlo simulations of nuclear displacements correlate with the experimental results. C1 [Men, Danju; Mecartney, Martha L.] Univ Calif Irvine, Dept Chem Engn & Mat Sci, Irvine, CA 92697 USA. [Patel, Maulik K.; Usov, Igor O.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Pivin, J. C.] Univ Paris 11, Ctr Spectrometrie Nucl & Spectrometrie Masse, CNRS, UMR 8609,IN2P3, F-91405 Orsay, France. [Porter, John R.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. RP Men, DJ (reprint author), Univ Calif Irvine, Dept Chem Engn & Mat Sci, Irvine, CA 92697 USA. EM martham@uci.edu FU National Science Foundation research [NSF DMR 0606063]; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX The material study was partially supported by National Science Foundation research, funding under grant NSF DMR 0606063 for the development of superplastic multiphase ceramics. The opinions expressed are the authors' alone and do not reflect any official endorsement by NSF. The authors would like to thank Dr. Kurt E. Sickafus, Los Alamos National Laboratory, for his support on the initial studies. The Xe beamtime was obtained at Grand Accelerateur National d'Ions Lourds. Special thanks to Moidi Toiammou for making the high-temperature stage, and Isabelle Monnet for carrying out the Xe ion irradiations. We would like to acknowledge Jesse Angle for the lanthanide magnetoplumbite structure (Fig. 1). The TEM work on the FEI Tecnai, JEOL 3010, CM200, assisted by Dr. Chengyu Song, was performed at Lawrence Berkeley Laboratory National Center for Electron Microscopy, which is supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 32 TC 2 Z9 2 U1 4 U2 24 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD OCT PY 2013 VL 96 IS 10 BP 3325 EP 3332 DI 10.1111/jace.12503 PG 8 WC Materials Science, Ceramics SC Materials Science GA 282ED UT WOS:000329152200049 ER PT J AU Kim, YS Jeon, SH Bostwick, A Rotenberg, E Ross, PN Stamenkovic, VR Markovic, NM Noh, TW Han, S Mun, BS AF Kim, Yong Su Jeon, Sang Ho Bostwick, Aaron Rotenberg, Eli Ross, Philip N. Stamenkovic, Vojislav R. Markovic, Nenad M. Noh, Tae Won Han, Seungwu Mun, Bongjin Simon TI Role of Transition Metal in Fast Oxidation Reaction on the Pt-3 TM (111) (TM = Ni, Co) Surfaces SO ADVANCED ENERGY MATERIALS LA English DT Article ID CATALYSTS; PLATINUM; ALLOY C1 [Kim, Yong Su; Bostwick, Aaron; Rotenberg, Eli] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Jeon, Sang Ho; Han, Seungwu] Seoul Natl Univ, Res Inst Adv Mat, Dept Mat Sci & Engn, Seoul 151744, South Korea. [Ross, Philip N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mat & Mol Res Div, Berkeley, CA 94720 USA. [Stamenkovic, Vojislav R.; Markovic, Nenad M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Kim, Yong Su; Noh, Tae Won] Seoul Natl Univ, CFI CES, IBS, Seoul 151747, South Korea. [Kim, Yong Su; Noh, Tae Won] Seoul Natl Univ, Dept Phys & Astron, Seoul 151747, South Korea. [Mun, Bongjin Simon] Gwangju Inst Sci & Technol, Ertl Ctr Elect & Catalyst, Sch Phys & Chem, Dept Phys & Photon Sci, Kwangju 500712, South Korea. RP Han, S (reprint author), Seoul Natl Univ, Res Inst Adv Mat, Dept Mat Sci & Engn, Seoul 151744, South Korea. EM hansw@snu.ac.kr; bsmun@gist.ac.kr RI Rotenberg, Eli/B-3700-2009 OI Rotenberg, Eli/0000-0002-3979-8844 FU Institute of Basic Science (IBS) [EM1203]; Basic Science Research Program through the National Research Foundation of Korea (NRF); Ministry of Education, Science and Technology (MEST) [2012R1A1A2001745] FX Y.S.K. and S.H.J. contributed equally to this work. Y.S.K. was supported by the Institute of Basic Science (IBS) (EM1203). B. S. M. would like to thank the support by Basic Science Research Program through the National Research Foundation of Korea (NRF) by the Ministry of Education, Science and Technology (MEST) (2012R1A1A2001745). Also, this work and ALS were supported by the U. S. Depart-ment of Energy, Office of Basic Sciences under Contract No. DE-AC02-05CH11231. S.H.J. and S. W. were supported by the Center for Multiscale Energy System. The first-principles computations were carried out at KISTI (KSC-2012-C3-08). This paper was supported by GIST College's 2013 GUP Research Fund. NR 25 TC 17 Z9 17 U1 5 U2 49 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1614-6832 EI 1614-6840 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD OCT PY 2013 VL 3 IS 10 BP 1257 EP 1261 DI 10.1002/aenm.201300166 PG 5 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA 276IA UT WOS:000328742200001 ER PT J AU Li, JC Baggetto, L Martha, SK Veith, GM Nanda, J Liang, CD Dudney, NJ AF Li, Juchuan Baggetto, Loic Martha, Surendra K. Veith, Gabriel M. Nanda, Jagjit Liang, Chengdu Dudney, Nancy J. TI An Artificial Solid Electrolyte Interphase Enables the Use of a LiNi0.5Mn1.5O4 5 V Cathode with Conventional Electrolytes SO ADVANCED ENERGY MATERIALS LA English DT Article ID LITHIUM-ION BATTERIES; RECHARGEABLE LI BATTERIES; HIGH-VOLTAGE CATHODES; ELECTROCHEMICAL PROPERTIES; THIN-FILMS; SPINEL; PERFORMANCE; SURFACE; LIMN1.5NI0.5O4; CAPACITY C1 [Li, Juchuan; Baggetto, Loic; Martha, Surendra K.; Veith, Gabriel M.; Nanda, Jagjit; Dudney, Nancy J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Liang, Chengdu] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Li, JC (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM lij2@ornl.gov; dudneynj@ornl.gov RI Li, Juchuan/A-2992-2009; Dudney, Nancy/I-6361-2016; Baggetto, Loic/D-5542-2017 OI Li, Juchuan/0000-0002-6587-5591; Dudney, Nancy/0000-0001-7729-6178; Baggetto, Loic/0000-0002-9029-2363 FU U.S. Department of Energy, Basic Energy Sciences (BES), Materials Science and Engineering Division (MSED) through the program "Structural Origins of Electrochemical and Mechanical Properties of Pre-formed SEIs FX This work was fully sponsored by the U.S. Department of Energy, Basic Energy Sciences (BES), Materials Science and Engineering Division (MSED) through the program "Structural Origins of Electrochemical and Mechanical Properties of Pre-formed SEIs." L.B. and G. M. V. assisted the initial thin film fabrication as collaboration with another BES, MSED program. S. K. M. and J.N. assisted with the cell assembly. NR 42 TC 36 Z9 36 U1 10 U2 136 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1614-6832 EI 1614-6840 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD OCT PY 2013 VL 3 IS 10 BP 1275 EP 1278 DI 10.1002/aenm201300378 PG 4 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA 276IA UT WOS:000328742200004 ER PT J AU Kim, C Buonsanti, R Yaylian, R Milliron, DJ Cabana, J AF Kim, Chunjoong Buonsanti, Raffaella Yaylian, Riley Milliron, Delia J. Cabana, Jordi TI Carbon-Free TiO2 Battery Electrodes Enabled by Morphological Control at the Nanoscale SO ADVANCED ENERGY MATERIALS LA English DT Article ID LITHIUM-ION BATTERIES; ELECTROCHEMICAL ENERGY-STORAGE; TITANIUM-DIOXIDE; ANATASE ELECTRODES; INSERTION; SURFACE; NANOSTRUCTURES; PERFORMANCE; CHALLENGES; CAPACITORS C1 [Kim, Chunjoong; Cabana, Jordi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Buonsanti, Raffaella; Milliron, Delia J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Yaylian, Riley] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP Cabana, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM JCabana@lbl.gov RI Cabana, Jordi/G-6548-2012; Milliron, Delia/D-6002-2012; Foundry, Molecular/G-9968-2014 OI Cabana, Jordi/0000-0002-2353-5986; FU Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy (DOE) under the Batteries for Advanced Transportation Technologies (BATT) Program; Office of Science, Office of Basic Energy Sciences, of the DOE [DE-AC02-05CH11231] FX JC and CK were supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy (DOE) under the Batteries for Advanced Transportation Technologies (BATT) Program. RY was supported by LBNL through the Science Undergraduate Laboratory Internship program from the DOE. Portions of this work were carried out at the Molecular Foundry as a user project and DJM was supported by a DOE Early Career Research Program grant, both funded by the Office of Science, Office of Basic Energy Sciences, of the DOE. All funding was provided under Contract No. DE-AC02-05CH11231. NR 51 TC 17 Z9 17 U1 5 U2 51 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1614-6832 EI 1614-6840 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD OCT PY 2013 VL 3 IS 10 BP 1286 EP 1291 DI 10.1002/aenm.201300264 PG 6 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA 276IA UT WOS:000328742200006 ER PT J AU Zhang, XF Belharouak, I Li, L Lei, Y Elam, JW Nie, AM Chen, XQ Yassar, RS Axelbaum, RL AF Zhang, Xiaofeng Belharouak, Ilias Li, Li Lei, Yu Elam, Jeffrey W. Nie, Anmin Chen, Xinqi Yassar, Reza S. Axelbaum, Richard L. TI Structural and Electrochemical Study of Al2O3 and TiO2 Coated Li1.2Ni0.13Mn0.54Co0.13O2 Cathode Material Using ALD SO ADVANCED ENERGY MATERIALS LA English DT Article ID ATOMIC LAYER DEPOSITION; LITHIUM-ION BATTERIES; NICKEL-MANGANESE-OXIDES; DIOXIDE THIN-FILMS; COMPOSITE ELECTRODES; HIGH-TEMPERATURE; CO ELECTRODES; LI; SURFACE; LICOO2 AB Nanolayers of Al2O3 and TiO2 coatings were applied to lithium-and manganese-rich cathode powder Li1.2Ni0.13Mn0.54Co0.13O2 using an atomic layer deposition (ALD) method. The ALD coatings exhibited different surface morphologies; the Al2O3 surface film appeared to be uniform and conformal, while the TiO2 layers appeared as particulates across the material surface. In a Li-cell, the Al2O3 surface film was stable during repeated charge and discharge, and this improved the cell cycling stability, despite a high surface impedance. The TiO2 layer was found to be more reactive with Li and formed a LixTiO2 interface, which led to a slight increase in cell capacity. However, the repetitive insertion/extraction process for the Li+ ions caused erosion of the surface protective TiO2 film, which led to degradation in cell performance, particularly at high temperature. For cells comprised of the coated Li1.2Ni0.13Mn0.54Co0.13O2 and an anode of meso-carbon-micro-beads (MCMB), the cycling stability introduced by ALD was not enough to overcome the electrochemical instability of MCMB graphite. Therefore, protection of the cathode materials by ALD Al2O3 or TiO2 can address some of the capacity fading issues related to the Li-rich cathode at room temperature. C1 [Zhang, Xiaofeng; Belharouak, Ilias] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Li, Li] Beijing Inst Technol, Sch Chem Engn & Environm, Beijing 100081, Peoples R China. [Lei, Yu; Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Nie, Anmin; Yassar, Reza S.] Michigan Technol Univ, Dept Mech Engn, Houghton, MI 49931 USA. [Chen, Xinqi] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA. [Chen, Xinqi] Northwestern Univ, NUANCE Ctr, Evanston, IL 60208 USA. [Axelbaum, Richard L.] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA. RP Belharouak, I (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM belharouak@anl.gov RI Nie, Anmin/N-7859-2014; OI Nie, Anmin/0000-0002-0180-1366; Lei, Yu/0000-0002-4161-5568; Belharouak, Ilias/0000-0002-3985-0278 FU U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. Support from the U. S. Department of Energy's Vehicle Technologies Program, specifically from Peter Faguy and Dave Howell, is gratefully acknowledged. Drs. Elam and Lei were supported as part of the Center for Electrical Energy Storage: Tailored Interfaces, an Energy Frontier Research Center funded by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Funding for Prof. Axelbaum was provided from the NSF. Washington University and Prof. Axelbaum may receive income based on a license of related technology by the University to X-tend Energy, LLC. The authors are also grateful to Dr. Yang Ren at Advanced Photon Source for XRD measurements. Reza S. Yassar acknowledges the electron microscopy facility located in the Research Resource Center (RRC) at the University of Illinois at Chicago (UIC). This article was modified after online publication to correct a chemical name and concentration in the Experimental Section. NR 56 TC 103 Z9 107 U1 42 U2 250 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1614-6832 EI 1614-6840 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD OCT PY 2013 VL 3 IS 10 BP 1299 EP 1307 DI 10.1002/aenm.201300269 PG 9 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA 276IA UT WOS:000328742200008 ER PT J AU Wang, F Wu, LJ Key, B Yang, XQ Grey, CP Zhu, YM Graetz, J AF Wang, Feng Wu, Lijun Key, Baris Yang, Xiao-Qing Grey, Clare P. Zhu, Yimei Graetz, Jason TI Electrochemical Reaction of Lithium with Nanostructured Silicon Anodes: A Study by In-Situ Synchrotron X-Ray Diffraction and Electron Energy-Loss Spectroscopy SO ADVANCED ENERGY MATERIALS LA English DT Article ID ION BATTERIES; CRYSTALLINE SILICON; STRUCTURAL-CHANGES; AMORPHOUS-SILICON; HIGH-CAPACITY; LITHIATION; PERFORMANCE; NANOPARTICLES; MICROSCOPY; INSERTION AB Silicon-based anodes are an appealing alternative to graphite for lithium-ion batteries because of their extremely high capacity. However, poor cycling stability and slow kinetics continue to limit the widespread use of silicon in commercial batteries. Performance improvement has been often demonstrated in nanostructured silicon electrodes, but the reaction mechanisms involved in the electrochemical lithiation of nanoscale silicon are not well understood. Here, in-situ synchrotron X-ray diffraction is used to monitor the subtle structural changes occurring in Si nanoparticles in a Si-C composite electrode during lithiation. Local analysis by electron energy-loss spectroscopy and transmission electron microscopy is performed to interrogate the nanoscale morphological changes and phase evolution of Si particles at different depths of discharge. It is shown that upon lithiation, Si nanoparticles behave quite differently than their micrometer-sized counterparts. Although both undergo an electrochemical amorphization, the micrometer-sized silicon exhibits a linear transformation during lithiation, while a two-step process occurs in the nanoscale Si. In the first half of the discharge, lithium reacts with surfaces, grain boundaries and planar defects. As the reaction proceeds and the cell voltage drops, lithium consumes the crystalline core transforming it into amorphous LixSi with a primary particle size of just a few nanometers. Unlike the bulk silicon electrode, no Li15Si4 or other crystalline LixSi phases were formed in nanoscale Si at the fully-lithiated state. C1 [Wang, Feng; Wu, Lijun; Yang, Xiao-Qing; Zhu, Yimei; Graetz, Jason] Brookhaven Natl Lab, Upton, NY 11973 USA. [Key, Baris; Grey, Clare P.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Grey, Clare P.] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England. RP Wang, F (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM fwang@bnl.gov RI Wang, Feng/C-1443-2016 OI Wang, Feng/0000-0003-4068-9212 FU U.S. Department of Energy (DOE) [DE-AC02-98CH10886]; Laboratory Directed Research and Development at Brookhaven; U.S. DOE [6517749] FX This work was supported by the U.S. Department of Energy (DOE) under contract DE-AC02-98CH10886 with funding from Laboratory Directed Research and Development at Brookhaven. CPG and BK thank the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. DOE for support via a subcontract No. 6517749 from Lawrence Berkeley National Laboratory. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U. S. DOE, Office of Science, under Contract No. DE-AC02-98CH10886. This article was modified after online publication. Figures 6 and 7 were mislabelled in the original version. NR 43 TC 22 Z9 22 U1 12 U2 100 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1614-6832 EI 1614-6840 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD OCT PY 2013 VL 3 IS 10 BP 1324 EP 1331 DI 10.1002/aenm.201300394 PG 8 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA 276IA UT WOS:000328742200011 ER PT J AU Bricklemyer, RS Brown, DJ Turk, PJ Clegg, SM AF Bricklemyer, Ross S. Brown, David J. Turk, Philip J. Clegg, Sam M. TI Improved Intact Soil-Core Carbon Determination Applying Regression Shrinkage and Variable Selection Techniques to Complete Spectrum Laser-Induced Breakdown Spectroscopy (LIBS) SO APPLIED SPECTROSCOPY LA English DT Article DE Complete spectrum laser-induced breakdown spectroscopy; LIBS; Partial least squares regression; PLS; Least absolute shrinkage and selection operator; LASSO; Sparse multivariate regression with covariance estimation; MRCE; Intact soil cores; Soil carbon ID INFRARED REFLECTANCE SPECTROSCOPY; LEAST-SQUARES REGRESSION; IN-SITU CHARACTERIZATION; INORGANIC CARBON; SYSTEM; OPTIMIZATION; MONTANA; MODELS AB Laser-induced breakdown spectroscopy (LIBS) provides a potential method for rapid, in situ soil C measurement. In previous research on the application of LIBS to intact soil cores, we hypothesized that ultraviolet (UV) spectrum LIBS (200-300 urn) might not provide sufficient elemental information to reliably discriminate between soil organic C (SOC) and inorganic C (IC). In this study, using a custom complete spectrum (245-925 mn) core-scanning LIES instrument, we analyzed 60 intact soil cores from six wheat fields. Predictive multi-response partial least squares (PLS2) models using full and reduced spectrum LIES were compared for directly determining soil total C (TC), IC, and SOC. Two regression shrinkage and variable selection approaches, the least absolute shrinkage and selection operator (LASSO) and sparse multivariate regression with covariance estimation (MRCE), were tested for soil C predictions and the identification of wavelengths important for soil C prediction. Using complete spectrum LIES for PLS2 modeling reduced the calibration standard error of prediction (SEP) 15 and 19% for TC and IC, respectively, compared to UV spectrum LIES. The LASSO and MRCE approaches provided significantly improved calibration accuracy and reduced SEP 32-55% over UV spectrum PLS2 models. We conclude that (1) complete spectrum LIES is superior to UV spectrum LIES for predicting soil C for intact soil cores without pretreatment; (2) LASSO and MRCE approaches provide improved calibration prediction accuracy over PLS2 but require additional testing with increased soil and target analyte diversity; and (3) measurement errors associated with analyzing intact cores (e.g., sample density and surface roughness) require further study and quantification. C1 [Bricklemyer, Ross S.; Brown, David J.] Washington State Univ, Dept Crop & Soil Sci, Pullman, WA 99164 USA. [Turk, Philip J.] W Virginia Univ, Dept Stat, Morgantown, WV 26506 USA. [Clegg, Sam M.] Los Alamos Natl Lab, Chem Diagnost & Engn Grp C CDE, Los Alamos, NM 87545 USA. RP Bricklemyer, RS (reprint author), Washington State Univ, Dept Crop & Soil Sci, POB 646420, Pullman, WA 99164 USA. EM rsb@wsu.edu RI Brown, David/A-2002-2009; OI Clegg, Sam/0000-0002-0338-0948 FU Big Sky Carbon Sequestration Partnership; U.S. Department of Energy-National Energy Technology Laboratory [DE-FC26-05NT42587] FX This research was funded by the Big Sky Carbon Sequestration Partnership and the U.S. Department of Energy-National Energy Technology Laboratory, award number DE-FC26-05NT42587. The authors also thank Dr. Darby Dyar, Dr. Marco Carmosino, and Ms. Marie Ozanne for their insights. NR 54 TC 4 Z9 5 U1 0 U2 30 PU SOC APPLIED SPECTROSCOPY PI FREDERICK PA 5320 SPECTRUM DRIVE SUITE C, FREDERICK, MD 21703 USA SN 0003-7028 EI 1943-3530 J9 APPL SPECTROSC JI Appl. Spectrosc. PD OCT PY 2013 VL 67 IS 10 BP 1185 EP 1199 DI 10.1366/12-06983 PG 15 WC Instruments & Instrumentation; Spectroscopy SC Instruments & Instrumentation; Spectroscopy GA 280GH UT WOS:000329016200011 PM 24067576 ER PT J AU He, X Lau, AK Sokhansanj, S Lim, CJ Bi, XTT Melin, S Keddy, T AF He, Xiao Lau, Anthony K. Sokhansanj, Shahab Lim, C. Jim Bi, Xiaotao T. Melin, Staffan Keddy, Timothy TI Moisture sorption isotherms and drying characteristics of aspen (Populus tremuloides) SO BIOMASS & BIOENERGY LA English DT Article DE Moisture sorption; Equilibrium moisture content; Sorption isotherms; Drying rate; Aspen ID DESORPTION ISOTHERMS; DIFFUSION; WOOD; TEMPERATURES; HYSTERESIS; STORAGE; RICE AB The objectives of this study were to investigate the effects of temperature and relative humidity on the sorption characteristics and the drying rate of woody biomass, and to develop a sorption isotherm model. Experiments using Trembling Aspen (Populus tremuloides) as materials were conducted in a controlled environment chamber. Results showed that low temperature and high relative humidity of ambient air led to higher equilibrium moisture content (EMC) for both desorption and adsorption processes. At higher temperature, the EMC was reached over a shorter drying time indicating a higher sorption rate; relative humidity was also positively correlated with the adsorption rate. The Modified Oswin model that relates equilibrium relative humidity to temperature and EMC was found to provide the best fit to the experimental data. The trend of drying rate constant versus temperature followed the Arrhenius equation, and Page's model was appropriate for predicting the drying characteristics of Aspen. (C) 2013 Elsevier Ltd. All rights reserved. C1 [He, Xiao; Lau, Anthony K.; Sokhansanj, Shahab; Lim, C. Jim; Bi, Xiaotao T.; Melin, Staffan] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada. [Sokhansanj, Shahab] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Melin, Staffan] Delta Res Corp, Delta, BC V4L 2L5, Canada. [Keddy, Timothy] Nat Resources Canada, Canadian Wood Fibre Ctr, Edmonton, AB T6H 3S5, Canada. RP Lau, AK (reprint author), Univ British Columbia, Dept Chem & Biol Engn, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada. EM aklau@chbe.ubc.ca RI Lau, Anthony/J-8519-2015 FU Natural Sciences and Engineering Research Council of Canada; British Columbia Innovation Council/Natural Resources and Applied Sciences Endowment Fund (NRAS); U.S. Department of Energy, Office of Biomass Program FX This research is supported by Natural Sciences and Engineering Research Council of Canada, British Columbia Innovation Council/Natural Resources and Applied Sciences Endowment Fund (NRAS) and the U.S. Department of Energy, Office of Biomass Program. NR 32 TC 7 Z9 7 U1 3 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0961-9534 EI 1873-2909 J9 BIOMASS BIOENERG JI Biomass Bioenerg. PD OCT PY 2013 VL 57 BP 161 EP 167 DI 10.1016/j.biombioe.2013.07.007 PG 7 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 273GC UT WOS:000328522300017 ER PT J AU Qiao, ZA Wu, ZL Dai, S AF Qiao, Zhen-An Wu, Zili Dai, Sheng TI Shape-Controlled Ceria-based Nanostructures for Catalysis Applications SO CHEMSUSCHEM LA English DT Review DE catalysis; ceria; nanoshape; shape-controlled; surface chemistry ID DEFINED SURFACE PLANES; WATER-GAS SHIFT; PROBING DEFECT SITES; IR MOLECULAR PROBE; CEO2 NANOWIRES; CO OXIDATION; OXIDE NANOPARTICLES; OXYGEN STORAGE; ULTRAVIOLET-ABSORPTION; NANOCRYSTALLINE CERIA AB Among oxide catalysts, ceria is a technologically important material because of its wide applications as a promoter in three-way catalysts for the elimination of toxic exhaust gases, low-temperature water-gas-shift reaction, oxygen sensors, oxygen permeation membrane systems, and fuel cells. The catalytic activities of cerium oxide are highly dependent on interfacial structures and nanocrystal morphologies. This Minireview highlights the recent progress in the research of ceria nanoshapes as both catalysts and catalyst supports, including the synthesis, structure characterization, catalytic properties, surface chemistry, as well as reaction mechanisms. Insights from insitu spectroscopy study and theoretical modeling of nanostructured ceria-based materials have shed light on the origin of the ceria shape effect. It is suggested that the surface structure of ceria controls the catalytic activity and selectivity through structure-dependent surface-site geometry, surface vacancy formation energy, defect sites, and coordinatively unsaturated sites on ceria. The morphology-dependent catalysis in ceria has offered a new strategy to finely tune the catalytic activity and selectivity through shape control without altering the catalyst composition. A brief summary and an outlook on this research field will be presented at the end. C1 [Qiao, Zhen-An; Wu, Zili; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Wu, Zili; Dai, Sheng] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Qiao, ZA (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM wuz1@ornl.gov; dais@ornl.gov RI Wu, Zili/F-5905-2012; Dai, Sheng/K-8411-2015; OI Wu, Zili/0000-0002-4468-3240; Dai, Sheng/0000-0002-8046-3931; Qiao, Zhen-An/0000-0001-6064-9360 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy [DE-AC05-00OR22725]; Oak Ridge National Laboratory; Oak Ridge National Laboratory by the Scientific User Facility Division, Office of Basic Energy Sciences, US Department of Energy FX The research was sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy, under contract no. DE-AC05-00OR22725 with Oak Ridge National Laboratory managed and operated by UT-Battelle, LLC. Part of the work was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facility Division, Office of Basic Energy Sciences, US Department of Energy. NR 112 TC 44 Z9 45 U1 48 U2 344 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD OCT PY 2013 VL 6 IS 10 SI SI BP 1821 EP 1833 DI 10.1002/cssc.201300428 PG 13 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA 275PJ UT WOS:000328689000003 PM 24115732 ER PT J AU Fitzmorris, BC Patete, JM Smith, J Mascorro, X Adams, S Wong, SS Zhang, JZ AF Fitzmorris, Bob C. Patete, Jonathan M. Smith, Jacqueline Mascorro, Xiomara Adams, Staci Wong, Stanislaus S. Zhang, Jin Z. TI Ultrafast Transient Absorption Studies of Hematite Nanoparticles: The Effect of Particle Shape on Exciton Dynamics SO CHEMSUSCHEM LA English DT Article DE exciton dynamics; iron; nanostructures; shape control; transient absorption spectroscopy ID LITHIUM ION BATTERY; PHOTOCATALYTIC PROPERTIES; THIN-FILMS; HYDROGEN GENERATION; OPTICAL-PROPERTIES; GROWTH-MECHANISM; NANOROD ARRAYS; ALPHA-FE2O3; NANOCRYSTALS; TIO2 AB Much progress has been made in using hematite (-Fe2O3) as a potentially practical and sustainable material for applications such as solar-energy conversion and photoelectrochemical (PEC) water splitting; however, recent studies have shown that the performance can be limited by a very short charge-carrier diffusion length or exciton lifetime. In this study, we performed ultrafast studies on hematite nanoparticles of different shapes to determine the possible influence of particle shape on the exciton dynamics. Nanorice, multifaceted spheroidal nanoparticles, faceted nanocubes, and faceted nanorhombohedra were synthesized and characterized by using SEM and XRD techniques. Their exciton dynamics were investigated by using femtosecond transient absorption (TA) spectroscopy. Although the TA spectral features differ for the four samples studied, their decay profiles are similar, which can be fitted with time constants of 1-3ps, approximately 25ps, and a slow nanosecond component extending beyond the experimental time window that was measured (2ns). The results indicate that the overall exciton lifetime is weakly dependent on the shape of the hematite nanoparticles, even though the overall optical absorption and scattering are influenced by the particle shape. This study suggests that other strategies need to be developed to increase the exciton lifetime or to lengthen the exciton diffusion length in hematite nanostructures. C1 [Patete, Jonathan M.; Smith, Jacqueline; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Wong, Stanislaus S.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Fitzmorris, Bob C.; Mascorro, Xiomara; Adams, Staci; Zhang, Jin Z.] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. RP Fitzmorris, BC (reprint author), Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. EM sswong@bnl.gov; zhang@ucsc.edu FU US Department of Energy, Basic Energy Sciences, Materials Sciences, and Engineering Division at Brookhaven National Laboratory; US Department of Energy [DE-AC02-98CH10886] FX Research support for J.M.P. and S.S.W. was provided by the US Department of Energy, Basic Energy Sciences, Materials Sciences, and Engineering Division at Brookhaven National Laboratory, which is supported by the US Department of Energy under Contract No. DE-AC02-98CH10886. NR 43 TC 10 Z9 10 U1 2 U2 73 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD OCT PY 2013 VL 6 IS 10 SI SI BP 1907 EP 1914 DI 10.1002/cssc.201300571 PG 8 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA 275PJ UT WOS:000328689000007 PM 24058060 ER PT J AU Kahr, B Bullard, T Kurimoto, M De Yoreo, JJ AF Kahr, Bart Bullard, Theresa Kurimoto, Miki De Yoreo, James J. TI Complex organic guests in simple crystals: potassium hydrogen phthalate as case study SO CRYSTAL RESEARCH AND TECHNOLOGY LA English DT Article DE dyeing crystals; potassium acid phthalate; solution growth ID ATOMIC-FORCE MICROSCOPY; SINGLE-CRYSTALS; ACID PHTHALATE; GROWTH; KINETICS; DYES; IONIZATION; IMPURITIES; MORPHOLOGY; WATER AB The micromolar chemical lives of crystals are extraordinarily rich. This is especially true of potassium acid phthalate (KAP) which is able to orient and overgrow many complex organic dye molecules. KAP mixed crystals illustrate a number of concepts in solution crystal growth that are reviewed herein. C1 [Kahr, Bart; Bullard, Theresa; Kurimoto, Miki] NYU, Dept Chem, New York, NY 10003 USA. [De Yoreo, James J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Kahr, B (reprint author), NYU, Dept Chem, 100 Washington Sq East, New York, NY 10003 USA. EM bart.kahr@nyu.edu NR 43 TC 3 Z9 3 U1 3 U2 20 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1521-4079 J9 CRYST RES TECHNOL JI Cryst. Res. Technol. PD OCT PY 2013 VL 48 IS 10 SI SI BP 849 EP 863 DI 10.1002/crat.201200710 PG 15 WC Crystallography SC Crystallography GA 260KR UT WOS:000327594300011 ER PT J AU Gao, MC Alman, DE AF Gao, Michael C. Alman, David E. TI Searching for Next Single-Phase High-Entropy Alloy Compositions SO ENTROPY LA English DT Article DE high-entropy alloys; ab initio molecular dynamics simulations; CALPHAD; pair correlation function; diffusion constants; phase diagrams; solid solution; FCC; BCC; HCP ID MULTIPRINCIPAL ELEMENTS; MULTICOMPONENT ALLOYS; MOLECULAR-DYNAMICS; SYSTEM; MICROSTRUCTURE; DECOMPOSITION; BEHAVIOR AB There has been considerable technological interest in high-entropy alloys (HEAs) since the initial publications on the topic appeared in 2004. However, only several of the alloys investigated are truly single-phase solid solution compositions. These include the FCC alloys CoCrFeNi and CoCrFeMnNi based on 3d transition metals elements and BCC alloys NbMoTaW, NbMoTaVW, and HfNbTaTiZr based on refractory metals. The search for new single-phase HEAs compositions has been hindered by a lack of an effective scientific strategy for alloy design. This report shows that the chemical interactions and atomic diffusivities predicted from ab initio molecular dynamics simulations which are closely related to primary crystallization during solidification can be used to assist in identifying single phase high-entropy solid solution compositions. Further, combining these simulations with phase diagram calculations via the CALPHAD method and inspection of existing phase diagrams is an effective strategy to accelerate the discovery of new single-phase HEAs. This methodology was used to predict new single-phase HEA compositions. These are FCC alloys comprised of CoFeMnNi, CuNiPdPt and CuNiPdPtRh, and HCP alloys of CoOsReRu. C1 [Gao, Michael C.; Alman, David E.] Natl Energy Technol Lab, Albany, OR 97321 USA. [Gao, Michael C.] URS Corp, Albany, OR 97321 USA. RP Gao, MC (reprint author), Natl Energy Technol Lab, 1450 Queen Ave SW, Albany, OR 97321 USA. EM michael.gao@contr.netl.doe.gov; david.alman@netl.doe.gov FU agency of the United States Government FX This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 35 TC 62 Z9 62 U1 22 U2 141 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1099-4300 J9 ENTROPY-SWITZ JI Entropy PD OCT PY 2013 VL 15 IS 10 BP 4504 EP 4519 DI 10.3390/e15104504 PG 16 WC Physics, Multidisciplinary SC Physics GA 272UM UT WOS:000328486900027 ER PT J AU Cleemann, LN Buazar, F Li, Q Jensen, JO Pan, C Steenberg, T Dai, S Bjerrum, NJ AF Cleemann, L. N. Buazar, F. Li, Q. Jensen, J. O. Pan, C. Steenberg, T. Dai, S. Bjerrum, N. J. TI Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes SO FUEL CELLS LA English DT Article DE Catalysts; Degradation; Durability; Proton exchange membrane fuel cell; High temperature ID POLYMER ELECTROLYTE; PHOSPHORIC-ACID; LIFE TEST; DURABILITY ENHANCEMENT; OXYGEN REDUCTION; CARBON SUPPORT; PT/C CATALYST; PART I; PEMFC; PBI AB Degradation of carbon supported platinum catalysts is a major failure mode for the long term durability of high temperature proton exchange membrane fuel cells based on phosphoric acid doped polybenzimidazole membranes. With Vulcan carbon black as a reference, thermally treated carbon black and multi-walled carbon nanotubes were used as supports for electrode catalysts and evaluated in accelerated durability tests under potential cycling at 150 degrees C. Measurements of open circuit voltage, area specific resistance and hydrogen permeation through the membrane were carried out, indicating little contribution of the membrane degradation to the performance losses during the potential cycling tests. As the major mechanism of the fuel cell performance degradation, the electrochemical active area of the cathodic catalysts showed a steady decrease in the cyclic voltammetric measurements, which was also confirmed by the post TEM and XRD analysis. A strong dependence of the fuel cell performance degradation on the catalyst supports was observed. Graphitization of the carbon blacks improved the stability and catalyst durability though at the expense of a significant decrease in the specific surface area. Multi-walled carbon nanotubes as catalyst supports showed further significant improvement in the catalyst and fuel cell durability. C1 [Cleemann, L. N.; Buazar, F.; Li, Q.; Jensen, J. O.; Pan, C.; Bjerrum, N. J.] Tech Univ Denmark, Dept Energy Convers & Storage, DK-2800 Lyngby, Denmark. [Buazar, F.; Steenberg, T.] Danish Power Syst Aps, DK-2920 Charlottenlund, Denmark. [Dai, S.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Li, Q (reprint author), Tech Univ Denmark, Dept Energy Convers & Storage, Kemitorvet 207, DK-2800 Lyngby, Denmark. EM qfli@dtu.dk RI Jensen, Jens Oluf/I-1210-2016; Cleemann, Lars/I-2801-2016; Dai, Sheng/K-8411-2015; OI Jensen, Jens Oluf/0000-0002-2427-7763; Cleemann, Lars/0000-0001-5840-7477; Dai, Sheng/0000-0002-8046-3931; Li, Qingfeng/0000-0002-5460-055X FU Danish ForskEL programme (DuraPEM project); Danish ForskEL programme (HotMEA project); Danish ForskEL programme (Catbooster project) FX Funding of this work is acknowledged from the Danish ForskEL programme (DuraPEM, HotMEA and Catbooster projects). NR 49 TC 9 Z9 9 U1 4 U2 37 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1615-6846 EI 1615-6854 J9 FUEL CELLS JI Fuel Cells PD OCT PY 2013 VL 13 IS 5 BP 822 EP 831 DI 10.1002/fuce.201200186 PG 10 WC Electrochemistry; Energy & Fuels SC Electrochemistry; Energy & Fuels GA 267XW UT WOS:000328132700020 ER PT J AU Wang, H Turner, JA AF Wang, H. Turner, J. A. TI Modifying a Stainless Steel for PEMFC Bipolar Plates via Electrochemical Nitridation SO FUEL CELLS LA English DT Article DE Bipolar Plate; Nitridation; PEMFC; Stainless Steel; Surface Modification; XPS ID MEMBRANE FUEL-CELLS; PASSIVE FILMS; NITROGEN; CHROMIUM; BEHAVIOR; ALLOYS; XPS; ENVIRONMENTS; MOLYBDENUM; 316L AB AISI446 stainless steel was electrochemically nitrided at room temperature. X-ray photoelectron spectroscopy (XPS) analysis indicated that the nitrided steel was covered with surface ammonia and a layer of nitrides (mainly of mixed chromium nitrides). The nitride layer for 4h nitrided steel at -0.9V was about 2.5nm thick. Dominating oxides appear on the steel's surface, so nitrogen incorporated oxides is a suitable term to describe the nitrided surface. The nitrided surface showed very low interfacial contact resistance (ICR) and excellent corrosion resistance in simulated polymer electrolyte membrane fuel cell (PEMFC) environments. The excellent stability of the nitride steel was confirmed by XPS depth profiling before and after testing in the PEMFC environments. Electrochemical nitridation provides an economic way for modifying the steel's surface to approach the U.S. Department of Energy 2015 goal for bipolar plates. C1 [Wang, H.; Turner, J. A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Wang, H (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM heli.wang@nrel.gov FU Fuel Cells Technologies Program of the U.S. Department of Energy FX The authors wish to thank Dr. Glenn Teeter for helping the XPS analysis. This work was supported by the Fuel Cells Technologies Program of the U.S. Department of Energy. NR 33 TC 4 Z9 4 U1 1 U2 14 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1615-6846 EI 1615-6854 J9 FUEL CELLS JI Fuel Cells PD OCT PY 2013 VL 13 IS 5 BP 917 EP 921 DI 10.1002/fuce.201300068 PG 5 WC Electrochemistry; Energy & Fuels SC Electrochemistry; Energy & Fuels GA 267XW UT WOS:000328132700031 ER PT J AU Pennypacker, CR Jakubowski, MK Kelly, M Lampton, M Schmidt, C Stephens, S Tripp, R AF Pennypacker, Carlton R. Jakubowski, Marek K. Kelly, Maggi Lampton, Michael Schmidt, Christopher Stephens, Scott Tripp, Robert TI FUEGO - Fire Urgency Estimator in Geosynchronous Orbit - A Proposed Early-Warning Fire Detection System SO REMOTE SENSING LA English DT Article DE fire detection; geosynchronous; remote sensing; infrared; FUEGO ID OPTIMAL IMAGE SUBTRACTION; CLIMATE-CHANGE; SATELLITE AB Current and planned wildfire detection systems are impressive but lack both sensitivity and rapid response times. A small telescope with modern detectors and significant computing capacity in geosynchronous orbit can detect small (12 m(2)) fires on the surface of the earth, cover most of the western United States (under conditions of moderately clear skies) every few minutes or so, and attain very good signal-to-noise ratio against Poisson fluctuations in a second. Hence, these favorable statistical significances have initiated a study of how such a satellite could operate and reject the large number of expected systematic false alarms from a number of sources. Here we present both studies of the backgrounds in Geostationary Operational Environmental Satellites (GOES) 15 data and studies that probe the sensitivity of a fire detection satellite in geosynchronous orbit. We suggest a number of algorithms that can help reduce false alarms, and show efficacy on a few. Early detection and response would be of true value in the United States and other nations, as wildland fires continue to severely stress resource managers, policy makers, and the public, particularly in the western US. Here, we propose the framework for a geosynchronous satellite with modern imaging detectors, software, and algorithms able to detect heat from early and small fires, and yield minute-scale detection times. C1 [Pennypacker, Carlton R.; Lampton, Michael] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Pennypacker, Carlton R.; Lampton, Michael; Tripp, Robert] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Jakubowski, Marek K.; Kelly, Maggi; Stephens, Scott] Univ Calif Berkeley, Coll Nat Resources, Berkeley, CA 94720 USA. [Schmidt, Christopher] Univ Wisconsin, Cooperat Inst Meteorol Satellite Studies, Madison, WI 53706 USA. RP Pennypacker, CR (reprint author), Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. EM crpennypacker@lbl.gov; marek@berkeley.edu; maggi@berkeley.edu; mllampton@lbl.gov; chris.schmidt@ssec.wisc.edu; sstephens@berkeley.edu; RDTripp@lbl.gov NR 17 TC 3 Z9 3 U1 1 U2 9 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD OCT PY 2013 VL 5 IS 10 BP 5173 EP 5192 DI 10.3390/rs5105173 PG 20 WC Remote Sensing SC Remote Sensing GA 274OD UT WOS:000328614900021 ER PT J AU Auld, JA AF Auld, Joshua A. TI Advances in Agent-based Microsimulation in Travel Demand Modeling SO TRANSPORTATION LETTERS-THE INTERNATIONAL JOURNAL OF TRANSPORTATION RESEARCH LA English DT Editorial Material C1 Argonne Natl Lab, Transportat Res & Anal Comp Ctr, Lemont, IL 60439 USA. RP Auld, JA (reprint author), Argonne Natl Lab, Transportat Res & Anal Comp Ctr, Lemont, IL 60439 USA. NR 2 TC 0 Z9 0 U1 1 U2 9 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 1942-7867 EI 1942-7875 J9 TRANSP LETT JI Transp. Lett. PD OCT PY 2013 VL 5 IS 4 BP 165 EP 166 DI 10.1179/1942786713Z.00000000028 PG 2 WC Transportation; Transportation Science & Technology SC Transportation GA 271BV UT WOS:000328366400001 ER PT J AU Schumann, GJP Neal, JC Voisin, N Andreadis, KM Pappenberger, F Phanthuwongpakdee, N Hall, AC Bates, PD AF Schumann, G. J. -P. Neal, J. C. Voisin, N. Andreadis, K. M. Pappenberger, F. Phanthuwongpakdee, N. Hall, A. C. Bates, P. D. TI A first large-scale flood inundation forecasting model SO WATER RESOURCES RESEARCH LA English DT Article DE flood inundation forecasting; large scale; hydrodynamics ID ZAMBEZI RIVER-BASIN; PRECIPITATION PRODUCTS; WEATHER PREDICTION; SYSTEM; UNCERTAINTY; MOZAMBIQUE; DISCHARGE; LAND AB At present continental to global scale flood forecasting predicts at a point discharge, with little attention to detail and accuracy of local scale inundation predictions. Yet, inundation variables are of interest and all flood impacts are inherently local in nature. This paper proposes a large-scale flood inundation ensemble forecasting model that uses best available data and modeling approaches in data scarce areas. The model was built for the Lower Zambezi River to demonstrate current flood inundation forecasting capabilities in large data-scarce regions. ECMWF ensemble forecast (ENS) data were used to force the VIC (Variable Infiltration Capacity) hydrologic model, which simulated and routed daily flows to the input boundary locations of a 2-D hydrodynamic model. Efficient hydrodynamic modeling over large areas still requires model grid resolutions that are typically larger than the width of channels that play a key role in flood wave propagation. We therefore employed a novel subgrid channel scheme to describe the river network in detail while representing the floodplain at an appropriate scale. The modeling system was calibrated using channel water levels from satellite laser altimetry and then applied to predict the February 2007 Mozambique floods. Model evaluation showed that simulated flood edge cells were within a distance of between one and two model resolutions compared to an observed flood edge and inundation area agreement was on average 86%. Our study highlights that physically plausible parameter values and satisfactory performance can be achieved at spatial scales ranging from tens to several hundreds of thousands of km(2) and at model grid resolutions up to several km(2). C1 [Schumann, G. J. -P.; Neal, J. C.; Hall, A. C.; Bates, P. D.] Univ Bristol, Sch Geog Sci, Bristol, Avon, England. [Schumann, G. J. -P.; Andreadis, K. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Voisin, N.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Pappenberger, F.] European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England. [Pappenberger, F.] Hohai Univ, Coll Hydrol & Water Resources, Nanjing, Jiangsu, Peoples R China. [Phanthuwongpakdee, N.] Univ Bristol, Dept Civil Engn, Bristol, Avon, England. [Bates, P. D.] Univ Bristol, Cabot Inst, Bristol, Avon, England. RP Schumann, GJP (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Guy.J.Schumann@jpl.nasa.gov RI Bates, Paul/C-8026-2012; Voisin, Nathalie/D-8845-2014; Neal, Jeffrey/C-8723-2009; Schumann, Guy/F-9760-2011; Pappenberger, Florian/A-2839-2009; OI Bates, Paul/0000-0001-9192-9963; Neal, Jeffrey/0000-0001-5793-9594; Pappenberger, Florian/0000-0003-1766-2898; Voisin, Nathalie/0000-0002-6848-449X FU Leverhulme Trust Research Project grant; NERC National Centre for Earth Observation (NCEO); Leverhulme Trust Early Career Fellowship scheme; KULTURisk; GLOWASIS; DEWFORA (EC-FP7) projects FX Part of this work was funded by a Leverhulme Trust Research Project grant and part of this work was also carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, Pasadena, CA, USA under a contract with the National Aeronautics and Space Administration (NASA). G.J.-P.S.'s time at the University of Bristol was funded by a NERC National Centre for Earth Observation (NCEO) small grant and J.C.N. was funded by the Leverhulme Trust Early Career Fellowship scheme. F.P. was supported by the KULTURisk, GLOWASIS, and the DEWFORA (EC-FP7) projects. N.(K.)P.'s work formed part of his M.Sc. Degree awarded at the University of Bristol. NR 63 TC 25 Z9 25 U1 5 U2 47 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD OCT PY 2013 VL 49 IS 10 BP 6248 EP 6257 DI 10.1002/wrcr.20521 PG 10 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 258BI UT WOS:000327432500009 ER PT J AU Houseworth, JE Asahina, D Birkholzer, JT AF Houseworth, J. E. Asahina, D. Birkholzer, J. T. TI An analytical model for solute transport through a water-saturated single fracture and permeable rock matrix SO WATER RESOURCES RESEARCH LA English DT Article DE transport; fracture; matrix ID CONTAMINANT TRANSPORT; POROUS-MEDIA; DIFFUSION-COEFFICIENT; NUMERICAL-SIMULATION; FISSURED ROCKS; DISPERSION; ADVECTION; FLOW; SIZE AB The problem of solute transport through a water-saturated single fracture in a permeable rock matrix is examined using an analytical modeling approach. A closed-form analytical solution is obtained that accounts for transverse and longitudinal advective transport in the fracture and matrix and transverse diffusion in the matrix. The solution also accounts for both diffusive and advective solute exchange between the fracture and matrix and a general solute source position in either the fracture or matrix. The novel features are the incorporation of advective transport in the matrix and a general source position into a closed-form solution for the solute-transport problem. Examples of the solution behavior are presented, which demonstrate the effects of matrix advection in combination with advection along the fracture, transverse diffusion in the matrix for solute release in the fracture and matrix. A semianalytical solution in the form of a superposition integral is also derived that includes these transport features, plus independent levels of longitudinal diffusion and dispersion in the matrix and fracture, respectively. Examples are presented that include advective transport in the fracture and matrix, longitudinal and transverse diffusion in the matrix, longitudinal dispersion in the fracture, as well as solute release from the fracture and matrix. An approximate criterion is proposed to evaluate the significance of longitudinal diffusion and dispersion relative to longitudinal spreading caused by fracture-matrix interaction. C1 [Houseworth, J. E.; Asahina, D.; Birkholzer, J. T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Houseworth, JE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM jehouseworth@lbl.gov RI Birkholzer, Jens/C-6783-2011; Houseworth, James/D-8749-2015 OI Birkholzer, Jens/0000-0002-7989-1912; FU Used Fuel Disposition Campaign, Office of Nuclear Energy, of the U.S. Department of Energy with Berkeley Lab [DE-AC02-05CH11231] FX We thank Abdulla Cihan and Dan Hawkes at LBNL for their careful reviews of a draft manuscript. Funding for this work was provided by the Used Fuel Disposition Campaign, Office of Nuclear Energy, of the U.S. Department of Energy under contract DE-AC02-05CH11231 with Berkeley Lab. NR 40 TC 5 Z9 5 U1 0 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD OCT PY 2013 VL 49 IS 10 BP 6317 EP 6338 DI 10.1002/wrcr.20497 PG 22 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 258BI UT WOS:000327432500014 ER PT J AU Chen, JS Hubbard, SS Williams, KH AF Chen, Jinsong Hubbard, Susan S. Williams, Kenneth H. TI Data-driven approach to identify field-scale biogeochemical transitions using geochemical and geophysical data and hidden Markov models: Development and application at a uranium-contaminated aquifer SO WATER RESOURCES RESEARCH LA English DT Article DE bioremediation; hidden Markov model; uranium; spectral IP; groundwater; complex resistivity ID BIOREMEDIATION; GROUNDWATER; PRECIPITATION; REMOVAL AB Although mechanistic reaction networks have been developed to quantify the biogeochemical evolution of subsurface systems associated with bioremediation, it is difficult in practice to quantify the onset and distribution of these transitions at the field scale using commonly collected wellbore datasets. As an alternative approach to the mechanistic methods, we develop a data-driven, statistical model to identify biogeochemical transitions using various time-lapse aqueous geochemical data (e.g., Fe(II), sulfate, sulfide, acetate, and uranium concentrations) and induced polarization (IP) data. We assume that the biogeochemical transitions can be classified as several dominant states that correspond to redox transitions and test the method at a uranium-contaminated site. The relationships between the geophysical observations and geochemical time series vary depending upon the unknown underlying redox status, which is modeled as a hidden Markov random field. We estimate unknown parameters by maximizing the joint likelihood function using the maximization-expectation algorithm. The case study results show that when considered together aqueous geochemical data and IP imaginary conductivity provide a key diagnostic signature of biogeochemical stages. The developed method provides useful information for evaluating the effectiveness of bioremediation, such as the probability of being in specific redox stages following biostimulation where desirable pathways (e.g., uranium removal) are more highly favored. The use of geophysical data in the approach advances the possibility of using noninvasive methods to monitor critical biogeochemical system stages and transitions remotely and over field relevant scales (e.g., from square meters to several hectares). C1 [Chen, Jinsong; Hubbard, Susan S.; Williams, Kenneth H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Chen, JS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jchen@lbl.gov RI Chen, Jinsong/A-1374-2009; Williams, Kenneth/O-5181-2014; Hubbard, Susan/E-9508-2010 OI Williams, Kenneth/0000-0002-3568-1155; FU U.S. Department of Energy, Biological and Environmental Research Program [DE-AC02-05CH11231] FX Funding for this study was provided by the U.S. Department of Energy, Biological and Environmental Research Program under award DE-AC02-05CH11231 to the LBNL Sustainable Systems Subsurface Science Focus Area (SFA). We thank Adrian Flores Orozco from the University of Bonn in Germany for providing induced polarization data used in this study. We also thank Andrew Binley, Dimitris Ntarlagiannis, Nicolas Florsch, and one anonymous reviewer for their constructive comments. NR 36 TC 5 Z9 5 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD OCT PY 2013 VL 49 IS 10 BP 6412 EP 6424 DI 10.1002/wrcr.20524 PG 13 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 258BI UT WOS:000327432500020 ER PT J AU Liu, XY Zhou, QL Birkholzer, J Illman, WA AF Liu, Xiaoyi Zhou, Quanlin Birkholzer, Jens Illman, Walter A. TI Geostatistical reduced-order models in underdetermined inverse problems SO WATER RESOURCES RESEARCH LA English DT Article DE model reduction; reduced-order models; geostatistical reduced-order models; geostatistical inverse modeling; GROM ID PROPER ORTHOGONAL DECOMPOSITION; GROUNDWATER-FLOW; HYDRAULIC CONDUCTIVITY; TEMPORAL MOMENTS; TRACER DATA; TOMOGRAPHY; COVARIANCE; REDUCTION; DRIVEN; HEAD AB Reduced-order models (ROMs) approximate the high-dimensional state of a dynamic system with a low-dimensional approximation in a subspace of the state space. Properly constructed, they are used to significantly reduce the computational cost associated with the simulation of complex dynamic systems such as flow and transport in the subsurface. A key component in model reduction is to construct the subspace where we look for approximate solutions. In this work, we apply model reduction in inverse modeling and use the solution parameter space of underdetermined geostatistical inverse problems to construct the subspace in which we seek approximate solutions for any given parameters needed in the inversion process. The subspace is constructed by collecting state variable (e.g., pressure) distributions in the flow domain. Each of the distributions, called snapshots, contains the result of full forward model simulation for a given test with a basis vector in the solution parameter space as input parameters. We then use linear combinations of the snapshots to approximate the forward model solution for any parameters needed in inverse modeling. In geostatistical inverse modeling, the solution parameter space is spanned by the cross-covariance of measurements and parameters; hence, we name the ROM as the geostatistical reduced-order model (GROM). We also show that with minor loss of accuracy in the forward model, the accuracy in parameter estimation is still high, and the saving in computational cost is significant, especially for large-scale inverse problems where the number of unknowns is enormous. C1 [Liu, Xiaoyi; Zhou, Quanlin; Birkholzer, Jens] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Illman, Walter A.] Univ Waterloo, Dept Earth & Environm Sci, Waterloo, ON N2L 3G1, Canada. RP Liu, XY (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM XiaoyiLiu@lbl.gov RI Zhou, Quanlin/B-2455-2009; Birkholzer, Jens/C-6783-2011 OI Zhou, Quanlin/0000-0001-6780-7536; Birkholzer, Jens/0000-0002-7989-1912 FU National Energy Technology Laboratory (NETL) of the U.S. Department of Energy [DE-AC02-05CH11231]; Earth Sciences Division of Lawrence Berkeley National Laboratory FX This work was funded by the Assistant Secretary for Fossil Energy, National Energy Technology Laboratory (NETL) of the U.S. Department of Energy under contract DE-AC02-05CH11231. Additional funding was provided by the Earth Sciences Division of Lawrence Berkeley National Laboratory through Early Career Development grants. We also thank Wolfgang Nowak, Arvind Saibaba, and the other anonymous reviewer for their valuable comments and suggestions. NR 36 TC 5 Z9 5 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD OCT PY 2013 VL 49 IS 10 BP 6587 EP 6600 DI 10.1002/wrcr.20489 PG 14 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 258BI UT WOS:000327432500032 ER PT J AU Zhang, GN Lu, D Ye, M Gunzburger, M Webster, C AF Zhang, Guannan Lu, Dan Ye, Ming Gunzburger, Max Webster, Clayton TI An adaptive sparse-grid high-order stochastic collocation method for Bayesian inference in groundwater reactive transport modeling SO WATER RESOURCES RESEARCH LA English DT Article DE uncertainty quantification; adaptive sparse grid; surrogate modeling; groundwater reactive transport; high-order hierarchical basis ID PARTIAL-DIFFERENTIAL-EQUATIONS; MONTE-CARLO-SIMULATION; RANDOM INPUT DATA; PROBABILISTIC COLLOCATION; HETEROGENEOUS MEDIA; SOLUTE TRANSPORT; INVERSE PROBLEMS; UNCERTAINTY; FLOW; EFFICIENT AB Bayesian analysis has become vital to uncertainty quantification in groundwater modeling, but its application has been hindered by the computational cost associated with numerous model executions required by exploring the posterior probability density function (PPDF) of model parameters. This is particularly the case when the PPDF is estimated using Markov Chain Monte Carlo (MCMC) sampling. In this study, a new approach is developed to improve the computational efficiency of Bayesian inference by constructing a surrogate of the PPDF, using an adaptive sparse-grid high-order stochastic collocation (aSG-hSC) method. Unlike previous works using first-order hierarchical basis, this paper utilizes a compactly supported higher-order hierarchical basis to construct the surrogate system, resulting in a significant reduction in the number of required model executions. In addition, using the hierarchical surplus as an error indicator allows locally adaptive refinement of sparse grids in the parameter space, which further improves computational efficiency. To efficiently build the surrogate system for the PPDF with multiple significant modes, optimization techniques are used to identify the modes, for which high-probability regions are defined and components of the aSG-hSC approximation are constructed. After the surrogate is determined, the PPDF can be evaluated by sampling the surrogate system directly without model execution, resulting in improved efficiency of the surrogate-based MCMC compared with conventional MCMC. The developed method is evaluated using two synthetic groundwater reactive transport models. The first example involves coupled linear reactions and demonstrates the accuracy of our high-order hierarchical basis approach in approximating high-dimensional posteriori distribution. The second example is highly nonlinear because of the reactions of uranium surface complexation, and demonstrates how the iterative aSG-hSC method is able to capture multimodal and non-Gaussian features of PPDF caused by model nonlinearity. Both experiments show that aSG-hSC is an effective and efficient tool for Bayesian inference. C1 [Zhang, Guannan; Webster, Clayton] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN USA. [Lu, Dan; Ye, Ming; Gunzburger, Max] Florida State Univ, Dept Sci Comp, Tallahassee, FL 32306 USA. RP Ye, M (reprint author), Florida State Univ, Dept Sci Comp, Dirac Sci Lib 489, Tallahassee, FL 32306 USA. EM mye@fsu.edu RI Ye, Ming/A-5964-2008; OI Webster, Clayton/0000-0002-1375-0359; Zhang, Guannan/0000-0001-7256-150X FU Advanced Simulation Computing Research (ASCR), Department of Energy, through the Householder Fellowship at ORNL; DOE [DE-SC0008272]; US Air Force Office of Scientific Research [FA9550-11-1-0149, 1854-V521-12]; Director's Strategic Hire Funds through the Laboratory Directed Research and Development (LDRD) Program of Oak Ridge National Laboratory (ORNL); United States Department of Energy [DE-AC05-00OR22725] FX G. Zhang was supported by the Advanced Simulation Computing Research (ASCR), Department of Energy, through the Householder Fellowship at ORNL. M. Ye was supported by the DOE Early Career Award, DE-SC0008272. M. Gunzburger was supported by the US Air Force Office of Scientific Research under grant FA9550-11-1-0149. C. Webster was supported by the US Air Force Office of Scientific Research under grant 1854-V521-12. C. Webster was also sponsored by the Director's Strategic Hire Funds through the Laboratory Directed Research and Development (LDRD) Program of Oak Ridge National Laboratory (ORNL). The ORNL is operated by UT-Battelle, LLC, for the United States Department of Energy under Contract DE-AC05-00OR22725. NR 68 TC 27 Z9 28 U1 5 U2 27 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD OCT PY 2013 VL 49 IS 10 BP 6871 EP 6892 DI 10.1002/wrcr.20467 PG 22 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 258BI UT WOS:000327432500052 ER PT J AU Arora, B Mohanty, BP McGuire, JT Cozzarelli, IM AF Arora, Bhavna Mohanty, Binayak P. McGuire, Jennifer T. Cozzarelli, Isabelle M. TI Temporal dynamics of biogeochemical processes at the Norman Landfill site SO WATER RESOURCES RESEARCH LA English DT Article DE wavelet analysis; redox; sulfate reduction; temporal variability; wavelet transform; biogeochemical processes; field data ID NATURAL ATTENUATION PROCESSES; MICROBIAL COMMUNITY STRUCTURE; LEACHATE-POLLUTED AQUIFER; CONTAMINATED AQUIFER; WAVELET TRANSFORM; TIME-SERIES; SUBSURFACE ENVIRONMENTS; MUNICIPAL LANDFILL; ORGANIC-COMPOUNDS; PRACTICAL GUIDE AB The temporal variability observed in redox sensitive species in groundwater can be attributed to coupled hydrological, geochemical, and microbial processes. These controlling processes are typically nonstationary, and distributed across various time scales. Therefore, the purpose of this study is to investigate biogeochemical data sets from a municipal landfill site to identify the dominant modes of variation and determine the physical controls that become significant at different time scales. Data on hydraulic head, specific conductance, H-2, chloride, sulfate, nitrate, and nonvolatile dissolved organic carbon were collected between 1998 and 2000 at three wells at the Norman Landfill site in Norman, OK. Wavelet analysis on this geochemical data set indicates that variations in concentrations of reactive and conservative solutes are strongly coupled to hydrologic variability (water table elevation and precipitation) at 8 month scales, and to individual eco-hydrogeologic framework (such as seasonality of vegetation, surface-groundwater dynamics) at 16 month scales. Apart from hydrologic variations, temporal variability in sulfate concentrations can be associated with different sources (FeS cycling, recharge events) and sinks (uptake by vegetation) depending on the well location and proximity to the leachate plume. Results suggest that nitrate concentrations show multiscale behavior across temporal scales for different well locations, and dominant variability in dissolved organic carbon for a closed municipal landfill can be larger than 2 years due to its decomposition and changing content. A conceptual framework that explains the variability in chemical concentrations at different time scales as a function of hydrologic processes, site-specific interactions, and/or coupled biogeochemical effects is also presented. C1 [Arora, Bhavna; Mohanty, Binayak P.] Texas A&M Univ, Dept Biol & Agr Engn, College Stn, TX USA. [McGuire, Jennifer T.] Univ St Thomas, Dept Geol, St Paul, MN USA. [Cozzarelli, Isabelle M.] US Geol Survey, Reston, VA 22092 USA. RP Arora, B (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd,MS 74-327R, Berkeley, CA 94720 USA. EM barora@lbl.gov RI Arora, Bhavna/D-2293-2015; OI Arora, Bhavna/0000-0001-7841-886X; Cozzarelli, Isabelle/0000-0002-5123-1007 FU National Science Foundation [EAR 0635961] FX This project was supported by the National Science Foundation (grant EAR 0635961). NR 90 TC 9 Z9 9 U1 1 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD OCT PY 2013 VL 49 IS 10 BP 6909 EP 6926 DI 10.1002/wrcr.20484 PG 18 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 258BI UT WOS:000327432500054 ER PT J AU Chen, XY Hammond, GE Murray, CJ Rockhold, ML Vermeul, VR Zachara, JM AF Chen, Xingyuan Hammond, Glenn E. Murray, Chris J. Rockhold, Mark L. Vermeul, Vince R. Zachara, John M. TI Application of ensemble-based data assimilation techniques for aquifer characterization using tracer data at Hanford 300 area SO WATER RESOURCES RESEARCH LA English DT Article DE data assimilation; ensemble Kalman filter; inverse modeling ID KALMAN FILTER; HYDRAULIC CONDUCTIVITY; STOCHASTIC SIMULATION; PIEZOMETRIC DATA; SMOOTHER; TRANSMISSIVITY; PARAMETERS; SYSTEMS AB Subsurface aquifer characterization often involves high parameter dimensionality and requires tremendous computational resources if employing a full Bayesian approach. Ensemble-based data assimilation techniques, including filtering and smoothing, are computationally efficient alternatives. Despite the increasing use of ensemble-based methods in assimilating flow and transport related data for subsurface aquifer characterization, most applications have been limited to synthetic studies or two-dimensional problems. In this study, we applied ensemble-based techniques adapted for parameter estimation, including the p-space ensemble Kalman filter and ensemble smoother, for assimilating field tracer experimental data obtained from the Integrated Field Research Challenge (IFRC) site at the Hanford 300 Area. The forward problem was simulated using the massively parallel three-dimensional flow and transport code PFLOTRAN to effectively deal with the highly transient flow boundary conditions at the site and to meet the computational demands of ensemble-based methods. This study demonstrates the effectiveness of ensemble-based methods for characterizing a heterogeneous aquifer by assimilating experimental tracer data, with refined prior information obtained from assimilating other types of data available at the site. It is demonstrated that high-performance computing enables the use of increasingly mechanistic nonlinear forward simulations for a complex system within the data assimilation framework with reasonable turnaround time. C1 [Chen, Xingyuan; Hammond, Glenn E.; Murray, Chris J.; Rockhold, Mark L.; Vermeul, Vince R.; Zachara, John M.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Chen, XY (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM xingyuan.chen@pnnl.gov FU U.S. Department of Energy (DOE), Biological and Environmental Sciences Division (BER) through the Subsurface Biogeochemical Research Program (SBR); PNNL SBR SFA; DOE [DE-AC05-76RL01830]; DOE Office of Science [DE-AC02-05CH11231] FX Research funding originated from the U.S. Department of Energy (DOE), Biological and Environmental Sciences Division (BER) through the Subsurface Biogeochemical Research Program (SBR) to the Hanford Integrated Field Research Challenge (IFRC) and the PNNL SBR SFA. This work was performed under DOE contract DE-AC05-76RL01830. PFLOTRAN was developed under the DOE Scientific Discovery through Advanced Computing (SciDAC-2) program. Supercomputing resources were provided by the DOE Office of Science Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program with allocations on OLCF Jaguar supercomputer at Oak Ridge National Laboratory. We also used the Hopper supercomputer at NERSC, supported by the DOE Office of Science under contract DE-AC02-05CH11231. NR 43 TC 4 Z9 4 U1 1 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD OCT PY 2013 VL 49 IS 10 BP 7064 EP 7076 DI 10.1002/2012WR013285 PG 13 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 258BI UT WOS:000327432500066 ER PT J AU Kumar, A Ciucci, F Leonard, D Jesse, S Biegalski, M Christen, H Mutoro, E Crumlin, E Shao-Horn, Y Borisevich, A Kalinin, SV AF Kumar, Amit Ciucci, Francesco Leonard, Donovan Jesse, Stephen Biegalski, Mike Christen, Hans Mutoro, Eva Crumlin, Ethan Shao-Horn, Yang Borisevich, Albina Kalinin, Sergei V. TI Probing Bias-Dependent Electrochemical Gas-Solid Reactions in (LaxSr1-x)CoO3-delta Cathode Materials SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article DE fuel cell; cathodes; electrochemical strain; scanning probe microscopy ID OXIDE FUEL-CELLS; OXYGEN-REDUCTION KINETICS; RESISTIVE SWITCHING MEMORIES; ELECTRONIC BAND-STRUCTURE; PEROVSKITE THIN-FILMS; REDUCTION/EVOLUTION REACTIONS; COULOMETRIC TITRATION; NANOMETER RESOLUTION; ION DIFFUSION; SURFACE AB Spatial variability of bias-dependent electrochemical processes on a (La0.5Sr0.5)(2)CoO4 +/- modified (LaxSr1-x)CoO3- surface is studied using first-order reversal curve method in electrochemical strain microscopy (ESM). The oxygen reduction/evolution reaction (ORR/OER) is activated at voltages as low as 3-4 V with respect to bottom electrode. The degree of bias-induced transformation as quantified by ESM hysteresis loop area increases with applied bias. The variability of electrochemical activity is explored using correlation analysis and the ORR/OER is shown to be activated in grains at relatively low biases, but the final reaction rate is relatively small. At the same time, at grain boundaries, the onset of reaction process corresponds to larger voltages, but limiting reactivity is much higher. The reaction mechanism in ESM of mixed electronic-ionic conductor is further analyzed. These studies both establish the framework for probing bias-dependent electrochemical processes in solids and demonstrate rich spectrum of electrochemical transformations underpinning catalytic activity in cobaltites. C1 [Kumar, Amit; Leonard, Donovan; Jesse, Stephen; Biegalski, Mike; Christen, Hans; Borisevich, Albina; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Ciucci, Francesco] Hong Kong Univ Sci & Technol, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China. [Ciucci, Francesco] Hong Kong Univ Sci & Technol, Dept Chem & Biomol Engn, Kowloon, Hong Kong, Peoples R China. [Mutoro, Eva; Crumlin, Ethan; Shao-Horn, Yang] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. RP Kumar, A (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM amkum1in@gmail.com; sergei2@ornl.gov RI Borisevich, Albina/B-1624-2009; Christen, Hans/H-6551-2013; Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016; Ciucci, Francesco/H-4786-2012; Kumar, Amit/C-9662-2012 OI Borisevich, Albina/0000-0002-3953-8460; Christen, Hans/0000-0001-8187-7469; Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483; Ciucci, Francesco/0000-0003-0614-5537; Kumar, Amit/0000-0002-1194-5531 FU Materials Science and Engineering Division of the U.S. DOE; Oak Ridge National Laboratory by the Scientific User Facilities Division, U.S. Department of Energy; US DOE [SISGR DESC0002633]; German Research Foundation (DFG research scholarship); HKUST FX The work was supported by the Materials Science and Engineering Division of the U.S. DOE. This research was conducted in part (A. K., S. V. K., M. B.) at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, U.S. Department of Energy. MIT group (Y.S.H., E. C., E. M.) acknowledges US DOE (SISGR DESC0002633). E. M. is grateful for financial support from the German Research Foundation (DFG research scholarship). F. C. thanks HKUST for providing start-up funds. NR 66 TC 7 Z9 7 U1 8 U2 61 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD OCT PY 2013 VL 23 IS 40 BP 5027 EP 5036 DI 10.1002/adfm.201202401 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 258SS UT WOS:000327479600004 ER PT J AU Lingam, K Podila, R Qian, HJ Serkiz, S Rao, AM AF Lingam, Kiran Podila, Ramakrishna Qian, Haijun Serkiz, Steven Rao, Apparao M. TI Evidence for Edge-State Photoluminescence in Graphene Quantum Dots SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article DE graphene quantum dots; photoluminescence; edge-states ID BOTTOM-UP FABRICATION; CARBON NANOTUBES; NANORIBBONS; FORM AB For a practical realization of graphene-based logic devices, the opening of a band gap in graphene is crucial and has proven challenging. To this end, several synthesis techniques, including unzipping of carbon nanotubes, chemical vapor deposition, and other bottom-up fabrication techniques have been pursued for the bulk production of graphene nanoribbons (GNRs) and graphene quantum dots (GQDs). However, only limited progress has been made towards a fundamental understanding of the origin of strong photoluminescence (PL) in GQDs. Here, it is experimentally shown that the PL is independent of the functionalization scheme of the GQDs. Following a series of annealing experiments designed to passivate the free edges, the PL in GQDs originates from edge-states, and an edge-passivation subsequent to synthesis quenches the PL. The results of PL studies of GNRs and carbon nano-onions are shown to be consistent with PL being generated at the edge sites of GQDs. C1 [Lingam, Kiran; Podila, Ramakrishna; Rao, Apparao M.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. [Qian, Haijun] Clemson Univ, Electron Microscope Facil, Anderson, SC 29625 USA. [Serkiz, Steven] Savannah River Natl Lab, Aiken, SC 29808 USA. [Rao, Apparao M.] Clemson Univ, Ctr Opt Mat Sci & Engn Technol, Clemson, SC 29634 USA. RP Lingam, K (reprint author), Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. EM arao@clemson.edu OI Podila, Ramakrishna/0000-0003-0472-2361 FU SCUREF FX The authors gratefully acknowledge the financial support from SCUREF and would like to thank Dr. Malcolm Skove at the Physics Department at Clemson University for his valuable inputs. NR 25 TC 48 Z9 49 U1 9 U2 147 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD OCT PY 2013 VL 23 IS 40 BP 5062 EP 5065 DI 10.1002/adfm.201203441 PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 258SS UT WOS:000327479600008 ER PT J AU Bao, J Hou, ZS Fang, YL Ren, HY Lin, G AF Bao, Jie Hou, Zhangshuan Fang, Yilin Ren, Huiying Lin, Guang TI Uncertainty quantification for evaluating impacts of caprock and reservoir properties on pressure buildup and ground surface displacement during geological CO2 sequestration SO GREENHOUSE GASES-SCIENCE AND TECHNOLOGY LA English DT Article DE CO2 geological sequestration; uncertainty quantification; sensitivity analysis; reduced-order model ID SUPPORT VECTOR REGRESSION; REDUCED-ORDER MODELS; SIMULATION; INJECTION; AQUIFERS; BOXPLOT AB A series of numerical test cases reflecting broad and realistic ranges of geological formation properties was developed to systematically evaluate and compare the impacts of those properties on pressure build-up and ground surface displacement and therefore risks of induced seismicity during CO2 injection. A coupled hydro-geomechanical subsurface transport simulator, STOMP (Subsurface Transport over Multiple Phases), was adopted to simulate the migration of injected CO2 and geomechanical behaviors of the surrounding geological formations. A quasi-Monte Carlo sampling method was applied to efficiently sample a high-dimensional parameter space consisting of injection rate and 12 other parameters describing hydrogeological properties of subsurface formations, including porosity, permeability, entry pressure, pore-size index, Young's modulus, and Poisson's ratio for both reservoir and caprock. Generalized cross-validation and analysis of variance methods were used to quantitatively measure the significance of the 13 input parameters. For the investigated two-dimensional cases, reservoir porosity, permeability, and injection rate were found to be among the most significant factors affecting the geomechanical responses to the CO2 injection, such as injection pressure and ground surface uplift. We used a quadrature generalized linear model to build a reduced-order model that can estimate the geomechanical response instantly instead of running computationally expensive numerical simulations. C1 [Bao, Jie; Lin, Guang] Pacific NW Natl Lab, Computat Math Grp, Richland, WA 99352 USA. [Ren, Huiying] Pacific NW Natl Lab, Hydrol Grp, Earth Syst Sci Div, Richland, WA 99352 USA. [Fang, Yilin] Pacific NW Natl Lab, Hydrol Grp, Richland, WA 99352 USA. RP Bao, J (reprint author), Pacific NW Natl Lab, Fluid & Computat Engn Grp, Energy & Environm Directorate, Richland, WA 99352 USA. EM jie.bao@pnnl.gov RI Hou, Zhangshuan/B-1546-2014; Fang, Yilin/J-5137-2015 OI Hou, Zhangshuan/0000-0002-9388-6060; FU Pacific Northwest National Laboratory (PNNL) Carbon Sequestration Initiative part of the Laboratory Directed Research and Development Program; US Department of Energy [DE-AC05-76RL01830] FX This research has been accomplished and funded through the Pacific Northwest National Laboratory (PNNL) Carbon Sequestration Initiative, which is part of the Laboratory Directed Research and Development Program. A portion of this research was performed using the resources of the PNNL Institutional Computing program. PNNL is operated by Battelle for the US Department of Energy under Contract DE-AC05-76RL01830. NR 61 TC 9 Z9 9 U1 1 U2 20 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2152-3878 J9 GREENH GASES JI Greenh. Gases PD OCT PY 2013 VL 3 IS 5 BP 338 EP 358 DI 10.1002/ghg.1362 PG 21 WC Energy & Fuels; Engineering, Environmental; Environmental Sciences SC Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 268AF UT WOS:000328139300004 ER PT J AU Oldenburg, CM Doughty, C Spycher, N AF Oldenburg, Curtis M. Doughty, Christine Spycher, Nicolas TI The role of CO2 in CH4 exsolution from deep brine: Implications for geologic carbon sequestration SO GREENHOUSE GASES-SCIENCE AND TECHNOLOGY LA English DT Article DE CO2 injection; geologic carbon sequestration; methane; exsolution; solubility; TOUGH2 ID METHANE; INJECTION; SYSTEM; EQUILIBRIA; AQUIFERS; EQUATION; STORAGE; WATER; GAS AB The partial pressure exerted by dissolved CO2 in water (aqueous phase) containing dissolved CH4 at concentrations near-saturation can lead to the formation of a CH4-rich gas phase. We have used numerical simulation with TOUGH2/EOS7C to investigate the process of CH4 exsolution caused by CO2 injection for geologic carbon sequestration. We validated the solubility model in TOUGH2/EOS7C against published measurements of solubility and corresponding Henry's Law coefficients. We verified our simulation results against a previously published 1D test problem, and investigated the effects of numerical dispersion on the CH4 exsolution and flow processes. In 2D radial simulations of a model system, we found that highly concentrated CH4 gas regions form at the leading edge of the CO2 injection front. Because the gas saturations are small in the CH4-rich gas regions in the generic system studied here, (i) CH4 exsolution does not appear to be a problem for seismic monitoring of CO2 plumes, (ii) reservoir pressurization due to dilution of supercritical CO2 by CH4 does not appear to be a concern, and (iii) relative permeability to water is not strongly reduced. C1 [Oldenburg, Curtis M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Geol Carbon Sequestrat Program, Berkeley, CA 94720 USA. [Doughty, Christine] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Hydrogeol Grp, Div Earth Sci, Berkeley, CA 94720 USA. [Spycher, Nicolas] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Geochem Dept, Berkeley, CA 94720 USA. RP Oldenburg, CM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Earth Sci Div 74 316C, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM cmoldenburg@lbl.gov RI Oldenburg, Curtis/L-6219-2013; Doughty, Christine/G-2389-2015; Spycher, Nicolas/E-6899-2010 OI Oldenburg, Curtis/0000-0002-0132-6016; FU Chevron; Department of Energy [DE-AC02-05CH11231] FX We thank two anonymous reviewers for helpful comments that allowed us to refine the presentation. Support for this work was provided by Chevron with project management and guidance from Scott Imbus (Chevron). Additional support was provided by the Assistant Secretary for Fossil Energy (DOE), Office of Coal and Power Systems, through the National Energy Technology Laboratory (NETL), and by Lawrence Berkeley National Laboratory under Department of Energy Contract No. DE-AC02-05CH11231. NR 23 TC 4 Z9 5 U1 1 U2 9 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2152-3878 J9 GREENH GASES JI Greenh. Gases PD OCT PY 2013 VL 3 IS 5 BP 359 EP 377 DI 10.1002/ghg.1370 PG 19 WC Energy & Fuels; Engineering, Environmental; Environmental Sciences SC Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 268AF UT WOS:000328139300005 ER PT J AU Johnson, GE Khan, F Skalski, JR Klatte, BA AF Johnson, Gary E. Khan, Fenton Skalski, John R. Klatte, Bernard A. TI Sluiceway Operations to Pass Juvenile Salmonids at The Dalles Dam, Columbia River, USA SO NORTH AMERICAN JOURNAL OF FISHERIES MANAGEMENT LA English DT Article ID HYDROPOWER DAMS; WELLS DAM; FISH; BYPASS; WASHINGTON; GATEWELLS; BEHAVIOR AB Existing ice and trash sluiceways are commonly used as benign, nonturbine routes for downstream passage of juvenile salmonids at hydropower dams. At The Dalles Dam on the Columbia River, we studied various operational configurations of sluiceway weirs to maximize sluiceway passage of juvenile Pacific salmon Oncorhynchus spp. and steelhead O. mykiss. We applied hydroacoustic methods to compare fish passage rates and sluiceway efficiencies for two weir configurations in each year: three weirs (SL 1; i.e., collectively referring to the three weirs above main turbine unit [MU] 1) versus six weirs (SL 1+18) during 2004; and middle (SL 2+5) versus east (SL 2+19) powerhouse weir locations during 2005. Horizontal distributions at the sluiceway and turbines and the effects of operating turbines beneath open sluiceway gates were also analyzed. Sluiceway passage efficiency relative to the powerhouse (SLY (phs) ) varied between study years, between spring and summer, and between day and night. In 2004, sluiceway passage rates were significantly higher (P = 0.0003) for SL 1+18 than for SL 1 during summer-night but were not significantly different between the two configurations during the other three season-day/night periods. The SLY (phs) was significantly higher for SL 1+18 than for SL 1. The location comparison during 2005 revealed no significant differences between the SL 2+5 and SL 2+19 configurations, except for summer-day. The experimental findings led to recommendations for long-term operations of The Dalles Dam sluiceway: open six rather than three sluiceway weirs to take advantage of the maximum hydraulic capacity of the sluiceway; open the three weirs above the westernmost operating MU and the three weirs at SL 8, where turbine passage rates are relatively high; operate the MUs below open sluiceway weirs as a standard procedure; operate the sluiceway 24h/d year-round to maximize its benefits to juvenile salmonids; and use the same weir configuration year-round. These operational concepts are transferable to dams where sluiceway surface flow outlets are used to protect downstream-migrating fishes. Received July 19, 2012; accepted June 26, 2013 C1 [Johnson, Gary E.; Khan, Fenton] Pacific NW Natl Lab, Richland, WA 99352 USA. [Skalski, John R.] Univ Washington, Seattle, WA 98101 USA. [Klatte, Bernard A.] US Army Corps Engineers, Portland, OR 97208 USA. RP Johnson, GE (reprint author), Pacific NW Natl Lab, POB 999 K6-85, Richland, WA 99352 USA. EM gary.johnson@pnnl.gov OI Skalski, John/0000-0002-7070-2505 FU USACE; U.S. Department of Energy [DE-AC05-76RL01830] FX This research was funded by USACE through the Anadromous Fish Evaluation Program, Columbia River Fish Mitigation Project. We sincerely appreciate contributions by Bob Cordie, Mike Langeslay, Steve Schlenker, and Miro Zyndol (USACE); Alan Wirtz (PAS); Susan Ennor, Eric Fischer, David Geist, James Hughes, Megan Peters, Gene Ploskey, Cindy Rakowski, Marshall Richmond, Ida Royer, John Serkowski, and Chris Vernon (PNNL); and three peer reviewers. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract Number DE-AC05-76RL01830. Reference to trade names does not imply endorsement by the U.S. Government. NR 55 TC 1 Z9 1 U1 2 U2 13 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0275-5947 EI 1548-8675 J9 N AM J FISH MANAGE JI North Am. J. Fish Manage. PD OCT 1 PY 2013 VL 33 IS 5 BP 1000 EP 1012 DI 10.1080/02755947.2013.822441 PG 13 WC Fisheries SC Fisheries GA 264HP UT WOS:000327867900016 ER PT J AU Khan, F Royer, IM Johnson, GE Tackley, SC AF Khan, Fenton Royer, Ida M. Johnson, Gary E. Tackley, Sean C. TI Sluiceway Operations for Adult Steelhead Downstream Passage at The Dalles Dam, Columbia River, USA SO NORTH AMERICAN JOURNAL OF FISHERIES MANAGEMENT LA English DT Article ID SALMO-SALAR SMOLTS; SNAKE RIVER; JUVENILE SALMONIDS; ATLANTIC SALMON; BONNEVILLE DAM; BYPASS SYSTEM; HYDROELECTRIC DAMS; HYDROPOWER DAMS; CHINOOK SALMON; WELLS DAM AB Sluiceways at hydroelectric dams are designed to enable floating ice and debris to pass through the dams and may be used as an effective, nonturbine, surface route for out-migrating fishes to pass through dams. Each year, the sluiceway at The Dalles Dam on the Columbia River, USA, is normally operated between 1 April and 30 November and the spillway between 10 April and 31 August to enable downstream-migrating juvenile Pacific salmonids to pass. The only route available for fishes to pass the dam between 1 December and 31 March is through the turbines. This study evaluated downstream passage of adult steelhead Oncorhynchus mykiss at The Dalles Dam during various periods between 1 November and 10 April for years 2008 through 2010. The purpose of the study was to determine the efficacy of operating the sluiceway between 1 December and 31 March to provide a relatively safe, nonturbine, surface outlet for downstream passage of adult steelhead that overwinter in the lower Columbia River (i.e., fallbacks) or for adult steelhead attempting to emigrate back to the marine environment after spawning (i.e., kelts). We applied a fixed-location hydroacoustic technique to estimate downstream passage rates at the sluiceway and turbines. The sluiceway was used by 91-99% of the adult steelhead during all sampling periods; the remaining 1-9% passed through the turbines. This implies that adult steelhead preferred the sluiceway for downstream passage at the dam. Our results indicate that keeping the sluiceway open between 1 December and 31 March may provide an optimal, nonturbine surface route for downstream passage of overwintering or postspawned adult steelhead at The Dalles Dam. Similar operations are relevant at hydroelectric dams with surface-flow outlets, such as sluiceways, for safe downstream passage of fish species of management concern. Received July 19, 2012; accepted March 27, 2013 C1 [Khan, Fenton; Royer, Ida M.; Johnson, Gary E.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Khan, Fenton; Tackley, Sean C.] US Army Corps Engineers, Portland, OR 97208 USA. RP Khan, F (reprint author), US Army Corps Engineers, POB 2946, Portland, OR 97208 USA. EM fenton.o.khan@usace.army.mil FU U.S. Army Corps of Engineers, Portland District through the Anadromous Fish Evaluation Program; U.S. Department of Energy [DE-AC05-76RL01830] FX This research was funded by the U.S. Army Corps of Engineers, Portland District through the Anadromous Fish Evaluation Program. We sincerely appreciate support and contributions by David Clugston, Robert Cordie, Mike Langeslay, Natalie Richards, Steve Schlenker, Robert Wertheimer, and Miro Zyndol (U.S. Army Corps of Engineers); Alan Wirtz (Precision Acoustic Systems); Susan Ennor, Eric Fischer, David Geist, James Hughes, Megan Peters, Gene Ploskey, Chris Vernon, and Mark Weiland (Pacific Northwest National Laboratory), and three anonymous reviewers. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. Reference to trade names does not imply endorsement by the U.S. Government. NR 50 TC 0 Z9 0 U1 2 U2 16 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0275-5947 EI 1548-8675 J9 N AM J FISH MANAGE JI North Am. J. Fish Manage. PD OCT 1 PY 2013 VL 33 IS 5 BP 1013 EP 1023 DI 10.1080/02755947.2013.793629 PG 11 WC Fisheries SC Fisheries GA 264HP UT WOS:000327867900017 ER PT J AU Grigoriu, M Field, RV AF Grigoriu, M. Field, R. V., Jr. TI A two-step method for analysis of linear systems with uncertain parameters driven by Gaussian noise SO PROBABILISTIC ENGINEERING MECHANICS LA English DT Article DE Bayesian analysis; Monte Carlo simulation; Random vibration; Stochastic differential equations; Stochastic reduced order models ID REDUCED-ORDER MODELS AB A two-step method is proposed to find state properties for linear dynamic systems driven by Gaussian noise with uncertain parameters modeled as a random vector with known probability distribution. First, equations of linear random vibration are used to find the probability law of the state of a system with uncertain parameters conditional on this vector. Second, stochastic reduced order models (SROMs) are employed to calculate properties of the unconditional system state. Bayesian methods are applied to extend the proposed approach to the case when the probability law of the random vector is not available. Various examples are provided to demonstrate the usefulness of the method, including the random vibration response of a spacecraft with uncertain damping model. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Grigoriu, M.] Cornell Univ, Ithaca, NY 14853 USA. [Field, R. V., Jr.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Field, RV (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mdg12@cornell.edu; rvfield@sandia.gov OI Field, Richard/0000-0002-2765-7032 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 16 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0266-8920 EI 1878-4275 J9 PROBABILIST ENG MECH JI Probab. Eng. Eng. Mech. PD OCT PY 2013 VL 34 BP 200 EP 210 DI 10.1016/j.probengmech.2013.10.003 PG 11 WC Engineering, Mechanical; Mechanics; Statistics & Probability SC Engineering; Mechanics; Mathematics GA 270FT UT WOS:000328305000020 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Atrio-Barandela, F Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartlett, JG Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bhatia, R Bikmaev, I Bobin, J Bohringer, H Bonaldi, A Bond, JR Borgani, S Borrill, J Bouchet, FR Bourdin, H Brown, ML Burenin, R Burigana, C Cabella, P Cardoso, JF Carvalho, P Castex, G Catalano, A Cayon, L Chamballu, A Chiang, LY Chon, G Christensen, PR Churazov, E Clements, DL Colafrancesco, S Colombi, S Colombo, LPL Comis, B Coulais, A Crill, BP Cuttaia, F Da Silva, A Dahle, H Danese, L Davis, RJ de Bernardis, P de Gasperis, G de Zotti, G Delabrouille, J Democles, J Desert, FX Diego, JM Dolag, K Dole, H Donzelli, S Dore, O Dorl, U Douspis, M Dupac, X Efstathiou, G Ensslin, TA Eriksen, HK Finelli, F Flores-Cacho, I Forni, O Fosalba, P Frailis, M Franceschi, E Frommert, M Galeotta, S Ganga, K Genova-Santos, RT Giard, M Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Hansen, FK Harrison, D Hempel, A Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hurier, G Jaffe, TR Jaffe, AH Jagemann, T Jones, WC Juvela, M Keihanen, E Khamitov, I Kisner, TS Kneissl, R Knoche, J Knox, L Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lawrence, CR Le Jeune, M Leonardi, R Liddle, A Lilje, PB Lopez-Caniego, M Luzzi, G Macias-Perez, JF Maino, D Mandolesi, N Maris, M Marleau, F Marshall, DJ Martinez-Gonzalez, E Masi, S Massardi, M Matarrese, S Mazzotta, P Mei, S Melchiorri, A Melin, JB Mendes, L Mennella, A Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Osborne, S Pajot, F Paoletti, D Pasian, F Patanchon, G Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Pierpaoli, E Piffaretti, R Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Popa, L Poutanen, T Pratt, GW Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Reinecke, M Remazeilles, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Roman, M Rosset, C Rossetti, M Rubino-Martin, JA Rusholme, B Sandri, M Savini, G Scott, D Smoot, GF Starck, JL Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tuovinen, J Valenziano, L Van Tent, B Varis, J Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD Welikala, N White, SDM White, M Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Atrio-Barandela, F. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Battaner, E. Benabed, K. Benoit, A. Bernard, J-P. Bersanelli, M. Bhatia, R. Bikmaev, I. Bobin, J. Boehringer, H. Bonaldi, A. Bond, J. R. Borgani, S. Borrill, J. Bouchet, F. R. Bourdin, H. Brown, M. L. Burenin, R. Burigana, C. Cabella, P. Cardoso, J. -F. Carvalho, P. Castex, G. Catalano, A. Cayon, L. Chamballu, A. Chiang, L. -Y Chon, G. Christensen, P. R. Churazov, E. Clements, D. L. Colafrancesco, S. Colombi, S. Colombo, L. P. L. Comis, B. Coulais, A. Crill, B. P. Cuttaia, F. Da Silva, A. Dahle, H. Danese, L. Davis, R. J. de Bernardis, P. de Gasperis, G. de Zotti, G. Delabrouille, J. Democles, J. Desert, F. -X. Diego, J. M. Dolag, K. Dole, H. Donzelli, S. Dore, O. Doerl, U. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Eriksen, H. K. Finelli, F. Flores-Cacho, I. Forni, O. Fosalba, P. Frailis, M. Franceschi, E. Frommert, M. Galeotta, S. Ganga, K. Genova-Santos, R. T. Giard, M. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. Hempel, A. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hurier, G. Jaffe, T. R. Jaffe, A. H. Jagemann, T. Jones, W. C. Juvela, M. Keihanen, E. Khamitov, I. Kisner, T. S. Kneissl, R. Knoche, J. Knox, L. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lawrence, C. R. Le Jeune, M. Leonardi, R. Liddle, A. Lilje, P. B. Lopez-Caniego, M. Luzzi, G. Macias-Perez, J. F. Maino, D. Mandolesi, N. Maris, M. Marleau, F. Marshall, D. J. Martinez-Gonzalez, E. Masi, S. Massardi, M. Matarrese, S. Mazzotta, P. Mei, S. Melchiorri, A. Melin, J. -B. Mendes, L. Mennella, A. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Osborne, S. Pajot, F. Paoletti, D. Pasian, F. Patanchon, G. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Pierpaoli, E. Piffaretti, R. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Popa, L. Poutanen, T. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Reach, W. T. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Roman, M. Rosset, C. Rossetti, M. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Savini, G. Scott, D. Smoot, G. F. Starck, J. -L. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tuovinen, J. Valenziano, L. Van Tent, B. Varis, J. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. Welikala, N. White, S. D. M. White, M. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results V. Pressure profiles of galaxy clusters from the Sunyaev-Zeldovich effect (vol 550, A131, 2013) SO ASTRONOMY & ASTROPHYSICS LA English DT Correction DE cosmology: observations; galaxies: clusters: general; galaxies: clusters: intracluster medium; submillimeter: general; X-rays: general; errata, addenda C1 [Bartlett, J. G.; Cardoso, J. -F.; Castex, G.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Le Jeune, M.; Patanchon, G.; Piat, M.; Remazeilles, M.; Roman, M.; Rosset, C.; Smoot, G. F.] Univ Paris Diderot, APC, CNRS IN2P3, CEA Irfu,Observ Paris,Sorbonne Paris Cite, F-75205 Paris 13, France. [Lahteenmaki, A.; Poutanen, T.] Aalto Univ Metsahovi Radio Observ, Kylmala 02540, Finland. [Bikmaev, I.] Acad Sci Tatarstan, Kazan 420111, Republic Of Tat, Russia. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, I-00044 Frascati, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, I-00198 Rome, Italy. [Ashdown, M.; Carvalho, P.; Hobson, M.; Lasenby, A.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] Atacama Large Millimeter Submillimeter Array, ALMA Santiago Cent Off, Santiago, Chile. [Bond, J. R.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J-P.; Flores-Cacho, I.; Forni, O.; Giard, M.; Jaffe, T. R.; Marshall, D. J.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, F-31028 Toulouse 4, France. [Dore, O.; Hildebrandt, S. R.; Mei, S.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Dahle, H.; Lilje, P. B.] Univ Oslo, Ctr Math Applicat, N-0317 Oslo, Norway. [Da Silva, A.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid, Spain. [Melin, J. -B.; Piffaretti, R.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Norgaard-Nielsen, H. U.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Frommert, M.; Kunz, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain. [Toffolatti, L.] Univ Oviedo, Dept Fis, Oviedo 3307, Spain. [Bikmaev, I.] Kazan Fed Univ, Dept Astron & Geodesy, Kazan 420008, Russia. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Liddle, A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Dept Phys, Helsinki 00014, Finland. [Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Smoot, G. F.; White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Cayon, L.] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA. [Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Borgani, S.; Gregorio, A.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Burigana, C.; Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Balbi, A.; Bourdin, H.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Cabella, P.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Hempel, A.; Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Kneissl, R.] ESO Vitacura, European So Observ, Santiago, Chile. [Dupac, X.; Jagemann, T.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Mei, S.] Observ Paris, GEPI, Sect Meudon, F-92195 Meudon, France. [Kurki-Suonio, H.; Lahteenmaki, A.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [de Zotti, G.] Osserv Astron Padova, INAF, Padua, Italy. [Colafrancesco, S.; Polenta, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Borgani, S.; Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, I-34143 Trieste, Italy. [Massardi, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Burigana, C.; Cuttaia, F.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, I-40129 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, I-20133 Milan, Italy. [Melchiorri, A.] Univ Roma La Sapienza, INFN, Sez Roma 1, I-00185 Rome, Italy. [Desert, F. -X.; Ponthieu, N.] Univ Grenoble 1, CNRS, INSU, UMR 5274,IPAG, F-38041 Grenoble, France. [Mitra, S.] IUCAA, Pune 411007, Maharashtra, India. [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, F-38042 Grenoble, France. [Dole, H.] Inst Univ France, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.; Welikala, N.] Univ Paris 11, CNRS, UMR8617, Inst Astrophys Spatiale, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Inst Astrophys Paris, CNRS UMR7095, F-75014 Paris, France. [Fosalba, P.] Fac Ciencies, CSIC IEEC, Inst Ciencies Espai, Bellaterra 08193, Spain. [Popa, L.] Inst Space Sci, Bucharest 077125, Romania. [Marleau, F.] Univ Innsbruck, Inst Astro & Particle Phys, A-6020 Innsbruck, Austria. [Chiang, L. -Y] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Efstathiou, G.; Harrison, D.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Dahle, H.; Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway. [Genova-Santos, R. T.; Hempel, A.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Barreiro, R. B.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Bartlett, J. G.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Rocha, G.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Bonaldi, A.; Brown, M. L.; Davis, R. J.; Noviello, F.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Harrison, D.; Lasenby, A.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Henrot-Versille, S.; Luzzi, G.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS IN2P3, LAL, F-91898 Orsay, France. [Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Bobin, J.; Democles, J.; Piffaretti, R.; Pratt, G. W.; Starck, J. -L.] Univ Paris Diderot, CNRS, CEA DSM, IRFU,Serv Astrophys,Lab AIM,CEA Saclay, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Catalano, A.; Comis, B.; Hurier, G.; Macias-Perez, J. F.; Perotto, L.; Renault, C.] Univ Grenoble 1, Lab Phys Subat & Cosmol, CNRS IN2P3, Inst Natl Polytech Grenoble, F-38026 St Martin Dheres, France. [Van Tent, B.] Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France. [Van Tent, B.] CNRS, F-91405 Orsay, France. [Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Churazov, E.; Dolag, K.; Doerl, U.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Riller, T.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Boehringer, H.; Chon, G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Tuovinen, J.; Varis, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo 02044, Finland. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Pasadena, CA 91125 USA. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Burenin, R.] Space Res Inst IKI, Moscow 117997, Russia. [Churazov, E.; Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Khamitov, I.] TUBITAK Natl Observ, TR-07058 Antalya, Turkey. [Benabed, K.; Bouchet, F. R.; Colombi, S.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR 7095, F-75014 Paris, France. [Mei, S.] Univ Paris 07, F-75205 Paris 13, France. [Banday, A. J.; Flores-Cacho, I.; Forni, O.; Giard, M.; Jaffe, T. R.; Marshall, D. J.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Dolag, K.] Univ Munich, Univ Observ, D-81679 Munich, Germany. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Pointecouteau, E (reprint author), Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. EM etienne.pointecouteau@irap.omp.eu RI Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Fosalba Vela, Pablo/I-5515-2016; Novikov, Igor/N-5098-2015; Colombo, Loris/J-2415-2016; Nati, Federico/I-4469-2016; popa, lucia/B-4718-2012; Piacentini, Francesco/E-7234-2010; Atrio-Barandela, Fernando/A-7379-2017; Novikov, Dmitry/P-1807-2015; White, Martin/I-3880-2015; Bouchet, Francois/B-5202-2014; Lahteenmaki, Anne/L-5987-2013; Gruppuso, Alessandro/N-5592-2015; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Herranz, Diego/K-9143-2014; Lopez-Caniego, Marcos/M-4695-2013; Bobin, Jerome/P-3729-2014; Battaner, Eduardo/P-7019-2014; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Churazov, Eugene/A-7783-2013 OI Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Nati, Federico/0000-0002-8307-5088; Piacentini, Francesco/0000-0002-5444-9327; Atrio-Barandela, Fernando/0000-0002-2130-2513; White, Martin/0000-0001-9912-5070; Gruppuso, Alessandro/0000-0001-9272-5292; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Herranz, Diego/0000-0003-4540-1417; Bobin, Jerome/0000-0003-1457-7890; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; NR 7 TC 1 Z9 1 U1 2 U2 22 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2013 VL 558 AR C2 DI 10.1051/0004-6361/201220040e PG 3 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 246XF UT WOS:000326574000151 ER PT J AU Finley, H Petitjean, P Paris, I Noterdaeme, P Brinkmann, J Myers, AD Ross, NP Schneider, DP Bizyaev, D Brewington, H Ebelke, G Malanushenko, E Malanushenko, V Oravetz, D Pan, K Simmons, A Snedden, S AF Finley, Hayley Petitjean, Patrick Paris, Isabelle Noterdaeme, Pasquier Brinkmann, Jonathan Myers, Adam D. Ross, Nicholas P. Schneider, Donald P. Bizyaev, Dmitry Brewington, Howard Ebelke, Garrett Malanushenko, Elena Malanushenko, Viktor Oravetz, Daniel Pan, Kaike Simmons, Audrey Snedden, Stephanie TI A glance at the host galaxy of high-redshift quasars using strong damped Lyman-alpha systems as coronagraphs SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE quasars: absorption lines; quasars: emission lines ID DIGITAL-SKY-SURVEY; OSCILLATION SPECTROSCOPIC SURVEY; SUPERMASSIVE BLACK-HOLES; ACTIVE GALACTIC NUCLEI; ABSORPTION-LINE SYSTEMS; STAR-FORMATION; SDSS-III; DATA RELEASE; MILKY-WAY; EMISSION AB We searched quasar spectra from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) for the rare occurrences where a strong damped Lyman-alpha absorber (DLA) blocks the Broad Line Region emission from the quasar and acts as a natural coronagraph to reveal narrow Ly alpha emission from the host galaxy. We define a statistical sample of 31 DLAs in Data Release 9 (DR9) with log N(H i) >= 21.3 cm(-2) located at less than 1500 km s(-1) from the quasar redshift. In 25% (8) of these DLAs, a strong narrow Lya emission line is observed with flux similar to 25 x 10(-17) erg s-1 cm-2 on average. For DLAs without this feature in their troughs, the average 3-s upper limit is <0.8x10(-17) erg s(-1) cm(-2). Our statistical sample is nearly 2.5 times larger than the anticipated number of intervening DLAs in DR9 within 1 500 km s(-1) of the quasar redshift. We also define a sample of 26 DLAs from DR9 and DR10 with narrow Lya emission detected and no limit on the Hi column density to better characterize properties of the host galaxy emission. Analyzing the statistical sample, we do not find substantial differences in the kinematics, metals, or reddening for the two populations with and without emission detected. The highly symmetric narrow Lya emission line profile centered in the HI trough indicates that the emitting region is separate from the absorber. The luminosity of the narrow Lya emission peaks is intermediate between that of Ly alpha emitters and radio galaxies, implying that the Lya emission is predominantly due to ionizing radiation from the AGN. Galaxies neighboring the quasar host are likely responsible for the majority (>75%) of these DLAs, with only a minority (<25%) arising from Hi clouds located in the AGN host galaxy. C1 [Finley, Hayley; Petitjean, Patrick; Noterdaeme, Pasquier] CNRS UPMC, UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Paris, Isabelle] Univ Chile, Dept Astron, Santiago, Chile. [Brinkmann, Jonathan; Bizyaev, Dmitry; Brewington, Howard; Ebelke, Garrett; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Daniel; Pan, Kaike; Simmons, Audrey; Snedden, Stephanie] Apache Point Observ, Sunspot, NM 88349 USA. [Myers, Adam D.] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. [Ross, Nicholas P.] Lawrence Berkeley Natl Lab, Berkeley, CA 92420 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Schneider, Donald P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. RP Finley, H (reprint author), CNRS UPMC, UMR7095, Inst Astrophys Paris, 98Bis Bd Arago, F-75014 Paris, France. EM finley@iap.fr OI Finley, Hayley/0000-0002-1216-8914 FU Agence Nationale de la Recherche [ANR-08-BLAN-0222, ANR-12-BS05-0015]; Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy Office of Science FX We thank the anonymous referee for comments that helped to improve the article. The SDSS-III French Participation Group was supported by the Agence Nationale de la Recherche under grants ANR-08-BLAN-0222 and ANR-12-BS05-0015. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the US Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. NR 76 TC 8 Z9 8 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2013 VL 558 AR UNSP A111 DI 10.1051/0004-6361/201321745 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 246XF UT WOS:000326574000111 ER PT J AU Robitaille, TP Tollerud, EJ Greenfield, P Droettboom, M Bray, E Aldcroft, T Davis, M Ginsburg, A Price-Whelan, AM Kerzendorf, WE Conley, A Crighton, N Barbary, K Muna, D Ferguson, H Grollier, F Parikh, MM Nair, PH Guenther, HM Deil, C Woillez, J Conseil, S Kramer, R Turner, JEH Singer, L Fox, R Weaver, BA Zabalza, V Edwards, ZI Bostroem, KA Burke, DJ Casey, AR Crawford, SM Dencheva, N Ely, J Jenness, T Labrie, K Lim, PL Pierfederici, F Pontzen, A Ptak, A Refsdal, B Servillat, M Streicher, O AF Robitaille, Thomas P. Tollerud, Erik J. Greenfield, Perry Droettboom, Michael Bray, Erik Aldcroft, Tom Davis, Matt Ginsburg, Adam Price-Whelan, Adrian M. Kerzendorf, Wolfgang E. Conley, Alexander Crighton, Neil Barbary, Kyle Muna, Demitri Ferguson, Henry Grollier, Frederic Parikh, Madhura M. Nair, Prasanth H. Guenther, Hans M. Deil, Christoph Woillez, Julien Conseil, Simon Kramer, Roban Turner, James E. H. Singer, Leo Fox, Ryan Weaver, Benjamin A. Zabalza, Victor Edwards, Zachary I. Bostroem, K. Azalee Burke, D. J. Casey, Andrew R. Crawford, Steven M. Dencheva, Nadia Ely, Justin Jenness, Tim Labrie, Kathleen Lim, Pey Lian Pierfederici, Francesco Pontzen, Andrew Ptak, Andy Refsdal, Brian Servillat, Mathieu Streicher, Ole CA Astropy Collaboration TI Astropy: A community Python package for astronomy SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE methods: data analysis; methods: miscellaneous; virtual observatory tools ID OBSERVATIONS COSMOLOGICAL INTERPRETATION; FITS; REPRESENTATIONS AB We present the first public version (v0.2) of the open- source and community- developed Python package, Astropy. This package provides core astronomy- related functionality to the community, including support for domain- specific file formats such as flexible image transport system (FITS) files, Virtual Observatory (VO) tables, and common ASCII table formats, unit and physical quantity conversions, physical constants specific to astronomy, celestial coordinate and time transformations, world coordinate system (WCS) support, generalized containers for representing gridded as well as tabular data, and a framework for cosmological transformations and conversions. Significant functionality is under active development, such as a model fitting framework, VO client and server tools, and aperture and point spread function (PSF) photometry tools. The core development team is actively making additions and enhancements to the current code base, and we encourage anyone interested to participate in the development of future Astropy versions. C1 [Robitaille, Thomas P.; Crighton, Neil] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Tollerud, Erik J.] Yale Univ, Dept Astron, New Haven, CT 06510 USA. [Greenfield, Perry; Droettboom, Michael; Bray, Erik; Davis, Matt; Ferguson, Henry; Bostroem, K. Azalee; Dencheva, Nadia; Ely, Justin; Lim, Pey Lian; Pierfederici, Francesco] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Aldcroft, Tom; Guenther, Hans M.; Burke, D. J.; Refsdal, Brian; Servillat, Mathieu] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Ginsburg, Adam; Conley, Alexander] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Price-Whelan, Adrian M.] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Kerzendorf, Wolfgang E.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Barbary, Kyle] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Muna, Demitri] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Parikh, Madhura M.] SV Natl Inst Technol, Surat 395007, India. [Deil, Christoph; Zabalza, Victor] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany. [Woillez, Julien] European So Observ, D-85748 Garching, Germany. [Conseil, Simon] Univ Aix Marseille, OAMP, Lab Astrophys Marseille, F-13388 Marseille, France. [Conseil, Simon] CNRS, F-13388 Marseille, France. [Kramer, Roban] Swiss Fed Inst Technol, Inst Astron, CH-8093 Zurich, Switzerland. [Turner, James E. H.] Gemini Observ, La Serena, Chile. [Singer, Leo] CALTECH, LIGO Lab, Pasadena, CA 91125 USA. [Weaver, Benjamin A.] New York Univ, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Edwards, Zachary I.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Casey, Andrew R.] Australian Natl Univ, Res Sch Astron & Astrophys, Mt Stromlo Observ, Weston, ACT 2611, Australia. [Crawford, Steven M.] SAAO, ZA-7925 Cape Town, South Africa. [Jenness, Tim] Joint Astron Ctr, Hilo, HI 96720 USA. [Jenness, Tim] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Labrie, Kathleen] Gemini Observ, Hilo, HI 96720 USA. [Pontzen, Andrew] Oxford Astrophys, Oxford OX1 3RH, England. [Pontzen, Andrew] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Ptak, Andy] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab Code 662, Greenbelt, MD 20771 USA. [Servillat, Mathieu] CEA Saclay, Lab AIM, F-91191 Gif Sur Yvette, France. [Streicher, Ole] Leibniz Inst Astrophys Potsdam AIP, D-14482 Potsdam, Germany. RP Robitaille, TP (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. EM robitaille@mpia.de OI Burke, Douglas/0000-0003-4428-7835; Tollerud, Erik/0000-0002-9599-310X; Gunther, Hans Moritz/0000-0003-4243-2840; Jenness, Tim/0000-0001-5982-167X; Streicher, Ole/0000-0001-7751-1843; Ginsburg, Adam/0000-0001-6431-9633; Kerzendorf, Wolfgang/0000-0002-0479-7235; Casey, Andrew/0000-0003-0174-0564; Robitaille, Thomas/0000-0002-8642-1329 FU NASA [NAS8-39073] FX We thank the referee, Igor Chiligarian, for suggestions that helped improve this paper. We would like to thank the NumPy, SciPy (Jones et al. 2001), IPython and Matplolib communities for providing their packages which are invaluable to the development of Astropy. We thank the GitHub (h t t p : //www. github.com) team for providing us with an excellent free development platform. We also are grateful to Read the Docs (https : //readthedocs.org /), Shining Panda (https://www. shiningpanda-ci.com/), and Travis (htps://www.tavis-ci.org/) for providing free documentation hosting and testing respectively. Finally, we would like to thank all the a s t r o p y users that have provided feedback and submitted bug reports. The contribution by T. Aldcroft and D. Burke was funded by NASA contract NAS8-39073. The name resolution functionality shown in Fig. 4 makes use of the SIMBAD database, operated at CDS, Strasbourg, France. NR 40 TC 274 Z9 274 U1 3 U2 16 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD OCT PY 2013 VL 558 AR UNSP A33 DI 10.1051/0004-6361/201322068 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 246XF UT WOS:000326574000033 ER PT J AU Zhang, LL Liang, G Peng, G Jiang, Y Fang, H Huang, YH Croft, MC Ignatov, A AF Zhang, Lu-Lu Liang, Gan Peng, Gang Jiang, Yan Fang, Hui Huang, Yun-Hui Croft, Mark C. Ignatov, Alexander TI Evolution of electrochemical performance in Li3V2(PO4)(3)/C composites caused by cation incorporation SO ELECTROCHIMICA ACTA LA English DT Article DE Lithium ion battery; Cathode materials; Lithium vanadium phosphate; Cation incorporation; Electrochemical performance ID LITHIUM-ION BATTERIES; SOL-GEL METHOD; CATHODE MATERIAL; DOPED LI3V2(PO4)(3); HYDROTHERMAL SYNTHESIS; VANADIUM PHOSPHATE; BEHAVIOR; LIFEPO4 AB Li3V2(PO4)(3)/C (LVP/C) composites incorporated by a series of electrochemically active cations (Fe, Co, Ni, Mn) have been successfully prepared by a conventional solid-state reaction. M-incorporation (M = Fe, Co, Ni, Mn) in Li3V2(PO4)(3)/C does not change the monoclinic structure. Analyzed with X-ray photoelectron spectroscopy, X-ray absorption spectroscopy and high-resolution transmission electron microscopy, we find that the valence is between +2.67 and +3 for Fe, and is +2 for Co, Ni and Mn. M-doped LVP and LiMPO4 phases coexist in the incorporated LVP/C composites. Compared with pristine LVP/C, Feincorporated LVP/C shows the best electrochemical performance with the highest initial discharge capacity of 131.4 mAhg(-1) at 0.1C between 2.5 and 4.3 V. The Fe-incorporated LVP/C sample also exhibits excellent rate capability with an average capacity of 122.4 mAh g(-1) at 1C and 93.5 mAhg(-1) at 5C, resulting from the reduced particle size, the improved electronic conductivity, the high Li-ion diffusion coefficient, and the contribution of LiFePO4 to the capacity. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Zhang, Lu-Lu; Peng, Gang] Three Gorges Univ, Coll Mech & Mat Engn, Yichang 443002, Hubei, Peoples R China. [Zhang, Lu-Lu; Jiang, Yan; Huang, Yun-Hui] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, Minist Educ, Key Lab Adv Battery Mat & Syst, Wuhan 430074, Hubei, Peoples R China. [Zhang, Lu-Lu; Liang, Gan; Fang, Hui] Sam Houston State Univ, Dept Phys, Huntsville, TX 77341 USA. [Croft, Mark C.; Ignatov, Alexander] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Croft, Mark C.] Brookhaven Natl Lab, NSLS, Upton, NY 11973 USA. RP Huang, YH (reprint author), Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, Minist Educ, Key Lab Adv Battery Mat & Syst, 1037 Luoyu Rd, Wuhan 430074, Hubei, Peoples R China. EM luluzhang924@gmail.com; huangyh@mail.hust.edu.cn RI Huang, Yunhui/C-3752-2014 FU NSFC [21175050, 51272128]; MOST of China [2011AA11290, 2011DFB70020]; key project of Hubei Provincial Department of Education [020131303]; US National Science Foundation [CHE-0718482]; Research Corporation for Science Advancement; FRG grant from Sam Houston State University FX This work was supported by the NSFC (No. 21175050, 51272128) and the MOST of China (Nos. 2011AA11290, 2011DFB70020); the key project of Hubei Provincial Department of Education (No. 020131303); US National Science Foundation (No: CHE-0718482), an award from Research Corporation for Science Advancement, and an FRG grant from Sam Houston State University. In addition, the authors thank the Analytical and Testing Center of Huazhong University of Science and Technology for providing XRD and SEM measurements, and thank the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratoty for providing facilities for XAS measurement. NR 47 TC 17 Z9 17 U1 2 U2 63 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 EI 1873-3859 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD OCT 1 PY 2013 VL 108 BP 182 EP 190 DI 10.1016/j.electacta.2013.06.071 PG 9 WC Electrochemistry SC Electrochemistry GA 266HF UT WOS:000328014000023 ER PT J AU Kim, S Hong, S Choi, YY Song, H No, K AF Kim, Suran Hong, Seungbum Choi, Yoon-Young Song, Hanwook No, Kwangsoo TI Effect of nucleation time on bending response of ionic polymer-metal composite actuators SO ELECTROCHIMICA ACTA LA English DT Article DE Electroless deposition; Ionic polymer-metal composite; Artificial muscles; Actuators ID TRANSDUCERS; ELECTRODES AB An autocatalytic electro-less plating of nickel is attempted to replace an electroless impregnation-reduction (IR) method in ionic polymer-metal composite (IPMC) actuators to reduce cost and processing time. Because nucleation time of Pd-Sn colloids is the determining factor of overall processing time, we used the nucleation time as our control parameter. To optimize nucleation time and investigate its effect on the performance of IPMC actuators, we analyzed the relationship between the nucleation time, interface morphology and electrical properties. The optimized nucleation time was 10 h. The trends of the performance and electrical properties as a function of nucleation time were attributed to the fact that the Ni penetration depth was determined by the minimum diffusion length of either Pd-Sn colloids or reducing agent ions. The Ni-IPMC actuators can be fabricated less than 14 h processing time without deteriorating performance of the actuators, which is comparable to Pt-IPMC prepared by IR method. Published by Elsevier Ltd. C1 [Kim, Suran; Hong, Seungbum; Choi, Yoon-Young; No, Kwangsoo] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea. [Hong, Seungbum; Choi, Yoon-Young] Argonne Natl Lab, Nanosci & Technol Div, Lemont, IL 60439 USA. [Song, Hanwook] KRISS, Ctr Mass & Related Quant, Taejon, South Korea. RP Hong, S (reprint author), Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea. EM hong@anl.gov; ksno@kaist.ac.kr RI Hong, Seungbum/B-7708-2009; No, Kwangsoo/C-1983-2011 OI Hong, Seungbum/0000-0002-2667-1983; FU National Research Foundation of Korea (NRF) [2010-0015063, 2011K000674]; Ministry of Education, Science and Technology (MEST); New & Renewable Energy of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) [20103020060010]; Ministry of Knowledge Economy, Korea; UChicago Argonne, a U.S. DOE Office of Science Laboratory [DE-AC02-06CH11357] FX This research was supported by the Mid-career Researcher Program (No. 2010-0015063) and Conversion Research Center Program (No. 2011K000674) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) and the New & Renewable Energy of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant (No. 20103020060010) funded by the Ministry of Knowledge Economy, Korea. Work at Argonne National Laboratory (S.H., data analysis and writing of manuscript) was supported by UChicago Argonne, a U.S. DOE Office of Science Laboratory, operated under Contract No. DE-AC02-06CH11357. Supporting Information is available online from Wiley InterScience or from the author. NR 20 TC 2 Z9 2 U1 0 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 EI 1873-3859 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD OCT 1 PY 2013 VL 108 BP 547 EP 553 DI 10.1016/j.electacta.2013.06.092 PG 7 WC Electrochemistry SC Electrochemistry GA 266HF UT WOS:000328014000073 ER PT J AU Lee, AS Eslick, JC Miller, DC Kitchin, JR AF Lee, Anita S. Eslick, John C. Miller, David C. Kitchin, John R. TI Comparisons of amine solvents for post-combustion CO2 capture: A multi-objective analysis approach SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Carbon capture; Amine solvent comparisons; Multi-objective optimization; Aspen modeling ID AQUEOUS AMINES; STRIPPER CONFIGURATIONS; POWER-PLANTS; FLUE-GAS; PERFORMANCE; ABSORBENTS; MONOETHANOLAMINE; ABSORPTION; OPTIMIZATION; SIMULATION AB Amine solvents are of great interest for post-combustion CO2 capture applications. Although the development of new solvents is predominantly conducted at the laboratory scale, the ability to assess the performance of newly developed solvents at the process scale is crucial to identifying the best solvents for CO2 capture. In this work we present a methodology to evaluate and objectively compare the process performance of different solvents. We use Aspen Plus, with the electrolyte-NRTL thermodynamic model for the solvent CO2 interactions, coupled with a multi-objective genetic algorithm optimization to determine the best process design and operating conditions for each solvent. This ensures that the processes utilized for the comparison are those which are best suited for the specific solvent. We evaluate and compare the process performance of monoethanolamine (MEA), diethanolamine (DEA), and 2-amino-2-methyl-1-propanol (AMP) in a 90% CO2 capture process from a 550 MW coal fired power plant. From our analysis the best process specifications are amine specific and with those specific, optimized specifications DEA has the potential to be a better performing solvent than MEA, with a lower energy penalty and lower capital cost investment. (c) 2013 Elsevier Ltd. All rights reserved. C1 [Lee, Anita S.; Eslick, John C.; Miller, David C.; Kitchin, John R.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Lee, Anita S.; Eslick, John C.; Kitchin, John R.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. RP Kitchin, JR (reprint author), Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. EM jkitchin@andrew.cmu.edu RI Kitchin, John/A-2363-2010 OI Kitchin, John/0000-0003-2625-9232 FU RES [DE-FE0004000] FX As part of the National Energy Technology Laboratory's Regional University Alliance (NETL-RUA), a collaborative initiative of the NETL, this technical effort was performed under the RES contract DE-FE0004000. NR 35 TC 13 Z9 15 U1 4 U2 33 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD OCT PY 2013 VL 18 BP 68 EP 74 DI 10.1016/j.ijggc.2013.06.020 PG 7 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 264TT UT WOS:000327904600007 ER PT J AU Trainor-Guitton, WJ Ramirez, A Yang, XJ Mansoor, K Sun, YW Carroll, S AF Trainor-Guitton, Whitney J. Ramirez, Abelardo Yang, Xianjin Mansoor, Kayyum Sun, Yunwei Carroll, Susan TI Value of information methodology for assessing the ability of electrical resistivity to detect CO2/brine leakage into a shallow aquifer SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE CO2 storage and leakage; Monitoring; Value of information; Decision analysis; Uncertainty ID GEOLOGICAL SEQUESTRATION; RESISTANCE TOMOGRAPHY; SPATIAL INFORMATION; CO2; STORAGE; SITE; VERIFICATION; INVERSION; MOVEMENT; CAPTURE AB Subsurface sequestration of CO2 has uncertainties and potential consequences. Decision analysis and the value of information (VOI) can aid in (1) linking subsurface uncertainty to economic outcomes and (2) determining when additional information may be useful before making further decisions. This study uses an uncertainty quantification (UQ) evaluation of CO2 and accompanying brine leakage into a shallow aquifer via an abandoned wellbore from a deep reservoir to demonstrate both of these functions. First, we equate the range of TDS (total dissolved solids) plume results into a range of possible economic outcomes from a decision for an agricultural application of the resource, where the groundwater is used to irrigate corn crops, and therefore high saline concentrations result in economic losses. We use the concept of perfect information and these risk quantification results to identify that any information source will be only relevant when considering plumes which exceed 2000 ppm concentration. Next, we provide a physics-based methodology to calculate the reliability of electrical resistance data to detect PH/brine plumes. We simulate the electrical resistivity response for all of the leak simulations from the UQ study. This gives us the information reliability which, along with the economic outcomes, is used to calculate the value of imperfect information (VOLII). The calculated reliabilities demonstrate that electrical resistivity generally can determine the existence of a plume but it cannot perfectly determine if the plumes' concentration is >= 2000 ppm. We present VOIII measures for three different electrical resistivity field acquisitions that vary in their distance to the leaking wellbore. Published by Elsevier Ltd. C1 [Trainor-Guitton, Whitney J.; Ramirez, Abelardo; Yang, Xianjin; Mansoor, Kayyum; Sun, Yunwei; Carroll, Susan] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Trainor-Guitton, WJ (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM trainorguitton@llnl.gov RI Sun, Yunwei/C-9751-2010 FU National Risk Assessment Partnership (NRAP); U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was supported in part by the National Risk Assessment Partnership (NRAP). This research was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 53 TC 8 Z9 9 U1 0 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD OCT PY 2013 VL 18 BP 101 EP 113 DI 10.1016/j.ijggc.2013.06.018 PG 13 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 264TT UT WOS:000327904600010 ER PT J AU Thompson, CJ Loring, JS Rosso, KM Wang, ZM AF Thompson, Christopher J. Loring, John S. Rosso, Kevin M. Wang, Zheming TI Comparative reactivity study of forsterite and antigorite in wet supercritical CO2 by in situ infrared spectroscopy SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Forsterite; Antigorite; Olivine; Serpentine; Supercritical carbon dioxide; Geologic carbon sequestration ID MINERAL CARBONATION; DISSOLUTION KINETICS; OPTICAL-CONSTANTS; WATER; SEQUESTRATION; DIOXIDE; STORAGE; TEMPERATURE; SERPENTINE; PH AB The carbonation reactions of forsterite (Mg2SiO4) and antigorite [Mg3Si2O5(OH)(4)], representatives of olivine and serpentine minerals, in dry and wet supercritical carbon dioxide (scCO(2)) at conditions relevant to geologic carbon sequestration (35 degrees C and 100 bar) were studied by in situ Fourier transform infrared (FT-IR) spectroscopy. Our results confirm that water plays a critical role in the reactions between metal silicate minerals and scCO(2). For neat scCO(2), no reaction was observed in 24 hr for either mineral. When water was added to the scCO(2), a thin water film formed on the minerals' surfaces, and the reaction rates and extents increased as the water saturation level was raised from 54% to 116% (excess water). For the first time, the presence of bicarbonate, a key reaction intermediate for metal silicate reactions with scCO(2), was observed in a heterogeneous system where mineral solids, an adsorbed water film, and bulk scCO(2) co-exist. In excess-water experiments, approximately 4% of forsterite and less than 2% of antigorite transformed into hydrated Mg-carbonates. A precipitate similar to nesquehonite (MgCO3 center dot 3H(2)O) was observed for forsterite within 6 hr of reaction time, but no such precipitate was formed from antigorite until after water was removed from the scCO(2) following a 24-hr reaction period. The reduced reactivity and carbonate-precipitation behavior of antigorite was attributed to slower, incongruent dissolution of the mineral and lower concentrations of Mg2+ and HCO3- in the water film. The in situ measurements employed in this work make it possible to quantify metal carbonate precipitates and key reaction intermediates such as bicarbonate for the investigation of carbonation reaction mechanisms relevant to geologic carbon sequestration. (c) 2013 Elsevier Ltd. All rights reserved. C1 [Thompson, Christopher J.; Loring, John S.; Rosso, Kevin M.; Wang, Zheming] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Thompson, CJ (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM chris.thompson@pnnl.gov RI Wang, Zheming/E-8244-2010 OI Wang, Zheming/0000-0002-1986-4357 FU Laboratory Directed Research and Development program at PNNL under the Carbon Sequestration Initiative; DOE [DE-AC05-76RLO-1830] FX We are grateful to Alexandra Navrotsky (University of California at Davis) for providing the forsterite used in this study, Changyong Zhang for assistance in operating the scCO2 apparatus, Jeffrey Chen for measuring the spectrum of aqueous magnesium bicarbonate, Paul F. Martin for experimental advice and help with the design of our apparatus, Mickey Gunter (University of Idaho) for serpentine mineral discussions, and Andy R. Felmy for helpful discussions about our results. This research was supported by the Laboratory Directed Research and Development program at PNNL under the Carbon Sequestration Initiative. Part of the research was performed at EMSL, a national scientific user facility at PNNL that is managed by the DOE's office of Biological and Environmental Research. PNNL is operated for DOE by Battelle Memorial Institute under Contract No. DE-AC05-76RLO-1830. NR 61 TC 12 Z9 12 U1 2 U2 35 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD OCT PY 2013 VL 18 BP 246 EP 255 DI 10.1016/j.ijggc.2013.07.007 PG 10 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 264TT UT WOS:000327904600022 ER PT J AU Cheng, CL Gragg, MJ Perfect, E White, MD Lemiszki, PJ McKay, LD AF Cheng, C. -L. Gragg, M. J. Perfect, E. White, M. D. Lemiszki, P. J. McKay, L. D. TI Sensitivity of injection costs to input petrophysical parameters in numerical geologic carbon sequestration models SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Geological carbon sequestration; Numerical modeling; Uncertainty Petrophysical parameters; Cost estimate ID RELATIVE PERMEABILITY; CAPILLARY-PRESSURE; CO2 SEQUESTRATION; SALINE AQUIFERS; BRINE AQUIFERS; STORAGE; UNCERTAINTY; DIOXIDE; SYSTEM; TEXAS AB Numerical simulations are widely used in feasibility studies for geologic carbon sequestration. Accurate estimates of petrophysical parameters are needed as inputs for these simulations. However, relatively few experimental values are available for CO2-brine systems. Hence, a sensitivity analysis was performed using the STOMP numerical code for supercritical CO2 injected into a model confined deep saline aquifer. The intrinsic permeability, porosity, pore compressibility, and capillary pressure-saturation/relative permeability parameters (residual liquid saturation, residual gas saturation, and van Genuchten alpha and m values) were varied independently. Their influence on CO2 injection rates and costs were determined and the parameters were ranked based on normalized coefficients of variation. The simulations resulted in differences of up to tens of millions of dollars over the life of the project (i.e., the time taken to inject 10.8 million metric tons of CO2). The two most influential parameters were the intrinsic permeability and the van Genuchten m value. Two other parameters, the residual gas saturation and the residual liquid saturation, ranked above the porosity. These results highlight the need for accurate estimates of capillary pressure-saturation/relative permeability parameters for geologic carbon sequestration simulations in addition to measurements of porosity and intrinsic permeability. (c) 2013 Elsevier Ltd. All rights reserved. C1 [Cheng, C. -L.; Gragg, M. J.; Perfect, E.; McKay, L. D.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [White, M. D.] Pacific NW Natl Lab, Hydrol Grp, Energy & Environm Directorate, Richland, WA 99352 USA. [Lemiszki, P. J.] Dept Environm & Conservat, Tennessee Div Geol, Knoxville, TN 37921 USA. RP Cheng, CL (reprint author), Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. EM ccheng7@utk.edu RI Cheng, Chu-Lin/G-3471-2013 OI Cheng, Chu-Lin/0000-0002-1900-463X FU Tennessee Division of Geology, Department of Environment and Conservation [32701-00962]; Joint Directed Research and Development (JDRD) program of the UT-ORNL Science Alliance at the University of Tennessee-Knoxville; Laboratory Directed Research and Development (LDRD) program of Oak Ridge National Laboratory (ORNL) FX The Tennessee Division of Geology, Department of Environment and Conservation (subcontract #32701-00962) provided partial support for M.J. Gragg. Funding for C.-L. Cheng was provided by the Joint Directed Research and Development (JDRD) program of the UT-ORNL Science Alliance at the University of Tennessee-Knoxville, and the Laboratory Directed Research and Development (LDRD) program of Oak Ridge National Laboratory (ORNL). NR 46 TC 2 Z9 2 U1 0 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD OCT PY 2013 VL 18 BP 277 EP 284 DI 10.1016/j.ijggc.2013.07.018 PG 8 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 264TT UT WOS:000327904600025 ER PT J AU Zhang, S DePaolo, DJ Xu, TF Zheng, LG AF Zhang, Shuo DePaolo, Donald J. Xu, Tianfu Zheng, Liange TI Mineralization of carbon dioxide sequestered in volcanogenic sandstone reservoir rocks SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE CO2 sequestration; CO2 mineralization; Volcanogenic sandstones; Reactive transport modeling ID REACTIVE-SURFACE-AREA; CO2 INJECTION; SEDIMENTARY-ROCKS; FLUID-FLOW; BASIN; PERMEABILITY; DIAGENESIS; TRANSPORT; AQUIFER; SITE AB Geological storage of carbon dioxide in deep saline formations can decrease the accumulation of CO2 in the atmosphere, and thus slow down global warming. Most CO2 injected into subsurface rock formations is expected to remain for a long time as either a separate supercritical phase or in solution in brine; both forms present the possibility of leakage back to the surface or other environmental impacts. Mineralogical trapping of injected CO2 is more secure but usually thought to be too slow to add significantly to sequestration security. For quartz-rich sandstones (quartzarenite and arkose), only ca. 5% CO2 mineralization is achieved over 1000-10,000 years (Audigane et al., 2007). However, if volcanogenic and other sandstones that have larger amounts of reactive minerals were used for storage, there could be a larger fraction of CO2 mineralized in a shorter time. The limitation is that porosity and permeability tend to decrease with increase of volcanic rock fragments (VRF), which limits the rate at which CO2 can be injected. We evaluate these tradeoffs to assess the feasibility of using volcanogenic sandstone to achieve secure CO2 storage. Using relationships between VRF percent, porosity and permeability from available geological data, the reactive transport code TOUGHREACT was used to model the flow, transport, mineral reactions, changes in fluid chemistry, and the rate and extent of CO2 mineralization over 1000 years during and after CO2 injection into a sandstone reservoir. We use the models specifically to evaluate the expected trade-off between higher reactivity and lower porosity and permeability. A model volcanic fragment mineralogy is used (pyroxene and feldspar mainly for which kinetic data are available) along with conservative estimates for silicate and oxide mineral dissolution kinetics and reactive surface area. Substitution of other more common reactive minerals such as chlorite and amphibole would not significantly change the results. The simulations show that in rocks with 10-20% reactive minerals, as much as 80% CO2 mineralization could occur in 1000 years and still allow sufficient injectivity so that 1 Mt of CO2 could be injected per year per well. The calculated mineralized fraction depends on several factors, most notably the kinetics and reactive surface area of dissolving silicates and the detailed relationship of reactive mineral content to effective permeability and injectivity. (C) 2013 Published by Elsevier B.V. C1 [Zhang, Shuo; DePaolo, Donald J.] Univ Calif Berkeley, Earth & Planetary Sci Dept, Berkeley, CA 94720 USA. [Zhang, Shuo; DePaolo, Donald J.; Xu, Tianfu; Zheng, Liange] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Zhang, S (reprint author), Univ Calif Berkeley, Earth & Planetary Sci Dept, Berkeley, CA 94720 USA. EM shuozhang@berkeley.edu RI zheng, liange/B-9748-2011; OI zheng, liange/0000-0002-9376-2535; Zhang, Shuo/0000-0002-2170-4299 FU Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy as part of an Energy Frontier Research Center [DE-AC02-CH11231] FX This manuscript has benefited from discussions with Eric Sonnenthal, Jenny Druhan and the comments of two anonymous reviewers. The work was supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy as part of an Energy Frontier Research Center under Contract No. DE-AC02-CH11231. NR 42 TC 6 Z9 6 U1 4 U2 27 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD OCT PY 2013 VL 18 BP 315 EP 328 DI 10.1016/j.ijggc.2013.08.001 PG 14 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 264TT UT WOS:000327904600029 ER PT J AU Goodman, A Bromhal, G Strazisar, B Rodosta, T Guthrie, WF Allen, D Guthrie, G AF Goodman, Angela Bromhal, Grant Strazisar, Brian Rodosta, Traci Guthrie, William F. Allen, Doug Guthrie, George TI Comparison of methods for geologic storage of carbon dioxide in saline formations SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE CO2; Geologic storage; Saline formations; Resource estimates; Capacity estimates ID CAPACITY ESTIMATION; CO2; AQUIFERS; SCALE AB Preliminary estimates of CO2 storage potential in geologic formations provide critical information related to Carbon Capture, Utilization, and Storage (CCUS) technologies to mitigate CO2 emissions. Currently multiple methods to estimate CO2 storage and multiple storage estimates for saline formations have been published, leading to potential uncertainty when comparing estimates from different studies. In this work, carbon dioxide storage estimates are compared by applying several commonly used methods to general saline formation data sets to assess the impact that the choice of method has on the results. Specifically, six CO2 storage methods were applied to thirteen saline formation data sets which were based on formations across the United States with adaptations to provide the geologic inputs required by each method. Methods applied include those by (1) international efforts - the Carbon Sequestration Leadership Forum (Bachu et al., 2007); (2) United States government agencies - U.S. Department of Energy - National Energy Technology Laboratory (US-DOE-NETL, 2012) and United States Geological Survey (Brennan et al., 2010); and (3) the peer-reviewed scientific community - Szulczewski et al. (2012) and Zhou et al. (2008). A statistical analysis of the estimates generated by multiple methods revealed that assessments of CO2 storage potential made at the prospective level were often statistically indistinguishable from each other, implying that the differences in methodologies are small with respect to the uncertainties in the geologic properties of storage rock in the absence of detailed site-specific characterization. Published by Elsevier Ltd. C1 [Goodman, Angela; Strazisar, Brian; Guthrie, George] US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. [Bromhal, Grant; Rodosta, Traci] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Guthrie, William F.] NIST, Gaithersburg, MD 20899 USA. [Allen, Doug] Salem State Univ, Salem, MA 01970 USA. RP Goodman, A (reprint author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. EM angela.goodman@netl.doe.gov NR 34 TC 12 Z9 12 U1 0 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD OCT PY 2013 VL 18 BP 329 EP 342 DI 10.1016/j.ijggc.2013.07.016 PG 14 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 264TT UT WOS:000327904600030 ER PT J AU Nicot, JP Oldenburg, CM Houseworth, JE Choi, JW AF Nicot, Jean-Philippe Oldenburg, Curtis M. Houseworth, James E. Choi, Jong-Won TI Analysis of potential leakage pathways at the Cranfield, MS, USA, CO2 sequestration site SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Risk assessment; Fault; Spill point; Plugged and abandoned wells; Well leakage ID CARBON-DIOXIDE; STORAGE; INJECTION; OIL AB A 1.5-million-ton CO2 sequestration project took place in a 3000-m-deep historical oilfield, combined with a CO2-EOR flood. The Cranfield reservoir is found within a multikilometer domal structure related to a deep-salt diapir and consists of fluvial sediments of the Tuscaloosa Formation. An earlier analysis determined that plugged and abandoned wells provide the most likely leakage pathways to aquifers and potentially to the ground surface. Fourteen Cement Bond Logs (CBL's) were used to assess the risk. The present quality of the cement bond ranges from excellent to poor. Geological insights, stochastic numerical modeling of the pressure field, analysis of the CBL's, and application of a wellbore flow model were used to conclude that the limited pressure increase and mostly intact wellbores result in a low CO2- and brine-leakage risk. Statistical estimates of well properties suggest that at most two (and possibly none) could be capable of conveying a total of 1800 kg/yr CO2 to the surface (0.0002% of annual injection rate). Given that the oilfield is an active operation, it is improbable that well leakage to the surface will go unnoticed and certain that risks will be managed through active risk mitigation and remediation if necessary. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Nicot, Jean-Philippe; Choi, Jong-Won] Univ Texas Austin, Bur Econ Geol, Univ Stn, Austin, TX 78713 USA. [Oldenburg, Curtis M.; Houseworth, James E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Nicot, JP (reprint author), Univ Texas Austin, Bur Econ Geol, Univ Stn, Box 10, Austin, TX 78713 USA. EM jp.nicot@beg.utexas.edu RI Oldenburg, Curtis/L-6219-2013; Nicot, Jean-Philippe/A-3954-2009; Houseworth, James/D-8749-2015 OI Oldenburg, Curtis/0000-0002-0132-6016; FU Office of Sequestration, Hydrogen, and Clean Coal Fuels, National Energy Technology Laboratory (NETL); Lawrence Berkeley National Laboratory under Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, NETL, as part of the Regional Carbon Sequestration Partnerships program [DE-FC26-05NT42590]; Bureau of Economic Geology at The University of Texas at Austin; SECARB project FX The authors would like to thank H. Lashgari, S. Coleman, T. Meckel, P. Jordan, A. Mazzoldi, S. Solano, C. Puerta, C. Yang, K. Romanak, and S. Hovorka for helping in the study. This work was supported by the Assistant Secretary for Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, National Energy Technology Laboratory (NETL), and by Lawrence Berkeley National Laboratory under Department of Energy Contract No. DE-AC02-05CH11231. Additional support comes from the Bureau of Economic Geology at The University of Texas at Austin and the SECARB project, managed by the Southern States Energy Board and funded by the U.S. Department of Energy, NETL, as part of the Regional Carbon Sequestration Partnerships program under contract number DE-FC26-05NT42590. We are also grateful to Denbury Onshore LLC for field access and sharing of data. In addition, we thank IHS Energy for free access to the Enerdeq well database and PETRA software, the Computer Modeling Group, Calgary, Alberta, for free access to the compositional multiphase flow code CMG-GEM and related modules, and Schlumberger for free access to their PETREL software. We appreciate the help of colleagues who reviewed an earlier version of the paper, and input from 2 anonymous reviewers. Thank you to Lana Dieterich, who edited the manuscript, and to John Ames, Joel Lardon, and Cathy Brown, who made some of the graphics. Publication authorized by the Director, Bureau of Economic Geology, The University of Texas at Austin. NR 36 TC 15 Z9 15 U1 2 U2 15 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD OCT PY 2013 VL 18 BP 388 EP 400 DI 10.1016/j.ijggc.2012.10.011 PG 13 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 264TT UT WOS:000327904600035 ER PT J AU Carrigan, CR Yang, XJ LaBrecque, DJ Larsen, D Freeman, D Ramirez, AL Daily, W Aines, R Newmark, R Friedmann, J Hovorka, S AF Carrigan, Charles R. Yang, Xianjin LaBrecque, Douglas J. Larsen, Dennis Freeman, David Ramirez, Abelardo L. Daily, William Aines, Roger Newmark, Robin Friedmann, Julio Hovorka, Susan TI Electrical resistance tomographic monitoring of CO2 movement in deep geologic reservoirs SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Electrical resistance tomography; Electrical resistivity; CO2 saturation; Monitoring of carbon sequestration; Deep geologic reservoir; Cranfield field test ID RESISTIVITY TOMOGRAPHY; STORAGE; SITE AB Deep geologic sequestration of carbon dioxide (CO2) is being evaluated internationally to mitigate the impact of greenhouse gases produced during oil- and coal-based energy generation and manufacturing. Natural gas producing fields are particularly attractive sites for sequestration activities owing to the assumption that the same geologic barrier or cap rock permitting the subsurface regime to act as a long term natural gas reservoir will also serve to permanently contain the injected supercritical CO2. Electrical resistance tomography (ERT) can potentially track the movement and concentration of the injectate as well as the degree of geologic containment using time lapse electrical resistivity changes resulting from injecting the super-critical fluid into the reservoir formation. An experimental cross-well ERT system operated successfully for more than one year obtaining time lapse electrical resistivity images during the injection of approximately one-million tons of CO2 at a depth exceeding 3000 m in an oil and gas field in Cranfield, MS, representing the deepest application of the method to date. When converted to CO2 saturation, the resultant images provide information about the movement of the injected CO2 within a complex geologic formation and the development of the saturation distribution with time. ERT demonstrated significant potential for near real-time assessment of the degree of geologic containment and for updating risk analyses of the sequestration process. Furthermore, electrical resistivity imaging of the developing CO2 distribution may provide crucial input about the developing reservoir pressure field that is required for active reservoir management to prevent the occurrence of cap-rock-damaging seismic activity. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Carrigan, Charles R.; Yang, Xianjin; Ramirez, Abelardo L.; Aines, Roger; Friedmann, Julio] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [LaBrecque, Douglas J.; Daily, William] Multiphase Technol, Sparks, NV 89431 USA. [Larsen, Dennis] Promore Ind Core Lab, Houston, TX 77041 USA. [Freeman, David] Sandia Technol, Houston, TX USA. [Newmark, Robin] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Hovorka, Susan] Univ Texas Austin, Bur Econ Geol, Austin, TX 78758 USA. RP Carrigan, CR (reprint author), POB 808,L-052, Livermore, CA 94551 USA. EM carrigan1@llnl.gov; xianjin.yang@gmail.com FU U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) [FC26-05NT42590]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX Authors thank Robert J. Butsch of Schlumberger Carbon Services for providing electrode depth data based on his Array Induction Tool (AIT) logs. This ERT monitoring project was hosted by Southeast Regional Carbon Sequestration Partnership (SECARB), led by Southern States Energy Board, and funded by U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL; Bruce Brown, program manager) under Grant Number FC26-05NT42590. We also thank Denbury Onshore LLC for their support as the site host of this project. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 15 TC 26 Z9 26 U1 1 U2 17 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD OCT PY 2013 VL 18 BP 401 EP 408 DI 10.1016/j.ijggc.2013.04.016 PG 8 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 264TT UT WOS:000327904600036 ER PT J AU Ajo-Franklin, JB Peterson, J Doetsch, J Daley, TM AF Ajo-Franklin, J. B. Peterson, J. Doetsch, J. Daley, T. M. TI High-resolution characterization of a CO2 plume using crosswell seismic tomography: Cranfield, MS, USA SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Geologic CO2 storage; Seismic monitoring methods; Borehole seismic methods; Crosswell seismic imaging; Rock physics ID PARTIAL GAS SATURATION; INJECTED CO2; CARBONATE RESERVOIR; ONSHORE AQUIFER; POSED PROBLEMS; L-CURVE; SANDSTONE; ROCKS; ATTENUATION; STATICS AB We present the results of a high-resolution time-lapse crosswell seismic survey carried out at a large-scale CO2 injection pilot located in Cranfield, MS, USA. This dataset, spanning an injector and two monitoring wells, provided a detailed view of the boundaries and internal structure of the injection unit, the Tuscaloosa DIE sand. Time-lapse tomographic processing of one well pair revealed the signature of the injected plume, two zones of decreased P-wave velocity which spatially correspond to higher permeability sections of the reservoir unit. We then used White's model for patchy saturation, combined with secondary information from core and well-log measurements, to convert the imaged changes in P-wave velocity into estimates of supercritical (sc) CO2 saturation in the interwell region. Our estimate is relatively consistent with existing lithologic and core data as well as independent measurements of scCO(2) saturation derived from pulsed neutron logging. While effective in mapping the zone of CO2 invasion in the interwell region, several sources of uncertainty still exist in quantifying saturation using crosswell seismic methods, including (but not limited to) the degree of mesoscale mixing or "patchiness" at scales below a seismic wavelength. (C) 2013 Published by Elsevier B.V. C1 [Ajo-Franklin, J. B.; Peterson, J.; Daley, T. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Dept Geophys, Berkeley, CA 94720 USA. [Doetsch, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Dept Hydrogeol, Berkeley, CA 94720 USA. RP Ajo-Franklin, JB (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Dept Geophys, Berkeley, CA 94720 USA. EM JBAjo-Franklin@lbl.gov RI Daley, Thomas/G-3274-2015; Ajo-Franklin, Jonathan/G-7169-2015; Doetsch, Joseph/A-9438-2008; OI Daley, Thomas/0000-0001-9445-0843; Doetsch, Joseph/0000-0002-2927-9557; Ajo-Franklin, Jonathan/0000-0002-6666-4702 FU Office of Coal and Power Systems through the National Energy Technology Laboratory, of the U.S. Department of Energy [DE-AC02-05CH11231, DE-FC26-05NT42590] FX The authors would like to acknowledge the leadership and assistance of Susan Hovorka, the technical lead for the Cranfield Project and the entire Cranfield team for their scientific contributions and collaboration. We would also like to acknowledge David Freeman for his assistance in the field. Denbury Resources, the operator of Cranfield, greatly enabled our research at the DAS site. We would also like to acknowledge Jerry Hill, Bruce Brown, and the Southeast Regional Carbon Sequestration Partnership (SECARB). This work was supported by the SECARB project for the Assistant Secretary for Fossil Energy, Office of Coal and Power Systems through the National Energy Technology Laboratory, of the U.S. Department of Energy, under contracts No. DE-AC02-05CH11231 and DE-FC26-05NT42590 (SECARB). We would like to end by thanking the two anonymous reviewers and the IJGGC editorial staff for providing valuable feedback on this manuscript. NR 46 TC 21 Z9 21 U1 0 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD OCT PY 2013 VL 18 BP 497 EP 509 DI 10.1016/j.ijggc.2012.12.018 PG 13 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 264TT UT WOS:000327904600045 ER PT J AU Doetsch, J Kowalsky, MB Doughty, C Finsterle, S Ajo-Franklin, JB Carrigan, CR Yang, XJ Hovorka, SD Daley, TM AF Doetsch, Joseph Kowalsky, Michael B. Doughty, Christine Finsterle, Stefan Ajo-Franklin, Jonathan B. Carrigan, Charles R. Yang, Xianjin Hovorka, Susan D. Daley, Thomas M. TI Constraining CO2 simulations by coupled modeling and inversion of electrical resistance and gas composition data SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Geologic CO2 storage; Electrical resistance tomography (ERT); Geophysical monitoring; Hydrological model calibration ID RESISTIVITY TOMOGRAPHY; GEOPHYSICAL INVERSION; BRINE AQUIFER; INJECTED CO2; SITE; MISSISSIPPI; CRANFIELD; SYSTEM; FLOW; USA AB This study investigates how model predictions of subsurface CO2 migration can be constrained and improved with time-lapse electrical resistance tomography (ERT) data for a pilot experiment located at Cranfield, Mississippi. To this end, we first invert the time-lapse ERT dataset using structurally constrained and unconstrained inversions. With the ERT time-lapse inversions, we image the increasing supercritical CO2 saturation in the reservoir and find that including the reservoir boundaries as structural constraints significantly improves the images. We then use ERT-derived changes in subsurface electrical resistivity along with gas composition data to constrain and calibrate hydrological models. We use the inversion framework iTOUGH2 and test several simplified conceptual models for the reservoir. Our analysis shows that the reservoir response cannot be adequately reproduced with a radial model; rather, the system exhibits 1D behavior. A model with three 1D layers, whose permeability values and width were estimated by inversion, is able to explain the ERT and gas composition data. Derived permeabilities agree with those from core measurements and a well test. Despite high noise levels, the ERT data provided crucial information in the inversion thanks to its high sensitivity at the inter-well scale, its stabilizing effect on the inversion, and the direct link it provides between electrical resistivity and CO2 saturation. Published by Elsevier Ltd. C1 [Doetsch, Joseph; Kowalsky, Michael B.; Doughty, Christine; Finsterle, Stefan; Ajo-Franklin, Jonathan B.; Daley, Thomas M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Doetsch, Joseph] Aarhus Univ, Dept Geosci, DK-8000 Aarhus, Denmark. [Carrigan, Charles R.; Yang, Xianjin] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94550 USA. [Hovorka, Susan D.] Univ Texas Austin, Jackson Sch Geosci, Bur Econ Geol, Austin, TX 78713 USA. RP Doetsch, J (reprint author), Aarhus Univ, Dept Geosci, CF Meiners Alle 4, DK-8000 Aarhus, Denmark. EM joseph.doetsch@geo.au.dk RI Finsterle, Stefan/A-8360-2009; Daley, Thomas/G-3274-2015; Doughty, Christine/G-2389-2015; Ajo-Franklin, Jonathan/G-7169-2015; Doetsch, Joseph/A-9438-2008; OI Finsterle, Stefan/0000-0002-4446-9906; Daley, Thomas/0000-0001-9445-0843; Doetsch, Joseph/0000-0002-2927-9557; Ajo-Franklin, Jonathan/0000-0002-6666-4702 FU U.S. Dept. of Energy, Office of Fossil Energy, through the National Energy Technology Laboratory; National Risk Assessment Partnership (NRAP); U.S. Department of Energy by Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344 (LLNL-ABS-569152)] FX The authors would like to acknowledge the Cranfield and SECARB team for their scientific contributions and collaboration. We thank Barry Freifeld and Paul Cook (LBNL) for the U-tube design and many colleagues at the Texas Bureau of Economic Geology and Gulf Coast Carbon Center for U-tube data collection and Douglas LaBrecque (MPT) for assistance in acquiring the ERT data. We also would like to acknowledge David Freeman of Sandia Technologies for well design, instrumentation deployment and field site support. Denbury Onshore LLC provided essential assistance to the project. This work was supported by the U.S. Dept. of Energy, Office of Fossil Energy, through the National Energy Technology Laboratory, by the National Risk Assessment Partnership (NRAP) with funding from the American Recovery and Reinvestment Act. The work was performed under the auspices of the U.S. Department of Energy by Lawrence Berkeley National Laboratory under contract DE-AC02-05CH11231 and Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 (LLNL-ABS-569152). Two anonymous reviews helped to improve the clarity of the paper. NR 52 TC 12 Z9 12 U1 0 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD OCT PY 2013 VL 18 BP 510 EP 522 DI 10.1016/j.ijggc.2013.04.011 PG 13 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 264TT UT WOS:000327904600046 ER PT J AU Habibpour, V Yin, CR Kwon, G Vajda, S Palmer, RE AF Habibpour, Vahideh Yin, Chunrong Kwon, Gihan Vajda, Stefan Palmer, Richard E. TI Catalytic oxidation of cyclohexane by size-selected palladium clusters pinned on graphite SO JOURNAL OF EXPERIMENTAL NANOSCIENCE LA English DT Article DE size-selected clusters; Pd nanoparticles; cyclohexane; catalysis; active site; STM ID SCANNING-TUNNELING-MICROSCOPY; ORIENTED PYROLYTIC-GRAPHITE; SUPPORTED GOLD; CO OXIDATION; METAL-CLUSTERS; DEHYDROGENATION; REACTIVITY; NANOPARTICLES; PLATINUM; SILVER AB We report the catalytic oxidation of cyclohexane to CO and CO2 over size-selected palladium clusters (Pd-N clusters, N = 10-120) supported on graphite as a function of cluster size. The stability of the pinned clusters (nanoparticles) under reaction conditions is investigated by scanning tunnelling microscopy measurement both before and after reaction. Temperature-programmed reaction experiments at 800 Torr show that the turnover rates (per surface Pd atom) for both CO and CO2 increase significantly as cluster size decreases and correlate with the number of Pd perimeter atoms at the graphite interface. Under oxygen-rich conditions, the activity of the clusters increases by a factor of 3 while the product ratio CO:CO2 rises by an order of magnitude. C1 [Habibpour, Vahideh; Palmer, Richard E.] Univ Birmingham, Sch Phys & Astron, Nanoscale Phys Res Lab, Birmingham B15 2TT, W Midlands, England. [Yin, Chunrong; Kwon, Gihan; Vajda, Stefan] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Vajda, Stefan] Argonne Natl Lab, Ctr Nanoscale Mat, Nanosci & Technol Div, Argonne, IL 60439 USA. [Vajda, Stefan] Yale Univ, Dept Chem & Environm Engn, New Haven, CT 06520 USA. RP Palmer, RE (reprint author), Univ Birmingham, Sch Phys & Astron, Nanoscale Phys Res Lab, Birmingham B15 2TT, W Midlands, England. EM vajda@anl.gov; r.e.palmer@bham.ac.uk RI Yin, Chunrong/F-8802-2012; Palmer, Richard/A-5366-2008 OI Palmer, Richard/0000-0001-8728-8083 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; US Department of Energy, BES Materials Sciences [DE-AC-02-06CH11357]; UChicago Argonne, LLC FX We thank Dr Zhi Wei Wang for helpful discussions. V. Habibpour and R.E. Palmer gratefully acknowledge the use of the facilities of the Center for Nanoscale Materials, supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The work performed at Argonne (C. Yin, G. Kwon, S. Vajda) was supported by the US Department of Energy, BES Materials Sciences, under Contract No. DE-AC-02-06CH11357, with UChicago Argonne, LLC, operator of Argonne National Laboratory. NR 62 TC 4 Z9 4 U1 5 U2 68 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1745-8080 EI 1745-8099 J9 J EXP NANOSCI JI J. Exp. Nanosci. PD OCT 1 PY 2013 VL 8 IS 7-8 BP 993 EP 1003 DI 10.1080/17458080.2013.849821 PG 11 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 263UO UT WOS:000327833700013 ER PT J AU Yang, YQ Asiri, AM Tang, ZW Du, D Lin, YH AF Yang, Yuqi Asiri, Abdullah Mohamed Tang, Zhiwen Du, Dan Lin, Yuehe TI Graphene based materials for biomedical applications SO MATERIALS TODAY LA English DT Review ID NITROGEN-DOPED GRAPHENE; RESONANCE ENERGY-TRANSFER; NEAR-INFRARED ABSORBENCY; QUANTUM DOTS; PHOTOTHERMAL THERAPY; FUNCTIONALIZED GRAPHENE; IN-SITU; ELECTROCHEMICAL PROPERTIES; BIOSENSING APPLICATIONS; PHOTOVOLTAIC DEVICES AB Graphene, a single layer 2-dimensional structure nanomaterial with unique physicochemical properties (e.g. high surface area, excellent electrical conductivity, strong mechanical strength, unparalleled thermal conductivity, remarkable biocompatibility and ease of functionalization), has received increasing attention in physical, chemical and biomedical fields. This article selectively reviews current advances of graphene based materials for biomedical applications. In particular, graphene based biosensors for small biomolecules (glucose, dopamine etc.), proteins and DNA detection have been summarized; graphene based bioimaging, drug delivery, and photothermal therapy applications have been described in detail. Future perspectives and possible challenges in this rapidly developing area are also discussed. C1 [Yang, Yuqi; Du, Dan] Cent China Normal Univ, Key Lab Pesticide & Chem Biol, Minist Educ, Coll Chem, Wuhan 430079, Peoples R China. [Asiri, Abdullah Mohamed] King Abdulaziz Univ, Dept Chem, Jeddah 21589, Saudi Arabia. [Tang, Zhiwen; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. [Du, Dan; Lin, Yuehe] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. RP Du, D (reprint author), Cent China Normal Univ, Key Lab Pesticide & Chem Biol, Minist Educ, Coll Chem, Wuhan 430079, Peoples R China. EM dan.du@mail.ccnu.edu.cn; yuehe.lin@pnnl.gov RI Du, Dan (Annie)/G-3821-2012; Lin, Yuehe/D-9762-2011; Asiri, Abdullah/C-3458-2009; Center of Excellence, Advanced Materials R/J-8561-2015 OI Lin, Yuehe/0000-0003-3791-7587; Asiri, Abdullah/0000-0001-7905-3209; FU National Natural Science Foundation of China [21275062, 21075047]; Program for New Century Excellent Talents in University [NCET-12-0871]; Battelle for US-DOE [DE-AC05-76RL01830] FX This work was supported by the National Natural Science Foundation of China (21275062, 21075047) and the Program for New Century Excellent Talents in University (NCET-12-0871). Pacific Northwest National Laboratory is operated by Battelle for US-DOE under Contract DE-AC05-76RL01830. NR 83 TC 105 Z9 105 U1 29 U2 280 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1369-7021 EI 1873-4103 J9 MATER TODAY JI Mater. Today PD OCT PY 2013 VL 16 IS 10 BP 365 EP 373 DI 10.1016/j.mattod.2013.09.004 PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA 269HN UT WOS:000328232400015 ER PT J AU Chiolo, I Tang, J Georgescu, W Costes, SV AF Chiolo, Irene Tang, Jonathan Georgescu, Walter Costes, Sylvain V. TI Nuclear dynamics of radiation-induced foci in euchromatin and heterochromatin SO MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS LA English DT Review DE DSB response; Chromatin dynamics; Ionizing radiation; Biomarker; Modeling; Cancer risk ID DOUBLE-STRAND BREAKS; HISTONE H2AX PHOSPHORYLATION; DNA-REPAIR CAPACITY; HOMOLOGOUS RECOMBINATION; CANCER-PATIENTS; CHROMOSOME-ABERRATIONS; INTERPHASE NUCLEUS; MAMMALIAN-CELLS; GAMMA-H2AX FOCI; LIVING CELLS AB Repair of double strand breaks (DSBs) is essential for cell survival and genome integrity. While much is known about the molecular mechanisms involved in DSB repair and checkpoint activation, the roles of nuclear dynamics of radiation-induced foci (RIF) in DNA repair are just beginning to emerge. Here, we summarize results from recent studies that point to distinct features of these dynamics in two different chromatin environments: heterochromatin and euchromatin. We also discuss how nuclear architecture and chromatin components might control these dynamics, and the need of novel quantification methods for a better description and interpretation of these phenomena. These studies are expected to provide new biomarkers for radiation risk and new strategies for cancer detection and treatment. (C) 2013 Elsevier B.V. All rights reserved. C1 [Chiolo, Irene] Univ So Calif, Los Angeles, CA 90089 USA. [Tang, Jonathan; Georgescu, Walter; Costes, Sylvain V.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Tang, Jonathan; Costes, Sylvain V.] Exogen Biotechnol Inc, Berkeley, CA USA. RP Chiolo, I (reprint author), Univ So Calif, 1050 Childs Way, Los Angeles, CA 90089 USA. EM chiolo@usc.edu; svcostes@lbl.gov FU NASA Specialized Center for Research in Radiation Health Effects [NNJ09HC64I]; Low Dose Scientific Focus Area, United States Department of Energy [DE-AC02-05CH11231]; [R21ES021541]; [R01GM086613] FX IC is supported by R21ES021541. SVC, JT, WG are supported by NASA Specialized Center for Research in Radiation Health Effects [NNJ09HC64I] and the Low Dose Scientific Focus Area, United States Department of Energy [DE-AC02-05CH11231]; SVC and JT are also supported by private funding for their work on radiation biomarkers and individual radiation sensitivity at Exogen Biotechnology, Inc. Work by IC and SVC was supported by R01GM086613 (Gary Karpen, PI). We wanted to thank Gary Karpen, Scott Keagy, Purificacion Feijoo Molinos, Tae Hyun Ryu, Hannah Hopp and Kate Bowlin for their useful comments and edits. NR 117 TC 19 Z9 19 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0027-5107 EI 1873-135X J9 MUTAT RES-FUND MOL M JI Mutat. Res.-Fundam. Mol. Mech. Mutagen. PD OCT PY 2013 VL 750 IS 1-2 SI SI BP 56 EP 66 DI 10.1016/j.mrfmmm.2013.08.001 PG 11 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology SC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology GA 260FV UT WOS:000327581300007 PM 23958412 ER PT J AU Wenzel, T AF Wenzel, Tom TI The estimated effect of mass or footprint reduction in recent light-duty vehicles on U.S. societal fatality risk per vehicle mile traveled SO ACCIDENT ANALYSIS AND PREVENTION LA English DT Article DE Fatality risk; Logistic regression; Vehicle mass; Vehicle footprint ID DRIVER CASUALTY RATES; ACCIDENT RECORD; SAFETY IMPACTS; GREAT-BRITAIN; PICKUP TRUCKS; BRITISH INDEX; CAR MODELS; SUVS AB The National Highway Traffic Safety Administration (NHTSA) recently updated its 2003 and 2010 logistic regression analyses of the effect of a reduction in light-duty vehicle mass on US societal fatality risk per vehicle mile traveled (VMT; Kahane, 2012). Societal fatality risk includes the risk to both the occupants of the case vehicle as well as any crash partner or pedestrians. The current analysis is the most thorough investigation of this issue to date. This paper replicates the Kahane analysis and extends it by testing the sensitivity of his results to changes in the definition of risk, and the data and control variables used in the regression models. An assessment by Lawrence Berkeley National Laboratory (LBNL) indicates that the estimated effect of mass reduction on risk is smaller than in Kahane's previous studies, and is statistically non-significant for all but the lightest cars (Wenzel, 2012a). The estimated effects of a reduction in mass or footprint (i.e. wheelbase times track width) are small relative to other vehicle, driver, and crash variables used in the regression models. The recent historical correlation between mass and footprint is not so large to prohibit including both variables in the same regression model; excluding footprint from the model, i.e. allowing footprint to decrease with mass, increases the estimated detrimental effect of mass reduction on risk in cars and crossover utility vehicles (CUVs)/minivans, but has virtually no effect on light trucks. Analysis by footprint deciles indicates that risk does not consistently increase with reduced mass for vehicles of similar footprint. Finally, the estimated effects of mass and footprint reduction are sensitive to the measure of exposure used (fatalities per induced exposure crash, rather than per VMT), as well as other changes in the data or control variables used. It appears that the safety penalty from lower mass can be mitigated with careful vehicle design, and that manufacturers can reduce mass as a strategy to increase their vehicles' fuel economy and reduce greenhouse gas emissions without necessarily compromising societal safety. Published by Elsevier Ltd. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Wenzel, T (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,90R2000, Berkeley, CA 94720 USA. EM TPWenzel@lbl.gov NR 28 TC 0 Z9 0 U1 1 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0001-4575 EI 1879-2057 J9 ACCIDENT ANAL PREV JI Accid. Anal. Prev. PD OCT PY 2013 VL 59 BP 267 EP 276 DI 10.1016/j.aap.2013.06.018 PG 10 WC Ergonomics; Public, Environmental & Occupational Health; Social Sciences, Interdisciplinary; Transportation SC Engineering; Public, Environmental & Occupational Health; Social Sciences - Other Topics; Transportation GA 261SX UT WOS:000327686000031 PM 23850544 ER PT J AU Hu, N Liu, XH AF Hu Ning Liu Xiaohong TI Modeling Study of the Effect of Anthropogenic Aerosols on Late Spring Drought in South China SO ACTA METEOROLOGICA SINICA LA English DT Article DE precipitation; aerosols; climate change; South China; Community Earth System Model ID COMMUNITY ATMOSPHERE MODEL; CLOUD MICROPHYSICS; VERSION-3 CAM3; CLIMATE; PRECIPITATION; REANALYSIS; POLLUTION; MONSOON; SUMMER AB In this study, the mechanisms underlying the decadal variability of late spring precipitation in South China are investigated by using the latest Community Earth System Model version 1 (CESM1). We aim to unravel the effects of different climate forcing agents such as aerosols and greenhouse gases (GHGs) on the decadal variation of precipitation, based on transient experiments from pre-industry (for year 1850) to present-day (for year 2000). Our results reveal that: (1) CESM1 can reproduce the climatological features of atmospheric circulation and precipitation for the late spring in South China; (2) only simulations including the forcing of anthropogenic aerosols can reproduce the observed decreasing trend of late spring precipitation from 1950-2000 in South China; (3) aerosols affect the decadal change of precipitation mainly by altering the large-scale atmospheric circulation, and to a less extent by increasing the lower-tropospheric stability to inhibit the convective precipitation; and (4) in comparison, other climate forcing agents such as GHGs have much smaller effects on the decadal change of spring precipitation in South China. C1 [Hu Ning] Chinese Acad Sci, Inst Atmospher Phys, LASG, Beijing 100029, Peoples R China. [Hu Ning; Liu Xiaohong] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Hu Ning] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. [Liu Xiaohong] Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA. RP Liu, XH (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. EM xliu6@uwyo.edu RI Liu, Xiaohong/E-9304-2011 OI Liu, Xiaohong/0000-0002-3994-5955 FU Office of Science (BER); U.S. Department of Energy [DE-AC02-05CH11231]; Battelle Memorial Institute [DE-AC06-76RLO] FX This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science (BER) of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. NR 34 TC 8 Z9 9 U1 0 U2 13 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0894-0525 EI 2191-4788 J9 ACTA METEOROL SIN JI Acta Meteorol. Sin. PD OCT PY 2013 VL 27 IS 5 BP 701 EP 715 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 265BF UT WOS:000327924000007 ER PT J AU Lo, RY Jagust, WJ AF Lo, Raymond Y. Jagust, William J. CA Alzheimer's Dis Neuroimaging TI Effect of Cognitive Reserve Markers on Alzheimer Pathologic Progression SO ALZHEIMER DISEASE & ASSOCIATED DISORDERS LA English DT Article DE cognitive reserve; Alzheimer disease; aging; biomarker; longitudinal study ID NEUROIMAGING INITIATIVE ADNI; SOCIOECONOMIC-STATUS; BETA LEVELS; DISEASE; EDUCATION; POPULATION; DEMENTIA; OCCUPATION; DECLINE; RISK AB Education, occupation, premorbid intelligence, and brain size are surrogate markers for cognitive reserve. Whether these markers have biological influence on Alzheimer disease (AD) pathology is not known. We thus aimed to investigate the effect of cognitive reserve proxies on longitudinal change of AD biomarkers. A total of 819 participants with normal cognition, mild cognitive impairment, and mild AD were enrolled in the Alzheimer's Disease Neuroimaging Initiative and followed up with repeated measures of cerebrospinal fluid, positron emission tomography, and magnetic resonance imaging biomarkers. Generalized estimating equations were used to assess whether biomarker rates of change were modified by reserve proxies. Cerebrospinal fluid A(42) decline was slower in normal cognition participants with higher cognitive reserve indexed by education, occupation, and American National Adult Reading Test (ANART). The decline of [F-18] fluorodeoxyglucose positron emission tomography uptake was slower in AD participants with better performance on the ANART. Education, occupation, and ANART did not modify the rates of magnetic resonance imaging hippocampal atrophy in any group. These findings remained unchanged after accounting for APOE 4, longitudinal missing data, and baseline cognitive performance. Higher levels of reserve markers may slow the rate of amyloid deposition before cognitive impairment and preserve glucose metabolism at the dementia stage over the course of AD pathologic progression. C1 [Lo, Raymond Y.] Buddhist Tzu Chi Gen Hosp, Dept Neurol, Hualien 970, Taiwan. [Lo, Raymond Y.] Tzu Chi Univ, Coll Med, Hualien, Taiwan. [Lo, Raymond Y.; Jagust, William J.] Univ Calif Berkeley, Sch Publ Hlth, Div Epidemiol, Berkeley, CA 94720 USA. [Jagust, William J.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Jagust, William J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Jagust, William J.] Genentech Inc, Redwood City, CA USA. RP Lo, RY (reprint author), Buddhist Tzu Chi Gen Hosp, Dept Neurol, 707,Sec 3,Chung Yang Rd, Hualien 970, Taiwan. EM rayyenyu@hotmail.com FU ADNI (National Institutes of Health) [U01 AG024904]; National Institute on Aging; National Institute of Biomedical Imaging and Bioengineering; Abbott; Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Amorfix Life Sciences Ltd.; AstraZeneca; Bayer HealthCare; BioClinica Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd.; Genentech Inc.; GE Healthcare; Innogenetics N.V.; Janssen Alzheimer Immunotherapy Research & Development LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace Inc.; Merck Co. Inc.; Meso Scale Diagnostics LLC.; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Servier; Synarc Inc.; Takeda Pharmaceutical Company; Canadian Institutes of Health Research; NIH [P30 AG010129, K01 AG030514, AG027859, AG027984, AG 024904]; Dana Foundation FX Data collection and sharing for this project was funded by the ADNI (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Abbott; Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Amorfix Life Sciences Ltd.; AstraZeneca; Bayer HealthCare; BioClinica Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd. and its affiliated company Genentech Inc.; GE Healthcare; Innogenetics N.V.; Janssen Alzheimer Immunotherapy Research & Development LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace Inc.; Merck & Co. Inc.; Meso Scale Diagnostics LLC.; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (http://www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles. This research was also supported by NIH grants P30 AG010129, K01 AG030514, and the Dana Foundation.; W.J.J. has served on a scientific advisory board for Genentech Inc.; has served as a consultant for Siemens, Synarc, Janssen Alzheimer Immunotherapy, Genentech Inc., TauRx, and Merck & Co.; and receives research support from the NIH [AG027859 (PI), AG027984 (PI), and AG 024904 (Co-I)]. R.Y.L. declares no conflicts of interest. NR 34 TC 17 Z9 17 U1 2 U2 23 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0893-0341 EI 1546-4156 J9 ALZ DIS ASSOC DIS JI Alzheimer Dis. Assoc. Dis. PD OCT-DEC PY 2013 VL 27 IS 4 BP 343 EP 350 DI 10.1097/WAD.0b013e3182900b2b PG 8 WC Clinical Neurology; Pathology SC Neurosciences & Neurology; Pathology GA 262NR UT WOS:000327742800008 PM 23552443 ER PT J AU Russell, LB AF Russell, Liane B. TI 4The Mouse House: A brief history of the ORNL mouse-genetics program, 1947-2009 SO MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH LA English DT Article DE Mammalian genetics; Germ-cell mutagenesis; Mouse House at ORNL; History of genetics; Sex chromosomes; Mosaicism ID AMINOBUTYRIC-ACID RECEPTOR; SPERMATOGONIAL STEM-CELLS; RADIATION-INDUCED MUTATIONS; IRRADIATED MALE-MICE; ETHYL-N-NITROSOUREA; DILUTION P LOCUS; FEMALE MICE; GERM-CELLS; MOLECULAR CHARACTERIZATION; COMPLEMENTATION ANALYSES AB The large mouse genetics program at the Oak Ridge National Laboratory (ORNL) is often remembered Chiefly for the germ-cell mutation-rate data it generated and their uses in estimating the risk of heritable radiation damage. In fact, it soon became a multi-faceted research effort that, over a period of almost 60 years, generated a wealth of information in the areas of mammalian mutagenesis, basic genetics (later enriched by molecular techniques), cytogenetics, reproductive biology, biochemistry of germ cells, and teratology. Research in the area of germ-cell mutagenesis explored the important physical and biological factors that affect the frequency and nature of induced mutations and made several unexpected discoveries, such as the major importance of the perigametic interval (the zygote stage) for the origin of spontaneous mutations and for the sensitivity to induced genetic change. Of practical value was the discovery that ethylnitrosourea was a supermutagen for point mutations, making high-efficiency mutagenesis in the mouse feasible worldwide. Teratogenesis findings resulted in recommendations still generally accepted in radiological practice. Studies supporting the mutagenesis research added whole bodies of information about mammalian germ-cell development and about molecular targets in germ cells. The early decision to not merely count but propagate genetic variants of all sorts made possible further discoveries, such as the Y-chromosome's importance in mammalian sex determination and the identification of rare X-autosome translocations, which, in turn, led to the formulation of the single-active-X hypothesis and provided tools for studies of functional mosaicism for autosomal genes, male sterility, and chromosome-pairing mechanism. Extensive genetic and then molecular analyses of large numbers of induced specific-locus mutants resulted in fine-structure physical and correlated functional mapping of significant portions of the mouse genome and constituted a valuable source of mouse models for human genetic disorders. (C) 2013 Elsevier B.V. All rights reserved. C1 [Russell, Liane B.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Russell, LB (reprint author), 130 Tabor Rd, Oak Ridge, TN 37830 USA. EM lianerussell@comcast.net FU U.S. Department of Energy Office of Science (BER); DOE [DE-FG02-04ER63782]; U.S. Department of Energy [DE-AC05-00OR22725] FX The U.S. Department of Energy Office of Science (BER) and DOE grant DE-FG02-04ER63782 to S.S.E. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 115 TC 3 Z9 3 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1383-5742 EI 1388-2139 J9 MUTAT RES-REV MUTAT JI Mutat. Res.-Rev. Mutat. Res. PD OCT-DEC PY 2013 VL 753 IS 2 BP 69 EP 90 DI 10.1016/j.mrrev.2013.08.003 PG 22 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology SC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology GA 266HC UT WOS:000328013700001 PM 23994540 ER PT J AU Nellums, RR Terry, BC Tappan, BC Son, SF Groven, LJ AF Nellums, Robert R. Terry, Brandon C. Tappan, Bryce C. Son, Steven F. Groven, Lori J. TI Effect of Solids Loading on Resonant Mixed Al-Bi2O3 Nanothermite Powders SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE Resonant mixing; Nanoenergetics; High viscosity mixing; Nanothermites ID COMBUSTION BEHAVIOR; COMPOSITES; IGNITION; NANO; THERMITES; ALUMINUM AB Sensitive nanoenergetic powders, such as nanothermites, have traditionally been processed by ultrasonic mixing of very low solids loaded suspensions in organic solvents, which has restricted their use and application due to high solvent content and associated handling issues. In this work, we report on the performance and mixing quality of nanothermite mixtures prepared in a LabRAM resonant mixer at high solids loadings as compared to ultrasonic mixing. Specifically, the aluminum-bismuth(III) oxide (Al/Bi2O3) system processed in the polar solvent N,N-dimethylformamide (DMF) was investigated. It was found that the performance and overall quality of mixing was strongly correlated to the volumetric solids loading during processing; increasing volumetric solids loading decreases separation of particles, leading to more particle interaction and more intimate mixing. The measured performance of this system processed at 30vol-% was similar to traditionally ultrasonicated mixtures. Increasing the solids loading above 30vol-% yielded diminishing returns in performance and may introduce additional safety concerns since dry powders are very sensitive to electrostatic discharge. This mixing approach uses significantly less solvent than traditional ultrasonic mixing, results in a higher density final material, and is amenable to scaling. In addition, solvent wetted nanothermite mixed at 30vol-% solids loading can be mixed and deposited from a single applicator and was observed to be over five orders of magnitude less sensitive to electrostatic discharge than dry powders. This relative insensitivity enables the safe deposition of high density nanothermite ink onto devices. C1 [Nellums, Robert R.; Son, Steven F.; Groven, Lori J.] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA. [Terry, Brandon C.] Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47907 USA. [Tappan, Bryce C.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Nellums, RR (reprint author), Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA. EM lgroven@purdue.edu OI Son, Steven/0000-0001-7498-2922 FU Air Force Office of Scientific Research MURI [FA9550-13-1-0004]; Department of Defense through the National Defense Science & Engineering Graduate Fellowship (NDSEG); DTRA Advanced Energetics Initiative FX The authors would like to acknowledge the financial support of the Air Force Office of Scientific Research MURI under the supervision of Dr. Mitat Birkan (# FA9550-13-1-0004). The authors would also like to acknowledge funding provided by the Department of Defense through the National Defense Science & Engineering Graduate Fellowship (NDSEG). B. C. Tappan acknowledges Dr. William Wilson of the DTRA Advanced Energetics Initiative for partial funding. We would also like to thank Ed Roemer at Los Alamos National Laboratory for SEM/EDS analysis. NR 21 TC 13 Z9 13 U1 1 U2 17 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0721-3115 EI 1521-4087 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD OCT PY 2013 VL 38 IS 5 BP 605 EP 610 DI 10.1002/prep.201300038 PG 6 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA 260KL UT WOS:000327593700002 ER PT J AU Reeves, RV Mukasyan, AS Son, SF AF Reeves, Robert V. Mukasyan, Alexander S. Son, Steven F. TI Transition from Impact-induced Thermal Runaway to Prompt Mechanochemical Explosion in Nanoscaled Ni/Al Reactive Systems SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE High energy density materials; Intermetallic compounds; Impact test; Thermal explosion; Nano composite ID SOLID-STATE DETONATION; INDUCED STRUCTURAL-CHANGES; SI POWDER MIXTURES; CHEMICAL-REACTIONS; SHEAR LOCALIZATION; SHOCK-WAVE; TI-SI; COMBUSTION; STRAIN; VELOCITY AB The effect of microstructure on ignition sensitivity and reaction behavior is investigated for nanoscaled Ni/Al gasless reactive systems. Nanometric homogeneity of the reactive media was achieved through (a) conventional mixing of nanometric powders; (b) short-term high-energy ball milling (HEBM) of micrometer-sized powders. Sensitivity to thermal inputs is investigated by differential thermal analysis and mechanical sensitivity is studied by high-rate shear impacts. The composite Ni/Al particles prepared by HEBM were extremely thermally sensitive, with reaction initiating at 220 degrees C, compared to 559 degrees C for nanometric powder samples and 640 degrees C for un-milled, micrometer-sized Ni+Al powder mixture. In contrast, nanometric powder mixtures were more susceptible to ignition through mechanical means, exhibiting a high-speed reaction mode that is not observed in HEBM samples. The high-speed mode preferentially appears in high-shear regions and is interpreted as a mechanically-induced thermal explosion. Its progression is tied to the passage of a stress wave in the heterogeneous media that heats and mixes the materials, rather than being propagated due to chemical energy release. The microstructures unique to each material are considered responsible for their individually ignition sensitivities. Specifically, the finely interspersed porosity in nanometric powder mixtures allows direct heating of the reactive interface between Ni and Al particles during compression through pore collapse and plastic deformation, which leads to exceptionally high mechanical sensitivity. The HEBM materials have high specific reactant interface area in the bulk of each composite particle that enhances thermal sensitivity, but the relatively low specific interface area between particles is unfavorable to mechanical ignition. C1 [Reeves, Robert V.; Son, Steven F.] Purdue Univ, Sch Mech Engn, Zucrow Labs, W Lafayette, IN 47907 USA. [Mukasyan, Alexander S.] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA. RP Reeves, RV (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rvreeve@sandia.gov OI Mukasyan, Alexander/0000-0001-8866-0043; Son, Steven/0000-0001-7498-2922 FU Defense Threat Reduction Agency (DTRA) [HDTRA1-10-1-0119]; Laura Davidson-Winkleman Fellowship FX Funding from the Defense Threat Reduction Agency (DTRA), Grant Number HDTRA1-10-1-0119. Counter-WMD basic research program, Dr. Suhithi M. Peiris, program director is gratefully acknowledged. Additional funding support for R.V.R. was provided by the Laura Davidson-Winkleman Fellowship. NR 43 TC 0 Z9 1 U1 2 U2 19 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0721-3115 EI 1521-4087 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD OCT PY 2013 VL 38 IS 5 BP 611 EP 621 DI 10.1002/prep.201200193 PG 11 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA 260KL UT WOS:000327593700003 ER PT J AU Schwarz, RB Brown, GW Thompson, DG Olinger, BW Furmanski, J Cady, HH AF Schwarz, Ricardo B. Brown, Geoffrey W. Thompson, Darla G. Olinger, Barton W. Furmanski, Jevan Cady, Howard H. TI The Effect of Shear Strain on Texture in Pressed Plastic Bonded Explosives SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE TATP; PBX; Materials science; Plastic bonded explosives; Texture; Crystallography ID ANISOTROPIC THERMAL-EXPANSION; PYROLYTIC GRAPHITE; CRYSTAL-STRUCTURE; BORON-NITRIDE; 1,3,5-TRIAMINO-2,4,6-TRINITROBENZENE; GROWTH; CARBON; TATB AB The insensitive explosive PBX 9502 contains 95wt-% of TATB crystals and a plastic bonding agent (Kel-F). The TATB crystals have plate-like morphology, similar to that of graphite or boron nitride. We have used X-ray diffraction to measure the preferred orientation (texture) of the TATB crystals in parts fabricated by pressing PBX 9502 powder. Independently, we have used finite-element calculations to derive the direction and magnitude of the shear imposed during the consolidation of this composite material. Based on our results, we propose that the texture develops because the applied shear causes the TATB crystals to rotate such that their (002) basal planes are parallel to shear planes. The texture predicted by this model agrees qualitatively with that measured at various locations within the PBX 9502 compact. Further validation of this model is obtained by the measurement of the thermal expansion coefficient of PBX 9502, which is highly anisotropic. C1 [Schwarz, Ricardo B.; Furmanski, Jevan; Cady, Howard H.] Los Alamos Natl Lab, Mat Sci & Technol Div MST 8, Los Alamos, NM 87545 USA. [Brown, Geoffrey W.; Thompson, Darla G.; Olinger, Barton W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Schwarz, RB (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div MST 8, Los Alamos, NM 87545 USA. EM rxzs@lanl.gov FU Enhanced Surveillance Program at LANL; DOE/NNSA [DE-AC52-06NA25396] FX This work was supported by the Enhanced Surveillance Program at LANL, led by Thomas Zocco. LANL is operated by LANS, LLC, under DOE/NNSA contract DE-AC52-06NA25396. NR 32 TC 4 Z9 4 U1 1 U2 15 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0721-3115 EI 1521-4087 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD OCT PY 2013 VL 38 IS 5 BP 685 EP 694 DI 10.1002/prep.201200204 PG 10 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA 260KL UT WOS:000327593700011 ER PT J AU Cheng, MD AF Cheng, Meng-Dawn TI Classification of Volatile Engine Particles SO AEROSOL AND AIR QUALITY RESEARCH LA English DT Article DE Volatilization; Engine emission; Particle separation; Ultrafine aerosol ID EXHAUST; EMISSIONS; AIRCRAFT; PROGRAM; NM AB Volatile particles cannot be detected at the engine exhaust by an aerosol detector, as they are formed when the exhaust is mixed downstream with the ambient air. The lack of a precise definition of volatile engine particles has been an impediment to engine manufacturers and regulatory agencies involved in the development of effective control strategies. Volatile particles from combustion sources contribute to the atmospheric particulate burden, and this is a critical issue in ongoing research in the areas of air quality and climate change. A new instrument, called a volatile particle separator (VPS), is developed in this work. It utilizes a proprietary microporous metallic membrane to separate particles from vapors. VPS data are used in the development of a two-parameter function to quantitatively classify, for the first time, the volatilization behavior of engine particles. The value of parameter "A" describes the volatilization potential of an aerosol. A nonvolatile particle has a larger A-value than a volatile one. The value of parameter "k," an effective evaporation energy barrier, is found to be much smaller for small engine particles than for large engine ones. The VPS instrument is not simply a volatile particle remover, as it makes possible the characterization of volatile engine particles in numerical terms. C1 Oak Ridge Natl Lab, Energy & Environm Sci Directorate, Oak Ridge, TN 37831 USA. RP Cheng, MD (reprint author), Oak Ridge Natl Lab, Energy & Environm Sci Directorate, Oak Ridge, TN 37831 USA. EM chengmd@ornl.gov RI Cheng, Meng-Dawn/C-1098-2012; OI Cheng, Meng-Dawn/0000-0003-1407-9576 FU Strategic Environmental Research and Development Program (SERDP) [WP1627]; U.S. Department of Energy [DE-AC05-00OR22725] FX This research was supported by the Strategic Environmental Research and Development Program (SERDP) under Project #WP1627 in the Weapons Systems and Platforms Thrust Area. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract number DE-AC05-00OR22725. The author acknowledges the technical support of John M. E. Storey and Scott Curran (ORNL/FEERC) during the diesel engine operation. Steve Allman (ORNL) performed assembly of the VPS and test runs. Brian Bischoff (ORNL) manufactures the MMT and characterizes the properties of the membrane filter. Matthew DeWitt and Christopher Klingshirn of University of Dayton Research Institute and the crew operated the T63 turboshaft engine at the Wright-Patterson Air Force Research Laboratory are acknowledged for the support during the T63 engine test. The author deeply appreciates constructive discussion and careful review of the draft by Teresa Barone (ORNL/FEERC), Shannon Mahurin (ORNL), and Edwin Corporan (Wright-Patterson Air Force Research Lab). NR 25 TC 3 Z9 3 U1 0 U2 7 PU TAIWAN ASSOC AEROSOL RES-TAAR PI TAICHUNG COUNTY PA CHAOYANG UNIV TECH, DEPT ENV ENG & MGMT, PROD CTR AAQR, NO 168, JIFONG E RD, WUFONG TOWNSHIP, TAICHUNG COUNTY, 41349, TAIWAN SN 1680-8584 EI 2071-1409 J9 AEROSOL AIR QUAL RES JI Aerosol Air Qual. Res. PD OCT PY 2013 VL 13 IS 5 BP 1411 EP 1422 DI 10.4209/aaqr.2013.01.0011 PG 12 WC Environmental Sciences SC Environmental Sciences & Ecology GA 257TK UT WOS:000327409400003 ER PT J AU Miller, MK Yao, L AF Miller, M. K. Yao, L. TI Limits of detectability for clusters and solute segregation to grain boundaries SO CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE LA English DT Review DE Atom probe tomography; Clustering; Grain boundary; Segregation; Gibbsian interfacial excess; Orientation relationship; Surface curvature ID 3-DIMENSIONAL ATOM-PROBE; SPECIMEN PREPARATION; ALLOYS; TOMOGRAPHY; FIB AB The abilities to detect and characterize the sizes and distribution of solute clusters, embryos, precipitates and solute atoms in the matrix by friends-of-friends methods in atom probe tomography are shown to improve with single atom position-sensitive detectors with high detection efficiency. In low solute matrices, clusters with as few as 5 atoms can be detected. A characterization method is presented that enables complete characterizations of grain boundaries and triple junctions by atom probe tomography in terms of the orientation relationships of the adjacent grains, as well as the local variations of the habit plane, surface curvature, and the solute excesses over the surface of a grain boundary with up to a 1 nm by 1 nm spatial resolution. Published by Elsevier Ltd. C1 [Miller, M. K.; Yao, L.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Miller, MK (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008,MS 6139, Oak Ridge, TN 37831 USA. EM millermk@ornl.gov FU Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy; ORNL's Shared Research Equipment (ShaRE); Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX This research was sponsored by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy. The atom probe instrument access was supported by ORNL's Shared Research Equipment (ShaRE) user facility, which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. The authors thank Dr. D.T. Hoelzer for providing the 14YWT material used in this study, Ms. K.A. Powers for technical assistance, and Profs. S.P. Ringer and J.M. Cairney of the School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, Australia for their assistance with the initial development of the grain boundary analysis method. NR 38 TC 10 Z9 10 U1 4 U2 32 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-0286 EI 1879-0348 J9 CURR OPIN SOLID ST M JI Curr. Opin. Solid State Mat. Sci. PD OCT PY 2013 VL 17 IS 5 SI SI BP 203 EP 210 DI 10.1016/j.cossms.2013.08.002 PG 8 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 259YQ UT WOS:000327562600001 ER PT J AU Ceguerra, AV Breen, AJ Stephenson, LT Felfer, PJ Araullo-Peters, VJ Liddicoat, PV Cui, XY Yao, L Haley, D Moody, MP Gault, B Cairney, JM Ringer, SP AF Ceguerra, Anna V. Breen, Andrew J. Stephenson, Leigh T. Felfer, Peter J. Araullo-Peters, Vicente J. Liddicoat, Peter V. Cui, XiangYuan Yao, Lan Haley, Daniel Moody, Michael P. Gault, Baptiste Cairney, Julie M. Ringer, Simon P. TI The rise of computational techniques in atom probe microscopy SO CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE LA English DT Review DE Atom probe microscopy; Atom probe tomography; Materials informatics; Computational materials science ID GIBBSIAN INTERFACIAL EXCESS; NI-CR-AL; TOMOGRAPHIC RECONSTRUCTION; FOURIER-TRANSFORM; FIELD EVAPORATION; PHASE-SEPARATION; SOLUTE; ALLOYS; CRYSTALLOGRAPHY; DECOMPOSITION AB Much effort has been devoted to the development of computational techniques in atom probe microscopy over the past decade. There have been several drivers for this effort. Firstly, there has been effort devoted to addressing the challenges of discerning information from the increasingly large size of the data, and capturing the opportunities that this large data presents. Secondly, there has been significant new effort devoted to the simulation of atom probe data so that pristine datasets that contain microstructural features of increasing complexity can be generated in-silico, and subjected to complex data-mining algorithms. This has enabled the benchmarking of various algorithms, guided the setting of parameters for particular analyses, and exposed the effects of instrumentation parameters such as detector efficiency and aberrations in ionic flight path. The authors are especially interested in the prospects of converging atomic-scale microscopy with atomic-scale materials modelling via first principles approaches. This involves excising parts of the APM data and using these as super-cell inputs to calculations of materials properties via density functional theory. It is our opinion that this represents a major advance for materials science because it enables microscopy to advance microstructure-property relationships to the direct mapping of such relationships based on many-body interactions. As such, this approach has great potential for materials design and development. The final part of this paper focuses on how cloud-based computing represents an exciting frontier of the computational aspects of atom probe microscopy. We discuss the opportunities and the barriers for conducting new materials science through the analysis and visualisation of atom probe data via new generation tools that are cloud-based, and which are managed, curated and governed with significant user-community input and integrated with contemporary electronic laboratory notebook technology. Crown Copyright (C) 2013 Published by Elsevier Ltd. All rights reserved. C1 [Ceguerra, Anna V.; Breen, Andrew J.; Stephenson, Leigh T.; Felfer, Peter J.; Araullo-Peters, Vicente J.; Liddicoat, Peter V.; Cui, XiangYuan; Cairney, Julie M.; Ringer, Simon P.] Univ Sydney, Australian Ctr Microscopy & Microanal, Sydney, NSW 2006, Australia. [Ceguerra, Anna V.; Breen, Andrew J.; Stephenson, Leigh T.; Felfer, Peter J.; Araullo-Peters, Vicente J.; Liddicoat, Peter V.; Cui, XiangYuan; Cairney, Julie M.; Ringer, Simon P.] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia. [Yao, Lan] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Haley, Daniel] Max Planck Inst Eisenforsch GmbH, D-40237 Dusseldorf, Germany. [Moody, Michael P.; Gault, Baptiste] Univ Oxford, Dept Mat, Oxford OX1 3PH, England. RP Ceguerra, AV (reprint author), Univ Sydney, Australian Ctr Microscopy & Microanal, Madsen Bldg F09, Sydney, NSW 2006, Australia. EM anna.ceguerra@sydney.edu.au; simon.ringer@sydney.edu.au RI Moody, Michael/H-9377-2013; Ceguerra, Anna/G-1152-2012; OI Moody, Michael/0000-0002-9256-0966; Ceguerra, Anna/0000-0002-2426-7098; Haley, Daniel/0000-0001-9308-2620; Gault, Baptiste/0000-0002-4934-0458 NR 101 TC 7 Z9 7 U1 4 U2 55 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-0286 EI 1879-0348 J9 CURR OPIN SOLID ST M JI Curr. Opin. Solid State Mat. Sci. PD OCT PY 2013 VL 17 IS 5 SI SI BP 224 EP 235 DI 10.1016/j.cossms.2013.09.006 PG 12 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 259YQ UT WOS:000327562600004 ER PT J AU Zweck, C Zreda, M Desilets, D AF Zweck, Christopher Zreda, Marek Desilets, Darin TI Snow shielding factors for cosmogenic nuclide dating inferred from Monte Carlo neutron transport simulations SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE cosmogenic nuclides; Monte Carlo methods; snow shielding; low-energy neutron capture ID PRODUCTION-RATES; GEOMAGNETIC-FIELD; EROSION; BE-10; SYSTEMATICS; SURFACES; EXPOSURE; AGES AB Conventional formulations of changes in cosmogenic nuclide production rates with snow cover are based on a mass-shielding approach, which neglects the role of neutron moderation by hydrogen. This approach can produce erroneous correction factors and add to the uncertainty of the calculated cosmogenic exposure ages. We use a Monte Carlo particle transport model to simulate fluxes of secondary cosmic-ray neutrons near the surface of the Earth and vary surface snow depth to show changes in neutron fluxes above rock or soil surface. To correspond with shielding factors for spallation and low-energy neutron capture, neutron fluxes are partitioned into high-energy, epithermal and thermal components. The results suggest that high-energy neutrons are attenuated by snow cover at a significantly higher rate (shorter attenuation length) than indicated by the commonly-used mass-shielding formulation. As thermal and epithermal neutrons derive from the moderation of high-energy neutrons, the presence of a strong moderator such as hydrogen in snow increases the thermal neutron flux both within the snow layer and above it. This means that low-energy production rates are affected by snow cover in a manner inconsistent with the mass-shielding approach and those formulations cannot be used to compute snow correction factors for nuclides produced by thermal neutrons. Additionally, as above-ground low-energy neutron fluxes vary with snow cover as a result of reduced diffusion from the ground, low-energy neutron fluxes are affected by snow even if the snow is at some distance from the site where measurements are made. Published by Elsevier B.V. C1 [Zweck, Christopher; Zreda, Marek] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA. [Desilets, Darin] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Zweck, C (reprint author), Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA. EM czweck@hwr.arizona.edu FU US National Science Foundation [0325929, 0345440, 0636110, 0838491]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Research supported by the US National Science Foundation (grants 0325929, 0345440, 0636110 and 0838491). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. We would like to thank Patrick Applegate and an anonymous reviewer for providing thoughtful and constructive reviews. NR 38 TC 15 Z9 15 U1 2 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD OCT 1 PY 2013 VL 379 BP 64 EP 71 DI 10.1016/j.epsl.2013.07.023 PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 257WP UT WOS:000327418800007 ER PT J AU Busby, PE Zimmerman, N Weston, DJ Jawdy, SS Houbraken, J Newcombe, G AF Busby, Posy E. Zimmerman, Naupaka Weston, David J. Jawdy, Sara S. Houbraken, Jos Newcombe, George TI Leaf endophytes and Populus genotype affect severity of damage from the necrotrophic leaf pathogen, Drepanopeziza populi SO ECOSPHERE LA English DT Article DE cottonwood; defense mutualism; nonclavicipitaceous endophytes; plant symbiosis; Populus angustifolia; systemic acquired resistance/susceptibility ID FUNGAL ENDOPHYTES; QUANTITATIVE RESISTANCE; MELAMPSORA-RUST; BETA REGRESSION; WHITE-PINE; COMMUNITIES; METABOLISM; DIVERSITY; INFECTION; RESPONSES AB Fungal leaf endophytes-nonpathogenic microfungi that live within plant leaves-are ubiquitous in land plants. Leaf endophytes and host plant genotypes may interact to determine plant disease severity. In a greenhouse inoculation experiment, we found that leaf endophyte species and Populus angustifolia genotypes both affected disease outcomes in plants inoculated with the necrotrophic leaf pathogen Drepanopeziza populi. Contrary to many studies showing endophytes conferring defense, all plant genotypes inoculated with the endophyte Penicillium sp. prior to inoculation with the pathogen D. populi were characterized by greater pathogen symptom severity than plants inoculated with the pathogen only. We quantified defense gene expression via qRT-PCR, but found no evidence that increased pathogen damage was related to differential expression of the assayed genes. A second endophyte, Truncatella angustata, which was previously found to reduce symptom severity of the biotrophic pathogen Melampsora in Populus trichocarpa, did not affect symptom severity of the necrotrophic pathogen D. populi or defense gene expression. Overall, our study highlights the variable effects of endophytes on pathogen symptom severity, and illustrates that plant genotypic variation can remain important for disease outcomes even in the presence of endophytes altering disease. Additional work is needed to elucidate the mechanism by which fungal leaf endophytes alter disease in their host plants. C1 [Busby, Posy E.; Zimmerman, Naupaka] Stanford Univ, Dept Biol, Stanford, CA 94305 USA. [Weston, David J.; Jawdy, Sara S.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Houbraken, Jos] CBS KNAW Fungal Biodivers Ctr, Utrecht, Netherlands. [Newcombe, George] Univ Idaho, Coll Nat Resources, Moscow, ID 83844 USA. RP Busby, PE (reprint author), Univ Washington, Dept Biol, Seattle, WA 98115 USA. EM busby@post.harvard.edu RI Zimmerman, Naupaka/N-9128-2015 OI Zimmerman, Naupaka/0000-0003-2168-6390 FU DOE GCEP fellowship; Heinz Fellowship; NSF Graduate Research Fellowship; US DOE, Office of Science, Biological and Environmental Research, Plant Microbe Interfaces Scientific Focus Area [DE-AC05-00OR22725] FX We are grateful to Dave Wilson and Raymond Von Itter for their assistance at the Stock Farm Greenhouses at Stanford University. This research was supported by a DOE GCEP fellowship to PEB, a Heinz Fellowship to PEB, a NSF Graduate Research Fellowship to NBZ, and the US DOE, Office of Science, Biological and Environmental Research under contract DE-AC05-00OR22725, as part of the Plant Microbe Interfaces Scientific Focus Area. P. E. Busby and N. Zimmerman contributed equally to this work. NR 44 TC 11 Z9 11 U1 3 U2 35 PU ECOLOGICAL SOC AMER PI WASHINGTON PA 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA SN 2150-8925 J9 ECOSPHERE JI Ecosphere PD OCT PY 2013 VL 4 IS 10 AR UNSP 125 DI 10.1890/ES13-00127.1 PG 12 WC Ecology SC Environmental Sciences & Ecology GA 257JT UT WOS:000327380400008 ER PT J AU Gray, AX Minar, J Plucinski, L Huijben, M Bostwick, A Rotenberg, E Yang, SH Braun, J Winkelmann, A Conti, G Eiteneer, D Rattanachata, A Greer, AA Ciston, J Ophus, C Rijnders, G Blank, DHA Doennig, D Pentcheva, R Kortright, JB Schneider, CM Ebert, H Fadley, CS AF Gray, A. X. Minar, J. Plucinski, L. Huijben, M. Bostwick, A. Rotenberg, E. Yang, S. -H. Braun, J. Winkelmann, A. Conti, G. Eiteneer, D. Rattanachata, A. Greer, A. A. Ciston, J. Ophus, C. Rijnders, G. Blank, D. H. A. Doennig, D. Pentcheva, R. Kortright, J. B. Schneider, C. M. Ebert, H. Fadley, C. S. TI Momentum-resolved electronic structure at a buried interface from soft X-ray standing-wave angle-resolved photoemission SO EPL LA English DT Article ID TUNNEL-JUNCTIONS; MAGNETORESISTANCE; SPECTROSCOPY; FERROMAGNETISM; SURFACE; STATES; LAYERS AB Angle-resolved photoemission spectroscopy (ARPES) is a powerful technique for the study of electronic structure, but it lacks a direct ability to study buried interfaces between two materials. We address this limitation by combining ARPES with soft X-ray standing-wave (SW) excitation (SWARPES), in which the SW profile is scanned through the depth of the sample. We have studied the buried interface in a prototypical magnetic tunnel junction La0.7Sr0.3MnO3/SrTiO3. Depth-and momentum-resolved maps of Mn 3d eg and t(2)g states from the central, bulk-like and interface-like regions of La0.7Sr0.3MnO3 exhibit distinctly different behavior consistent with a change in the Mn bonding at the interface. We compare the experimental results to state-ofthe- art density-functional and one-step photoemission theory, with encouraging agreement that suggests wide future applications of this technique. Copyright (C) EPLA, 2013 C1 [Gray, A. X.; Conti, G.; Eiteneer, D.; Rattanachata, A.; Greer, A. A.; Fadley, C. S.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Gray, A. X.; Conti, G.; Eiteneer, D.; Rattanachata, A.; Greer, A. A.; Kortright, J. B.; Fadley, C. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Gray, A. X.] Stanford Univ, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94029 USA. [Gray, A. X.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94029 USA. [Minar, J.; Braun, J.; Ebert, H.] Univ Munich, Inst Phys Chem, Dept Chem, D-80539 Munich, Germany. [Plucinski, L.; Schneider, C. M.] Forschungszentrum Julich, Peter Grunberg Inst PGI 6, D-52425 Julich, Germany. [Huijben, M.; Rijnders, G.; Blank, D. H. A.] Univ Twente, Fac Sci & Technol, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands. [Bostwick, A.; Rotenberg, E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Yang, S. -H.] IBM Corp, Almaden Res Ctr, San Jose, CA 95120 USA. [Winkelmann, A.] Max Planck Inst Mikrostrukturphys, D-06120 Halle, Saale, Germany. [Ciston, J.; Ophus, C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Doennig, D.; Pentcheva, R.] Univ Munich, Dept Earth & Environm Sci, Munich, Germany. [Doennig, D.; Pentcheva, R.] Univ Munich, Ctr Nanosci CENS, Munich, Germany. RP Gray, AX (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RI Pentcheva, Rossitza/F-8293-2014; Rotenberg, Eli/B-3700-2009; Schneider, Claus/H-7453-2012; Plucinski, Lukasz/J-4987-2013; Minar, Jan/O-3186-2013; Foundry, Molecular/G-9968-2014; OI Rotenberg, Eli/0000-0002-3979-8844; Schneider, Claus/0000-0002-3920-6255; Plucinski, Lukasz/0000-0002-6865-7274; Minar, Jan/0000-0001-9735-8479; Ophus, Colin/0000-0003-2348-8558 FU U. S. Department of Energy; Office of Science; Office of Basic Energy Sciences; Division of Materials Sciences and Engineering [DE-AC02-05CH11231]; via both the LBNL Materials Sciences Division; Magnetic Materials Program; LBNL Advanced Light Source; MURI grant of the Army Research Office [W911-NF-09-1-0398]; German funding agencies DFG [FOR1346, EB 154/20]; German ministry BMBF [05K13WMA]; German Science Foundation [SFB/TR80]; Stanford Institute for Materials and Energy Science (SIMES); US Department of Energy; Office of Basic Energy Sciences. A portion of this work was performed using the TEAM 0.5 microscope at the National Center for Electron Microscopy (NCEM); Office of Science, Office of Basic Energy Sciences of the U. S. Department of Energy [DE-AC02-05CH11231] FX This research was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-05CH11231, via both the LBNL Materials Sciences Division, Magnetic Materials Program, and the LBNL Advanced Light Source. AXG, DE, and AAG also acknowledge partial salary support from a MURI grant of the Army Research Office (Grant No. W911-NF-09-1-0398). JM, JB and HE are grateful for financial support from the German funding agencies DFG (FOR1346 and EB 154/20) and the German ministry BMBF (05K13WMA). DD and RP acknowledge funding by the German Science Foundation, SFB/TR80 and computational time at the Leibniz Rechenzentrum. Research at Stanford was supported through the Stanford Institute for Materials and Energy Science (SIMES) and the LCLS by the US Department of Energy, Office of Basic Energy Sciences. A portion of this work was performed using the TEAM 0.5 microscope at the National Center for Electron Microscopy (NCEM), which is supported by the Office of Science, Office of Basic Energy Sciences of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors would also like to acknowledge the critical TEM sample preparation work performed by Marissa Libbee at NCEM. NR 38 TC 14 Z9 14 U1 2 U2 44 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD OCT PY 2013 VL 104 IS 1 AR 17004 DI 10.1209/0295-5075/104/17004 PG 6 WC Physics, Multidisciplinary SC Physics GA 258HB UT WOS:000327448900022 ER PT J AU Risse, K Rummel, T Freundt, S Dudek, A Renard, S Bykov, V Koppen, M Langish, S Neilson, GH Brown, T Chrzanowski, J Mardenfeld, M Malinowski, F Khodak, A Zhao, X Eksaa, G AF Risse, K. Rummel, Th Freundt, S. Dudek, A. Renard, S. Bykov, V. Koeppen, M. Langish, S. Neilson, G. H. Brown, Th Chrzanowski, J. Mardenfeld, M. Malinowski, F. Khodak, A. Zhao, X. Eksaa, G. TI Design and manufacturing status of trim coils for the Wendelstein 7-X stellarator experiment SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 27th Symposium on Fusion Technology (SOFT) CY SEP 24-28, 2012 CL Liege, BELGIUM SP Trilateral Euregio Cluster, SCK CEN, ERM KMS, FZJ, FOM DE Magnet; Magnetic field; Trim coil; Stellarator AB The stellarator fusion experiment Wendelstein 7-X (W7-X) is currently under construction at the Max-Planck-Institut fur Plasmaphysik in Greifswald, Germany. The main magnetic field will be provided by a superconducting magnet system which generates a fivefold toroidal periodic magnetic field. However, unavoidable tolerances can result in small deviations of the magnetic field which disturb the toroidal periodicity. In order to have a tool to influence these field errors five additional normal conducting trim coils were designed to allow fine tuning of the main magnetic field during plasma operation. In the frame of an international cooperation the trim coils will be contributed by the US partners. Princeton Plasma Physics Laboratory has accomplished several tasks to develop the final design ready for manufacturing e.g. detailed manufacturing design for the winding and for the coil connection area. The design work was accompanied by a detailed analysis of resulting forces and moments to prove the design. The manufacturing of the coils is running at Everson Tesla Inc; the first two coils were received at IPP. (C) 2013 Elsevier B.V. All rights reserved. C1 [Risse, K.; Rummel, Th; Freundt, S.; Dudek, A.; Renard, S.; Bykov, V.; Koeppen, M.] Max Planck Inst Plasma Phys, Greifswald, Germany. [Langish, S.; Neilson, G. H.; Brown, Th; Chrzanowski, J.; Mardenfeld, M.; Malinowski, F.; Khodak, A.; Zhao, X.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Eksaa, G.] Everson Tesla Inc, Nazareth, PA USA. RP Risse, K (reprint author), Max Planck Inst Plasma Phys, Greifswald, Germany. EM konrad.risse@ipp.mpg.de NR 5 TC 2 Z9 2 U1 0 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD OCT PY 2013 VL 88 IS 9-10 BP 1518 EP 1522 DI 10.1016/j.fusengdes.2013.02.045 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 251BQ UT WOS:000326903200014 ER PT J AU Khodak, A Martovetsky, N Smirnov, A Titus, P AF Khodak, Andrei Martovetsky, Nicolai Smirnov, Alexandre Titus, Peter TI Optimization of ITER Central Solenoid Insert design SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 27th Symposium on Fusion Technology (SOFT) CY SEP 24-28, 2012 CL Liege, BELGIUM SP Trilateral Euregio Cluster, SCK CEN, ERM KMS, FZJ, FOM DE Superconducting magnets; Numerical analysis; Computational modeling; Finite element methods AB The United States ITER Project Office (USIPO) is responsible for fabrication of the Central Solenoid (CS) for International Thermonuclear Experimental Reactor (ITER). The CS Insert (CSI) project should provide a verification of the conductor performance in relevant conditions of temperature, field, currents and mechanical strain. The US IPO will build the CSI that will be tested at the Central Solenoid Model Coil (CSMC) Test Facility at JAEA, Naka. One of the design goals of the CSI is to assure that the properties of the conductor near the median plane are measured accurately. Since Nb3Sn is strain sensitive and electromagnetic forces generate a significant strain that increases the current sharing temperature (T-cs), we need to design the Insert in such a way that the most strained conductor near the median plane would still have the lowest T-cs of all the rest of the conductor in the Insert. The difference between thermal contraction of the jacket and spacer material allows controlling axial distribution of the coil radial deformation. Numerical analysis of the CSI was performed using stainless steel, titanium and invar spacer material variants. Distribution of the T-cs was obtained from numerical results in the form similar to one proposed for ITER. Published by Elsevier B.V. C1 [Khodak, Andrei; Titus, Peter] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Martovetsky, Nicolai; Smirnov, Alexandre] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Khodak, A (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM akhodak@pppl.gov NR 6 TC 3 Z9 3 U1 1 U2 22 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD OCT PY 2013 VL 88 IS 9-10 BP 1523 EP 1527 DI 10.1016/j.fusengdes.2013.02.140 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 251BQ UT WOS:000326903200015 ER PT J AU Yang, QX Zhao, WL Wang, YS Song, YT Du, SS Hu, JS Zuo, GZ Li, JG Zakharov, LE AF Yang, Q. X. Zhao, W. L. Wang, Y. S. Song, Y. T. Du, S. S. Hu, J. S. Zuo, G. Z. Li, J. G. Zakharov, L. E. TI Design of flowing liquid lithium device for HT-7 tokamak SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 27th Symposium on Fusion Technology (SOFT) CY SEP 24-28, 2012 CL Liege, BELGIUM SP Trilateral Euregio Cluster, SCK CEN, ERM KMS, FZJ, FOM DE Lithium; HT-7; FLiLi device; FEM AB Lithium is a very attractive element due to its very low radiation power, strong H retention as well as strong O getter activity. Flowing liquid lithium (FLiLi) device, to be used as a plasma-facing limiters, has been designed and will be tested in HT-7 tokamak. It is mainly composed of distributor, guide plate, collector, and heater as well as cooling loop. The heater uses heater strip and cooling loop design, to control the temperature of lithium on the guide plate ranging from 200 degrees C to 400 degrees C. The distributor attached to feeding pipe, distributes liquid lithium (LiLi) flowing on the guide plate. The collector was designed to reclaim the superfluous LiLi and transport it out of device. The paper focuses on the design of flowing liquid lithium device. In addition to the process of design, thermal analysis has been carried out using finite element method (FEM) for optimizing the structure of heater and cooling loop and results of analysis are presented. (C) 2013 Elsevier B.V. All rights reserved. C1 [Yang, Q. X.; Zhao, W. L.; Wang, Y. S.; Song, Y. T.; Du, S. S.; Hu, J. S.; Zuo, G. Z.; Li, J. G.] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. [Zakharov, L. E.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Yang, QX (reprint author), Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. EM yangqx@ipp.ac.cn NR 12 TC 4 Z9 6 U1 1 U2 16 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD OCT PY 2013 VL 88 IS 9-10 BP 1646 EP 1649 DI 10.1016/j.fusengdes.2013.05.107 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 251BQ UT WOS:000326903200042 ER PT J AU Kobayashi, M Shimada, M Hatano, Y Oda, T Merrill, B Oya, Y Okuno, K AF Kobayashi, Makoto Shimada, Masashi Hatano, Yuji Oda, Takuji Merrill, Brad Oya, Yasuhisa Okuno, Kenji TI Deuterium trapping by irradiation damage in tungsten induced by different displacement processes SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 27th Symposium on Fusion Technology (SOFT) CY SEP 24-28, 2012 CL Liege, BELGIUM SP Trilateral Euregio Cluster, SCK CEN, ERM KMS, FZJ, FOM DE Tungsten; Deuterium; Vacancy; Void; TDS ID HYDROGEN; RELEASE; PLASMA AB The deuterium trapping behaviors in tungsten damaged by light ions with lower energy (10 keV C+ and 3 keV He+) or a heavy ion with higher energy (2.8 MeV Fe2+) were compared by means of TDS to understand the effects of cascade collisions on deuterium retention in tungsten. By light ion irradiation, most of deuterium was trapped by vacancies, whose retention was almost saturated at the damage level of 0.2 dpa. For the heavy ion irradiation, the deuterium trapping by voids was found, indicating that cascade collisions by the heavy ion irradiation would create the voids in tungsten. Most of deuterium trapped by the voids was desorbed in higher temperature region compared to that trapped by vacancies. It was also found that deuterium could accumulate in the voids, resulting in the formation of blisters in tungsten. (C) 2013 Elsevier B.V. All rights reserved. C1 [Kobayashi, Makoto; Oya, Yasuhisa; Okuno, Kenji] Shizuoka Univ, Fac Sci, Radiosci Res Lab, Shizuoka 4228017, Japan. [Shimada, Masashi; Merrill, Brad] Idaho Natl Lab, Fus Safety Program, Idaho Falls, ID USA. [Hatano, Yuji] Toyama Univ, Hydrogen Isotope Res Ctr, Toyama 930, Japan. [Oda, Takuji] Univ Tokyo, Dept Nucl Engn & Management, Tokyo, Japan. RP Kobayashi, M (reprint author), Shizuoka Univ, Fac Sci, Radiosci Res Lab, Shizuoka 4228017, Japan. EM f5144008@ipc.shizuoka.ac.jp OI Shimada, Masashi/0000-0002-1592-843X NR 17 TC 14 Z9 15 U1 2 U2 23 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD OCT PY 2013 VL 88 IS 9-10 BP 1749 EP 1752 DI 10.1016/j.fusengdes.2013.04.009 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 251BQ UT WOS:000326903200065 ER PT J AU Lumsdaine, A Tipton, J Lore, J McGinnis, D Canik, J Harris, J Peacock, A Boscary, J Tretter, J Andreeva, T AF Lumsdaine, A. Tipton, J. Lore, J. McGinnis, D. Canik, J. Harris, J. Peacock, A. Boscary, J. Tretter, J. Andreeva, T. TI Design and analysis of the W7-X divertor scraper element SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 27th Symposium on Fusion Technology (SOFT) CY SEP 24-28, 2012 CL Liege, BELGIUM SP Trilateral Euregio Cluster, SCK CEN, ERM KMS, FZJ, FOM DE Divertor; High heat flux; Stellarator; Computational fluid dynamics; Plasma facing components ID WENDELSTEIN 7-X AB Thehigh heat-flux divertor of the Wendelstein 7-X large stellarator experiment consists of 10 divertor units which are designed to carry a steady-state heat flux of 10 MW/m(2). However, the edge elements of this divertor are limited to only 5 MW/m(2), and may be overloaded in certain plasma scenarios. It is proposed to reduce this heat by placing an additional "scraper element" in each of the ten divertor locations. It will be constructed using carbon fiber composite (CFC) monoblock technology. The design of the monoblocks and the path of the cooling tubes must be optimized in order to survive the significant steadystate heat loads, provide adequate coverage for the existing divertor, be located within sub-millimeter accuracy, and take into account the boundaries to other in vessel components, all at a minimum cost. Computational fluid dynamics modeling has been performed to examine the thermal transfer through the monoblock swirl tube channels for the design of the monoblock orientation. An iterative physics modeling and computer aided design process is being performed to optimize the placement of the scraper element within the severe spatial restrictions. (C) 2013 Elsevier B.V. All rights reserved. C1 [Lumsdaine, A.; Lore, J.; McGinnis, D.; Canik, J.; Harris, J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Tipton, J.] Univ Evansville, Evansville, IN USA. [Peacock, A.; Boscary, J.; Tretter, J.] Max Planck Inst Plasma Phys, D-85748 Garching, Germany. [Andreeva, T.] Max Planck Inst Plasma Phys, Greifswald, Germany. RP Lumsdaine, A (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM lumsdainea@ornl.gov OI Tipton, Joseph/0000-0002-1978-1076; Canik, John/0000-0001-6934-6681; Lore, Jeremy/0000-0002-9192-465X NR 8 TC 5 Z9 5 U1 0 U2 5 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD OCT PY 2013 VL 88 IS 9-10 BP 1773 EP 1777 DI 10.1016/j.fusengdes.2013.05.075 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 251BQ UT WOS:000326903200070 ER PT J AU Sadakov, S Khomiakov, S Calcagno, B Chappuis, P Dellopoulos, G Kolganov, V Merola, M Poddubnyi, I Raffray, R Raharijaona, JJ Ulrickson, M Zhmakin, A AF Sadakov, S. Khomiakov, S. Calcagno, B. Chappuis, Ph. Dellopoulos, G. Kolganov, V. Merola, M. Poddubnyi, I. Raffray, R. Raharijaona, J. J. Ulrickson, M. Zhmakin, A. CA All Contributors BIPT Effort TI Status of ITER blanket attachment design and related R&D SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 27th Symposium on Fusion Technology (SOFT) CY SEP 24-28, 2012 CL Liege, BELGIUM SP Trilateral Euregio Cluster, SCK CEN, ERM KMS, FZJ, FOM DE ITER; Blanket attachments; Flexible supports; Key pads; Ceramic coating; Electrical straps ID VACUUM VESSEL; COMPONENTS AB Main function of the ITER blanket system [1-3] is to shield the vacuum vessel (VV) from nuclear radiation and thermal energy coming from the plasma. Blanket system consists of discrete blanket modules (BM). Each BM is composed of a first wall panel and a shield block (SB). The shield block is attached to the VV by means of four flexible supports and three or four shear keys, through key pads. All listed supports do have parts with ceramic electro-insulating coatings necessary to exclude the largest loops of eddy currents and restrict EM loads. Electrical connection of each SB to the VV is through two elastic electrical straps. Cooling water is supplied to each BM by one coaxial water connector. This paper summarizes the recent evolution of the blanket attachment system toward design solutions compatible with design loads and numbers of load cycles, and providing sufficient reliability and durability. This evolution was done in a frame of pre-defined external interfaces. The ongoing supporting R&D is also briefly described. (C) 2013 ITER Organization. Published by Elsevier B.V. All rights reserved. C1 [Sadakov, S.; Calcagno, B.; Chappuis, Ph.; Merola, M.; Raffray, R.; Raharijaona, J. J.] ITER Org, F-13115 St Paul Les Durance, France. [Khomiakov, S.; Kolganov, V.; Poddubnyi, I.; Zhmakin, A.] Russian Federat Domest Agcy, Blanket Integrated Prod Team, NIKIET, Moscow, Russia. [Dellopoulos, G.] European Union Domest Agcy, Blanket Integrated Prod Team, F4E, Barcelona, Spain. [Ulrickson, M.] US Domest Agcy, Blanket Integrated Prod Team, Sandia Lab, Albuquerque, NM USA. RP Sadakov, S (reprint author), ITER Org, Route Vinon Verdon, F-13115 St Paul Les Durance, France. EM sergey.sadakov@iter.org NR 6 TC 5 Z9 6 U1 0 U2 5 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD OCT PY 2013 VL 88 IS 9-10 BP 1853 EP 1857 DI 10.1016/j.fusengdes.2013.03.031 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 251BQ UT WOS:000326903200087 ER PT J AU Martin, A Calcagno, B Chappuis, P Daly, E Dellopoulos, G Furmanek, A Gicquel, S Heitzenroeder, P Chen, JM Kalish, M Kim, DH Khomiakov, S Labusov, A Loarte, A Loughlin, M Merola, M Mitteau, R Polunovski, E Raffray, R Sadakov, S Ulrickson, M Zacchia, F Fu, Z AF Martin, A. Calcagno, B. Chappuis, Ph. Daly, E. Dellopoulos, G. Furmanek, A. Gicquel, S. Heitzenroeder, P. Chen Jiming Kalish, M. Kim, D. -H. Khomiakov, S. Labusov, A. Loarte, A. Loughlin, M. Merola, M. Mitteau, R. Polunovski, E. Raffray, R. Sadakov, S. Ulrickson, M. Zacchia, F. Fu, Zhang TI Design evolution and integration of the ITER in-vessel components SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 27th Symposium on Fusion Technology (SOFT) CY SEP 24-28, 2012 CL Liege, BELGIUM SP Trilateral Euregio Cluster, SCK CEN, ERM KMS, FZJ, FOM DE ITER; In vessel components; In vessel coils; Blankets AB The ITER in-vessel components have experienced a major redesign since the ITER Design Review of 2007. A set of in-vessel vertical stabilization (VS) coils and a set of in-vessel Edge Localized Mode (ELM) control coils have been implemented. The blanket system has been redesigned to include first wall (FW) shaping, to upgrade the FW heat removal capability and to allow for an "in situ" replacement. The blanket manifold system has been redesigned to improve leak detection and localisation. The introduction of a new set of in-vessel coils and the design evolution of the blanket system while the ITER project was entering the procurement phase have proven to be a major engineering challenge. This paper describes the status of the redesign of the in-vessel components and the associated integration issues. (C) 2013 ITER Organization. Published by Elsevier B.V. All rights reserved. C1 [Martin, A.; Calcagno, B.; Chappuis, Ph.; Daly, E.; Furmanek, A.; Gicquel, S.; Loarte, A.; Loughlin, M.; Merola, M.; Mitteau, R.; Polunovski, E.; Raffray, R.; Sadakov, S.; Fu, Zhang] ITER Org, F-13108 St Paul Les Durance, France. [Chen Jiming] China ITER Domest Agcy, SWIP, Shenzhen, Peoples R China. [Kim, D. -H.] ITER Korea, NFRI, Taejon, South Korea. [Khomiakov, S.] Russian Federat ITER Domest Agcy, NIKIET, Moscow, Russia. [Labusov, A.] Russian Federat ITER Domest Agcy, Efremov, St Petersburg, Russia. [Ulrickson, M.] US ITER Domest Agcy, SNL, Albuquerque, NM USA. [Dellopoulos, G.; Zacchia, F.] EU ITER Domest Agcy, F4E, Barcelona, Spain. [Heitzenroeder, P.; Kalish, M.] US ITER Domest Agcy, Princeton Plasma Phys Lab, Princeton, NJ USA. RP Martin, A (reprint author), ITER Org, F-13108 St Paul Les Durance, France. EM alex.martin@iter.org NR 4 TC 4 Z9 4 U1 1 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD OCT PY 2013 VL 88 IS 9-10 BP 1955 EP 1959 DI 10.1016/j.fusengdes.2013.01.004 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 251BQ UT WOS:000326903200110 ER PT J AU Osborne, S Senatore, L Smith, K AF Osborne, Stephen Senatore, Leonardo Smith, Kendrick TI Optimal analysis of azimuthal features in the CMB SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE initial conditions and eternal universe; CMBR experiments; CMBR theory ID PROBE WMAP OBSERVATIONS; ANISOTROPIES; UNIVERSE; SPHERE AB We present algorithms for searching for azimuthally symmetric features in CMB data. Our algorithms are fully optimal for masked all-sky data with inhomogeneous noise, computationally fast, simple to implement, and make no approximations. We show how to implement the optimal analysis in both Bayesian and frequentist cases. In the Bayesian case, our algorithm for evaluating the posterior likelihood is so fast that we can do a brute-force search over parameter space, rather than using a Monte Carlo Markov chain. Our motivating example is searching for bubble collisions, a pre-inflationary signal which can be generated if multiple tunneling events occur in an eternally inflating spacetime, but our algorithms are general and should be useful in other contexts. C1 [Osborne, Stephen; Senatore, Leonardo] Stanford Univ, Dept Phys, Stanford, CA 94306 USA. [Osborne, Stephen; Senatore, Leonardo] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Osborne, Stephen; Senatore, Leonardo] SLAC, Menlo Pk, CA 94025 USA. [Senatore, Leonardo] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94306 USA. [Senatore, Leonardo] Stanford Univ, Dept Phys, Stanford, CA 94306 USA. [Senatore, Leonardo; Smith, Kendrick] CERN, Div Theory, CH-1211 Geneva 23, Switzerland. [Smith, Kendrick] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. RP Osborne, S (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94306 USA. EM sjo32@stanford.edu; senatore@stanford.edu; kmsmith@astro.princeton.edu FU U.S. Planck Project; NASA Science Mission Directorate; DOE [DE-FG02-12ER41854]; National Science Foundation [PHY-1068380]; Lyman Spitzer fellowship in the Department of Astrophysical Sciences at Princeton University; Government of Canada through Industry Canada; Province of Ontario through the Ministry of Research Innovation; Princeton Institute for Computational Science and Engineering; Princeton University Office of Information Technology FX We thank Adam Brown, Matt Kleban, Ben Freivogel, Steve Shenker, and Lenny Susskind for helpful discussions. SJO acknowledges support from the U.S. Planck Project, which is funded by the NASA Science Mission Directorate. LS is supported by DOE Early Career Award DE-FG02-12ER41854 and the National Science Foundation under PHY-1068380. KMS was supported by a Lyman Spitzer fellowship in the Department of Astrophysical Sciences at Princeton University. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research & Innovation. Some of the results in this paper have been derived using the HEALPix [34] package. Computations were performed at the TIGRESS high performance computer center at Princeton University which is jointly supported by the Princeton Institute for Computational Science and Engineering and the Princeton University Office of Information Technology. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA), part of the High Energy Astrophysics Science Archive Center (HEASARC). HEASARC/LAMBDA is a service of the Astrophysics Science Division at the NASA Goddard Space Flight Center. NR 38 TC 8 Z9 8 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD OCT PY 2013 IS 10 AR 001 DI 10.1088/1475-7516/2013/10/001 PG 29 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 252BN UT WOS:000326979500001 ER PT J AU Sievers, JL Hlozek, RA Nolta, MR Acquaviva, V Addison, GE Ade, PAR Aguirre, P Amiri, M Appel, JW Barrientos, LF Battistelli, ES Battaglia, N Bond, JR Brown, B Burger, B Calabrese, E Chervenak, J Crichton, D Das, S Devlin, MJ Dicker, SR Doriese, WB Dunkley, J Dunner, R Essinger-Hileman, T Faber, D Fisher, RP Fowlera, JW Gallardo, P Gordon, MS Gralla, MB Hajian, A Halpern, M Hasselfield, M Hernandez-Monteagudo, C Hill, JC Hilton, GC Hilton, M Hincks, AD Holtz, D Huffenberger, KM Hughes, DH Hughes, JP Infante, L Irwin, KD Jacobson, DR Johnstone, B Juin, JB Kaul, M Klein, J Kosowsky, A Lau, JM Limon, M Lin, YT Louis, T Lupton, RH Marriage, TA Marsden, D Martocci, K Mauskopf, P McLaren, M Menanteau, F Moodley, K Moseley, H Netterfield, CB Niemack, MD Page, LA Page, WA Parker, L Partridge, B Plimpton, R Quintana, H Reese, ED Reid, B Rojas, F Sehgal, N Sherwin, BD Schmitt, BL Spergel, DN Staggs, ST Stryzak, O Swetz, DS Switzer, ER Thornton, R Trac, H Tucker, C Uehara, M Visnjic, K Warne, R Wilson, G Wollack, E Zhao, Y Zunckel, C AF Sievers, Jonathan L. Hlozek, Renee A. Nolta, Michael R. Acquaviva, Viviana Addison, Graeme E. Ade, Peter A. R. Aguirre, Paula Amiri, Mandana Appel, John William Barrientos, L. Felipe Battistelli, Elia S. Battaglia, Nick Bond, J. Richard Brown, Ben Burger, Bryce Calabrese, Erminia Chervenak, Jay Crichton, Devin Das, Sudeep Devlin, Mark J. Dicker, Simon R. Doriese, W. Bertrand Dunkley, Joanna Duenner, Rolando Essinger-Hileman, Thomas Faber, David Fisher, Ryan P. Fowlera, Joseph W. Gallardo, Patricio Gordon, Michael S. Gralla, Megan B. Hajian, Amir Halpern, Mark Hasselfield, Matthew Hernandez-Monteagudo, Carlos Hill, J. Colin Hilton, Gene C. Hilton, Matt Hincks, Adam D. Holtz, Dave Huffenberger, Kevin M. Hughes, David H. Hughes, John P. Infante, Leopoldo Irwin, Kent D. Jacobson, David R. Johnstone, Brittany Juin, Jean Baptiste Kaul, Madhuri Klein, Jeff Kosowsky, Arthur Lau, Judy M. Limon, Michele Lin, Yen-Ting Louis, Thibaut Lupton, Robert H. Marriage, Tobias A. Marsden, Danica Martocci, Krista Mauskopf, Phil McLaren, Michael Menanteau, Felipe Moodley, Kavilan Moseley, Harvey Netterfield, Calvin B. Niemack, Michael D. Page, Lyman A. Page, William A. Parker, Lucas Partridge, Bruce Plimpton, Reed Quintana, Hernan Reese, Erik D. Reid, Beth Rojas, Felipe Sehgal, Neelima Sherwin, Blake D. Schmitt, Benjamin L. Spergel, David N. Staggs, Suzanne T. Stryzak, Omelan Swetz, Daniel S. Switzer, Eric R. Thornton, Robert Trac, Hy Tucker, Carole Uehara, Masao Visnjic, Katerina Warne, Ryan Wilson, Grant Wollack, Ed Zhao, Yue Zunckel, Caroline CA Atacama Cosmology Telescope TI The Atacama Cosmology Telescope: cosmological parameters from three seasons of data SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE CMBR experiments; Sunyaev-Zeldovich effect; physics of the early universe; cosmological parameters from CMBR ID MICROWAVE-ANISOTROPY-PROBE; ANGULAR POWER SPECTRUM; SOUTH-POLE TELESCOPE; BARYON ACOUSTIC-OSCILLATIONS; SKY SURVEY DATA; HUBBLE CONSTANT; DARK ENERGY; INFLATIONARY UNIVERSE; WMAP OBSERVATIONS; BACKGROUND POLARIZATION AB We present constraints on cosmological and astrophysical parameters from highresolution microwave background maps at 148 GHz and 218 GHz made by the Atacama Cosmology Telescope (ACT) in three seasons of observations from 2008 to 2010. A model of primary cosmological and secondary foreground parameters is fit to the map power spectra and lensing deflection power spectrum, including contributions from both the thermal Sunyaev-Zeldovich (tSZ) effect and the kinematic Sunyaev-Zeldovich (kSZ) effect, Poisson and correlated anisotropy from unresolved infrared sources, radio sources, and the correlation between the tSZ effect and infrared sources. The power PO/27 of the thermal SZ power spectrum at 148 GHz is measured to be 3.4 1.4 1tK2 at = 3000, while the corresponding amplitude of the kinematic SZ power spectrum has a 95% confidence level upper limit of 8.6 1tK2. Combining ACT power spectra with the WMAP 7-year temperature and polarization power spectra, we find excellent consistency with the LCDM model. We constrain the number of effective relativistic degrees of freedom in the early universe to be Neff = 2.79 0.56, in agreement with the canonical value of Neff = 3.046 for three massless neutrinos. We constrain the sum of the neutrino masses to be Krn, < 0.39 eV at 95% confidence when combining ACT and WMAP 7-year data with BAO and Hubble constant measurements. We constrain the amount of primordial helium to be Yp = 0.225 0.034, and measure no variation in the fine structure constant a since recombination, with a/ao = 1.004 0.005. We also find no evidence for any running of the scalar spectral index, dnsld ln k = 0.004 0.012. C1 [Sievers, Jonathan L.; Appel, John William; Essinger-Hileman, Thomas; Faber, David; Fisher, Ryan P.; Fowlera, Joseph W.; Hajian, Amir; Hincks, Adam D.; Holtz, Dave; Lau, Judy M.; Limon, Michele; Marriage, Tobias A.; Martocci, Krista; Niemack, Michael D.; Page, Lyman A.; Page, William A.; Parker, Lucas; Partridge, Bruce; Reid, Beth; Sehgal, Neelima; Sherwin, Blake D.; Staggs, Suzanne T.; Stryzak, Omelan; Switzer, Eric R.; Uehara, Masao; Visnjic, Katerina; Zhao, Yue] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Sievers, Jonathan L.; Nolta, Michael R.; Battaglia, Nick; Bond, J. Richard; Hajian, Amir; Hincks, Adam D.; Switzer, Eric R.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M55 3H8, Canada. [Hlozek, Renee A.; Gordon, Michael S.; Hajian, Amir; Hasselfield, Matthew; Hill, J. Colin; Lin, Yen-Ting; Lupton, Robert H.; Marriage, Tobias A.; Spergel, David N.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Acquaviva, Viviana] New York City Coll Technol, Brooklyn, NY 11201 USA. [Addison, Graeme E.; Amiri, Mandana; Battistelli, Elia S.; Burger, Bryce; Halpern, Mark; Hasselfield, Matthew] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Addison, Graeme E.; Calabrese, Erminia; Dunkley, Joanna; Louis, Thibaut] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Ade, Peter A. R.; Mauskopf, Phil; Tucker, Carole] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Aguirre, Paula; Barrientos, L. Felipe; Duenner, Rolando; Gallardo, Patricio; Infante, Leopoldo; Juin, Jean Baptiste; Quintana, Hernan; Rojas, Felipe] Pontificia Univ Catolica Chile, Fac Fis, Dept Astron & Astrofis, Santiago 22, Chile. [Battistelli, Elia S.] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy. [Battaglia, Nick; Trac, Hy] Carnegie Mellon Univ, Dept Astron, Pittsburgh, PA 15260 USA. [Brown, Ben; Kosowsky, Arthur] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Chervenak, Jay; Moseley, Harvey; Wollack, Ed] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Crichton, Devin; Gralla, Megan B.; Marriage, Tobias A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Das, Sudeep] Univ Calif Berkeley, LBL, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Das, Sudeep] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Das, Sudeep] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Devlin, Mark J.; Dicker, Simon R.; Jacobson, David R.; Kaul, Madhuri; Klein, Jeff; Limon, Michele; Marsden, Danica; McLaren, Michael; Plimpton, Reed; Reese, Erik D.; Schmitt, Benjamin L.; Swetz, Daniel S.; Thornton, Robert] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Doriese, W. Bertrand; Fowlera, Joseph W.; Hilton, Gene C.; Irwin, Kent D.; Niemack, Michael D.; Swetz, Daniel S.] NIST Quantum Devices Grp, Boulder, CO 80305 USA. [Hernandez-Monteagudo, Carlos] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Hilton, Matt] Univ Nottingham, Sch Phys & Astron, Ctr Astron & Particle Theory, Nottingham NG7 2RD, England. [Hilton, Matt; Moodley, Kavilan; Warne, Ryan] Univ KwaZulu Natal, Sch Math Sci, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa. [Huffenberger, Kevin M.] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. [Hughes, David H.] INAOE, Puebla, Mexico. [Hughes, John P.; Menanteau, Felipe] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Marsden, Danica] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Johnstone, Brittany; Thornton, Robert] West Chester Univ Penn, Dept Phys, W Chester, PA 19383 USA. [Limon, Michele] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Lin, Yen-Ting] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778568, Japan. [Lin, Yen-Ting] Acad Sinica, Inst Astron Sz Astrophys, Taipei 115, Taiwan. [Switzer, Eric R.] Kavli Inst Cosmol Phys, Lab Astrophys & Space Res, Chicago, IL 60637 USA. [Mauskopf, Phil] Arizona State Univ, Glendale, AZ 85306 USA. [Netterfield, Calvin B.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Niemack, Michael D.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Partridge, Bruce] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA. [Sehgal, Neelima] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Wilson, Grant] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. [Zunckel, Caroline] Univ KwaZulu Natal, Dept Chem & Phys, ZA-3209 Scottsville, South Africa. RP Sievers, JL (reprint author), Princeton Univ, Joseph Henry Labs Phys, Jadwin Hall, Princeton, NJ 08544 USA. EM renee.hlozek@gmail.com RI Trac, Hy/N-8838-2014; Wollack, Edward/D-4467-2012; OI Trac, Hy/0000-0001-6778-3861; Wollack, Edward/0000-0002-7567-4451; Limon, Michele/0000-0002-5900-2698; Huffenberger, Kevin/0000-0001-7109-0099; Menanteau, Felipe/0000-0002-1372-2534; Sievers, Jonathan/0000-0001-6903-5074; McLaren, Michael/0000-0003-1575-473X; Tucker, Carole/0000-0002-1851-3918; Gordon, Michael/0000-0002-1913-2682 NR 195 TC 130 Z9 130 U1 2 U2 21 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD OCT PY 2013 IS 10 AR 060 DI 10.1088/1475-7516/2013/10/060 PG 48 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 252BN UT WOS:000326979500060 ER PT J AU Vlah, Z Seljak, U Okumura, T Desjacques, V AF Vlah, Zvonimir Seljak, Uros Okumura, Teppei Desjacques, Vincent TI Distribution function approach to redshift space distortions. Part V: perturbation theory applied to dark matter halos SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE power spectrum; cosmological perturbation theory; galaxy clustering; galaxy surveys ID DIGITAL SKY SURVEY; LUMINOUS RED GALAXIES; REAL-SPACE; SPECTRA; MODEL AB Numerical simulations show that redshift space distortions (RSD) introduce strong scale dependence in the power spectra of halos, with ten percent deviations relative to linear theory predictions even on relatively large scales (k < 0.1h/Mpe) and even in the absence of satellites (which induce Fingers-of-God, FoG, effects). If unmodeled these effects prevent one from extracting cosmological information from RSD surveys. In this paper we use Eulerian perturbation theory (PT) and Eulerian halo biasing model and apply it to the distribution function approach to RSD, in which RSD is decomposed into several correlators of density weighted velocity moments. We model each of these correlators using PT and compare the results to simulations over a wide range of halo masses and redshifts. We find that with an introduction of a physically motivated halo biasing, and using dark matter power spectra from simulations, we can reproduce the simulation results at a percent level on scales up to k 0.15h/Mpe at z = 0, without the need to have free FoG parameters in the model. C1 [Vlah, Zvonimir; Seljak, Uros] Univ Zurich, Inst Theoret Phys, CH-8001 Zurich, Switzerland. [Seljak, Uros] Univ Calif Berkeley, Dept Astron, Dept Phys, Berkeley, CA 94720 USA. [Seljak, Uros] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Seljak, Uros; Okumura, Teppei] Ewha Womans Univ, Inst Early Universe, Seoul 120750, South Korea. [Desjacques, Vincent] Univ Geneva, Dept Phys Theor, CH-1211 Geneva, Switzerland. [Desjacques, Vincent] Univ Geneva, CAP, Geneva, Switzerland. RP Vlah, Z (reprint author), Univ Zurich, Inst Theoret Phys, Schonberggasse 9, CH-8001 Zurich, Switzerland. EM zvlah@physik.uzh.ch; seljak@physik.uzh.ch; teppei@ewha.ac.kr; Vincent.Desjacques@unige.ch RI Desjacques, Vincent/A-1892-2014 FU Swiss National Foundation [200021-116696/1]; WCU [R32-10130]; DOE FX We would like to thank Patrick McDonald, Shun Saito, Tobias Baldauf, Jonathan Blazek, Masanori Sato, Jaiyul Yoo and Nico Hamaus for useful discussions and comments. ZV would like to thank the Berkeley Center for Cosmological Physics and the Lawrence Berkeley Laboratory for their hospitality. This work is supported by the DOE, the Swiss National Foundation under contract 200021-116696/1 and WCU grant R32-10130. V.D. acknowledges support by the Swiss National Science Foundation. The simulations were performed on the ZBOX3 supercomputer of the Institute for Theoretical Physics at the University of Zurich. For making some of the plots in this paper Level Scheme package [65] has been used. NR 66 TC 15 Z9 15 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD OCT PY 2013 IS 10 AR 053 DI 10.1088/1475-7516/2013/10/053 PG 32 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 252BN UT WOS:000326979500053 ER PT J AU Abbas, E Abelev, B Adam, J Adamova, D Adare, AM Aggarwal, MM Rinella, GA Agnello, M Agocs, AG Agostinelli, A Ahammed, Z Ahmad, N Masoodi, AA Ahmed, I Ahn, SA Ahn, SU Aimo, I Ajaz, M Akindinov, A Aleksandrov, D Alessandro, B Alexandre, D Molina, RA Alici, A Alkin, A Avina, EA Alme, J Alt, T Altini, V Altinpinar, S Altsybeev, I Andrei, C Andronic, A Anguelov, V Anielski, J Anson, C Anticic, T Antinori, F Antonioli, P Aphecetche, L Appelshauser, H Arbor, N Arcelli, S Arend, A Armesto, N Arnaldi, R Aronsson, T Arsene, IC Arslandok, M Asryan, A Augustinus, A Averbeck, R Awes, TC Aysto, J Azmi, MD Bach, M Badala, A Baek, YW Bailhache, R Bala, R Baldisseri, A Pedrosa, FBD Ban, J Baral, RC Barbera, R Barile, F Barnafoldi, GG Barnby, LS Barret, V Bartke, J Basile, M Bastid, N Basu, S Bathen, B Batigne, G Batyunya, B Batzing, PC Baumann, C Bearden, IG Beck, H Behera, NK Belikov, I Bellini, F Bellwied, R Belmont-Moreno, E Bencedi, G Beole, S Berceanu, I Bercuci, A Berdnikov, Y Berenyi, D Bergognon, AAE Bertens, RA Berzano, D Betev, L Bhasin, A Bhati, AK Bhom, J Bianchi, L Bianchi, N Bianchin, C Bielcik, J Bielcikova, J Bilandzic, A Bjelogrlic, S Blanco, F Blanco, F Blau, D Blume, C Boccioli, M Bottger, S Bogdanov, A Boggild, H Bogolyubsky, M Boldizsar, L Bombara, M Book, J Borel, H Borissov, A Bossu, F Botje, M Botta, E Braidot, E Braun-Munzinger, P Bregant, M Breitner, T Broker, TA Browning, TA Broz, M Brun, R Bruna, E Bruno, GE Budnikov, D Buesching, H Bufalino, S Buncic, P Busch, O Buthelezi, Z Caffarri, D Cai, X Caines, H Villar, EC Camerini, P Roman, VC Romeo, GC Carena, W Carena, F Carlin, N Carminati, F Diaz, AC Castellanos, JC Hernandez, JFC Casula, EAR Catanescu, V Cavicchioli, C Sanchez, CC Cepila, J Cerello, P Chang, B Chapeland, S Charvet, JL Chattopadhyay, S Chattopadhyay, S Cherney, M Cheshkov, C Cheynis, B Barroso, VC Chinellato, DD Chochula, P Chojnacki, M Choudhury, S Christakoglou, P Christensen, CH Christiansen, P Chujo, T Chung, SU Cicalo, C Cifarelli, L Cindolo, F Cleymans, J Colamaria, F Colella, D Collu, A Balbastre, GC del Valle, ZC Connors, ME Contin, G Contreras, JG Cormier, TM Morales, YC Cortese, P Maldonado, IC Cosentino, MR Costa, F Cotallo, ME Crescio, E Crochet, P Alaniz, EC Albino, RC Cuautle, E Cunqueiro, L Dainese, A Dang, R Danu, A Das, K Das, I Das, S Das, D Dash, S Dash, A De, S de Barros, GOV De Caro, A de Cataldo, G de Cuveland, J De Falco, A De Gruttola, D Delagrange, H Deloff, A De Marco, N Denes, E De Pasquale, S Deppman, A Erasmo, GD de Rooij, R Corchero, MAD Di Bari, D Dietel, T Di Giglio, C Di Liberto, S Di Mauro, A Di Nezza, P Divia, R Djuvsland, O Dobrin, A Dobrowolski, T Donigus, B Dordic, O Dubey, AK Dubla, A Ducroux, L Dupieux, P Majumdar, AKD Elia, D Emschermann, D Engel, H Erazmus, B Erdal, HA Eschweiler, D Espagnon, B Estienne, M Esumi, S Evans, D Evdokimov, S Eyyubova, G Fabris, D Faivre, J Falchieri, D Fantoni, A Fasel, M Fehlker, D Feldkamp, L Felea, D Feliciello, A Fenton-Olsen, B Feofilov, G Tellez, AF Ferretti, A Festanti, A Figiel, J Figueredo, MAS Filchagin, S Finogeev, D Fionda, FM Fiore, EM Floratos, E Floris, M Foertsch, S Foka, P Fokin, S Fragiacomo, E Francescon, A Frankenfeld, U Fuchs, U Furget, C Girard, MF Gaardhoje, JJ Gagliardi, M Gago, A Gallio, M Gangadharan, DR Ganoti, P Garabatos, C Garcia-Solis, E Gargiulo, C Garishvili, I Gerhard, J Germain, M Geuna, C Gheata, M Gheata, A Ghidini, B Ghosh, P Gianotti, P Giubellino, P Gladysz-Dziadus, E Glassel, P Gomez, R Ferreiro, EG Gonzalez-Trueba, LH Gonzalez-Zamora, P Gorbunov, S Goswami, A Gotovac, S Grabski, V Graczykowski, LK Grajcarek, R Grelli, A Grigoras, C Grigoras, A Grigoriev, V Grigoryan, A Grigoryan, S Grinyov, B Grion, N Gros, P Grosse-Oetringhaus, JF Grossiord, JY Grosso, R Guber, F Guernane, R Guerzoni, B Guilbaud, M Gulbrandsen, K Gulkanyan, H Gunji, T Gupta, A Gupta, R Haake, R Haaland, O Hadjidakis, C Haiduc, M Hamagaki, H Hamar, G Han, BH Hanratty, LD Hansen, A Harmanova-Tothova, Z Harris, JW Hartig, M Harton, A Hatzifotiadou, D Hayashi, S Hayrapetyan, A Heckel, ST Heide, M Helstrup, H Herghelegiu, A Corral, GH Herrmann, N Hess, BA Hetland, KF Hicks, B Hippolyte, B Hori, Y Hristov, P Hrivnacova, I Huang, M Humanic, TJ Hwang, DS Ichou, R Ilkaev, R Ilkiv, I Inaba, M Incani, E Innocenti, GM Innocenti, PG Ippolitov, M Irfan, M Ivan, C Ivanov, M Ivanov, A Ivanov, V Ivanytskyi, O Jacholkowski, A Jacobs, PM Jahnke, C Jang, HJ Janik, MA Jayarathna, PHSY Jena, S Jha, DM Bustamante, RTJ Jones, PG Jung, H Jusko, A Kaidalov, AB Kalcher, S Kalinak, P Kalliokoski, T Kalweit, A Kang, JH Kaplin, V Kar, S Uysal, AK Karavichev, O Karavicheva, T Karpechev, E Kazantsev, A Kebschull, U Keidel, R Ketzer, B Khan, MM Khan, P Khan, SA Khan, KH Khanzadeev, A Kharlov, Y Kileng, B Kim, M Kim, T Kim, B Kim, S Kim, M Kim, DJ Kim, JS Kim, JH Kim, DW Kirsch, S Kisel, I Kiselev, S Kisiel, A Klay, JL Klein, J Klein-Bosing, C Kliemant, M Kluge, A Knichel, ML Knospe, AG Kohler, MK Kollegger, T Kolojvari, A Kompaniets, M Kondratiev, V Kondratyeva, N Konevskikh, A Kovalenko, V Kowalski, M Kox, S Meethaleveedu, GK Kral, J Kralik, I Kramer, F Kravcakova, A Krelina, M Kretz, M Krivda, M Krizek, F Krus, M Kryshen, E Krzewicki, M Kucera, V Kucheriaev, Y Kugathasan, T Kuhn, C Kuijer, PG Kulakov, I Kumar, J Kurashvili, P Kurepin, A Kurepin, AB Kuryakin, A Kushpil, V Kushpil, S Kvaerno, H Kweon, MJ Kwon, Y de Guevara, PL Fernandes, CL Lakomov, I Langoy, R La Pointe, SL Lara, C Lardeux, A La Rocca, P Lea, R Lechman, M Lee, SC Lee, GR Legrand, I Lehnert, J Lemmon, RC Lenhardt, M Lenti, V Leon, H Leoncino, M Monzon, IL Levai, P Li, S Lien, J Lietava, R Lindal, S Lindenstruth, V Lippmann, C Lisa, MA Ljunggren, HM Lodato, DF Loenne, PI Loggins, VR Loginov, V Lohner, D Loizides, C Loo, KK Lopez, X Torres, EL Lovhoiden, G Lu, XG Luettig, P Lunardon, M Luo, J Luparello, G Luzzi, C Ma, R Ma, K Madagodahettige-Don, DM Maevskaya, A Mager, M Mahapatra, DP Maire, A Malaev, M Cervantes, IM Malinina, L Mal'Kevich, D Malzacher, P Mamonov, A Manceau, L Mangotra, L Manko, V Manso, F Manzari, V Mao, Y Marchisone, M Mares, J Margagliotti, GV Margotti, A Marin, A Markert, C Marquard, M Martashvili, I Martin, NA Martinengo, P Martinez, MI Garcia, GM Martynov, Y Mas, A Masciocchi, S Masera, M Masoni, A Massacrier, L Mastroserio, A Matyja, A Mayer, C Mazer, J Mazumder, R Mazzoni, MA Meddi, F Menchaca-Rocha, A Perez, JM Meres, M Miake, Y Mikhaylov, K Milano, L Milosevic, J Mischke, A Mishra, AN Miskowiec, D Mitu, C Mizuno, S Mlynarz, J Mohanty, B Molnar, L Zetina, LM Monteno, M Montes, E Moon, T Morando, M De Godoy, DAM Moretto, S Morreale, A Morsch, A Muccifora, V Mudnic, E Muhuri, S Mukherjee, M Muller, H Munhoz, MG Murray, S Musa, L Musinsky, J Nandi, BK Nania, R Nappi, E Nattrass, C Nayak, TK Nazarenko, S Nedosekin, A Nicassio, M Niculescu, M Nielsen, BS Niida, T Nikolaev, S Nikolic, V Nikulin, S Nikulin, V Nilsen, BS Nilsson, MS Noferini, F Nomokonov, P Nooren, G Nyanin, A Nyatha, A Nygaard, C Nystrand, J Ochirov, A Oeschler, H Oh, S Oh, SK Oleniacz, J Da Silva, ACO Onderwaater, J Oppedisano, C Velasquez, AO Oskarsson, A Ostrowski, P Otwinowski, J Oyama, K Ozawa, K Pachmayer, Y Pachr, M Padilla, F Pagano, P Paic, G Painke, F Pajares, C Pal, SK Palaha, A Palmeri, A Papikyan, V Pappalardo, GS Park, WJ Passfeld, A Patalakha, DI Paticchio, V Paul, B Pavlinov, A Pawlak, T Peitzmann, T Da Costa, HP De Oliveira, EP Peresunko, D Lara, CEP Perrino, D Peryt, W Pesci, A Pestov, Y Petracek, V Petran, M Petris, M Petrov, P Petrovici, M Petta, C Piano, S Pikna, M Pillot, P Pinazza, O Pinsky, L Pitz, N Piyarathna, DB Planinic, M Ploskon, M Pluta, J Pocheptsov, T Pochybova, S Podesta-Lerma, PLM Poghosyan, MG Polak, K Polichtchouk, B Poljak, N Pop, A Porteboeuf-Houssais, S Pospisil, V Potukuchi, B Prasad, SK Preghenella, R Prino, F Pruneau, CA Pshenichnov, I Puddu, G Punin, V Putschke, J Qvigstad, H Rachevski, A Rademakers, A Raiha, TS Rak, J Rakotozafindrabe, A Ramello, L Raniwala, S Raniwala, R Rasanen, SS Rascanu, BT Rathee, D Rauch, W Rauf, AW Razazi, V Read, KF Real, JS Redlich, K Reed, RJ Rehman, A Reichelt, P Reicher, M Reidt, F Renfordt, R Reolon, AR Reshetin, A Rettig, F Revol, JP Reygers, K Riccati, L Ricci, RA Richert, T Richter, M Riedler, P Riegler, W Riggi, F Rivetti, A Cahuantzi, MR Manso, AR Roed, K Rogochaya, E Rohr, D Rohrich, D Romita, R Ronchetti, F Rosnet, P Rossegger, S Rossi, A Roy, P Roy, C Montero, AJR Rui, R Russo, R Ryabinkin, E Rybicki, A Sadovsky, S Safarik, K Sahoo, R Sahu, PK Saini, J Sakaguchi, H Sakai, S Sakata, D Salgado, CA Salzwedel, J Sambyal, S Samsonov, V Castro, XS Sandor, L Sandoval, A Sano, M Santagati, G Santoro, R Sarkamo, J Sarkar, D Scapparone, E Scarlassara, F Scharenberg, RP Schiaua, C Schicker, R Schmidt, HR Schmidt, C Schuchmann, S Schukraft, J Schuster, T Schutz, Y Schwarz, K Schweda, K Scioli, G Scomparin, E Scott, R Scott, PA Segato, G Selyuzhenkov, I Senyukov, S Seo, J Serci, S Serradilla, E Sevcenco, A Shabetai, A Shabratova, G Shahoyan, R Sharma, S Sharma, N Rohni, S Shigaki, K Shtejer, K Sibiriak, Y Sicking, E Siddhanta, S Siemiarczuk, T Silvermyr, D Silvestre, C Simatovic, G Simonetti, G Singaraju, R Singh, R Singha, S Singhal, V Sinha, T Sinha, BC Sitar, B Sitta, M Skaali, TB Skjerdal, K Smakal, R Smirnov, N Snellings, RJM Sogaard, C Soltz, R Song, M Song, J Soos, C Soramel, F Sputowska, I Spyropoulou-Stassinaki, M Srivastava, BK Stachel, J Stan, I Stefanek, G Steinpreis, M Stenlund, E Steyn, G Stiller, JH Stocco, D Stolpovskiy, M Strmen, P Suaide, AAP Vasquez, MAS Sugitate, T Suire, C Suleymanov, M Sultanov, R Sumbera, M Susa, T Symons, TJM de Toledo, AS Szarka, I Szczepankiewicz, A Szymanski, M Takahashi, J Tangaro, MA Takaki, JDT Peloni, AT Martinez, AT Tauro, A Munoz, GT Telesca, A Ter Minasyan, A Terrevoli, C Thader, J Thomas, D Tieulent, R Timmins, AR Tlusty, D Toia, A Torii, H Toscano, L Trubnikov, V Truesdale, D Trzaska, WH Tsuji, T Tumkin, A Turrisi, R Tveter, TS Ulery, J Ullaland, K Ulrich, J Uras, A Urciuoli, GM Usai, GL Vajzer, M Vala, M Palomo, LV Vallero, S Vande Vyvre, P Van Hoorne, JW van Leeuwen, M Vannucci, L Vargas, A Varma, R Vasileiou, M Vasiliev, A Vechernin, V Veldhoen, M Venaruzzo, M Vercellin, E Vergara, S Vernet, R Verweij, M Vickovic, L Viesti, G Viinikainen, J Vilakazi, Z Baillie, OV Vinogradov, Y Vinogradov, L Vinogradov, A Virgili, T Viyogi, YP Vodopyanov, A Volkl, MA Voloshin, S Voloshin, K Volpe, G von Haller, B Vorobyev, I Vranic, D Vrlakova, J Vulpescu, B Vyushin, A Wagner, V Wagner, B Wan, R Wang, Y Wang, Y Wang, M Watanabe, K Weber, M Wessels, JP Westerhoff, U Wiechula, J Wikne, J Wilde, M Wilk, G Williams, MCS Windelband, B Winn, M Yaldo, CG Yamaguchi, Y Yang, S Yang, P Yang, H Yasnopolskiy, S Yi, J Yin, Z Yoo, IK Yoon, J Yuan, X Yushmanov, I Zaccolo, V Zach, C Zampolli, C Zaporozhets, S Zarochentsev, A Zavada, P Zaviyalov, N Zbroszczyk, H Zelnicek, P Zgura, IS Zhalov, M Zhang, Y Zhang, H Zhang, X Zhou, D Zhou, Y Zhou, F Zhu, H Zhu, J Zhu, X Zhu, J Zichichi, A Zimmermann, A Zinovjev, G Zoccarato, Y Zynovyev, M Zyzak, M AF Abbas, E. Abelev, B. Adam, J. Adamova, D. Adare, A. M. Aggarwal, M. M. Rinella, G. Aglieri Agnello, M. Agocs, A. G. Agostinelli, A. Ahammed, Z. Ahmad, N. Masoodi, A. Ahmad Ahmed, I. Ahn, S. A. Ahn, S. U. Aimo, I. Ajaz, M. Akindinov, A. Aleksandrov, D. Alessandro, B. Alexandre, D. Alfaro Molina, R. Alici, A. Alkin, A. Almara Avina, E. Alme, J. Alt, T. Altini, V. Altinpinar, S. Altsybeev, I. Andrei, C. Andronic, A. Anguelov, V. Anielski, J. Anson, C. Anticic, T. Antinori, F. Antonioli, P. Aphecetche, L. Appelshaeuser, H. Arbor, N. Arcelli, S. Arend, A. Armesto, N. Arnaldi, R. Aronsson, T. Arsene, I. C. Arslandok, M. Asryan, A. Augustinus, A. Averbeck, R. Awes, T. C. Aysto, J. Azmi, M. D. Bach, M. Badala, A. Baek, Y. W. Bailhache, R. Bala, R. Baldisseri, A. Pedrosa, F. Baltasar Dos Santos Ban, J. Baral, R. C. Barbera, R. Barile, F. Barnafoeldi, G. G. Barnby, L. S. Barret, V. Bartke, J. Basile, M. Bastid, N. Basu, S. Bathen, B. Batigne, G. Batyunya, B. Batzing, P. C. Baumann, C. Bearden, I. G. Beck, H. Behera, N. K. Belikov, I. Bellini, F. Bellwied, R. Belmont-Moreno, E. Bencedi, G. Beole, S. Berceanu, I. Bercuci, A. Berdnikov, Y. Berenyi, D. Bergognon, A. A. E. Bertens, R. A. Berzano, D. Betev, L. Bhasin, A. Bhati, A. K. Bhom, J. Bianchi, L. Bianchi, N. Bianchin, C. Bielcik, J. Bielcikova, J. Bilandzic, A. Bjelogrlic, S. Blanco, F. Blanco, F. Blau, D. Blume, C. Boccioli, M. Boettger, S. Bogdanov, A. Boggild, H. Bogolyubsky, M. Boldizsar, L. Bombara, M. Book, J. Borel, H. Borissov, A. Bossu, F. Botje, M. Botta, E. Braidot, E. Braun-Munzinger, P. Bregant, M. Breitner, T. Broker, T. A. Browning, T. A. Broz, M. Brun, R. Bruna, E. Bruno, G. E. Budnikov, D. Buesching, H. Bufalino, S. Buncic, P. Busch, O. Buthelezi, Z. Caffarri, D. Cai, X. Caines, H. Calvo Villar, E. Camerini, P. Canoa Roman, V. Cara Romeo, G. Carena, W. Carena, F. Carlin Filho, N. Carminati, F. Casanova Diaz, A. Castillo Castellanos, J. Castillo Hernandez, J. F. Casula, E. A. R. Catanescu, V. Cavicchioli, C. Ceballos Sanchez, C. Cepila, J. Cerello, P. Chang, B. Chapeland, S. Charvet, J. L. Chattopadhyay, S. Chattopadhyay, S. Cherney, M. Cheshkov, C. Cheynis, B. Barroso, V. Chibante Chinellato, D. D. Chochula, P. Chojnacki, M. Choudhury, S. Christakoglou, P. Christensen, C. H. Christiansen, P. Chujo, T. Chung, S. U. Cicalo, C. Cifarelli, L. Cindolo, F. Cleymans, J. Colamaria, F. Colella, D. Collu, A. Balbastre, G. Conesa del Valle, Z. Conesa Connors, M. E. Contin, G. Contreras, J. G. Cormier, T. M. Morales, Y. Corrales Cortese, P. Cortes Maldonado, I. Cosentino, M. R. Costa, F. Cotallo, M. E. Crescio, E. Crochet, P. Cruz Alaniz, E. Cruz Albino, R. Cuautle, E. Cunqueiro, L. Dainese, A. Dang, R. Danu, A. Das, K. Das, I. Das, S. Das, D. Dash, S. Dash, A. De, S. de Barros, G. O. V. De Caro, A. de Cataldo, G. de Cuveland, J. De Falco, A. De Gruttola, D. Delagrange, H. Deloff, A. De Marco, N. Denes, E. De Pasquale, S. Deppman, A. Erasmo, G. D. de Rooij, R. Diaz Corchero, M. A. Di Bari, D. Dietel, T. Di Giglio, C. Di Liberto, S. Di Mauro, A. Di Nezza, P. Divia, R. Djuvsland, O. Dobrin, A. Dobrowolski, T. Doenigus, B. Dordic, O. Dubey, A. K. Dubla, A. Ducroux, L. Dupieux, P. Majumdar, A. K. Dutta Elia, D. Emschermann, D. Engel, H. Erazmus, B. Erdal, H. A. Eschweiler, D. Espagnon, B. Estienne, M. Esumi, S. Evans, D. Evdokimov, S. Eyyubova, G. Fabris, D. Faivre, J. Falchieri, D. Fantoni, A. Fasel, M. Fehlker, D. Feldkamp, L. Felea, D. Feliciello, A. Fenton-Olsen, B. Feofilov, G. Fernandez Tellez, A. Ferretti, A. Festanti, A. Figiel, J. Figueredo, M. A. S. Filchagin, S. Finogeev, D. Fionda, F. M. Fiore, E. M. Floratos, E. Floris, M. Foertsch, S. Foka, P. Fokin, S. Fragiacomo, E. Francescon, A. Frankenfeld, U. Fuchs, U. Furget, C. Girard, M. Fusco Gaardhoje, J. J. Gagliardi, M. Gago, A. Gallio, M. Gangadharan, D. R. Ganoti, P. Garabatos, C. Garcia-Solis, E. Gargiulo, C. Garishvili, I. Gerhard, J. Germain, M. Geuna, C. Gheata, M. Gheata, A. Ghidini, B. Ghosh, P. Gianotti, P. Giubellino, P. Gladysz-Dziadus, E. Glaessel, P. Gomez, R. Ferreiro, E. G. Gonzalez-Trueba, L. H. Gonzalez-Zamora, P. Gorbunov, S. Goswami, A. Gotovac, S. Grabski, V. Graczykowski, L. K. Grajcarek, R. Grelli, A. Grigoras, C. Grigoras, A. Grigoriev, V. Grigoryan, A. Grigoryan, S. Grinyov, B. Grion, N. Gros, P. Grosse-Oetringhaus, J. F. Grossiord, J. -Y. Grosso, R. Guber, F. Guernane, R. Guerzoni, B. Guilbaud, M. Gulbrandsen, K. Gulkanyan, H. Gunji, T. Gupta, A. Gupta, R. Haake, R. Haaland, O. Hadjidakis, C. Haiduc, M. Hamagaki, H. Hamar, G. Han, B. H. Hanratty, L. D. Hansen, A. Harmanova-Tothova, Z. Harris, J. W. Hartig, M. Harton, A. Hatzifotiadou, D. Hayashi, S. Hayrapetyan, A. Heckel, S. T. Heide, M. Helstrup, H. Herghelegiu, A. Corral, G. Herrera Herrmann, N. Hess, B. A. Hetland, K. F. Hicks, B. Hippolyte, B. Hori, Y. Hristov, P. Hrivnacova, I. Huang, M. Humanic, T. J. Hwang, D. S. Ichou, R. Ilkaev, R. Ilkiv, I. Inaba, M. Incani, E. Innocenti, G. M. Innocenti, P. G. Ippolitov, M. Irfan, M. Ivan, C. Ivanov, M. Ivanov, A. Ivanov, V. Ivanytskyi, O. Jacholkowski, A. Jacobs, P. M. Jahnke, C. Jang, H. J. Janik, M. A. Jayarathna, P. H. S. Y. Jena, S. Jha, D. M. Bustamante, R. T. Jimenez Jones, P. G. Jung, H. Jusko, A. Kaidalov, A. B. Kalcher, S. Kalinak, P. Kalliokoski, T. Kalweit, A. Kang, J. H. Kaplin, V. Kar, S. Uysal, A. Karasu Karavichev, O. Karavicheva, T. Karpechev, E. Kazantsev, A. Kebschull, U. Keidel, R. Ketzer, B. Khan, M. M. Khan, P. Khan, S. A. Khan, K. H. Khanzadeev, A. Kharlov, Y. Kileng, B. Kim, M. Kim, T. Kim, B. Kim, S. Kim, M. Kim, D. J. Kim, J. S. Kim, J. H. Kim, D. W. Kirsch, S. Kisel, I. Kiselev, S. Kisiel, A. Klay, J. L. Klein, J. Klein-Boesing, C. Kliemant, M. Kluge, A. Knichel, M. L. Knospe, A. G. Koehler, M. K. Kollegger, T. Kolojvari, A. Kompaniets, M. Kondratiev, V. Kondratyeva, N. Konevskikh, A. Kovalenko, V. Kowalski, M. Kox, S. Meethaleveedu, G. Koyithatta Kral, J. Kralik, I. Kramer, F. Kravcakova, A. Krelina, M. Kretz, M. Krivda, M. Krizek, F. Krus, M. Kryshen, E. Krzewicki, M. Kucera, V. Kucheriaev, Y. Kugathasan, T. Kuhn, C. Kuijer, P. G. Kulakov, I. Kumar, J. Kurashvili, P. Kurepin, A. Kurepin, A. B. Kuryakin, A. Kushpil, V. Kushpil, S. Kvaerno, H. Kweon, M. J. Kwon, Y. Ladron de Guevara, P. Lagana Fernandes, C. Lakomov, I. Langoy, R. La Pointe, S. L. Lara, C. Lardeux, A. La Rocca, P. Lea, R. Lechman, M. Lee, S. C. Lee, G. R. Legrand, I. Lehnert, J. Lemmon, R. C. Lenhardt, M. Lenti, V. Leon, H. Leoncino, M. Leon Monzon, I. Levai, P. Li, S. Lien, J. Lietava, R. Lindal, S. Lindenstruth, V. Lippmann, C. Lisa, M. A. Ljunggren, H. M. Lodato, D. F. Loenne, P. I. Loggins, V. R. Loginov, V. Lohner, D. Loizides, C. Loo, K. K. Lopez, X. Torres, E. Lopez Lovhoiden, G. Lu, X. -G. Luettig, P. Lunardon, M. Luo, J. Luparello, G. Luzzi, C. Ma, R. Ma, K. Madagodahettige-Don, D. M. Maevskaya, A. Mager, M. Mahapatra, D. P. Maire, A. Malaev, M. Maldonado Cervantes, I. Malinina, L. Mal'Kevich, D. Malzacher, P. Mamonov, A. Manceau, L. Mangotra, L. Manko, V. Manso, F. Manzari, V. Mao, Y. Marchisone, M. Mares, J. Margagliotti, G. V. Margotti, A. Marin, A. Markert, C. Marquard, M. Martashvili, I. Martin, N. A. Martinengo, P. Martinez, M. I. Garcia, G. Martinez Martynov, Y. Mas, A. Masciocchi, S. Masera, M. Masoni, A. Massacrier, L. Mastroserio, A. Matyja, A. Mayer, C. Mazer, J. Mazumder, R. Mazzoni, M. A. Meddi, F. Menchaca-Rocha, A. Perez, J. Mercado Meres, M. Miake, Y. Mikhaylov, K. Milano, L. Milosevic, J. Mischke, A. Mishra, A. N. Miskowiec, D. Mitu, C. Mizuno, S. Mlynarz, J. Mohanty, B. Molnar, L. Montano Zetina, L. Monteno, M. Montes, E. Moon, T. Morando, M. Moreira De Godoy, D. A. Moretto, S. Morreale, A. Morsch, A. Muccifora, V. Mudnic, E. Muhuri, S. Mukherjee, M. Mueller, H. Munhoz, M. G. Murray, S. Musa, L. Musinsky, J. Nandi, B. K. Nania, R. Nappi, E. Nattrass, C. Nayak, T. K. Nazarenko, S. Nedosekin, A. Nicassio, M. Niculescu, M. Nielsen, B. S. Niida, T. Nikolaev, S. Nikolic, V. Nikulin, S. Nikulin, V. Nilsen, B. S. Nilsson, M. S. Noferini, F. Nomokonov, P. Nooren, G. Nyanin, A. Nyatha, A. Nygaard, C. Nystrand, J. Ochirov, A. Oeschler, H. Oh, S. Oh, S. K. Oleniacz, J. Oliveira Da Silva, A. C. Onderwaater, J. Oppedisano, C. Ortiz Velasquez, A. Oskarsson, A. Ostrowski, P. Otwinowski, J. Oyama, K. Ozawa, K. Pachmayer, Y. Pachr, M. Padilla, F. Pagano, P. Paic, G. Painke, F. Pajares, C. Pal, S. K. Palaha, A. Palmeri, A. Papikyan, V. Pappalardo, G. S. Park, W. J. Passfeld, A. Patalakha, D. I. Paticchio, V. Paul, B. Pavlinov, A. Pawlak, T. Peitzmann, T. Da Costa, H. Pereira Pereira De Oliveira Filho, E. Peresunko, D. Lara, C. E. Perez Perrino, D. Peryt, W. Pesci, A. Pestov, Y. Petracek, V. Petran, M. Petris, M. Petrov, P. Petrovici, M. Petta, C. Piano, S. Pikna, M. Pillot, P. Pinazza, O. Pinsky, L. Pitz, N. Piyarathna, D. B. Planinic, M. Ploskon, M. Pluta, J. Pocheptsov, T. Pochybova, S. Podesta-Lerma, P. L. M. Poghosyan, M. G. Polak, K. Polichtchouk, B. Poljak, N. Pop, A. Porteboeuf-Houssais, S. Pospisil, V. Potukuchi, B. Prasad, S. K. Preghenella, R. Prino, F. Pruneau, C. A. Pshenichnov, I. Puddu, G. Punin, V. Putschke, J. Qvigstad, H. Rachevski, A. Rademakers, A. Raiha, T. S. Rak, J. Rakotozafindrabe, A. Ramello, L. Raniwala, S. Raniwala, R. Rasanen, S. S. Rascanu, B. T. Rathee, D. Rauch, W. Rauf, A. W. Razazi, V. Read, K. F. Real, J. S. Redlich, K. Reed, R. J. Rehman, A. Reichelt, P. Reicher, M. Reidt, F. Renfordt, R. Reolon, A. R. Reshetin, A. Rettig, F. Revol, J. -P. Reygers, K. Riccati, L. Ricci, R. A. Richert, T. Richter, M. Riedler, P. Riegler, W. Riggi, F. Rivetti, A. Rodriguez Cahuantzi, M. Manso, A. Rodriguez Roed, K. Rogochaya, E. Rohr, D. Rohrich, D. Romita, R. Ronchetti, F. Rosnet, P. Rossegger, S. Rossi, A. Roy, P. Roy, C. Rubio Montero, A. J. Rui, R. Russo, R. Ryabinkin, E. Rybicki, A. Sadovsky, S. Safarik, K. Sahoo, R. Sahu, P. K. Saini, J. Sakaguchi, H. Sakai, S. Sakata, D. Salgado, C. A. Salzwedel, J. Sambyal, S. Samsonov, V. Castro, X. Sanchez Sandor, L. Sandoval, A. Sano, M. Santagati, G. Santoro, R. Sarkamo, J. Sarkar, D. Scapparone, E. Scarlassara, F. Scharenberg, R. P. Schiaua, C. Schicker, R. Schmidt, H. R. Schmidt, C. Schuchmann, S. Schukraft, J. Schuster, T. Schutz, Y. Schwarz, K. Schweda, K. Scioli, G. Scomparin, E. Scott, R. Scott, P. A. Segato, G. Selyuzhenkov, I. Senyukov, S. Seo, J. Serci, S. Serradilla, E. Sevcenco, A. Shabetai, A. Shabratova, G. Shahoyan, R. Sharma, S. Sharma, N. Rohni, S. Shigaki, K. Shtejer, K. Sibiriak, Y. Sicking, E. Siddhanta, S. Siemiarczuk, T. Silvermyr, D. Silvestre, C. Simatovic, G. Simonetti, G. Singaraju, R. Singh, R. Singha, S. Singhal, V. Sinha, T. Sinha, B. C. Sitar, B. Sitta, M. Skaali, T. B. Skjerdal, K. Smakal, R. Smirnov, N. Snellings, R. J. M. Sogaard, C. Soltz, R. Song, M. Song, J. Soos, C. Soramel, F. Sputowska, I. Spyropoulou-Stassinaki, M. Srivastava, B. K. Stachel, J. Stan, I. Stefanek, G. Steinpreis, M. Stenlund, E. Steyn, G. Stiller, J. H. Stocco, D. Stolpovskiy, M. Strmen, P. Suaide, A. A. P. Vasquez, M. A. Subieta Sugitate, T. Suire, C. Suleymanov, M. Sultanov, R. Sumbera, M. Susa, T. Symons, T. J. M. de Toledo, A. Szanto Szarka, I. Szczepankiewicz, A. Szymanski, M. Takahashi, J. Tangaro, M. A. Takaki, J. D. Tapia Peloni, A. Tarantola Martinez, A. Tarazona Tauro, A. Tejeda Munoz, G. Telesca, A. Ter Minasyan, A. Terrevoli, C. Thaeder, J. Thomas, D. Tieulent, R. Timmins, A. R. Tlusty, D. Toia, A. Torii, H. Toscano, L. Trubnikov, V. Truesdale, D. Trzaska, W. H. Tsuji, T. Tumkin, A. Turrisi, R. Tveter, T. S. Ulery, J. Ullaland, K. Ulrich, J. Uras, A. Urciuoli, G. M. Usai, G. L. Vajzer, M. Vala, M. Palomo, L. Valencia Vallero, S. Vande Vyvre, P. Van Hoorne, J. W. van Leeuwen, M. Vannucci, L. Vargas, A. Varma, R. Vasileiou, M. Vasiliev, A. Vechernin, V. Veldhoen, M. Venaruzzo, M. Vercellin, E. Vergara, S. Vernet, R. Verweij, M. Vickovic, L. Viesti, G. Viinikainen, J. Vilakazi, Z. Baillie, O. Villalobos Vinogradov, Y. Vinogradov, L. Vinogradov, A. Virgili, T. Viyogi, Y. P. Vodopyanov, A. Voelkl, M. A. Voloshin, S. Voloshin, K. Volpe, G. von Haller, B. Vorobyev, I. Vranic, D. Vrlakova, J. Vulpescu, B. Vyushin, A. Wagner, V. Wagner, B. Wan, R. Wang, Y. Wang, Y. Wang, M. Watanabe, K. Weber, M. Wessels, J. P. Westerhoff, U. Wiechula, J. Wikne, J. Wilde, M. Wilk, G. Williams, M. C. S. Windelband, B. Winn, M. Yaldo, C. G. Yamaguchi, Y. Yang, S. Yang, P. Yang, H. Yasnopolskiy, S. Yi, J. Yin, Z. Yoo, I. -K. Yoon, J. Yuan, X. Yushmanov, I. Zaccolo, V. Zach, C. Zampolli, C. Zaporozhets, S. Zarochentsev, A. Zavada, P. Zaviyalov, N. Zbroszczyk, H. Zelnicek, P. Zgura, I. S. Zhalov, M. Zhang, Y. Zhang, H. Zhang, X. Zhou, D. Zhou, Y. Zhou, F. Zhu, H. Zhu, J. Zhu, X. Zhu, J. Zichichi, A. Zimmermann, A. Zinovjev, G. Zoccarato, Y. Zynovyev, M. Zyzak, M. CA ALICE Collaboration TI Performance of the ALICE VZERO system SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Large detector-systems performance; Trigger detectors; Large detector systems for particle and astroparticle physics; Heavy-ion detectors ID NUCLEAR COLLISIONS; V0 DETECTOR AB ALICE is an LHC experiment devoted to the study of strongly interacting matter in proton-proton, proton-nucleus and nucleus-nucleus collisions at ultra-relativistic energies. The ALICE VZERO system, made of two scintillator arrays at asymmetric positions, one on each side of the interaction point, plays a central role in ALICE. In addition to its core function as a trigger source, the VZERO system is used to monitor LHC beam conditions, to reject beam-induced backgrounds and to measure basic physics quantities such as luminosity, particle multiplicity, centrality and event plane direction in nucleus-nucleus collisions. After describing the VZERO system, this publication presents its performance over more than four years of operation at the LHC. C1 [Malinina, L.; Milosevic, J.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Milosevic, J.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Milosevic, J.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Redlich, K.] Univ Wroclaw, Inst Theoret Phys, PL-50138 Wroclaw, Poland. [Abbas, E.] ASRT, Cairo, Egypt. [Grigoryan, A.; Gulkanyan, H.; Hayrapetyan, A.; Papikyan, V.] Yerevan Phys Inst Fdn, AI Alikhanyan Natl Sci Lab, Yerevan, Armenia. [Cortes Maldonado, I.; Fernandez Tellez, A.; Martinez, M. I.; Rodriguez Cahuantzi, M.; Tejeda Munoz, G.; Vargas, A.; Vergara, S.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Alkin, A.; Grinyov, B.; Ivanytskyi, O.; Martynov, Y.; Trubnikov, V.; Zinovjev, G.; Zynovyev, M.] Bogolyubov Inst Theoret Phys, Kiev, Ukraine. [Das, S.] Bose Inst, Dept Phys, Kolkata, India. [Das, S.] CAPSS, Kolkata, India. [Pestov, Y.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Klay, J. L.] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA. [Cai, X.; Dang, R.; Li, S.; Luo, J.; Ma, K.; Mao, Y.; Wan, R.; Wang, Y.; Wang, M.; Yang, P.; Yin, Z.; Yuan, X.; Zhang, Y.; Zhang, H.; Zhang, X.; Zhou, D.; Zhou, F.; Zhu, H.; Zhu, J.; Zhu, X.] Cent China Normal Univ, Wuhan, Peoples R China. [Vernet, R.] IN2P3, Ctr Calcul, Villeurbanne, France. [Ceballos Sanchez, C.; Torres, E. Lopez; Shtejer, K.] CEADEN, Havana, Cuba. [Blanco, F.; Cotallo, M. E.; Diaz Corchero, M. A.; Gonzalez-Zamora, P.; Montes, E.; Rubio Montero, A. J.; Serradilla, E.] CIEMAT, E-28040 Madrid, Spain. [Canoa Roman, V.; Chujo, T.; Contreras, J. G.; Crescio, E.; Cruz Albino, R.; Gomez, R.; Corral, G. Herrera; Montano Zetina, L.] CINVESTAV, Mexico City 14000, DF, Mexico. [Canoa Roman, V.; Chujo, T.; Contreras, J. G.; Crescio, E.; Cruz Albino, R.; Gomez, R.; Corral, G. Herrera; Montano Zetina, L.] CINVESTAV, Merida, Mexico. [Alici, A.; Cifarelli, L.; De Caro, A.; De Gruttola, D.; Noferini, F.; Preghenella, R.; Santoro, R.; Zichichi, A.] Museo Stor Fis, Ctr Fermi, Rome, Italy. [Alici, A.; Cifarelli, L.; De Caro, A.; De Gruttola, D.; Noferini, F.; Preghenella, R.; Santoro, R.; Zichichi, A.] Ctr Studi & Ric Enrico Fermi, Rome, Italy. [Garcia-Solis, E.; Harton, A.] Chicago State Univ, Chicago, IL USA. [Baldisseri, A.; Borel, H.; Castillo Castellanos, J.; Charvet, J. L.; Geuna, C.; Da Costa, H. Pereira; Rakotozafindrabe, A.; Yang, H.] CEA, IRFU, Saclay, France. [Ahmed, I.; Ajaz, M.; Khan, K. H.; Rauf, A. W.; Suleymanov, M.] COMSATS Inst Informat Technol CIIT, Islamabad, Pakistan. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela, Spain. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago de Compostela, IGFAE, Santiago De Compostela, Spain. [Ahmad, N.; Masoodi, A. Ahmad; Azmi, M. D.; Irfan, M.; Khan, M. M.] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India. [Altinpinar, S.; Djuvsland, O.; Fehlker, D.; Haaland, O.; Huang, M.; Langoy, R.; Lien, J.; Loenne, P. I.; Nystrand, J.; Rehman, A.; Roed, K.; Rohrich, D.; Skjerdal, K.; Ullaland, K.; Wagner, B.; Yang, S.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Anson, C.; Gangadharan, D. R.; Humanic, T. J.; Lisa, M. A.; Salzwedel, J.; Steinpreis, M.; Truesdale, D.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Han, B. H.; Hwang, D. S.; Kim, S.; Kim, J. H.] Sejong Univ, Dept Phys, Seoul, South Korea. [Batzing, P. C.; Dordic, O.; Eyyubova, G.; Kvaerno, H.; Lindal, S.; Lovhoiden, G.; Milosevic, J.; Nilsson, M. S.; Qvigstad, H.; Richter, M.; Roed, K.; Skaali, T. B.; Tveter, T. S.; Wikne, J.] Univ Oslo, Dept Phys, Oslo, Norway. [Camerini, P.; Contin, G.; Lea, R.; Margagliotti, G. V.; Rui, R.; Venaruzzo, M.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Camerini, P.; Contin, G.; Lea, R.; Margagliotti, G. V.; Rui, R.; Venaruzzo, M.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Casula, E. A. R.; Collu, A.; De Falco, A.; Incani, E.; Puddu, G.; Razazi, V.; Serci, S.; Usai, G. L.] Univ Cagliari, Dipartimento Fis, Cagliari, Italy. [Casula, E. A. R.; Collu, A.; De Falco, A.; Incani, E.; Puddu, G.; Razazi, V.; Serci, S.; Usai, G. L.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [Aimo, I.; Beole, S.; Berzano, D.; Bianchi, L.; Botta, E.; Bruna, E.; Bufalino, S.; Morales, Y. Corrales; Ferretti, A.; Gagliardi, M.; Gallio, M.; Innocenti, G. M.; Leoncino, M.; Marchisone, M.; Masera, M.; Milano, L.; Padilla, F.; Russo, R.; Vasquez, M. A. Subieta; Vallero, S.; Vercellin, E.] Univ Turin, Dipartimento Fis, Turin, Italy. [Aimo, I.; Beole, S.; Berzano, D.; Bianchi, L.; Botta, E.; Bruna, E.; Bufalino, S.; Morales, Y. Corrales; Ferretti, A.; Gagliardi, M.; Gallio, M.; Innocenti, G. M.; Leoncino, M.; Marchisone, M.; Masera, M.; Milano, L.; Padilla, F.; Russo, R.; Vasquez, M. A. Subieta; Vallero, S.; Vercellin, E.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Meddi, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Meddi, F.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Barbera, R.; Jacholkowski, A.; La Rocca, P.; Petta, C.; Riggi, F.; Santagati, G.] Univ Catania, Dipartimento Fis & Astron, Catania, Italy. [Barbera, R.; Jacholkowski, A.; La Rocca, P.; Petta, C.; Riggi, F.; Santagati, G.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Agostinelli, A.; Arcelli, S.; Basile, M.; Bellini, F.; Cifarelli, L.; Falchieri, D.; Guerzoni, B.; Scioli, G.; Zichichi, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Agostinelli, A.; Arcelli, S.; Basile, M.; Bellini, F.; Cifarelli, L.; Falchieri, D.; Guerzoni, B.; Scioli, G.; Zichichi, A.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Caffarri, D.; Dainese, A.; Fabris, D.; Festanti, A.; Francescon, A.; Lunardon, M.; Morando, M.; Moretto, S.; Scarlassara, F.; Segato, G.; Soramel, F.; Toia, A.; Viesti, G.] Univ Padua, Dipartimento Fis & Astron, Padua, Italy. [Caffarri, D.; Dainese, A.; Fabris, D.; Festanti, A.; Francescon, A.; Lunardon, M.; Morando, M.; Moretto, S.; Scarlassara, F.; Segato, G.; Soramel, F.; Toia, A.; Viesti, G.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Pagano, P.; Virgili, T.] Univ Salerno, Dipartimento Fis ER Caianiello, I-84100 Salerno, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Pagano, P.; Virgili, T.] INFN, Grp Collegato, Salerno, Italy. [Cortese, P.; Ramello, L.; Sitta, M.] Univ Piemonte Orientale, Dipartimento Sci & Innovaz Tecnol, Alessandria, Italy. [Cortese, P.; Ramello, L.; Sitta, M.] INFN, Grp Collegato, Alessandria, Italy. [Altini, V.; Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; Erasmo, G. D.; Di Bari, D.; Di Giglio, C.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Mastroserio, A.; Nicassio, M.; Perrino, D.; Tangaro, M. A.; Terrevoli, C.] Dipartimento Interateneo Fis M Merlin, Bari, Italy. [Altini, V.; Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; Erasmo, G. D.; Di Bari, D.; Di Giglio, C.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Mastroserio, A.; Nicassio, M.; Perrino, D.; Tangaro, M. A.; Terrevoli, C.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Christiansen, P.; Dobrin, A.; Gros, P.; Ljunggren, H. M.; Ortiz Velasquez, A.; Oskarsson, A.; Richert, T.; Sogaard, C.; Stenlund, E.] Lund Univ, Div Expt High Energy Phys, Lund, Sweden. [Rinella, G. Aglieri; Augustinus, A.; Pedrosa, F. Baltasar Dos Santos; Betev, L.; Brun, R.; Buncic, P.; Carena, W.; Carena, F.; Carminati, F.; Cavicchioli, C.; Chapeland, S.; Cheshkov, C.; Barroso, V. Chibante; Chochula, P.; del Valle, Z. Conesa; Costa, F.; Di Mauro, A.; Divia, R.; Erazmus, B.; Floris, M.; Francescon, A.; Fuchs, U.; Gargiulo, C.; Gheata, M.; Gheata, A.; Giubellino, P.; Grigoras, C.; Grigoras, A.; Grosse-Oetringhaus, J. F.; Grosso, R.; Hayrapetyan, A.; Hristov, P.; Innocenti, P. G.; Kalweit, A.; Kluge, A.; Kugathasan, T.; Lechman, M.; Legrand, I.; Lippmann, C.; Luzzi, C.; Mager, M.; Martinengo, P.; Milano, L.; Morsch, A.; Mueller, H.; Musa, L.; Niculescu, M.; Oeschler, H.; Pinazza, O.; Poghosyan, M. G.; Rademakers, A.; Rauch, W.; Revol, J. -P.; Riedler, P.; Riegler, W.; Rossegger, S.; Rossi, A.; Safarik, K.; Santoro, R.; Schukraft, J.; Schutz, Y.; Shahoyan, R.; Simonetti, G.; Soos, C.; Szczepankiewicz, A.; Martinez, A. Tarazona; Tauro, A.; Telesca, A.; Vande Vyvre, P.; Van Hoorne, J. W.; Volpe, G.; von Haller, B.; Vranic, D.; Wessels, J. P.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. Fachhsch Koln, Cologne, Germany. [Alme, J.; Erdal, H. A.; Helstrup, H.; Hetland, K. F.; Kileng, B.] Bergen Univ Coll, Fac Engn, Bergen, Norway. [Broz, M.; Meres, M.; Pikna, M.; Sitar, B.; Strmen, P.; Szarka, I.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Adam, J.; Bielcik, J.; Cepila, J.; Krelina, M.; Krus, M.; Pachr, M.; Petracek, V.; Petran, M.; Pospisil, V.; Smakal, R.; Tlusty, D.; Vajzer, M.; Wagner, V.; Zach, C.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic. [Bombara, M.; Harmanova-Tothova, Z.; Kravcakova, A.; Vrlakova, J.] Safarik Univ, Fac Sci, Kosice, Slovakia. [Alt, T.; Bach, M.; de Cuveland, J.; Eschweiler, D.; Gerhard, J.; Gorbunov, S.; Kalcher, S.; Kirsch, S.; Kisel, I.; Kollegger, T.; Kretz, M.; Lindenstruth, V.; Painke, F.; Rettig, F.; Rohr, D.; Toia, A.] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, D-60054 Frankfurt, Germany. [Baek, Y. W.; Jung, H.; Kim, M.; Kim, J. S.; Kim, D. W.; Lee, S. C.; Oh, S. K.] Gangneung Wonju Natl Univ, Kangnung, South Korea. Gauhati Univ, Dept Phys, Gauhati, India. [Aysto, J.; Chang, B.; Kalliokoski, T.; Kim, D. J.; Kral, J.; Krizek, F.; Loo, K. K.; Morreale, A.; Raiha, T. S.; Rak, J.; Rasanen, S. S.; Sarkamo, J.; Trzaska, W. H.; Viinikainen, J.] HIP, Jyvaskyla, Finland. [Aysto, J.; Chang, B.; Kalliokoski, T.; Kim, D. J.; Kral, J.; Krizek, F.; Loo, K. K.; Morreale, A.; Raiha, T. S.; Rak, J.; Rasanen, S. S.; Sarkamo, J.; Trzaska, W. H.; Viinikainen, J.] Univ Jyvaskyla, Jyvaskyla, Finland. [Sakaguchi, H.; Shigaki, K.; Sugitate, T.] Hiroshima Univ, Hiroshima, Japan. [Behera, N. K.; Dash, S.; Jena, S.; Meethaleveedu, G. Koyithatta; Kumar, J.; Nandi, B. K.; Nyatha, A.; Varma, R.] Indian Inst Technol Bombay IIT, Mumbai, Maharashtra, India. [Mazumder, R.; Mishra, A. N.; Sahoo, R.] Indian Inst Technol Indore, Indore, India. [del Valle, Z. Conesa; Das, I.; Espagnon, B.; Hadjidakis, C.; Hrivnacova, I.; Lakomov, I.; Suire, C.; Takaki, J. D. Tapia; Palomo, L. Valencia] Univ Paris 11, CNRS, IN2P3, IPNO, F-91405 Orsay, France. [Bogolyubsky, M.; Evdokimov, S.; Kharlov, Y.; Patalakha, D. I.; Polichtchouk, B.; Sadovsky, S.; Stolpovskiy, M.] Inst High Energy Phys, Protvino, Russia. [Finogeev, D.; Guber, F.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Konevskikh, A.; Kurepin, A.; Kurepin, A. B.; Maevskaya, A.; Pshenichnov, I.; Reshetin, A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Bertens, R. A.; Bianchin, C.; Bjelogrlic, S.; Botje, M.; Christakoglou, P.; de Rooij, R.; Dobrin, A.; Dubla, A.; Grelli, A.; Kuijer, P. G.; La Pointe, S. L.; Lodato, D. F.; Luparello, G.; Mischke, A.; Nooren, G.; Peitzmann, T.; Lara, C. E. Perez; Poljak, N.; Reicher, M.; Manso, A. Rodriguez; Snellings, R. J. M.; Thomas, D.; van Leeuwen, M.; Veldhoen, M.; Verweij, M.; Yang, H.; Zhou, Y.] NIKHEF H, Natl Inst Subat Phys, Utrecht, Netherlands. [Bertens, R. A.; Bianchin, C.; Bjelogrlic, S.; de Rooij, R.; Dobrin, A.; Dubla, A.; Grelli, A.; La Pointe, S. L.; Lodato, D. F.; Luparello, G.; Mischke, A.; Nooren, G.; Peitzmann, T.; Poljak, N.; Reicher, M.; Snellings, R. J. M.; Thomas, D.; van Leeuwen, M.; Veldhoen, M.; Verweij, M.; Yang, H.; Zhou, Y.] Univ Utrecht, Inst Subat Phys, Utrecht, Netherlands. [Akindinov, A.; Kaidalov, A. B.; Kiselev, S.; Mal'Kevich, D.; Mikhaylov, K.; Nedosekin, A.; Sultanov, R.; Voloshin, K.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Ban, J.; Kalinak, P.; Kralik, I.; Krivda, M.; Mikhaylov, K.; Musinsky, J.; Sandor, L.; Vala, M.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Baral, R. C.; Mahapatra, D. P.; Sahu, P. K.] Inst Phys, Bhubaneswar 751007, Orissa, India. [Mares, J.; Polak, K.; Zavada, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Danu, A.; Felea, D.; Gheata, M.; Haiduc, M.; Mitu, C.; Niculescu, M.; Sevcenco, A.; Stan, I.; Zgura, I. S.] ISS, Bucharest, Romania. [Boettger, S.; Breitner, T.; Engel, H.; Kebschull, U.; Lara, C.; Ulrich, J.; Zelnicek, P.] Goethe Univ Frankfurt, Inst Informat, D-60054 Frankfurt, Germany. [Appelshaeuser, H.; Arend, A.; Arslandok, M.; Bailhache, R.; Baumann, C.; Beck, H.; Blume, C.; Book, J.; Broker, T. A.; Buesching, H.; Doenigus, B.; Hartig, M.; Heckel, S. T.; Ketzer, B.; Kliemant, M.; Kramer, F.; Kulakov, I.; Lehnert, J.; Luettig, P.; Marquard, M.; Pitz, N.; Rascanu, B. T.; Reichelt, P.; Renfordt, R.; Schuchmann, S.; Peloni, A. Tarantola; Ulery, J.; Zyzak, M.] Goethe Univ Frankfurt, Inst Kernphys, Frankfurt, Germany. [Mager, M.; Oeschler, H.] Tech Univ Darmstadt, Inst Kernphys, Darmstadt, Germany. [Anielski, J.; Bathen, B.; Dietel, T.; Emschermann, D.; Feldkamp, L.; Haake, R.; Heide, M.; Klein-Boesing, C.; Passfeld, A.; Sicking, E.; Wessels, J. P.; Westerhoff, U.; Wilde, M.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Alfaro Molina, R.; Cuautle, E.; Grabski, V.; Bustamante, R. T. Jimenez; Ladron de Guevara, P.; Maldonado Cervantes, I.; Ortiz Velasquez, A.; Paic, G.; Simatovic, G.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Almara Avina, E.; Belmont-Moreno, E.; Cruz Alaniz, E.; Gonzalez-Trueba, L. H.; Leon, H.; Menchaca-Rocha, A.; Sandoval, A.; Serradilla, E.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico. [Belikov, I.; Hippolyte, B.; Kuhn, C.; Molnar, L.; Roy, C.; Castro, X. Sanchez; Senyukov, S.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Batyunya, B.; Grigoryan, S.; Malinina, L.; Mikhaylov, K.; Nomokonov, P.; Pocheptsov, T.; Rogochaya, E.; Shabratova, G.; Vala, M.; Vodopyanov, A.; Zaporozhets, S.] Joint Inst Nucl Res, Dubna, Russia. [Ulrich, J.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Ahn, S. A.; Ahn, S. U.; Jang, H. J.; Kim, D. W.] Korea Inst Sci & Technol Informat, Taejon, South Korea. [Uysal, A. Karasu] KTO Karatay Univ, Konya, Turkey. [Baek, Y. W.; Barret, V.; Bastid, N.; Crochet, P.; Dupieux, P.; Ichou, R.; Li, S.; Lopez, X.; Manso, F.; Marchisone, M.; Porteboeuf-Houssais, S.; Rosnet, P.; Vulpescu, B.; Zhang, X.] Univ Clermont Ferrand, CNRS, IN2P3, Clermont Univ,LPC, Clermont Ferrand, France. [Arbor, N.; Balbastre, G. Conesa; Faivre, J.; Furget, C.; Guernane, R.; Kox, S.; Real, J. S.; Silvestre, C.] Univ Grenoble 1, CNRS, IN2P3, Inst Polytech Grenoble,LPSC, Grenoble, France. [Bianchi, N.; Casanova Diaz, A.; Cunqueiro, L.; Di Nezza, P.; Fantoni, A.; Gianotti, P.; Muccifora, V.; Reolon, A. R.; Ronchetti, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Ricci, R. A.; Vannucci, L.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Braidot, E.; Cosentino, M. R.; Fenton-Olsen, B.; Jacobs, P. M.; Loizides, C.; Ploskon, M.; Sakai, S.; Symons, T. J. M.; Zhang, X.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Abelev, B.; Garishvili, I.; Soltz, R.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Bogdanov, A.; Grigoriev, V.; Kaplin, V.; Kondratyeva, N.; Loginov, V.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Deloff, A.; Dobrowolski, T.; Ilkiv, I.; Kurashvili, P.; Redlich, K.; Siemiarczuk, T.; Stefanek, G.; Wilk, G.] Natl Ctr Nucl Studies, Warsaw, Poland. [Andrei, C.; Berceanu, I.; Bercuci, A.; Catanescu, V.; Herghelegiu, A.; Petris, M.; Petrovici, M.; Pop, A.; Schiaua, C.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Mohanty, B.; Singha, S.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Bearden, I. G.; Bilandzic, A.; Boggild, H.; Chojnacki, M.; Christensen, C. H.; Gaardhoje, J. J.; Gulbrandsen, K.; Hansen, A.; Nielsen, B. S.; Nygaard, C.; Zaccolo, V.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Adamova, D.; Bielcikova, J.; Kucera, V.; Kushpil, V.; Kushpil, S.; Sumbera, M.; Vajzer, M.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. [Awes, T. C.; Ganoti, P.; Silvermyr, D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Berdnikov, Y.; Ivanov, V.; Khanzadeev, A.; Kryshen, E.; Malaev, M.; Nikulin, V.; Samsonov, V.; Zhalov, M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Cherney, M.; Nilsen, B. S.] Creighton Univ, Dept Phys, Omaha, NE 68178 USA. [Aggarwal, M. M.; Bhati, A. K.; Rathee, D.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Floratos, E.; Spyropoulou-Stassinaki, M.; Vasileiou, M.] Univ Athens, Dept Phys, Athens, Greece. [Azmi, M. D.; Bossu, F.; Buthelezi, Z.; Cleymans, J.; Foertsch, S.; Murray, S.; Steyn, G.; Vilakazi, Z.] Univ Cape Town, Dept Phys, Somerset West, South Africa. [Azmi, M. D.; Bossu, F.; Buthelezi, Z.; Cleymans, J.; Foertsch, S.; Murray, S.; Steyn, G.; Vilakazi, Z.] Natl Res Fdn, iThemba LABS, Somerset West, South Africa. [Bala, R.; Bhasin, A.; Gupta, A.; Gupta, R.; Mangotra, L.; Potukuchi, B.; Sambyal, S.; Sharma, S.; Rohni, S.; Singh, R.] Univ Jammu, Dept Phys, Jammu 180004, India. [Goswami, A.; Mishra, A. N.; Raniwala, S.; Raniwala, R.] Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India. [Anguelov, V.; Busch, O.; Fasel, M.; Glaessel, P.; Grajcarek, R.; Herrmann, N.; Klein, J.; Kweon, M. J.; Lohner, D.; Lu, X. -G.; Maire, A.; Perez, J. Mercado; Oeschler, H.; Oyama, K.; Pachmayer, Y.; Reidt, F.; Reygers, K.; Schicker, R.; Stachel, J.; Stiller, J. H.; Voelkl, M. A.; Wang, Y.; Windelband, B.; Winn, M.; Zimmermann, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Agnello, M.; Aimo, I.] Politecn Torino, Turin, Italy. [Browning, T. A.; Scharenberg, R. P.; Srivastava, B. K.] Purdue Univ, W Lafayette, IN 47907 USA. [Chung, S. U.; Seo, J.; Song, J.; Yi, J.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Andronic, A.; Arsene, I. C.; Averbeck, R.; Braun-Munzinger, P.; Castillo Hernandez, J. F.; Doenigus, B.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Ivan, C.; Ivanov, M.; Knichel, M. L.; Koehler, M. K.; Krzewicki, M.; Lenhardt, M.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Onderwaater, J.; Otwinowski, J.; Park, W. J.; Romita, R.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Thaeder, J.; Vranic, D.] GSI Helmholtzzentrum Schwerionenforsch, Div Res, Darmstadt, Germany. [Andronic, A.; Arsene, I. C.; Averbeck, R.; Braun-Munzinger, P.; Castillo Hernandez, J. F.; Doenigus, B.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Ivan, C.; Ivanov, M.; Knichel, M. L.; Koehler, M. K.; Krzewicki, M.; Lenhardt, M.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Onderwaater, J.; Otwinowski, J.; Park, W. J.; Romita, R.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Thaeder, J.; Vranic, D.] GSI Helmholtzzentrum Schwerionenforsch, ExtreMe Matter Inst EMMI, Darmstadt, Germany. [Anticic, T.; Nikolic, V.; Planinic, M.; Poljak, N.; Simatovic, G.; Susa, T.] Rudjer Boskovic Inst, Zagreb, Croatia. [Budnikov, D.; Filchagin, S.; Ilkaev, R.; Kuryakin, A.; Mamonov, A.; Nazarenko, S.; Punin, V.; Tumkin, A.; Vinogradov, Y.; Vyushin, A.; Zaviyalov, N.] Russian Fed Nucl Ctr VNIIEF, Sarov, Russia. [Aleksandrov, D.; Blau, D.; Fokin, S.; Ippolitov, M.; Kazantsev, A.; Kucheriaev, Y.; Manko, V.; Nikolaev, S.; Nikulin, S.; Nyanin, A.; Peresunko, D.; Ryabinkin, E.; Sibiriak, Y.; Ter Minasyan, A.; Vasiliev, A.; Vinogradov, A.; Yasnopolskiy, S.; Yushmanov, I.] Russian Res Ctr Kurchatov Inst, Moscow, Russia. [Chattopadhyay, S.; Das, K.; Das, D.; Majumdar, A. K. Dutta; Khan, P.; Paul, B.; Roy, P.; Sinha, T.] Saha Inst Nucl Phys, Kolkata, India. [Alexandre, D.; Barnby, L. S.; Evans, D.; Hanratty, L. D.; Jones, P. G.; Jusko, A.; Krivda, M.; Lee, G. R.; Lietava, R.; Palaha, A.; Petrov, P.; Scott, P. A.; Baillie, O. Villalobos] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Calvo Villar, E.; Gago, A.] Pontificia Univ Catolica Peru, Dept Ciencias, Secc Fis, Lima, Peru. [Badala, A.; Palmeri, A.; Pappalardo, G. S.; Riggi, F.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Agnello, M.; Aimo, I.; Alessandro, B.; Arnaldi, R.; Bala, R.; Berzano, D.; Bruna, E.; Bufalino, S.; Cerello, P.; De Marco, N.; Feliciello, A.; Manceau, L.; Monteno, M.; Oppedisano, C.; Prino, F.; Riccati, L.; Rivetti, A.; Scomparin, E.; Toscano, L.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Antinori, F.; Caffarri, D.; Dainese, A.; Fabris, D.; Toia, A.; Turrisi, R.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [Alici, A.; Antonioli, P.; Cara Romeo, G.; Cindolo, F.; Hatzifotiadou, D.; Margotti, A.; Nania, R.; Noferini, F.; Pesci, A.; Preghenella, R.; Scapparone, E.; Williams, M. C. S.; Zampolli, C.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Cicalo, C.; Masoni, A.; Siddhanta, S.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [Fragiacomo, E.; Grion, N.; Margagliotti, G. V.; Piano, S.; Rachevski, A.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [de Cataldo, G.; Elia, D.; Lenti, V.; Manzari, V.; Nappi, E.; Paticchio, V.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Di Liberto, S.; Mazzoni, M. A.; Urciuoli, G. M.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Lemmon, R. C.; Romita, R.] STFC Daresbury Lab, Nucl Phys Grp, Daresbury, England. [Aphecetche, L.; Batigne, G.; Bergognon, A. A. E.; Bregant, M.; Delagrange, H.; Erazmus, B.; Estienne, M.; Germain, M.; Lardeux, A.; Garcia, G. Martinez; Mas, A.; Massacrier, L.; Pillot, P.; Schutz, Y.; Shabetai, A.; Stocco, D.] Univ Nantes, CNRS, IN2P3, Ecole Mines Nantes,SUBATECH, Nantes, France. Suranaree Univ Technol, Nakhon Ratchasima, Thailand. [Gotovac, S.; Mudnic, E.; Vickovic, L.] Tech Univ Split FESB, Split, Croatia. [Ketzer, B.] Tech Univ Munich, D-80290 Munich, Germany. [Bartke, J.; Figiel, J.; Gladysz-Dziadus, E.; Kowalski, M.; Matyja, A.; Mayer, C.; Rybicki, A.; Sputowska, I.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Knospe, A. G.; Markert, C.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Gomez, R.; Leon Monzon, I.; Podesta-Lerma, P. L. M.] Univ Autonoma Sinaloa, Culiacan, Mexico. [Carlin Filho, N.; de Barros, G. O. V.; Deppman, A.; Figueredo, M. A. S.; Jahnke, C.; Lagana Fernandes, C.; Moreira De Godoy, D. A.; Munhoz, M. G.; Oliveira Da Silva, A. C.; Pereira De Oliveira Filho, E.; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, BR-09500900 Sao Paulo, Brazil. [Dash, A.; Takahashi, J.] Univ Estadual Campinas, UNICAMP, Campinas, SP, Brazil. [Cheshkov, C.; Cheynis, B.; Ducroux, L.; Grossiord, J. -Y.; Guilbaud, M.; Tieulent, R.; Uras, A.; Zoccarato, Y.] Univ Lyon 1, CNRS, IN2P3, IPN Lyon, F-69622 Villeurbanne, France. [Bellwied, R.; Blanco, F.; Chinellato, D. D.; Jayarathna, P. H. S. Y.; Madagodahettige-Don, D. M.; Pinsky, L.; Piyarathna, D. B.; Timmins, A. R.; Weber, M.] Univ Houston, Houston, TX USA. Univ Technol, Vienna, Austria. Austrian Acad Sci, A-1010 Vienna, Austria. [Martashvili, I.; Mazer, J.; Nattrass, C.; Read, K. F.; Scott, R.; Sharma, N.] Univ Tennessee, Knoxville, TN USA. [Gunji, T.; Hamagaki, H.; Hayashi, S.; Hori, Y.; Ozawa, K.; Torii, H.; Tsuji, T.; Yamaguchi, Y.] Univ Tokyo, Tokyo, Japan. [Bhom, J.; Chujo, T.; Esumi, S.; Inaba, M.; Miake, Y.; Mizuno, S.; Niida, T.; Sakata, D.; Sano, M.; Watanabe, K.] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Hess, B. A.; Schmidt, H. R.; Wiechula, J.] Univ Tubingen, Tubingen, Germany. [Ahammed, Z.; Basu, S.; Chattopadhyay, S.; Choudhury, S.; De, S.; Dubey, A. K.; Ghosh, P.; Kar, S.; Khan, S. A.; Mohanty, B.; Muhuri, S.; Mukherjee, M.; Nayak, T. K.; Pal, S. K.; Saini, J.; Sarkar, D.; Singaraju, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata, India. [Langoy, R.; Lien, J.] Vestfold Univ Coll, Tonsberg, Norway. [Agostinelli, A.; Altsybeev, I.; Asryan, A.; Feofilov, G.; Ivanov, A.; Kolojvari, A.; Kompaniets, M.; Kondratiev, V.; Kovalenko, V.; Ochirov, A.; Vechernin, V.; Vinogradov, L.; Vorobyev, I.; Zarochentsev, A.] St Petersburg State Univ, V Fock Inst Phys, St Petersburg 199034, Russia. [Graczykowski, L. K.; Janik, M. A.; Kisiel, A.; Oleniacz, J.; Ostrowski, P.; Pawlak, T.; Peryt, W.; Pluta, J.; Szymanski, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Borissov, A.; Cormier, T. M.; Dobrin, A.; Jha, D. M.; Loggins, V. R.; Mlynarz, J.; Pavlinov, A.; Prasad, S. K.; Pruneau, C. A.; Putschke, J.; Voloshin, S.; Yaldo, C. G.] Wayne State Univ, Detroit, MI USA. [Agocs, A. G.; Barnafoeldi, G. G.; Bencedi, G.; Berenyi, D.; Boldizsar, L.; Denes, E.; Hamar, G.; Levai, P.; Molnar, L.; Pochybova, S.] Hungarian Acad Sci, Wigner Res Ctr Phys, Budapest, Hungary. [Adare, A. M.; Aronsson, T.; Caines, H.; Connors, M. E.; Harris, J. W.; Hicks, B.; Ma, R.; Oh, S.; Reed, R. J.; Schuster, T.; Smirnov, N.] Yale Univ, New Haven, CT USA. Yildiz Tekn Univ, Istanbul, Turkey. [Chang, B.; Kang, J. H.; Kim, M.; Kim, T.; Kim, B.; Kwon, Y.; Moon, T.; Song, M.; Yoon, J.] Yonsei Univ, Seoul 120749, South Korea. [Keidel, R.] Fachhsch Worms, ZTT, Worms, Germany. RP Abbas, E (reprint author), ASRT, Cairo, Egypt. RI Castillo Castellanos, Javier/G-8915-2013; Wagner, Vladimir/G-5650-2014; Sevcenco, Adrian/C-1832-2012; Kucera, Vit/G-8459-2014; Vajzer, Michal/G-8469-2014; Krizek, Filip/G-8967-2014; Bielcikova, Jana/G-9342-2014; Kovalenko, Vladimir/C-5709-2013; Levai, Peter/A-1544-2014; Pochybova, Sona/A-2835-2014; Takahashi, Jun/B-2946-2012; Guber, Fedor/I-4271-2013; Rui, Rinaldo/L-1926-2015; Nielsen, Borge S/C-3719-2015; Nattrass, Christine/J-6752-2016; Suaide, Alexandre/L-6239-2016; Deppman, Airton/J-5787-2014; Martynov, Yevgen/L-3009-2015; Inst. of Physics, Gleb Wataghin/A-9780-2017; Ferreiro, Elena/C-3797-2017; Armesto, Nestor/C-4341-2017; Ferretti, Alessandro/F-4856-2013; Martinez Hernandez, Mario Ivan/F-4083-2010; Vickovic, Linda/F-3517-2017; Fernandez Tellez, Arturo/E-9700-2017; Janik, Malgorzata/O-7520-2015; Graczykowski, Lukasz/O-7522-2015; feofilov, grigory/A-2549-2013; Christensen, Christian/D-6461-2012; De Pasquale, Salvatore/B-9165-2008; Chinellato, David/D-3092-2012; de Cuveland, Jan/H-6454-2016; Kurepin, Alexey/H-4852-2013; Jena, Deepika/P-2873-2015; Jena, Satyajit/P-2409-2015; Akindinov, Alexander/J-2674-2016; Salgado, Carlos A./G-2168-2015; Bruna, Elena/C-4939-2014; Karasu Uysal, Ayben/K-3981-2015; HAMAGAKI, HIDEKI/G-4899-2014; Pshenichnov, Igor/A-4063-2008; Kompaniets, Mikhail/F-5025-2013; Altsybeev, Igor/K-6687-2013; Vinogradov, Leonid/K-3047-2013; Kondratiev, Valery/J-8574-2013; Vechernin, Vladimir/J-5832-2013; Usai, Gianluca/E-9604-2015; Adamova, Dagmar/G-9789-2014; Barnby, Lee/G-2135-2010; Yang, Hongyan/J-9826-2014; Cosentino, Mauro/L-2418-2014; Bearden, Ian/M-4504-2014; Sumbera, Michal/O-7497-2014; Felea, Daniel/C-1885-2012; Barnafoldi, Gergely Gabor/L-3486-2013; Peitzmann, Thomas/K-2206-2012; Kharlov, Yuri/D-2700-2015; Mitu, Ciprian/E-6733-2011; Ahmed, Ijaz/E-9144-2015 OI Zarochentsev, Andrey/0000-0002-3502-8084; van Leeuwen, Marco/0000-0002-5222-4888; Murray, Sean/0000-0003-0548-588X; Masera, Massimo/0000-0003-1880-5467; Gaardhoje, Jens-Jorgen/0000-0001-6122-4698; Fernandez Tellez, Arturo/0000-0001-5092-9748; Zhou, You/0000-0002-7868-6706; Castillo Castellanos, Javier/0000-0002-5187-2779; Sevcenco, Adrian/0000-0002-4151-1056; Kovalenko, Vladimir/0000-0001-6012-6615; Takahashi, Jun/0000-0002-4091-1779; Guber, Fedor/0000-0001-8790-3218; Fiore, Enrichetta Maria/0000-0002-3548-2690; Di Bari, Domenico/0000-0002-5559-8906; Feliciello, Alessandro/0000-0001-5823-9733; SANTORO, ROMUALDO/0000-0002-4360-4600; Scarlassara, Fernando/0000-0002-4663-8216; Turrisi, Rosario/0000-0002-5272-337X; Beole', Stefania/0000-0003-4673-8038; Gago Medina, Alberto Martin/0000-0002-0019-9692; Riggi, Francesco/0000-0002-0030-8377; Dainese, Andrea/0000-0002-2166-1874; Paticchio, Vincenzo/0000-0002-2916-1671; Monteno, Marco/0000-0002-3521-6333; Bhasin, Anju/0000-0002-3687-8179; Christiansen, Peter/0000-0001-7066-3473; Scomparin, Enrico/0000-0001-9015-9610; Lemmon, Roy/0000-0002-1259-979X; Rui, Rinaldo/0000-0002-6993-0332; Virgili, Tiziano/0000-0003-0471-7052; Guerzoni, Barbara/0000-0003-3187-7051; Nielsen, Borge S/0000-0002-0091-1934; Read, Kenneth/0000-0002-3358-7667; Nattrass, Christine/0000-0002-8768-6468; Suaide, Alexandre/0000-0003-2847-6556; Deppman, Airton/0000-0001-9179-6363; Martynov, Yevgen/0000-0003-0753-2205; Ferreiro, Elena/0000-0002-4449-2356; Armesto, Nestor/0000-0003-0940-0783; Ferretti, Alessandro/0000-0001-9084-5784; Martinez Hernandez, Mario Ivan/0000-0002-8503-3009; Vickovic, Linda/0000-0002-9820-7960; Fernandez Tellez, Arturo/0000-0003-0152-4220; Janik, Malgorzata/0000-0002-3356-3438; feofilov, grigory/0000-0003-3700-8623; Christensen, Christian/0000-0002-1850-0121; De Pasquale, Salvatore/0000-0001-9236-0748; Chinellato, David/0000-0002-9982-9577; de Cuveland, Jan/0000-0003-0455-1398; Kurepin, Alexey/0000-0002-1851-4136; Jena, Deepika/0000-0003-2112-0311; Jena, Satyajit/0000-0002-6220-6982; Akindinov, Alexander/0000-0002-7388-3022; Salgado, Carlos A./0000-0003-4586-2758; Bruna, Elena/0000-0001-5427-1461; Karasu Uysal, Ayben/0000-0001-6297-2532; Pshenichnov, Igor/0000-0003-1752-4524; Kompaniets, Mikhail/0000-0001-8831-0553; Altsybeev, Igor/0000-0002-8079-7026; Vinogradov, Leonid/0000-0001-9247-6230; Kondratiev, Valery/0000-0002-0031-0741; Vechernin, Vladimir/0000-0003-1458-8055; Usai, Gianluca/0000-0002-8659-8378; Barnby, Lee/0000-0001-7357-9904; Cosentino, Mauro/0000-0002-7880-8611; Bearden, Ian/0000-0003-2784-3094; Sumbera, Michal/0000-0002-0639-7323; Felea, Daniel/0000-0002-3734-9439; Peitzmann, Thomas/0000-0002-7116-899X; FU State Committee of Science; World Federation of Scientists (WFS); Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC); Chinese Ministry of Education (CMOE); Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council; Carlsberg Foundation; Danish National Research Foundation; European Research Council under the European Community; Helsinki Institute of Physics; Academy of Finland; French CNRS-IN2P3; 'Region Pays de Loire'; 'Region Alsace'; 'Region Auvergne'; CEA, France; German BMBF; Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian OTKA; National Office for Research and Technology (NKTH); Department of Atomic Energy; Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN); Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Italy; MEXT Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); KICOS; CONACYT; DGAPA, Mexico; ALFA-EC; EPLANET Program (European Particle Physics Latin American Network) Stichting voor Fundamenteel Onderzoek der Materie (FOM); Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Authority for Scientific Research - NASR (Autoritatea Nationala pentru Cercetare Stiintifica - ANCS); Ministry of Education and Science of Russian Federation; Russian Academy of Sciences; Russian Federal Agency of Atomic Energy; Russian Federal Agency for Science and Innovations; Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; CIEMAT; EELA; Ministerio de Economia y Competitividad (MINECO) of Spain; Xunta de Galicia (Conselleria de Educacion); CEADEN; Cubaenergia, Cuba; IAEA (International Atomic Energy Agency); Swedish Research Council (VR); Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); United States Department of Energy; United States National Science Foundation; State of Texas; State of Ohio FX The ALICE collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: State Committee of Science, World Federation of Scientists (WFS) and Swiss Fonds Kidagan, Armenia, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the 'Region Pays de Loire', 'Region Alsace', 'Region Auvergne' and CEA, France; German BMBF and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian OTKA and National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Italy; MEXT Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna; KICOS); National Research Foundation of Korea (NRF); CONACYT, DGAPA, Mexico, ALFA-EC and the EPLANET Program (European Particle Physics Latin American Network) Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Authority for Scientific Research - NASR (Autoritatea Nationala pentru Cercetare Stiintifica - ANCS); Ministry of Education and Science of Russian Federation, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and The Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; CIEMAT, EELA, Ministerio de Economia y Competitividad (MINECO) of Spain, Xunta de Galicia (Conselleria de Educacion), CEADEN, Cubaenergia, Cuba, and IAEA (International Atomic Energy Agency); Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio. NR 19 TC 26 Z9 26 U1 0 U2 64 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD OCT PY 2013 VL 8 AR P10016 DI 10.1088/1748-0221/8/10/P10016 PG 23 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 251LR UT WOS:000326930900040 ER PT J AU Acciarri, R Canci, N Cavanna, F Segreto, E Szelc, AM AF Acciarri, R. Canci, N. Cavanna, F. Segreto, E. Szelc, A. M. TI Aging studies on thin tetra-phenyl butadiene films SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Conference on Light Detection in Noble Elements (LIDINE) CY MAY 29-31, 2013 CL Fermi Natl Accelerator Lab, IL HO Fermi Natl Accelerator Lab DE Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators); Noble liquid detectors (scintillation, ionization, double-phase); Photoemission AB Tetra-Phenyl Butadiene (TPB) is the most commonly used compound to wave-shift the 128 nm scintillation light of liquid Argon down to the visible spectrum. We present a study on the loss of conversion efficiency of thin TPB films evaporated on reflective foils when exposed to light and atmosphere. The efficiency of the films is measured and monitored with a dedicated set-up that uses gaseous Argon excited by alpha particles to produce 128 nm photons and working at room temperature. In particular we performed a two years long exposure of the samples to lab diffuse light and atmosphere. We also performed more controlled aging tests to investigate the effect of storing samples in a inert atmosphere. C1 [Acciarri, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Canci, N.] Univ Calif Los Angeles, Los Angeles, CA USA. [Cavanna, F.; Szelc, A. M.] Yale Univ, New Haven, CT 06520 USA. [Segreto, E.] Lab Nazl Gran Sasso, I-67010 Assergi, AQ, Italy. RP Segreto, E (reprint author), Lab Nazl Gran Sasso, SS 17Bis Km 18 910, I-67010 Assergi, AQ, Italy. EM ettore.segreto@lngs.infn.it RI Canci, Nicola/E-7498-2017; OI Canci, Nicola/0000-0002-4797-4297; Cavanna, Flavio/0000-0002-5586-9964 NR 5 TC 0 Z9 0 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD OCT PY 2013 VL 8 AR C10002 DI 10.1088/1748-0221/8/10/C10002 PG 7 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 251LR UT WOS:000326930900002 ER PT J AU Cardani, L Casali, N Nagorny, S Pattavina, L Piperno, G Barinova, OP Beeman, JW Bellini, F Danevich, FA Di Domizio, S Gironi, L Kirsanova, SV Orio, F Pessina, G Pirro, S Rusconi, C Tomei, C Tretyak, VI Vignati, M AF Cardani, L. Casali, N. Nagorny, S. Pattavina, L. Piperno, G. Barinova, O. P. Beeman, J. W. Bellini, F. Danevich, F. A. Di Domizio, S. Gironi, L. Kirsanova, S. V. Orio, F. Pessina, G. Pirro, S. Rusconi, C. Tomei, C. Tretyak, V. I. Vignati, M. TI Development of a Li2MoO4 scintillating bolometer for low background physics SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Calorimeters; Double-beta decay detectors; Neutron detectors (cold, thermal, fast neutrons); Dark Matter detectors (WIMPs, axions, etc.) ID DOUBLE-BETA-DECAY; PARTICLE PHYSICS; DARK-MATTER; CRYSTAL; CANDIDATES; SIGNALS; AXIONS; SEARCH AB We present the performance of a 33 g Li2MoO4 crystal working as a scintillating bolometer. The crystal was tested for more than 400 h in a dilution refrigerator installed in the underground laboratory of Laboratori Nazionali del Gran Sasso (Italy). This compound shows promising features in the frame of neutron detection, dark matter search (solar axions) and neutrinoless double-beta decay physics. Low temperature scintillating properties were investigated by means of different alpha, beta/gamma and neutron sources, and for the first time the Light Yield for different types of interacting particle is estimated. The detector shows great ability of tagging fast neutron interactions and high intrinsic radiopurity levels (< 90 mu Bq/kg for U-238 and < 110 mu Bq/kg for Th-232). C1 [Casali, N.; Nagorny, S.; Pattavina, L.; Pirro, S.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, I-67010 Assergi, AQ, Italy. [Casali, N.] Univ Aquila, Dipartimento Sci Fis & Chim, I-67100 Coppito, AQ, Italy. [Cardani, L.; Piperno, G.; Bellini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Cardani, L.; Piperno, G.; Bellini, F.; Orio, F.; Tomei, C.; Vignati, M.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Barinova, O. P.; Kirsanova, S. V.] DI Mendeleev Univ Chem Technol Russia, Moscow 125047, Russia. [Beeman, J. W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Danevich, F. A.; Tretyak, V. I.] MSP, Inst Nucl Res, UA-3680 Kiev, Ukraine. [Di Domizio, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Di Domizio, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Gironi, L.; Pessina, G.] Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy. [Gironi, L.; Pessina, G.; Rusconi, C.] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20126 Milan, Italy. RP Pattavina, L (reprint author), Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, I-67010 Assergi, AQ, Italy. EM luca.pattavina@lngs.infn.it RI Bellini, Fabio/D-1055-2009; Di Domizio, Sergio/L-6378-2014; Pattavina, Luca/I-7498-2015; Vignati, Marco/H-1684-2013; Kirsanova, Svetlana/O-5319-2016; Gironi, Luca/P-2860-2016; Casali, Nicola/C-9475-2017; OI Cardani, Laura/0000-0001-5410-118X; Pessina, Gianluigi Ezio/0000-0003-3700-9757; Tretyak, Vladimir/0000-0002-2369-0679; Bellini, Fabio/0000-0002-2936-660X; Di Domizio, Sergio/0000-0003-2863-5895; Pattavina, Luca/0000-0003-4192-849X; Vignati, Marco/0000-0002-8945-1128; Gironi, Luca/0000-0003-2019-0967; Casali, Nicola/0000-0003-3669-8247; Nahornyi, Serhii/0000-0002-8679-3747 FU European Research Council under the European Union [247115]; ISOTTA project; ASPERA 2nd Common Call for RD Activities FX This project was partially carried out in the frame of the LUCIFER project, funded by the European Research Council under the European Union's Seventh Framework Program (FP7/2007- 2013) ERC grant agreement no. 247115. This work was also supported by the ISOTTA project, funded within the ASPERA 2nd Common Call for R&D Activities. NR 30 TC 13 Z9 13 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD OCT PY 2013 VL 8 AR P10002 DI 10.1088/1748-0221/8/10/P10002 PG 13 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 251LR UT WOS:000326930900026 ER PT J AU Diez, S Clark, T Grillo, AA Kononenko, W Martinez-McKinney, F Newcomer, FM Norgren, M Rescia, S Spencer, E Spieler, H Ullan, M Wilder, M AF Diez, S. Clark, T. Grillo, A. A. Kononenko, W. Martinez-McKinney, F. Newcomer, F. M. Norgren, M. Rescia, S. Spencer, E. Spieler, H. Ullan, M. Wilder, M. TI Radiation hardness evaluation of a 130 nm SiGe BiCMOS technology for high energy physics applications SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Radiation damage to electronic components; Front-end electronics for detector readout; Particle tracking detectors; Radiation-hard electronics ID FRONT-END ELECTRONICS; BIPOLAR-TRANSISTORS; ATLAS UPGRADE; IRRADIATION; DAMAGE; HBTS AB Final results for a comprehensive radiation hardness evaluation of a high performance, low cost, 130 nm SiGe BiCMOS technology are presented. After a survey of several available SiGe technologies, one was chosen in terms of performance, power consumption, radiation hardness, and cost and it is presented as a suitable technology for the future upgrades of the ATLAS detector of the High Luminosity LHC. Bipolar devices of different sizes and geometries have been evaluated, along with a prototype Front-End readout ASIC designed for binary readout of silicon microstrip detectors. Gamma, neutron and proton irradiations have been performed up to the expected doses and fluences of the experiment. C1 [Diez, S.; Spieler, H.] Lawrence Berkeley Natl Lab, Berkeley, CA 94103 USA. [Diez, S.; Ullan, M.] CSIC, CNM, Barcelona, Spain. [Clark, T.; Grillo, A. A.; Martinez-McKinney, F.; Norgren, M.; Spencer, E.; Wilder, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Kononenko, W.; Newcomer, F. M.] Univ Penn, Philadelphia, PA 19104 USA. [Rescia, S.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Diez, S (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94103 USA. EM sdiezcornell@lbl.gov RI Ullan, Miguel/P-7392-2015 FU Spanish Ministry of Education and Science [FPA2009-13234-C04-04]; FEDER FX The authors want to thank the staff of CIEMAT, BNL, JSI, and LANL irradiation facilities for their efficiency and dedication in performing the irradiation of our devices. This work is supported and financed in part by the Spanish Ministry of Education and Science through the Particle Physics National Program (ref. FPA2009-13234-C04-04) and co-financed with FEDER funds. NR 23 TC 0 Z9 0 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD OCT PY 2013 VL 8 AR P10009 DI 10.1088/1748-0221/8/10/P10009 PG 13 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 251LR UT WOS:000326930900033 ER PT J AU Gascon, M Schnorrenberger, L Pietras, B Alvarez-Pol, H Cortina-Gil, D Fernandez, PD Duran, I Glorius, J Gonzalez, D Perez-Loureiro, D Pietralla, N Savran, D Sonnabend, K AF Gascon, M. Schnorrenberger, L. Pietras, B. Alvarez-Pol, H. Cortina-Gil, D. Fernandez, P. Diaz Duran, I. Glorius, J. Gonzalez, D. Perez-Loureiro, D. Pietralla, N. Savran, D. Sonnabend, K. TI Characterization of a CsI(Tl) array coupled to avalanche photodiodes for the Barrel of the CALIFA calorimeter at the NEPTUN tagged gamma beam facility SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Scintillators; scintillation and light emission processes (solid, gas and liquid scintillators); Photon detectors for UV, visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs, CCDs, EBCCDs, EMCCDs etc); Calorimeter methods ID RECENT PROGRESS; RAYS DETECTION; X-RAYS; CRYSTALS; SCINTILLATORS; DETECTOR; PHYSICS; DESIGN AB Among the variety of crystal calorimeters recently designed for several physics facilities, CALIFA (CALorimeter for In-Flight emitted gAmmas and light-charged particles) has especially demanding requirements since it must perform within a very complicated energy domain (gamma-ray energies from 0.1 to 20MeV and up to 300MeV protons). As part of the R&D program for the Barrel section of CALIFA, a reduced geometry prototype was constructed. This prototype consisted of a 3 x 5 array of CsI(Tl) crystals of varying dimensions, coupled to large area avalanche photodiodes. Here reported are the details regarding the construction of the prototype and the experimental results obtained at the NEPTUN tagged gamma beam facility, reconstructing gamma energies up to 10 MeV. Dedicated Monte Carlo simulations of the setup were also performed, enabling a deeper understanding of the experimental data. The experimental results demonstrate the effectiveness of the reconstruction method and helped to establish the most suitable crystal geometry to be employed within the forthcoming calorimeter. C1 [Gascon, M.; Pietras, B.; Alvarez-Pol, H.; Cortina-Gil, D.; Fernandez, P. Diaz; Glorius, J.; Gonzalez, D.] Univ Santiago de Compostela, Dept Fis Particulas, E-15758 Santiago De Compostela, Spain. [Schnorrenberger, L.; Pietralla, N.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Savran, D.] GSI Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [Savran, D.] GSI Helmholtzzentrum Schwerionenforsch GmbH, Div Res, D-64291 Darmstadt, Germany. [Savran, D.] Frankfurt Inst Adv Studies FIAS, D-60438 Frankfurt, Germany. [Glorius, J.; Sonnabend, K.] Goethe Univ Frankfurt, Inst Angew Phys, D-60438 Frankfurt, Germany. RP Gascon, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Radiotracer Dev & Imaging Technol Dept, Berkeley, CA 94720 USA. EM mmgascon@lbl.gov RI Perez-Loureiro, David/E-2837-2014; Gascon, Martin/C-9440-2011; Duran, Ignacio/H-7254-2015; Alvarez Pol, Hector/F-1930-2011; Cortina-Gil, Dolores/H-9626-2015; OI Perez-Loureiro, David/0000-0002-0609-1308; Gascon, Martin/0000-0002-2065-009X; Alvarez Pol, Hector/0000-0001-9643-6252; Cortina-Gil, Dolores/0000-0001-7672-9912; Pietras, Benjamin/0000-0003-0036-0981 FU Spanish Ministerio de Ciencia e Innovacion [FP2005-00732, FPA2009-14604-C02-01]; Xunta de Galicia (Conselleria de Educacion) [PGIDIT07PXIB206124PR]; ENSAR-INDESYS [262010]; ENSAR-SINURSE; Germany by DFG [SFB 634, SO907/2-1]; BMBF [06 DA 9040 I] FX The authors would like to thank all the collaborators who participated in this experiment. This work was supported in part by the Spanish Ministerio de Ciencia e Innovacion (grants FP2005-00732 and FPA2009-14604-C02-01), project number PGIDIT07PXIB206124PR from Xunta de Galicia (Conselleria de Educacion) and 7th Framework Program" FP7/2007-2013, under grant agreement no. 262010 - ENSAR-INDESYS and ENSAR-SINURSE. This work was also supported in Germany by DFG (contract SFB 634, SO907/2-1), by BMBF 06 DA 9040 I and by the HIC for FAIR within the framework of LOEWE launched by the State of Hesse, Germany. NR 18 TC 2 Z9 2 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD OCT PY 2013 VL 8 AR P10004 DI 10.1088/1748-0221/8/10/P10004 PG 16 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 251LR UT WOS:000326930900028 ER PT J AU Gehman, VM Goldschmidt, A Nygren, D Oliveira, CAB Renner, J AF Gehman, V. M. Goldschmidt, A. Nygren, D. Oliveira, C. A. B. Renner, J. TI A plan for directional dark matter sensitivity in high-pressure xenon detectors through the addition of wavelength shifting gaseous molecules SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Conference on Light Detection in Noble Elements (LIDINE) CY MAY 29-31, 2013 CL Fermi Natl Accelerator Lab, IL HO Fermi Natl Accelerator Lab DE Time projection Chambers (TPC); Gaseous detectors; Charge transport and multiplication in gas AB Xenon is an especially attractive candidate for both direct WIMP and 0 nu beta beta decay searches. Although the current trend has exploited the liquid phase, the gas phase xenon offers remarkable performance advantages for: energy resolution, topology visualization, and discrimination between electron and nuclear recoils. The NEXT-100 experiment, now under construction in the Canfranc Underground Laboratory, Spain, will operate at similar to 15 bars with 100 kg of Xe-136 for the 0 nu beta beta decay search. We will describe recent results with small prototypes, indicating that NEXT-100 can provide about 0.5% FWHM energy resolution at the decay's Q value (2457.83 keV), as well as rejection of gamma-rays with topological cuts. However, sensitivity goals for WIMP dark matter and 0 nu beta beta decay searches indicate the probable need for ton-scale active masses. NEXT-100 provides the springboard to reach this scale with xenon gas. We describe a scenario for performing both searches in a single, high-pressure, ton-scale xenon gas detector, without significant compromise to either. In addition, even in a single ton-scale, high-pressure xenon gas TPC, an intrinsic sensitivity to the nuclear recoil direction may exist. This plausibly offers an advance of more than two orders of magnitude relative to current low-pressure TPC concepts. We argue that, in an era of deepening fiscal austerity, such a dual-purpose detector may be possible at acceptable cost, within the time frame of interest, and deserves our collective attention. C1 [Gehman, V. M.; Nygren, D.; Oliveira, C. A. B.; Renner, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Goldschmidt, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Nygren, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM drnygren@lbl.gov NR 7 TC 5 Z9 5 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD OCT PY 2013 VL 8 AR C10001 DI 10.1088/1748-0221/8/10/C10001 PG 5 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 251LR UT WOS:000326930900001 ER PT J AU Zastrau, U Woldegeorgis, A Forster, E Loetzsch, R Marschner, H Uschmann, I AF Zastrau, U. Woldegeorgis, A. Foerster, E. Loetzsch, R. Marschner, H. Uschmann, I. TI Characterization of strongly-bent HAPG crystals for von-Hamos x-ray spectrographs SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Spectrometers; Instrumentation for FEL; Plasma diagnostics - interferometry, spectroscopy and imaging ID ORIENTED PYROLYTIC-GRAPHITE; THOMSON SCATTERING; HIGH-EFFICIENCY; OPTICS; SPECTROSCOPY; PLASMAS; LINES; LIF AB The properties of two strongly bent Highly Annealed Pyrolytic Graphite (HAPG) crystals with different thicknesses of 40 mu m m and 100 mu m m are studied at all possible reflection orders using x-rays at 4.5 keV and 8 keV photon energies. Typical reflecting areas within 50% reflectivity drop boundaries have sizes of about <= 1 mm. These domains are mis-oriented by <= 1 minutes of arc to each other. The mosaicity was measured to be similar to 0.06 degrees on a 1 x 1mm(2) scale, whereas it amounts to similar to 0.14 degrees when the probed area becomes > 2 x 1mm(2). We find that the integrated reflectivity of the reflection (004) is in good agreement with the kinematical diffraction theory, while a maximum value of 2 : 3 mrad is achieved for 8 keV and reflection (002). The highest spectral resolution is obtained with an x-ray source of <= 50 mu m m size and a 40 mu m m thin graphite coating, which amounts to E/Delta E >= 1000 for 4.5 keV and 8 keV. In the case of 8 keV and reflection (008), the resolving power exceeds E/Delta E = 2000. In von-Hamos geometry, it was found that > 60% of the reflected photons are confined in a central 500 mu m m wide profile where high spectral resolution is pertained. Ray tracing simulations reveal that in order to pertain a certain resolution, a larger mosaicity would result in less contributing photons. Thus the efficiency of the crystal drops significantly when the mosaicity is increased and could not be increased by large crystal opening angles. C1 [Zastrau, U.; Woldegeorgis, A.; Foerster, E.; Loetzsch, R.; Marschner, H.; Uschmann, I.] Univ Jena, IOQ, D-07743 Jena, Germany. [Zastrau, U.] SLAC, Menlo Pk, CA 94025 USA. [Foerster, E.; Loetzsch, R.; Uschmann, I.] Helmholtz Inst Jena, D-07743 Jena, Germany. RP Zastrau, U (reprint author), Univ Jena, IOQ, Max Wien Pl 1, D-07743 Jena, Germany. EM ulf.zastrau@uni-jena.de OI Zastrau, Ulf/0000-0002-3575-4449 FU VolkswagenStiftung; German Helmholtz association via the Helmholtz Institute Jena; German Federal Ministry for Education and Research (BMBF) FX UZ is grateful to the VolkswagenStiftung for his Peter-Paul-Ewald Fellowship, and AW is grateful to the Abbe School of Photonics (Jena) student exchange program. Further financial support by the German Helmholtz association via the Helmholtz Institute Jena, and the German Federal Ministry for Education and Research (BMBF) is thankfully acknowledged. NR 31 TC 20 Z9 20 U1 2 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD OCT PY 2013 VL 8 AR P10006 DI 10.1088/1748-0221/8/10/P10006 PG 17 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 251LR UT WOS:000326930900030 ER PT J AU Miller, PW Ben-Naim, E AF Miller, P. W. Ben-Naim, E. TI Scaling exponent for incremental records SO JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT LA English DT Article DE exact results; persistence (theory); large deviations in non-equilibrium systems ID STATISTICS; EARTHQUAKES; FREQUENCY AB We investigate records in a growing sequence of identical and independently distributed random variables. The record equals the largest value in the sequence, and our focus is on the increment, defined as the difference between two successive records. We investigate sequences in which all increments decrease monotonically, and analyze the case where the random variables are drawn from a uniform distribution with compact support. We find that the fraction I-N of sequences that exhibit this property decays algebraically with sequence length N, namely I-N similar to N-v as N -> infinity, and obtain the exponent v = 0.317621 ... using analytic methods. We also study the record distribution and the increment distribution. Whereas the former is a narrow distribution with an exponential tail, the latter is broad and has a power-law tail characterized by the exponent v. Empirical analysis of records in the sequence of waiting times between successive earthquakes is consistent with the theoretical results. C1 [Miller, P. W.] Yale Univ, Dept Phys, New Haven, CT 06511 USA. [Miller, P. W.; Ben-Naim, E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. [Miller, P. W.; Ben-Naim, E.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87544 USA. RP Miller, PW (reprint author), Yale Univ, Dept Phys, New Haven, CT 06511 USA. EM miller.pearson@gmail.com; ebn@lanl.gov RI Ben-Naim, Eli/C-7542-2009 OI Ben-Naim, Eli/0000-0002-2444-7304 FU US-DOE [DE-AC52-06NA25396]; SULI program FX We thank Paul Krapivsky for collaboration in early stages of this work, and Ivan Christov and Joan Gomberg for useful discussions, and Chunquan Wu for assistance with the earthquake data. We also acknowledge support from US-DOE through grant DE-AC52-06NA25396 and the SULI program. NR 45 TC 8 Z9 8 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1742-5468 J9 J STAT MECH-THEORY E JI J. Stat. Mech.-Theory Exp. PD OCT PY 2013 AR P10025 DI 10.1088/1742-5468/2013/10/P10025 PG 14 WC Mechanics; Physics, Mathematical SC Mechanics; Physics GA 250QW UT WOS:000326869000026 ER PT J AU Walker, ME Theregowda, RB Safari, I Abbasian, J Arastoopour, H Dzombak, DA Hsieh, MK Miller, DC AF Walker, Michael E. Theregowda, Ranjani B. Safari, Iman Abbasian, Javad Arastoopour, Hamid Dzombak, David A. Hsieh, Ming-Kai Miller, David C. TI Utilization of municipal wastewater for cooling in thermoelectric power plants: Evaluation of the combined cost of makeup water treatment and increased condenser fouling SO ENERGY LA English DT Article DE Power; Electricity; Fouling; Water treatment; Wastewater; Freshwater conservation ID SUBJECT; ENERGY AB A methodology is presented to calculate the TCC (total combined cost) of water sourcing, water treatment and condenser fouling in the recirculating cooling systems of thermoelectric power plants. The methodology is employed to evaluate the economic viability of using treated MWW (municipal wastewater) to replace the use of freshwater as makeup water to power plant cooling systems. Cost analyses are presented for a reference power plant and five different tertiary treatment scenarios to reduce the scaling tendencies of MWW. Results indicate that a 550 MW sub-critical coal fired power plant with a makeup water requirement of 29.3 ML/day has a TCC of $3.0-3.2 million/yr associated with the use of treated MWW for cooling. (All costs USD (United States dollars) 2009). This translates to a freshwater conservation cost of $0.29/kL, which is considerably lower than that of dry air cooling technology, $1.5/kL, as well as the 2020 conservation cost target set by the U.S. Department of Energy, $0.74/kL. Results also show that if the available price of freshwater exceeds that of secondary-treated MWW by more than $0.13-0.14/kL, it can be economically advantageous to purchase secondary MWW and treat it for utilization in the recirculating cooling system of a thermoelectric power plant. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Walker, Michael E.; Safari, Iman; Abbasian, Javad; Arastoopour, Hamid] IIT, Dept Chem & Biol Engn, Chicago, IL 60616 USA. [Theregowda, Ranjani B.; Dzombak, David A.] Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA. [Hsieh, Ming-Kai] Tamkang Univ, Water Resources Management & Policy Res Ctr, New Taipei City 251, Taiwan. [Miller, David C.] US DOE, Natl Energy Technol Lab, Morgantown, WV USA. RP Walker, ME (reprint author), IIT, Dept Chem & Biol Engn, 10 W 33rd St RM 127 PH, Chicago, IL 60616 USA. EM mwalker9@hawk.iit.edu FU U.S. Department of Energy National Energy Technology Laboratory [RES1000025]; Carnegie Mellon University [RES1100451]; [DE-NT0006550] FX This work was performed in support of the U.S. Department of Energy National Energy Technology Laboratory primary contract RES1000025 with Carnegie Mellon University, under subcontract RES1100451 to Illinois Institute of Technology. The work was also supported in part by award number DE-NT0006550 to Carnegie Mellon University. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 34 TC 10 Z9 10 U1 2 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-5442 EI 1873-6785 J9 ENERGY JI Energy PD OCT 1 PY 2013 VL 60 BP 139 EP 147 DI 10.1016/j.energy.2013.07.066 PG 9 WC Thermodynamics; Energy & Fuels SC Thermodynamics; Energy & Fuels GA 249JL UT WOS:000326773400017 ER PT J AU Qian, SX Gluesenkamp, K Hwang, Y Radermacher, R Chun, HH AF Qian, Suxin Gluesenkamp, Kyle Hwang, Yunho Radermacher, Reinhard Chun, Ho-Hwan TI Cyclic steady state performance of adsorption chiller with low regeneration temperature zeolite SO ENERGY LA English DT Article DE Adsorption; Adsorption chiller; Waste heat; Zeolite; Low regeneration temperature; Heat activated cooling ID WASTE HEAT; ICE-MAKER; MASS RECOVERY; DRIVEN; SYSTEM; REFRIGERATION; EFFICIENT; TRIGENERATION; DESALINATION; DESIGN AB Adsorption chillers are capable of utilizing inexpensive or free low grade thermal energy such as waste heat and concentrated solar thermal energy. Recently developed low regeneration temperature working pairs allow adsorption chillers to be driven by even lower temperature sources such as engine coolant and flat plate solar collectors. In this work, synthetic zeolite/water was implemented into a 3 kW adsorption chiller test facility driven by hot water at 70 degrees C. The zeolite was coated onto two fin-and-tube heat exchangers, with heat recovery employed between the two. Cyclic steady state parametric studies were experimentally conducted to evaluate the chiller's performance, resulting in a cooling coefficient of performance (COP) ranging from 0.1 to 0.6 at different operating conditions. Its performance was compared with published values for other low regeneration temperature working pairs. The physical limitations of the synthetic zeolite revealed by parametric study results were then discussed. A novel operating control strategy was proposed based on the unique characteristics of synthetic zeolite. In addition, a physics-based COP prediction model was derived to predict the performance of the chiller under equilibrium loading, and was validated by the experiment results. This analytical expression can be used to estimate the cyclic steady state performance for future studies. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Qian, Suxin; Hwang, Yunho; Radermacher, Reinhard] Univ Maryland, Dept Mech Engn, Ctr Environm Energy Engn, College Pk, MD 20742 USA. [Gluesenkamp, Kyle] Oak Ridge Natl Lab, ETSD Div, Oak Ridge, TN 37831 USA. [Chun, Ho-Hwan] Pusan Natl Univ, Dept Naval Architecture & Ocean Engn, Pusan 609735, South Korea. RP Hwang, Y (reprint author), Univ Maryland, Dept Mech Engn, Ctr Environm Energy Engn, 4164 Glenn L Martin Hall Bldg, College Pk, MD 20742 USA. EM yhhwang@umd.edu OI Qian, Suxin/0000-0003-2129-8769; Radermacher, Reinhard/0000-0002-9406-1466 FU Alternative Cooling Technologies and Applications Consortium; Center for Environmental Energy Engineering (CEEE) at the University of Maryland; National Research Foundation of Korea (NRF) grant; Korea government (MEST) through GCRC-SOP [2012-0004782] FX The authors gratefully acknowledge the support of this effort from the sponsors of the Alternative Cooling Technologies and Applications Consortium and the Center for Environmental Energy Engineering (CEEE) at the University of Maryland, and partially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) through GCRC-SOP (Grant No. 2012-0004782). NR 38 TC 12 Z9 12 U1 2 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-5442 EI 1873-6785 J9 ENERGY JI Energy PD OCT 1 PY 2013 VL 60 BP 517 EP 526 DI 10.1016/j.energy.2013.08.041 PG 10 WC Thermodynamics; Energy & Fuels SC Thermodynamics; Energy & Fuels GA 249JL UT WOS:000326773400055 ER PT J AU Zinkle, SJ Moslang, A AF Zinkle, Steven J. Moeslang, Anton TI Evaluation of irradiation facility options for fusion materials research and development SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 27th Symposium on Fusion Technology (SOFT) CY SEP 24-28, 2012 CL Liege, BELGIUM SP Trilateral Euregio Cluster, SCK CEN, ERM KMS, FZJ, FOM DE Fusion materials; Radiation effects; Multiscale modeling; Mechanical properties; Void swelling; Embrittlement; Ferritic/martensitic steels; Neutron irradiation; IFMIF ID TEMPERED MARTENSITIC STEELS; INTENSE NEUTRON SOURCE; STRUCTURAL-MATERIALS; MICROSTRUCTURAL EVOLUTION; RECENT PROGRESS; FERRITIC/MARTENSITIC STEELS; MECHANICAL-PROPERTIES; PULSED IRRADIATION; HELIUM PRODUCTION; MATERIALS SCIENCE AB Successful development of fusion energy will require the design of high-performance structural materials that exhibit dimensional stability and good resistance to fusion neutron degradation of mechanical and physical properties. The high levels of gaseous (H, He) transmutation products associated with deuterium-tritium (D-T) fusion neutron transmutation reactions, along with displacement damage dose requirements up to 50-200 displacements per atom (dpa) for a fusion demonstration reactor (DEMO), pose an extraordinary challenge. One or more intense neutron source(s) are needed to address two complementary missions: (1) scientific investigations of radiation degradation phenomena and microstructural evolution under fusion-relevant irradiation conditions (to provide the foundation for designing improved radiation resistant materials), and (2) engineering database development for design and licensing of next-step fusion energy machines such as a fusion DEMO. A wide variety of irradiation facilities have been proposed to investigate materials science phenomena and to test and qualify materials for a DEMO reactor. Some of the key technical considerations for selecting the most appropriate fusion materials irradiation source are summarized. Currently available and proposed facilities include fission reactors (including isotopic and spectral tailoring techniques to modify the rate of H and He production per dpa), dual- and triple-ion accelerator irradiation facilities that enable greatly accelerated irradiation studies with fusion-relevant H and He production rates per dpa within microscopic volumes, D-Li stripping reaction and spallation neutron sources, and plasma-based sources. The advantages and limitations of the main proposed fusion materials irradiation facility options are reviewed. Evaluation parameters include irradiation volume, potential for performing accelerated irradiation studies, capital and operating costs, similarity of neutron irradiation spectrum to fusion reactor conditions, temperature and irradiation flux stability/control, ability to perform multiple-effect tests (e.g., irradiation in the presence of a flowing coolant, or in the presence of complex applied stress fields), and technical maturity/risk of the concept. Ultimately, it is anticipated that heavy utilization of ion beam and fission neutron irradiation facilities along with sophisticated materials models, in addition to a dedicated fusion-relevant neutron irradiation facility, will be necessary to provide a comprehensive and cost-effective understanding of anticipated materials evolution in a fusion DEMO and to therefore provide a timely and robust materials database. (C) 2013 Elsevier B.V. All rights reserved. C1 [Zinkle, Steven J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Moeslang, Anton] Karlsruhe Inst Technol, IAM, D-76344 Eggenstein Leopoldshafen, Germany. RP Zinkle, SJ (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM zinklesj@ornl.gov OI Zinkle, Steven/0000-0003-2890-6915 NR 114 TC 29 Z9 29 U1 3 U2 62 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD OCT PY 2013 VL 88 IS 6-8 BP 472 EP 482 DI 10.1016/j.fusengdes.2013.02.081 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 251BO UT WOS:000326903000010 ER PT J AU Kim, K Kim, HC Oh, S Lee, YS Yeom, JH Im, K Lee, GS Neilson, G Kessel, C Brown, T Titus, P AF Kim, Keeman Kim, Hyoung Chan Oh, Sangjun Lee, Young Seok Yeom, Jun Ho Im, Kihak Lee, Gyung-Su Neilson, George Kessel, Charles Brown, Thomas Titus, Peter TI A preliminary conceptual design study for Korean fusion DEMO reactor SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 27th Symposium on Fusion Technology (SOFT) CY SEP 24-28, 2012 CL Liege, BELGIUM SP Trilateral Euregio Cluster, SCK CEN, ERM KMS, FZJ, FOM DE DEMO; Reactor design; 16-T Nb3Sn TF magnets; Two-stage development plan AB As the ITER is being constructed, there is a growing anticipation for an earlier realization of fusion energy, so called fast-track approach. Korean strategy for fusion energy can be regarded as a fast-track approach and one special concept discussed in this paper is a two-stage development plan. At first, a steady-state Korean DEMO Reactor (K-DEMO) is designed not only to demonstrate a net electricity generation and a self-sustained tritium cycle, but also to be used as a component test facility. Then, at its second stage, a major upgrade is carried out by replacing in-vessel components in order to show a net electric generation on the order of 300 MWe and the competitiveness in cost of electricity (COE). The major radius is designed to be just below 6.5 m, considering practical engineering feasibilities. By using high performance Nb3Sn-based superconducting cable currently available, high magnetic field at the plasma center above 8 T can be achieved. A design concept for TF magnets and radial builds for the K-DEMO considering a vertical maintenance scheme, are presented together with preliminary design parameters. (C) 2013 Elsevier B.V. All rights reserved. C1 [Kim, Keeman; Kim, Hyoung Chan; Oh, Sangjun; Lee, Young Seok; Yeom, Jun Ho; Im, Kihak; Lee, Gyung-Su] Natl Fus Res Inst, Taejon 305806, South Korea. [Neilson, George; Kessel, Charles; Brown, Thomas; Titus, Peter] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Kim, K (reprint author), Natl Fus Res Inst, Adv Project Div, 169-148 Gwahakro, Taejon 305333, South Korea. EM kkeeman@nfri.re.kr NR 8 TC 16 Z9 16 U1 1 U2 9 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD OCT PY 2013 VL 88 IS 6-8 BP 488 EP 491 DI 10.1016/j.fusengdes.2013.02.123 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 251BO UT WOS:000326903000012 ER PT J AU Zhai, Y Feder, R Brooks, A Ulrickson, M Pitcher, CS Loesser, GD AF Zhai, Y. Feder, R. Brooks, A. Ulrickson, M. Pitcher, C. S. Loesser, G. D. TI Electromagnetic analysis of ITER diagnostic equatorial port plugs during plasma disruptions SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 27th Symposium on Fusion Technology (SOFT) CY SEP 24-28, 2012 CL Liege, BELGIUM SP Trilateral Euregio Cluster, SCK CEN, ERM KMS, FZJ, FOM DE ITER diagnostic engineering; Electromagnetic analysis; Plasma disruptions; Diagnostic port plugs AB ITER diagnostic port plugs perform many functions including structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to the plasma. The design of diagnostic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate responses of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the diagnostic first walls (DFWs), diagnostic shield modules (DSMs) and the EPP structure, as well as impact on the system design integration due to electrical contact among various EPP structural components are discussed. Published by Elsevier B.V. C1 [Zhai, Y.; Feder, R.; Brooks, A.; Loesser, G. D.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Ulrickson, M.] Sandia Natl Labs, Albuquerque, NM USA. [Pitcher, C. S.] ITER Org, St Paul Les Durance, France. RP Zhai, Y (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM yzhai@pppl.gov NR 5 TC 2 Z9 2 U1 1 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD OCT PY 2013 VL 88 IS 6-8 BP 547 EP 550 DI 10.1016/j.fusengdes.2012.11.023 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 251BO UT WOS:000326903000025 ER PT J AU Mitteau, R Calcagno, B Chappuis, P Eaton, R Gicquel, S Chen, J Labusov, A Martin, A Merola, M Raffray, R Ulrickson, M Zacchia, F AF Mitteau, R. Calcagno, B. Chappuis, P. Eaton, R. Gicquel, S. Chen, J. Labusov, A. Martin, A. Merola, M. Raffray, R. Ulrickson, M. Zacchia, F. CA Blanket Integrated Prod Team TI The design of the ITER first wall panels SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 27th Symposium on Fusion Technology (SOFT) CY SEP 24-28, 2012 CL Liege, BELGIUM SP Trilateral Euregio Cluster, SCK CEN, ERM KMS, FZJ, FOM DE Blanket; Plasma facing component; Design; Heat loads; ITER; Wall; Limiter AB The ITER blanket is in the final stage of design completion. The issues raised during the 2007 ITER design review about the first wall (FW) heat loads and remote handling strategy have been addressed, while integrating the recently confirmed in-vessel coils. This paper focuses on the FW design, which is nearing completion. Key design justifications are presented, followed by a summary of the current status of the manufacturing plan and R&D activities. (C) 2013 ITER Organization. Published by Elsevier B.V. All rights reserved. C1 [Mitteau, R.; Calcagno, B.; Chappuis, P.; Eaton, R.; Gicquel, S.; Martin, A.; Merola, M.; Raffray, R.; Blanket Integrated Prod Team] ITER Org, F-13115 St Paul Les Durance, France. [Chen, J.] Southwestern Inst Phys, Chengdu 610225, Peoples R China. [Labusov, A.] Efremov Res Inst, St Petersburg 189631, Russia. [Ulrickson, M.] Sandia Natl Labs, Albuquerque, NM USA. [Zacchia, F.] Fus Energy, Barcelona 08019, Spain. RP Mitteau, R (reprint author), ITER Org, Route Vinon Verdon, F-13115 St Paul Les Durance, France. EM raphael.mitteau@iter.org NR 5 TC 10 Z9 10 U1 0 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD OCT PY 2013 VL 88 IS 6-8 BP 568 EP 570 DI 10.1016/j.fusengdes.2013.05.030 PG 3 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 251BO UT WOS:000326903000030 ER PT J AU Yeom, JH Kim, K Lee, YS Kim, HC Oh, S Im, K Kessel, C AF Yeom, Jun Ho Kim, Keeman Lee, Young Seok Kim, Hyoung Chan Oh, Sangjun Im, Kihak Kessel, Charles TI System analysis study for Korean fusion DEMO reactor SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 27th Symposium on Fusion Technology (SOFT) CY SEP 24-28, 2012 CL Liege, BELGIUM SP Trilateral Euregio Cluster, SCK CEN, ERM KMS, FZJ, FOM DE DEMO; Fusion reactor design; OD system analysis code ID TOKAMAK; DESIGN; SHEAR AB A conceptual design study for a steady-state Korean fusion DEMO reactor (K-DEMO) has been initiated. Two peculiar features need to be noted. First, the major radius is designed to be just below 6.5 m, considering practical engineering feasibilities. But still, high magnetic field at the plasma center around 8T is expected to be achieved by using current state-of-the-art high performance Nb3Sn strand technology. Second, a two-stage development plan is being considered. In the first stage, K-DEMO will demonstrate a net electricity generation but will also act as a component test facility. Then, after a major upgrade, K-DEMO is expected to show a net electric generation on the order of 300 MWe and the competitiveness in cost of electricity (COE). Feasibility of such a practical, near-future demonstration reactor is studied in this paper, based on a zero dimensional system analysis code study. It was shown that a net electric generation on the order of 300 MWe can be achieved below the optimistic beta(N) limit of 5. The elongation of K-DEMO is around 1.8 with single null configuration. Detailed optimization process and the resultant various plasma parameters are described. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved. C1 [Yeom, Jun Ho; Kim, Keeman; Lee, Young Seok; Kim, Hyoung Chan; Oh, Sangjun; Im, Kihak] Natl Fus Res Inst, Taejon 305806, South Korea. [Kessel, Charles] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Kim, K (reprint author), Natl Fus Res Inst, 169-148 Gwahak Ro, Taejon 305806, South Korea. EM kkeeman@nfri.re.kr NR 14 TC 5 Z9 5 U1 0 U2 1 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD OCT PY 2013 VL 88 IS 6-8 BP 742 EP 745 DI 10.1016/j.fusengdes.2013.02.092 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 251BO UT WOS:000326903000068 ER PT J AU Kojima, A Hanada, M Yoshida, M Inoue, T Watanabe, K Taniguchi, M Kashiwagi, M Umeda, N Tobari, H Grisham, LR AF Kojima, A. Hanada, M. Yoshida, M. Inoue, T. Watanabe, K. Taniguchi, M. Kashiwagi, M. Umeda, N. Tobari, H. Grisham, L. R. CA JT-60 NBI Grp TI Long-pulse production of the negative ion beams for JT-60SA SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 27th Symposium on Fusion Technology (SOFT) CY SEP 24-28, 2012 CL Liege, BELGIUM SP Trilateral Euregio Cluster, SCK CEN, ERM KMS, FZJ, FOM DE Negative ion source; Neutral beam injection; Arc discharge; Temperature control; Plasma grid ID OPERATION AB Toward long-pulse productions of 22A negative ion beams for 100 s in JT-60SA, the plasma generator of the negative ion source has been developed to achieve stable long-pulse generations of spatially uniform negative ions. To realize the long pulse production of the negative ions, an actively cooled plasma grid (PG) has been designed to keep a surface temperature of 250-300 degrees C optimized for high negative ion production. The designed active cooling system has a potential to control the surface temperature of the PG to 250 degrees C with a time constant of 10 s by flowing the fluorinated fluid having the high boiling temperature of 270 degrees C. Since the time constant is sufficiently shorter than that of the degradation of the negative ion production, the active cooling system is applicable to the long-pulse operation of the large-current negative ion source, such as JT-60SA and ITER ion sources. As for the high current beam production, spatial uniformity of the negative ion productions in the plasma generator is improved. The calculation results of the magnetically confined electron orbits emitted from filaments showed that longitudinal deviations of the primary electron distributions has been reduced from 27% to 6% by the application of the symmetric magnet arrangements, so called the tent-shaped filter. This reduction of the deviation could reduce the grid heat load, leading to the long pulse production of the negative ion beams. (C) 2013 Elsevier B.V. All rights reserved. C1 [Kojima, A.; Hanada, M.; Yoshida, M.; Inoue, T.; Watanabe, K.; Taniguchi, M.; Kashiwagi, M.; Umeda, N.; Tobari, H.] Japan Atom Energy Agcy, Tokai, Ibaraki, Japan. [Grisham, L. R.] Princeton Plasma Phys Lab, Princeton, NJ USA. RP Kojima, A (reprint author), Japan Atom Energy Agcy, Tokai, Ibaraki, Japan. EM kojima.atsushi@jaea.go.jp NR 8 TC 3 Z9 3 U1 0 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD OCT PY 2013 VL 88 IS 6-8 BP 918 EP 921 DI 10.1016/j.fusengdes.2013.01.032 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 251BO UT WOS:000326903000107 ER PT J AU Bubendorfer, K Chard, K John, K Thaufeeg, AM AF Bubendorfer, Kris Chard, Kyle John, Koshy Thaufeeg, Ashfag M. TI eScience in the Social Cloud SO FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE LA English DT Article DE Social Cloud; Distributed systems; Cloud computing; Volunteer computing; Collaboration; Resource sharing AB Social networks offer great potential for fostering collaboration between individuals and amongst groups. This potential collaborative environment is not only applicable for recreation, but can also provide considerable value to diverse research communities. For this reason scientists are increasingly utilizing social networking concepts in projects to form groups, share information, publicize their work and communicate with their peers. This article describes two different approaches to supporting eScience, by providing scientific computing and collaboration within what we term the Social Cloud. In our first approach the social network is used as a collaborative overlay, in combination with the ad hoc creation of infrastructure composed of virtual machine clusters built from resources contributed, by the users, to the Social Cloud. Our second approach is based around the principle of volunteer computing, where the Social Cloud provides researchers with a platform to exploit social networks by reaching out to non technical users who would otherwise be unlikely to donate computational time for scientific and other research. In this article we specifically explore the motivations of users to contribute computational time and examine the various ways these motivations can be catered to through the use of incentives in existing social networks. (C) 2013 Elsevier B.V. All rights reserved. C1 [Bubendorfer, Kris; John, Koshy; Thaufeeg, Ashfag M.] Victoria Univ Wellington, Sch Engn & Comp Sci, Wellington, New Zealand. [Chard, Kyle] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Chard, Kyle] Argonne Natl Lab, Chicago, IL USA. RP Bubendorfer, K (reprint author), Victoria Univ Wellington, Sch Engn & Comp Sci, Wellington, New Zealand. EM kris@ecs.vuw.ac.nz; kyle@ci.uchicago.edu; koshyjohnuk@msn.com; thaufeashf@myvuw.ac.nz RI Dong Sung, KIM/H-7581-2014 NR 28 TC 2 Z9 2 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-739X EI 1872-7115 J9 FUTURE GENER COMP SY JI Futur. Gener. Comp. Syst. PD OCT PY 2013 VL 29 IS 8 BP 2143 EP 2156 DI 10.1016/j.future.2013.04.003 PG 14 WC Computer Science, Theory & Methods SC Computer Science GA 247JJ UT WOS:000326613400024 ER PT J AU Balaji, P Buyya, R AF Balaji, Pavan Buyya, Rajkumar TI Guest editors' introduction: Special issue on Cluster, Grid, and Cloud Computing SO FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF GRID COMPUTING AND ESCIENCE LA English DT Editorial Material C1 [Balaji, Pavan] Argonne Natl Lab, Argonne, IL 60439 USA. [Buyya, Rajkumar] Univ Melbourne, Melbourne, Vic 3010, Australia. [Buyya, Rajkumar] Univ Melbourne, Australian Res Council, Melbourne, Vic 3010, Australia. [Buyya, Rajkumar] Univ Melbourne, Cloud Comp & Distributed Syst CLOUDS Lab, Melbourne, Vic 3010, Australia. RP Balaji, P (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. EM pavanbalaji@gmail.com RI Buyya, Rajkumar/C-3424-2009 OI Buyya, Rajkumar/0000-0001-9754-6496 NR 0 TC 1 Z9 1 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-739X EI 1872-7115 J9 FUTURE GENER COMP SY JI Futur. Gener. Comp. Syst. PD OCT PY 2013 VL 29 IS 8 BP 2220 EP 2221 DI 10.1016/j.future.2013.04.021 PG 2 WC Computer Science, Theory & Methods SC Computer Science GA 247JJ UT WOS:000326613400030 ER PT J AU Kraus, RG Stewart, ST Newman, MG Milliken, RE Tosca, NJ AF Kraus, R. G. Stewart, S. T. Newman, M. G. Milliken, R. E. Tosca, N. J. TI Uncertainties in the shock devolatilization of hydrated minerals: A nontronite case study SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article DE shock recovery; impact cratering ID RECOVERY EXPERIMENTS; IMPACT; BEHAVIOR; RELEASE; SURFACE; CRUST AB Controlled recovery of hydrated minerals subjected to planar shock loading is challenging because of the large difference in shock impedance between the natural samples and the engineering materials used as the recovery capsules. Significant differences in recovery capsule design confound straightforward interpretation of existing data on shock modification of hydrated minerals. We present X-ray diffraction and infrared spectroscopy results from new shock recovery experiments on nontronite (a smectite clay observed on Mars) and identify major issues in the interpretation of recovered samples. Previous work assumes that the first shock pressure step in a ring-up configuration is the most important factor in the interpretation of shock modification. By comparing the X-ray diffraction and infrared spectroscopy data from experiments with similar first shock steps but significantly different final shock states, we show that one cannot simply interpret the recovered samples based upon the first shock pressure step. This work demonstrates the need for a deeper understanding of the thermodynamics of ring-up experiments in order to be able to interpret the results in terms of an equivalent single shock loading pressure for planetary applications. In this work, we also show that venting of the samples does not matter significantly at low pressures but may be important at high pressures. We have developed a recovery method and validation test that allows us to address the major issues and technical tradeoffs with shock recovery experiments on volatile materials. C1 [Kraus, R. G.; Stewart, S. T.; Newman, M. G.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Milliken, R. E.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Tosca, N. J.] Univ St Andrews, Dept Earth & Environm Sci, St Andrews, Fife, Scotland. RP Kraus, RG (reprint author), Lawrence Livermore Natl Lab, Div Phys, POB 808, Livermore, CA 94551 USA. EM kraus4@llnl.gov OI Stewart, Sarah/0000-0001-9606-1593 FU NASA [NNX11AQ24G, NNX06AC13G]; DOE NNSA SSGF program [DE-FC52-08NA28752] FX This work was supported by NASA grants NNX11AQ24G and NNX06AC13G. R. G. K. was supported by DOE NNSA SSGF program under grant DE-FC52-08NA28752. We thank G. Rossman for use of the Caltech spectroscopy lab and W. Croft for assistance in the Harvard X-ray diffraction lab. NR 36 TC 3 Z9 3 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD OCT PY 2013 VL 118 IS 10 BP 2137 EP 2145 DI 10.1002/jgre.20147 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 252RJ UT WOS:000327026900013 ER PT J AU Guerrero, P Collao, B Alvarez, R Salinas, H Morales, EH Calderon, IL Saavedra, CP Gil, F AF Guerrero, P. Collao, B. Alvarez, R. Salinas, H. Morales, E. H. Calderon, I. L. Saavedra, C. P. Gil, F. TI Salmonella enterica serovar Typhimurium BaeSR two-component system positively regulates sodA in response to ciprofloxacin SO MICROBIOLOGY-SGM LA English DT Article ID ESCHERICHIA-COLI; SUPEROXIDE-DISMUTASE; BACTERICIDAL ANTIBIOTICS; SACCHAROMYCES-CEREVISIAE; SIGNAL-TRANSDUCTION; GENE-EXPRESSION; SMALL RNA; RESISTANCE; INVOLVEMENT; STRESS AB In response to antibiotics, bacteria activate regulatory systems that control the expression of genes that participate in detoxifying these compounds, like multidrug efflux systems. We previously demonstrated that the BaeSR two-component system from Salmonella enterica serovar Typhimurium (S. Typhimurium) participates in the detection of ciprofloxacin, a bactericidal antibiotic, and in the positive regulation of mdtA, an efflux pump implicated in antibiotic resistance. In the present work, we provide further evidence for a role of the S. Typhimurium BaeSR two-component system in response to ciprofloxacin treatment and show that it regulates sodA expression. We demonstrate that, in the absence of BaeSR, the transcript levels of sodA and the activity of its gene product are lower. Using electrophoretic mobility shift assays and transcriptional fusions, we demonstrate that BaeR regulates sodA by a direct interaction with the promoter region. C1 [Guerrero, P.; Collao, B.; Alvarez, R.; Salinas, H.; Calderon, I. L.; Saavedra, C. P.; Gil, F.] Univ Andres Bello, Fac Ciencias Biol, Dept Ciencias Biol, Mol Microbiol Lab, Santiago, Chile. [Morales, E. H.] Univ Wisconsin Madison, Dept Biomol Chem, Madison, WI USA. [Morales, E. H.] Univ Wisconsin Madison, DOE Great Lakes Bioenergy Res Ctr, Madison, WI USA. RP Gil, F (reprint author), Univ Andres Bello, Fac Ciencias Biol, Dept Ciencias Biol, Mol Microbiol Lab, Santiago, Chile. EM fernandogil@unab.cl RI Collao, Bernardo/I-8301-2014 OI Collao, Bernardo/0000-0002-3508-553X FU FONDECYT [11100142, 1130074, DI-UNAB 15-12/R]; CONICYT FX This work was supported by grants from FONDECYT (11100142, 1130074 and DI-UNAB 15-12/R) to F. G. E. H. M. and B. C. received doctoral fellowships by CONICYT. NR 42 TC 7 Z9 7 U1 2 U2 9 PU SOC GENERAL MICROBIOLOGY PI READING PA MARLBOROUGH HOUSE, BASINGSTOKE RD, SPENCERS WOODS, READING RG7 1AG, BERKS, ENGLAND SN 1350-0872 J9 MICROBIOL-SGM JI Microbiology-(UK) PD OCT PY 2013 VL 159 BP 2049 EP 2057 DI 10.1099/mic.0.066787-0 PN 10 PG 9 WC Microbiology SC Microbiology GA 251EK UT WOS:000326910400005 PM 23918818 ER PT J AU Smith, GS Jung, SY Browning, JF Keum, JK Lavrik, NV Alemseghed, MG Collier, CP AF Smith, Gregory S. Jung, Seung-Yong Browning, James F. Keum, Jong K. Lavrik, Nickolay V. Alemseghed, Mussie G. Collier, C. Patrick TI Bilayer self-assembly on a hydrophilic, deterministically nanopatterned surface SO NANO RESEARCH LA English DT Article DE thin film; nanopattern; neutron reflectivity; lipid; self-assembly ID SPANNING LIPID-BILAYERS; X-RAY REFLECTIVITY; NEUTRON REFLECTIVITY; THIN-FILMS; MEMBRANES; REFLECTOMETRY; SCATTERING; INTERFACE; SYSTEMS AB We present measurements of the in situ, microscopic architecture of a self-assembled bilayer at the interface between a regularly nanopatterned surface and an aqueous sub-phase using neutron reflectometry. The substrate is patterned with a rectangular array of nanoscale holes. Because of the high quality of the pattern, using neutron reflectometry, we are able to map the surface-normal density distribution of the patterned silicon, the penetration of water into the pattern, and the distribution of a deposited film inside and outside of the etched holes. In this study, 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) single bilayers were deposited on the hydrophilic patterned surface. For bilayers deposited either by vesicle fusion (VF) or by the Langmuir-Schaefer (L-S) technique, the most consistent model found to fit the data shows that the lipids form bilayer coatings on top of the substrate as well as the bottoms of the holes in an essentially conformal fashion. However, while there is a single bilayer on the unetched silicon surface, the lipids coating the bottoms of the holes form a complex bimodal structure consistent with a rough surface produced by the etching process. This study provides insight into film transfer both outside and inside regular nanopatterned features. C1 [Smith, Gregory S.; Alemseghed, Mussie G.] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Jung, Seung-Yong; Lavrik, Nickolay V.; Collier, C. Patrick] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Browning, James F.; Keum, Jong K.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Alemseghed, Mussie G.] Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA. RP Smith, GS (reprint author), Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. EM smithgs1@ornl.gov RI Lavrik, Nickolay/B-5268-2011; Smith, Gregory/D-1659-2016; Collier, Charles/C-9206-2016; Keum, Jong/N-4412-2015; OI Lavrik, Nickolay/0000-0002-9543-5634; Smith, Gregory/0000-0001-5659-1805; Collier, Charles/0000-0002-8198-793X; Keum, Jong/0000-0002-5529-1373; Browning, James/0000-0001-8379-259X FU NanoPower Africa Project; United States Agency for International Development (USAID) through the Higher Education for Development (HED) office; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX The authors would like to thank C. Halbert for her assistance with the Liquids Reflectometer and J. Ankner for useful discussions on the NR measurements. MA was supported by the NanoPower Africa Project funded by the United States Agency for International Development (USAID) through the Higher Education for Development (HED) office. The research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. A portion of this research was also conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 28 TC 2 Z9 2 U1 1 U2 28 PU TSINGHUA UNIV PRESS PI BEIJING PA TSINGHUA UNIV, RM A703, XUEYAN BLDG, BEIJING, 10084, PEOPLES R CHINA SN 1998-0124 EI 1998-0000 J9 NANO RES JI Nano Res. PD OCT PY 2013 VL 6 IS 11 BP 784 EP 794 DI 10.1007/s12274-013-0357-z PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 255CK UT WOS:000327216700003 ER PT J AU Kim, JH Kim, HT Woo, YM Kim, KH Lee, CB Fielding, RS AF Kim, Jong Hwan Kim, Hyung Tae Woo, Yoon Myung Kim, Ki Hwan Lee, Chan Bock Fielding, R. S. TI INTERACTION STUDIES OF CERAMIC VACUUM PLASMA SPRAYING FOR THE MELTING CRUCIBLE MATERIALS SO NUCLEAR ENGINEERING AND TECHNOLOGY LA English DT Article DE Metallic Fuel; Thermal Cycling; Melt Dipping; Plasma-sprayed Coating; Crucible Materials ID COATINGS AB Candidate coating materials for re-usable metallic nuclear fuel crucibles, TaC, TiC, ZrC, ZrO2, and Y2O3, were plasma-sprayed onto a niobium substrate. The microstructure of the plasma-sprayed coatings and thermal cycling behavior were characterized, and U-Zr melt interaction studies were carried out. The TaC and Y2O3 coating layers had a uniform thickness, and high density with only a few small closed pores showing good consolidation, while the ZrC, TiC, and ZrO2 coatings were not well consolidated with a considerable amount of porosity. Thermal cycling tests showed that the adhesion of the TiC, ZrC, and ZrO2 coating layers with niobium was relatively weak compared to the TaC and Y2O3 coatings. The TaC and Y2O3 coatings had better cycling characteristics with no interconnected cracks. In the interaction studies, ZrC and ZrO2 coated rods showed significant degradations after exposure to U-10 wt.% Zr melt at 1600 degrees C for 15 min, but TaC, TiC, and Y2O3 coatings showed good compatibility with U-Zr melt. C1 [Kim, Jong Hwan] Univ Sci & Technol Yuseong, Taejon 305350, South Korea. [Kim, Jong Hwan; Kim, Hyung Tae; Woo, Yoon Myung; Kim, Ki Hwan; Lee, Chan Bock] Korea Atom Energy Res Inst, Next Generat Fuel Div, Taejon 305353, South Korea. [Fielding, R. S.] Idaho Natl Lab, Nucl Fuel & Mat Div, Idaho Falls, ID 83415 USA. RP Kim, JH (reprint author), Univ Sci & Technol Yuseong, Taejon 305350, South Korea. EM jhk9@kaeri.re.kr FU Fuel Cycle Research and Development Program; U.S. Department of Energy; National Nuclear R&D Program of the Ministry of Science and Technology (MOST) of Korea FX This study was supported by the Fuel Cycle Research and Development Program funded by the U.S. Department of Energy and the National Nuclear R&D Program of the Ministry of Science and Technology (MOST) of Korea. NR 19 TC 2 Z9 2 U1 1 U2 11 PU KOREAN NUCLEAR SOC PI DAEJEON PA NUTOPIA BLDG, 342-1 JANGDAE-DONG, DAEJEON, 305-308, SOUTH KOREA SN 1738-5733 J9 NUCL ENG TECHNOL JI Nucl. Eng. Technol. PD OCT PY 2013 VL 45 IS 5 BP 683 EP 688 DI 10.5516/NET.07.2013.012 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 253SA UT WOS:000327108400012 ER PT J AU Nicora, CD Anderson, BJ Callister, SJ Norbeck, AD Purvine, SO Jansson, JK Mason, OU David, MM Jurelevicius, D Smith, RD Lipton, MS AF Nicora, Carrie D. Anderson, Brian J. Callister, Stephen J. Norbeck, Angela D. Purvine, Sam O. Jansson, Janet K. Mason, Olivia U. David, Maude M. Jurelevicius, Diogo Smith, Richard D. Lipton, Mary S. TI Amino acid treatment enhances protein recovery from sediment and soils for metaproteomic studies SO PROTEOMICS LA English DT Article DE Block protein adsorption; Environmental proteomics; Microbial communities; Microbiology; Soil metaproteomics; Soil protein extraction ID EXTRACTION; ADSORPTION; MASS; GROUNDWATER; INTERFACES; PARTICLES; BACTERIA; AQUIFER AB Characterization of microbial protein expression provides information necessary to better understand the unique biological pathways that occur within soil microbial communities that contribute to atmospheric CO2 levels and the earth's changing climate. A significant challenge in studying the soil microbial community proteome is the initial dissociation of bacterial proteins from the complex mixture of particles found in natural soil. The differential extraction of intact bacterial cells limits the characterization of the complete representation of a microbial community. However, in situ lysis of bacterial cells in soil can lead to potentially high levels of protein adsorption to soil particles. Here, we investigated various amino acids for their ability to block soil protein adsorption sites prior to in situ lysis of bacterial cells, as well as their compatibility with both tryptic digestion and mass spectrometric analysis. The treatments were tested by adding proteins from lysed Escherichia coli cells to representative treated and untreated soil samples. The results show that it is possible to significantly increase protein identifications through blockage of binding sites on a variety of soil and sediment textures; use of an optimized desorption buffer further increases the number of identifications. C1 [Nicora, Carrie D.; Anderson, Brian J.; Callister, Stephen J.; Norbeck, Angela D.; Purvine, Sam O.; Smith, Richard D.; Lipton, Mary S.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Jansson, Janet K.; David, Maude M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Mason, Olivia U.] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA. [Jurelevicius, Diogo] Univ Fed Rio de Janeiro, Inst Microbiol Paulo Goes, Rio De Janeiro, RJ, Brazil. RP Lipton, MS (reprint author), Pacific NW Natl Lab, Div Biol Sci, 3335 Q Ave, Richland, WA 99354 USA. EM mary.lipton@pnnl.gov RI Smith, Richard/J-3664-2012; Jurelevicius, Diogo/I-8235-2014; Lipton, Mary/H-3913-2012 OI Smith, Richard/0000-0002-2381-2349; Jurelevicius, Diogo/0000-0002-5719-5713; FU U.S. Department of Energy Office of Biological and Environmental Research (DOE/BER) Genome Sciences Program under the Pan-omics project; Rifle IFRC program FX This research was supported by the U.S. Department of Energy Office of Biological and Environmental Research (DOE/BER) Genome Sciences Program under the Pan-omics project and Rifle IFRC program. Work was performed in the Environmental Molecular Science Laboratory, a DOE/BER national scientific user facility at Pacific Northwest National Laboratory in Richland, Washington. NR 37 TC 6 Z9 6 U1 3 U2 39 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1615-9853 EI 1615-9861 J9 PROTEOMICS JI Proteomics PD OCT PY 2013 VL 13 IS 18-19 SI SI BP 2776 EP 2785 DI 10.1002/pmic.201300003 PG 10 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 252MS UT WOS:000327010000007 PM 23776032 ER PT J AU Chourey, K Nissen, S Vishnivetskaya, T Shah, M Pfiffner, S Hettich, RL Loffler, FE AF Chourey, Karuna Nissen, Silke Vishnivetskaya, Tatiana Shah, Manesh Pfiffner, Susan Hettich, Robert L. Loeffler, Frank E. TI Environmental proteomics reveals early microbial community responses to biostimulation at a uranium- and nitrate-contaminated site SO PROTEOMICS LA English DT Article DE Bioremediation; Emulsified vegetable oil (EVO); Environmental proteomics; Groundwater; Microbiology; Oak Ridge IFRC ID SHEWANELLA-ONEIDENSIS MR-1; DEHALOGENANS STRAIN 2CP-C; NITROUS-OXIDE PRODUCTION; SUBSURFACE SEDIMENTS; SUBMICROMOLAR LEVELS; FE(II) OXIDATION; REMOVAL PROCESS; REDUCTION; BIOREMEDIATION; AQUIFER AB High-performance MS instrumentation coupled with improved protein extraction techniques enables metaproteomics to identify active members of soil and groundwater microbial communities. Metaproteomics workflows were applied to study the initial responses (i.e. 4 days post treatment) of the indigenous aquifer microbiota to biostimulation with emulsified vegetable oil (EVO) at a uranium-contaminated site. Members of the Betaproteobacteria (i.e. Dechloromonas, Ralstonia, Rhodoferax, Polaromonas, Delftia, Chromobacterium) and the Firmicutes dominated the biostimulated aquifer community. Proteome characterization revealed distinct differences between the microbial biomass collected from groundwater influenced by biostimulation and groundwater collected upgradient of the EVO injection points. In particular, proteins involved in ammonium assimilation, EVO degradation, and polyhydroxybutyrate granule formation were prominent following biostimulation. Interestingly, the atypical NosZ of Dechloromonas spp. was highly abundant, suggesting active nitrous oxide (N2O) respiration. c-Type cytochromes were barely detected, as was citrate synthase, a biomarker for hexavalent uranium reduction activity, suggesting that uranium reduction has not commenced 4 days post EVO amendment. Environmental metaproteomics identified microbial community responses to biostimulation and elucidated active pathways demonstrating the value of this technique as a monitoring tool and for complementing nucleic acid-based approaches. C1 [Chourey, Karuna; Shah, Manesh; Hettich, Robert L.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Nissen, Silke; Loeffler, Frank E.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Nissen, Silke; Hettich, Robert L.; Loeffler, Frank E.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Vishnivetskaya, Tatiana; Loeffler, Frank E.] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37932 USA. [Loeffler, Frank E.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN USA. RP Chourey, K (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM choureyk@ornl.gov RI Loeffler, Frank/M-8216-2013; Hettich, Robert/N-1458-2016; OI Hettich, Robert/0000-0001-7708-786X; Vishnivetskaya, Tatiana/0000-0002-0660-023X; , /0000-0002-9216-3813 FU U.S. Department of Energy, Office of Biological and Environmental Research, Subsurface Biogeochemical Research Program; U.S. Department of Energy [DE-AC05-00OR22725] FX We would like to thank ORNL staff personnel David Watson, Scott Brooks, Chris Schadt, and Marcella Mueller who collected, processed, and archived the groundwater samples and provided valuable insights on ORIFRC geochemistry. Financial support for this work was provided by the U.S. Department of Energy, Office of Biological and Environmental Research, Subsurface Biogeochemical Research Program. Oak Ridge National Laboratory is managed by University of Tennessee-Battelle LLC for the Department of Energy. This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. NR 52 TC 16 Z9 16 U1 4 U2 52 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1615-9853 EI 1615-9861 J9 PROTEOMICS JI Proteomics PD OCT PY 2013 VL 13 IS 18-19 SI SI BP 2921 EP 2930 DI 10.1002/pmic.201300155 PG 10 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 252MS UT WOS:000327010000017 PM 23894087 ER PT J AU Njegic, B Levin, EM Schmidt-Rohr, K AF Njegic, B. Levin, E. M. Schmidt-Rohr, K. TI Te-125 NMR chemical-shift trends in PbTe-GeTe and PbTe-SnTe alloys SO SOLID STATE NUCLEAR MAGNETIC RESONANCE LA English DT Article DE Te-125 NMR; PbTe; Pb1-xGexTe; Pb1-xSnxTe; GeTe; SnTe; Te-125 chemical shift calculation; Plane-wave DFT ID PHASE-CHANGE MATERIALS; SOLID-STATE NMR; LOCAL-STRUCTURE; MAGIC-ANGLE; PB1-XGEXTE; SPECTRA; GLASSES; SYSTEMS; NUCLEI; TE AB Complex tellurides, such as doped PbTe, GeTe, and their alloys, are among the best thermoelectric materials. Knowledge of the change in Te-125 NMR chemical shift due to bonding to dopant or "solute" atoms is useful for determination of phase composition, peak assignment, and analysis of local bonding. We have measured the Te-125 NMR chemical shifts in PbTe-based alloys, Pb1-xGexTe and Pb1-xSnxTe, which have a rocksalt-like structure, and analyzed their trends. For low x, several peaks are resolved in the 22-kHz MAS Te-125 NMR spectra. A simple linear trend in chemical shifts with the number of Pb neighbors is observed. No evidence of a proposed ferroelectric displacement of Ge atoms in a cubic PbTe matrix is detected at low Ge concentrations. The observed chemical shift trends are compared with the results of DFT calculations, which confirm the linear dependence on the composition of the first-neighbor shell. The data enable determination of the composition of various phases in multiphase telluride materials. They also provide estimates of the Te-125 chemical shifts of GeTe and SnTe (+970 and + 400 +/- 150 ppm, respectively, from PbTe), which are otherwise difficult to access clue to Knight shifts of many hundreds of ppm in neat GeTe and SnTe. (C) 2013 Elsevier Inc. All rights reserved. C1 [Njegic, B.; Levin, E. M.; Schmidt-Rohr, K.] US DOE, Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. [Njegic, B.; Schmidt-Rohr, K.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Levin, E. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Schmidt-Rohr, K (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM srohr@iastate.edu FU U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering, at the Ames Laboratory [DE-AC02-07CH11358]; National Science Foundation [TG-DMR100049] FX The authors thank L. Lincoln, J. Harringa, and B.A. Cook for preparing and providing the Pb1-xGexTe samples, and WE. Straszheim for EDS analysis and microscopy. This work was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering, at the Ames Laboratory, which is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. The DFT calculations by B.N. benefitted from TeraGrid resources provided by NCSA and supported by the National Science Foundation under grant number TG-DMR100049. NR 36 TC 7 Z9 7 U1 5 U2 37 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0926-2040 EI 1527-3326 J9 SOLID STATE NUCL MAG JI Solid State Nucl. Magn. Reson. PD OCT-NOV PY 2013 VL 55-56 BP 79 EP 83 DI 10.1016/j.ssnmr.2013.09.003 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Physics, Condensed Matter; Spectroscopy SC Chemistry; Physics; Spectroscopy GA 254AQ UT WOS:000327132700009 PM 24148972 ER PT J AU Lee, JK Shin, GY Song, K Choi, WS Shin, YA Park, SY Britson, J Cao, Y Chen, LQ Lee, HN Oh, SH AF Lee, Jo Kyung Shin, Ga Young Song, Kyung Choi, Woo Seok Shin, Yoon Ah Park, Seong Yong Britson, Jason Cao, Ye Chen, Long-Qing Lee, Ho Nyung Oh, Sang Ho TI Direct observation of asymmetric domain wall motion in a ferroelectric capacitor SO ACTA MATERIALIA LA English DT Article DE In situ transmission electron microscopy; Ferroelectric thin film; Polarization switching; 90 degrees Domains; Depolarization field ID SOLID-SOLUTION SYSTEM; THIN-FILMS; THERMODYNAMIC THEORY; 90-DEGREES DOMAINS; POLARIZATION; DYNAMICS; MODEL AB We report in situ transmission electron microscopy observations of the 180 degrees polarization switching process of a PbZr0.2Ti0.8O3 (PZT) capacitor. The preferential, but asymmetric, nucleation and forward growth of switched c-domains were observed at the PZT/electrode interfaces, arising due to the built-in electric field induced at each interface. The subsequent sideways growth of the switched domains was inhibited by the depolarization field due to the imperfect charge compensation at the counter-electrode and also at the boundaries with preexisting a-domains, which contributed further to the asymmetric switching behavior. It was found that the preexisting a-domains split into fine a- and c-domains constituting a 90 degrees stripe domain pattern during the 180 degrees polarization switching process, revealing that these domains also actively participated in the out-of-plane polarization switching. The real-time observations uncovered the origin of the switching asymmetry and further clarified the importance of charged domain walls and the interfaces with electrodes in the ferroelectric switching processes. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Lee, Jo Kyung; Shin, Ga Young; Song, Kyung; Shin, Yoon Ah; Oh, Sang Ho] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci & Engn, Pohang 790784, South Korea. [Choi, Woo Seok; Lee, Ho Nyung] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Park, Seong Yong] Samsung Adv Inst Technol, Analyt Sci Grp, Yongin 446712, South Korea. [Britson, Jason; Cao, Ye; Chen, Long-Qing] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RP Oh, SH (reprint author), Pohang Univ Sci & Technol POSTECH, Dept Mat Sci & Engn, San 31, Pohang 790784, South Korea. EM shoh@postech.ac.kr RI Chen, LongQing/I-7536-2012; Choi, Woo Seok/G-8783-2014; Lee, Ho Nyung/K-2820-2012; Cao, Ye/L-1271-2016 OI Chen, LongQing/0000-0003-3359-3781; Lee, Ho Nyung/0000-0002-2180-3975; Cao, Ye/0000-0002-7365-7447 FU Basic Science Research Program through the National Research Foundation of Korea (NRF); Ministry of Education, Science and Technology [2010-0005834, 2011-0029406]; US Department of Energy; Office of Basic Energy Sciences; Division of Materials Sciences and Engineering under Award [DE-FG02-07ER46417]; Materials Sciences and Engineering [DE-FG02-07ER46417] FX This study was supported mainly by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant 2010-0005834 and Grant 2011-0029406). The work at Penn State was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-07ER46417. The work at ORNL was sponsored by the US Department of Energy, Basic Energy Sciences, Materials Science and Engineering Division. NR 49 TC 13 Z9 13 U1 3 U2 56 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD OCT PY 2013 VL 61 IS 18 BP 6765 EP 6777 DI 10.1016/j.actamat.2013.07.051 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 241ZL UT WOS:000326207100011 ER PT J AU Cai, S Daymond, MR Ren, Y Schaffer, JE AF Cai, S. Daymond, M. R. Ren, Y. Schaffer, J. E. TI Evolution of lattice strain and phase transformation of beta III Ti alloy during room temperature cyclic tension SO ACTA MATERIALIA LA English DT Article DE beta Ti alloy; Synchrotron X-ray diffraction; Stress-induced martensite transformation; Lattice strain ID STRESS-INDUCED TRANSFORMATIONS; DEFORMATION-INDUCED MARTENSITE; TITANIUM-ALLOY; SHAPE-MEMORY; PLASTIC-DEFORMATION; SUPERELASTICITY; DIFFRACTION; BEHAVIOR; MICROSTRUCTURE; STABILITY AB An in situ high-energy X-ray diffraction cyclic tension test was carried out on a beta III Ti alloy to study its micromechanical behavior and the stress-induced phase transformation. Pre-strained material showed a microscopic multi-stage re-loading behavior following the sequence of elastic deformation, stress-induced martensite (SIM) transformation, a second stage of elastic deformation followed by a final stage of SIM transformation. Based on the relationship of internal strains and diffraction intensities between the beta phase and the SIM, it is concluded that after a small strain deformation, the austenite is divided into two different sets of grains with different properties. Those that previously experienced phase transformation have a lower critical stress for the SIM transformation due to residual martensite and dislocations, while the rest have a higher trigger stress and only transform to martensite after the stress is back to levels comparable to where transformation was seen in the previous cycle. The different properties within the same austenite grain family cause the multistage re-loading behavior. The reverse phase transformation during unloading was impeded by the combination of increased dislocation density in the austenite and the increased tensile strain in the martensite prior to unloading. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Cai, S.; Schaffer, J. E.] Ft Wayne Met Res Prod Corp, Ft Wayne, IN 46809 USA. [Daymond, M. R.] Queens Univ, Dept Mech & Mat Engn, Kingston, ON K7L 3N6, Canada. [Ren, Y.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Cai, S (reprint author), Ft Wayne Met Res Prod Corp, 9609 Ardmore Ave, Ft Wayne, IN 46809 USA. EM song_cai@fwmetals.com FU US Department of Energy, Office of Science [DE-ACO2-06CH11357]; Office of Science; Wayne Metals management is greatly appreciated FX Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, under Contract No. DE-ACO2-06CH11357. The data analysis was performed in Fit2D, MAUD and GSAS software. S.C. thanks his colleague D.M. Bailey for making wire samples. Support from Fort Wayne Metals management is greatly appreciated. NR 39 TC 9 Z9 9 U1 2 U2 31 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD OCT PY 2013 VL 61 IS 18 BP 6830 EP 6842 DI 10.1016/j.actamat.2013.07.062 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 241ZL UT WOS:000326207100017 ER PT J AU Lebensohn, RA Escobedo, JP Cerreta, EK Dennis-Koller, D Bronkhorst, CA Bingert, JF AF Lebensohn, Ricardo A. Escobedo, Juan P. Cerreta, Ellen K. Dennis-Koller, Darcie Bronkhorst, Curt A. Bingert, John F. TI Modeling void growth in polycrystalline materials SO ACTA MATERIALIA LA English DT Article DE Polycrystal; Porous material; Void growth; Crystal plasticity; Dilatational plasticity ID TENSION-COMPRESSION ASYMMETRY; FAST FOURIER-TRANSFORMS; NONLINEAR COMPOSITES; MECHANICAL-PROPERTIES; PLASTIC-DEFORMATION; TEXTURE DEVELOPMENT; APPROXIMATE MODELS; NUMERICAL-METHOD; SINGLE-CRYSTALS; DYNAMIC DAMAGE AB Most structural materials are polycrystalline aggregates whose constituent crystals are irregular in shape, have anisotropic mechanical properties and contain a variety of defects, resulting in very complicated damage evolution. Failure models of these materials remain empirically calibrated due to the lack of a thorough understanding of the controlling processes at the scale of the materials' heterogeneity, i.e. the mesoscale. This paper describes a novel formulation for a quantitative, microstructure-sensitive three-dimensional mesoscale prediction of ductile damage of polycrystalline materials, in the important void growth phase of the process. Specifically, we have extended a formulation based on fast Fourier transforms to compute growth of intergranular voids in porous polycrystalline materials. In this way, two widely used micromechanical formulations, i.e. polycrystal plasticity and dilatational plasticity, have been efficiently combined, with crystals and voids represented explicitly, to predict porosity evolution. The proposed void growth algorithm is first validated by comparison with corresponding finite-element unit cell results. Next, in order to isolate the influence of microstructure on void growth, the extended formulation is applied to a face-centered cubic polycrystal with uniform texture and intergranular cavities, and to a porous material with homogenous isotropic matrix and identical initial porosity distribution. These simulations allow us to assess the effect of the matrix's polycrystallinity on porosity evolution. Microstructural effects, such as the influence of the Taylor factor of the crystalline ligaments linking interacting voids, were predicted and qualitatively confirmed by post-shocked microstrostructural characterization of polycrystalline copper.(C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Lebensohn, Ricardo A.; Escobedo, Juan P.; Cerreta, Ellen K.; Dennis-Koller, Darcie; Bronkhorst, Curt A.; Bingert, John F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Lebensohn, RA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM lebenso@lanl.gov RI Lebensohn, Ricardo/A-2494-2008; Bronkhorst, Curt/B-4280-2011; OI Lebensohn, Ricardo/0000-0002-3152-9105; Bronkhorst, Curt/0000-0002-2709-1964; Escobedo-Diaz, Juan/0000-0003-2413-7119 FU ANL's LaboratoryDirected Research and Development-Directed Research (LDRD-DR) FX This work was supported by LANL's LaboratoryDirected Research and Development-Directed Research (LDRD-DR) and Joint DoD/DOE Munitions Technology Programs. RAL also acknowledges support from DOEASCR Exascale Co-Design Center for Materials in Extreme Environments (ExMatEx). The authors wish to thank Prof. Mihail Garajeu (Universite de Aix-Marseille, France) providing the FE results from Ref. [18] used in Fig. 2. NR 57 TC 19 Z9 19 U1 4 U2 50 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD OCT PY 2013 VL 61 IS 18 BP 6918 EP 6932 DI 10.1016/j.actamat.2013.08.004 PG 15 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 241ZL UT WOS:000326207100025 ER PT J AU Naglieri, V Bale, HA Gludovatz, B Tomsia, AP Ritchie, RO AF Naglieri, Valentina Bale, Hrishikesh A. Gludovatz, Bernd Tomsia, Antoni P. Ritchie, Robert O. TI On the development of ice-templated silicon carbide scaffolds for nature-inspired structural materials SO ACTA MATERIALIA LA English DT Article DE Ceramics; Silicon carbide; Bioinspired materials; Freeze casting; Scaffolds ID X-RAY RADIOGRAPHY; MECHANICAL-PROPERTIES; POROUS CERAMICS; PORE STRUCTURE; SUBLIMABLE VEHICLES; ALUMINA; MICROSTRUCTURE; SOLIDIFICATION; SUSPENSIONS; MORPHOLOGY AB The processing of ceramic scaffolds using the ice-templating, or freeze casting, technique provides a relatively simple means to mimic the hierarchical design of natural materials such as nacre. In the present study, we investigated the architecture of silicon carbide (SiC) scaffolds produced by this technique over a range of cooling rates and suspension characteristics to demonstrate its versatility and effectiveness for fabricating unidirectional porous bodies with controlled lamella thickness, porosity fraction and morphology. An array of microstructures was generated specifically to examine the role of the suspension solid load and cooling rate on the pore morphology and final ceramic fraction. With respect to the morphology of the pores, a transition from lamellar to dendritic structure was found to be triggered by an increase in cooling rate or in suspension concentration. Similarly, the freezing condition and suspension characteristics were seen to influence the transition between particle rejection and entrapment by the ice. Based on this study, the specific processing parameters that result in distinct scaffold morphologies, namely lamellar, dendritic or isotropic morphology (the latter corresponding to particle entrapment), are identified and presented in the form of a "morphology map" to establish the regions of the different architectures of freeze-cast SiC scaffolds. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Naglieri, Valentina; Gludovatz, Bernd; Tomsia, Antoni P.; Ritchie, Robert O.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Bale, Hrishikesh A.; Ritchie, Robert O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Ritchie, RO (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM roritchie@lbl.gov RI Ritchie, Robert/A-8066-2008; OI Ritchie, Robert/0000-0002-0501-6998; Gludovatz, Bernd/0000-0002-2420-3879 FU Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Mechanical Behavior of Materials Program at the Lawrence Berkeley National Laboratory by the Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the US Department of Energy under Contract No. DE-AC02-05CH11231. Thanks are due to Amy Wat for helpful discussions and to Dr. Robert Kostecki and Dr. Jaroslaw Syzdek for allowing us access to their high-temperature furnace. NR 48 TC 17 Z9 17 U1 9 U2 66 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD OCT PY 2013 VL 61 IS 18 BP 6948 EP 6957 DI 10.1016/j.actamat.2013.08.006 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 241ZL UT WOS:000326207100027 ER PT J AU Yeddu, HK Lookman, T Saxena, A AF Yeddu, Hemantha Kumar Lookman, Turab Saxena, Avadh TI Strain-induced martensitic transformation in stainless steels: A three-dimensional phase-field study SO ACTA MATERIALIA LA English DT Article DE Phase-field modeling; Strain-induced martensite; Microstructure evolution; Stainless steels; Mechanical properties ID DEFORMATION-INDUCED TRANSFORMATION; INDUCED PLASTICITY TRIP; LATH MARTENSITE; MICROSTRUCTURE EVOLUTION; SINGLE-CRYSTALS; ALLOY-STEELS; LOW-CARBON; C ALLOYS; MODEL; NUCLEATION AB A three-dimensional elastoplastic phase-field model is developed to study the microstructure evolution during strain-induced martensitic transformation in stainless steels under different stress states. The model also incorporates linear isotropic strain hardening. The input simulation data is acquired from different sources, such as CALPHAD, ab initio calculations and experimental measurements. The results indicate that certain stress states, namely unimdal tensile, biaxial compressive and shear strain loadings, lead to single variant formation in the entire grain, whereas others, such as uniaxial compressive, biaxial tensile and triaxial strain loadings, lead to multivariant microstructure formation. The effects of stress states, strain rate as well as temperature on the mechanical behavior of steels are also studied. The material exhibits different yield stresses and hardening behavior under different stress states. The equivalent stress is higher at low strain rate, whereas a higher elongation is obtained at high strain rate. The deformation temperature mainly affects the hardening behavior of the material as well as the transformation, i.e. martensite volume fraction decreases with increasing temperature. Some of the typical characteristics of strain-induced martensite, such as the formation of thin elongated martensite laths, shear band formation and nucleation of martensite in highly plasticized areas, as well as at shear band intersections, are also observed. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Yeddu, Hemantha Kumar; Lookman, Turab; Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Yeddu, HK (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM hemy@lanl.gov FU US Department of Energy FX This work was supported by the US Department of Energy. NR 74 TC 14 Z9 14 U1 2 U2 48 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD OCT PY 2013 VL 61 IS 18 BP 6972 EP 6982 DI 10.1016/j.actamat.2013.08.011 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 241ZL UT WOS:000326207100029 ER PT J AU Monazam, ER Breault, RW Siriwardane, R Richards, G Carpenter, S AF Monazam, Esmail R. Breault, Ronald W. Siriwardane, Ranjani Richards, George Carpenter, Stephen TI Kinetics of the reduction of hematite (Fe2O3) by methane (CH4) during chemical looping combustion: A global mechanism SO CHEMICAL ENGINEERING JOURNAL LA English DT Article DE Chemical looping combution; Oxygen carriers; Kinetic rates ID OXYGEN CARRIER PARTICLES; IRON-OXIDE REDUCTION; HYDROGEN-PRODUCTION; CRYSTALLIZATION KINETICS; FLUIDIZED-BED; CO2 RECOVERY; OXIDATION; MODEL; COAL; GAS AB Chemical-looping combustion (CLC) has emerged as a promising technology for fossil fuel combustion which produces a sequestration ready concentrated CO2 stream in power production. A CLC system is composed with two reactors, an air and a fuel reactor. An oxygen carrier such as hematite (94%Fe2O3) circulates between the reactors, which transfers the oxygen necessary for the fuel combustion from the air to the fuel. An important issue for the CLC process is the selection of metal oxide as oxygen carrier, since it must retain its reactivity through many cycles. The primary objective of this work is to develop a global mechanism with respective kinetics rate parameters such that CFD simulations can be performed for large systems. In this study, thermogravimetric analysis (TGA) of the reduction of hematite (Fe2O3) in a continuous stream of CH4 (15%, 20%, and 35%) was conducted at temperatures ranging from 700 to 825 degrees C over ten reduction cycles. The mass spectroscopy analysis of product gas indicated the presence of CO2 and H2O at the early stage of reaction and H-2 and CO at the final stage of reactions. A kinetic model based on two parallel reactions, (1) first-order irreversible rate kinetics and (2) Avrami equation describing nucleation and growth processes, was applied to the reduction data. It was found, that the reaction rates for both reactions increase with, both, temperature and the methane concentration in inlet gas. Published by Elsevier B.V. C1 [Breault, Ronald W.; Siriwardane, Ranjani; Richards, George] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Monazam, Esmail R.] REM Engn Serv PLLC, Morgantown, WV 26505 USA. [Carpenter, Stephen] URS Energy & Construct Inc, Morgantown, WV 26505 USA. RP Breault, RW (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM ronald.breault@netl.doe.gov OI Breault, Ronald/0000-0002-5552-4050 FU Department of Energy through the office of Fossil Energy FX The authors acknowledge the Department of Energy for funding the research through the office of Fossil Energy's Gasification Technology and Advanced Research funding programs. Special thanks go to Hanjing Tian and Thomas Simonyi of URS Energy & Construction, Inc. for their assistance with experimental work and data. NR 40 TC 31 Z9 32 U1 10 U2 73 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 1385-8947 EI 1873-3212 J9 CHEM ENG J JI Chem. Eng. J. PD OCT PY 2013 VL 232 BP 478 EP 487 DI 10.1016/j.cej.2013.07.091 PG 10 WC Engineering, Environmental; Engineering, Chemical SC Engineering GA 249HM UT WOS:000326768300055 ER PT J AU Oladosu, G Kline, K AF Oladosu, Gbadebo Kline, Keith TI A dynamic simulation of the ILUC effects of biofuel use in the USA SO ENERGY POLICY LA English DT Article DE Biofuels; Land-use; Income effects ID LAND-USE CHANGE; IMPROVING ANALYTICAL METHODOLOGIES; GREENHOUSE-GAS EMISSIONS; TESTING PREDICTIONS; ETHANOL; POLICY AB The global indirect land use change (ILUC) implications of biofuel use in the United States of America (USA) from 2001 to 2010 are evaluated with a dynamic general equilibrium model. The effects of biofuels production on agricultural land area vary by year; from a net expansion of 0.17 ha per 1000 gallons produced (2002) to a net contraction of -0.13 ha per 1000 gallons (2018) in Case 1 of our simulation. In accordance with the general narrative about the implications of biofuel policy, agricultural land area increased in many regions of the world. However, oil-export dependent economies experienced agricultural land contraction because of reductions in their revenues. Reducing crude oil imports is a major goal of biofuel policy, but the land use change implications have received little attention in the literature. Simulations evaluating the effects of doubling supply elasticities for land and fossil resources show that these parameters can significantly influence the land use change estimates. Therefore, research that provides empirically-based and spatially-detailed agricultural land-supply curves and capability to project future fossil energy prices is critical for improving estimates of the effects of biofuel policy on land use. Published by Elsevier Ltd. C1 [Oladosu, Gbadebo; Kline, Keith] Oak Ridge Natl Lab, Div Environm Sci, Renewable Energy Syst Grp, Oak Ridge, TN 37831 USA. RP Oladosu, G (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Renewable Energy Syst Grp, POB 2008,Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM oladosuga@ornl.gov OI Kline, Keith/0000-0003-2294-1170 FU US Department of Energy (DoE) under the Bioenergy Technologies Office; DOE [DE-AC05-00OR22725] FX This research was supported by the US Department of Energy (DoE) under the Bioenergy Technologies Office, and performed at Oak Ridge National Laboratory (ORNL). Oak Ridge National Laboratory is managed by the UT-Battelle, LLC, for DOE under contract DE-AC05-00OR22725. We thank Rocio Uria-Martinez of the Environmental Sciences Division at ORNL for her help in reviewing and providing comments on the initial version of this paper. We also appreciate the painstaking editorial help of Fred O'Hara. The views in this paper are those of the authors, who are also responsible for any errors or omissions. NR 35 TC 0 Z9 0 U1 1 U2 15 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD OCT PY 2013 VL 61 BP 1127 EP 1139 DI 10.1016/j.enpol.2013.06.124 PG 13 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 231UI UT WOS:000325443500115 ER PT J AU Heeter, J Bird, L AF Heeter, Jenny Bird, Lori TI Including alternative resources in state renewable portfolio standards: Current design and implementation experience SO ENERGY POLICY LA English DT Article DE Clean energy standard; Renewable portfolio standard; Energy efficiency AB As of October 2012, 29 states, the District of Columbia, and Puerto Rico have instituted a renewable portfolio standard (RPS). Each state policy is unique, varying in percentage targets, timetables, and eligible resources. Increasingly, new RPS polices have included alternative resources. Alternative resources have included energy efficiency, thermal resources, and, to a lesser extent, non-renewables. This paper examines state experience with implementing renewable portfolio standards that include energy efficiency, thermal resources, and non-renewable energy and explores compliance experience, costs, and how states evaluate, measure, and verify energy efficiency and convert thermal energy. It aims to gain insights from the experience of states for possible federal clean energy policy as well as to share experience and lessons for state RPS implementation. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Heeter, Jenny; Bird, Lori] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Heeter, J (reprint author), Natl Renewable Energy Lab, 15013 Denver West Blvd,MS RSF031, Golden, CO 80401 USA. EM Jenny.heeter@nrel.gov NR 37 TC 2 Z9 2 U1 1 U2 15 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD OCT PY 2013 VL 61 BP 1388 EP 1399 DI 10.1016/j.enpol.2013.05.067 PG 12 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 231UI UT WOS:000325443500139 ER PT J AU Greene, DL Evans, DH Hiestand, J AF Greene, David L. Evans, David H. Hiestand, John TI Survey evidence on the willingness of US consumers to pay for automotive fuel economy SO ENERGY POLICY LA English DT Article DE Energy paradox; Loss aversion; Fuel economy ID ENERGY-EFFICIENCY GAP; LOSS AVERSION; DISCOUNT RATES; UNCERTAINTY AB Prospect theory holds that human beings faced with a risky bet will tend to value potential losses about twice as much as potential gains. Previous research has demonstrated that prospect theory could be sufficient to explain an energy paradox in the market for automotive fuel economy. This paper analyzes data from questions added to four commercial, multi-client surveys of 1000 U.S. households each in 2004, 2011, 2012 and 2013. Households were asked about willingness to pay for future fuel savings as well as the annual fuel savings necessary to justify a given upfront payment. Payback periods inferred from household responses are generally consistent over time and across different formulations of questions. Mean calculated payback periods are about 3 years, but there is substantial dispersion among individual responses. The calculated payback periods do not appear to be correlated with the attributes of respondents. Respondents were able to quantitatively describe their uncertainty about both vehicle fuel economy and future fuel prices. Simulation of loss averse behavior based on respondents' stated uncertainty illustrates how loss aversion could lead consumers to substantially undervalue future fuel savings relative to their expected value. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Greene, David L.] Oak Ridge Natl Lab, Knoxville, TN 37932 USA. [Evans, David H.] Univ South, Sewanee, TN 37383 USA. [Hiestand, John] Indiana Univ, Bloomington, IN 47405 USA. RP Greene, DL (reprint author), Oak Ridge Natl Lab, 2360 Cherahala Blvd, Knoxville, TN 37932 USA. EM dlgreene@ornl.gov; evansdh@comcast.net; jgh2102@gmail.com FU U.S. Department of Energy's Vehicle Technologies Office FX The authors gratefully acknowledge the support of the U.S. Department of Energy's Vehicle Technologies Office as well as the advice and assistance of Dennis Smith, Jake Ward and Philip Patterson. We would also like to thank Mark Singer and colleagues at National Renewable Energy Laboratory for adding our survey questions to the national survey; without their cooperation and assistance this research could not have been done. NR 40 TC 15 Z9 15 U1 2 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD OCT PY 2013 VL 61 BP 1539 EP 1550 DI 10.1016/j.enpol.2013.05.050 PG 12 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 231UI UT WOS:000325443500153 ER PT J AU Romanov, VN Hur, TB Fazio, JJ Howard, BH Irdi, GA AF Romanov, Vyacheslav N. Hur, Tae-Bong Fazio, James J. Howard, Bret H. Irdi, Gino A. TI Comparison of high-pressure CO2 sorption isotherms on Central Appalachian and San Juan Basin coals SO INTERNATIONAL JOURNAL OF COAL GEOLOGY LA English DT Article DE Coal; Carbon dioxide; Sequestration; Coalification ID CARBON-DIOXIDE; ADSORPTION-ISOTHERMS; SEQUESTRATION; STORAGE; CAPACITY; BEHAVIOR AB Accurate estimation of carbon dioxide (CO2) sorption capacity of coal is important for planning the CO2 sequestration efforts. In this work, we investigated the sorption and swelling behavior of several Eastern and Western US coal samples from the Central Appalachian Basin and from the San Juan Basin. The CO2 sorption isotherms have been completed at 55 degrees C for wet and dry samples. The role of mineral components in coal, coal swelling, effects of temperature and moisture, and the error propagation have been analyzed. Changes in void volume due to dewatering and other factors such as caging of carbon dioxide molecules in coal matrix were identified among the main factors affecting accuracy of the carbon dioxide sorption isotherms. The (helium) void volume in the sample cells was measured before and after the sorption isotherm experiments and was used to build the volume-corrected data plots. Published by Elsevier B.V. C1 [Romanov, Vyacheslav N.; Hur, Tae-Bong; Fazio, James J.; Howard, Bret H.; Irdi, Gino A.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Hur, Tae-Bong] Univ Pittsburgh, Dept Geol & Planetary Sci, Pittsburgh, PA 15260 USA. [Fazio, James J.] URS, South Pk, PA 15129 USA. RP Romanov, VN (reprint author), Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. EM romanov@netl.doe.gov RI Romanov, Vyacheslav/C-6467-2008 OI Romanov, Vyacheslav/0000-0002-8850-3539 FU National Energy Technology Laboratory under the RES [DE-FE000-4000] FX This technical effort was partly performed in support of the National Energy Technology Laboratory's ongoing research in carbon sequestration under the RES Contract DE-FE000-4000. NR 33 TC 1 Z9 1 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0166-5162 EI 1872-7840 J9 INT J COAL GEOL JI Int. J. Coal Geol. PD OCT 1 PY 2013 VL 118 BP 89 EP 94 DI 10.1016/j.coal.2013.05.006 PG 6 WC Energy & Fuels; Geosciences, Multidisciplinary SC Energy & Fuels; Geology GA 246SU UT WOS:000326560200008 ER PT J AU Keolopile, ZG Gutowski, M Haranczyk, M AF Keolopile, Zibo G. Gutowski, Maciej Haranczyk, Maciej TI Discovery of Most Stable Structures of Neutral and Anionic Phenylalanine through Automated Scanning of Tautomeric and Conformational Spaces SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID DIPOLE-BOUND ANIONS; AB-INITIO; EXCESS ELECTRON; CONFORMER GENERATION; RARE TAUTOMERS; AMINO-ACID; DENSITY; SPECTROSCOPY; ATOMS; ZWITTERION AB We have developed a software tool for combinatorial generation of tautomers and conformers of small molecules. We have demonstrated it by performing a systematic search for the most stable structures of neutral and anionic phenylalanine (Phe) using electronic structure methods. For the neutral canonical tautomer we found out that the conformers with and without the intramolecular (O)H center dot center dot center dot NH2 hydrogen bond are similarly stable, within the error bars of our method. A unique IR signature of the conformer without the hydrogen bond has been identified. We also considered anions of Phe, both valence type and dipole-bound. We have found out that tautomers resulting from proton transfer from the carboxylic OH to the phenyl ring do support valence anions that are vertically strongly bound, with electron vertical detachment energies (VDE) in a range of 3.2-3.5 eV. The most stable conformer of these valence anions remains adiabatically unbound with respect to the canonical neutral by only 2.17 kcal/mol at the CCSD(T)/aug-cc-pVDZ level. On the basis of our past experience with valence anions of nucleic acid bases, we suggest that the valence anions of Phe identified in this report can be observed experimentally. The most stable conformer of canonical Phe is characterized by an adiabatic electron affinity of 53 meV (a dipole-bound state). C1 [Keolopile, Zibo G.; Gutowski, Maciej] Heriot Watt Univ, Sch Engn & Phys Sci, Inst Chem Sci, Edinburgh EH14 4AS, Midlothian, Scotland. [Keolopile, Zibo G.; Haranczyk, Maciej] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Keolopile, ZG (reprint author), Heriot Watt Univ, Sch Engn & Phys Sci, Inst Chem Sci, Edinburgh EH14 4AS, Midlothian, Scotland. EM zgk2@hw.ac.uk; m.gutowski@hw.ac.uk; mharanczyk@lbl.gov RI Haranczyk, Maciej/A-6380-2014 OI Haranczyk, Maciej/0000-0001-7146-9568 FU U.S. Department of Energy [DE-AC02-05CH11231]; University of Botswana (UB); Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This research was supported in part (to M.H. and Z.G.K.) by the U.S. Department of Energy under contract DE-AC02-05CH11231. Z.G.K. was also suypported by the fellowship from the University of Botswana (UB). This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 60 TC 4 Z9 4 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD OCT PY 2013 VL 9 IS 10 BP 4374 EP 4381 DI 10.1021/ct400531a PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 243YU UT WOS:000326355100009 PM 26589154 ER PT J AU Mardirossian, N Head-Gordon, M AF Mardirossian, Narbe Head-Gordon, Martin TI Characterizing and Understanding the Remarkably Slow Basis Set Convergence of Several Minnesota Density Functionals for Intermolecular Interaction Energies SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID CORRELATED MOLECULAR CALCULATIONS; MAIN-GROUP THERMOCHEMISTRY; GAUSSIAN-BASIS SETS; NONCOVALENT INTERACTIONS; NONBONDED INTERACTIONS; KINETICS; ACCURACY; ELECTRON; EXCHANGE; ATOMS AB For a set of eight equilibrium intermolecular complexes, it is discovered that the basis set limit (BSL) cannot be reached by aug-cc-pV5Z for three of the Minnesota density functionals: M06-L, M06-HF, and M11-L. In addition, the M06 and M11 functionals exhibit substantial, but less severe, difficulties in reaching the BSL. By using successively finer grids, it is demonstrated that this issue is not related to the numerical integration of the exchange-correlation functional. In addition, it is shown that the difficulty in reaching the BSL is not a direct consequence of the structure of the augmented functions in Dunning's basis sets, since modified augmentation yields similar results. By using a very large custom basis set, the BSL appears to be reached for the HF dimer for all of the functionals. As a result, it is concluded that the difficulties faced by several of the Minnesota density functionals are related to an interplay between the form of these functionals and the structure of standard basis sets. It is speculated that the difficulty in reaching the basis set limit is related to the magnitude of the inhomogeneity correction factor (ICF) of the exchange functional. A simple modification of the M06-L exchange functional that systematically reduces the basis set superposition error (BSSE) for the HF dimer in the aug-cc-pVQZ basis set is presented, further supporting the speculation that the difficulty in reaching the BSL is caused by the magnitude of the exchange functional ICF. Finally, the BSSE is plotted with respect to the internuclear distance of the neon dimer for two of the examined functionals. C1 [Mardirossian, Narbe] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Head-Gordon, Martin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Head-Gordon, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM mhg@cchem.berkeley.edu FU Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division, of the U.S. Department of Energy [DE-AC0376SF00098]; SciDac Program FX This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division, of the U.S. Department of Energy under Contract DE-AC0376SF00098 and by a grant from the SciDac Program. NR 37 TC 23 Z9 23 U1 1 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD OCT PY 2013 VL 9 IS 10 BP 4453 EP 4461 DI 10.1021/ct400660j PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 243YU UT WOS:000326355100018 PM 26589163 ER PT J AU Hung, PC Tsao, JY AF Hung, P. C. Tsao, J. Y. TI Authors' Reply to "Comments on 'Maximum White Luminous Efficacy of Radiation Versus Color Rendering Index and Color Temperature: Exact Results and a Useful Analytic Expression'" SO JOURNAL OF DISPLAY TECHNOLOGY LA English DT Editorial Material DE Chromaticity; color rendering index; color temperature; luminous efficacy of radiation; psychological white AB This is the authors' reply to the comment by Chen, Zhang, and He to a previously published paper by Hung and Tsao C1 [Hung, P. C.] Konica Minolta Lab USA Inc, San Mateo, CA 94403 USA. [Tsao, J. Y.] Sandia Natl Labs, Phys Chem & Nano Sci Ctr, Albuquerque, NM 87185 USA. RP Hung, PC (reprint author), Konica Minolta Lab USA Inc, San Mateo, CA 94403 USA. EM po-chieh.hung@hl.konicaminolta.us; jytsao@sandia.gov NR 4 TC 0 Z9 0 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1551-319X EI 1558-9323 J9 J DISP TECHNOL JI J. Disp. Technol. PD OCT PY 2013 VL 9 IS 10 BP 861 EP 861 DI 10.1109/JDT.2013.2281603 PG 1 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 250FS UT WOS:000326836500002 ER PT J AU Verhoeven, JD Spitzig, WA Jones, LL Downing, HL Trybus, CL Gibson, ED Chumbley, LS Fritzemeier, LG Schnittgrund, GD AF Verhoeven, J. D. Spitzig, W. A. Jones, L. L. Downing, H. L. Trybus, C. L. Gibson, E. D. Chumbley, L. S. Fritzemeier, L. G. Schnittgrund, G. D. TI Development of Deformation Processed Copper-Refractory Metal Composite Alloys SO JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE LA English DT Article ID CU-NB COMPOSITES; STRENGTH; MICROSTRUCTURE AB The strength, electrical conductivity, and substructure of deformation processed Cu-15vol%X alloys have been studied where X included Nb, Ta, and Cr. One alloy of Cu-15Nb was studied in which 2% Ag was added to examine solid solution strengthening of the Cu matrix. The alloys were prepared by consumable arc melting and ingot diameters of 7.6 and 15.2 em were examined. Deformation was carried out at room temperature by rolling, press forging, and axisymmetric modes. The results show that the strength/conductivity properties of the Nb, Ta, and Cr alloys are essentially the same and are slightly better than the Cu-20vol% Nb alloys previously measured. The Ag alloy was found to be stronger at a given deformation, but the solid solution Ag decreased the conductivity more than it increased strength so that the net effect was to reduce the strength at a given conductivity. TEM studies showed that the substructures of all the alloys were similar to each other and to previous results on Cu-20vol% Nb alloys. Deformation by both press forging and rolling are not as effective at increasing strength as is axisymmetric deformation. C1 [Verhoeven, J. D.; Spitzig, W. A.; Jones, L. L.; Gibson, E. D.; Chumbley, L. S.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Verhoeven, J. D.; Spitzig, W. A.; Jones, L. L.; Gibson, E. D.; Chumbley, L. S.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Downing, H. L.] Drake Univ, Dept Phys, Des Moines, IA 50311 USA. [Trybus, C. L.] Idaho Natl Lab, EG & G Idaho, Idaho Falls, ID 83415 USA. [Fritzemeier, L. G.; Schnittgrund, G. D.] Rockwell Int Corp, Rocketdyne Div, Canoga Pk, CA 91303 USA. RP Verhoeven, JD (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. FU U.S. Department of Energy by Iowa State University [W-7405-ENG-82]; DARPA through Naval Research Laboratory [N00014-86-C-2224]; Rocketdyne Division of Rockwell International, Canoga Park, California FX This work was carried out at the Ames Laboratory, operated for the U.S. Department of Energy by Iowa State University under contract no. W-7405-ENG-82. The copper based refractory alloys were prepared, fabricated, chemically analyzed and metallographically characterized by personnel of the Ames Laboratory's Materials Preparation Center (MPC). The work was supported by DARPA funding through Naval Research Laboratory contract no. N00014-86-C-2224 with the Rocketdyne Division of Rockwell International, Canoga Park, California. NR 19 TC 0 Z9 0 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1059-9495 EI 1544-1024 J9 J MATER ENG PERFORM JI J. Mater. Eng. Perform. PD OCT PY 2013 VL 22 IS 10 BP 2847 EP 2859 DI 10.1007/s11665-013-0725-6 PG 13 WC Materials Science, Multidisciplinary SC Materials Science GA 245HW UT WOS:000326455600007 ER PT J AU Yang, ZG Xia, GG Meinhardt, KD Weil, KS Stevenson, JW AF Yang, Zhenguo Xia, Guanguang Meinhardt, Kerry D. Weil, K. Scott Stevenson, Jeff W. TI Chemical Stability of Glass Seal Interfaces in Intermediate Temperature Solid Oxide Fuel Cells SO JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE LA English DT Article DE ferritic stainless steels; interconnect; sealing glass; solid oxide fuel cell ID STEEL INTERCONNECT; ALLOY; SOFC; DEGRADATION AB In intermediate temperature planar solid oxide fuel cell (SOFC) stacks, the interconnect, which is typically made from cost-effective, oxidation-resistant, high-temperature alloys, is typically sealed to the ceramic positive electrode-electrolyte-negative electrode (PEN) by a sealing glass. To maintain the structural stability and minimize the degradation of stack performance, the sealing glass has to be chemically compatible with the PEN and alloy interconnects. In the present study, the chemical compatibility of a barium-calcium-aluminosilicate (BCAS) based glass-ceramic (specifically developed as a sealant in SOFC stacks) with a number of selected oxidation resistant high temperature alloys (and the yttria-stabilized zirconia electrolyte) was evaluated. This paper reports the results of that study, with a particular focus on Crofer22 APU, a new ferritic stainless steel that was developed specifically for SOFC interconnect applications. C1 [Yang, Zhenguo; Xia, Guanguang; Meinhardt, Kerry D.; Weil, K. Scott; Stevenson, Jeff W.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Yang, ZG (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM zgary.yang@pnl.gov NR 19 TC 0 Z9 0 U1 4 U2 29 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1059-9495 EI 1544-1024 J9 J MATER ENG PERFORM JI J. Mater. Eng. Perform. PD OCT PY 2013 VL 22 IS 10 BP 2892 EP 2899 DI 10.1007/s11665-013-0731-8 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA 245HW UT WOS:000326455600011 ER PT J AU Viswanathan, R Henry, JF Tanzosh, J Stanko, G Shingledecker, J Vitalis, B Purgert, R AF Viswanathan, R. Henry, J. F. Tanzosh, J. Stanko, G. Shingledecker, J. Vitalis, B. Purgert, R. TI US Program on Materials Technology for Ultra-Supercritical Coal Power Plants SO JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE LA English DT Article DE corrosion; creep; efficiency; emissions; fabrication; power plants; stress; welding AB The efficiency of conventional fossil power plants is a strong function of the steam temperature and pressure. Research to increase both has been pursued worldwide, since the energy crisis in the 1970s. The need to reduce CO2 emissions has recently provided an additional incentive to increase efficiency. More recently, interest has also been evinced in advanced combustion technologies utilizing oxygen instead of air for combustion. The main enabling technology in achieving the above goals is the development of stronger high temperature materials. Extensive research-and-development programs have resulted in numerous high-strength alloys for heavy section piping and for tubing needed to build boilers. The study reported on here is aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers that are capable of operating with steam at temperatures of 760 degrees C (1400 degrees F) and pressures of 35 MPa (5000 psi). The economic viability of such a plant has been explored. Candidate alloys applicable to various ranges of temperatures have been identified. Stress rupture tests have been completed on the base metal and on welds to a number of alloys. Steamside oxidation tests in an autoclave at 650 degrees C (1200 degrees F) and 800 degrees C (1475 degrees F) have been completed. Fireside corrosion tests have been conducted under conditions simulating those of waterwalls and superheater/reheater tubes. The weldability and fabricability of the alloys have been investigated. The capabilities of various overlay coatings and diffusion coatings have been examined. This article provides a status report on the progress achieved to date on this project. C1 [Viswanathan, R.] Elect Power Res Inst, Palo Alto, CA 94303 USA. [Henry, J. F.] Alstom Power Co, Windsor, CT 06095 USA. [Tanzosh, J.] Babcock & Wilcox Co, McDermott Technol Inc, Alliance, OH 44601 USA. [Stanko, G.] Foster Wheeler Dev Corp, Livingston, NJ 07039 USA. [Shingledecker, J.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Vitalis, B.] Riley Power, Worcester, MA 01615 USA. [Purgert, R.] Energy Ind Ohio Inc, Independence, OH 44131 USA. RP Viswanathan, R (reprint author), Elect Power Res Inst, 3412 Hillview Ave, Palo Alto, CA 94303 USA. EM RVISWANA@epri.com FU National Energy Technology Laboratory; Office of Fossil Energy; Department of Energy; Mr. Howard Johnson of the Ohio Coal Development Office FX This study is being conducted by the following consortium: Alstom Power, Babcock and Wilcox, Foster Wheeler, Riley Power, Oakridge National Laboratories, Energy Industries of Ohio, and the Electric Power Research Institute. The sponsorship and guidance of this work by Dr. Robert Romanosky and Dr. Udaya Rao of the National Energy Technology Laboratory, the Office of Fossil Energy, the Department of Energy, and by Mr. Howard Johnson of the Ohio Coal Development Office is gratefully acknowledged. The technical results reported herein are based on contributions by numerous investigators including Paul Weitzel, Mark Palkes, George Booras, Robert Swindeman, John Shingledecker, Jeff Sarver, Ian Perrin, John Sanders, Mike Borden, Walt Mohn, Steve Goodstine, John Fishburn, and others. Their contributions are gratefully acknowledged. NR 18 TC 5 Z9 5 U1 4 U2 27 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1059-9495 EI 1544-1024 J9 J MATER ENG PERFORM JI J. Mater. Eng. Perform. PD OCT PY 2013 VL 22 IS 10 BP 2904 EP 2915 DI 10.1007/s11665-013-0717-6 PG 12 WC Materials Science, Multidisciplinary SC Materials Science GA 245HW UT WOS:000326455600013 ER PT J AU Bakosi, J Ristorcelli, JR AF Bakosi, J. Ristorcelli, J. R. TI A stochastic diffusion process for Lochner's generalized Dirichlet distribution SO JOURNAL OF MATHEMATICAL PHYSICS LA English DT Article ID MULTINOMIAL DISTRIBUTION; PROPORTIONS AB The method of potential solutions of Fokker-Planck equations is used to develop a transport equation for the joint probability of N stochastic variables with Lochner's generalized Dirichlet distribution [R. H. Lochner, "A generalized Dirichlet distribution in Bayesian life testing," J. R. Stat. Soc. Ser. B (Methodol.) 37(1), 103-113 (1975)] as its asymptotic solution. Individual samples of a discrete ensemble, obtained from the system of stochastic differential equations, equivalent to the Fokker-Planck equation developed here, satisfy a unit-sum constraint at all times and ensure a bounded sample space, similarly to the process developed in [J. Bakosi and J. R. Ristorcelli, "A stochastic diffusion process for the Dirichlet distribution," Int. J. Stoch. Anal. 2013, 7]. Consequently, the generalized Dirichlet diffusion process may be used to represent realizations of a fluctuating ensemble of N variables subject to a conservation principle. Compared to the Dirichlet distribution and process, the additional parameters of the generlized Dirichlet distribution allow a more general class of physical processes to be modeled with a more general covariance matrix. (C) 2013 AIP Publishing LLC. C1 [Bakosi, J.; Ristorcelli, J. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Bakosi, J (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM jbakosi@lanl.gov; jrrj@lanl.gov OI Bakosi, Jozsef/0000-0002-0604-5555 NR 19 TC 1 Z9 1 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0022-2488 EI 1089-7658 J9 J MATH PHYS JI J. Math. Phys. PD OCT PY 2013 VL 54 IS 10 AR 102701 DI 10.1063/1.4822416 PG 10 WC Physics, Mathematical SC Physics GA 247RT UT WOS:000326638100021 ER PT J AU Calef, M Griffiths, W Schulz, A Fichtl, C Hardin, D AF Calef, M. Griffiths, W. Schulz, A. Fichtl, C. Hardin, D. TI Observed asymptotic differences in energies of stable and minimal point configurations on S-2 and the role of defects SO JOURNAL OF MATHEMATICAL PHYSICS LA English DT Article ID N EQUAL CHARGES; RIESZ ENERGY; THOMSONS PROBLEM; EQUILIBRIUM-CONFIGURATIONS; LATTICE CONFIGURATIONS; SPHERE; ALGORITHM; SETS AB Configurations of N points on the two-sphere that are stable with respect to the Riesz s-energy have a structure that is largely hexagonal. These stable configurations differ from the configurations with the lowest reported N-point s-energy in the location and structure of defects within this hexagonal structure. These differences in energy between the stable and minimal configuration suggest that energy scale at which defects play a role. This work uses numerical experiments to report this difference as a function of N, allowing us to infer the energy scale at which defects play a role. This work is presented in the context of established estimates for the minimal N-point energy, and in particular we identify terms in these estimates that likely reflect defect structure. (C) 2013 AIP Publishing LLC. C1 [Calef, M.; Fichtl, C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Griffiths, W.] Bank Amer, New York, NY USA. [Schulz, A.] MIT, Lincoln Lab, Lexington, MA 02173 USA. [Hardin, D.] Vanderbilt Univ, Dept Math, Nashville, TN USA. RP Calef, M (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM mcalef@lanl.gov; whitney.griffiths@baml.com; alexia.schulz@ll.mit.edu; cfichtl@lanl.gov; doug.hardin@vanderbilt.edu OI Calef, Matthew/0000-0003-4701-7224 FU National Nuclear Security Administration of the (U.S.) Department of Energy (DOE) at Los Alamos National Laboratory [DE-AC52-06NA25396 LA-UR-13-27573]; (U.S.) National Science Foundation (NSF) [DMS-1109266] FX The work of M. Calef was performed under the auspices of the National Nuclear Security Administration of the (U.S.) Department of Energy (DOE) at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 LA-UR-13-27573. The research of D. Hardin was supported, in part, by the (U.S.) National Science Foundation (NSF) under Grant No. DMS-1109266. NR 30 TC 3 Z9 3 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0022-2488 EI 1089-7658 J9 J MATH PHYS JI J. Math. Phys. PD OCT PY 2013 VL 54 IS 10 AR 101901 DI 10.1063/1.4826345 PG 20 WC Physics, Mathematical SC Physics GA 247RT UT WOS:000326638100006 ER PT J AU Munshi, D Smidt, J Cooray, A Renzi, A Heavens, A Coles, P AF Munshi, D. Smidt, J. Cooray, A. Renzi, A. Heavens, A. Coles, P. TI New approaches to probing Minkowski functionals SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: analytical; methods: numerical; methods: statistical; cosmic background radiation; diffuse radiation; large-scale structure of Universe ID PRIMORDIAL NON-GAUSSIANITY; LARGE-SCALE STRUCTURE; MICROWAVE BACKGROUND BISPECTRUM; WEAK-LENSING FIELDS; WMAP 7-YEAR DATA; GENUS STATISTICS; POLARIZATION ANISOTROPIES; INFLATIONARY MODELS; SPHERICAL WAVELETS; COMPACT MANIFOLDS AB We generalize the concept of the ordinary skew-spectrum to probe the effect of non-Gaussianity on the morphology of cosmic microwave background (CMB) maps in several domains: in real space (where they are commonly known as cumulant-correlators), and in harmonic and needlet bases. The essential aim is to retain more information than normally contained in these statistics, in order to assist in determining the source of any measured non-Gaussianity, in the same spirit as Munshi & Heavens skew-spectra were used to identify foreground contaminants to the CMB bispectrum in Planck data. Using a perturbative series to construct the Minkowski functionals (MFs), we provide a pseudo-C-l based approach in both harmonic and needlet representations to estimate these spectra in the presence of a mask and inhomogeneous noise. Assuming homogeneous noise, we present approximate expressions for error covariance for the purpose of joint estimation of these spectra. We present specific results for four different models of primordial non-Gaussianity local, equilateral, orthogonal and enfolded models, as well as non-Gaussianity caused by unsubtracted point sources. Closed form results of next-order corrections to MFs too are obtained in terms of a quadruplet of kurt-spectra. We also use the method of modal decomposition of the bispectrum and trispectrum to reconstruct the MFs as an alternative method of reconstruction of morphological properties of CMB maps. Finally, we introduce the odd-parity skew-spectra to probe the odd-parity bispectrum and its impact on the morphology of the CMB sky. Although developed for the CMB, the generic results obtained here can be useful in other areas of cosmology. C1 [Munshi, D.; Coles, P.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Munshi, D.; Coles, P.] Univ Sussex, Sch Math & Phys Sci, Brighton BN1 9QH, E Sussex, England. [Smidt, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Smidt, J.; Cooray, A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Renzi, A.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Renzi, A.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Renzi, A.] SISSA, I-34136 Trieste, Italy. [Heavens, A.] Imperial Coll, Blackett Lab, Dept Phys, Imperial Ctr Inference & Cosmol, London SW7 2AZ, England. RP Munshi, D (reprint author), Cardiff Univ, Sch Phys & Astron, Queens Bldg,5 Parade, Cardiff CF24 3AA, S Glam, Wales. EM D.Munshi@sussex.ac.uk RI Renzi, alessandro/K-4114-2015 OI Renzi, alessandro/0000-0001-9856-1970 FU STFC [ST/G002231/1]; NASA [NNX10AD42G]; [NSF-AST0645427] FX DM acknowledges support from STFC standard grant ST/G002231/1 at School of Physics and Astronomy at Cardiff University where this work was completed. AC and JS are supported by NSF-AST0645427 and NASA NNX10AD42G. DM would like to thank Michele Liguori for useful discussions. We would like to thank an anonymous referee for many useful suggestions. NR 127 TC 9 Z9 9 U1 0 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT PY 2013 VL 434 IS 4 BP 2830 EP 2855 DI 10.1093/mnras/stt1189 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 229KK UT WOS:000325262300011 ER PT J AU Dai, LX Blandford, RD Eggleton, PP AF Dai, Lixin Blandford, Roger D. Eggleton, Peter P. TI Adiabatic evolution of mass-losing stars SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion, accretion discs; stars: evolution; stars: kinematics and dynamics; stars: mass-loss; galaxies: active ID BLACK-HOLES; STELLAR EVOLUTION; BROWN DWARFS; CAPTURE; RADIATION; INTERIOR; JUPITER; ENERGY; MODELS AB We investigate the evolution of the stellar structure, when a star fills and overflows its Roche lobe in a circular, equatorial orbit around a supermassive black hole. The stellar mass-loss time-scale is anticipated to be long compared with the dynamical time-scale and short compared with the thermal time-scale of the star; so, the entropy as a function of enclosed mass is conserved. For a representative set of stars, we calculate how the stellar entropy, pressure, radius, density and orbital angular momentum vary when the star adiabatically loses mass. We also provide interpolated formulae of the stellar mean density in terms of the remaining stellar mass for different types of stars. As the stellar orbit changes with the stellar density, Sun-like stars, upper main-sequence stars and red giants will spiral inwards and then outwards, while lower main-sequence stars, brown dwarfs and white dwarfs will always spiral outwards. We discuss the validity and limitation of the adiabatic mass-loss assumption and show that such a mass-transfer process is always stable on dynamical time-scales when the mass ratio of the two objects is large. C1 [Dai, Lixin; Blandford, Roger D.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Eggleton, Peter P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Dai, LX (reprint author), Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. EM cosimo@stanford.edu; rdb3@stanford.edu; eggleton1@llnl.gov FU US Department of Energy [DE-AC02-76SF00515] FX This work was supported by the US Department of Energy contract to SLAC no. DE-AC02-76SF00515. We would like to acknowledge R. Wagoner, J. Faulkner and S. Phinney for helpful discussions. In particular, we would like to thank M. MacLeod and E. Ramirez-ruiz for the help in providing MESA simulation data. NR 27 TC 3 Z9 3 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT PY 2013 VL 434 IS 4 BP 2940 EP 2947 DI 10.1093/mnras/stt1208 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 229KK UT WOS:000325262300018 ER PT J AU West, JJ Smith, SJ Silva, RA Naik, V Zhang, YQ Adelman, Z Fry, MM Anenberg, S Horowitz, LW Lamarque, JF AF West, J. Jason Smith, Steven J. Silva, Raquel A. Naik, Vaishali Zhang, Yuqiang Adelman, Zachariah Fry, Meridith M. Anenberg, Susan Horowitz, Larry W. Lamarque, Jean-Francois TI Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health SO NATURE CLIMATE CHANGE LA English DT Article ID CLIMATE-CHANGE; ANCILLARY BENEFITS; OZONE POLLUTION; HUMAN MORTALITY; POLICIES; MODEL; SCENARIOS; EXPOSURE; BURDEN AB Actions to reduce greenhouse gas (GHG) emissions often reduce co-emitted air pollutants, bringing co-benefits for air quality and human health. Past studies(1-6) typically evaluated near-term and local co-benefits, neglecting the long-range transport of air pollutants(7-9), long-term demographic changes, and the influence of climate change on air quality(10-12). Here we simulate the co-benefits of global GHG reductions on air quality and human health using a global atmospheric model and consistent future scenarios, via two mechanisms: reducing co-emitted air pollutants, and slowing climate change and its effect on air quality. We use new relationships between chronic mortality and exposure to fine particulate matter(13) and ozone(14), global modelling methods(15) and new future scenarios(16). Relative to a reference scenario, global GHG mitigation avoids 0.5 +/- 0.2, 1.3 +/- 0.5 and 2.2 +/- 0.8 million premature deaths in 2030, 2050 and 2100. Global average marginal co-benefits of avoided mortality are US$ 50-380 per tonne of CO2, which exceed previous estimates, exceed marginal abatement costs in 2030 and 2050, and are within the low range of costs in 2100. East Asian co-benefits are 10-70 times the marginal cost in 2030. Air quality and health co-benefits, especially as they are mainly local and near-term, provide strong additional motivation for transitioning to a low-carbon future. C1 [West, J. Jason; Silva, Raquel A.; Zhang, Yuqiang; Adelman, Zachariah; Fry, Meridith M.] Univ N Carolina, Chapel Hill, NC 27599 USA. [Smith, Steven J.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Naik, Vaishali] NOAA, UCAR, Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA. [Anenberg, Susan] US EPA, Washington, DC 20004 USA. [Horowitz, Larry W.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA. [Lamarque, Jean-Francois] Natl Ctr Atmospher Res, Boulder, CO 80301 USA. RP West, JJ (reprint author), Univ N Carolina, Chapel Hill, NC 27599 USA. EM jasonwest@unc.edu RI Horowitz, Larry/D-8048-2014; Zhang, Yuqiang/C-5027-2015; Naik, Vaishali/A-4938-2013; Lamarque, Jean-Francois/L-2313-2014; West, Jason/J-2322-2015; Zhang, Yuqiang/P-2682-2016 OI Horowitz, Larry/0000-0002-5886-3314; Zhang, Yuqiang/0000-0002-9161-7086; Naik, Vaishali/0000-0002-2254-1700; Lamarque, Jean-Francois/0000-0002-4225-5074; West, Jason/0000-0001-5652-4987; Zhang, Yuqiang/0000-0002-9161-7086 FU US Environmental Protection Agency STAR [834285]; US Department of Energy, Office of Science; National Institute of Environmental Health Sciences [1 R21 ES022600-01]; Portuguese Foundation for Science and Technology [SFRH/BD/62759/2009]; EPA STAR; National Science Foundation FX This publication was financially supported by the US Environmental Protection Agency STAR grant #834285, the Integrated Assessment Research Program in the US Department of Energy, Office of Science, the National Institute of Environmental Health Sciences grant #1 R21 ES022600-01, fellowship SFRH/BD/62759/2009 from the Portuguese Foundation for Science and Technology (to R.A.S.), and an EPA STAR Graduate Fellowship (to M.M.F.). Its contents are solely the responsibility of the grantee and do not necessarily represent the official views of the USEPA or other funding sources. USEPA and other funding sources do not endorse the purchase of any commercial products or services mentioned in the publication. NCAR is operated by the University Corporation of Atmospheric Research under sponsorship of the National Science Foundation. We thank the National Oceanographic and Atmospheric Administration for computing resources, L. Emmons for MOZART-4 guidance, and G.Characklis NR 30 TC 86 Z9 86 U1 23 U2 110 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X EI 1758-6798 J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD OCT PY 2013 VL 3 IS 10 BP 885 EP 889 DI 10.1038/NCLIMATE2009 PG 5 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 249ZE UT WOS:000326818800013 PM 24926321 ER PT J AU Chen, G Ma, TP N'Diaye, AT Kwon, H Won, C Wu, YZ Schmid, AK AF Chen, Gong Ma, Tianping N'Diaye, Alpha T. Kwon, Heeyoung Won, Changyeon Wu, Yizheng Schmid, Andreas K. TI Tailoring the chirality of magnetic domain walls by interface engineering SO NATURE COMMUNICATIONS LA English DT Article ID SPIN TORQUE; DRIVEN; DYNAMICS; LAYER AB Contacting ferromagnetic films with normal metals changes how magnetic textures respond to electric currents, enabling surprisingly fast domain wall motions and spin texture-dependent propagation direction. These effects are attributed to domain wall chirality induced by the Dzyaloshinskii-Moriya interaction at interfaces, which suggests rich possibilities to influence domain wall dynamics if the Dzyaloshinskii-Moriya interaction can be adjusted. Chiral magnetism was seen in several film structures on appropriately chosen substrates where interfacial spin-orbit-coupling effects are strong. Here we use real-space imaging to visualize chiral domain walls in cobalt/nickel multilayers in contact with platinum and iridium. We show that the Dzyaloshinskii-Moriya interaction can be adjusted to stabilize either left-handed or right-handed Neel walls, or non-chiral Bloch walls by adjusting an interfacial spacer layer between the multilayers and the substrate. Our findings introduce domain wall chirality as a new degree of freedom, which may open up new opportunities for spintronics device designs. C1 [Chen, Gong; N'Diaye, Alpha T.; Schmid, Andreas K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Ma, Tianping; Wu, Yizheng] Fudan Univ, Dept Phys, State Key Lab Surface Phys, Shanghai 200433, Peoples R China. [Ma, Tianping; Wu, Yizheng] Fudan Univ, Adv Mat Lab, Shanghai 200433, Peoples R China. [Kwon, Heeyoung; Won, Changyeon] Kyung Hee Univ, Dept Phys, Seoul 130701, South Korea. RP Schmid, AK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. EM wuyizheng@fudan.edu.cn; akschmid@lbl.gov RI wu, YiZheng/O-1547-2013; Wu, yizheng/P-2395-2014; Chen, Gong/H-3074-2015; Foundry, Molecular/G-9968-2014 OI Wu, yizheng/0000-0002-9289-1271; FU Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the US Department of Energy [DE-AC02-05CH11231]; MOST [2011CB921801, 2009CB929203]; NSFC of China [10925416, 11274074]; WHMFC [WHMFCKF2011008]; National Research Foundation of Korea; Korean Government [2012R1A1A2007524] FX We acknowledge Professor Z.Q. Qiu for helpful discussions and Dr. Colin Ophus for his contributions to the graphics. Experiments were performed at the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the US Department of Energy under Contract number DE-AC02-05CH11231. This work was also supported by MOST (numbers 2011CB921801 and 2009CB929203), by NSFC of China (numbers 10925416 and 11274074), by WHMFC (number WHMFCKF2011008) and by the National Research Foundation of Korea Grant funded by the Korean Government (2012R1A1A2007524). NR 40 TC 89 Z9 89 U1 10 U2 97 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD OCT PY 2013 VL 4 AR 2671 DI 10.1038/ncomms3671 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 245OP UT WOS:000326473500003 PM 24154595 ER PT J AU Coslovich, G Huber, B Lee, WS Chuang, YD Zhu, Y Sasagawa, T Hussain, Z Bechtel, HA Martin, MC Shen, ZX Schoenlein, RW Kaindl, RA AF Coslovich, G. Huber, B. Lee, W. -S. Chuang, Y. -D. Zhu, Y. Sasagawa, T. Hussain, Z. Bechtel, H. A. Martin, M. C. Shen, Z. -X. Schoenlein, R. W. Kaindl, R. A. TI Ultrafast charge localization in a stripe-phase nickelate SO NATURE COMMUNICATIONS LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; METAL-INSULATOR TRANSITIONS; T-C SUPERCONDUCTOR; FLUCTUATING STRIPES; LA2-XSRXNIO4; PSEUDOGAP; SPECTRA; PLANE AB Self-organized electronically ordered phases are a recurring feature in correlated materials, resulting in, for example, fluctuating charge stripes whose role in high-TC superconductivity is under debate. However, the relevant cause-effect relations between real-space charge correlations and low-energy excitations remain hidden in time-averaged studies. Here we reveal ultrafast charge localization and lattice vibrational coupling as dynamic precursors of stripe formation in the model compound La1.75Sr0.25NiO4, using ultrafast and equilibrium mid-infrared spectroscopy. The opening of a pseudogap at a crossover temperature T* far above long-range stripe formation establishes the onset of electronic localization, which is accompanied by an enhanced Fano asymmetry of Ni-O stretch vibrations. Ultrafast excitation triggers a sub-picosecond dynamics exposing the synchronous modulation of electron-phonon coupling and charge localization. These results illuminate the role of localization in forming the pseudogap in nickelates, opening a path to understanding this mysterious phase in a broad class of complex oxides. C1 [Coslovich, G.; Huber, B.; Zhu, Y.; Schoenlein, R. W.; Kaindl, R. A.] EO Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Lee, W. -S.; Shen, Z. -X.] Stanford Univ, SLAC Natl Accelerator Lab, SIMES, Menlo Pk, CA 94025 USA. [Chuang, Y. -D.; Hussain, Z.; Bechtel, H. A.; Martin, M. C.] EO Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Sasagawa, T.] Tokyo Inst Technol, Mat & Struct Lab, Tokyo, Kanagawa 2268503, Japan. RP Coslovich, G (reprint author), EO Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM gcoslovich@lbl.gov; RAKaindl@lbl.gov RI Schoenlein, Robert/D-1301-2014; Sasagawa, Takao/E-6666-2014 OI Schoenlein, Robert/0000-0002-6066-7566; Sasagawa, Takao/0000-0003-0149-6696 FU US Department of Energy, Office of Basic Energy Sciences (DOE BES), Division of Materials Sciences and Engineering at Lawrence Berkeley National Laboratory in the Ultrafast Materials Science program [DE-AC02-05CH11231]; DOE BES; Division of Materials Sciences and Engineering, DOE BES at SLAC National Accelerator Laboratory and Stanford Institute for Materials and Energy Sciences [DE-AC02-76SF00515]; German Academic Exchange Service (DAAD FX We thank T. Deveraux, M. Schiro and G. Sawatzky for their interesting discussions. This research was supported by the US Department of Energy, Office of Basic Energy Sciences (DOE BES), Division of Materials Sciences and Engineering under contract DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory in the Ultrafast Materials Science program (G. C., B. H., Y.Z., R. W. S. and R. A. K.). The Advanced Light Source Division is supported by DOE BES under the same contract (Y.-D.C., H. B., M. C. M. and Z.H.). W.-S.L. and Z.-X.S. acknowledge the funding from the Division of Materials Sciences and Engineering, DOE BES under contract DE-AC02-76SF00515 at SLAC National Accelerator Laboratory and Stanford Institute for Materials and Energy Sciences. B. H. acknowledges fellowship support from the German Academic Exchange Service (DAAD) and participation in an exchange program with the U. C. Berkeley Nanosciences and Nanoengineering Institute. NR 38 TC 9 Z9 9 U1 5 U2 47 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD OCT PY 2013 VL 4 AR 2643 DI 10.1038/ncomms3643 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 245OG UT WOS:000326472400006 PM 24153394 ER PT J AU Zhu, JX Albers, RC Haule, K Kotliar, G Wills, JM AF Zhu, Jian-Xin Albers, R. C. Haule, K. Kotliar, G. Wills, J. M. TI Site-selective electronic correlation in alpha-plutonium metal SO NATURE COMMUNICATIONS LA English DT Article ID MEAN-FIELD THEORY; GENERALIZED GRADIENT APPROXIMATION; DELTA-PU; STATE; SYSTEMS; COLLAPSE; VALENCE; PICTURE AB An understanding of the phase diagram of elemental plutonium (Pu) must include both, the effects of the strong directional bonding and the high density of states of the Pu 5f electrons, as well as how that bonding weakens under the influence of strong electronic correlations. Here we present electronic-structure calculations of the full 16-atom per unit cell alpha-phase structure within the framework of density functional theory together with dynamical mean-field theory. Our calculations demonstrate that Pu atoms sitting on different sites within the alpha-Pu crystal structure have a strongly varying site dependence of the localization-delocalization correlation effects of their 5f electrons and a corresponding effect on the bonding and electronic properties of this complicated metal. In short, alpha-Pu has the capacity to simultaneously have multiple degrees of electron localization/delocalization of Pu 5f electrons within a pure single-element material. C1 [Zhu, Jian-Xin; Albers, R. C.; Wills, J. M.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Haule, K.; Kotliar, G.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. RP Zhu, JX (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. EM jxzhu@lanl.gov OI Zhu, Jianxin/0000-0001-7991-3918 FU US Department of Energy; LANL LDRD Program; US DOE Office of Basic Energy Sciences [DE-FG02-99ER45761]; LANL ASC Program FX We acknowledge useful discussions with T. Durakiewicz, M.J. Graf and J.J. Joyce. This work was performed at Los Alamos National Laboratory under the auspices of the US Department of Energy and was supported by the LANL LDRD Program (J.X.Z. and J.M.W.) and the US DOE Office of Basic Energy Sciences under Grant No. DE-FG02-99ER45761 (K.H. and G. K.). This work was, in part, supported by the LANL ASC Program. NR 52 TC 12 Z9 12 U1 2 U2 25 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD OCT PY 2013 VL 4 AR 2644 DI 10.1038/ncomms3644 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 245OG UT WOS:000326472400007 PM 24136139 ER PT J AU Zimmermann, EA Gludovatz, B Schaible, E Dave, NKN Yang, W Meyers, MA Ritchie, RO AF Zimmermann, Elizabeth A. Gludovatz, Bernd Schaible, Eric Dave, Neil K. N. Yang, Wen Meyers, Marc A. Ritchie, Robert O. TI Mechanical adaptability of the Bouligand-type structure in natural dermal armour SO NATURE COMMUNICATIONS LA English DT Article ID LAMINATE STRUCTURE; ARAPAIMA-GIGAS; FISH SCALE; BONE; COLLAGEN; NANOSCALE; TOUGHNESS; ORIGINS AB Arapaima gigas, a fresh water fish found in the Amazon Basin, resist predation by piranhas through the strength and toughness of their scales, which act as natural dermal armour. Arapaima scales consist of a hard, mineralized outer shell surrounding a more ductile core. This core region is composed of aligned mineralized collagen fibrils arranged in distinct lamellae. Here we show how the Bouligand-type (twisted plywood) arrangement of collagen fibril lamellae has a key role in developing their unique protective properties, by using in situ synchrotron small-angle X-ray scattering during mechanical tensile tests to observe deformation mechanisms in the fibrils. Specifically, the Bouligand-type structure allows the lamellae to reorient in response to the loading environment; remarkably, most lamellae reorient towards the tensile axis and deform in tension through stretching/sliding mechanisms, whereas other lamellae sympathetically rotate away from the tensile axis and compress, thereby enhancing the scale's ductility and toughness to prevent fracture. C1 [Zimmermann, Elizabeth A.; Gludovatz, Bernd; Dave, Neil K. N.; Ritchie, Robert O.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Schaible, Eric] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Expt Syst Grp, Adv Light Source, Berkeley, CA 94720 USA. [Yang, Wen; Meyers, Marc A.] Univ Calif San Diego, Mat Sci & Engn Program, La Jolla, CA 92093 USA. [Meyers, Marc A.] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Meyers, Marc A.] Univ Calif San Diego, Dept Nanoengn, La Jolla, CA 92093 USA. [Ritchie, Robert O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Ritchie, RO (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM roritchie@lbl.gov RI Ritchie, Robert/A-8066-2008; Zimmermann, Elizabeth/A-4010-2015; YANG, Wen/E-1449-2015; Yang, Wen/H-8628-2013; Meyers, Marc/A-2970-2016; OI Ritchie, Robert/0000-0002-0501-6998; YANG, Wen/0000-0002-1817-4194; Yang, Wen/0000-0002-1817-4194; Meyers, Marc/0000-0003-1698-5396; Zimmermann, Elizabeth/0000-0001-9927-3372; Gludovatz, Bernd/0000-0002-2420-3879 FU Mechanical Behavior of Materials Program at the Lawrence Berkeley National Laboratory by the Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the US Department of Energy [DE-AC02-05CH11231]; Department of Energy under the same Office of Science contract; University of California Lab Research Program [09-LR-06-118456-MEYM] FX This work was supported by the Mechanical Behavior of Materials Program at the Lawrence Berkeley National Laboratory by the Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the US Department of Energy under Contract No. DE-AC02-05CH11231. We acknowledge use of the small-angle X-ray scattering beamline 7.3.3 at the Advanced Light Source at Lawrence Berkeley National Laboratory, which is supported by the Department of Energy under the same Office of Science contract. We thank Gaspar Ritter, Kuryala Lodge and Araguaia River, for providing us with the scales. The involvement of M. A. M. and W.Y. was supported by the University of California Lab Research Program (09-LR-06-118456-MEYM). NR 18 TC 36 Z9 37 U1 8 U2 62 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD OCT PY 2013 VL 4 AR 2634 DI 10.1038/ncomms3634 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 245OE UT WOS:000326472200023 PM 24129554 ER PT J AU Basunia, MS AF Basunia, M. Shamsuzzoha TI Nuclear Data Sheets for A=28 SO NUCLEAR DATA SHEETS LA English DT Article ID S-D SHELL; THERMAL-NEUTRON CAPTURE; GAMMA-RAY SPECTROSCOPY; HIGH-SPIN STATES; INELASTIC PROTON-SCATTERING; SHIFT LIFETIME MEASUREMENTS; GIANT-DIPOLE RESONANCE; DOUBLE-CHARGE-EXCHANGE; PARTICLE-HOLE STATES; POLARIZED-DEUTERON SCATTERING AB Evaluated spectroscopic data and level schemes from radioactive decay and nuclear reaction studies are presented for F-28, Ne-28, Na-28, (28)mg, Al-28, Si-28, P-28, and S-28. This evaluation for A=28 supersedes the earlier evaluations by P.M. Endt (1998En04 and 1990En08). However, additional/detailed data for these nuclides can be found in earlier evaluations 1978En02 and 1973EnVA also by P.M. Endt. Highlights of this publication are the following: The ground state of 28F is neutron unbound. A resonance in the F-27+n continuum at 220 keV 50, r(0)=10 keV, is determined in 2012Ch02 Be-2(Ne-29,n(27)F). This resonance energy is referred to be the go. of 28F in 2012Ch02 and in good agreement with shell model predictions. In 2007RoZY - Be-9(Na-29,p gamma) the 3904 keV 7 level of Ne-28 is deduced from a single cascade of gamma-ray measurements and identified as bound state. In 2012Sm08, the 3860 keV 110 level is deduced from the measured decay energy of 32 keV 22 in the Ne-27+n system. Considering S(n)(28Ne) and the assumption of decay to the g.s., the state is interpreted as unbound in 2012Sm08. The level energies are statistically consistent and located within/around the neutron separation energy (3820 keV 120 - 2012Wa38). Evaluator assumes these states are same and may decay by competing gamma rays and neutrons. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Basunia, MS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. NR 434 TC 5 Z9 5 U1 3 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD OCT PY 2013 VL 114 IS 10 BP 1189 EP 1291 DI 10.1016/j.nds.2013.10.001 PG 103 WC Physics, Nuclear SC Physics GA 249GP UT WOS:000326766000001 ER PT J AU Baglin, CM AF Baglin, Coral M. TI Nuclear Data Sheets for A=91 SO NUCLEAR DATA SHEETS LA English DT Article ID HIGH-SPIN STATES; ISOBARIC ANALOG RESONANCES; DELAYED-NEUTRON EMISSION; GASEOUS FISSION-PRODUCTS; PROTON DRIP-LINE; N = 50; SURROGATE REACTION TECHNIQUE; MULTIPARTICLE-HOLE STATES; SHELL-MODEL CALCULATIONS; GAMMA-RAY SPECTROMETER AB Experimental nuclear structure and decay data for all known A=91 nuclides (As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd) have been evaluated. This evaluation, covering data received by 1 September 2013, supersedes the 1998 evaluation by C. M. Baglin published in Nuclear Data Sheets 86, 1 (1999) (15 December 1998 literature cutoff), and subsequent evaluations by C. M Baglin added to the ENSDF database for Kr, Sr and Zr (29 December 2000 literature cutoff) and by B. Singh for Tc-91 (6 November 2000 literature cutoff). C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Baglin, CM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. NR 390 TC 6 Z9 6 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD OCT PY 2013 VL 114 IS 10 BP 1293 EP 1495 DI 10.1016/j.nds.2013.10.002 PG 203 WC Physics, Nuclear SC Physics GA 249GP UT WOS:000326766000002 ER PT J AU Ampleford, DJ Jennings, CA Jones, B Hansen, SB Cuneo, ME Coverdale, CA Jones, MC Flanagan, TM Savage, M Stygar, WA Lopez, MR Apruzese, JP Thornhill, JW Giuliani, JL Maron, Y AF Ampleford, D. J. Jennings, C. A. Jones, B. Hansen, S. B. Cuneo, M. E. Coverdale, C. A. Jones, M. C. Flanagan, T. M. Savage, M. Stygar, W. A. Lopez, M. R. Apruzese, J. P. Thornhill, J. W. Giuliani, J. L. Maron, Y. TI K-shell emission trends from 60 to 130 cm/mu s stainless steel implosions SO PHYSICS OF PLASMAS LA English DT Article ID Z-PINCH IMPLOSIONS; ALUMINUM; DIAGNOSTICS; POWER; LINE AB Recent experiments at the 20 MA Z Accelerator have demonstrated, for the first time, implosion velocities up to 110-130 cm/mu s in imploding stainless steel wire arrays. These velocities, the largest inferred in a magnetically driven implosion, lead to ion densities of 2 x 10(20) cm(-3) with electron temperatures of similar to 5 keV. These plasma conditions have resulted in significant increases in the K-shell radiated output of 5-10 keV photons, radiating powers of >30 TW and yields 80 kJ, making it the brightest laboratory x-ray source in this spectral region. These values represent a doubling of the peak power and a 30% increase in the yield relative to previous studies. The experiments also included wire arrays with slower implosions, which were observed to have lower temperatures and reduced K-shell output. These colder pinches, however, radiated 260 TW in the soft x-ray region, making them one of the brightest soft x-ray sources available. (C) 2013 AIP Publishing LLC. C1 [Ampleford, D. J.; Jennings, C. A.; Jones, B.; Hansen, S. B.; Cuneo, M. E.; Coverdale, C. A.; Jones, M. C.; Flanagan, T. M.; Savage, M.; Stygar, W. A.; Lopez, M. R.] Sandia Natl Labs, Albuquerque, NM 87106 USA. [Apruzese, J. P.; Thornhill, J. W.; Giuliani, J. L.] Naval Res Lab, Washington, DC 20375 USA. [Maron, Y.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. RP Ampleford, DJ (reprint author), Sandia Natl Labs, Albuquerque, NM 87106 USA. EM damplef@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 21 TC 8 Z9 8 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2013 VL 20 IS 10 AR 103116 DI 10.1063/1.4823711 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 247TK UT WOS:000326644100092 ER PT J AU Benedetti, C Schroeder, CB Esarey, E Rossi, F Leemans, WP AF Benedetti, C. Schroeder, C. B. Esarey, E. Rossi, F. Leemans, W. P. TI Numerical investigation of electron self-injection in the nonlinear bubble regime SO PHYSICS OF PLASMAS LA English DT Article ID COLLIDING LASER-PULSES; ACCELERATOR; BEAMS AB The process of electron self-injection in the nonlinear bubble wake generated by a short and intense laser pulse propagating in a uniform underdense plasma is studied by means of fully self-consistent particle-in-cell simulations and test-particle simulations. We consider a wake generated by a non-evolving laser driver traveling with a prescribed velocity, which then sets the structure and the velocity of the wake, so the injection dynamics is decoupled from driver evolution, but a realistic structure for the wakefield is retained. We show that a threshold for self-injection into a non-evolving bubble wake exists, and we characterize the dependence of the self-injection threshold on laser intensity, wake velocity, and plasma temperature for a range of parameters of interest for current and future laser-plasma accelerators. (C) 2013 AIP Publishing LLC. C1 [Benedetti, C.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Rossi, F.] Univ Bologna, Dept Phys & Astron, I-40126 Bologna, Italy. [Rossi, F.] INFN, I-40126 Bologna, Italy. RP Benedetti, C (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM cbenedetti@lbl.gov OI Schroeder, Carl/0000-0002-9610-0166 FU Office of Science, Office of High Energy Physics, of the U.S. DOE [DE-AC02-05CH11231] FX We would like to thank C. G. R. Geddes, M. Chen, S. Rykovanov, B. H. Shaw, and L. Yu for useful discussions and suggestions. This work was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. DOE under Contract No. DE-AC02-05CH11231 and used the computational facilities (Hopper, Edison) at the National Energy Research Scientific Computing Center (NERSC). NR 43 TC 23 Z9 23 U1 0 U2 31 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2013 VL 20 IS 10 AR 103108 DI 10.1063/1.4824811 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 247TK UT WOS:000326644100084 ER PT J AU Bogdanov, E Demidov, VI Kaganovich, ID Koepke, ME Kudryavtsev, AA AF Bogdanov, E. Demidov, V. I. Kaganovich, I. D. Koepke, M. E. Kudryavtsev, A. A. TI Modeling a short dc discharge with thermionic cathode and auxiliary anode SO PHYSICS OF PLASMAS LA English DT Article ID ELECTRON-DISTRIBUTION; PLASMA; SIMULATION; KINETICS AB A short dc discharge with a thermionic cathode can be used as a current and voltage stabilizer, but is subject to current oscillation. If instead of one anode two anodes are used, the current oscillations can be reduced. We have developed a kinetic model of such a discharge with two anodes, where the primary anode has a small opening for passing a fraction of the discharge current to an auxiliary anode. The model demonstrates that the current-voltage relationship of the discharge with two anodes is characterized everywhere by positive slope, i.e., positive differential resistance. Therefore, the discharge with two anodes is expected to be stable to the spontaneous oscillation in current that is induced by negative differential resistance. As a result, such a discharge can be used in an engineering application that requires stable plasma, such as a current and voltage stabilizer. (C) 2013 AIP Publishing LLC. C1 [Bogdanov, E.; Demidov, V. I.; Kudryavtsev, A. A.] St Petersburg State Univ, St Petersburg 199034, Russia. [Bogdanov, E.] Univ ITMO, St Petersburg 197101, Russia. [Demidov, V. I.; Koepke, M. E.] W Virginia Univ, Morgantown, WV 26506 USA. [Kaganovich, I. D.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Bogdanov, E (reprint author), St Petersburg State Univ, St Petersburg 199034, Russia. RI Demidov, Vladimir/A-4247-2013; Bogdanov, Evgeny/I-3232-2012; Kudryavtsev, Anatoly/I-3413-2012 OI Demidov, Vladimir/0000-0002-2672-7684; Bogdanov, Evgeny/0000-0002-3397-3162; Kudryavtsev, Anatoly/0000-0002-2232-2954 FU DOE Fusion Energy Sciences contract [DE-SC0001939]; SPbGU; ITMO; AFOSR FX This research was supported by the DOE Fusion Energy Sciences contract DE-SC0001939, by SPbGU, by ITMO and by AFOSR. NR 21 TC 5 Z9 5 U1 4 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2013 VL 20 IS 10 AR 101605 DI 10.1063/1.4823464 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 247TK UT WOS:000326644100009 ER PT J AU Friou, A Benisti, D Gremillet, L Lefebvre, E Morice, O Siminos, E Strozzi, DJ AF Friou, A. Benisti, D. Gremillet, L. Lefebvre, E. Morice, O. Siminos, E. Strozzi, D. J. TI Saturation mechanisms of backward stimulated Raman scattering in a one-dimensional geometry SO PHYSICS OF PLASMAS LA English DT Article ID NONLINEAR PLASMA-OSCILLATIONS; PARAMETRIC-INSTABILITIES; BRILLOUIN-SCATTERING; DECAY INSTABILITY; FREQUENCY-SHIFT; ELECTRON; WAVES; ENHANCEMENT; TARGETS AB In this paper, we investigate the saturation mechanisms of backward stimulated Raman scattering (BSRS) induced by nonlinear kinetic effects. In particular, we stress the importance of accounting for both the nonlinear frequency shift of the electron plasma wave and the growth of sidebands, in order to understand what stops the coherent growth of Raman scattering. Using a Bernstein-Greene-Kruskal approach, we provide an estimate for the maximum amplitude reached by a BSRS-driven plasma wave after the phase of monotonic growth. This estimate is in very good agreement with the results from kinetic simulations of stimulated Raman scattering using both a Vlasov and a Particle in Cell code. Our analysis, which may be generalized to a multidimensional geometry, should provide a means to estimate the limits of backward Raman amplification or the effectiveness of strategies that aim at strongly reducing Raman reflectivity in a fusion plasma. (C) 2013 AIP Publishing LLC. C1 [Friou, A.; Benisti, D.; Gremillet, L.; Lefebvre, E.; Morice, O.] CEA, DIF, DAM, F-91297 Arpajon, France. [Siminos, E.] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany. [Strozzi, D. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Friou, A (reprint author), CEA, DIF, DAM, F-91297 Arpajon, France. EM didier.benisti@cea.fr RI Lefebvre, Erik/B-9835-2009; Siminos, Evangelos/G-2506-2010; OI Siminos, Evangelos/0000-0002-1484-0559; Strozzi, David/0000-0001-8814-3791 NR 50 TC 7 Z9 7 U1 4 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2013 VL 20 IS 10 AR 103103 DI 10.1063/1.4823714 PG 15 WC Physics, Fluids & Plasmas SC Physics GA 247TK UT WOS:000326644100079 ER PT J AU Guan, XY Dodin, IY Qin, H Liu, J Fisch, NJ AF Guan, Xiaoyin Dodin, I. Y. Qin, Hong Liu, Jian Fisch, N. J. TI On plasma rotation induced by waves in tokamaks SO PHYSICS OF PLASMAS LA English DT Article ID NO MOMENTUM INPUT; C-MOD PLASMAS; TOROIDAL ROTATION; FREQUENCY WAVES; DRIVEN FLOWS; TRANSPORT; GENERATION AB The momentum conservation for resonant wave-particle interactions, now proven rigorously and for general settings, is applied to explain in simple terms how tokamak plasma is spun up by the wave momentum perpendicular to the dc magnetic field. The perpendicular momentum is passed through resonant particles to the dc field and, giving rise to the radial electric field, is accumulated as a Poynting flux; the bulk plasma is then accelerated up to the electric drift velocity proportional to that flux, independently of collisions. The presence of this collisionless acceleration mechanism permits varying the ratio of the average kinetic momentum absorbed by the resonant-particle and bulk distributions depending on the orientation of the wave vector. Both toroidal and poloidal forces are calculated, and a fluid model is presented that yields the plasma velocity at equilibrium. (C) 2013 AIP Publishing LLC. C1 [Guan, Xiaoyin; Dodin, I. Y.; Qin, Hong; Fisch, N. J.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Qin, Hong; Liu, Jian] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. RP Guan, XY (reprint author), Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RI Liu, Jian/E-5857-2010 FU U.S. DOE [DE-AC02-09CH11466]; ITER-China [2010GB107001]; National Natural Science Foundation of China [NSFC-11075162] FX The work was supported by the U.S. DOE through Contract No. DE-AC02-09CH11466, the ITER-China program through Grant No. 2010GB107001, and the National Natural Science Foundation of China through Grant No. NSFC-11075162. We thank J. E. Rice for providing experimental data from Alcator C-Mod. NR 38 TC 2 Z9 2 U1 4 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2013 VL 20 IS 10 AR 102105 DI 10.1063/1.4823713 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 247TK UT WOS:000326644100023 ER PT J AU Humphrey, KA Trines, RMGM Fiuza, F Speirs, DC Norreys, P Cairns, RA Silva, LO Bingham, R AF Humphrey, K. A. Trines, R. M. G. M. Fiuza, F. Speirs, D. C. Norreys, P. Cairns, R. A. Silva, L. O. Bingham, R. TI Effect of collisions on amplification of laser beams by Brillouin scattering in plasmas SO PHYSICS OF PLASMAS LA English DT Article ID ENERGY-TRANSFER; COMPRESSION; PULSE AB We report on particle in cell simulations of energy transfer between a laser pump beam and a counter-propagating seed beam using the Brillouin scattering process in uniform plasma including collisions. The results presented show that the ion acoustic waves excited through naturally occurring Brillouin scattering of the pump field are preferentially damped without affecting the driven Brillouin scattering process resulting from the beating of the pump and seed fields together. We find that collisions, including the effects of Landau damping, allow for a more efficient transfer of energy between the laser beams, and a significant reduction in the amount of seed pre-pulse produced. (C) 2013 AIP Publishing LLC. C1 [Humphrey, K. A.; Speirs, D. C.; Bingham, R.] Univ Strathclyde, Dept Phys, SUPA, Glasgow G4 0NG, Lanark, Scotland. [Trines, R. M. G. M.; Norreys, P.; Bingham, R.] STFC Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Fiuza, F.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Cairns, R. A.] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Fife, Scotland. [Silva, L. O.] Inst Super Tecn, GoLP Ctr Fis Plasmas, P-1049001 Lisbon, Portugal. RP Humphrey, KA (reprint author), Univ Strathclyde, Dept Phys, SUPA, Glasgow G4 0NG, Lanark, Scotland. RI Silva, Luis/C-3169-2009; OI Silva, Luis/0000-0003-2906-924X; Fiuza, Frederico/0000-0002-8502-5535 FU OSIRIS consortium; STFC Centre for Fundamental Research; EPSRC [EP/G04239X/1] FX The authors would like to thank the OSIRIS consortium for the use of OSIRIS and the STFC Centre for Fundamental Research for their support. Simulations were carried out on the Scarf-Lexicon Cluster (STFC RAL). Authors KH, RT, DCS, RAC, RB were supported by EPSRC grant EP/G04239X/1. NR 21 TC 6 Z9 6 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2013 VL 20 IS 10 AR 102114 DI 10.1063/1.4825356 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 247TK UT WOS:000326644100032 ER PT J AU Kaganovich, ID Godyak, V Kolobov, VI AF Kaganovich, Igor D. Godyak, Valery Kolobov, Vladimir I. TI Preface to Special Topic: Electron kinetic effects in low temperature plasmas SO PHYSICS OF PLASMAS LA English DT Editorial Material C1 [Kaganovich, Igor D.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Godyak, Valery] RF Plasma Consulting, Brookline, MA 02446 USA. [Godyak, Valery] Univ Michigan, Michigan Inst Plasma Sci & Engn, Ann Arbor, MI 48109 USA. [Kolobov, Vladimir I.] CFD Res Corp, Huntsville, AL 35805 USA. RP Kaganovich, ID (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 22 TC 0 Z9 0 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2013 VL 20 IS 10 PG 3 WC Physics, Fluids & Plasmas SC Physics GA 247TK UT WOS:000326644100004 ER PT J AU Levy, MC Wilks, SC Tabak, M Baring, MG AF Levy, M. C. Wilks, S. C. Tabak, M. Baring, M. G. TI Conservation laws and conversion efficiency in ultraintense laser-overdense plasma interactions SO PHYSICS OF PLASMAS LA English DT Article ID ACCELERATORS; ABSORPTION; SIMULATION; LIGHT AB Particle coupling to the oscillatory and steady-state nonlinear force of an ultraintense laser is studied through analytic modeling and particle-in-cell simulations. The complex interplay between these absorption mechanisms-corresponding, respectively, to "hot" electrons and "hole punching" ions-is central to the viability of many ultraintense laser applications. Yet, analytic work to date has focused only on limiting cases of this key problem. In this paper, we develop a fully relativistic model in 1-D treating both modes of ponderomotive light absorption on equitable theoretical footing for the first time. Using this framework, analytic expressions for the conversion efficiencies into hole punching ions and into hot electrons are derived. Solutions for the relativistically correct hole punching velocity and the hot electron Lorentz factor are also calculated. Excellent agreement between analytic predictions and particle-in-cell simulations is demonstrated, and astrophysical analogies are highlighted. (C) 2013 AIP Publishing LLC. C1 [Levy, M. C.; Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Levy, M. C.; Wilks, S. C.; Tabak, M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Levy, MC (reprint author), Rice Univ, Dept Phys & Astron, MS 108, Houston, TX 77005 USA. EM levy11@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 28 TC 7 Z9 7 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2013 VL 20 IS 10 AR 103101 DI 10.1063/1.4821607 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 247TK UT WOS:000326644100077 ER PT J AU Little, JM Choueiri, EY AF Little, Justin M. Choueiri, Edgar Y. TI Thrust and efficiency model for electron-driven magnetic nozzles SO PHYSICS OF PLASMAS LA English DT Article ID PLASMA SOURCE; PROBE MEASUREMENTS; DOUBLE-LAYER; ACCELERATION; PERFORMANCE; DETACHMENT; DISCHARGES; FLOW AB A performance model is presented for magnetic nozzle plasmas driven by electron thermal expansion to investigate how the thrust coefficient and beam divergence efficiency scale with the incoming plasma flow and magnetic field geometry. Using a transformation from cylindrical to magnetic coordinates, an approximate analytical solution is derived to the axisymmetric two-fluid equations for a collisionless plasma flow along an applied magnetic field. This solution yields an expression for the half-width at half-maximum of the plasma density profile in the far-downstream region, from which simple scaling relations for the thrust coefficient and beam divergence efficiency are derived. It is found that the beam divergence efficiency is most sensitive to the density profile of the flow into the nozzle throat, with the highest efficiencies occurring for plasmas concentrated along the nozzle axis. Increasing the expansion ratio of the magnetic field leads to efficiency improvements that are more pronounced for incoming plasmas that are not concentrated along the axis. This implies that the additional magnet required to increase the expansion ratio may be worth the added complexity for plasma sources that exhibit poor confinement. (C) 2013 AIP Publishing LLC. C1 [Little, Justin M.; Choueiri, Edgar Y.] Princeton Univ, Elect Prop & Plasma Dynam Lab, Princeton, NJ 08544 USA. RP Little, JM (reprint author), Princeton Univ, Elect Prop & Plasma Dynam Lab, Princeton, NJ 08544 USA. EM jml@princeton.edu FU Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program; Program in Plasma Science and Technology for support through DOE [DE-AC02-09CH11466] FX The first author was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program. We thank the Program in Plasma Science and Technology for support through DOE Contract No. DE-AC02-09CH11466. We also thank Professor E. Ahedo and M. Merino for insightful discussion. NR 56 TC 6 Z9 6 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2013 VL 20 IS 10 AR 103501 DI 10.1063/1.4824613 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 247TK UT WOS:000326644100101 ER PT J AU Pankin, AY Kruger, SE Groebner, RJ Hakim, A Kritz, AH Rafiq, T AF Pankin, A. Y. Kruger, S. E. Groebner, R. J. Hakim, A. Kritz, A. H. Rafiq, T. TI Validation of transport models using additive flux minimization technique SO PHYSICS OF PLASMAS LA English DT Article ID ANOMALOUS TRANSPORT AB A new additive flux minimization technique is proposed for carrying out the verification and validation (V&V) of anomalous transport models. In this approach, the plasma profiles are computed in time dependent predictive simulations in which an additional effective diffusivity is varied. The goal is to obtain an optimal match between the computed and experimental profile. This new technique has several advantages over traditional V&V methods for transport models in tokamaks and takes advantage of uncertainty quantification methods developed by the applied math community. As a demonstration of its efficiency, the technique is applied to the hypothesis that the paleoclassical density transport dominates in the plasma edge region in DIII-D tokamak discharges. A simplified version of the paleoclassical model that utilizes the Spitzer resistivity for the parallel neoclassical resistivity and neglects the trapped particle effects is tested in this paper. It is shown that a contribution to density transport, in addition to the paleoclassical density transport, is needed in order to describe the experimental profiles. It is found that more additional diffusivity is needed at the top of the H-mode pedestal, and almost no additional diffusivity is needed at the pedestal bottom. The implementation of this V&V technique uses the FACETS:: Core transport solver and the DAKOTA toolkit for design optimization and uncertainty quantification. The FACETS:: Core solver is used for advancing the plasma density profiles. The DAKOTA toolkit is used for the optimization of plasma profiles and the computation of the additional diffusivity that is required for the predicted density profile to match the experimental profile. (C) 2013 AIP Publishing LLC. C1 [Pankin, A. Y.; Kruger, S. E.] Tech X Corp, Boulder, CO 80303 USA. [Groebner, R. J.] Gen Atom Co, San Diego, CA 92121 USA. [Hakim, A.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Kritz, A. H.; Rafiq, T.] Lehigh Univ, Dept Phys, Bethlehem, PA 18015 USA. RP Pankin, AY (reprint author), Tech X Corp, 5621 Arapahoe Ave, Boulder, CO 80303 USA. EM pankin@txcorp.com FU DOE [DE-SC0006629, DE-FG02-92ER54141] FX The authors are grateful to the coauthors of Refs. 15 and 16 for the development of the FACETS code and their help with the implementation of the paleoclassical model in FACETS. The authors are also thankful to Professor James Callen for useful and encouraging discussions of the paleoclassical model. This research was supported by DOE Awards (DOE Grant Nos. DE-SC0006629 and DE-FG02-92ER54141). NR 24 TC 4 Z9 4 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2013 VL 20 IS 10 AR 102501 DI 10.1063/1.4823701 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 247TK UT WOS:000326644100052 ER PT J AU Parker, JB Krommes, JA AF Parker, Jeffrey B. Krommes, John A. TI Zonal flow as pattern formation SO PHYSICS OF PLASMAS LA English DT Article ID BETA-PLANE; WAVE TURBULENCE; JETS; DYNAMICS; INSTABILITY; GENERATION; CONVECTION; STABILITY; EQUATIONS; PLASMA AB Zonal flows are well known to arise spontaneously out of turbulence. We show that for statistically averaged equations of the stochastically forced generalized Hasegawa-Mima model, steady-state zonal flows, and inhomogeneous turbulence fit into the framework of pattern formation. There are many implications. First, the wavelength of the zonal flows is not unique. Indeed, in an idealized, infinite system, any wavelength within a certain continuous band corresponds to a solution. Second, of these wavelengths, only those within a smaller subband are linearly stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets. (C) 2013 AIP Publishing LLC. C1 [Parker, Jeffrey B.; Krommes, John A.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Parker, JB (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM jbparker@princeton.edu; krommes@princeton.edu OI Parker, Jeffrey/0000-0002-9079-9930 FU NSF Graduate Research Fellowship; US DOE Fusion Energy Sciences Fellowship; US DOE [DE-AC02-09CH11466] FX We acknowledge useful discussions with Brian Farrell, Henry Greenside, Petros Ioannou, and Brad Marston. This material is based upon work supported by an NSF Graduate Research Fellowship and a US DOE Fusion Energy Sciences Fellowship. This work was also supported by US DOE Contract No. DE-AC02-09CH11466. NR 36 TC 15 Z9 15 U1 2 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2013 VL 20 IS 10 AR 100703 DI 10.1063/1.4828717 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 247TK UT WOS:000326644100003 ER PT J AU Porazik, P Johnson, JR AF Porazik, Peter Johnson, Jay R. TI Linear dispersion relation for the mirror instability in context of the gyrokinetic theory SO PHYSICS OF PLASMAS LA English DT Article ID MAGNETOSPHERE AB The linear dispersion relation for the mirror instability is discussed in context of the gyrokinetic theory. The objective is to provide a coherent view of different kinetic approaches used to derive the dispersion relation. The method based on gyrocenter phase space transformations is adopted in order to display the origin and ordering of various terms. (C) 2013 AIP Publishing LLC. C1 [Porazik, Peter; Johnson, Jay R.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08542 USA. RP Johnson, JR (reprint author), Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08542 USA. EM pporazik@pppl.gov; jrj@pppl.gov FU NASA [NNH09AM53I, NNH09AK63I, NNH11AR071]; NSF [ATM0902730, AGS1203299]; DOE [DE-AC02-09CH11466] FX The authors acknowledge support from NASA grants NNH09AM53I, NNH09AK63I, and NNH11AR071 and NSF grants ATM0902730 and AGS1203299 and DOE Contract DE-AC02-09CH11466. NR 14 TC 2 Z9 2 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2013 VL 20 IS 10 AR 104501 DI 10.1063/1.4822339 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 247TK UT WOS:000326644100113 ER PT J AU Pueschel, MJ Hatch, DR Gorler, T Nevins, WM Jenko, F Terry, PW Told, D AF Pueschel, M. J. Hatch, D. R. Goerler, T. Nevins, W. M. Jenko, F. Terry, P. W. Told, D. TI Properties of high-beta microturbulence and the non-zonal transition SO PHYSICS OF PLASMAS LA English DT Article ID TRANSPORT; SIMULATIONS; TURBULENCE; PLASMA; FLOWS; TOKAMAKS; DRIVEN AB The physics underlying the non-zonal transition [M. J. Pueschel et al., Phys. Rev. Lett. 110, 155005 (2013)] are explored in detail, and various studies are presented which support the theory that critically weakened zonal flows are indeed responsible for the failure of ion-temperature-gradient-driven turbulence at high plasma beta to saturate at typical transport values. Regarding flux-surface-breaking magnetic fluctuations and their impact on zonal flows, numerical approaches to obtaining zonal flow residuals are elaborated on, and simulation results are shown to agree with analytical predictions, corroborating the interpretation that flux-surface-breaking magnetic fluctuations cause the transition. Consistently, the zonal-flows-related energetics of the turbulence are found to change fundamentally when exceeding the threshold. (C) 2013 AIP Publishing LLC. C1 [Pueschel, M. J.; Terry, P. W.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Hatch, D. R.; Goerler, T.; Jenko, F.; Told, D.] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. [Hatch, D. R.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. [Nevins, W. M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Pueschel, MJ (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. NR 39 TC 9 Z9 9 U1 3 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2013 VL 20 IS 10 AR 102301 DI 10.1063/1.4823717 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 247TK UT WOS:000326644100042 ER PT J AU Schweigert, IV Kaganovich, ID Demidov, VI AF Schweigert, I. V. Kaganovich, I. D. Demidov, V. I. TI Active electron energy distribution function control in direct current discharge using an auxiliary electrode SO PHYSICS OF PLASMAS LA English DT Article ID ARC AB The electron energy distribution functions are studied in the low voltage dc discharge with a constriction, which is a diaphragm with an opening. The dc discharge glows in helium and is sustained by the electron current emitted from a heated cathode. We performed kinetic simulations of dc discharge characteristics and electron energy distribution functions for different gas pressures (0.8 Torr-4 Torr) and discharge current of 0.1 A. The results of these simulations indicate the ability to control the shape of the electron energy distribution functions by variation of the diaphragm opening radius. (C) 2013 AIP Publishing LLC. C1 [Schweigert, I. V.] Russian Acad Sci, Inst Theoret & Appl Mech, Novosibirsk 630090, Russia. [Schweigert, I. V.] George Washington Univ, Washington, DC 20052 USA. [Kaganovich, I. D.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Demidov, V. I.] W Virginia Univ, Morgantown, WV 26506 USA. [Demidov, V. I.] St Petersburg State Univ, St Petersburg, Russia. RP Schweigert, IV (reprint author), Russian Acad Sci, Inst Theoret & Appl Mech, Novosibirsk 630090, Russia. EM ischweig@itam.nsc.ru RI Demidov, Vladimir/A-4247-2013 OI Demidov, Vladimir/0000-0002-2672-7684 FU RFBR [12-02-00854]; DOE OFES [DE-SC0001939]; SPbGU FX One of authors (I. V. Schweigert) was supported by the RFBR Project No. 12-02-00854. Another author, V. I. Demidov, was supported by the DOE OFES (Contract No. DE-SC0001939) and SPbGU. NR 12 TC 8 Z9 8 U1 3 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2013 VL 20 IS 10 AR 101606 DI 10.1063/1.4823465 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 247TK UT WOS:000326644100010 ER PT J AU Wang, F Fu, GY Breslau, JA Liu, JY AF Wang, Feng Fu, G. Y. Breslau, J. A. Liu, J. Y. TI Linear stability and nonlinear dynamics of the fishbone mode in spherical tokamaks SO PHYSICS OF PLASMAS LA English DT Article ID INTERNAL KINK MODES; ENERGETIC BEAM IONS AB Extensive linear and nonlinear simulations have been carried out to investigate the energetic particle-driven fishbone instability in spherical tokamak plasmas with weakly reversed q profile and the q(min) slightly above unity. The global kinetic-MHD hybrid code M3D-K is used. Numerical results show that a fishbone instability is excited by energetic beam ions preferentially at higher q(min) values, consistent with the observed appearance of the fishbone before the "long-lived mode" in MAST and NSTX experiments. In contrast, at lower q(min) values, the fishbone tends to be stable. In this case, the beam ion effects are strongly stabilizing for the non-resonant kink mode. Nonlinear simulations show that the fishbone saturates with strong downward frequency chirping as well as radial flattening of the beam ion distribution. An (m, n) = (2, 1) magnetic island is found to be driven nonlinearly by the fishbone instability, which could provide a trigger for the (2, 1) neoclassical tearing mode sometimes observed after the fishbone instability in NSTX. (C) 2013 AIP Publishing LLC. C1 [Wang, Feng; Liu, J. Y.] Dalian Univ Technol, Sch Phys & Optoelect Engn, Dalian 116024, Peoples R China. [Fu, G. Y.; Breslau, J. A.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Wang, F (reprint author), Dalian Univ Technol, Sch Phys & Optoelect Engn, Dalian 116024, Peoples R China. EM fu@pppl.gov; jyliu@dlut.edu.cn FU U.S. Department of Energy [DE-AC02-09CH11466]; National Magnetic Confinement Fusion Science Program of China [2013GB107003, 2013GB111001]; National Natural Science Foundation of China [11375039] FX G. Y. Fu acknowledges useful discussion with Dr. Eric Fredrickson regarding the fishbone instability observed in NSTX plasmas. He also thanks Dr. Jay Johnson and Dr. Peter Damiano for discussion on similar energetic particle-driven instabilities in magnetoshere. This work was supported by U.S. Department of Energy under DE-AC02-09CH11466, National Magnetic Confinement Fusion Science Program of China under Contract Nos. 2013GB107003 and 2013GB111001, and National Natural Science Foundation of China under Contract No. 11375039. The simulations were carried out using the Hopper computer at NERSC and the HPCC3 computer at Zhejiang University. NR 14 TC 15 Z9 15 U1 3 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2013 VL 20 IS 10 AR 102506 DI 10.1063/1.4824739 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 247TK UT WOS:000326644100057 ER PT J AU Xiao, JY Liu, J Qin, H Yu, Z AF Xiao, Jianyuan Liu, Jian Qin, Hong Yu, Zhi TI A variational multi-symplectic particle-in-cell algorithm with smoothing functions for the Vlasov-Maxwell system SO PHYSICS OF PLASMAS LA English DT Article ID FORMULATION; INTEGRATORS; GEOMETRY AB Smoothing functions are commonly used to reduce numerical noise arising from coarse sampling of particles in particle-in-cell (PIC) plasma simulations. When applying smoothing functions to symplectic algorithms, the conservation of symplectic structure should be guaranteed to preserve good conservation properties. In this paper, we show how to construct a variational multi-symplectic PIC algorithm with smoothing functions for the Vlasov-Maxwell system. The conservation of the multi-symplectic structure and the reduction of numerical noise make this algorithm specifically suitable for simulating long-term dynamics of plasmas, such as those in the steady-state operation or long-pulse discharge of a super-conducting tokamak. The algorithm has been implemented in a 6D large scale PIC code. Numerical examples are given to demonstrate the good conservation properties of the multi-symplectic algorithm and the reduction of the noise due to the application of smoothing function. (C) 2013 AIP Publishing LLC. C1 [Xiao, Jianyuan; Liu, Jian] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Xiao, Jianyuan; Liu, Jian] Univ Sci & Technol China, Collaborat Innovat Ctr Adv Fus Energy & Plasma Sc, Hefei 230026, Anhui, Peoples R China. [Qin, Hong] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Yu, Zhi] Chinese Acad Sci, Inst Plasma Phys, Theory & Simulat Div, Hefei 230031, Anhui, Peoples R China. RP Liu, J (reprint author), Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. EM jliuphy@ustc.edu.cn RI Liu, Jian/E-5857-2010 FU ITER-China Program [2013GB111000, 2014GB124005]; Fundamental Research Funds for the Central Universities [WK2030020022]; China Postdoctoral Science Foundation [2013M530296]; JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics [NSFC-11261140328]; CAS Program for Interdisciplinary Collaboration Team; National Natural Science Foundation of China [NSFC-11075162, NSFC-11305171] FX This research was supported by ITER-China Program (2013GB111000 and 2014GB124005), the Fundamental Research Funds for the Central Universities (WK2030020022), China Postdoctoral Science Foundation (2013M530296), the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics (NSFC-11261140328), the CAS Program for Interdisciplinary Collaboration Team, and the National Natural Science Foundation of China (NSFC-11075162 and NSFC-11305171). NR 23 TC 17 Z9 18 U1 2 U2 16 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2013 VL 20 IS 10 AR 102517 DI 10.1063/1.4826218 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 247TK UT WOS:000326644100068 ER PT J AU Alaie, S Goettler, DF Abbas, K Su, MF Reinke, CM El-Kady, I Leseman, ZC AF Alaie, Seyedhamidreza Goettler, Drew F. Abbas, Khawar Su, Mehmet F. Reinke, Charles M. El-Kady, Ihab Leseman, Zayd C. TI Microfabricated suspended island platform for the measurement of in-plane thermal conductivity of thin films and nanostructured materials with consideration of contact resistance SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID PLATINUM AB A technique based on suspended islands is described to measure the in-plane thermal conductivity of thin films and nano-structured materials, and is also employed for measurements of several samples with a single measurement platform. Using systematic steps for measurements, the characterization of the thermal resistances of a sample and its contacts are studied. The calibration of the contacts in this method is independent of the geometry, size, materials, and uniformity of contacts. To verify the technique, two different Si samples with different thicknesses and two samples of the same SiNx wafer are characterized on a single device. One of the Si samples is also characterized by another technique, which verifies the current results. Characterization of the two SiNx samples taken from the same wafer showed less than 1% difference in the measured thermal conductivities, indicating the precision of the method. Additionally, one of the SiNx samples is characterized and then demounted, remounted, and characterized for a second time. The comparison showed the change in the thermal resistance of the contact in multiple measurements could be as small as 0.2 K/mu W, if a similar sample is used. (C) 2013 AIP Publishing LLC. C1 [Alaie, Seyedhamidreza; Goettler, Drew F.; Abbas, Khawar; Su, Mehmet F.; Leseman, Zayd C.] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. [Reinke, Charles M.; El-Kady, Ihab] Sandia Natl Labs, Dept Photon Microsyst Technol, Albuquerque, NM 87185 USA. RP Alaie, S (reprint author), Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. EM zleseman@unm.edu OI Reinke, Charles/0000-0002-5869-9817; alaie, seyedhamidreza/0000-0001-6359-297X FU Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Experimental Program to Stimulate Competitive Research (EPSCoR) [DE-FG02-10ER46720]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Manufacturing Training and Technology Center at the University of New Mexico FX This work was supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Experimental Program to Stimulate Competitive Research (EPSCoR) under Award No. DE-FG02-10ER46720. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract No. DE-AC04-94AL85000. The authors would also like to acknowledge the contributions of Dr. Ying-Bing Jiang and the support given by the Manufacturing Training and Technology Center at the University of New Mexico. NR 16 TC 4 Z9 4 U1 1 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2013 VL 84 IS 10 AR 105003 DI 10.1063/1.4824076 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 247TS UT WOS:000326645300063 PM 24182154 ER PT J AU Lundt, N Kelly, ST Rodel, T Remez, B Schwartzberg, AM Ceballos, A Baldasseroni, C Anastasi, PAF Cox, M Hellman, F Leone, SR Gilles, MK AF Lundt, Nils Kelly, Stephen T. Roedel, Tobias Remez, Benjamin Schwartzberg, Adam M. Ceballos, Alejandro Baldasseroni, Chloe Anastasi, Peter A. F. Cox, Malcolm Hellman, Frances Leone, Stephen R. Gilles, Mary K. TI High spatial resolution Raman thermometry analysis of TiO2 microparticles SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID TEMPERATURE-MEASUREMENTS; HEAT-CAPACITY; SPECTROSCOPY; MICROSCOPY; DEVICES; DEPENDENCE; SPECTRA; SOLIDS AB A new technique of high-resolution micro-Raman thermometry using anatase TiO2 microparticles (0.5-3 mu m) is presented. These very high spatial resolution measurements (280 nm) reveal temperature gradients even within individual microparticles. Potential applications of this technique are demonstrated by probing the temperature distribution of a micro-fabricated heater consisting of a thin silicon nitride (Si-N) membrane with a gold coil on top of the membrane. Using TiO2 microparticle micro-Raman thermometry, the temperature from the outer edge of the coil to the inner portion was measured to increase by similar to 40 degrees C. These high spatial resolution microscopic measurements were also used to measure the temperature gradient within the 20 mu m wide Si-N between the gold heating coils. 2D numerical simulations of the micro heater temperature distribution are in excellent agreement with the experimental measurements of the temperatures. These measurements illustrate the potential to extend applications of micro-Raman thermometry to obtain temperature details on a sub-micrometer spatial resolution by employing microparticles. (C) 2013 AIP Publishing LLC. C1 [Lundt, Nils; Kelly, Stephen T.; Roedel, Tobias; Leone, Stephen R.; Gilles, Mary K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Lundt, Nils; Roedel, Tobias; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Roedel, Tobias] Univ Paris 11, CSNSM, F-91405 Orsay, France. [Roedel, Tobias] CNRS, IN2P3, F-91405 Orsay, France. [Remez, Benjamin; Schwartzberg, Adam M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Remez, Benjamin] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Ceballos, Alejandro; Baldasseroni, Chloe] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Anastasi, Peter A. F.; Cox, Malcolm] Silson Ltd, Northampton, England. [Hellman, Frances; Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Lundt, N (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM MKGilles@lbl.gov RI Rodel, Tobias /L-9609-2013; Foundry, Molecular/G-9968-2014 OI Rodel, Tobias /0000-0002-4032-0741; FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, and the Chemical Sciences Division of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; Laboratory Directed Research and Development at Lawrence Berkeley National Laboratory; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF IGERT program at UCB [DGE-0333455] FX N.L. and T.R. acknowledge the student exchange program between the University of Wuerzburg and U.C. Berkeley (curator Professor A. Forchel, Wuerzburg and NSF IGERT program at UCB, DGE-0333455, Nanoscale Science and Engineering-From Building Blocks to Functional Systems). A.C., C.B., F.H., S.R.L., and M.K.G. acknowledge the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, and the Chemical Sciences Division of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. S.T.K. and M.K.G. acknowledge support from Laboratory Directed Research and Development at Lawrence Berkeley National Laboratory. A.M.S. and B.R. would like to acknowledge the Molecular Foundry, Lawrence Berkeley National Laboratory, and support by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 23 TC 4 Z9 4 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2013 VL 84 IS 10 AR 104906 DI 10.1063/1.4824355 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 247TS UT WOS:000326645300059 PM 24182150 ER PT J AU Ravel, B Attenkofer, K Bohon, J Muller, E Smedley, J AF Ravel, B. Attenkofer, K. Bohon, J. Muller, E. Smedley, J. TI Diamond sensors and polycapillary lenses for X-ray absorption spectroscopy SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SYNCHROTRON RADIATION; OPTICS; MICROSCOPY; DETECTOR; RANGE AB Diamond sensors are evaluated as incident beam monitors for X-ray absorption spectroscopy experiments. These single crystal devices pose a challenge for an energy-scanning experiment using hard X-rays due to the effect of diffraction from the crystalline sensor at energies which meet the Bragg condition. This problem is eliminated by combination with polycapillary lenses. The convergence angle of the beam exiting the lens is large compared to rocking curve widths of the diamond. A ray exiting one capillary from the lens meets the Bragg condition for any reflection at a different energy from the rays exiting adjacent capillaries. This serves to broaden each diffraction peak over a wide energy range, allowing linear measurement of incident intensity over the range of the energy scan. Extended X-ray absorption fine structure data are measured with a combination of a polycapillary lens and a diamond incident beam monitor. These data are of comparable quality to data measured without a lens and with an ionization chamber monitoring the incident beam intensity. (C) 2013 AIP Publishing LLC. C1 [Ravel, B.] NIST, Gaithersburg, MD 20899 USA. [Attenkofer, K.] Brookhaven Natl Lab, Photon Sci Div, Upton, NY 11973 USA. [Bohon, J.] Case Western Reserve Univ, Ctr Synchrotron Biosci, Cleveland, OH 44106 USA. [Muller, E.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11974 USA. [Smedley, J.] Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA. RP Ravel, B (reprint author), NIST, Gaithersburg, MD 20899 USA. EM bravel@bnl.gov FU U S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; U.S. Department of Energy, Office of Science, Office of High Energy Physics [DE-FG02-12ER41837] FX Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Contract No. DE-FG02-12ER41837. NR 21 TC 0 Z9 1 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2013 VL 84 IS 10 AR 103106 DI 10.1063/1.4824350 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 247TS UT WOS:000326645300007 PM 24182100 ER PT J AU Si, JH Colgate, SA Li, H Martinic, J Westpfahl, D AF Si, Jiahe Colgate, Stirling A. Li, Hui Martinic, Joe Westpfahl, David TI Data acquisition in a high-speed rotating frame for New Mexico Institute of Mining and Technology liquid sodium alpha omega dynamo experiment SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID MAGNETIC-FIELDS; AGN DISKS; FLOW AB New Mexico Institute of Mining and Technology liquid sodium alpha omega-dynamo experiment models the magnetic field generation in the universe as discussed in detail by Colgate, Li, and Pariev [Phys. Plasmas 8, 2425 (2001)]. To obtain a quasi-laminar flow with magnetic Reynolds number R-m similar to 120, the dynamo experiment consists of two co-axial cylinders of 30.5 cm and 61 cm in diameter spinning up to 70 Hz and 17.5 Hz, respectively. During the experiment, the temperature of the cylinders must be maintained to 110 degrees C to ensure that the sodium remains fluid. This presents a challenge to implement a data acquisition (DAQ) system in such high temperature, high-speed rotating frame, in which the sensors (including 18 Hall sensors, 5 pressure sensors, and 5 temperature sensors, etc.) are under the centrifugal acceleration up to 376g. In addition, the data must be transmitted and stored in a computer 100 ft away for safety. The analog signals are digitized, converted to serial signals by an analog-to-digital converter and a field-programmable gate array. Power is provided through brush/ring sets. The serial signals are sent through ring/shoe sets capacitively, then reshaped with cross-talk noises removed. A microcontroller-based interface circuit is used to decode the serial signals and communicate with the data acquisition computer. The DAQ accommodates pressure up to 1000 psi, temperature up to more than 130 degrees C, and magnetic field up to 1000 G. First physics results have been analyzed and published. The next stage of the alpha omega-dynamo experiment includes the DAQ system upgrade. (C) 2013 AIP Publishing LLC. C1 [Si, Jiahe; Martinic, Joe; Westpfahl, David] New Mexico Inst Min & Technol, Socorro, NM 87801 USA. [Colgate, Stirling A.; Li, Hui] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Si, JH (reprint author), New Mexico Inst Min & Technol, Socorro, NM 87801 USA. EM jsi@nmt.edu FU NSF; LANL via a cooperative arrangement with NMIMT; IGPP program at LANL; LANL/LDRD program; DoE/OFES via Center for Magnetic Self-Organization FX We gratefully acknowledge the funding over the years by NSF, LANL via a cooperative arrangement with NMIMT, and the IGPP program at LANL. Many undergraduate students have participated in this project. NMIMT, EMRTC, CMSO, and many others have made this project possible. S. C. and H. L. also acknowledge the support by the LANL/LDRD program and the DoE/OFES via Center for Magnetic Self-Organization. NR 16 TC 2 Z9 2 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2013 VL 84 IS 10 AR 104501 DI 10.1063/1.4825354 PG 11 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 247TS UT WOS:000326645300045 PM 24182136 ER PT J AU Stonaha, P Hendrie, J Lee, WT Pynn, R AF Stonaha, P. Hendrie, J. Lee, W. T. Pynn, Roger TI Neutron spin evolution through broadband current sheet spin flippers SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SCATTERING ANGLE MEASUREMENT; LARMOR PRECESSION; ECHO; INSTRUMENT; SANS; REFLECTOMETRY; RESONANCE AB Controlled manipulation of neutron spin is a critical tool for many neutron scattering techniques. We have constructed current-sheet, neutron spin flippers for use in Spin Echo Scattering Angle Measurement (SESAME) that comprise pairs of open-faced solenoids which introduce an abrupt field reversal at a shared boundary. The magnetic fields generated by the coils have been mapped and compared with both an analytical approximation and a numerical boundary integral calculation. The agreement is generally good, allowing the former method to be used for rapid calculations of the Larmor phase acquired by a neutron passing through the flipper. The evolution of the neutron spin through the current sheets inside the flipper is calculated for various geometries of the current-carrying conductors, including different wire shapes, arrangements, and common imperfections. The flipping efficiency is found to be sensitive to gaps between wires and between current sheets. SESAME requires flippers with high fields and flipping planes inclined to the neutron beam. To avoid substantial neutron depolarization, such flippers require an interdigitated arrangement of wires. (C) 2013 AIP Publishing LLC. C1 [Stonaha, P.; Pynn, Roger] Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47405 USA. [Hendrie, J.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Lee, W. T.] Australian Nucl Sci & Technol Org, Lucas Heights, NSW 2234, Australia. [Pynn, Roger] Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. RP Stonaha, P (reprint author), Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47405 USA. OI Stonaha, Paul/0000-0002-6846-2442 FU US Department of Energy through its Office of Basic Energy Sciences, Division of Material Science and Engineering [DE-FG02-09ER46279] FX This work was supported by the US Department of Energy through its Office of Basic Energy Sciences, Division of Material Science and Engineering (Grant No. DE-FG02-09ER46279). NR 23 TC 4 Z9 4 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2013 VL 84 IS 10 AR 105113 DI 10.1063/1.4826086 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 247TS UT WOS:000326645300078 PM 24182169 ER PT J AU Storm, M Eichman, B Zhong, Z Theobald, W Schiebel, P Mileham, C Stoeckl, C Begishev, IA Fiksel, G Stephens, RB Freeman, RR Akli, KU AF Storm, M. Eichman, B. Zhong, Z. Theobald, W. Schiebel, P. Mileham, C. Stoeckl, C. Begishev, I. A. Fiksel, G. Stephens, R. B. Freeman, R. R. Akli, K. U. TI Note: Characterization of a high-photon-energy X-ray imager SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB The Bragg angle, rocking curve, and reflection efficiency of a quartz crystal x-ray imager (Miller indices 234) were measured at photon energy of 15.6909 keV, corresponding to the K-alpha 2 line of Zr, using the X15A beamline at the National Synchrotron Light Source at Brookhaven National Laboratory. One flat and three spherically curved samples were tested. The peak reflectivity of the best-performing crystal was determined to be (3.6 +/- 0.7) x 10(-4) with a rocking-curve full width at half maximum of 0.09 degrees. The Zr K-alpha 2 emission was imaged from a hot Zr plasma generated by a 10-J multiterawatt laser. (C) 2013 AIP Publishing LLC. C1 [Storm, M.; Schiebel, P.; Freeman, R. R.; Akli, K. U.] Ohio State Univ, Dept Phys, Columbus, OH 43201 USA. [Eichman, B.; Theobald, W.; Mileham, C.; Stoeckl, C.; Begishev, I. A.; Fiksel, G.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Zhong, Z.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Stephens, R. B.] Gen Atom Co, San Diego, CA 92121 USA. RP Storm, M (reprint author), Ohio State Univ, Dept Phys, 191 West Woodruff Rd, Columbus, OH 43201 USA. EM storm.29@osu.edu OI Stephens, Richard/0000-0002-7034-6141 FU U.S. DOE [DE-FC52-08NA28302, DE-FC02-04ER54789, DE-FG02-05ER54839]; Office of Basic Energy Sciences [DE-AC02-98CH10886]; University of Rochester; New York State Energy Research and Development Authority; Brookhaven National Laboratory [LDRD 05-057] FX This work was supported by the U.S. DOE under Cooperative Agreement No. DE-FC52-08NA28302, Grant No. DE-FC02-04ER54789, Grant No. DE-FG02-05ER54839, the Office of Basic Energy Sciences under Contract No. DE-AC02-98CH10886, the University of Rochester, the New York State Energy Research and Development Authority, and by Brookhaven National Laboratory under LDRD 05-057. The support of DOE does not constitute an endorsement by DOE of the views expressed in this paper. NR 6 TC 2 Z9 2 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2013 VL 84 IS 10 AR 106103 DI 10.1063/1.4825139 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 247TS UT WOS:000326645300085 PM 24182176 ER PT J AU Yep, SJ Belof, JL Orlikowski, DA Nguyen, JH AF Yep, Steven J. Belof, Jonathan L. Orlikowski, Daniel A. Nguyen, Jeffrey H. TI Fabrication and application of high impedance graded density impactors in light gas gun experiments SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID ISENTROPIC COMPRESSION; THERMODYNAMIC PATHS; POWDERS AB Recent advances in Graded Density Impactor fabrication technique have increased the maximum achievable pressure in gas gun quasi-isentropic experiments to 5 Mbars. In this report, we outline the latest methodologies and applications of Graded Density Impactors in experiments at extreme conditions. These new Graded Density Impactors are essentially metallic discs made of nearly one hundred layers of precisely mixed Mg, Cu, and W. The density gradients in these impactors are specifically designed to generate the desired thermodynamic path required for each experiment. We carried out a number of experiments at various pressures using these Graded Density Impactors. These experimental results and their simulations will be presented here. (C) 2013 AIP Publishing LLC. C1 [Yep, Steven J.; Belof, Jonathan L.; Orlikowski, Daniel A.; Nguyen, Jeffrey H.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Yep, SJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We would like to acknowledge useful discussions with N. C. Holmes and J. Haslam, and the dedicated efforts of P. Benevento, R. Nafzinger, N. Hinsey, A. Ladran, C. McLean, S. Weaver, and E. White. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 19 TC 0 Z9 0 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2013 VL 84 IS 10 AR 103909 DI 10.1063/1.4826565 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 247TS UT WOS:000326645300040 PM 24182131 ER PT J AU Yu, DJ An, K Gao, CY Heller, WT Chen, X AF Yu, Dunji An, Ke Gao, Carrie Y. Heller, William T. Chen, Xu TI A portable hydro-thermo-mechanical loading cell for in situ small angle neutron scattering studies of proton exchange membranes SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID X-RAY-SCATTERING; IONOMER MEMBRANES; WIDE-ANGLE; NAFION; MORPHOLOGY; SAXS AB A portable hydro-thermo-mechanical loading cell has been designed to enable in situ small angle neutron scattering (SANS) studies of proton exchange membranes (PEMs) under immersed tensile loadings at different temperatures. The cell consists of three main parts as follows: a letter-paper-size motor-driven mechanical load frame, a SANS friendly reservoir that provides stable immersed and thermal sample conditions, and a data acquisition and control system. The ex situ tensile tests of Nafion 212 membranes demonstrated a satisfactory thermo-mechanical testing performance of the cell for either dry or immersed conditions at elevated temperatures. The in situ SANS tensile measurements on the Nafion 212 membranes immersed in D2O at 70 degrees C proved the feasibility and capability of the cell for small angle scattering study on deformation behaviors of PEM and other polymer materials under hydro-thermo-mechanical loading. (C) 2013 AIP Publishing LLC. C1 [Yu, Dunji; Chen, Xu] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China. [Yu, Dunji; An, Ke; Gao, Carrie Y.; Heller, William T.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP An, K (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. EM kean@ornl.gov RI An, Ke/G-5226-2011 OI An, Ke/0000-0002-6093-429X FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; China Scholarship Council FX This research at Oak Ridge National Laboratory (ORNL)'s Spallation Neutron Source (SNS) was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The authors thank Sample Environment Team at SNS, ORNL for their great efforts, including Mr. Douglas Armitage for his advice on the design of the reservoir, Mr. Bruce Hill for his assistance on the setup of the portable cell, and Mr. John Wenzel and Mrs. Rebecca Mills for helping on the heat controller. D.Y. also greatly thanks China Scholarship Council for his visiting financial support at SNS, ORNL. NR 18 TC 1 Z9 1 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2013 VL 84 IS 10 AR 105115 DI 10.1063/1.4826349 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 247TS UT WOS:000326645300080 PM 24182171 ER PT J AU Zhao, JK Herwig, KW Robertson, JL Gallmeier, FX Riemer, BW AF Zhao, J. K. Herwig, Kenneth W. Robertson, J. L. Gallmeier, Franz X. Riemer, Bernard W. TI Instrument performance study on the short and long pulse options of the second Spallation Neutron Source target station SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID TOOL AB The Spallation Neutron Source (SNS) facility at the Oak Ridge National Laboratory is designed with an upgrade option for a future low repetition rate, long wavelength second target station. This second target station is intended to complement the scientific capabilities of the 1.4 MW, 60 Hz high power first target station. Two upgrade possibilities have been considered, the short and the long pulse options. In the short pulse mode, proton extraction occurs after the pulse compression in the accumulator ring. The proton pulse structure is thus the same as that for the first target station with a pulse width of similar to 0.7 mu s. In the long pulse mode, protons are extracted as they are produced by the linac, with no compression in the accumulator ring. The time width of the uncompressed proton pulse is similar to 1 ms. This difference in proton pulse structure means that neutron pulses will also be different. Neutron scattering instruments thus have to be designed and optimized very differently for these two source options which will directly impact the overall scientific capabilities of the SNS facility. In order to assess the merits of the short and long pulse target stations, we investigated a representative suit of neutron scattering instruments and evaluated their performance under each option. Our results indicate that the short pulse option will offer significantly better performance for the instruments and is the preferred choice for the SNS facility. (C) 2013 AIP Publishing LLC. C1 [Zhao, J. K.; Herwig, Kenneth W.; Robertson, J. L.; Gallmeier, Franz X.; Riemer, Bernard W.] Oak Ridge Natl Lab, Instrument & Source Div, Oak Ridge, TN 37831 USA. RP Zhao, JK (reprint author), Oak Ridge Natl Lab, Instrument & Source Div, Oak Ridge, TN 37831 USA. OI Riemer, Bernard/0000-0002-6922-3056 FU U.S. Department of Energy [DE-AC05-00OR22725]; Office of Basic Energy Sciences, U.S. Department of Energy FX This article has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The work was sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy. The authors wish to thank Dr. Geog Ehlers of SNS for reading and critiquing the manuscript. NR 15 TC 0 Z9 0 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2013 VL 84 IS 10 AR 105104 DI 10.1063/1.4823778 PG 10 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 247TS UT WOS:000326645300069 ER PT J AU Cordeiro, PJ Guillo, P Spanjers, CS Chang, JW Lipschutz, MI Fasulo, ME Rioux, RM Tilley, TD AF Cordeiro, Paul J. Guillo, Pascal Spanjers, Charles S. Chang, Ji Woong Lipschutz, Mike I. Fasulo, Meg E. Rioux, Robert M. Tilley, T. Don TI Titanium-Germoxy Precursor Route to Germanium-Modified Epoxidation Catalysts with Enhanced Activity SO ACS CATALYSIS LA English DT Article DE titanium; germanium; site-isolated catalysts; SBA15; epoxidation ID SITE HETEROGENEOUS CATALYSTS; AQUEOUS HYDROGEN-PEROXIDE; TI-BETA ZEOLITE; SINGLE-SITE; MOLECULAR PRECURSOR; OLEFIN EPOXIDATION; SURFACE MODIFICATION; MESOPOROUS SILICA; COMPLEXES; HYDROPEROXIDES AB The complex Ti[(OGePr3)-Pr-i](4) (1), prepared via the reaction of Ti((OPr)-Pr-i)(4) with (Pr3GeOH)-Pr-i, represents a useful structural and spectroscopic model for titanium-germanium species dispersed onto silica: This precursor was used to introduce site isolated Ti(IV) centers onto the surface of a mesoporous SBA15 support via the thermolytic molecular precursor method. The local, environments, of the supported materials (TiGe(3)SBA15 and calcined TiGe(3)SBA15-O-2) were studied by various spectroscopic methods, including X-ray absorption spectroscopy. These materials are active catalysts for the epoxidation of cyclic and terminal olefins with alkyl hydroperoxides under anhydrous conditions. Compared to catalysts synthesized from siloxide-only precursors, the new catalysts produce 2-3 times more product after 9 h under identical reaction conditions for the epoxidations of cyclohexene and 1-octene. The new materials did not significantly leach under reaction conditions. C1 [Cordeiro, Paul J.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Guillo, Pascal; Lipschutz, Mike I.; Fasulo, Meg E.; Tilley, T. Don] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Cordeiro, Paul J.; Guillo, Pascal; Tilley, T. Don] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Spanjers, Charles S.; Chang, Ji Woong; Rioux, Robert M.] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA. RP Tilley, TD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM tdtilley@berkeley.edu FU Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division, of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; U.S. DOE [DE-FG02-05ER15688]; National Science Foundation [DGE-070756]; 3M through Non-Tenured Faculty Grant (NTFG) FX We gratefully acknowledge the support of the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division, of the U.S. Department of Energy (DOE) under Contract DE-AC02-05CH11231. We thank Professor A. P. Alivisatos of the University of California, Berkeley, for the use of instrumentation (TEM and SAXS). We thank the Synchrotron Catalysis Consortium at the National Synchrotron Light Source at Brookhaven National Laboratory for their help in obtaining X-ray absorption data. Beamline X19A is supported, in part, by U.S. DOE Grant DE-FG02-05ER15688. C.S.S. acknowledges the support of the National Science Foundation through a Graduate Research Fellowship under Grant DGE-070756. R.M.R. acknowledges support from 3M through a Non-Tenured Faculty Grant (NTFG). NR 49 TC 10 Z9 10 U1 3 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD OCT PY 2013 VL 3 IS 10 BP 2269 EP 2279 DI 10.1021/cs400529x PG 11 WC Chemistry, Physical SC Chemistry GA 243MH UT WOS:000326320000013 ER PT J AU Wang, HL Krier, JM Zhu, ZW Melaet, G Wang, YH Kennedy, G Alayoglu, S An, K Somorjai, GA AF Wang, Hailiang Krier, James M. Zhu, Zhongwei Melaet, Gerome Wang, Yihai Kennedy, Griffin Alayoglu, Selim An, Kwangjin Somorjai, Gabor A. TI Promotion of Hydrogenation of Organic Molecules by Incorporating Iron into Platinum Nanoparticle Catalysts: Displacement of Inactive Reaction Intermediates SO ACS CATALYSIS LA English DT Article DE Pt-Fe bimetallic nanoparticles; ethylene hydrogenation; cyclohexene hydrogenation; SFG; AP-XPS ID SUM-FREQUENCY GENERATION; SURFACE VIBRATIONAL SPECTROSCOPY; FEPT NANOPARTICLES; HIGH-PRESSURES; SHAPE CONTROL; CO OXIDATION; IN-SITU; CARBON; CHEMISTRY; ETHYLENE AB We characterize the surface chemical states of reactants and catalysts under reaction conditions to elucidate the composition effect of platinum iron bimetallic nanoparticles on catalytic hydrogenation of organic molecules. The catalytic,hydrogenation of ethylene is drastically accelerated on the surface of 2 nm PtFe bimetallic nanoparticles as compared to pure Pt. Sum frequency, generation (SFG) vibrational spectroscopy indicates that incorporation of Fe into Pt nanoparticle catalysts weakens the adsorption of ethylidyne, an inactive spectator species, on the catalyst surface. Similarly, the turnover frequency of cydohexene hydrogenation is also significantly enhanced by incorporating Fe into pt nanoparticle catalysts. Ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) reveals the surface composition, and oxidation states of the PtFe,nanoparticles under reaction conditions. The oxidation state distribution of Fe responded to the gas atmosphere and the probing depth, whereas the Pt remained largely metallic an all probing conditions. This work represents a molecular level correlation between. catalyst structure and catalytic performance. C1 [Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu RI Melaet, Gerome/N-4879-2015 OI Melaet, Gerome/0000-0003-1414-1683 FU Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; Philomathia Postdoctoral Fellowship; Basic Research Program of Young Scientists by National Natural Science Foundation of China; Chinese University of Hong Kong FX This work is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. H.W. acknowledges support from the Philomathia Postdoctoral Fellowship. Y.W. appreciates support from Basic Research Program of Young Scientists by National Natural Science Foundation of China and Chinese University of Hong Kong. NR 39 TC 5 Z9 5 U1 4 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD OCT PY 2013 VL 3 IS 10 BP 2371 EP 2375 DI 10.1021/cs400579j PG 5 WC Chemistry, Physical SC Chemistry GA 243MH UT WOS:000326320000026 ER PT J AU Hellstrand, E Grey, M Ainalem, ML Ankner, J Forsyth, VT Fragneto, G Haertlein, M Dauvergne, MT Nilsson, H Brundin, P Linse, S Nylander, T Sparr, E AF Hellstrand, Erik Grey, Marie Ainalem, Marie-Louise Ankner, John Forsyth, V. Trevor Fragneto, Giovanna Haertlein, Michael Dauvergne, Marie-Therese Nilsson, Hanna Brundin, Patrik Linse, Sara Nylander, Tommy Sparr, Emma TI Adsorption of alpha-Synuclein to Supported Lipid Bilayers: Positioning and Role of Electrostatics SO ACS CHEMICAL NEUROSCIENCE LA English DT Article DE Parkinson; Lewy body; bilayer; alpha-synuclein; amyloidosis; neutron diffraction; perdeuterated protein ID QUARTZ-CRYSTAL MICROBALANCE; LATERAL PHASE SEPARATIONS; SMALL-ANGLE NEUTRON; X-RAY-SCATTERING; PARKINSONS-DISEASE; MEMBRANE INTERACTIONS; IN-VITRO; PHOSPHOLIPID-BILAYERS; ANIONIC PHOSPHOLIPIDS; FIBRIL FORMATION AB An amyloid form of the protein alpha-synuclein is the major component of the intraneuronal inclusions called Lewy bodies, which are the neuropathological hallmark of Parkinson's disease (PD). alpha-Synuclein is known to associate with anionic lipid membranes, and interactions between aggregating alpha-synuclein and cellular membranes are thought to be important for PD pathology. We have studied the molecular determinants for adsorption of monomeric alpha-synuclein to planar model lipid membranes composed of zwitterionic phosphatidylcholine alone or in a mixture with anionic phosphatidylserine (relevant for plasma membranes) or anionic cardiolipin (relevant for mitochondrial membranes). We studied the adsorption of the protein to supported bilayers, the position of the protein within and outside the bilayer, and structural changes in the model membranes using two complementary techniques-quartz crystal microbalance with dissipation monitoring, and neutron reflectometry. We found that the interaction and adsorbed conformation depend on membrane charge, protein charge, and electrostatic screening. The results imply that alpha-synuclein adsorbs in the headgroup region of anionic lipid bilayers with extensions into the bulk but does not penetrate deeply into or across the hydrophobic acyl chain region. The adsorption to anionic bilayers leads to a small perturbation of the acyl chain packing that is independent of anionic headgroup identity. We also explored the effect of changing the area per headgroup in the lipid bilayer by comparing model systems with different degrees of acyl chain saturation. An increase in area per lipid headgroup leads to an increase in the level of alpha-synuclein adsorption with a reduced water content in the acyl chain layer. In conclusion, the association of alpha-synuclein to membranes and its adsorbed conformation are of electrostatic origin, combined with van der Waals interactions, but with a very weak correlation to the molecular structure of the anionic lipid headgroup. The perturbation of the acyl chain packing upon monomeric protein adsorption favors association with unsaturated phospholipids preferentially found in the neuronal membrane. C1 [Hellstrand, Erik; Grey, Marie; Nilsson, Hanna; Linse, Sara; Nylander, Tommy; Sparr, Emma] Lund Univ, Dept Chem, SE-22100 Lund, Sweden. [Ainalem, Marie-Louise] European Spallat Source ESS, SE-22100 Lund, Sweden. [Ankner, John] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Forsyth, V. Trevor; Fragneto, Giovanna; Haertlein, Michael; Dauvergne, Marie-Therese] Institut Laue Langevin, F-38042 Grenoble, France. [Brundin, Patrik] Lund Univ, Wallenberg Neurosci Ctr, Neuronal Survival Unit, S-22184 Lund, Sweden. [Brundin, Patrik] Ctr Neurodegenerat Sci, Andel Res Inst, Grand Rapids, MI 49503 USA. [Forsyth, V. Trevor] Keele Univ, EPSAM ISTM, Keele ST5 5BG, Staffs, England. RP Hellstrand, E (reprint author), Lund Univ, Dept Chem, SE-22100 Lund, Sweden. RI Forsyth, V. Trevor/A-9129-2010; OI Forsyth, V. Trevor/0000-0003-0380-3477; Linse, Sara/0000-0001-9629-7109; Ankner, John/0000-0002-6737-5718 FU Swedish Research Council; Linneaus programme OMM; Lund University Science Faculty; Swedish Foundation for Strategic Research; Crafoord Foundation; Royal Physiographic Society; Multi Park; ERC [269064-'PRISTINE-PD']; EPSRC [EP/C015452/1]; EU [RII3-CT-2003-505925]; DOE [DE-AC05-00OR22725] FX This work was supported by the Swedish Research Council and its Linneaus programme OMM (E.H., E.S., S.L., and T.N.), Lund University Science Faculty (E.S., T.N., S.L.), The Swedish Foundation for Strategic Research (E.S.), the Crafoord Foundation (S.L.), the Royal Physiographic Society (E.H.), Multi Park (E.H., M.G., and P.B.), ERC Advanced Award 269064-'PRISTINE-PD' (P.B.), EPSRC support (EP/C015452/1) to V. T. Forsyth (Keele University, Staffordshire, U.K) for the creation of the Deuteration Laboratory within ILL's Life Science group, and the EU under Contract RII3-CT-2003-505925 (M.H. and V.T.F.). Work at ORNL was performed under DOE contract DE-AC05-00OR22725. NR 77 TC 23 Z9 23 U1 4 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7193 J9 ACS CHEM NEUROSCI JI ACS Chem. Neurosci. PD OCT PY 2013 VL 4 IS 10 BP 1339 EP 1351 DI 10.1021/cn400066t PG 13 WC Biochemistry & Molecular Biology; Chemistry, Medicinal; Neurosciences SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Neurosciences & Neurology GA 240VD UT WOS:000326124900002 PM 23823878 ER PT J AU McBride, JR Pennycook, TJ Pennycook, SJ Rosenthal, SJ AF McBride, James R. Pennycook, Timothy J. Pennycook, Stephen J. Rosenthal, Sandra J. TI The Possibility and Implications of Dynamic Nanoparticle Surfaces SO ACS NANO LA English DT Editorial Material DE nanocrystal; nanoparticle; surface dynamics; fluorescence intermittency; trap states ID CADMIUM SELENIDE NANOCRYSTALS; WHITE-LIGHT EMISSION; CDSE QUANTUM DOTS; SEMICONDUCTOR NANOCRYSTALS; GOLD PARTICLES; SPECTROSCOPY; PHOTOLUMINESCENCE; BLINKING; LIGANDS; INTERMITTENCY AB Understanding the precise nature of a surface or interface is a key component toward optimizing the desired properties and function of a material. For semiconductor nanocrystals, the surface has been shown to modulate fluorescence efficiency, lifetime, and intermittency. The theoretical picture of a nanocrystal surface has included the existence of an undefined mixture of trap states that arise from incomplete passivation. However, our recent scanning transmission electron microscope movies and supporting theoretical evidence suggest that, under excitation, the surface is fluctuating, creating a dynamic population of surface and subsurface states. This possibility challenges our fundamental understanding of the surface and could have far-reaching ramifications for nanoparticle-based technologies. In this Perspective, we discuss the current theories behind the optical properties of nanocrystals In the context of fluxionality. C1 [McBride, James R.] Vanderbilt Univ, Dept Chem, Nashville, TN 37235 USA. [Rosenthal, Sandra J.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Rosenthal, Sandra J.] Vanderbilt Univ, Dept Pharmacol, Nashville, TN 37235 USA. [Rosenthal, Sandra J.] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37235 USA. Vanderbilt Univ, Vanderbilt Inst Nanoscale Sci & Engn, Nashville, TN 37235 USA. [Pennycook, Timothy J.; Pennycook, Stephen J.; Rosenthal, Sandra J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Rosenthal, SJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM Sandra.j.rosenthal@vanderbilt.edu RI McBride, James/D-2934-2012; Pennycook, Timothy/B-4946-2014 OI McBride, James/0000-0003-0161-7283; Pennycook, Timothy/0000-0002-0008-6516 NR 50 TC 17 Z9 17 U1 3 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD OCT PY 2013 VL 7 IS 10 BP 8358 EP 8365 DI 10.1021/nn403478h PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 242AF UT WOS:000326209100007 PM 24124980 ER PT J AU Nagy, A Hollingsworth, JA Hu, B Steinbruck, A Stark, PC Valdez, CR Vuyisich, M Stewart, MH Atha, DH Nelson, BC Iyer, R AF Nagy, Amber Hollingsworth, Jennifer A. Hu, Bin Steinbrueck, Andrea Stark, Peter C. Valdez, Cristina Rios Vuyisich, Momchilo Stewart, Michael H. Atha, Donald H. Nelson, Bryant C. Iyer, Rashi TI Functionalization-Dependent Induction of Cellular Survival Pathways by CdSe Quantum Dots in Primary Normal Human Bronchial Epithelial Cells SO ACS NANO LA English DT Article DE genotoxicity; nanomaterials; quantum dots; cytotoxicity; metallothioneins ID OXIDATIVE STRESS; DNA-DAMAGE; RNA-SEQ; MULTIFUNCTIONAL LIGANDS; DOWN-REGULATION; WISTAR RATS; NANOPARTICLES; EXPRESSION; BRCA1; CYTOTOXICITY AB Quantum dots (QDs) are semiconductor nanocrystals exhibiting unique optical properties that can be exploited for many practical applications ranging from photovoltaics to biomedical imaging and drug delivery. A significant number of studies have alluded to the cytotoxic potential of these materials, implicating Cd-leaching as the causal factor. Here, we investigated the role of heavy metals in biological responses and the potential of CdSe-induced genotoxicity. Our results Indicate that, while negatively charged QDs are relatively noncytotoxic compared to positively charged QDs, the same does not hold true for their genotoxic potential. Keeping QD core composition and size constant, 3 nm CdSe QD cores were functionalized with mercaptopropionic acid (MPA) or cysteamine (CYST), resulting in negatively or positively charged surfaces, respectively. CYST-QDs were found to induce significant cytotoxicity accompanied by DNA strand breakage. However, MPA-QDs, even in the absence of cytotoxicity and reactive oxygen species formation, also induced a high number of DNA strand breaks. QD-induced DNA damage was confirmed by identifying the presence of p53 binding protein 1 (53BP1) in the nuclei of exposed cells and subsequent diminishment of p53 from cytoplasmic cellular extracts. Further, high-throughput real-time PCR analyses revealed upregulation of DNA damage and response genes and several proinflammatory cytokine genes. Most importantly, transcriptome sequencing revealed upregulation of the metallothionein family of genes In cells exposed to MPA-QDs but not CYST-QDs. These data indicate that cytotoxic assays must be supplemented with genotoxic analyses to better understand cellular responses and the full impact of nanoparticle exposure when making recommendations with regard to risk assessment. C1 [Nagy, Amber; Hu, Bin; Vuyisich, Momchilo] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Hollingsworth, Jennifer A.; Steinbrueck, Andrea] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Stark, Peter C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Valdez, Cristina Rios] Georgetown Univ, Med Ctr, Dept Biochem & Mol Biol, Washington, DC 20007 USA. [Stewart, Michael H.] US Naval Res Lab, Opt Sci Div, Washington, DC 20375 USA. [Atha, Donald H.; Nelson, Bryant C.] NIST, Div Biochem Sci, Gaithersburg, MD 20899 USA. [Iyer, Rashi] Los Alamos Natl Lab, Def Syst & Anal Div, Los Alamos, NM 87545 USA. RP Iyer, R (reprint author), Los Alamos Natl Lab, Def Syst & Anal Div, POB 1663, Los Alamos, NM 87545 USA. EM rashi@lanl.gov RI Dennis, Allison/A-7654-2014 FU Los Alamos National Laboratory LORD-DR program; NIH-NIGMS [1R01GM084702-01]; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX We thank Cosby Lindquist for his assistance with figure presentation. We also thank Patrick Chain and Frances Hundley, members of Los Alamos National Laboratory's Genome Science group, a branch of the Department of Energy's Joint Genome Institute, for their excellence in transcriptomics. We are appreciative of Dr. Norman Doggett, Priya Dig he, and Melinda Wren of Los Alamos National Laboratory for the use of the BioMark high-throughput real-time PCR system. This work was supported by Los Alamos National Laboratory LORD-DR program. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility; J.A.H. also acknowledges partial support by NIH-NIGMS Grant 1R01GM084702-01. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. Certain commercial equipment, instruments, and materials are identified in this paper to specify an experimental procedure as completely as possible. In no case does the identification of particular equipment or materials imply a recommendation or endorsement by the National Institute of Standards and Technology nor does it imply that the materials, Instruments, or equipment are necessarily the best available for the purpose. NR 66 TC 17 Z9 17 U1 6 U2 63 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD OCT PY 2013 VL 7 IS 10 BP 8397 EP 8411 DI 10.1021/nn305532k PG 15 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 242AF UT WOS:000326209100011 PM 24007210 ER PT J AU Rousseas, M Goldstein, AP Mickelson, W Worsley, MA Woo, L Zettl, A AF Rousseas, Michael Goldstein, Anna P. Mickelson, William Worsley, Marcus A. Woo, Leta Zettl, Alex TI Synthesis of Highly Crystalline sp(2)-Bonded Boron Nitride Aerogels SO ACS NANO LA English DT Article DE boron nitride; porous; aerogels; sp(2)-bonded; carbothermal reduction ID HIGH-SURFACE-AREA; CARBON NANOTUBES; ACTIVATED CARBON; HYDROGEN UPTAKE; BN NANOTUBES; ADSORPTION; CAPACITORS; NANOSHEETS; NITROGEN; STORAGE AB sp(2)-Bonded boron nitride aerogels are synthesized from graphene aerogels via carbothermal reduction of boron oxide and simultaneous nitridation. The color and chemical composition of the original gel change dramatically, while structural features down to the nanometer scale are maintained, suggesting a direct conversion of the carbon lattice to boron nitride. Scanning and transmission electron microscopies reveal a foliated architecture of wrinkled sheets, a unique morphology among low-density, porous BN materials. The converted gels display a high degree of chemical purity (>95%) and crystalline order and exhibit unique cross-linking structures. C1 [Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Zettl, Alex] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Rousseas, Michael; Goldstein, Anna P.; Zettl, Alex] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Goldstein, Anna P.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Mickelson, William; Zettl, Alex] Ctr Integrated Nanomech Syst, Berkeley, CA 94720 USA. [Worsley, Marcus A.; Woo, Leta] Lawrence Livermore Natl Lab, Phys Sci Directorate, Livermore, CA 94550 USA. RP Zettl, A (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM azettl@berkeley.edu RI Worsley, Marcus/G-2382-2014; Zettl, Alex/O-4925-2016; OI Worsley, Marcus/0000-0002-8012-7727; Zettl, Alex/0000-0001-6330-136X; Goldstein, Anna/0000-0002-2710-8228 FU Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC0205CH11231]; UC Lab Fees Research Program [12-LR235323]; U.S. Department of Energy [DE-AC52-07NA27344]; Air Force Office of Scientific Research [X10-8049-C]; Center of Integrated Nanomechanical Systems under NSF [EEC-0832819] FX This work was supported in part by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC0205CH11231, which provided for structural analysis of the aerogels; by the UC Lab Fees Research Program under Award 12-LR235323, which provided for detailed TEM analysis; by Lawrence Livermore National Laboratory under the auspices of the U.S. Department of Energy under Contract DE-AC52-07NA27344, which provided for graphene aerogel precursor material; and by the Air Force Office of Scientific Research under Grant X10-8049-C, which provided for the BN conversion process. M.R. thanks D. Golberg and C. Zhi for useful discussions regarding induction furnace operation. W.M. and AZ. received support from the Center of Integrated Nanomechanical Systems under NSF Grant EEC-0832819. The authors thank T. Pham for assistance in sample preparation, and P. Yang for use of the X-ray diffractometer. NR 56 TC 32 Z9 32 U1 13 U2 132 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD OCT PY 2013 VL 7 IS 10 BP 8540 EP 8546 DI 10.1021/nn402452p PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 242AF UT WOS:000326209100023 PM 24011289 ER PT J AU Pathak, S Mohan, N Decolvenaere, E Needleman, A Bedewy, M Hart, AJ Greer, JR AF Pathak, Siddhartha Mohan, Nisha Decolvenaere, Elizabeth Needleman, Alan Bedewy, Mostafa Hart, A. John Greer, Julia R. TI Local Relative Density Modulates Failure and Strength in Vertically Aligned Carbon Nanotubes SO ACS NANO LA English DT Article DE vertically aligned carbon nanotubes; compression; mechanical properties; energy storage; finite element simulation ID ANODIC ALUMINUM-OXIDE; MECHANICAL-PROPERTIES; IN-SITU; POPULATION-GROWTH; ARRAYS; MICROSTRUCTURE; COMPRESSION; BUNDLES; FILMS; VISCOELASTICITY AB Micromechanical experiments, image analysis, and theoretical modeling revealed that local failure events and compressive stresses of vertically aligned carbon nanotubes (VACNTs) were uniquely linked to relative density gradients. Edge detection analysis of systematically obtained scanning electron micrographs was used to quantify a microstructural figure-of-merit related to relative local density along VACNT heights. Sequential bottom-to-top buckling and hardening in stress-strain response were observed in samples with smaller relative density at the bottom. When density gradient was insubstantial or reversed, bottom regions always buckled last, and a flat stress plateau was obtained. These findings were consistent with predictions of a 2D material model based on a viscoplastic solid with plastic non-normality and a hardening-softening-hardening plastic flow relation. The hardening slope in compression generated by the model was directly related to the stiffness gradient along the sample height, and hence to the local relative density. These results demonstrate that a microstructural figure-of-merit, the effective relative density, can be used to quantify and predict the mechanical response. C1 [Pathak, Siddhartha; Mohan, Nisha; Decolvenaere, Elizabeth; Greer, Julia R.] CALTECH, Pasadena, CA 91125 USA. [Needleman, Alan] Univ N Texas, Dept Mat Sci & Engn, Coll Engn, Denton, TX 76203 USA. [Needleman, Alan] Univ N Texas, CASCaM, Denton, TX 76203 USA. [Bedewy, Mostafa; Hart, A. John] Univ Michigan, Dept Mech Engn, Mechanosynth Grp, Ann Arbor, MI 48109 USA. [Pathak, Siddhartha] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM USA. [Hart, A. John] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. RP Pathak, S (reprint author), CALTECH, Pasadena, CA 91125 USA. EM pathak@caltech.edu RI Needleman, Alan/A-1879-2008; Hart, A. John/A-9027-2010; Bedewy, Mostafa/A-9089-2010; OI Needleman, Alan/0000-0002-4697-4535; Hart, A. John/0000-0002-7372-3512; Bedewy, Mostafa/0000-0003-4182-7533; Decolvenaere, Elizabeth/0000-0002-6350-3559 FU Institute for Collaborative Biotechnologies (ICB) from the U.S. Army Research Office [W911NF-09-0001]; W.M. Keck Institute for Space Studies Postdoctoral Fellowship program FX The authors acknowledge financial support from the Institute for Collaborative Biotechnologies (ICB) through Grant W911NF-09-0001 from the U.S. Army Research Office. The content of the information does not necessarily reflect the position or the policy of the Government, and no official endorsement should be inferred. S.P. gratefully acknowledges support from the W.M. Keck Institute for Space Studies Postdoctoral Fellowship program for this work. NR 68 TC 12 Z9 12 U1 1 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD OCT PY 2013 VL 7 IS 10 BP 8593 EP 8604 DI 10.1021/nn402710j PG 12 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 242AF UT WOS:000326209100029 PM 24001107 ER PT J AU Hsieh, YH Strelcov, E Liou, JM Shen, CY Chen, YC Kalinin, SV Chu, YH AF Hsieh, Ying-Hui Strelcov, Evgheni Liou, Jia-Ming Shen, Chia-Ying Chen, Yi-Chun Kalinin, Sergei V. Chu, Ying-Hao TI Electrical Modulation of the Local Conduction at Oxide Tubular Interfaces SO ACS NANO LA English DT Article DE tubular interface; BFO-CFO; oxygen vacancy; conductive AFM; FORC-IV ID FERROELECTRIC DOMAIN-WALLS; THIN-FILMS; BIFEO3; NANOSTRUCTURES; NANOSCALE AB Heterointerfaces between complex oxides have sparked considerable interest due to their fascinating physical properties and their offering of new possibilities for next-generation electronic devices. The key to realize practical applications is the control through external stimuli. In this study, we take the self-assembled BiFeO3-CoFe2O4 tubular interface as a model system to demonstrate the nonvolatile electric control of the local conduction at the complex oxide tubular interface. The fundamental mechanism behind this modulation was explored based on static and dynamic conductive atomic force microscopies. We found the movement of oxygen vacancies in the BiFeO3-CoFe2O4 heterostructure is the key to drive this intriguing behavior. This study delivers a possibility in developing next-generation electronic devices. C1 [Hsieh, Ying-Hui; Shen, Chia-Ying; Chu, Ying-Hao] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan. [Strelcov, Evgheni; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Liou, Jia-Ming; Chen, Yi-Chun] Natl Cheng Kung Univ, Dept Phys, Tainan 70101, Taiwan. RP Chu, YH (reprint author), Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan. EM yhc@nctu.edu.tw RI Strelcov, Evgheni/H-1654-2013; Ying-Hao, Chu/A-4204-2008; Kalinin, Sergei/I-9096-2012 OI Ying-Hao, Chu/0000-0002-3435-9084; Kalinin, Sergei/0000-0001-5354-6152 FU National Science Council, R.O.C. [NSC-101-2119-M-009-003-MY2]; Ministry of Education [MOE-ATU 101W961]; Center for Interdisciplinary Science of National Chiao Tung University; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy at Oak Ridge National Laboratory FX This work was supported by the National Science Council, R.O.C. (NSC-101-2119-M-009-003-MY2), Ministry of Education (MOE-ATU 101W961), and Center for Interdisciplinary Science of National Chiao Tung University. Part of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 19 TC 17 Z9 17 U1 6 U2 72 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD OCT PY 2013 VL 7 IS 10 BP 8627 EP 8633 DI 10.1021/nn402763w PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 242AF UT WOS:000326209100032 PM 24016142 ER PT J AU Gul, S Cooper, JK Glans, PA Guo, JH Yachandra, VK Yano, J Zhang, JZ AF Gul, Sheraz Cooper, Jason Kyle Glans, Per-Anders Guo, Jinghua Yachandra, Vittal K. Yano, Junko Zhang, Jin Zhong TI Effect of Al3+ Co-doping on the Dopant Local Structure, Optical Properties, and Exciton Dynamics in Cu+-Doped ZnSe Nanocrystals SO ACS NANO LA English DT Article DE doped semiconductor nanocrystals; copper doped; ZnSe; co-doped; EXAFS; exciton dynamics ID SEMICONDUCTOR NANOCRYSTALS; COPPER LUMINESCENCE; CARRIER DYNAMICS; QUANTUM DOTS; SPECTROSCOPY; RECOMBINATION; NANOCLUSTERS; POLARIZATION; CRYSTALS; CLUSTERS AB The dopant local structure and optical properties of Cu-doped ZnSe (ZnSe:Cu) and Cu and Al co-doped ZnSe (ZnSe:Cu,AI) nanocrystals (NCs) were studied with an emphasis on understanding the impact of introducing Al as a co-dopant. Quantum-confined NCs with zinc blende crystal structure and particle size of 6 +/- 0.6 angstrom were synthesized using a wet chemical route. The local structure of the Cu dopant, studied by extended X-ray absorption fine structure, indicated that Cu in ZnSe:Cu NCs occupies a site that is neither substitutional nor interstitial and is adjacent to a Se vacancy. Additionally, we estimated that approximately 25 +/- 8% of Cu was located on the surface of the NC. Al3+ co-doping aids in Cu doping by accounting for the charge imbalance originated by Cu+ doping and consequently reduces surface Cu doping. The Cu Ions remain distorted from the center of the tetrahedron to one of the triangular faces. The lifetime of the dopant-related photoluminescence was found to increase from 550 +/- 60 to 700 +/- 60 ns after Al co-doping. DFT calculations were used to obtain the density of states of a model system to help explain the optical properties and dynamics processes observed. This study demonstrates that co-doping using different cations with complementary oxidation states is an effective method to enhance optical properties of doped semiconductor NCs of interest for various photonics applications. C1 [Gul, Sheraz; Cooper, Jason Kyle; Zhang, Jin Zhong] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. [Glans, Per-Anders; Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Gul, Sheraz; Yachandra, Vittal K.; Yano, Junko] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Yano, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM jyano@lbl.gov; zhang@ucsc.edu RI Glans, Per-Anders/G-8674-2016 FU U.S. Department of Energy [DE-FG02-07ER46388-A002, DE-AC02-05CH11231] FX This project was funded by the U.S. Department of Energy under contract no. DE-FG02-07ER46388-A002. For the use of the HRTEM facilities, we are grateful to Chenyou Song and the authorities at National Center for Electron Microscopy and Advanced Light Source, Lawrence Berkeley National Laboratory, which is supported by the U.S. Department of Energy under contract number DE-AC02-05CH11231. The EXAFS measurements were carried out at the Stanford Synchrotron Radiation Light Source, a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. DFT calculations were performed on the UCSC campusrocks cluster. A special thank you to Burak Himmetoglu is deserved and a debt of gratitude owed for his kind assistance with Quantum Espresso and generous offerings of his depth of DFT knowledge. NR 56 TC 19 Z9 19 U1 4 U2 68 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD OCT PY 2013 VL 7 IS 10 BP 8680 EP 8692 DI 10.1021/nn402932q PG 13 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 242AF UT WOS:000326209100038 PM 24028556 ER PT J AU Wang, HY Qian, F Wang, GM Jiao, YQ He, Z Li, Y AF Wang, Hanyu Qian, Fang Wang, Gongming Jiao, Yongqin He, Zhen Li, Yat TI Self-Biased Solar-Microbial Device for Sustainable Hydrogen Generation SO ACS NANO LA English DT Article DE microbial fuel cell; photoelectrochemical; hybrid; self-biased; sustainable hydrogen generation ID FUEL-CELL ELECTRODES; WASTE-WATER; ELECTRICITY-GENERATION; BIOHYDROGEN PRODUCTION; PERFORMANCE; MEMBRANE; DEGRADATION; TECHNOLOGY; ACETATE; SYSTEM AB Here we demonstrate the feasibility of continuous, self-sustained hydrogen gas production based solely on solar light and biomass (wastewater) recycling, by coupling solar water splitting and microbial electrohydrogenesis in a photoelectrochemical cell microbial fuel cell (PEC-MFC) hybrid device. The PEC device is composed of a TiO2 nanowire-arrayed photoanode and a Pt cathode. The MFC is an air cathode dual-chamber device, inoculated with either Shewanella oneidensis MR-1 (batch-fed on artificial growth medium) or natural microbial communities (batch-fed on local municipal wastewater). Under light illumination, the TiO2 photoanode provided a photovoltage of similar to 0.7 V that shifted the potential of the MFC bioanode to overcome the potential barrier for microbial electrohydrogenesis. As a result, under light illumination (AM 1.5G, 100 mW/cm(2)) without external bias, and using wastewater as the energy source, we observed pronounced current generation as well as continuous production of hydrogen gas. The successful demonstration of such a self-biased, sustainable microbial device for hydrogen generation could provide a new solution that can simultaneously address the need of wastewater treatment and the increasing demand for clean energy. C1 [Wang, Hanyu; Wang, Gongming; Li, Yat] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. [Qian, Fang; Jiao, Yongqin] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [He, Zhen] Virginia Polytech Inst & State Univ, Dept Civil & Environm Engn, Blacksburg, VA 24061 USA. RP Li, Y (reprint author), Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. EM yli@chemistry.ucsc.edu RI He, Zhen/D-1275-2009; Wang, Gongming/C-4555-2012; OI He, Zhen/0000-0001-6302-6556; Li, Yat/0000-0002-8058-2084 FU NSF [CBET 1034222, CBET 1033505]; LDRD [11-LW-054]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DEAC52-07NA27344] FX We thank D.A. Stoops at Water Reclamation Plant (Livermore, CA) for providing municipal wastewater samples and helpful discussion. We thank Prof. J.Z. Zhang for offering a facility for GC measurements. Y.L. acknowledges the support of this work by NSF (CBET 1034222). F.Q. and Y.J. acknowledge support from LDRD Project 11-LW-054, performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DEAC52-07NA27344. Z.H. acknowledges the support by NSF (CBET 1033505). NR 35 TC 27 Z9 28 U1 14 U2 147 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD OCT PY 2013 VL 7 IS 10 BP 8728 EP 8735 DI 10.1021/nn403082m PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 242AF UT WOS:000326209100042 PM 24025029 ER PT J AU Yan, ZJ Pelton, M Vigderman, L Zubarev, ER Scherer, NF AF Yan, Zijie Pelton, Matthew Vigderman, Leonid Zubarev, Eugene R. Scherer, Norbert F. TI Why Single-Beam Optical Tweezers Trap Gold Nanowires in Three Dimensions SO ACS NANO LA English DT Article DE optical tweezers; Au nanowires; optical manipulation; plasmonics; nanophotonics ID SILVER NANOWIRES; METAL NANOPARTICLES; ACOUSTIC VIBRATIONS; AU NANOPARTICLES; PARTICLES; NANOSTRUCTURES; CONFINEMENT; ALIGNMENT; NANORODS; FORCES AB Understanding whether noble-metal nanostructures can be trapped optically and under what conditions will enable a range of applications that exploit their plasmonic properties. However, there are several nontrivial issues that first need to be resolved. A major one is that metal particles experience strong radiation pressure in optical beams, while stable optical trapping requires an attractive force greater than this radiation pressure. Therefore, it has generally been considered impossible to obtain sufficiently strong gradient forces using single-beam optical tweezers to trap relatively large metal nanostructures in three dimensions. Here we demonstrate that a single, tightly focused laser beam with a wavelength of 800 nm can achieve three-dimensional optical trapping of individual gold (Au) nanowires with lengths over 2 mu m. Nanowires can be trapped by the beam at one of their ends, in which case they undergo significant angular fluctuations due to Brownian motion of the untrapped end. They can also be trapped close to their midpoints, in which case they are oriented approximately perpendicular to the light polarization direction. The behavior is markedly different from that of Ag nanowires with similar length and diameter, which cannot be trapped in three dimensions by a single focused Gaussian beam. Our results, including electrodynamics simulations that help to explain our experimental findings, suggest that the conventional wisdom, which holds that larger metal particles cannot be trapped, needs to be replaced with an understanding based on the details of plasmon resonances in the particles. C1 [Yan, Zijie; Scherer, Norbert F.] Univ Chicago, James Franck Inst, 929 East 57th St, Chicago, IL 60637 USA. [Yan, Zijie; Scherer, Norbert F.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Pelton, Matthew] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Vigderman, Leonid; Zubarev, Eugene R.] Rice Univ, Dept Chem, Houston, TX 77005 USA. RP Scherer, NF (reprint author), Univ Chicago, James Franck Inst, 929 East 57th St, Chicago, IL 60637 USA. EM nfschere@uchicago.edu RI Yan, Zijie/C-5805-2009; Zubarev, Eugene/C-9288-2011; Pelton, Matthew/H-7482-2013 OI Yan, Zijie/0000-0003-0726-7042; Pelton, Matthew/0000-0002-6370-8765 FU U.S. Department of Energy (DOE), Office of Science, Division of Chemical, Geological and Biological Sciences [DE-AC02-06CH11357]; NSF [CHE-1059057]; Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility [DE-AC02-06CH11357]; National Science Foundation [DMR-1105878] FX We acknowledge support from the U.S. Department of Energy (DOE), Office of Science, Division of Chemical, Geological and Biological Sciences under Contract No. DE-AC02-06CH11357, and the NSF (CHE-1059057). This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract No. DE-AC02-06CH11357. E.R.Z. acknowledges financial support from the National Science Foundation (DMR-1105878). NR 40 TC 18 Z9 18 U1 3 U2 77 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD OCT PY 2013 VL 7 IS 10 BP 8794 EP 8800 DI 10.1021/nn403936z PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 242AF UT WOS:000326209100049 PM 24041038 ER PT J AU Mohsin, A Liu, L Liu, PZ Deng, W Ivanov, IN Li, GL Dyck, OE Duscher, G Dunlap, JR Xiao, K Gu, G AF Mohsin, Ali Liu, Lei Liu, Peizhi Deng, Wan Ivanov, Ilia N. Li, Guoliang Dyck, Ondrej E. Duscher, Gerd Dunlap, John R. Xiao, Kai Gu, Gong TI Synthesis of Millimeter-Size Hexagon-Shaped Graphene Single Crystals on Resolidified Copper SO ACS NANO LA English DT Article DE graphene; single crystal; millimeter size; melted and resolidified copper; CVD; nucleation and growth ID CHEMICAL-VAPOR-DEPOSITION; POLYCRYSTALLINE CU; GRAIN-BOUNDARIES; GROWTH; FILMS; FOILS; NUCLEATION; HYDROGEN; SURFACE; FLAKES AB We present a facile method to grow millimeter-size, hexagon-shaped, monolayer, single-crystal graphene domains on commercial metal foils. After a brief in situ treatment, namely, melting and subsequent resolidification of copper at atmospheric pressure, a smooth surface is obtained, resulting in the low nucleation density necessary for the growth of large-size single-crystal graphene domains. Comparison with other pretreatment methods reveals the importance of copper surface morphology and the critical role of the melting-resolidification pretreatment. The effect of important growth process parameters Is also studied to determine their roles in achieving low nucleation density. Insight into the growth mechanism has thus been gained. Raman spectroscopy and selected area electron diffraction confirm that the synthesized millimeter-size graphene domains are high-quality monolayer single crystals with zigzag edge terminations. C1 [Mohsin, Ali; Liu, Lei; Deng, Wan; Xiao, Kai; Gu, Gong] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Liu, Peizhi; Li, Guoliang; Dyck, Ondrej E.; Duscher, Gerd] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Ivanov, Ilia N.; Xiao, Kai] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Duscher, Gerd] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Dunlap, John R.] Univ Tennessee, Div Biol, Knoxville, TN 37996 USA. RP Gu, G (reprint author), Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. EM ggu1@utk.edu RI Liu, Lei/E-6267-2014; Duscher, Gerd/G-1730-2014; Li, Guoliang/M-6614-2014; Liu, Peizhi/K-6442-2013; ivanov, ilia/D-3402-2015; Gu, Gong/L-5919-2015; Dyck, Ondrej/A-3294-2016; OI Duscher, Gerd/0000-0002-2039-548X; Li, Guoliang/0000-0003-3798-8422; Liu, Peizhi/0000-0001-9638-2960; ivanov, ilia/0000-0002-6726-2502; Gu, Gong/0000-0002-3888-1427; Dyck, Ondrej/0000-0001-8200-9874; Xiao, Kai /0000-0002-0402-8276 FU NSF [ECCS-1231808]; DARPA; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This work was partially supported by NSF (ECCS-1231808) and DARPA (approved for public release; distribution is unlimited). A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The authors thank G. Jones for his help In SEM imaging. NR 35 TC 63 Z9 65 U1 20 U2 181 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD OCT PY 2013 VL 7 IS 10 BP 8924 EP 8931 DI 10.1021/nn4034019 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 242AF UT WOS:000326209100064 PM 24004046 ER PT J AU Olivier, GK Cho, A Sanii, B Connolly, MD Tran, H Zuckermann, RN AF Olivier, Gloria K. Cho, Andrew Sanii, Babak Connolly, Michael D. Tran, Helen Zuckermann, Ronald N. TI Antibody-Mimetic Peptoid Nanosheets for Molecular Recognition SO ACS NANO LA English DT Article DE protein-mimetic materials; molecular recognition; loop display; two-dimensional nanomaterials; bioinspired polymers ID POLYPEPTIDE SEQUENCE; BINDING-PROTEINS; PEPTIDE; POLYMERS; PHOSPHORYLATION; NANOSTRUCTURES; OLIGOMERS; GRAPHENE; DOMAINS; POWER AB The ability of antibodies to bind a wide variety of analytes with high specificity and high affinity make them ideal candidates as molecular recognition elements for chemical and biological sensors. However, their widespread use in sensing devices has been hampered by their poor stability and high production cost. Here we report the design and synthesis of a new class of antibody-mimetic materials based on functionalized peptoid nanosheets. A high density of conformationally constrained peptide and peptoid loops are displayed on the surface of free-floating nanosheets to generate an extended, multivalent two-dimensional material that is chemically and biologically stable. The nanosheet serves as a robust, high-surface area scaffold upon which to display a wide variety of functional loop sequences. The functionalized nanosheets were characterized by atomic force microscopy, X-ray diffraction, and X-ray reflectivity measurements, and were shown to serve as substrates for enzymes (protease and casein kinase II), as well as templates for the growth of defined inorganic materials (gold metal). C1 [Olivier, Gloria K.; Cho, Andrew; Sanii, Babak; Connolly, Michael D.; Tran, Helen; Zuckermann, Ronald N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Zuckermann, RN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM rnzuckermann@lbl.gov RI Zuckermann, Ronald/A-7606-2014; Foundry, Molecular/G-9968-2014 OI Zuckermann, Ronald/0000-0002-3055-8860; FU Defense Threat Reduction Agency [IACRO-B1144571]; Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231, DE-AC02-06CH11357]; Advanced Light Source, at Lawrence Berkeley National Laboratory FX The authors thank I. Kuzmenko, J. Holton, C. Proulx, T. Haxton, and R. Mannige for useful discussions and technical assistance. This project was funded by the Defense Threat Reduction Agency under Contract No. IACRO-B1144571. The work was conducted at the Molecular Foundry with support from the Advanced Light Source, at Lawrence Berkeley National Laboratory, both of which are supported by the Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. Monolayer scattering experiments performed at the Advanced Photon Source at Argonne National Laboratory were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 41 TC 27 Z9 27 U1 6 U2 75 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD OCT PY 2013 VL 7 IS 10 BP 9276 EP 9286 DI 10.1021/nn403899y PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 242AF UT WOS:000326209100102 PM 24016337 ER PT J AU Brancolini, G Migliore, A Corni, S Fuentes-Cabrera, M Luque, FJ Di Felice, R AF Brancolini, Giorgia Migliore, Agostino Corni, Stefano Fuentes-Cabrera, Miguel Javier Luque, F. Di Felice, Rosa TI Dynamical Treatment of Charge Transfer through Duplex Nucleic Acids Containing Modified Adenines SO ACS NANO LA English DT Article DE DNA; chemical alterations; electronic structure; molecular dynamics; charge transfer ID CORRELATED MOLECULAR CALCULATIONS; SINGLE DNA-MOLECULES; GAUSSIAN-BASIS SETS; ELECTRON-TRANSFER; AQUEOUS-SOLUTION; HOLE-TRANSFER; AB-INITIO; B-DNA; STRUCTURAL FLUCTUATIONS; STRANDED-DNA AB We address the issue of whether chemical alterations of nucleobases are an effective tool to modulate charge transfer through DNA molecules. Our investigation uses a multilevel computational approach based on classical molecular dynamics and quantum chemistry. We find yet another piece of evidence that structural fluctuations are a key factor to determine the electronic structure of double-stranded DNA. We argue that the electronic structure and charge transfer ability of flexible polymers is the result of a complex intertwining of various structural, dynamical and chemical factors. Chemical intuition may be used to design molecular wires, but this is not the sole component in the complex charge transfer mechanism through DNA. C1 [Brancolini, Giorgia; Corni, Stefano; Di Felice, Rosa] CNR Inst Nanosci, Ctr S3, I-41125 Modena, Italy. [Migliore, Agostino] Tel Aviv Univ, Sch Chem, IL-69978 Tel Aviv, Israel. [Migliore, Agostino] Duke Univ, Dept Chem, Durham, NC 27708 USA. [Fuentes-Cabrera, Miguel] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Fuentes-Cabrera, Miguel] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Javier Luque, F.] Univ Barcelona, Fac Farm, Dept Fisicoquim, E-08028 Barcelona, Spain. [Javier Luque, F.] Univ Barcelona, Fac Farm, Inst Biomed IBUB, E-08028 Barcelona, Spain. [Di Felice, Rosa] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA. RP Brancolini, G (reprint author), CNR Inst Nanosci, Ctr S3, Via Campi 213-A, I-41125 Modena, Italy. EM giorgia.brancolini@nano.cnr.it; rosa.difelice@unimore.it RI Corni, Stefano/A-6198-2012; Fuentes-Cabrera, Miguel/Q-2437-2015; Luque, F. Javier/L-9652-2014; OI Fuentes-Cabrera, Miguel/0000-0001-7912-7079; Luque, F. Javier/0000-0002-8049-3567; DIFELICE, ROSA/0000-0002-7772-6550; Corni, Stefano/0000-0001-6707-108X FU European Commission [FP6-029192]; ESF through COST Action [MP0802]; Italian Institute of Technology; Fondazione Cassa di Risparmio di Modena through Progetto Internazionalizzazione; Israel Science Foundation; European Science Council [226628]; NIH [GM071628]; HPC-Europa2 [2010/361]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was funded by the European Commission through Project "DNA-Nanodevices" (Contract FP6-029192), by the ESF through the COST Action MP0802, by the Italian Institute of Technology through Project MOPROSURF and the Computational Platform, and by Fondazione Cassa di Risparmio di Modena through Progetto Internazionalizzazione 2011. The ISCRA staff at CINECA (Bologna, Italy) is acknowledged for computational facilities and technical support. A.M. thanks Abraham Nitzan and David Beratan, and acknowledges support from the Israel Science Foundation, the European Science Council (FP7/ERC Grant Number 226628), and NIH (Award Number GM071628). Moreover, A.M. acknowledges computational support from Tel Aviv University. G.B. acknowledges "HPC-Europa2" (Project Ref 2010/361) and BSC (Barcelona Supercomputing Center) for computational resources and technical support. G.B. further acknowledges the Center for Nanophase Materials Sciences (CNMS): a portion of this research was conducted at CNMS, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Facilities of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, are also acknowledged. NR 69 TC 5 Z9 5 U1 1 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD OCT PY 2013 VL 7 IS 10 BP 9396 EP 9406 DI 10.1021/nn404165y PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 242AF UT WOS:000326209100114 PM 24060008 ER PT J AU Farfan, GA Boulard, E Wang, SB Mao, WL AF Farfan, Gabriela A. Boulard, Eglantine Wang, Shibing Mao, Wendy L. TI Bonding and electronic changes in rhodochrosite at high pressure SO AMERICAN MINERALOGIST LA English DT Article DE Rhodochrosite; deep carbon; Raman spectroscopy; XES; XRD; high pressure; carbonate ID RAY-EMISSION SPECTROSCOPY; X-RAY; EARTHS MANTLE; PHASE-TRANSFORMATION; CARBON SOLUBILITY; CRYSTAL-STRUCTURE; ARAGONITE PHASE; DEEP EARTH; CACO3; TRANSITION AB Atmospheric carbon is critical for maintaining the climate and life equilibrium on Earth. The concentration of this carbon is controlled by the deep carbon cycle, which is responsible for the billion year-scale evolution of the terrestrial carbon reservoirs of the planet. Understanding the crystal chemistry and physical properties of carbonates at mantle conditions is vital as they represent the main oxidized carbon-bearing phases in the Earth's mantle. Here we present data on the crystal chemistry and physical properties of rhodochrosite at high pressure. Rhodochrosite (MnCO3) exhibits a series of high-pressure transitions between 15 and 30 GPa and at 50 GPa at ambient temperature as observed by in situ Raman spectroscopy, X-ray diffraction (XRD), and X-ray emission spectroscopy (XES). A transition is observed to begin at 15 GPa and complete at 30 GPa, which may be due to several possibilities: modifications in the magnetic order, changes in the compression mechanism, and/or a structural transition resulting from disorder. We also observed a first-order phase transition of MnCO3 at 50 GPa, which is not accompanied by any changes in the electronic spin state. These results highlight the unique behavior of MnCO3, which we found to be quite different from other common carbonates such as siderite, magnesite, and calcite. C1 [Farfan, Gabriela A.; Boulard, Eglantine; Wang, Shibing; Mao, Wendy L.] Stanford Univ, Stanford, CA 94305 USA. [Wang, Shibing] SLAC Natl Accelerator Lab, SSRL, Menlo Pk, CA 94025 USA. [Mao, Wendy L.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Farfan, GA (reprint author), Stanford Univ, Stanford, CA 94305 USA. EM gfarfan@stanford.edu FU NSF [EAR-1141929]; Office of Science, Office of Basic Energy Sciences, and Materials Sciences Division of the U.S. Department of Energy [DE-AC02-05CH11231]; DOE-NNSA; DOE-BES; NSF; DOE-BES [DE-AC02-06CH11357]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; COMPRES; Consortium for Materials Properties Research in Earth Sciences under NSF [EAR 11-57758]; Deep Carbon Observatory FX We thank Jinyuan Yan, Jason Knight, and Alastair MacDowell for their assistance with XRD experiments at ALS and Yuming Xiao and Paul Chow for their assistance with XES experiments at APS. We also thank R Jones for his assistance with the electron microprobe measurements, M. Scott for providing the rhodochrosite samples, Francois Guyot for his helpful conversations, Richard Nevle who organized the Stanford School of Earth Sciences Undergraduate Research Program, and Associate Editor L. Ehm and the anonymous reviewers. W.L. Mao and S. Wang are supported by NSF, Geophysics Grant EAR-1141929. ALS is supported by the Office of Science, Office of Basic Energy Sciences, and Materials Sciences Division of the U.S. Department of Energy under contract DE-AC02-05CH11231. Portions of this work were also performed at HPCAT (Sector 16), which is supported by DOE-NNSA, DOE-BES, and NSF. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357. X-ray diffraction was performed at the high-pressure beamline 12.2.2 at the Advanced Light Source which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research was partially supported by COMPRES, the Consortium for Materials Properties Research in Earth Sciences under NSF Cooperative Agreement EAR 11-57758. Eglantine Boulard acknowledges support from the Deep Carbon Observatory. NR 41 TC 6 Z9 6 U1 4 U2 21 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD OCT PY 2013 VL 98 IS 10 BP 1817 EP 1823 DI 10.2138/am.2013.4497 PG 7 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 243ZR UT WOS:000326357400019 ER PT J AU Rutberg, M Cooperman, A Bouza, A AF Rutberg, Michael Cooperman, Alissa Bouza, Antonio TI Data Center Cooling SO ASHRAE JOURNAL LA English DT Article AB Data centers facilities housing the computers that power public,and private informational resources and services consume a globally significant amount of energy. In the U.S., data centers currently consume approximately 2% of all electricity generated, a number that is expected to rise.(1) A substantial fraction of this electricity is used for cooling, but this fraction is shrinking. C1 [Rutberg, Michael; Cooperman, Alissa] TIAX LLC, Mech Syst Grp, Lexington, MA USA. [Bouza, Antonio] US DOE, Washington, DC 20585 USA. RP Rutberg, M (reprint author), TIAX LLC, Mech Syst Grp, Lexington, MA USA. NR 12 TC 0 Z9 0 U1 1 U2 6 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 EI 1943-6637 J9 ASHRAE J JI ASHRAE J. PD OCT PY 2013 VL 55 IS 10 BP 82 EP 86 PG 5 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 244DZ UT WOS:000326368600021 ER PT J AU Martin, RL Haranczyk, M AF Martin, Richard Luis Haranczyk, Maciej TI Insights into Multi-Objective Design of Metal-Organic Frameworks SO CRYSTAL GROWTH & DESIGN LA English DT Article ID HIGH-SURFACE-AREA; CRYSTAL-STRUCTURES; CARBON-DIOXIDE; RETICULAR CHEMISTRY; BUILDING-BLOCKS; METHANE STORAGE; NETS; ADSORPTION; MOLECULES; EXAMPLES AB Metal organic frameworks (MOFs) are a highly versatile class of crystalline porous materials. In recent years, many diverse MOF materials have been experimentally realized, exhibiting a wide range of underlying topologies. In this work, we guide material design efforts by identifying the most promising MOF topologies for achieving high surface area frameworks. High surface area is one of the most targeted properties of MOF materials for adsorption applications, and we focus on evaluating the achievable surface area (gravimetric, volumetric, and a composite function) within each topological class by means of multiobjective optimization, illustrating that researchers can focus on a few select topologies to achieve a particular balance between gravimetric and volumetric surface area. C1 [Martin, Richard Luis; Haranczyk, Maciej] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Haranczyk, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. EM mharanczyk@lbl.gov RI Haranczyk, Maciej/A-6380-2014; Martin, Richard/C-7129-2013 OI Haranczyk, Maciej/0000-0001-7146-9568; Martin, Richard/0000-0001-9858-2608 FU Laboratory Directed Research and Development Program of the Lawrence Berkeley National Laboratory (LBNL); Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work is supported by the Laboratory Directed Research and Development Program of the Lawrence Berkeley National Laboratory (LBNL). LBNL is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 43 TC 14 Z9 14 U1 0 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD OCT PY 2013 VL 13 IS 10 BP 4208 EP 4212 DI 10.1021/cg401240f PG 5 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 243ER UT WOS:000326300200014 ER PT J AU Davis, T Johnson, M Billinge, SJL AF Davis, Timur Johnson, Matthew Billinge, Simon J. L. TI Toward Phase Quantification at the Nanoscale Using the Total Scattering Pair Distribution Function (TSPDF) Method: Recrystallization of Cryomilled Sulfamerazine SO CRYSTAL GROWTH & DESIGN LA English DT Article ID POLYMORPHS AB One of the most challenging problems facing the pharmaceutical industry is to identify and quantify the phase fractions in mixed phase samples that contain crystalline, nanocrystalline, and amorphous components. Here we demonstrate an approach that accomplishes this using high energy X-rays coupled with total scattering pair distribution function (TSPDF) analysis by studying samples of sulfamerazine, a sulfonamide antibiotic drug, recrystallizing from a cryomilled-induced amorphous state. Samples milled under different conditions were shown to have significantly different phase compositions. The initial amorphous state was obtained by cryomilling the stable Form 1 polymorph. This was then aged at low temperature to initiate controlled recrystallization. We show that depending on the milling and aging protocol we see a mixture of amorphous material with the metastable Form 2 polymorph. A minority of Form 1 is also observed. We describe the approach that allowed us to quantify the phase fractions despite the majority of the sample lacking crystalline order. C1 [Davis, Timur; Billinge, Simon J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Johnson, Matthew] GlaxoSmithKline Med Res Ctr, Stevenage SG1 2NY, Herts, England. [Billinge, Simon J. L.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Billinge, SJL (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. EM sb2896@columbia.edu FU U.S. Department of Energy, Division of Materials Sciences and Division of Chemical Sciences [DE-AC02-98CH10886]; European Synchrotron Radiation Facility (ESRF) in Grenoble, France FX We would like to thank Daniel Kinder (Catalent Pharma Solutions) for his help in producing the cryomilled samples used in this study and Max Terban for help in producing the figures. We would also like to thank Milinda Abeykoon, Pavol Juhas, Emil Bozin, and Marco Di Michiel for their help in data collection and analysis. The TSPFD data were collected at the National Synchrotron Light Source, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Division of Materials Sciences and Division of Chemical Sciences, under contract No. DE-AC02-98CH10886, and at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. NR 25 TC 14 Z9 14 U1 3 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD OCT PY 2013 VL 13 IS 10 BP 4239 EP 4244 DI 10.1021/cg400179p PG 6 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 243ER UT WOS:000326300200018 ER PT J AU Hu, LB Zhang, ZC Amine, K AF Hu, Libo Zhang, Zhengcheng Amine, Khalil TI Fluorinated electrolytes for Li-ion battery: An FEC-based electrolyte for high voltage LiNi0.5Mn1.5O4/graphite couple SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Fluorinated solvents; High voltage electrolyte; Non-flammable electrolyte; 5 V LiNi0.5Mn1.5O4 cathode; Lithium-ion batteries ID CARBONATE-BASED ELECTROLYTES; FLUOROETHYLENE CARBONATE; ELECTROCHEMICAL PROPERTIES; PERFORMANCE; CELLS; GRAPHITE AB A new electrolyte based on fluorinated solvents was studied in a high voltage Li-ion cell using graphite as the anode and 5 V spinel LiNi0.5Mn1.5O4 as the cathode. The electrolyte shows significantly enhanced voltage stability compared with the conventional electrolytes at elevated temperature (55 degrees C). Post-test study of the harvested cathode using FT-IR and SEM indicated that the buildup of organic decomposition product on the cathode surface is negligible for the fluorinated electrolyte. (C) 2013 Elsevier B.V. All rights reserved. C1 [Hu, Libo; Zhang, Zhengcheng; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Zhang, ZC (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Av, Argonne, IL 60439 USA. EM zzhang@anl.gov RI Hu, Libo/A-5911-2012 FU U.S. Department of Energy, Vehicle Technologies Office; U.S. Department of Energy by UChicago Argonne, LLC [DE-AC02-06CH11357] FX This research is supported by the U.S. Department of Energy, Vehicle Technologies Office. Argonne National Laboratory is operated for the U.S. Department of Energy by UChicago Argonne, LLC, under contract DE-AC02-06CH11357. NR 25 TC 55 Z9 55 U1 16 U2 156 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 EI 1873-1902 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD OCT PY 2013 VL 35 BP 76 EP 79 DI 10.1016/j.elecom.2013.08.009 PG 4 WC Electrochemistry SC Electrochemistry GA 244ZN UT WOS:000326428800020 ER PT J AU Segovia, J Entem, DR Fernandez, F Hernandez, E AF Segovia, J. Entem, D. R. Fernandez, F. Hernandez, E. TI CONSTITUENT QUARK MODEL DESCRIPTION OF CHARMONIUM PHENOMENOLOGY SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Review DE Potential models; heavy quarkonia; charmed mesons; bottom mesons; models of strong interactions; leptonic and semileptonic decays ID PAIR-CREATION MODEL; HEAVY QUARKONIA; DECAYS; MESONS; SYSTEMS; CLEO AB We review how quark models are able to describe the phenomenology of the harm meson sector. The spectroscopy and decays of charmonium and open charm mesons are described in a particular quark model and compared with the data and the results of other existing models in the literature. A quite reasonable global description of the heavy meson spectra is reached. A new assignment of the psi(4415) resonance as a 3D state leaving aside the 4S state to the X(4360) is tested through the analysis of the resonance structure in e+e-exclusive reactions around the psi(4415) energy region. We make tentative assignments of some of the XYZ mesons. To elucidate the structure of the 1(+) c (s) over bar states, i.e., D-s1 (2460) and D-s1 (2536), we study the strong decay properties of the D-s1(2536) meson. We also perform a calculation of the branching fractions or the semileptonic decays of B and Bs mesons into final states containing orbitally excited charmed and charmed-strange mesons, which have become a very important source of information about the structure of heavy mesons. Analysis of the nonleptonic B-meson decays into D(*) DsJ are also included. C1 [Segovia, J.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Entem, D. R.; Fernandez, F.; Hernandez, E.] Univ Salamanca, Grp Fis Nucl, E-37008 Salamanca, Spain. [Entem, D. R.; Fernandez, F.; Hernandez, E.] Univ Salamanca, Inst Univ Fis Fundamental & Matemat, E-37008 Salamanca, Spain. RP Entem, DR (reprint author), Univ Salamanca, Grp Fis Nucl, Casas Parque S-N, E-37008 Salamanca, Spain. EM jsegovia@anl.gov; entem@usal.es; fdz@usal.es; gajatee@usal.es RI Hernandez, Eliecer/B-2370-2014; Entem, David/H-8435-2014; Segovia, Jorge/C-7202-2015 OI Hernandez, Eliecer/0000-0003-3468-1513; Entem, David/0000-0003-2376-6255; Segovia, Jorge/0000-0001-5838-7103 FU U.S. Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357]; Ministerio de Ciencia y Tecnologia [FPA2010-21750-C02-02, FIS2011-28853-C02-02]; European Community [283286]; Spanish Ingenio-Consolider 2010 Program CPAN [CSD2007-00042] FX This work has been partially funded by the U.S. Department of Energy, Office of Nuclear Physics, under contract No. DE-AC02-06CH11357. Ministerio de Ciencia y Tecnologia under contract No. FPA2010-21750-C02-02 and FIS2011-28853-C02-02, by the European Community-Research Infrastructure Integrating Activity "Study of Strongly Interacting Matter" (HadronPhysics3 Grant No. 283286), by the Spanish Ingenio-Consolider 2010 Program CPAN (CSD2007-00042). NR 82 TC 18 Z9 18 U1 0 U2 2 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 EI 1793-6608 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD OCT PY 2013 VL 22 IS 10 AR 1330026 DI 10.1142/S0218301313300269 PG 39 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 243WC UT WOS:000326348100004 ER PT J AU Crossno, PJ Wilson, AT Shead, TM Davis, WL Dunlavy, DM AF Crossno, Patricia J. Wilson, Andrew T. Shead, Timothy M. Davis, Warren L. Dunlavy, Daniel M. TI TOPICVIEW: VISUAL ANALYSIS OF TOPIC MODELS AND THEIR IMPACT ON DOCUMENT CLUSTERING SO INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS LA English DT Article; Proceedings Paper CT 23rd IEEE International Conference on Tools with Artificial Intelligence (ICTAI) CY NOV 07-09, 2011 CL Boca Raton, FL SP IEEE, IEEE Comp Soc, IEEE Comp Soc Tech Comm Multimedia Comp (TCMC), Bio & Artificial Intelligence Soc (BAIS), Florida Atlant Univ (FAU), Univ Technol, Ctr Quantum Comp & Intelligent Syst (UTS-QCIS), Tsinghua Univ, Arnetminer DE Text analysis; visual model analysis; latent semantic analysis; latent dirichlet allocation; clustering AB We present a new approach for analyzing topic models using visual analytics. We have developed Topic View, an application for visually comparing and exploring multiple models of text corpora, as a prototype for this type of analysis tool. Topic View uses multiple linked views to visually analyze conceptual and topical content, document relationships identified by models, and the impact of models on the results of document clustering. As case studies, we examine models created using two standard approaches: Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA). Conceptual content is compared through the combination of (i) a bipartite graph matching LSA concepts with LDA topics based on the cosine similarities of model factors and (ii) a table containing the terms for each LSA concept and LDA topic listed in decreasing order of importance. Document relationships are examined through the combination of (i) side-by-side document similarity graphs, (ii) a table listing the weights for each document's contribution to each concept/topic, and (iii) a full text reader for documents selected in either of the graphs or the table. The impact of LSA and LDA models on document clustering applications is explored through similar means, using proximities between documents and cluster exemplars for graph layout edge weighting and table entries. We demonstrate the utility of Topic View's visual approach to model assessment by comparing LSA and LDA models of several example corpora. C1 [Crossno, Patricia J.; Wilson, Andrew T.; Shead, Timothy M.; Davis, Warren L.; Dunlavy, Daniel M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Crossno, PJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM pjcross@sandia.gov; atwilso@sandia.gov; tshead@sandia.gov; wldavis@sandia.gov; dmdunla@sandia.gov FU Laboratory Directed Research & Development (LDRD) program at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was funded in part by the Laboratory Directed Research & Development (LDRD) program at Sandia National Laboratories, a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 28 TC 1 Z9 1 U1 2 U2 17 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-2130 EI 1793-6349 J9 INT J ARTIF INTELL T JI Int. J. Artif. Intell. Tools PD OCT PY 2013 VL 22 IS 5 SI SI AR 1360008 DI 10.1142/S0218213013600087 PG 36 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications SC Computer Science GA 243VH UT WOS:000326345900009 ER PT J AU Murray, CJ Zachara, JM McKinley, JP Ward, A Bott, YJ Draper, K Moore, D AF Murray, Christopher J. Zachara, John M. McKinley, James P. Ward, Andy Bott, Yi-Ju Draper, Kate Moore, Dean TI Establishing a geochemical heterogeneity model for a contaminated vadose zone - Aquifer system SO JOURNAL OF CONTAMINANT HYDROLOGY LA English DT Article DE Uranium groundwater plume; Contaminant heterogeneity; Geostatistical analysis ID KOONGARRA ORE DEPOSIT; URANIUM(VI) ADSORPTION; REACTIVE TRANSPORT; DISTRIBUTION COEFFICIENTS; GROUNDWATER GEOCHEMISTRY; HANFORD SEDIMENTS; MIGRATION; DESORPTION; SPECIATION; FERRIHYDRITE AB A large set of sediment samples from a 1600 m(2) experimental plot within a 22 km(2) vadose zone and groundwater uranium (VI) plume was subject to physical, chemical, and mineralogic characterization. The plot is being used for field experimentation on U(VI) recharge and transport processes within a persistent groundwater plume that exists in the groundwater river interaction zone of the Columbia River at the U.S. DOE Hanford site. The samples were obtained during the installation of 35 tightly spaced (10 m separation) groundwater monitoring wells:The characterization measurements for each sample included total contaminant concentrations (U and Cu primarily), bicarbonate extractable U(VI), sequential U-238(VI) contaminant desorption K-d, U-233(VI) adsorption K-d, grain size distribution, surface area, extractable poorly crystalline Fe(III) oxides, and mineralogy. The characterization objective was to inform a conceptual model of coupled processes controlling the anomalous longevity of the plume, and to quantify the spatial heterogeneity of the contaminant inventory and the primary properties effecting reactive transport Correlations were drawn between chemical, physical, and reaction properties, and Gaussian simulation was used to compute multiple 3-D realizations of extractable U(VI), the U-233(VI) adsorption K-d, and the distribution of the reactive < 2 mm fraction. Adsorbed contaminant U(VI) was highest in the vadose zone and the zone of seasonal water table fluctuation lying at its base. Adsorbed U(VI) was measureable, but low, in the groundwater plume region where very high hydraulic conductivities existed. The distribution of adsorbed U(VI) displayed no apparent correlation with sediment physical or chemical properties. Desorption [U-238(IV)] and adsorption [U-233(VI)] K-d values showed appreciable differences due to mass transfer controlled surface complexation and the effects of long subsurface residence times. The U-233(VI) adsorption K-d, a combined measure of surface complexation strength and site concentration, was relatively uniform throughout the domain, displaying correlation with fines distribution and surface area. The characterization results revealed U(VI) supplied to the groundwater plume through spatially heterogeneous recharge from residual contamination in the zone of seasonal water table fluctuation, and transport of U(VI) controlled by weak, kinetically-controlled surface complexation in the coarse-textured saturated zone. Geostatistical relationships for the adsorbed contaminant U distribution in the characterization domain allow an extrapolation to inventory at the plume scale, a critical unknown for remedial action. (C) 2012 Elsevier B.V. All rights reserved. C1 [Murray, Christopher J.; Zachara, John M.; McKinley, James P.; Ward, Andy; Bott, Yi-Ju; Draper, Kate; Moore, Dean] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Murray, CJ (reprint author), Pacific NW Natl Lab, POB 999,MS K6-81, Richland, WA 99354 USA. EM chris.murray@pnnl.gov FU U.S. Department of Energy, Office of Biological and Environmental Research (BER) through the Hanford Integrated Field Research Challenge (IFRC); U.S. Department of Energy [DE-AC05-76RL01830] FX This work was supported by the U.S. Department of Energy, Office of Biological and Environmental Research (BER) through the Hanford Integrated Field Research Challenge (IFRC). The IFRC is part of BER's Subsurface Biogeochemical Research Program (SBR). Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract No. DE-AC05-76RL01830. NR 54 TC 5 Z9 5 U1 4 U2 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-7722 EI 1873-6009 J9 J CONTAM HYDROL JI J. Contam. Hydrol. PD OCT PY 2013 VL 153 BP 122 EP 140 DI 10.1016/j.jconhyd.2012.02.003 PG 19 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 245AF UT WOS:000326430600009 PM 23664489 ER PT J AU Han, WZ Fu, EG Demkowicz, MJ Wang, YQ Misra, A AF Han, Weizhong Fu, E. G. Demkowicz, Michael J. Wang, Yongqiang Misra, Amit TI Irradiation damage of single crystal, coarse-grained, and nanograined copper under helium bombardment at 450 degrees C SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID STAINLESS-STEEL; NANOSTRUCTURED MATERIALS; ELECTRON-IRRADIATION; STRUCTURAL-MATERIALS; NEUTRON-IRRADIATION; TENSILE PROPERTIES; RADIATION-DAMAGE; THIN-FILMS; MICROSTRUCTURE; METALS AB The irradiation damage behaviors of single crystal (SC), coarse-grained (CG), and nanograined (NG) copper (Cu) films were investigated under Helium (He) ion implantation at 450 degrees C with different ion fluences. In irradiated SC films, plenty of cavities are nucleated, and some of them preferentially formed on growth defects or dislocation lines. In the irradiated CG Cu, cavities formed both in grain interior and along grain boundaries; obvious void-denuded zones can be identified near grain boundaries. In contrast, irradiation-induced cavities in NG Cu were observed mainly gathering along grain boundaries with much less cavities in the grain interiors. The grains in irradiated NG Cu are significantly coarsened. The number density and average radius of cavities in NG Cu was smaller than that in irradiated SC Cu and CG Cu. These experiments indicate that grain boundaries are efficient sinks for irradiation-induced vacancies and highlight the important role of reducing grain size in suppressing radiation-induced void swelling. C1 [Han, Weizhong; Fu, E. G.; Wang, Yongqiang; Misra, Amit] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Demkowicz, Michael J.] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. RP Han, WZ (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM weizhong@lanl.gov RI Han, Weizhong/C-9963-2011; Misra, Amit/H-1087-2012 FU Center for Materials in Irradiation and Mechanical Extremes (CMIME), an Energy Frontier Research Center (EFRC); US Department of Energy, Office of Science, Office of Basic Energy Sciences [2008LANL 1026]; Center for Integrated Nanotechnologies at LANL, a Basic Energy Science FX This work was supported by the Center for Materials in Irradiation and Mechanical Extremes (CMIME), an Energy Frontier Research Center (EFRC) funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Grant No. 2008LANL 1026. The authors thank J.K. Baldwin at the Center for Integrated Nanotechnologies at LANL, a Basic Energy Science sponsored user facility, for film deposition. NR 53 TC 11 Z9 11 U1 4 U2 46 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 EI 2044-5326 J9 J MATER RES JI J. Mater. Res. PD OCT PY 2013 VL 28 IS 20 BP 2763 EP 2770 DI 10.1557/jmr.2013.283 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA 245CL UT WOS:000326436500001 ER PT J AU Saxena, N Seshadhri, C AF Saxena, Nitin Seshadhri, C. TI From Sylvester-Gallai Configurations to Rank Bounds: Improved Blackbox Identity Test for Depth-3 Circuits SO JOURNAL OF THE ACM LA English DT Article DE Algorithms; Theory; Chinese remaindering; combinatorial design; depth-3 circuit; ideal theory; identities; incidence geometry; Sylvester-Gallai ID TOP FAN-IN; ARITHMETIC CIRCUITS; MULTILINEAR CIRCUITS; FORMULAS; NUMBERS AB We study the problem of identity testing for depth-3 circuits of top fanin k and degree d. We give a new structure theorem for such identities that improves the known deterministic d(kO(k))-time blackbox identity test over rationals [Kayal and Saraf, 2009] to one that takes d(O(k2))-time. Our structure theorem essentially says that the number of independent variables in a real depth-3 identity is very small. This theorem affirmatively settles the strong rank conjecture posed by Dvir and Shpilka [2006]. We devise various algebraic tools to study depth-3 identities, and use these tools to show that any depth-3 identity contains a much smaller nucleus identity that contains most of the "complexity" of the main identity. The special properties of this nucleus allow us to get near optimal rank bounds for depth-3 identities. The most important aspect of this work is relating a field-dependent quantity, the Sylvester-Gallai rank bound, to the rank of depth-3 identities. We also prove a high-dimensional Sylvester-Gallai theorem for all fields, and get a general depth-3 identity rank bound (slightly improving previous bounds). C1 [Saxena, Nitin] Hausdorff Ctr Math, Bonn, Germany. [Seshadhri, C.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Saxena, N (reprint author), Hausdorff Ctr Math, Bonn, Germany. EM ns@hcm.uni-bonn.de; csesha@gmail.com FU Early Career Program at Sandia National Labs; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX C. Seshadhri was partially funded by the Early Career Program at Sandia National Labs.; C. Seshadhri is currently with Sandia National Laboratories, a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 40 TC 3 Z9 3 U1 0 U2 1 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0004-5411 EI 1557-735X J9 J ACM JI J. ACM PD OCT PY 2013 VL 60 IS 5 AR 33 DI 10.1145/2528403 PG 33 WC Computer Science, Hardware & Architecture; Computer Science, Information Systems; Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 243MW UT WOS:000326321500004 ER PT J AU Oster, ME Riehle-Colarusso, T Simeone, RM Gurvitz, M Kaltman, JR McConnell, M Rosenthal, GL Honein, MA AF Oster, Matthew E. Riehle-Colarusso, Tiffany Simeone, Regina M. Gurvitz, Michelle Kaltman, Jonathan R. McConnell, Michael Rosenthal, Geoffrey L. Honein, Margaret A. TI Public Health Science Agenda for Congenital Heart Defects: Report From a Centers for Disease Control and Prevention Experts Meeting SO JOURNAL OF THE AMERICAN HEART ASSOCIATION LA English DT Article ID PEDIATRIC CARDIAC-DISEASE; 2ND NATURAL-HISTORY; BALTIMORE-WASHINGTON INFANT; UNITED-STATES; SCIENTIFIC STATEMENT; BIRTH-DEFECTS; TASK-FORCE; CARDIOVASCULAR-DISEASE; CURRENT KNOWLEDGE; VALVAR STENOSIS C1 [Oster, Matthew E.; Riehle-Colarusso, Tiffany; Simeone, Regina M.; Honein, Margaret A.] Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, Atlanta, GA 30333 USA. [Oster, Matthew E.; McConnell, Michael] Emory Univ, Sch Med, Childrens Healthcare Atlanta, Atlanta, GA 30322 USA. [Simeone, Regina M.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. [Gurvitz, Michelle] Harvard Univ, Sch Med, Boston Childrens Hosp, Cambridge, MA 02138 USA. [Kaltman, Jonathan R.] NHLBI, Div Cardiovasc Sci, Bethesda, MD 20824 USA. [Rosenthal, Geoffrey L.] Univ Maryland, Sch Med, Childrens Hosp, Baltimore, MD 21201 USA. RP Oster, ME (reprint author), Childrens Healthcare Atlanta, Div Pediat Cardiol, 1405 Clifton Rd NE, Atlanta, GA 30322 USA. EM osterm@kidsheart.com FU Centers for Disease Control and Prevention FX This work was supported in part by an appointment to the Research Participation Program at the Centers for Disease Control and Prevention administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the US Department of Energy and the Centers for Disease Control and Prevention. NR 56 TC 20 Z9 21 U1 0 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2047-9980 J9 J AM HEART ASSOC JI J. Am. Heart Assoc. PD OCT PY 2013 VL 2 IS 5 AR UNSP e000256 DI 10.1161/JAHA.113.000256 PG 10 WC Cardiac & Cardiovascular Systems SC Cardiovascular System & Cardiology GA 243UL UT WOS:000326343200031 PM 23985376 ER PT J AU Chen, RJ Zhao, T Lu, J Wu, F Li, L Chen, JZ Tan, GQ Ye, YS Amine, K AF Chen, Renjie Zhao, Teng Lu, Jun Wu, Feng Li, Li Chen, Junzheng Tan, Guoqiang Ye, Yusheng Amine, Khalil TI Graphene-Based Three-Dimensional Hierarchical Sandwich-type Architecture for High-Performance Li/S Batteries SO NANO LETTERS LA English DT Article DE Lithium sulfur batteries; cathode material; graphene; carbon nanotube; hierarchical architecture; electrochemical performance ID LITHIUM-SULFUR BATTERIES; CARBON NANOTUBES COMPOSITE; ELECTROCHEMICAL PROPERTIES; RAMAN-SPECTROSCOPY; CATHODE MATERIALS; ENERGY-STORAGE; ION; NANOSTRUCTURES; NANOPARTICLES; IMPROVEMENT AB A multiwalled cirbon nanotube/sulfur (MWCNT@S) composite with core-shellli structure was successfully embedded into the interlay galleries of graphene, sheets (GS) through a facile two-step assembly process. Scannirig and transmission electron microscopy images reveal a 3D hierarchial sandwich-type architecture of the composite GS-MWCNTOS. The thickness of the S layer on the MWCNTs is similar to 20 nm. Raman spectroscopy, X-ray diffraction, thermogravimetric analysis, and energy-dispersive X-ray analysis confirm that the sulfur in the composite is highly crystalline with a mass loading up to 70% of the composite. This composite is evaluated as a cathode material for Li/S batteries. The GS-MVVCNT@S composite exhibits a high initial capacity of 1396 mAh/g at a current density of 0.2C (1C = 1672 mA/g), corresponding to 83% usage of the sulfur active material. Much improved cycling stability and rate capability are achieved for the GS-MWCNT@S composite cathode compared with the composite lacking GS or MWCNT. The superior electrochemical performance of the GS-MWCNT@S composite is mainly attributed to the synergistic effects of GS and MWCNTs, which provide a 3D conductive network for electron transfer, open channels for ion diffusion, strong confinement of soluble polysulfides, and effective buffer for volume expansion of the S cathode during discharge. C1 [Chen, Renjie; Zhao, Teng; Wu, Feng; Li, Li; Chen, Junzheng; Tan, Guoqiang; Ye, Yusheng] Beijing Inst Technol, Sch Chem Engn & Environm, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China. [Chen, Renjie; Li, Li] Natl Dev Ctr High Technol Green Mat, Beijing 100081, Peoples R China. [Lu, Jun; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60440 USA. RP Wu, F (reprint author), Beijing Inst Technol, Sch Chem Engn & Environm, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China. EM wufeng863@vip.sina.com; lily863@bit.edu.cn; amine@anl.gov RI Chen, Junzheng/H-4056-2013; Chen, Junzheng/A-2330-2015; OI Chen, Junzheng/0000-0002-0052-423X; Chen, Junzheng/0000-0002-0052-423X; Yusheng, Ye/0000-0001-9832-2478; Zhao, Teng/0000-0002-2398-2495 FU National Key Program for Basic Research of China [2009CB220100]; International S&T Cooperation Program of China [2010DFB63370]; National 863 Program [2011AA11A2S6]; National Science Foundation of China (NSFC) [21373028]; Beijing Novel Program [2010B018]; Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Award; DOE [DE-ACOS-06OR23100]; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX This work was supported by the National Key Program for Basic Research of China (2009CB220100), the International S&T Cooperation Program of China (2010DFB63370), the National 863 Program (2011AA11A2S6), the National Science Foundation of China (NSFC, 21373028) and Beijing Novel Program (2010B018). J.L. was supported by the Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Award under the EERE Vehicles Technology Program administered by the Oak Ridge Institute for Science and Education (ORISE) for the DOE. ORISE is managed by Oak Ridge Associated Universities (ORAU) under DOE contract number DE-ACOS-06OR23100. Argonne National Laboratory, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The authors also acknowledge the U.S.-China Electric Vehicle and Battery Technology Collaboration between Argonne National Laboratory and Beijing Institute of Technology. NR 57 TC 165 Z9 173 U1 58 U2 582 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD OCT PY 2013 VL 13 IS 10 BP 4642 EP 4649 DI 10.1021/nl4016683 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 243ZG UT WOS:000326356300009 PM 24032420 ER PT J AU Zhao, LY Levendorf, M Goncher, S Schiros, T Palova, L Zabet-Khosousi, A Rim, KT Gutierrez, C Nordlund, D Jaye, C Hybertsen, M Reichman, DR Flynn, GW Park, J Pasupathy, AN AF Zhao, Liuyan Levendorf, Mark Goncher, Scott Schiros, Theanne Palova, Lucia Zabet-Khosousi, Arnir Rim, Kwang Taeg Gutierrez, Christopher Nordlund, Dennis Jaye, Cherno Hybertsen, Mark Reichman, David R. Flynn, George W. Park, Jiwoong Pasupathy, Abhay N. TI Local Atomic and Electronic Structure of Boron Chemical Doping in Monolayer Graphene SO NANO LETTERS LA English DT Article DE Graphene chemical doping; scanning tunneling microscopy/spectroscopy; boron-doped graphene; graphene functionalization; X-ray spectroscopy ID NITROGEN-DOPED GRAPHENE; SCANNING TUNNELING MICROSCOPE; VAPOR-DEPOSITION; PYROLYTIC-GRAPHITE; GROWTH; SPECTROSCOPY; ENERGY; CARBON; EDGE AB We use scanning tunneling microscopy and X-ray spectroscopy to characterize the, atomic and electronic structure of boron-doped and nitrogen-doped graphene created by chemical vapor deposition on copper substrates. Microscopic measurements show that boron, like nitrogen, incorporates into the carbon lattice primarily in the graphitic form and contributes 0.5 carriers into the graphene sheet per dopant: Density functional theory calculations indicate that boron dopants interact strongly with the, underlying copper substrate while nitrogen dopants do not. The local bonding differences between graphitic boron and nitrogen dopants lead to large scale differences in dopant distribution. The distribution of dopants is observed to be completely random in the case of boron, while nitrogen displays strong sublattice clustering. Structurally, nitrogen-doped graphene is doped graphene films show.a large number of Stone-Wales defects. These defects create local electronic resonances electronic scattering, but do not electronically dope the graphene film. relatively defect-free while boronand cause C1 [Zhao, Liuyan; Gutierrez, Christopher; Pasupathy, Abhay N.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Levendorf, Mark; Park, Jiwoong] Cornell Univ, Dept Chem, Ithaca, NY 10065 USA. [Goncher, Scott; Palova, Lucia; Zabet-Khosousi, Arnir; Rim, Kwang Taeg; Reichman, David R.; Flynn, George W.] Columbia Univ, Dept Chem, New York, NY 10027 USA. [Schiros, Theanne] Columbia Univ, Energy Frontier Res Ctr, New York, NY 10027 USA. [Nordlund, Dennis] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Jaye, Cherno] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA. [Hybertsen, Mark] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Pasupathy, AN (reprint author), Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. EM pasupathy@phys.columbia.edu RI Nordlund, Dennis/A-8902-2008; OI Nordlund, Dennis/0000-0001-9524-6908; Hybertsen, Mark S/0000-0003-3596-9754; Gutierrez, Christopher/0000-0002-8307-6419 FU EFRC Center for Re-Defining Photovoltaic Efficiency through Molecule Scale Control [DE-SC0001085]; AFOSR [FA9550-11-1-0010, MUM FA955009-1-0705, FA9550-09-1-0691 0.P]; DOE [DE-FG02-88ER13937]; NYSTAR; NSF [CHE-07-01483, CHE-10-12058]; Samsung Advanced Institute of Technology Global Research Outreach program; Nano Material Technology Development Program [2012M3A7B4049887]; National Research Foundation of Korea (j.P.); DOE-BES [DE-ACO2-98CH10886] FX Research supported by the EFRC Center for Re-Defining Photovoltaic Efficiency through Molecule Scale Control (award DE-SC0001085). Support also provided by AFOSR under Grants FA9550-11-1-0010 (A.N.P.), MUM FA955009-1-0705 (G.W.F.), and FA9550-09-1-0691 0.P.); DOE under Grant DE-FG02-88ER13937 (G.W.F.); NYSTAR and NSF under Grants CHE-07-01483 and CHE-10-12058 (G.W.F.); Samsung Advanced Institute of Technology Global Research Outreach program (J.P.), and the Nano Material Technology Development Program (2012M3A7B4049887) through the National Research Foundation of Korea (j.P.). Portions of this research were carried out at beamlines 11-3 and 13-2 at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy Office of Basic Energy Sciences (DOE-BES), as well as at the Center for Functional Nanomaterials and beamlines X-9 and U7A at the National Synchrotron Light Source, both at Brookhaven National Laboratory and supported by DOE-BES under Contract No. DE-ACO2-98CH10886. NR 53 TC 75 Z9 76 U1 18 U2 167 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD OCT PY 2013 VL 13 IS 10 BP 4659 EP 4665 DI 10.1021/nl401781d PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 243ZG UT WOS:000326356300012 PM 24032458 ER PT J AU Yu, XQ Pan, HL Wan, W Ma, C Bai, JM Meng, QP Ehrlich, SN Hu, YS Yang, XQ AF Yu, Xiqian Pan, Huilin Wan, Wang Ma, Chao Bai, Jianming Meng, Qingping Ehrlich, Steven N. Hu, Yong-Sheng Yang, Xiao-Qing TI A Size-Dependent Sodium Storage Mechanism in L(i)4Ti(5)O(12) Investigated by,a Novel Characterization Technique Combining in Situ X-ray Diffraction and Chemical Sodiation SO NANO LETTERS LA English DT Article DE Sodium-ion; batteries; Li4Ti5O12; in situ X-ray diffraction; size effect; chemical sodiation ID TRANSMISSION ELECTRON-MICROSCOPY; LITHIUM-ION BATTERIES; LONG CYCLE LIFE; RECHARGEABLE BATTERIES; ABSORPTION SPECTROSCOPY; STRUCTURAL EVOLUTION; ENERGY-STORAGE; SOLID-SOLUTION; HIGH-POWER; INSERTION AB A novel characterization technique using the combination of chemical soaiation and synchrotron based in situ X-ray diffraction (XRD) has been detailed illustrated. The power of this novel technique was demonstrated in elucidating the structure evolution of Li4Ti5O12 upon sodium insertion. The sodium insertion behavior iato Li4Ti5O12 is strongly size dependent. A solid solution;reac don behavior in a wide range has been revealed during sodium insertion into the nanosized Li4Ti5O12 ram), which : is quite different from the, wellknown two-phase reaction, Li4Ti5O12/Li7Ti5O12 system during lithium insertion, and also has not been fully addressed in the literature so far. On the basis of this in situ experiment, the apparent Na+ ion diffusion coefficient (DNa+) of Li4Ti5O12 was estimated in the magnitude of 10-16 cm(2) s(-1), close to the:values estimated by electrochemical method, but 5 order of magnitudes smaller than the Li+ ion diffusion coefficient (DLi+ similar to 10(-11) cm(2) indicating a sluggish Na+ ion diffusion kinetics in Li4Ti5O12 comparing with that of Li ion. Nanosizing the Li4Ti5O12 will be critical to make it a suitable anode material for sodium-ion batteries. The application ofiithis novel in situ chemical sodiation method reported in this work provides a facile way and a new opportunity for in situ structure investigations of various sodium-ion battery materials and other systems. C1 [Yu, Xiqian; Wan, Wang; Bai, Jianming; Meng, Qingping; Ehrlich, Steven N.; Yang, Xiao-Qing] Brookhaven Natl Lab, Upton, NY 11973 USA. [Pan, Huilin; Ma, Chao; Hu, Yong-Sheng] Chinese Acad Sci, Beijing Key Lab New Energy Mat & Devices, Natl Lab Condensed Matter Phys, Key Lab Renewable Energy,Inst Phys, Beijing 100190, Peoples R China. RP Hu, YS (reprint author), Chinese Acad Sci, Beijing Key Lab New Energy Mat & Devices, Natl Lab Condensed Matter Phys, Key Lab Renewable Energy,Inst Phys, Beijing 100190, Peoples R China. EM yshu@aphy.iphy.ac.cn; xyang@bnl.gov RI Ma, Chao/J-4569-2015; Hu, Yong-Sheng/H-1177-2011; Bai, Jianming/O-5005-2015; Yu, Xiqian/B-5574-2014; Pan, Huilin/J-9298-2016 OI Hu, Yong-Sheng/0000-0002-8430-6474; Yu, Xiqian/0000-0001-8513-518X; FU U.S. Department of Energy; Assistant Secretary for Energy Efficiency and Renewable Energy; Office of Vehicle Technologies [DEACO2-98CH10886]; "863" Project [2011AA11A235]; "973" Projects [2010CB833102, 2009CB220104]; NSFC [51222210, 11234013]; China Scholarship Council (CSC) FX This work at BNL was supported by the U.S. Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies under Contract Number DEACO2-98CH10886. This work at 10P was supported by funding from the "863" Project (2011AA11A235), "973" Projects (2010CB833102, 2009CB220104), NSFC (51222210, 11234013), One Hundred Talent Project of the Chinese Academy of Sciences. The authors acknowledge the technical support from beamline scientists at X14A, X18A, and X19A of National Synchrotron Light Source and 11-BM-B at Advanced Photon Sources (APS, ANL). The support provided by China Scholarship Council (CSC) during a visit of W.W. to Brookhaven National Lab is also acknowledged. NR 49 TC 87 Z9 89 U1 25 U2 224 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD OCT PY 2013 VL 13 IS 10 BP 4721 EP 4727 DI 10.1021/nl402263g PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 243ZG UT WOS:000326356300023 PM 24053585 ER PT J AU Quackenbush, NF Tashman, JW Mundy, JA Sallis, S Paik, H Misra, R Moyer, JA Guo, JH Fischer, DA Woicik, JC Muller, DA Schlom, DG Piper, LFJ AF Quackenbush, N. F. Tashman, J. W. Mundy, J. A. Sallis, S. Paik, H. Misra, R. Moyer, J. A. Guo, J. -H. Fischer, D. A. Woicik, J. C. Muller, D. A. Schlom, D. G. Piper, L. F. J. TI Nature of the Metal Insulator Transition in Ultrathin Epitaxial Vanadium Dioxide SO NANO LETTERS LA English DT Article DE VO2; metal insulator transition; X-ray spectroscopy; transition metal oxides; ultrathin films ID PHASE-TRANSITION; MOTT TRANSITION; THIN-FILMS; VO2; ELECTRONICS; XPS AB We have combined hard X-ray photoelectron spectroscopy with angular dependent O K-edge and V L-edge X-ray absorption spectroscopy to study the electronic structure of metallic and insulating end point phases in 4.1 nm thick (14 units cells. along the c-axis of VO2) films on TiO2(001) substrates, each displaying an abrupt MIT centered at 300 K with width <20 K and a resistance change of Delta R/R > 10(3). The dimensions, quality of the films, and stoichiometry were confirmed by a combination of scanning transmission electron microscopy with electron energy loss spectroscopy, X-ray spectroscopy, and resistivity measurements. The measured end point phases agree with their bulk counterparts. This clearly shows that, apart from the strain induced change in transition temperature, the underlying mechanism of the MIT for technologically relevant dimensions must be the same as the bulk for this orientation. C1 [Quackenbush, N. F.; Piper, L. F. J.] SUNY Binghamton, Dept Phys Appl Phys & Astron, Binghamton, NY 13902 USA. [Tashman, J. W.; Paik, H.; Schlom, D. G.] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. [Mundy, J. A.; Muller, D. A.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. [Sallis, S.; Piper, L. F. J.] SUNY Binghamton, Binghamton, NY 13902 USA. [Misra, R.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Misra, R.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. [Moyer, J. A.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Guo, J. -H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Woicik, J. C.] NIST, Mat Sci & Engn Lab, Gaithersburg, MD 20899 USA. [Muller, D. A.; Schlom, D. G.] Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA. RP Piper, LFJ (reprint author), SUNY Binghamton, Dept Phys Appl Phys & Astron, Binghamton, NY 13902 USA. EM lpiper@binghamton.edu RI Sallis, Shawn/E-6258-2012; Piper, Louis/C-2960-2011; Muller, David/A-7745-2010 OI Sallis, Shawn/0000-0002-8443-4951; Piper, Louis/0000-0002-3421-3210; Muller, David/0000-0003-4129-0473 FU American Chemical Society; Analytical and Diagnostics Laboratory Small Grant program at Binghamton; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Faculty/Student Research Support Program at the NSLS; National Institute of Standards and Technology; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231, DE-SC0001086]; ONR [N00014-11-1-0665]; A.R.O; NSFNational Science Foundation [DMR-1120296]; Energy Materials Center at Cornell (EMC2), an Energy Frontier Research Center FX The authors thank Peter Schiffer for transport measurements within his laboratory. Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support (or partial support) of this research. Additional support (L.F.J.P) was provided by an Analytical and Diagnostics Laboratory Small Grant program at Binghamton. The NSLS is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. L.F.J.P., N.F.Q, and S. S. acknowledge support from the Faculty/Student Research Support Program at the NSLS. Beamline X24a at the NSLS is supported by the National Institute of Standards and Technology. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. J.W.T., H.P., and D.G.S. acknowledge the financial support of ONR through award N00014-11-1-0665. JAM. acknowledges support from the A.R.O in the form of a NDSEG fellowship and from the NSF in the form of a GRFP fellowship. This work was supported as part of the Energy Materials Center at Cornell (EMC2), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Grant DE-SC0001086. This work also made use of the electron microscopy facility of the Cornell Center for Materials Research (CCMR) supported by the National Science Foundation under Award Number DMR-1120296. NR 37 TC 31 Z9 31 U1 7 U2 182 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD OCT PY 2013 VL 13 IS 10 BP 4857 EP 4861 DI 10.1021/nl402716d PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 243ZG UT WOS:000326356300044 PM 24000961 ER PT J AU Crisp, RW Schrauben, JN Beard, MC Luther, JM Johnson, JC AF Crisp, Ryan W. Schrauben, Joel N. Beard, Matthew C. Luther, Joseph M. Johnson, Justin C. TI Coherent Exciton Delocalization in Strongly Coupled Quantum Dot Arrays SO NANO LETTERS LA English DT Article DE Quantum dot; nonlinear; ultrafast; exciton; spin; delocalization ID INORGANIC COLLOIDAL NANOCRYSTALS; BAND-LIKE TRANSPORT; SEMICONDUCTOR NANOCRYSTALS; SPIN RELAXATION; FINE-STRUCTURE; AUGER RECOMBINATION; CDSE NANOCRYSTALS; SURFACE LIGANDS; FILMS; GENERATION AB Quantum dots (QDs) coupled into disordered arrays have exhibited the intriguing property of bulk-like transport while maintaining discrete excitonic optical transitions. We have utilized ultrafast cross-polarized transient grating (CPTG) spectroscopy to measure electron hole wave function overlap in CdSe QD films with chemically modified surfaces for tuning inter-QD electronic coupling. By comparing the CPTG decays with those of isolated QDs, we find that excitons coherently delocalize to form excited states more than 200% larger than the QD diameter. C1 [Crisp, Ryan W.; Schrauben, Joel N.; Beard, Matthew C.; Luther, Joseph M.; Johnson, Justin C.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Crisp, Ryan W.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. RP Johnson, JC (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM justin.johnson@nrel.gov RI Crisp, Ryan/C-9944-2014; Beard, MATTHEW/E-4270-2015 OI Crisp, Ryan/0000-0002-3703-9617; Beard, MATTHEW/0000-0002-2711-1355 FU Department of Energy, Basic Energy Sciences, Division of Chemical Sciences, Biosciences, and Geosciences [DE-AC36-08GO28308]; DOE [DE-EE0005312] FX J.N.S., M.C.B., and J.C.J. were supported by the Department of Energy, Basic Energy Sciences, Division of Chemical Sciences, Biosciences, and Geosciences under contract No. DE-AC36-08GO28308 with NREL for spectroscopy and data analysis. RW.C. and J.M.L were funded for QD film preparation, characterization, and treatments by the DOE SunShot program under award no. DE-EE0005312. NR 38 TC 25 Z9 25 U1 2 U2 58 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD OCT PY 2013 VL 13 IS 10 BP 4862 EP 4869 DI 10.1021/nl402725m PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 243ZG UT WOS:000326356300045 PM 24041088 ER PT J AU Liu, Y Liu, XH Nguyen, BM Yoo, J Sullivan, JP Picraux, ST Huang, JY Dayeh, SA AF Liu, Yang Liu, Xiao Hua Nguyen, Binh-Minh Yoo, Jinkyoung Sullivan, John P. Picraux, S. Tom Huang, Jian Yu Dayeh, Shadi A. TI Tailoring Lithiation Behavior by Interface and Bandgap Engineering at the Nanoscale SO NANO LETTERS LA English DT Article DE Interface effect; bandgap engineering; lithiation behavior; Ge/Si core/shell nanowire; in situ TEM study ID TRANSMISSION ELECTRON-MICROSCOPY; LI-ION BATTERIES; IN-SITU TEM; ELECTROCHEMICAL LITHIATION; NANOWIRE HETEROSTRUCTURES; SILICON NANOWIRES; GE NANOWIRES; ANODES; DELITHIATION; CONDUCTION AB Controlling the transport of lithium (Li) ions and their reaction with electrodes is central in the design of Li-ion batteries for achieving high capacity, high rate, and long lifetime. The flexibility in composition; and structure enabled by tailoring electrodes at the nanoscale could drastically change the ionic transport and help meet new levels of Li-ion battery performance. Here, we demonstrate that radial heterostructuring can completely suppress the commonly observed surface insertion of Li ions in all reported nanoscale systems to date and to exclusively induce axial lithiation along the < 111 > direction in a layer-by-layer fashion. The new lithiation behavior is achieved, through the deposition of a conformal, epitaxial, and ultrathin silicon (Si) shell on germanium (Ge) nanowires, which creates an effective chemical potential barrier for Li ion diffusion through and reaction at the nanowire surface, allowing only axial lithiation and volume expansion. These results demonstrate for the first time that interface and bandgap engineering of electrochemical reactions can be utilized to control the nanoscale ionic transport/insertion paths and thus may be a new tool to define the electrochemical reactions in Li ion batteries. C1 [Liu, Yang; Liu, Xiao Hua; Huang, Jian Yu] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Nguyen, Binh-Minh; Yoo, Jinkyoung; Picraux, S. Tom; Dayeh, Shadi A.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Nguyen, Binh-Minh; Dayeh, Shadi A.] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. [Sullivan, John P.] Sandia Natl Labs, Dept Mat Phys, Livermore, CA 94551 USA. RP Liu, Y (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. EM ynliu@sandia.gov; sdayeh@ece.ucsd.edu RI Yoo, Jinkyoung/B-5291-2008; Liu, Xiaohua/A-8752-2011 OI Yoo, Jinkyoung/0000-0002-9578-6979; Liu, Xiaohua/0000-0002-7300-7145 FU Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory; Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories (SNL); Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center (EFRC); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DESC0001160]; Center for Integrated Nanotechnologies (CINT), a U.S. Department of Energy, Office of Basic Energy Sciences User Facility at Los Alamos National Laboratory [DE-AC52-06NA25396]; Center for Integrated Nanotechnologies (CINT), a U.S. Department of Energy, Office of Basic Energy Sciences User Facility at Sandia National Laboratories [DE-AC04-94AL85000]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Portions of this work were supported by a Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory and Sandia National Laboratories (SNL) and partly by Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center (EFRC) funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160. The LDRD supported the development and fabrication of platforms. The NEES center supported the development of TEM techniques. Simulations and analysis performed by SAD. at UC San Diego were supported by faculty start-up funds. The experimental work was performed in part at and the TEM capability supported by the Center for Integrated Nanotechnologies (CINT), a U.S. Department of Energy, Office of Basic Energy Sciences User Facility at Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 55 TC 21 Z9 21 U1 13 U2 117 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD OCT PY 2013 VL 13 IS 10 BP 4876 EP 4883 DI 10.1021/nl4027549 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 243ZG UT WOS:000326356300047 PM 24000810 ER PT J AU Liu, Y Sun, CJ Bolin, T Wu, TP Liu, YZ Sternberg, M Sun, SH Lin, XM AF Liu, Yi Sun, Chengjun Bolin, Trudy Wu, Tianpin Liu, Yuzi Sternberg, Michael Sun, Shouheng Lin, Xiao-Min TI Kinetic Pathway of Palladium Nanoparticle Sulfidation Process at High Temperatures SO NANO LETTERS LA English DT Article DE Nanoparticles; sulfidation; thiol; catalysis; sulfur poisoning; palladium ID RAY-ABSORPTION-SPECTROSCOPY; SELF-ASSEMBLED MONOLAYERS; PD FINE PARTICLES; AROMATIC HYDROGENATION; SULFUR TOLERANCE; HECK REACTIONS; SIZE CONTROL; USY ZEOLITE; CATALYSTS; CLUSTERS AB A significant issue related to Palladium (Pd) based catalysts is that sulfur-containing species, such as alkanethiols, can form a PdSx underlayer on nanoparticle surface and subsequently poison the catalysts. Understanding the exact reaction pathway, the degree of sulfidation, the chemical stoichiometry, and the temperature dependence of this process is critically important. Combining energy-filtered transmission electron microscopy (EFTEM), X-ray diffraction (XRD), and X-ray absorption spectroscopy experiments at the S K-, Pd K-, and L-2,L-3-edges, we show the kinetic pathway of Pd nanoparticle sulfidation process with the addition of excess amount of octadecanethiol at different temperatures, up to 250 degrees C. We demonstrate that the initial polycrystalline Pd-oleylamine nanoparticles gradually become amorphous PdSx nanoparticles, with the sulfur atomic concentration eventually saturating at Pd/S = 66:34 at 200 degrees C. This final chemical stoichiometry of the sulfurized nanoparticles closely matches that of the crystalline P16S7 phase (30.4% S), albeit being structurally amorphous. Sulfur diffusion into the nanoparticle depends strongly on the temperature. At 90 degrees C, sulfidation remains limited at the surface of nanoparticles even with extended heating time; whereas at higher temperatures beyond 125 degrees C, sulfidation occurs rapidly in the interior of the particles, far beyond what can be described as a core shell model. This indicates sulfur diffusion from the surface to the interior of the particle is subject to a diffusion barrier and likely first go through the grain boundaries of the nanoparticle. C1 [Liu, Yi; Liu, Yuzi; Sternberg, Michael; Lin, Xiao-Min] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Sun, Chengjun; Bolin, Trudy; Wu, Tianpin] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Sun, Shouheng] Brown Univ, Dept Chem, Providence, RI 02912 USA. RP Lin, XM (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM xmlin@anl.gov RI Liu, Yuzi/C-6849-2011 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility [DE-AC02-06CH11357]; U.S. Department of Energy-Basic Energy Sciences; NSERC; University of Washington; Canadian Light Source and the Advanced Photon Source [DE-AC02-06CH11357]; University of Chicago MRSEC; NSF [DMR-0820054]; Exxon Mobil FX The authors are thankful for many stimulating discussions with Lei Zhao and Subramanian Sankaranarayanan and experimental help from Yifen Tsai and Donald G. Graczyk on the ICP-MS study. This work was performed at the Center for Nanoscale Materials and Electron Microscopy Centers at Argonne, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract No. DE-AC02-06CH11357. The use of 9-BM and PNC/XSD facilities 20-ID at the Advanced Photon Source, and research at these facilities, are supported by the U.S. Department of Energy-Basic Energy Sciences, a Major Resources Support grant from NSERC, the University of Washington, the Canadian Light Source and the Advanced Photon Source, under Contract No, DE-AC02-06CH11357. X.M.L. thanks partial support from the University of Chicago MRSEC, supported by NSF DMR-0820054. The work at Brown University was supported in part by Exxon Mobil. NR 52 TC 9 Z9 9 U1 9 U2 58 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD OCT PY 2013 VL 13 IS 10 BP 4893 EP 4901 DI 10.1021/nl402768b PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 243ZG UT WOS:000326356300049 PM 24067076 ER PT J AU Thorkelsson, K Nelson, JH Alivisatos, AP Xu, T AF Thorkelsson, Kari Nelson, James H. Alivisatos, A. Paul Xu, Ting TI End-to-End Alignrnent of Nanorods in Thin Films SO NANO LETTERS LA English DT Article DE Nanorods; block copolymer-based supramolecule; end-to-end assembly; geometric confinement ID SELF-ASSEMBLED STRUCTURES; GOLD NANORODS; DIBLOCK COPOLYMERS; LIQUID-CRYSTALS; OPTICAL-ABSORPTION; BUILDING-BLOCKS; POLYMER BLENDS; ELECTRIC-FIELD; NANOPARTICLES; ALIGNMENT AB A simple approach to obtain end-to-end assemblies of nanorods over macroscopic distances in thin films is described. Nanorods with aspect ratio of 8-12 can be aligned parallel to the surface in an end-to-end fashion by imposing geometric confinement via block copolymer-based supramolecular assemblies. Successful control over the orientation and location of nanorods requires a balance of particle particle interactions and entropy associated with geometric confinement from the supramolecular framework, as well as consideration of the kinetics of assembly. C1 [Thorkelsson, Kari; Xu, Ting] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Nelson, James H.; Alivisatos, A. Paul; Xu, Ting] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Alivisatos, A. Paul; Xu, Ting] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Xu, T (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM tingxu@berkeley.edu RI Alivisatos , Paul /N-8863-2015 OI Alivisatos , Paul /0000-0001-6895-9048 FU Department of Energy, Office of Basic Energy Science through the Organic/Inorganic Nanocomposites program [DE-AC02-05CH11231] FX This work was supported by the Department of Energy, Office of Basic Energy Science through the Organic/Inorganic Nanocomposites program under contract DE-AC02-05CH11231. NR 49 TC 32 Z9 32 U1 9 U2 109 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD OCT PY 2013 VL 13 IS 10 BP 4908 EP 4913 DI 10.1021/nl402862b PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 243ZG UT WOS:000326356300051 PM 24001327 ER PT J AU Yu, YS Sun, KW Tian, Y Li, XZ Kramer, MJ Sellmyer, DJ Shield, JE Sun, SH AF Yu, Yongsheng Sun, Kewei Tian, Yuan Li, X-Z Kramer, M. J. Sellmyer, D. J. Shield, J. E. Sun, Shouheng TI One-Pot Synthesis of Urchin-like FePd-Fe3O4 and Their Conversion into Exchange-Coupled L1(0)-FePd-Fe Nanocomposite Magnets SO NANO LETTERS LA English DT Article DE L1(0)-FePd; nanocomposites; reductive annealing; exchange coupling; nanocomposite magnets ID FERROMAGNETIC FEPT NANOPARTICLES; ENERGY PRODUCTS; PHASE; NANOCRYSTALS AB We report a one-pot synthesis of urchin-like FePd-Fe3O4 nano-composites, spherical clusters of FePd nanoparticles (NPs) with spikes of Fe3O4 nanorods (NRs), via controlled,thermal decomposition of Fe(CO)(3) and reduction of Pd(acac)(2). The FePd NPs with sizes between 6 and 9 nm self-aggregate into 60 nm superparticles (SPs), and Fe3Oi, NRs grow on the surface of these SPs. Reductive annealing at 500 degrees C converts the FePd-Fe3O4 into exchange-coupled nanocomposites L1(0)-FePd-Fe with their H-c tunable from 0.8 to 2.6 kOe and M-s controlled from 90 to 190 emu/g. The work provides a general approach to L1(0)-FePd-Fe nano composite magnets for understanding exchange coupling at the nanoscale. The concept may be extended to other magnetic nanocomposite systems and may help to build superstrong magnets for magnetic applications. C1 [Yu, Yongsheng; Sun, Shouheng] Brown Univ, Dept Chem, Providence, RI 02912 USA. [Sun, Kewei; Kramer, M. J.] Iowa State Univ, Ames Lab, Div Mat Sci & Engn, USDOE, Ames, IA 50011 USA. [Tian, Yuan; Li, X-Z; Sellmyer, D. J.; Shield, J. E.] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA. RP Sun, SH (reprint author), Brown Univ, Dept Chem, Providence, RI 02912 USA. EM ssun@brown.edu FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE) through the Ames Laboratory; Iowa State University [DE-AC02-07CH11358]; U.S. DOE/EERE [AR-OW911NF-09-2-0099]; NCMN-NRI [NSF-DMR-0960110] FX This work was supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), under its Vehicle Technologies Program, through the Ames Laboratory. Ames Laboratory is operated by Iowa State University under contract DE-AC02-07CH11358. And research at Nebraska was supported by U.S. DOE/EERE, AR-OW911NF-09-2-0099 and NCMN-NRI (NSF-DMR-0960110, D.J.S.) for facility use. NR 31 TC 40 Z9 42 U1 9 U2 112 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD OCT PY 2013 VL 13 IS 10 BP 4975 EP 4979 DI 10.1021/nl403043d PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 243ZG UT WOS:000326356300062 PM 24041265 ER PT J AU Alberi, K Fluegel, B Moutinho, H Dhere, RG Li, JV Mascarenhas, A AF Alberi, K. Fluegel, B. Moutinho, H. Dhere, R. G. Li, J. V. Mascarenhas, A. TI Measuring long-range carrier diffusion across multiple grains in polycrystalline semiconductors by photoluminescence imaging SO NATURE COMMUNICATIONS LA English DT Article ID CDTE/CDS SOLAR-CELLS; ELECTRICAL-PROPERTIES; THIN-FILMS; SILICON FILMS; BOUNDARIES; CONDUCTION; GAAS; CU; CATHODOLUMINESCENCE; MICROSCOPY AB Thin-film polycrystalline semiconductors are currently at the forefront of inexpensive large-area solar cell and integrated circuit technologies because of their reduced processing and substrate selection constraints. Understanding the extent to which structural and electronic defects influence carrier transport in these materials is critical to controlling the optoelectronic properties, yet many measurement techniques are only capable of indirectly probing their effects. Here we apply a novel photoluminescence imaging technique to directly observe the low temperature diffusion of photocarriers through and across defect states in polycrystalline CdTe thin films. Our measurements show that an inhomogeneous distribution of localized defect states mediates long-range hole transport across multiple grain boundaries to locations exceeding 10 mm from the point of photogeneration. These results provide new insight into the key role deep trap states have in low temperature carrier transport in polycrystalline CdTe by revealing their propensity to act as networks for hopping conduction. C1 [Alberi, K.; Fluegel, B.; Moutinho, H.; Dhere, R. G.; Li, J. V.; Mascarenhas, A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Alberi, K (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Kirstin.Alberi@nrel.gov RI Albe, Karsten/F-1139-2011; Li, Jian/B-1627-2016 FU Department of Energy Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; Office of Energy Efficiency and Renewable Energy [DE-AC36-08GO28308]; DOE; State of Florida; [NSF-DMR-0654118] FX We acknowledge the financial support of the Department of Energy Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division for the PL imaging technique development and the Office of Energy Efficiency and Renewable Energy for the CdTe measurements under Contract DE-AC36-08GO28308. Work at Los Alamos National Laboratory (LANL) was supported by NSF-DMR-0654118, DOE, and the State of Florida, and we thank S. A. Crooker for useful discussions and help with these measurements. We thank T. Gessert for helpful discussions, M. Young for SIMS measurements, K. Jones for the FIB marks and B. To for polishing the sample. NR 30 TC 9 Z9 9 U1 2 U2 36 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD OCT PY 2013 VL 4 AR 2699 DI 10.1038/ncomms3699 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 245PC UT WOS:000326474800001 PM 24158163 ER PT J AU Chou, HH Keasling, JD AF Chou, Howard H. Keasling, Jay D. TI Programming adaptive control to evolve increased metabolite production SO NATURE COMMUNICATIONS LA English DT Article ID ISOPENTENYL DIPHOSPHATE ISOMERASE; ESCHERICHIA-COLI K-12; TYRR PROTEIN; TRANSCRIPTION MACHINERY; DIRECTED EVOLUTION; MUTATION-RATES; POPULATIONS; REPRESSION; PROMOTERS; YEAST AB The complexity inherent in biological systems challenges efforts to rationally engineer novel phenotypes, especially those not amenable to high-throughput screens and selections. In nature, increased mutation rates generate diversity in a population that can lead to the evolution of new phenotypes. Here we construct an adaptive control system that increases the mutation rate in order to generate diversity in the population, and decreases the mutation rate as the concentration of a target metabolite increases. This system is called feedback-regulated evolution of phenotype (FREP), and is implemented with a sensor to gauge the concentration of a metabolite and an actuator to alter the mutation rate. To evolve certain novel traits that have no known natural sensors, we develop a framework to assemble synthetic transcription factors using metabolic enzymes and construct four different sensors that recognize isopentenyl diphosphate in bacteria and yeast. We verify FREP by evolving increased tyrosine and isoprenoid production. C1 [Chou, Howard H.; Keasling, Jay D.] Univ Calif Berkeley, UCSF UCB Joint Grad Grp Bioengn, Berkeley, CA 94720 USA. [Chou, Howard H.; Keasling, Jay D.] Joint BioEnergy Inst, Berkeley, CA 94720 USA. [Chou, Howard H.; Keasling, Jay D.] Univ Calif Berkeley, Synthet Biol Engn Res Ctr, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem & Engn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Keasling, Jay D.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Keasling, JD (reprint author), Univ Calif Berkeley, UCSF UCB Joint Grad Grp Bioengn, Berkeley, CA 94720 USA. EM keasling@berkeley.edu RI Keasling, Jay/J-9162-2012 OI Keasling, Jay/0000-0003-4170-6088 FU Joint BioEnergy Institute [DE-AC02-05CH11231]; Synthetic Biology Engineering Research Center (SynBERC) through National Science Foundation [0540879] FX This work was supported by the Joint BioEnergy Institute, contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy and by the Synthetic Biology Engineering Research Center (SynBERC) through National Science Foundation grant 0540879. We thank Dr. Darmawi Juminaga (Joint Bioenergy Institute) for the gifts of E. coli DJ106, DJ166, and DJ238, Dr. Mario Ouellet (Joint Bioenergy Institute) for the gift of S. cerevisiae MO219, Dr. Adrienne McKee (Joint Bioenergy Institute) for the gifts of pT-LYCm4 and mutD5, and Dr. James Carothers for critical review and editing of the manuscript. NR 43 TC 31 Z9 32 U1 3 U2 61 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD OCT PY 2013 VL 4 AR 2595 DI 10.1038/ncomms3595 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 245NT UT WOS:000326471100002 PM 24131951 ER PT J AU Liu, XS Wang, DD Liu, G Srinivasan, V Liu, Z Hussain, Z Yang, WL AF Liu, Xiaosong Wang, Dongdong Liu, Gao Srinivasan, Venkat Liu, Zhi Hussain, Zahid Yang, Wanli TI Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray spectroscopy SO NATURE COMMUNICATIONS LA English DT Article ID LITHIUM-ION BATTERIES; LIFEPO4; TRANSFORMATION; LITHIATION; PARTICLES; LIXFEPO4; CATHODE; CELLS AB Developing high-performance batteries relies on material breakthroughs. During the past few years, various in situ characterization tools have been developed and have become indispensible in studying and the eventual optimization of battery materials. However, soft X-ray spectroscopy, one of the most sensitive probes of electronic states, has been mainly limited to ex situ experiments for battery research. Here we achieve in situ and operando soft X-ray absorption spectroscopy of lithium-ion battery cathodes. Taking advantage of the elemental, chemical and surface sensitivities of soft X-rays, we discover distinct lithium-ion and electron dynamics in Li(Co1/3Ni1/3Mn1/3)O-2 and LiFePO4 cathodes in polymer electrolytes. The contrast between the two systems and the relaxation effect in LiFePO4 is attributed to a phase transformation mechanism, and the mesoscale morphology and charge conductivity of the electrodes. These discoveries demonstrate feasibility and power of in situ soft X-ray spectroscopy for studying integrated and dynamic effects in batteries. C1 [Liu, Xiaosong; Liu, Zhi; Hussain, Zahid; Yang, Wanli] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Liu, Xiaosong; Liu, Zhi] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China. [Wang, Dongdong; Liu, Gao; Srinivasan, Venkat] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Liu, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM gliu@lbl.gov; wlyang@lbl.gov RI Yang, Wanli/D-7183-2011; Liu, Zhi/B-3642-2009 OI Yang, Wanli/0000-0003-0666-8063; Liu, Zhi/0000-0002-8973-6561 FU LDRD program; Advanced Light Source (ALS) postdoc fellow program at the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Assistant Secretary for Energy Efficiency, Office of Vehicle Technologies of the US Department of Energy [DE-AC02-05CH11231]; University of California, Office of the President through the University of California FX We would like to thank Dr. Lei Zhang for proof reading our manuscript. Spectroscopy work is supported by the LDRD program and the Advanced Light Source (ALS) postdoc fellow program at the Lawrence Berkeley National Laboratory. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy. Battery fabrication was funded by the Assistant Secretary for Energy Efficiency, Office of Vehicle Technologies of the US Department of Energy, under the Batteries for Advanced Transportation Technologies (BATT) Program. Both are under contract no. DE-AC02-05CH11231. Work is also supported by the University of California, Office of the President through the University of California Discovery Grant. NR 33 TC 48 Z9 48 U1 21 U2 171 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD OCT PY 2013 VL 4 AR 2568 DI 10.1038/ncomms3568 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 245NM UT WOS:000326470400012 PM 24100759 ER PT J AU Liu, Z Gong, YJ Zhou, W Ma, LL Yu, JJ Idrobo, JC Jung, J MacDonald, AH Vajtai, R Lou, J Ajayan, PM AF Liu, Zheng Gong, Yongji Zhou, Wu Ma, Lulu Yu, Jingjiang Idrobo, Juan Carlos Jung, Jeil MacDonald, Allan H. Vajtai, Robert Lou, Jun Ajayan, Pulickel M. TI Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride SO NATURE COMMUNICATIONS LA English DT Article ID ELECTRON-MICROSCOPE; HIGH-QUALITY; BAND-GAP; GRAPHENE; FILMS; NICKEL; LAYER AB Hexagonal boron nitride is a two-dimensional layered material that can be stable at 1,500 degrees C in air and will not react with most chemicals. Here we demonstrate large-scale, ultrathin, oxidation-resistant coatings of high-quality hexagonal boron nitride layers with controlled thicknesses from double layers to bulk. We show that such ultrathin hexagonal boron nitride films are impervious to oxygen diffusion even at high temperatures and can serve as high-performance oxidation-resistant coatings for nickel up to 1,100 degrees C in oxidizing atmospheres. Furthermore, graphene layers coated with a few hexagonal boron nitride layers are also protected at similarly high temperatures. These hexagonal boron nitride atomic layer coatings, which can be synthesized via scalable chemical vapour deposition method down to only two layers, could be the thinnest coating ever shown to withstand such extreme environments and find applications as chemically stable high-temperature coatings. C1 [Liu, Zheng; Ma, Lulu; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M.] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA. [Gong, Yongji] Rice Univ, Dept Chem, Houston, TX 77005 USA. [Zhou, Wu] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Zhou, Wu; Idrobo, Juan Carlos] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Yu, Jingjiang] Agilent Technol, Nanotechnol Measurements Div, Chandler, AZ 85226 USA. [Jung, Jeil; MacDonald, Allan H.] Univ Texas Austin, Dept Phys, Austin, TX 78212 USA. [Jung, Jeil] Natl Univ Singapore, Graphene Res Ctr, Singapore 117551, Singapore. [Jung, Jeil] Natl Univ Singapore, Dept Phys, Singapore 117551, Singapore. RP Ajayan, PM (reprint author), Rice Univ, Dept Mech Engn & Mat Sci, 6100 Main St,MS 321, Houston, TX 77005 USA. EM ajayan@rice.edu RI Liu, Zheng/C-1813-2014; Zhou, Wu/D-8526-2011; Idrobo, Juan/H-4896-2015; Gong, Yongji/L-7628-2016; Jung, Jeil/E-9112-2011 OI Liu, Zheng/0000-0002-8825-7198; Zhou, Wu/0000-0002-6803-1095; Idrobo, Juan/0000-0001-7483-9034; Jung, Jeil/0000-0003-2523-0905 FU US Army Research Office MURI [W911NF-11-1-0362]; US Office of Naval Research MURI [N000014-09-1-1066]; Welch Foundation [C-1716]; Korean Institute of Machinery and Materials; National Science Foundation [DMR-0938330]; Oak Ridge National Laboratory's Shared Research Equipment (ShaRE) User Facility Program; US Department of Energy (DOE), Office of Basic Energy Sciences FX This work was supported by the US Army Research Office MURI grant W911NF-11-1-0362, the US Office of Naval Research MURI grant N000014-09-1-1066, the Welch Foundation grant C-1716 and the Korean Institute of Machinery and Materials. This work was also supported by the National Science Foundation grant no. DMR-0938330 (W.Z.) and by Oak Ridge National Laboratory's Shared Research Equipment (ShaRE) User Facility Program (J.C.I.), which is sponsored by the US Department of Energy (DOE), Office of Basic Energy Sciences. J.J. and A. H. M. acknowledge assistance and computational resources from the Texas Advanced Computing Center and Welch Foundation grant TBF1473. NR 34 TC 100 Z9 103 U1 17 U2 180 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD OCT PY 2013 VL 4 AR 2541 DI 10.1038/ncomms3541 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 245MS UT WOS:000326468400002 PM 24092019 ER PT J AU Wei, N Quarterman, J Kim, SR Cate, JHD Jin, YS AF Wei, Na Quarterman, Josh Kim, Soo Rin Cate, Jamie H. D. Jin, Yong-Su TI Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast SO NATURE COMMUNICATIONS LA English DT Article ID RECOMBINANT SACCHAROMYCES-CEREVISIAE; ANAEROBIC FERMENTATION; ETHANOL-PRODUCTION; FERMENTING YEAST; ISOMERASE; INHIBITION; EXPRESSION; STRAINS; NADH; DEHYDROGENASE AB The anticipation for substituting conventional fossil fuels with cellulosic biofuels is growing in the face of increasing demand for energy and rising concerns of greenhouse gas emissions. However, commercial production of cellulosic biofuel has been hampered by inefficient fermentation of xylose and the toxicity of acetic acid, which constitute substantial portions of cellulosic biomass. Here we use a redox balancing strategy to enable efficient xylose fermentation and simultaneous in situ detoxification of cellulosic feedstocks. By combining a nicotinamide adenine dinucleotide (NADH)-consuming acetate consumption pathway and an NADH-producing xylose utilization pathway, engineered yeast converts cellulosic sugars and toxic levels of acetate together into ethanol under anaerobic conditions. The results demonstrate a breakthrough in making efficient use of carbon compounds in cellulosic biomass and present an innovative strategy for metabolic engineering whereby an undesirable redox state can be exploited to drive desirable metabolic reactions, even improving productivity and yield. C1 [Wei, Na; Quarterman, Josh; Kim, Soo Rin; Jin, Yong-Su] Univ Illinois, Dept Food Sci & Human Nutr, Urbana, IL 61801 USA. [Wei, Na; Quarterman, Josh; Kim, Soo Rin; Jin, Yong-Su] Univ Illinois, Inst Genom Biol, Urbana, IL 61801 USA. [Cate, Jamie H. D.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Cate, Jamie H. D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Jin, YS (reprint author), Univ Illinois, Dept Food Sci & Human Nutr, Urbana, IL 61801 USA. EM ysjin@illinois.edu RI Wei, Na/C-9172-2014; OI Kim, Soo Rin/0000-0001-5855-643X FU Energy Biosciences Institute FX We thank members of the Jin laboratory, especially Gyver Million for assistance in the experiments; and M. Miller and J. Doudna for comments on the manuscript. This work was supported by funding from the Energy Biosciences Institute to Y.-S.J. and J.H.D.C. NR 39 TC 42 Z9 44 U1 3 U2 61 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD OCT PY 2013 VL 4 AR 2580 DI 10.1038/ncomms3580 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 245NM UT WOS:000326470400024 PM 24105024 ER PT J AU Santarpia, L Iwamoto, T Di Leo, A Hayashi, N Bottai, G Stampfer, M Andre, F Turner, NC Symmans, WF Hortobagyi, GN Pusztai, L Bianchini, G AF Santarpia, Libero Iwamoto, Takayuki Di Leo, Angelo Hayashi, Naoki Bottai, Giulia Stampfer, Martha Andre, Fabrice Turner, Nicholas C. Symmans, W. Fraser Hortobagyi, Gabriel N. Pusztai, Lajos Bianchini, Giampaolo TI DNARepair Gene Patterns as Prognostic and Predictive Factors in Molecular Breast Cancer Subtypes SO ONCOLOGIST LA English DT Article DE Neoadjuvant therapies; DNA repair pathways; Predictive factors; Breast cancer subtypes; DNA damaging agents ID DNA-DAMAGE; EXPRESSION PATTERNS; CELL-LINES; CHEMOTHERAPY; REPAIR; CLASSIFICATION; SENSITIVITY; SURVIVAL; TUMORS; TRASTUZUMAB AB DNA repair pathways can enable tumor cells to survive DNA damage induced by chemotherapy and thus provide prognostic and/or predictive value. We evaluated Affymetrix gene expression profiles for 145 DNA repair genes in untreated breast cancer (BC) patients (n = 684) and BC patients treated with regimens containing neoadjuvant taxane/anthracycline (n = 294) or anthracycline (n = 210). We independently assessed estrogen receptor (ER)-positive/HER2-negative, HER2-positive, and ER-negative/HER2-negative subgroups for differential expression, bimodal distribution, and the prognostic and predictive value of DNA repair gene expression. Twenty-two genes were consistently overexpressed in ER-negative tumors, and five genes were overexpressed in ER-positive tumors, but no differences in expression were associated with HER2 status. In ER-positive/HER2-negative tumors, the expression of nine genes (BUB1, FANCI, MNAT1, PARP2, PCNA, POLQ, RPA3, TOP2A, and UBE2V2) was associated with poor prognosis, and the expression of one gene (ATM) was associated with good prognosis. Furthermore, the prognostic value of specific genes did not correlate with proliferation. A few genes were associated with chemotherapy response in BC subtypes and treatment-specific manner. In ER-negative/ HER2-negative tumors, the MSH2, MSH6, and FAN1 (previously MTMR15) genes were associated with pathological complete response and residual invasive cancer in taxane/anthracycline-treated patients. Conversely, PMS2 expression was associated with residual invasive cancer in treatments using anthracycline as a single agent. In HER2-positive tumors, TOP2A was associated with patient response to anthracyclines but not to taxane/anthracycline regimens. In genes expressed in a bimodal fashion, RECQL4 was significantly associated with clinical outcome. In vitro studies showed that defects in RECQL4 impair homologous recombination, sensitizing BC cells to DNA-damaging agents. C1 [Santarpia, Libero; Bottai, Giulia] Ist Toscano Tumori, Dept Oncol, Translat Res Unit, Prato, Italy. [Iwamoto, Takayuki] Okayama Univ Hosp, Dept Breast & Endocrine Surg, Okayama, Japan. [Di Leo, Angelo] Ist Toscano Tumori, Hosp Prato, Dept Oncol, Prato, Italy. [Stampfer, Martha] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Canc & DNA Damage Responses, Div Life Sci, Berkeley, CA 94720 USA. [Andre, Fabrice] Inst Gustave Roussy, Unit U981, INSERM, Dept Med Oncol, Villejuif, France. [Turner, Nicholas C.] Inst Canc Res, Breakthrough Breast Canc Res Ctr, London SW3 6JB, England. [Symmans, W. Fraser] Univ Texas MD Anderson Canc Ctr, Dept Pathol, Houston, TX 77030 USA. [Hortobagyi, Gabriel N.] Univ Texas MD Anderson Canc Ctr, Dept Breast Med Oncol, Houston, TX 77030 USA. [Pusztai, Lajos] Yale Univ, Ctr Canc, New Haven, CT USA. [Bianchini, Giampaolo] Ist Sci San Raffaele, Div Med Oncol, I-20132 Milan, Italy. RP Santarpia, L (reprint author), Ist Toscano Tumori, Dept Oncol, Translat Res Unit, Prato, Italy. EM liberosantarpia@yahoo.it OI Santarpia, Libero/0000-0001-6777-1449 FU Associazione Italiana per la Ricerca sul Cancro (AIRC) [6251]; Sandro-Pitigliani; Michelangelo Foundations FX L.S., T.I., and G.P.B. contributed equally to this work. This work was supported by grants from Associazione Italiana per la Ricerca sul Cancro (AIRC, Grant 6251 to L.S.), the Sandro-Pitigliani and the Michelangelo Foundations (to L.S. and G.B.). We thank Dr. G. Pacini for assistance with data collection and for providing technical assistance. Presented at the 48th Annual Meeting of the American Society of Clinical Oncology, Chicago, Illinois, June 1-5, 2012. NR 50 TC 32 Z9 33 U1 0 U2 4 PU ALPHAMED PRESS PI DURHAM PA 318 BLACKWELL ST, STE 260, DURHAM, NC 27701-2884 USA SN 1083-7159 EI 1549-490X J9 ONCOLOGIST JI Oncologist PD OCT PY 2013 VL 18 IS 10 BP 1063 EP 1073 DI 10.1634/theoncologist.2013-0163 PG 11 WC Oncology SC Oncology GA 243NK UT WOS:000326322900001 PM 24072219 ER PT J AU Wan, XL Lin, G AF Wan, Xiaoliang Lin, Guang TI Hybrid parallel computing of minimum action method SO PARALLEL COMPUTING LA English DT Article DE Random perturbation; Dynamical system; Minimum action method; Rare events; Spectral elements; Heterogeneous computing ID NOISE; TRANSITION; EQUATION; SPACE AB In this work, we report a hybrid (MPI/OpenMP) parallelization strategy for the minimum action method recently proposed in [17]. For nonlinear dynamical systems, the minimum action method is a useful numerical tool to study the transition behavior induced by small noise and the structure of the phase space. The crucial part of the minimum action method is to minimize the Freidlin-Wentzell action functional. Due to the fact that the corresponding Euler-Lagrange equation is, in general, highly nonlinear and of high order, we solve the optimization problem directly instead of discretizing the Euler-Lagrange equation to provide a general but equivalent numerical framework. To enhance the efficiency of the minimum action method for general dynamical systems we consider parallel computing. In particular, we present a hybrid parallelization strategy based on MPI and OpenMP. Numerical results are presented to demonstrate the efficiency of the proposed parallelization strategy. (C) 2013 Elsevier B.V. All rights reserved. C1 [Wan, Xiaoliang] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA. [Wan, Xiaoliang] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA. [Lin, Guang] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wan, XL (reprint author), Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA. EM xlwan@math.lsu.edu; guang.lin@pnl.gov FU Applied Mathematics program of the US DOE Office of Advanced Scientific Computing Research; NSF [DMS-1115632] FX This work was supported by Applied Mathematics program of the US DOE Office of Advanced Scientific Computing Research. X. Wan also acknowledges support from NSF grant DMS-1115632. The parallel computation was implemented on supercomputers supported by the Louisiana Optical Network Institute (LONI). NR 16 TC 5 Z9 5 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD OCT PY 2013 VL 39 IS 10 BP 638 EP 651 DI 10.1016/j.parco.2013.08.004 PG 14 WC Computer Science, Theory & Methods SC Computer Science GA 238MZ UT WOS:000325953300007 ER PT J AU Stanic, M McFarland, J Stellingwerf, RF Cassibry, JT Ranjan, D Bonazza, R Greenough, JA Abarzhi, SI AF Stanic, M. McFarland, J. Stellingwerf, R. F. Cassibry, J. T. Ranjan, D. Bonazza, R. Greenough, J. A. Abarzhi, S. I. TI Non-uniform volumetric structures in Richtmyer-Meshkov flows SO PHYSICS OF FLUIDS LA English DT Article ID SMOOTHED PARTICLE HYDRODYNAMICS; TAYLOR INSTABILITY; Z-PINCHES; GROWTH; SPH; REFINEMENT; SIMULATION AB We perform an integrated study of volumetric structures in Richtmyer-Meshkov (RM) flows induced by moderate shocks. Experiments, theoretical analyses, Smoothed Particle Hydrodynamics simulations, and ARES Arbitrary Lagrange Eulerian simulations are employed to analyze RM evolution for fluids with contrast densities in case of moderately small amplitude initial perturbation at the fluid interface. After the shock passage the dynamics of the fluids is a superposition of the background motion and the interfacial mixing, and only a small part of the shock energy is available for interfacial mixing. We find that in the fluid bulk the flow fields are non-uniform at small scales, and the heterogeneous volumetric structures include reverse jets, shock-focusing effects, and local hot spots with the temperature substantially higher than that in the ambient. (C) 2013 AIP Publishing LLC. C1 [Stanic, M.] Univ Twente, NL-7500 AE Enschede, Netherlands. [McFarland, J.; Ranjan, D.] Texas A&M Univ, College Stn, TX 77843 USA. [Stellingwerf, R. F.] Stellingwerf Consulting, Huntsville, AL 35803 USA. [Cassibry, J. T.] Univ Alabama, Huntsville, AL 35899 USA. [Bonazza, R.] Univ Wisconsin, Madison, WI 53706 USA. [Greenough, J. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Abarzhi, S. I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Abarzhi, S. I.] Carnegie Mellon Univ Qatar, Doha, Qatar. RP Abarzhi, SI (reprint author), Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. EM snezhana.abarzhi@gmail.com OI Ranjan, Devesh/0000-0002-1231-9313 FU U.S. National Science Foundation; U.S. Department of Energy; RF Ministry of Science and Education; Japan Society for the Promotion of Science FX The authors deeply acknowledge the awards of the U.S. National Science Foundation, the U.S. Department of Energy, the RF Ministry of Science and Education, and the Japan Society for the Promotion of Science. Part of the work was performed by the corresponding author at the University of Chicago and University of Illinois at Chicago, IL, USA. NR 46 TC 6 Z9 6 U1 5 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD OCT PY 2013 VL 25 IS 10 AR 106107 DI 10.1063/1.4826135 PG 15 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 247TB UT WOS:000326642800057 ER PT J AU Bendek, EA Guyon, O Ammons, SM Belikov, R AF Bendek, Eduardo A. Guyon, Olivier Ammons, S. Mark Belikov, Ruslan TI Laboratory Demonstration of Astrometric Compensation Using a Diffractive Pupil SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article DE Astronomical Instrumentation ID TELESCOPE; PHOTOMETRY; SENSOR; PRECISION AB Astrometry is a promising exoplanet detection and characterization technique that can detect earth-size exoplanets if submicroarcsecond precision is achieved. However, instrumentation available today can only reach in the order of 10(2) microarcseconds, mainly limited by long-term dynamic distortions on wide-field observations. To overcome this problem, we propose the implementation of a diffractive pupil, which has an array of microscopic dots imprinted on the primary mirror coating. The dots create diffractive spikes on the focal plane that are used to calibrate image plane distortions that degrade the astrometric measurement precision. This astrometry technique can be utilized simultaneously with coronagraphy for exhaustive characterization of exoplanets (mass, spectra, orbit). We designed and built an astrometry laboratory to validate the diffractive pupil ability to calibrate distortions and stabilize wide-field astrometric measurements over time. We achieved a precision of 0.0123px, which represents 42% of the 0.0288px stability measured for this setup before the calibration. On sky units, this result is equivalent to 3.42xx10(-3)/D that corresponds to 150as for a 2.4m telescope at 500nm wavelength. Also, at large field angles the distortion error was reduced by a factor of 5 when the calibration was used, proving its effectiveness for large field of view. We present an astrometry error budget here to explain the source of the residual error observed when the diffractive pupil calibration is used. C1 [Bendek, Eduardo A.; Belikov, Ruslan] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Guyon, Olivier] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Guyon, Olivier] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Ammons, S. Mark] Natl Inst Nat Sci, Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA. RP Bendek, EA (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. FU NASA [09-APRA09-0140]; Institute of International Education IIE; NASA; U.S. Department of Energy by the Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This project is funded by NASA grant 09-APRA09-0140 program and it has been performed under the auspices of the following institutions: The Institute of International Education IIE with their Fulbright PhD Science and Technology program, the NASA Postdoctoral Program, and the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Also, we acknowledge the advice of the following people in different aspects of the project: Michael Shao, Stuart Shaklan, Robert Woodruff, Jim Burge, Roger Angel, Marie Levine, and Josh Eisner. NR 21 TC 1 Z9 1 U1 0 U2 3 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD OCT 1 PY 2013 VL 125 IS 932 BP 1212 EP 1225 DI 10.1086/673373 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 243PM UT WOS:000326329100005 ER PT J AU Paprotny, I Doering, F Solomon, PA White, RM Gundel, LA AF Paprotny, Igor Doering, Frederick Solomon, Paul A. White, Richard M. Gundel, Lara A. TI Microfabricated air-microfluidic sensor for personal monitoring of airborne particulate matter: Design, fabrication, and experimental results SO SENSORS AND ACTUATORS A-PHYSICAL LA English DT Article DE Air quality monitoring; PM2.5; Air-microfluidics; MEMS ID POLLUTION; PERFORMANCE; PARTICLES; EXPOSURE; SAMPLER; MASS AB We present the design and fabrication of a micro electro mechanical systems (MEMS) air-microfluidic particulate matter (PM) sensor, and show experimental results obtained from exposing the sensor to concentrations of tobacco smoke and diesel exhaust, two commonly occurring PM sources. Our sensor measures only 25 mm x 21 mm x 2 mm in size and is two orders of magnitude smaller than commercially available direct mass PM sensors. The small shape allows our sensor to be used for continuous recording of personal PM exposure levels. The sensor contains an air-microfluidic circuit that separates the particles by size (virtual impactor) and then transports and deposits the selected particles using thermophoretic precipitation onto the surface of a microfabricated mass-sensitive film bulk acoustic resonator (FBAR). The mass-loading of the FBAR causes a change in its resonant frequency, and the rate of the frequency change corresponds to the particle concentration in the sampled air volume. We present experimental results that demonstrate the performance of our sensor for measuring PM mass emitted from diesel exhaust and tobacco smoke, and show that it exhibits sensitivity approaching 2 mu g/m(3) with up to 10 min integration time. (C) 2012 Elsevier B.V. All rights reserved. C1 [Paprotny, Igor; Doering, Frederick; White, Richard M.] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. [Paprotny, Igor; Gundel, Lara A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Solomon, Paul A.] US EPA, Off Res & Dev, Las Vegas, NV 89193 USA. RP Paprotny, I (reprint author), Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. EM igorpapa@eecs.berkeley.edu; solomon.paul@epa.gov; rwhite@eecs.berkeley.edu; LAGundel@lbl.gov FU Intel Corp.; Qualcomm; Aclima Inc.; California Tobacco-Related Research Program, NIOSH [5R21OH008891-03]; Technology Commercial Fund of the U.S. DOE [DE-FG36-0XGO1XXXX, DE-AC02-05CH11231]; University of California FX The authors gratefully acknowledge the Intel Corp., Qualcomm, and Aclima Inc. for their generous financial support of this work. We would like to acknowledge Justin Black for his initial work on this project. The microfabrication tasks were performed at the Marvell Nanofabrication Laboratory at UC Berkeley. The authors would like to thank Doug Sullivan from EETD for help in testing the sensor prototype, as well as Allison Woodruff and Alan Mainwaring from Intel Corp. for their supportive comments and technical discussions. We thank TSI for the loan of aerosol equipment and Kenneth (Beau) Farmer of TSI for consistent encouragement. Finally, we would like to acknowledge the support of Rich Ruby and Avago Technologies Inc. for providing high quality FBARs for our sensors, as well as for stimulating discussions. The California Tobacco-Related Research Program, NIOSH (Project No. 5R21OH008891-03), and Project DE-FG36-0XGO1XXXX of the Technology Commercial Fund of the U.S. DOE supported parts of this project that were conducted at LBNL through DOE contract DE-AC02-05CH11231 with the University of California. NR 31 TC 24 Z9 25 U1 13 U2 79 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0924-4247 J9 SENSOR ACTUAT A-PHYS JI Sens. Actuator A-Phys. PD OCT PY 2013 VL 201 BP 506 EP 516 DI 10.1016/j.sna.2012.12.026 PG 11 WC Engineering, Electrical & Electronic; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 236YW UT WOS:000325836400064 ER PT J AU Leblebici, SY Chen, TL Oalde-Veasco, P Yang, WL Ma, BW AF Leblebici, Sibel Y. Chen, Teresa L. Oalde-Veasco, Paul Yang, Wanli Ma, Biwu TI Reducing Exciton Binding Energy by Increasing Thin Film Permittivity: An Effective Approach To Enhance Exciton Separation Efficiency in Organic Solar Cells SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE exciton binding energy; exciton separation efficiency; organic solar cells; permittivity; small molecule electron donor ID OPEN-CIRCUIT VOLTAGE; PHOTOVOLTAIC CELLS; DONOR; SEMICONDUCTORS; CONVERSION; POLYMERS; BLENDS AB Photocurrent generation in organic solar cells requires that excitons, which are formed upon light absorption, dissociate into free carriers at the interface of electron acceptor and donor materials. The high exciton binding energy, arising from the low permittivity of organic semiconductor films, generally causes low exciton separation efficiency and subsequently low power conversion efficiency. We demonstrate here, for the first time, that the exciton binding energy in B,O-chelated azadipyrromethene (BO-ADPM) donor films is reduced by increasing the film permittivity by blending the BO-ADPM donor with a high dielectric constant small molecule, camphoric anhydride (CA). Various spectroscopic techniques, including impedance spectroscopy, photon absorption and emission spectroscopies, as well as X-ray spectroscopies, are applied to characterize the thin film electronic and photophysical properties. Planar heterojunction solar cells are fabricated with a BO-ADPM:CA film as the electron donor and C-60 as the acceptor. With an increase in the dielectric constant of the donor film from similar to 4.5 to similar to 11, the exciton binding energy is reduced and the internal quantum efficiency of the photovoltaic cells improves across the entire spectrum, with an similar to 30% improvement in the BO-ADPM photoactive region. C1 [Leblebici, Sibel Y.; Chen, Teresa L.; Ma, Biwu] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Leblebici, Sibel Y.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Oalde-Veasco, Paul; Yang, Wanli] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Ma, Biwu] Florida State Univ, Dept Chem & Biomed Engn, Tallahassee, FL 32310 USA. RP Ma, BW (reprint author), Florida State Univ, Dept Chem & Biomed Engn, Tallahassee, FL 32310 USA. EM bma@fsu.edu RI Yang, Wanli/D-7183-2011; Foundry, Molecular/G-9968-2014 OI Yang, Wanli/0000-0003-0666-8063; FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [NSF DGE 1106400]; Florida State University through the university Energy & Materials Initiative FX Work at the Molecular Foundry and the Advanced Light Source, Lawrence Berkeley National Laboratory, was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This material is also based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. (NSF DGE 1106400). B. Ma thanks Florida State University for the startup fund support through the university Energy & Materials Initiative. NR 38 TC 23 Z9 23 U1 10 U2 89 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 EI 1944-8252 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD OCT PY 2013 VL 5 IS 20 BP 10105 EP 10110 DI 10.1021/am402744k PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 242BR UT WOS:000326212900034 PM 24041440 ER PT J AU Riha, SC Jin, S Baryshev, SV Thimsen, E Wiederrecht, GP Martinson, ABF AF Riha, Shannon C. Jin, Shengye Baryshev, Sergey V. Thimsen, Elijah Wiederrecht, Gary P. Martinson, Alex B. F. TI Stabilizing Cu2S for Photovoltaics One Atomic Layer at a Time SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE copper sulfide; Cu2S; atomic-layer deposition; thin-film solar cell; photovoltaic; barrier layers; surface passivation ID CDS-CU2S SOLAR-CELLS; THIN-FILM; CONVERSION EFFICIENCY; INTERFACIAL REACTION; OPTICAL-PROPERTIES; COPPER DIFFUSION; OXIDE-FILMS; DEPOSITION; DEGRADATION; SULFIDES AB Stabilizing Cu2S in its ideal stoichiometric form, chalcocite, is a long-standing challenge that must be met prior to its practical use in thin-film photovoltaic (PV) devices. Significant copper deficiency, which results in degenerate p-type doping, might be avoided by limiting Cu diffusion into a readily formed surface oxide and other adjacent layers. Here, we examine the extent to which PV-relevant metal-oxide over- and underlayers may stabilize Cu2S thin films with desirable semiconducting properties. After only 15 nm of TiO2 coating, Hall measurements and UV-vis-NIR spectroscopy reveal a significant suppression of free charge-carrier addition that depends strongly on the choice of deposition chemistry. Remarkably, the insertion of a single atomic layer of Al2O3 between Cu2S and TiO2 further stabilizes the active layer for at least 2 weeks, even under ambient conditions. The mechanism of this remarkable enhancement is explored by in situ microbalance and conductivity measurements. Finally, photoluminescence quenching measurements point to the potential utility of these nanolaminate stacks in solar-energy harvesting applications. C1 [Riha, Shannon C.; Baryshev, Sergey V.; Thimsen, Elijah; Martinson, Alex B. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Jin, Shengye; Wiederrecht, Gary P.] Argonne Natl Lab, Nanosci & Technol Div, Argonne, IL 60439 USA. RP Martinson, ABF (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM martinson@anl.gov OI Martinson, Alex/0000-0003-3916-1672 FU Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) under EERE Solar Program; Oak Ridge Associated Universities (ORAU) under DOE [DE-AC05-06OR23100]; U.S. Department of Energy Office of Science Laboratory by UChicago Argonne, LLC [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX S.C.R. was supported in part by the Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Awards under the EERE Solar Program administered by the Oak Ridge Institute for Science and Education (ORISE) for the DOE. ORISE is managed by Oak Ridge Associated Universities (ORAU) under DOE contract no. DE-AC05-06OR23100. The research was performed at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory operated under contract no. DE-AC02-06CH11357 by UChicago Argonne, LLC. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. The authors thank Richard D. Schaller (NST, Argonne National Laboratory) for his assistance with the PL measurements. NR 62 TC 26 Z9 26 U1 12 U2 94 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD OCT PY 2013 VL 5 IS 20 BP 10302 EP 10309 DI 10.1021/am403225e PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 242BR UT WOS:000326212900060 PM 24147782 ER PT J AU Brown, SHJ Cheng, CY Saldanha, SA Wu, J Cottam, HB Sankaran, B Taylor, SS AF Brown, Simon H. J. Cheng, Cecilia Y. Saldanha, S. Adrian Wu, Jian Cottam, Howard B. Sankaran, Banumathi Taylor, Susan S. TI Implementing Fluorescence Anisotropy Screening and Crystallographic Analysis to Define PKA Isoform-Selective Activation by cAMP Analogs SO ACS CHEMICAL BIOLOGY LA English DT Article ID PROTEIN-KINASE-A; CYCLIC-NUCLEOTIDE ANALOGS; SITE MUTATIONS DEFINE; RI-ALPHA SUBUNIT; REGULATORY SUBUNIT; CATALYTIC SUBUNIT; STRUCTURE REVEALS; MOLECULAR-BASIS; OVARIAN-CANCER; T-LYMPHOCYTES AB Cyclic AMP (cAMP) is a ubiquitous second messenger that regulates many proteins, most notably cAMP-dependent protein kinase (PKA). PKA holoenzymes (comprised of two catalytic (C) and two regulatory (R) subunits) regulate a wide variety of cellular processes, and its functional diversity is amplified by the presence of four R-subunit isoforms, RI alpha, RI beta, RII alpha, and RII beta. Although these isoforms all respond to cAMP, they are functionally nonredundant and exhibit different biochemical properties. In order to understand the functional differences between these isoforms, we screened cAMP derivatives for their ability to selectively activate RI and RII PKA holoenzymes using a fluorescence anisotropy assay. Our results indicate that RI alpha holoenzymes are selectively activated by C8-substituted analogs and RII beta holoenzymes by N6-substituted analogs, where HE33 is the most prominent RII activator. We also solved the crystal structures of both RI alpha and RII beta bound to HE33. The RII beta structure shows the bulky aliphatic substituent of HE33 is fully encompassed by a pocket comprising of hydrophobic residues. RI alpha lacks this hydrophobic lining in Domain A, and the side chains are displaced to accommodate the HE33 dipropyl groups. Comparison between cAMP-bound structures reveals that RII beta, but not RI alpha, contains a cavity near the N6 site. This study suggests that the selective activation of RII over RI isoforms by N6 analogs is driven by the spatial and chemical constraints of Domain A and paves the way for the development of potent noncyclic nucleotide activators to specifically target PICA iso-holoenyzmes. C1 [Brown, Simon H. J.; Cheng, Cecilia Y.; Saldanha, S. Adrian; Wu, Jian; Taylor, Susan S.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92037 USA. [Taylor, Susan S.] Univ Calif San Diego, Dept Pharmacol, La Jolla, CA 92037 USA. [Taylor, Susan S.] Univ Calif San Diego, Howard Hughes Med Inst, La Jolla, CA 92037 USA. [Cottam, Howard B.] Univ Calif San Diego, Moores Canc Ctr, La Jolla, CA 92037 USA. [Sankaran, Banumathi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Brown, Simon H. J.] Univ Wollongong, Sch Hlth Sci, Wollongong, NSW 2522, Australia. RP Taylor, SS (reprint author), Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92037 USA. EM staylor@ucsd.edu RI Brown, Simon/A-3261-2009 OI Brown, Simon/0000-0003-3997-4614 FU National Institutes of Health [T32 CA0095523, T32 GM08326]; National Research Service Award; AHA (Western States Affiliate) [07015019Y]; [GM34921] FX We thank M. Deal (University of California, San Diego) for providing the C-subunit protein used in these studies and A. Kornev for helpful discussions and assistance with structural rendering. This work was funded in part by GM34921 to S.S.T, National Institutes of Health Training Grant T32 CA0095523 and National Research Service Award Training Grant to S.H.B., and National Institutes of Health Training Grant T32 GM08326 and AHA (Western States Affiliate) 07015019Y to C.Y.C. NR 38 TC 4 Z9 4 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1554-8929 EI 1554-8937 J9 ACS CHEM BIOL JI ACS Chem. Biol. PD OCT PY 2013 VL 8 IS 10 BP 2164 EP 2172 DI 10.1021/cb400247t PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 240TU UT WOS:000326121400010 PM 23978166 ER PT J AU Korbas, M Lai, B Vogt, S Gleber, SC Karunakaran, C Pickering, IJ Krone, PH George, GN AF Korbas, Malgorzata Lai, Barry Vogt, Stefan Gleber, Sophie-Charlotte Karunakaran, Chithra Pickering, Ingrid J. Krone, Patrick H. George, Graham N. TI Methylmercury Targets Photoreceptor Outer Segments SO ACS CHEMICAL BIOLOGY LA English DT Article ID BLOOD-RETINAL BARRIER; X-RAY; ZEBRAFISH LARVAE; CHEMICAL FORMS; BRAIN-BARRIER; PINEAL-GLAND; L-LEUCINE; MERCURY; RHODOPSIN; EXPOSURE AB Human populations experience widespread low level exposure to organometallic methylmercury compounds through consumption of fish and other seafood. At higher levels, methylmercury compounds specifically target nervous systems, and among the many effects of their exposure are visual disturbances, including blindness, which previously were thought to be due to methylmercury-induced damage to the visual cortex. Here, we employ high-resolution X-ray fluorescence imaging using beam sizes of 500 X 500 and 250 X 250 nm(2) to investigate the localization of mercury at unprecedented resolution in sections of zebrafish larvae (Danio rerio), a model developing vertebrate. We demonstrate that methylmercury specifically targets the outer segments of photoreceptor cells in both the retina and pineal gland. Methylmercury distribution in both tissues was correlated with that of sulfur, which, together with methylmercury's affinity for thiolate donors, suggests involvement of protein cysteine residues in methylmercury binding. In contrast, in the lens, the mercury distribution was different from that of sulfur, with methylmercury specifically accumulating in the secondary fiber cells immediately underlying the lens epithelial cells rather than in the lens epithelial cells themselves. Since methylmercury targets two main eye tissues (lens and photoreceptors) that are directly involved in visual perception, it now seems likely that the visual disruption associated with methylmercury exposure in higher animals including humans may arise from direct damage to photoreceptors, in addition to injury of the visual cortex. C1 [Korbas, Malgorzata; Karunakaran, Chithra] Canadian Light Source Inc, Saskatoon, SK S7N 2V3, Canada. [Korbas, Malgorzata; Krone, Patrick H.] Univ Saskatchewan, Dept Anat & Cell Biol, Saskatoon, SK S7N 5E5, Canada. [Lai, Barry; Vogt, Stefan; Gleber, Sophie-Charlotte] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Pickering, Ingrid J.; George, Graham N.] Univ Saskatchewan, Dept Geol Sci, Saskatoon, SK S7N 5E2, Canada. [Pickering, Ingrid J.; Krone, Patrick H.; George, Graham N.] Univ Saskatchewan, Toxicol Ctr, Saskatoon, SK S7N 5B3, Canada. RP George, GN (reprint author), Univ Saskatchewan, Dept Geol Sci, Saskatoon, SK S7N 5E2, Canada. EM g.george@usask.ca RI Korbas, Malgorzata/B-4024-2009; Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013; Pickering, Ingrid/A-4547-2013 OI Korbas, Malgorzata/0000-0003-3064-0132; Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513; FU Canadian Institutes of Health Research; Saskatchewan Health Research Foundation; University of Saskatchewan; Natural Sciences and Engineering Research Council of Canada; Canada Foundation for Innovation; U.S. DOE [DE-AC02-06CH11357] FX We thank K. Yuen for guidance in tissue processing and sectioning, N. Sylvain for assistance with zebrafish embryo collection and culture, and T. MacDonald and A. James for help with data collection. We also thank R. Gordon for assistance at the 20-ID-B beamline at the Advanced Photon Source. This work was supported by the Canadian Institutes of Health Research (G.N.G., I.J.P.), the Saskatchewan Health Research Foundation (G.N.G., I.J.P.), the University of Saskatchewan, Discovery Grants from the Natural Sciences and Engineering Research Council of Canada (I.J.P., G.N.G., P.H.K), and the Canada Foundation for Innovation (G.N.G., I.J.P.). G.N.G. and I.J.P. are Canada Research Chairs. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. Canadian Light Source is supported by NSERC, the National Research Council Canada, the Canadian Institutes of Health Research, the Province of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. NR 45 TC 14 Z9 14 U1 1 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1554-8929 EI 1554-8937 J9 ACS CHEM BIOL JI ACS Chem. Biol. PD OCT PY 2013 VL 8 IS 10 BP 2256 EP 2263 DI 10.1021/cb4004805 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 240TU UT WOS:000326121400020 PM 23957296 ER PT J AU Xu, L Selin, V Zhuk, A Ankner, JF Sukhishvili, SA AF Xu, Li Selin, Victor Zhuk, Aliaksandr Ankner, John F. Sukhishvili, Svetlana A. TI Molecular Weight Dependence of Polymer Chain Mobility within Multilayer Films SO ACS MACRO LETTERS LA English DT Article ID POLYELECTROLYTE MULTILAYERS; EXPONENTIAL-GROWTH; NEUTRON REFLECTOMETRY; DIFFUSION; SALT; INTERDIFFUSION; REFLECTIVITY; DYNAMICS; KINETICS; RECOVERY AB Fluorescence recovery after photobleaching has been applied to determine, to our knowledge for the first time, the molecular weight (M-w) dependence of lateral diffusion of polymer chains within layer-by-layer (LbL) films. As shown by neutron reflectometry, polyelectrolyte multilayers containing polymethacrylic acid (PMAA, M-w/M-n < 1.05) of various molecular weights assembled from solutions of low ionic strengths at pH 4.5, where film growth was linear, showed similar diffusion of PMAA in the direction perpendicular to the film surface. At a salt concentration sufficient for unfreezing electrostatically bonded chains, layer intermixing remained almost unaffected (changes <1.0 nm), while the lateral diffusion coefficient (D) scaled with the PMAA molecular weight as D similar to M-w(-1 +/- 0.05). C1 [Xu, Li; Selin, Victor; Zhuk, Aliaksandr; Sukhishvili, Svetlana A.] Stevens Inst Technol, Dept Chem Chem Biol & Biomed Engn, Hoboken, NJ 07030 USA. [Ankner, John F.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Sukhishvili, SA (reprint author), Stevens Inst Technol, Dept Chem Chem Biol & Biomed Engn, Hoboken, NJ 07030 USA. EM ssukhish@stevens.edu OI Ankner, John/0000-0002-6737-5718 FU National Science Foundation [DMR-0906474]; DOE [DE-AC05-00OR22725] FX This work was supported by the National Science Foundation under Award DMR-0906474 (S.S.). Neutron measurements were performed at the Spallation Neutron Source at the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the DOE under contract No. DE-AC05-00OR22725. NR 34 TC 11 Z9 11 U1 7 U2 59 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-1653 J9 ACS MACRO LETT JI ACS Macro Lett. PD OCT PY 2013 VL 2 IS 10 BP 865 EP 868 DI 10.1021/mz400413v PG 4 WC Polymer Science SC Polymer Science GA 240UT UT WOS:000326123900005 ER PT J AU Ge, T Grest, GS Robbins, MO AF Ge, Ting Grest, Gary S. Robbins, Mark O. TI Structure and Strength at Immiscible Polymer Interfaces SO ACS MACRO LETTERS LA English DT Article ID LINEAR FLEXIBLE MACROMOLECULES; FRACTURE ENERGY; ENTANGLEMENTS; CHAIN; ADHESION; SURFACE; WIDTH; DYNAMICS; MELTS; MODEL AB Thermal welding of polymer polymer interfaces is important for integrating polymeric elements into devices. When two different polymers are joined, the strength of the weld depends critically on the degree of immiscibility. We perform large-scale molecular dynamics simulations of the structure-strength relation at immiscible polymer interfaces. Our simulations show that immiscibility arrests interdiffiision and limits the equilibrium interfacial width. Even for weakly immiscible films, the narrow interface is unable to transfer stress upon deformation as effectively as the bulk material, and chain pullout at the interface becomes the dominant failure mechanism. This greatly reduces the interfacial strength. The weak response of immiscible interfaces is shown to arise from an insufficient density of entanglements across the interface. We demonstrate that there is a threshold interfacial width below which no significant entanglements can form between opposite sides to strengthen the interface. C1 [Ge, Ting; Robbins, Mark O.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Grest, Gary S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Robbins, MO (reprint author), Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. EM mr@jhu.edu FU National Science Foundation [DMR-1006805, CMMI-0923018, OCI-0963185]; Simons Foundation; Office of Science of the United States Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported in part by the National Science Foundation under Grant Nos. DMR-1006805, CMMI-0923018, and OCI-0963185. M.O.R. acknowledges support from the Simons Foundation. This research used resources at the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the United States Department of Energy under Contract No. DE-AC02-05CH11231. Research was carried out in part at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences, user facility. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 36 TC 13 Z9 14 U1 4 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-1653 J9 ACS MACRO LETT JI ACS Macro Lett. PD OCT PY 2013 VL 2 IS 10 BP 882 EP 886 DI 10.1021/mz400407m PG 5 WC Polymer Science SC Polymer Science GA 240UT UT WOS:000326123900009 ER PT J AU Pushkar, Y Robison, G Sullivan, B Fu, SX Kohne, M Jiang, WD Rohr, S Lai, B Marcus, MA Zakharova, T Zheng, W AF Pushkar, Yulia Robison, Gregory Sullivan, Brendan Fu, Sherleen X. Kohne, Meghan Jiang, Wendy Rohr, Sven Lai, Barry Marcus, Matthew A. Zakharova, Taisiya Zheng, Wei TI Aging results in copper accumulations in glial fibrillary acidic protein-positive cells in the subventricular zone SO AGING CELL LA English DT Article DE neurotoxicity; X-ray fluorescence; aging; glial cells; copper; astrocytes; X-ray microscopy ID X-RAY-ABSORPTION; NEURAL STEM-CELLS; AGE-RELATED-CHANGES; ADULT MAMMALIAN BRAIN; NEURODEGENERATIVE DISEASES; METALLOTHIONEIN; ASTROCYTES; MOUSE; IDENTIFICATION; LOCALIZATION AB Summary Analysis of rodent brains with X-ray fluorescence (XRF) microscopy combined with immunohistochemistry allowed us to demonstrate that local Cu concentrations are thousands of times higher in the glia of the subventricular zone (SVZ) than in other cells. Using XRF microscopy with subcellular resolution and intracellular X-ray absorption spectroscopy we determined the copper (I) oxidation state and the sulfur ligand environment. Cu K-edge X-ray absorption near edge spectroscopy is consistent with Cu being bound as a multimetallic Cu-S cluster similar to one present in Cu-metallothionein. Analysis of age-related changes show that Cu content in astrocytes of the SVZ increases fourfold from 3 weeks to 9 months, while Cu concentration in other brain areas remain essentially constant. This increase in Cu correlates with a decrease in adult neurogenesis assessed using the Ki67 marker (both, however, can be age-related effects). We demonstrate that the Cu distribution and age-related concentration changes in the brain are highly cell specific. C1 [Pushkar, Yulia; Robison, Gregory; Sullivan, Brendan; Kohne, Meghan; Rohr, Sven; Zakharova, Taisiya] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Fu, Sherleen X.; Jiang, Wendy; Zheng, Wei] Purdue Univ, Sch Hlth Sci, W Lafayette, IN 47907 USA. [Lai, Barry] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Marcus, Matthew A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Pushkar, Y (reprint author), Purdue Univ, Dept Phys, 525 Northwestern Ave, W Lafayette, IN 47907 USA. EM ypushkar@purdue.edu RI ID, BioCAT/D-2459-2012; Robison, Gregory/D-7940-2013 OI Robison, Gregory/0000-0002-6513-4291 FU Director, Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Biophysics Collaborative Access Team is a National Institutes of Health (NIH)-supported Research Center [RR-08630]; NIH/National Institute of Environmental Health Sciences [R01 ES008146-14]; Purdue start up funds; NSF FX We greatly acknowledge the Bio-CAT beamline at APS for providing the Linkam cryostage and Dr. Raul Barrea and Dr. Stefan Vogt for helpful discussions. The operations of the ALS at LBNL are supported by the Director, Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy under contract number DE-AC02-05CH11231. Use of the APS at ANL was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The Biophysics Collaborative Access Team is a National Institutes of Health (NIH)-supported Research Center RR-08630. This study was supported by NIH/National Institute of Environmental Health Sciences Grants Numbers R01 ES008146-14, by Purdue start up funds and by NSF summer research experience for undergraduates program to M.K. NR 45 TC 16 Z9 16 U1 1 U2 18 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1474-9718 EI 1474-9726 J9 AGING CELL JI Aging Cell PD OCT PY 2013 VL 12 IS 5 BP 823 EP 832 DI 10.1111/acel.12112 PG 10 WC Cell Biology; Geriatrics & Gerontology SC Cell Biology; Geriatrics & Gerontology GA 217RA UT WOS:000324376300010 PM 23738916 ER PT J AU Manoj, MG Devara, PCS Taraphdar, S AF Manoj, M. G. Devara, P. C. S. Taraphdar, S. TI Lidar investigation of tropical nocturnal boundary layer aerosols and cloud macrophysics SO ATMOSPHERIC RESEARCH LA English DT Article DE Aerosol; Cloud; Nocturnal boundary layer; Polarization lidar; Atmospheric stability; Regional climate ID TECHNOLOGY EXPERIMENT LITE; SOUTHERN GREAT-PLAINS; AIRCRAFT OBSERVATIONS; MODEL; STRATOCUMULUS; ATMOSPHERE; SURFACE; INDIA; PRECIPITATION; RADIATION AB Observational evidence of two-way association between nocturnal boundary layer aerosols and cloud macrophysical properties over a tropical urban site is reported in this paper. The study has been conducted during 2008-09 employing a high space-time resolution polarimetric micro-pulse lidar over a tropical urban station in India. Firstly, the study highlights the crucial role of boundary layer aerosols and background meteorology on the formation and structure of low-level stratiform clouds in the backdrop of different atmospheric stability conditions. Turbulent mixing induced by the wind shear at the station, which is associated with a complex terrain, is found to play a pivotal role in the formation and structural evolution of nocturnal boundary layer clouds. Secondly, it is shown that the trapping of energy in the form of outgoing terrestrial radiation by the overlying low-level clouds can enhance the aerosol mixing height associated with the nocturnal boundary layer. To substantiate this, the long-wave heating associated with cloud capping has been quantitatively estimated in an indirect way by employing an Advanced Research Weather Research and Forecasting (WRF-ARW) model developed by National Center for Atmospheric Research (NCAR), Colorado, USA, and supplementary data sets; and differentiated against other heating mechanisms. The present investigation as well establishes the potential of lidar remote-sensing technique in exploring some of the intriguing aspects of the cloud-environment relationship. (C) 2013 Elsevier B.V. All rights reserved. C1 [Manoj, M. G.; Devara, P. C. S.] Indian Inst Trop Meteorol, Pune 411008, Maharashtra, India. [Taraphdar, S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Manoj, MG (reprint author), Indian Inst Trop Meteorol, Dr Homi Bhabha Rd, Pune 411008, Maharashtra, India. EM mgmanoj@tropmet.res.in; devara@tropmet.res.in; Sourav.Taraphdar@pnnl.gov FU Council of Scientific and Industrial Research (CSIR), Govt. of India; US Department of Energy Regional and Global Climate Modeling Program; US DOE by Battelle Memorial Institute [DE-AC06-76RLO1830] FX The authors are grateful to the Director, IITM for the encouragement and infrastructure facilities to undertake the present study. The Mesoscale and Micro-scale Division of National Center for Atmospheric Research, United States, is acknowledged for access to the WRF-ARW model. The authors acknowledge with thanks the ECMWF, UK and NCEP/NCAR, USA for the vertical profiles of meteorological fields used in the study. The authors are highly grateful to the "Aerosol and Cloud Physics Laboratory for Weather and Climate Studies" at IITM. The first author (MGM) gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), Govt. of India, for providing the research fellowship. The third author (ST) acknowledges support from the US Department of Energy Regional and Global Climate Modeling Program. Pacific Northwest National Laboratory is operated for US DOE by Battelle Memorial Institute under contract DE-AC06-76RLO1830. Also, we sincerely thank the constructive comments from the three anonymous reviewers and the Editors on an earlier version of the manuscript which have led to substantial improvements. NR 71 TC 2 Z9 2 U1 1 U2 17 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0169-8095 EI 1873-2895 J9 ATMOS RES JI Atmos. Res. PD OCT-NOV PY 2013 VL 132 BP 65 EP 75 DI 10.1016/j.atmosres.2013.05.007 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 241BN UT WOS:000326141500006 ER PT J AU Ware, R Cimini, D Campos, E Giuliani, G Albers, S Nelson, M Koch, SE Joe, P Cober, S AF Ware, R. Cimini, D. Campos, E. Giuliani, G. Albers, S. Nelson, M. Koch, S. E. Joe, P. Cober, S. TI Thermodynamic and liquid profiling during the 2010 Winter Olympics SO ATMOSPHERIC RESEARCH LA English DT Article DE Microwave radiometer; Thermodynamic profiler; Liquid (water) profiles ID WATER-VAPOR; MICROWAVE RADIOMETER; TEMPERATURE; ACCURACY AB Tropospheric observations by a microwave profiling radiometer and six-hour radiosondes were obtained during the Alpine Venue of the 2010 Winter Olympic Games at Whistler, British Columbia, by Environment Canada. The radiometer provided continuous temperature, humidity and liquid (water) profiles during all weather conditions including rain, sleet and snow. Gridded analysis was provided by the U.S. National Oceanic and Atmospheric Administration. We compare more than two weeks of radiometer neural network and radiosonde temperature and humidity soundings including clear and precipitating conditions. Corresponding radiometer liquid and radiosonde wind soundings are shown. Close correlation is evident between radiometer and radiosonde temperature and humidity profiles up to 10 km height and among southwest winds, liquid water and upper level thermodynamics, consistent with up-valley advection and condensation of moist maritime air. We compare brightness temperatures observed by the radiometer and forward-modeled from radiosonde and gridded analysis. Radiosonde-equivalent observation accuracy is demonstrated for radiometer neural network temperature and humidity retrievals up to 800 m height and for variational retrievals that combine radiometer and gridded analysis up to 10 km height. (C)2013 Elsevier B.V. All rights reserved. C1 [Ware, R.; Nelson, M.] Radiometrics, Boulder, CO 80302 USA. [Ware, R.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Ware, R.] Univ Colorado, NOAA, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Cimini, D.] Ctr Excellence Severe Weather Forecast, Laquila, Italy. [Cimini, D.] Inst Methodol Environm Anal, Tito, Italy. [Campos, E.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giuliani, G.] Abdus Salam Int Ctr Theoret Phys, Trieste, Italy. [Albers, S.] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. [Albers, S.] Earth Syst Res Lab, Boulder, CO USA. [Koch, S. E.] NOAA, Natl Severe Storms Lab, Norman, OK 73069 USA. [Joe, P.; Cober, S.] Environm Canada, Meteorol Res Div, Toronto, ON, Canada. RP Ware, R (reprint author), Radiometrics, 4909 Nautilus Court North, Boulder, CO 80302 USA. EM ware@radiometrics.com; cimini@imaa.cnr.it; ecampos@anl.gov; graziano.giuliani@aquila.infn.it; steve.albers@noaa.gov; m.nelson@radiometrics.com; steven.koch@noaa.gov; paul.joe@ec.gc.ca; stewart.cober@ec.gc.ca RI Cimini, Domenico/M-8707-2013; Albers, Steven/E-7416-2015; Campos, Edwin/A-5601-2008 OI Cimini, Domenico/0000-0002-5962-223X; Campos, Edwin/0000-0003-3766-7485 FU Environment Canada FX Environment Canada conducted microwave profiler, radiosonde and precipitation data collection and provided grant support (special thanks to Jim Abraham) for data analysis and reporting. NR 41 TC 19 Z9 22 U1 1 U2 12 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0169-8095 EI 1873-2895 J9 ATMOS RES JI Atmos. Res. PD OCT-NOV PY 2013 VL 132 BP 278 EP 290 DI 10.1016/j.atmosres.2013.05.019 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 241BN UT WOS:000326141500023 ER PT J AU Lindner, B Petridis, L Schulz, R Smith, JC AF Lindner, Benjamin Petridis, Loukas Schulz, Roland Smith, Jeremy C. TI Solvent-Driven Preferential Association of Lignin with Regions of Crystalline Cellulose in Molecular Dynamics Simulation SO BIOMACROMOLECULES LA English DT Article ID IONIC LIQUID PRETREATMENT; ENZYMATIC-HYDROLYSIS; DILUTE-ACID; BIOMASS RECALCITRANCE; FORCE-FIELD; CELL-WALLS; I-BETA; SURFACES; SOFTWOOD; LIGNOCELLULOSE AB The precipitation of lignin onto cellulose after pretreatment of lignocellulosic biomass is an obstacle to economically viable cellulosic ethanol production. Here, 750 ns nonequilibrium molecular dynamics simulations are reported of a system of lignin and cellulose in aqueous solution. Lignin is found to strongly associate with itself and the cellulose. However, noncrystalline regions of cellulose are observed to have a lower tendency to associate with lignin than crystalline regions, and this is found to arise from stronger hydration of the noncrystalline chains. The results suggest that the recalcitrance of crystalline cellulose to hydrolysis arises not only from the inaccessibility of inner fibers but also due to the promotion of lignin adhesion. C1 [Lindner, Benjamin; Petridis, Loukas; Schulz, Roland; Smith, Jeremy C.] Oak Ridge Natl Lab, UT ORNL Ctr Mol Biophys, Oak Ridge, TN 37830 USA. [Lindner, Benjamin; Schulz, Roland] Univ Tennessee, Knoxville, TN 37996 USA. [Smith, Jeremy C.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. RP Lindner, B (reprint author), Oak Ridge Natl Lab, UT ORNL Ctr Mol Biophys, 1 Bethel Valley Rd,Bldg 6011, Oak Ridge, TN 37830 USA. EM lindnerb@ornl.gov; petridisl@ornl.gov; roland@utk.edu; smithjc@ornl.gov RI Schulz, Roland/A-1868-2010; smith, jeremy/B-7287-2012; Petridis, Loukas/B-3457-2009 OI Schulz, Roland/0000-0003-1603-2413; smith, jeremy/0000-0002-2978-3227; Petridis, Loukas/0000-0001-8569-060X FU Genomic Science Program, Office of Biological and Environmental Research, U.S. Department of Energy (DOE) [FWP ERKP752]; Office of Science of DOE [DE-AC05-00OR22725] FX This research is funded by the Genomic Science Program, Office of Biological and Environmental Research, U.S. Department of Energy (DOE), under FWP ERKP752. An award of computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research used resources of the Oak Ridge Leadership Computing Facility located in the Oak Ridge National Laboratory, which is supported by the Office of Science of DOE under Contract DE-AC05-00OR22725. NR 56 TC 14 Z9 14 U1 6 U2 56 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1525-7797 EI 1526-4602 J9 BIOMACROMOLECULES JI Biomacromolecules PD OCT PY 2013 VL 14 IS 10 BP 3390 EP 3398 DI 10.1021/bm400442n PG 9 WC Biochemistry & Molecular Biology; Chemistry, Organic; Polymer Science SC Biochemistry & Molecular Biology; Chemistry; Polymer Science GA 240UI UT WOS:000326122800006 PM 23980921 ER PT J AU Dube, N Shu, JY Dong, H Seo, JW Ingham, E Kheirolomoom, A Chen, PY Forsayeth, J Bankiewicz, K Ferrara, KW Xu, T AF Dube, Nikhil Shu, Jessica Y. Dong, He Seo, Jai W. Ingham, Elizabeth Kheirolomoom, Azadeh Chen, Pin-Yuan Forsayeth, John Bankiewicz, Krystof Ferrara, Katherine W. Xu, Ting TI Evaluation of Doxorubicin-Loaded 3-Helix Micelles as Nanocarriers SO BIOMACROMOLECULES LA English DT Article ID CONVECTION-ENHANCED DELIVERY; PEGYLATED-LIPOSOMAL DOXORUBICIN; BLOCK-COPOLYMER MICELLES; BRAIN-TUMOR XENOGRAFTS; IN-VITRO EFFICACY; POLYMERIC MICELLES; ANTICANCER AGENT; DRUG-DELIVERY; BREAST-CANCER; COILED COILS AB Designing stable drug nanocarriers, 10-30 nm in size, would have significant impact on their transport in circulation, tumor penetration, and therapeutic efficacy. In the. present study, biological properties of 3-helix micelles loaded with 8 wt % doxorubicin (DOX), similar to 15 nm in size, were characterized to validate their potential as a nanocarrier platform. DOX-loaded micelles exhibited high stability in terms of size and drug retention in concentrated protein environments similar to conditions after intravenous injections. DOX-loaded micelles were cytotoxic to PPC-1 and 4T1 cancer cells at levels comparable to free DOX. 3-Helix micelles can be disassembled by proteolytic degradation of peptide shell to enable drug release and clearance to minimize long-term accumulation. Local administration to normal rat striatum by convection enhanced delivery (CED) showed greater extent of drug distribution and reduced toxicity relative to free drug. Intravenous administration of DOX-loaded 3-helix micelles demonstrated improved tumor half-life and reduced toxicity to healthy tissues in comparison to free DOX. In vivo delivery of DOX-loaded 3-helix micelles through two different routes clearly indicates the potential of 3-helix micelles as safe and effective nanocarriers for cancer therapeutics. C1 [Dube, Nikhil; Shu, Jessica Y.; Dong, He; Xu, Ting] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Seo, Jai W.; Ingham, Elizabeth; Kheirolomoom, Azadeh; Ferrara, Katherine W.] Univ Calif Davis, Dept Biomed Engn, Davis, CA 95616 USA. [Chen, Pin-Yuan; Forsayeth, John; Bankiewicz, Krystof] Univ Calif San Francisco, Dept Neurosurg, San Francisco, CA 94103 USA. [Xu, Ting] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Xu, Ting] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Xu, T (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM tingxu@berkeley.edu RI Seo, Jai Woong/B-7959-2008; OI Seo, Jai Woong/0000-0002-2732-7498; Kheirolomoom, Azadeh/0000-0002-2173-4893; Ferrara, Katherine/0000-0002-4976-9107 FU National Institutes of Health [1R21EB016947-01A1, NIHR01CA134659, NIHCA112356, NIHCA103828]; Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Army of the U.S. Department of Defense [W91NF-09-1-0374]; UniQure FX N.D. and T.X. were supported by National Institutes of Health under Contract 1R21EB016947-01A1. J.Y.S. was supported by the Office of Basic Energy Sciences of the U.S. Department of Energy under Contract DE-AC02-05CH11231. H.D. was supported by Office of Army of the U.S. Department of Defense under Contract W91NF-09-1-0374. J.W.S., E.S., A.K., and K.W.F. were supported by National Institutes of Health under Contracts NIHR01CA134659, NIHCA112356, and NIHCA103828. P.Y.C., J.F, and K.B. were supported by funding from UniQure. NR 55 TC 12 Z9 12 U1 4 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1525-7797 EI 1526-4602 J9 BIOMACROMOLECULES JI Biomacromolecules PD OCT PY 2013 VL 14 IS 10 BP 3697 EP 3705 DI 10.1021/bm4010518 PG 9 WC Biochemistry & Molecular Biology; Chemistry, Organic; Polymer Science SC Biochemistry & Molecular Biology; Chemistry; Polymer Science GA 240UI UT WOS:000326122800040 PM 24050265 ER PT J AU Hansen, RR Hinestrosa, JP Shubert, KR Morrell-Falvey, JL Pelletier, DA Messman, JM Kilbey, SM Lokitz, BS Retterer, ST AF Hansen, Ryan R. Hinestrosa, Juan Pablo Shubert, Katherine R. Morrell-Falvey, Jennifer L. Pelletier, Dale A. Messman, Jamie M. Kilbey, S. Michael, II Lokitz, Bradley S. Retterer, Scott T. TI Lectin-Functionalized Poly(glycidyl methacrylate)-block-poly(vinyldimethyl azlactone) Surface Scaffolds for High Avidity Microbial Capture SO BIOMACROMOLECULES LA English DT Article ID IMMOBILIZATION; BINDING; DESIGN; CELLS AB Microbial exopolysaccharides (EPS) play a critical and dynamic role in shaping the interactions between microbial community members and their local environment. The capture of targeted microbes using surface immobilized lectins that recognize specific extracellular oligosaccharide moieties offers a nondestructive method for functional characterization of EPS content. In this report, we evaluate the use of the block copolymer, poly(glycidyl methacrylate)-block-4,4-dimethyl-2-vinylazlactone (PGMA-b-PVDMA), as a surface scaffold for lectin-specific microbial capture. Three-dimensional polymer films were patterned on silicon substrates to provide discrete, covalent coupling sites for Triticum vulgare and Lens culinaris lectins. This material increased the number of Pseudomonas fluorescens microbes captured by up to 43% compared to control scaffolds that did not contain the copolymer. These results demonstrate that PGMA-b-PVDMA scaffolds provide a platform for improved microbe capture and screening of EPS content by combining high avidity lectin surfaces with three-dimensional surface topography. C1 [Hansen, Ryan R.; Hinestrosa, Juan Pablo; Messman, Jamie M.; Kilbey, S. Michael, II; Lokitz, Bradley S.; Retterer, Scott T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Shubert, Katherine R.; Morrell-Falvey, Jennifer L.; Pelletier, Dale A.; Retterer, Scott T.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Kilbey, S. Michael, II] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Retterer, ST (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM rettererst@ornl.gov RI Morrell-Falvey, Jennifer/A-6615-2011; Retterer, Scott/A-5256-2011; Lokitz, Bradley/Q-2430-2015 OI Morrell-Falvey, Jennifer/0000-0002-9362-7528; Retterer, Scott/0000-0001-8534-1979; Lokitz, Bradley/0000-0002-1229-6078 FU U.S Department of Energy, Office of Science, Biological and Environmental Research; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; National Science Foundation [1133320] FX This work was supported in part by the Genomic Science Program, U.S Department of Energy, Office of Science, Biological and Environmental Research, as part of the Plant Microbe Interfaces Scientific Focus Area (http://pmi.ornl.gov). A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. S.M.K.II acknowledges support from the National Science Foundation (Award No. 1133320). NR 29 TC 11 Z9 11 U1 4 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1525-7797 EI 1526-4602 J9 BIOMACROMOLECULES JI Biomacromolecules PD OCT PY 2013 VL 14 IS 10 BP 3742 EP 3748 DI 10.1021/bm4011358 PG 7 WC Biochemistry & Molecular Biology; Chemistry, Organic; Polymer Science SC Biochemistry & Molecular Biology; Chemistry; Polymer Science GA 240UI UT WOS:000326122800045 PM 24003861 ER PT J AU Wielicki, BA Young, DF Mlynczak, MG Thome, KJ Leroy, S Corliss, J Anderson, JG Ao, CO Bantges, R Best, F Bowman, K Brindley, H Butler, JJ Collins, W Dykema, JA Doelling, DR Feldman, DR Fox, N Huang, XL Holz, R Huang, Y Jin, Z Jennings, D Johnson, DG Jucks, K Kato, S Kirk-Davidoff, DB Knuteson, R Kopp, G Kratz, DP Liu, X Lukashin, C Mannucci, AJ Phojanamongkolkij, N Pilewskie, P Ramaswam, V Revercomb, YH Rice, J Roberts, Y Roithmayr, CM Rose, F Sandford, S Shirley, EL Smith, WL Soden, SB Speth, PW Sun, W Taylor, PC Tobin, D Xiong, X AF Wielicki, Bruce A. Young, D. F. Mlynczak, M. G. Thome, K. J. Leroy, S. Corliss, J. Anderson, J. G. Ao, C. O. Bantges, R. Best, F. Bowman, K. Brindley, H. Butler, J. J. Collins, W. Dykema, J. A. Doelling, D. R. Feldman, D. R. Fox, N. Huang, Xianglei Holz, R. Huang, Y. Jin, Z. Jennings, D. Johnson, D. G. Jucks, K. Kato, S. Kirk-Davidoff, D. B. Knuteson, R. Kopp, G. Kratz, D. P. Liu, X. Lukashin, C. Mannucci, A. J. Phojanamongkolkij, N. Pilewskie, P. Ramaswam, V. Revercomb, Y. H. Rice, J. Roberts, Y. Roithmayr, C. M. Rose, F. Sandford, S. Shirley, E. L. Smith, W. L. Soden, Sr. B. Speth, P. W. Sun, W. Taylor, P. C. Tobin, D. Xiong, X. TI Achieving Climate Change Absolute Accuracy in Orbit SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID OCEAN-ATMOSPHERE MODELS; INFRARED-SPECTRA; INTER-CALIBRATION; RADIANCE MEASUREMENTS; EARTHS ENERGY; SYSTEM; SPACE; INSTRUMENT; CLOUDS; FEEDBACKS AB The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Systeme Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 m), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a NIST [National Institute of Standards and Technology] in orbit. CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations. C1 [Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Corliss, J.; Doelling, D. R.; Johnson, D. G.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Speth, P. W.; Taylor, P. C.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Thome, K. J.; Butler, J. J.; Jennings, D.; Xiong, X.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Leroy, S.; Anderson, J. G.; Dykema, J. A.] Harvard Univ, Cambridge, MA 02138 USA. [Ao, C. O.; Bowman, K.; Mannucci, A. J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Bantges, R.; Brindley, H.] Univ London Imperial Coll Sci Technol & Med, London, England. [Best, F.; Holz, R.; Knuteson, R.; Revercomb, Y. H.; Smith, W. L.; Tobin, D.] Univ Wisconsin Madison, Madison, WI USA. [Collins, W.; Feldman, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Fox, N.] Natl Phys Lab, London, England. [Huang, Xianglei] Univ Michigan, Ann Arbor, MI 48109 USA. [Huang, Y.] McGill Univ, Montreal, PQ, Canada. [Jin, Z.; Rose, F.; Sun, W.] Sci Syst Applicat, Hampton, VA USA. [Jucks, K.] NASA Headquarters, Washington, DC USA. [Kirk-Davidoff, D. B.] Univ Maryland, Greenbelt, MD USA. [Kopp, G.; Pilewskie, P.; Roberts, Y.] Univ Colorado Boulder, Boulder, CO USA. [Ramaswam, V.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Rice, J.; Shirley, E. L.] NIST, Gaithersburg, MD 20899 USA. [Soden, Sr. B.] Univ Miami, Miami, FL USA. RP Wielicki, BA (reprint author), NASA, Langley Res Ctr, Mail Stop 420, Hampton, VA 23681 USA. EM b.a.wielicki@nasa.gov RI Huang, Xianglei/G-6127-2011; Feldman, Daniel/N-8703-2013; Butler, James/D-4188-2013; Thome, Kurtis/D-7251-2012; Collins, William/J-3147-2014; Taylor, Patrick/D-8696-2015; Johnson, David/F-2376-2015; Huang, Yi/E-9479-2016; Richards, Amber/K-8203-2015; OI Huang, Xianglei/0000-0002-7129-614X; Feldman, Daniel/0000-0003-3365-5233; Collins, William/0000-0002-4463-9848; Taylor, Patrick/0000-0002-8098-8447; Johnson, David/0000-0003-4399-5653; Huang, Yi/0000-0002-5065-4198; Brindley, Helen/0000-0002-7859-9207; Rose, Fred G/0000-0003-0769-0772 FU Jet Propulsion Laboratory; California Institute of Technology; National Aeronautics and Space Administration FX We thank several reviewers for providing comments that significantly improved the clarity and presentation of the paper. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 64 TC 67 Z9 69 U1 5 U2 43 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD OCT PY 2013 VL 94 IS 10 BP 1519 EP 1539 DI 10.1175/BAMS-D-12-00149.1 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 241DO UT WOS:000326146800007 ER PT J AU Carpenter, TS Lau, EY Lightstone, FC AF Carpenter, Timothy S. Lau, Edmond Y. Lightstone, Felice C. TI Identification of a Possible Secondary Picrotoxin-Binding Site on the GABA(A) Receptor SO CHEMICAL RESEARCH IN TOXICOLOGY LA English DT Article ID GATED ION-CHANNEL; INDUCED CONFORMATIONAL-CHANGES; GENERAL ANESTHETIC ETOMIDATE; SINGLE AMINO-ACID; X-RAY-STRUCTURE; ACETYLCHOLINE-RECEPTOR; A RECEPTOR; MOLECULAR-DYNAMICS; COMPETITIVE ANTAGONIST; AUTOMATED DOCKING AB The type A GABA receptors (GABARs) are ligand-gated ion channels (LGICs) found in the brain and are the major inhibitory neurotransmitter receptors. Upon binding of an agonist, the GABAR opens and increases the intraneuronal concentration of chloride ions, thus hyperpolarizing the cell and inhibiting the transmission of the nerve action potential. GABARs also contain many other modulatory binding pockets that differ from the agonist-binding site. The composition of the GABAR subunits can alter the properties of these modulatory sites. Picrotoxin is a noncompetitive antagonist for LGICs, and by inhibiting GABAR, picrotoxin can cause overstimulation and induce convulsions. We use addition of picrotoxin to probe the characteristics and possible mechanism of an additional modulatory pocket located at the interface between the ligand-binding domain and the transmembrane domain of the GABAR. Picrotoxin is widely regarded as a pore-blocking agent that acts at the cytoplasmic end of the channel. However, there are also data to suggest that there may be an additional, secondary binding site for picrotoxin. Through homology modeling, molecular docking, and molecular dynamics simulations, we show that binding of picrotoxin to this interface pocket correlates with these data, and negative modulation occurs at the pocket via a kinking of the pore-lining helices into a more closed orientation. C1 [Carpenter, Timothy S.; Lau, Edmond Y.; Lightstone, Felice C.] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA 94550 USA. RP Lightstone, FC (reprint author), Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, 7000 East Ave, Livermore, CA 94550 USA. EM lightstone1@llnl.gov FU Laboratory Directed Research and Development [12-SI-004]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-611112] FX We thank Laboratory Directed Research and Development 12-SI-004 for funding. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL-JRNL-611112. NR 83 TC 9 Z9 10 U1 1 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0893-228X EI 1520-5010 J9 CHEM RES TOXICOL JI Chem. Res. Toxicol. PD OCT PY 2013 VL 26 IS 10 BP 1444 EP 1454 DI 10.1021/tx400167b PG 11 WC Chemistry, Medicinal; Chemistry, Multidisciplinary; Toxicology SC Pharmacology & Pharmacy; Chemistry; Toxicology GA 239ZB UT WOS:000326063400004 PM 24028067 ER PT J AU Sundriyal, V Sosonkina, M Zhang, Z AF Sundriyal, Vaibhav Sosonkina, Masha Zhang, Zhao TI Achieving energy efficiency during collective communications SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article DE energy-aware collective communications; dynamic voltage and frequency scaling (DVFS); CPU throttling; Message Passing Interface (MPI) AB Energy consumption has become a major design constraint in modern computing systems. With the advent of petaflops architectures, power-efficient software stacks have become imperative for scalability. Techniques such as dynamic voltage and frequency scaling (called DVFS) and CPU clock modulation (called throttling) are often used to reduce the power consumption of the compute nodes. To avoid significant performance losses, these techniques should be used judiciously during parallel application execution. For example, its communication phases may be good candidates to apply the DVFS and CPU throttling without incurring a considerable performance loss. They are often considered as indivisible operations although little attention is being devoted to the energy saving potential of their algorithmic steps. In this work, two important collective communication operations, all-to-all and allgather, are investigated as to their augmentation with energy saving strategies on the per-call basis. The experiments prove the viability of such a fine-grain approach. They also validate a theoretical power consumption estimate for multicore nodes proposed here. While keeping the performance loss low, the obtained energy savings were always significantly higher than those achieved when DVFS or throttling were switched on across the entire application run. Copyright (c) 2012 John Wiley & Sons, Ltd. C1 [Sundriyal, Vaibhav; Sosonkina, Masha] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Zhang, Zhao] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. RP Sundriyal, V (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM vaibhavs@iastate.edu FU Iowa State University of Science and Technology; Office of Science, Division of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy [DE-AC02-07CH11358, DE-AC02-05CH11231]; National Science Foundation [NSF/OCI-0749156, 0941434, 0904782, 1047772] FX This work is supported by the Iowa State University of Science and Technology; the Director, Office of Science, Division of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy (DE-AC02-07CH11358 and DE-AC02-05CH11231); and the National Science Foundation (NSF/OCI-0749156, 0941434, 0904782, 1047772). NR 30 TC 1 Z9 1 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1532-0626 EI 1532-0634 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD OCT PY 2013 VL 25 IS 15 BP 2140 EP 2156 DI 10.1002/cpe.2911 PG 17 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 216TO UT WOS:000324307500002 ER PT J AU Seal, SK Perumalla, KS Hirshman, SP AF Seal, Sudip K. Perumalla, Kalyan S. Hirshman, Steven P. TI Scaling the SIESTA magnetohydrodynamics equilibrium code SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article DE fusion simulation; parallel algorithms; scalability ID ALGORITHM; STABILITY; SYSTEMS; GMRES AB We report the results of a scaling effort that increases both the speed and resolution of the SIESTA magnetohydrodynamics equilibrium code. SIESTA is capable of computing three-dimensional plasma equilibria with magnetic islands at high spatial resolutions for toroidally confined plasmas. Starting with a small-scale parallel implementation, we identified scale-dependent bottlenecks of the code and developed scalable alternatives for each performance-significant functionality, cumulatively improving both its runtime speed (on the same number of processors) and its scalability (across larger number of processors) by an order of magnitude. The net outcome is an improvement in speed by over 10-fold, utilizing a few thousand processors, enabling SIESTA to simulate high spatial-resolution scenarios in under an hour for the first time. Copyright (c) 2012 John Wiley & Sons, Ltd. C1 [Seal, Sudip K.; Perumalla, Kalyan S.] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. [Hirshman, Steven P.] Oak Ridge Natl Lab, Fus Energy Div, Oak Ridge, TN 37831 USA. RP Seal, SK (reprint author), Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. EM sealsk@ornl.gov OI Perumalla, Kalyan/0000-0002-7458-0832 FU U.S. Department of Energy [DE-AC05-00OR22725] FX This paper has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. Accordingly, the US Government retains, and the publisher, by accepting the article for publication, acknowledges that the US Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript or allow others to do so, for US Government purposes. NR 19 TC 1 Z9 1 U1 0 U2 10 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1532-0626 EI 1532-0634 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD OCT PY 2013 VL 25 IS 15 BP 2207 EP 2223 DI 10.1002/cpe.2919 PG 17 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 216TO UT WOS:000324307500006 ER PT J AU Gonzalez-Juez, ED Kerstein, AR Lignell, DO AF Gonzalez-Juez, E. D. Kerstein, A. R. Lignell, D. O. TI Reactive Rayleigh-Taylor turbulent mixing: a one-dimensional-turbulence study SO GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS LA English DT Article DE Rayleigh-Taylor; Turbulence; Numerical simulations; One-dimensional-turbulence model ID 3-DIMENSIONAL NUMERICAL SIMULATIONS; IA-SUPERNOVAE; STOCHASTIC-MODEL; ATWOOD NUMBERS; INSTABILITY; LAYER; FORMULATION; CONVECTION; FLAMES; FLOWS AB We study the problem of reactive Rayleigh-Taylor turbulence in the Boussinesq framework using one-dimensional-turbulence (ODT) simulations. In this problem a reaction zone between overlying heavy/cold reactants and underlying light/hot products moves against gravity. First, we show that ODT results for global quantities in non-reactive Rayleigh-Taylor turbulence are within those from direct numerical simulations (DNS). This comparison give us confidence in using ODT to study unexplored flow regimes in the reactive case. Then, we show how ODT predicts an early stage of reactive Rayleigh-Taylor turbulence that behaves similarly to the non-reactive case, as observed in previous DNS. More importantly, ODT indicates a later stage where the growth of the reaction zone reduces considerably. The present work can be seen as a step towards the study of supernova flames with ODT. C1 [Gonzalez-Juez, E. D.; Kerstein, A. R.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Lignell, D. O.] Brigham Young Univ, Dept Chem Engn, Provo, UT 84602 USA. RP Gonzalez-Juez, ED (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. EM estebandgj@gmail.com FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; United States Department of Energy [DE-AC04-94-AL85000] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000. Simulations were performed at Sandia National Laboratories on the Red Sky Linux Cluster. NR 43 TC 4 Z9 4 U1 0 U2 13 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0309-1929 EI 1029-0419 J9 GEOPHYS ASTRO FLUID JI Geophys. Astrophys. Fluid Dyn. PD OCT 1 PY 2013 VL 107 IS 5 BP 506 EP 525 DI 10.1080/03091929.2012.736504 PG 20 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Mechanics SC Astronomy & Astrophysics; Geochemistry & Geophysics; Mechanics GA 243HS UT WOS:000326308100003 ER PT J AU Ekdahl, C AF Ekdahl, Carl TI Tuning the DARHT Long-Pulse Linear Induction Accelerator SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article; Proceedings Paper CT 4th Euro-Asian Pulsed Power Conference (EAPPC) / 19th International Conference on High-Power Particle Beams (BEAMS) CY SEP 30-OCT 04, 2012 CL Karlsruhe, GERMANY DE Beam dynamics; beam focusing; beam transport; linear induction accelerators (LIAs) ID ELECTRON-BEAM AB Flash radiography of large hydrodynamic experiments driven by high explosives is a well-known diagnostic technique in use at many laboratories. The Dual-Axis Radiography for Hydrodynamic Testing (DARHT) facility at Los Alamos produces flash radiographs of large hydrodynamic experiments. Two linear induction accelerators (LIAs) make the bremsstrahlung radiographic source spots for orthogonal views of each test. The 2-kA, 20-MeV Axis-I LIA creates a single 60-ns radiography pulse. The 1.7-kA, 16.5-MeV Axis-II LIA creates up to four radiography pulses by kicking them out of a longer pulse that has a 1.6-mu s flat top. The DARHT LIAs use solenoidal focusing for transport of the beam through the accelerators. The long-pulse Axis-II LIA has 74 accelerating cells, and uses 91 solenoids and 80 pairs of dipoles for focusing, transporting, and steering the beam. The setting of the currents of these 251 magnets is called tuning the accelerator. Tuning is done in two stages. First, the solenoidal focusing magnets are set to values designed to provide a beam with minimal envelope oscillations, and little or no instability growth. Then, steering dipoles are adjusted to minimize the low-frequency motion of the beam centroid and center it at the LIA exit. The design of the focusing tune is computationally intensive. Focusing tune design methods, simulations, and validation are the main topics of this article. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Ekdahl, C (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM cekdahl@lanl.gov NR 26 TC 3 Z9 3 U1 0 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD OCT PY 2013 VL 41 IS 10 SI SI BP 2774 EP 2780 DI 10.1109/TPS.2013.2256933 PN 1 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 238KS UT WOS:000325945900035 ER PT J AU Fisk, WJ AF Fisk, W. J. TI Health benefits of particle filtration SO INDOOR AIR LA English DT Review DE Air cleaning; Allergy; Asthma; Filtration; Particle; Health ID INDOOR AIR-QUALITY; AIRBORNE PARTICLES; VENTILATION SYSTEMS; ALLERGIC RHINITIS; IN-DUCT; CLEANERS; ASTHMA; HOMES; EXPOSURE; CHILDREN AB The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also, reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and asthma health effects; however, many early studies had weak designs. A majority of recent intervention studies employed strong designs and more of these studies report statistically significant improvements in health symptoms or objective health outcomes, particularly for subjects with allergies or asthma. The percentage improvement in health outcomes is typically modest, for example, 7% to 25%. Delivery of filtered air to the breathing zone of sleeping allergic or asthmatic persons may be more consistently effective in improving health than room air filtration. Notable are two studies that report statistically significant improvements, with filtration, in markers that predict future adverse coronary events. From modeling, the largest potential benefits of indoor particle filtration may be reductions in morbidity and mortality from reducing indoor exposures to particles from outdoor air. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Indoor Environm Grp, Berkeley, CA 94720 USA. RP Fisk, WJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Indoor Environm Grp, 1 Cyclotron Rd 90R3058, Berkeley, CA 94720 USA. EM WJFisk@lbl.gov FU US Department of Energy [DE-AC02-05CH11231]; IAQ Scientific Findings Resource Bank; [DW- 89-92337001] FX This study was funded through interagency agreement DW- 89-92337001 between the Indoor Environments Division, Office of Radiation and Indoor Air of the US Environmental Protection Agency (EPA) and the US Department of Energy under contract DE-AC02-05CH11231, to develop an IAQ Scientific Findings Resource Bank (see www.iaqscience.lbl.gov). Conclusions in this paper are those of the authors and not necessarily those of the US EPA. The author thanks Greg Brunner for program management and Mark Mendell, Brett Singer, Pawel Wargocki, Laura Kolb, and Christopher Patkowski for reviewing a draft of a document on which this paper was based. NR 50 TC 24 Z9 26 U1 7 U2 81 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0905-6947 EI 1600-0668 J9 INDOOR AIR JI Indoor Air PD OCT PY 2013 VL 23 IS 5 BP 357 EP 368 DI 10.1111/ina.12036 PG 12 WC Construction & Building Technology; Engineering, Environmental; Public, Environmental & Occupational Health SC Construction & Building Technology; Engineering; Public, Environmental & Occupational Health GA 217TX UT WOS:000324385600002 PM 23397961 ER PT J AU Monazam, ER Breault, RW Siriwardane, R Miller, DD AF Monazam, Esmail R. Breault, Ronald W. Siriwardane, Ranjani Miller, Duane D. TI Thermogravimetric Analysis of Modified Hematite by Methane (CH4) for Chemical-Looping Combustion: A Global Kinetics Mechanism SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID OXYGEN CARRIERS; REACTOR SYSTEM; PARTICLE CIRCULATION; CO2 RECOVERY; IRON-OXIDE; HYDROGEN; NICKEL; COAL; NIO AB Iron oxide (Fe2O3), known in its natural form as hematite, is potentially able to capture CO2 through the chemical-looping combustion (CLC) process. Magnesium (Mg) is an effective methyl-cleaving catalyst, and as such it was combined with hematite to assess any possible enhancement to the kinetic rate of the reduction of Fe2O3 with methane. Therefore, in order to evaluate the effectiveness of Mg as a hematite promoter, the behaviors of Mg-modified hematite samples (hematite-5% Mg(OH)(2)) were assessed for any enhancement to the kinetic rate of the CLC process. The Mg-modified hematite was prepared by hydrothermal synthesis. The reactivity experiments were conducted in a thermogravimetric analyzer using a continuous stream of CH4 (at concentrations of 5, 10, and 20%) at temperatures ranging from 700 to 825 degrees C over 10 oxidation-reduction cycles. The mass spectroscopic analysis of the product gas indicated the presence of CO2, H2O, H-2, and CO in the gaseous product. The kinetic data obtained by isothermal experiments at the reduction step are well fitted by two parallel rate equations. The modified hematite samples showed higher reactivity than the unmodified hematite samples during reduction at all the investigated temperatures. C1 [Breault, Ronald W.; Siriwardane, Ranjani] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Monazam, Esmail R.] PLLC, REM Engn Serv, Morgantown, WV 26505 USA. [Miller, Duane D.] URS Energy & Construct Inc, Morgantown, WV 26505 USA. RP Breault, RW (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM Ronald.breault@netl.doe.gov OI Breault, Ronald/0000-0002-5552-4050 FU Department of Energy through office of Fossil Energy FX The authors acknowledge the Department of Energy for funding the research through the office of Fossil Energy's Gasification Technology and Advanced Research funding programs. Special thanks go to Hanjing Tian and Thomas Simonyi of URS Energy & Construction, Inc. for their assistance with experimental work and data. NR 35 TC 13 Z9 14 U1 8 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 EI 1520-5045 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD OCT PY 2013 VL 52 IS 42 BP 14808 EP 14816 DI 10.1021/ie4024116 PG 9 WC Engineering, Chemical SC Engineering GA 242BQ UT WOS:000326212800009 ER PT J AU Liu, XY Afzal, W Prausnitz, JM AF Liu, Xiangyang Afzal, Waheed Prausnitz, John M. TI Solubilities of Small Hydrocarbons in Tetrabutylphosphonium Bis(2,4,4-trimethylpentyl) Phosphinate and in 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID TEMPERATURE IONIC LIQUIDS; GASES; WATER AB Experimental solubilities are reported for methane, ethane, ethylene, and propane in ionic liquid tetrabutylphosphonium bis(2,4,4-trimethylpentyl) phosphinate [P4444][TMPP] from 313 K to 353 K up to 5 MPa. [P4444][TMPP] shows solubilities for methane, ethane, ethylene, and propane that are appreciably larger than those in other typical ionic liquids. However, unlike a hydrocarbon solvent, [P4444][TMPP] is not flammable at ordinary conditions. Unlike other typical ionic liquids, the solubility for ethane is larger than that for ethylene. Because the viscosity of [P4444][TMPP] is high, we consider a low-viscosity diluent. Therefore, experimental solubilities are also reported for the same solutes in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [EMIM][Tf2N] from 299 K to 354 K up to 4 MPa. Comparison between our results and literature data shows good agreement. C1 [Liu, Xiangyang; Afzal, Waheed; Prausnitz, John M.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Afzal, Waheed; Prausnitz, John M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Liu, Xiangyang] Xi An Jiao Tong Univ, MOE Key Lab Thermofluid Sci & Engn, Xian 710049, Shaanxi, Peoples R China. [Afzal, Waheed] Univ Punjab, Inst Chem Engn & Technol, Lahore 54590, Pakistan. RP Prausnitz, JM (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. EM prausnit@cchem.berkeley.edu OI Afzal, Waheed/0000-0002-2927-0114 FU Environmental Energy Technologies Division of the Lawrence Berkeley National Laboratory FX The authors are grateful to the Environmental Energy Technologies Division of the Lawrence Berkeley National Laboratory for financial support, and to Prof. Scott Lynn, to Dr. Amit Gokhale and to Prof. Alexis Bell and co-workers for general assistance. We are grateful to Prof. Michael Manga (Dept of Earth and Planetary Sciences, University of California, Berkeley) for providing his density meter. NR 17 TC 9 Z9 12 U1 3 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 EI 1520-5045 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD OCT PY 2013 VL 52 IS 42 BP 14975 EP 14978 DI 10.1021/ie402196m PG 4 WC Engineering, Chemical SC Engineering GA 242BQ UT WOS:000326212800026 ER PT J AU Yuan, Y Paunesku, T Liu, WC Chen, S Lai, B Brister, K Vogt, S Woloschak, GE AF Yuan, Y. Paunesku, T. Liu, W. C. Chen, S. Lai, B. Brister, K. Vogt, S. Woloschak, G. E. TI EGFR-Mediated Nuclear Delivery Improves the Genotoxic Effect of Fe3O4@TiO2 Nanoparticles SO INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS LA English DT Meeting Abstract CT 55th Annual Meeting of the American-Society-for-Radiation-Oncology (ASTRO) CY SEP 22-25, 2013 CL Atlanta, GA SP Amer Soc Radiat Oncol C1 [Yuan, Y.; Paunesku, T.; Liu, W. C.; Woloschak, G. E.] Northwestern Univ, Feinberg Sch Med, Chicago, IL 60611 USA. [Chen, S.; Lai, B.; Vogt, S.] Argonne Natl Lab, Argonne, IL 60439 USA. [Brister, K.] Northwestern Synchotron Res Ctr, Argonne, IL USA. RI Paunesku, Tatjana/A-3488-2017; Woloschak, Gayle/A-3799-2017 OI Paunesku, Tatjana/0000-0001-8698-2938; Woloschak, Gayle/0000-0001-9209-8954 NR 0 TC 0 Z9 0 U1 0 U2 13 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0360-3016 EI 1879-355X J9 INT J RADIAT ONCOL JI Int. J. Radiat. Oncol. Biol. Phys. PD OCT 1 PY 2013 VL 87 IS 2 SU S BP S654 EP S655 PG 2 WC Oncology; Radiology, Nuclear Medicine & Medical Imaging SC Oncology; Radiology, Nuclear Medicine & Medical Imaging GA 219JY UT WOS:000324503602380 ER PT J AU Baled, HO Tapriyal, D Morreale, BD Soong, Y Gamwo, I Krukonis, V Bamgbade, BA Wu, Y McHugh, MA Burgess, WA Enick, RM AF Baled, Hseen O. Tapriyal, Deepak Morreale, Bryan D. Soong, Yee Gamwo, Isaac Krukonis, Val Bamgbade, Babatunde A. Wu, Yue McHugh, Mark A. Burgess, Ward A. Enick, Robert M. TI Exploratory Characterization of a Perfluoropolyether Oil as a Possible Viscosity Standard at Deepwater Production Conditions of 533 K and 241 MPa SO INTERNATIONAL JOURNAL OF THERMOPHYSICS LA English DT Article DE Couette rheometer; Deepwater viscosity standard; High pressure; Krytox (R) oil; Rolling-ball viscometer ID ROLLING-BALL VISCOMETER; EXPERIMENTAL DENSITY; TEMPERATURES; PRESSURES AB DuPont's perfluoropolyether oil Krytox (R) GPL 102 is a promising candidate for the high-temperature, high-pressure Deepwater viscosity standard (DVS). The preferred DVS is a thermally stable liquid that exhibits a viscosity of roughly 20mPa center dot s at 533 K and 241 MPa; a viscosity value representative of light oils found in ultra-deep formations beneath the deep waters of the Gulf of Mexico. A windowed rolling-ball viscometer designed by our team is used to determine the Krytox (R) GPL 102 viscosity at pressures to 245 MPa and temperatures of 311 K, 372 K, and 533 K. At 533 K and 243 MPa, the Krytox (R) GPL 102 viscosity is (27.2 +/- 1.3)mPa center dot s. The rolling-ball viscometer viscosity results for Krytox (R) GPL 102 are correlated with an empirical 10-parameter surface fitting function that yields an MAPD of 3.9%. A Couette rheometer is also used to measure the Krytox (R) GPL 102 viscosity, yielding a value of (26.2 +/- 1)mPa center dot s at 533 K and 241 MPa. The results of this exploratory study suggest that Krytox (R) 102 is a promising candidate for the DVS, primarily because this fluoroether oil is thermally stable and exhibits a viscosity closer to the targeted value of 20mPa center dot s at 533 K and 241 MPa than any other fluid reported to date. Nonetheless, further studies must be conducted by other researcher groups using various types of viscometers and rheometers on samples of Krytox (R) GPL 102 from the same lot to further establish the properties of Krytox (R) GPL 102. C1 [Baled, Hseen O.; Tapriyal, Deepak; Morreale, Bryan D.; Soong, Yee; Gamwo, Isaac; Bamgbade, Babatunde A.; Wu, Yue; McHugh, Mark A.; Burgess, Ward A.; Enick, Robert M.] US DOE, Natl Energy Technol Lab, Off Res & Dev, Pittsburgh, PA 15236 USA. [Baled, Hseen O.; Enick, Robert M.] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. [Tapriyal, Deepak] URS, Pittsburgh, PA 15236 USA. [Krukonis, Val] Phasex Corp, Lawrence, MA 01843 USA. [Bamgbade, Babatunde A.; Wu, Yue; McHugh, Mark A.] Virginia Commonwealth Univ, Dept Chem & Life Sci Engn, Richmond, VA 23284 USA. RP Enick, RM (reprint author), Univ Pittsburgh, Dept Chem & Petr Engn, 1249 Benedum Engn Hall,3700 OHara St, Pittsburgh, PA 15261 USA. EM rme@pitt.edu FU Strategic Center for Natural Gas and Oil under RES [DE-FE0004000] FX This technical effort was performed in support of the National Energy Technology Laboratory's Office of Research and Development support of the Strategic Center for Natural Gas and Oil under RES contract DE-FE0004000, which supported the doctoral studies of Hseen Baled [16]. We would like to express our gratitude for the numerous insights and helpful suggestions provided by Arno Laesecke of the National Institute of Standards and Technology (NIST), Thermophysical Properties Division, Boulder, CO, and Scott Bair of the George W. Woodruff School of Mechanical Engineering, Georgia Tech, Atlanta, GA. Laesecke and Bair were the first to suggest that DuPont's Krytox (R) perfluoropolyether oils are excellent DVS candidates. NR 24 TC 12 Z9 12 U1 1 U2 14 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0195-928X EI 1572-9567 J9 INT J THERMOPHYS JI Int. J. Thermophys. PD OCT PY 2013 VL 34 IS 10 BP 1845 EP 1864 DI 10.1007/s10765-013-1500-5 PG 20 WC Thermodynamics; Chemistry, Physical; Mechanics; Physics, Applied SC Thermodynamics; Chemistry; Mechanics; Physics GA 241TK UT WOS:000326190700001 ER PT J AU Pezzini, P Tucker, D Traverso, A AF Pezzini, Paolo Tucker, David Traverso, Alberto TI Avoiding Compressor Surge During Emergency Shutdown Hybrid Turbine Systems SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article AB A new emergency shutdown procedure for a direct-fired fuel cell turbine hybrid power system was evaluated using a hardware-based simulation of an integrated gasifier/fuel cell/turbine hybrid cycle (IGFC), implemented through the Hybrid Performance (Hyper) project at the National Energy Technology Laboratory, U.S. Department of Energy (NETL). The Hyper facility is designed to explore dynamic operation of hybrid systems and quantitatively characterize such transient behavior. It is possible to model, test, and evaluate the effects of different parameters on the design and operation of a gasifier/fuel cell/gas turbine hybrid system and provide a means of quantifying risk mitigation strategies. An open-loop system analysis regarding the dynamic effect of bleed air, cold air bypass, and load bank is presented in order to evaluate the combination of these three main actuators during emergency shutdown. In the previous Hybrid control system architecture, catastrophic compressor failures were observed when the fuel and load bank were cut off during emergency shutdown strategy. Improvements were achieved using a nonlinear fuel valve ramp down when the load bank was not operating. Experiments in load bank operation show compressor surge and stall after emergency shutdown activation. The difficulties in finding an optimal compressor and cathode mass flow for mitigation of surge and stall using these actuators are illustrated. C1 [Pezzini, Paolo; Traverso, Alberto] Univ Genoa, DIME, TPG, Genoa, Italy. [Tucker, David] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Pezzini, P (reprint author), Univ Genoa, DIME, TPG, Genoa, Italy. EM paolo.pezzini@unige.it; david.tucker@netl.doe.gov; alberto.traverso@unige.it FU U.S. Department of Energy, Advance Research program at NETL FX This work has been developed in collaboration with both Woodward Industrial Controls (Woodward) and the Thermochemical Power Group of the University of Genoa (Italy) and was funded through the U.S. Department of Energy, Advance Research program at NETL. NR 12 TC 10 Z9 10 U1 1 U2 4 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 EI 1528-8919 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD OCT PY 2013 VL 135 IS 10 AR 102602 DI 10.1115/1.4025036 PG 10 WC Engineering, Mechanical SC Engineering GA 241IH UT WOS:000326159400015 ER PT J AU Ren, F Wang, JJA DiPaolo, BP AF Ren, Fei Wang, John Jy-An DiPaolo, Beverly P. TI Thermal Expansion Study and Microstructural Characterization of High-Performance Concretes SO JOURNAL OF MATERIALS IN CIVIL ENGINEERING LA English DT Article DE High-strength concrete; Thermal factors; Microstructures; High-performance concrete; Thermal analysis; Microstructure; SEM AB Ultra-high performance concrete (UHPC) is a family of emerging materials for building and construction applications. Behavior of UHPCs at high temperature is very important to their reliability and safety. In the current study, two UHPC materials were studied using the thermomechanical analysis (TMA) technique between room temperature and 800 degrees C. Both reversible and irreversible phase transformations were observed from the TMA results, which were likely attributable to the alpha-beta quartz transformation and the dehydroxylation transitions, respectively. Thermal expansion coefficients exhibited significant variations in different temperature regimes. Postmortem scanning electron microscopy (SEM) examinations revealed extensive cracking in the heated samples. In addition, microporosities were observed in the calcium-silicate-hydrate (C-S-H) phase as a result of phase changes during heating. C1 [Ren, Fei; Wang, John Jy-An] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [DiPaolo, Beverly P.] US Army Corps Engineers, Engineer Res & Dev Ctr, Vicksburg, MS 39180 USA. RP Ren, F (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM renf@ornl.gov OI Wang, Jy-An/0000-0003-2402-3832 FU Oak Ridge National Laboratory [DE-AC05-00OR22725]; Department of Homeland Security, Science and Technology Directorate, Infrastructure Protection and Disaster Management Division; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program FX This research was carried out at the Oak Ridge National Laboratory under contract DE-AC05-00OR22725 with UT-Battelle, LLC. This work was sponsored by the Department of Homeland Security, Science and Technology Directorate, Infrastructure Protection and Disaster Management Division: Ms. Mila Kennett, Program Manager. Permission to publish was granted by the Director, Geotechnical and Structures Laboratory, ERDC. Approved for public release; distribution is unlimited. The characterization equipment used in this study was managed by the HTML User Program, sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. NR 15 TC 0 Z9 0 U1 2 U2 20 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0899-1561 EI 1943-5533 J9 J MATER CIVIL ENG JI J. Mater. Civ. Eng. PD OCT 1 PY 2013 VL 25 IS 10 BP 1574 EP 1578 DI 10.1061/(ASCE)MT.1943-5533.0000693 PG 5 WC Construction & Building Technology; Engineering, Civil; Materials Science, Multidisciplinary SC Construction & Building Technology; Engineering; Materials Science GA 218XK UT WOS:000324465800026 ER PT J AU Kazin, EA Sanchez, AG Cuesta, AJ Beutler, F Chuang, CH Eisenstein, DJ Manera, M Padmanabhan, N Percival, WJ Prada, F Ross, AJ Seo, HJ Tinker, J Tojeiro, R Xu, XY Brinkmann, J Joel, B Nichol, RC Schlegel, DJ Schneider, DP Thomas, D AF Kazin, Eyal A. Sanchez, Ariel G. Cuesta, Antonio J. Beutler, Florian Chuang, Chia-Hsun Eisenstein, Daniel J. Manera, Marc Padmanabhan, Nikhil Percival, Will J. Prada, Francisco Ross, Ashley J. Seo, Hee-Jong Tinker, Jeremy Tojeiro, Rita Xu, Xiaoying Brinkmann, J. Joel, Brownstein Nichol, Robert C. Schlegel, David J. Schneider, Donald P. Thomas, Daniel TI The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measuring H(z) and D-A(z) at z=0.57 with clustering wedges SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE cosmological parameters; distance scale; large-scale structure of Universe ID DIGITAL SKY SURVEY; LUMINOUS RED GALAXIES; LARGE-SCALE STRUCTURE; DARK ENERGY SURVEY; OBSERVATIONS COSMOLOGICAL INTERPRETATION; 2-POINT CORRELATION-FUNCTION; ACOUSTIC-OSCILLATIONS; POWER-SPECTRUM; DATA RELEASE; REDSHIFT-SPACE AB We analyse the 2D correlation function of the Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey (BOSS) CMASS sample of massive galaxies of the ninth data release to measure cosmic expansion H and the angular diameter distance D-A at a mean redshift of < z > = 0.57. We apply, for the first time, a new correlation function technique called clustering wedges. xi(Delta mu) (s). Using a physically motivated model, the anisotropic baryonic acoustic feature in the galaxy sample is detected at a significance level of 4.7 sigma compared to a featureless model. The baryonic acoustic feature is used to obtain model-independent constraints cz/H/r(s) = 12.28 +/- 0.82 (6.7 percent accuracy) and D-A/r(s) = 9.05 +/- 0.27 (3.0 per cent) with a correlation coefficient of -0.5, where r(s) is the sound horizon scale at the end of the baryonic drag era. We conduct thorough tests on the data and 600 simulated realizations, finding robustness of the results regardless of the details of the analysis method. Combining this with r(s) constraints from the cosmic microwave background, we obtain H(0.57) = 90.8 +/- 6.2 km s(-1) Mpc(-1) and D-A(0.57) = 1386 +/- 45 Mpc. We use simulations to forecast results of the final BOSS CMASS data set. We apply the reconstruction technique on the simulations demonstrating that the sharpening of the anisotropic baryonic acoustic feature should improve the detection as well as tighten constraints of H and D-A by similar to 30 per cent on average. C1 [Kazin, Eyal A.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Kazin, Eyal A.] ARC Ctr Excellence All Sky Astrophys CAASTRO, Redfern, NSW 2016, Australia. [Sanchez, Ariel G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Cuesta, Antonio J.; Padmanabhan, Nikhil] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Beutler, Florian; Seo, Hee-Jong; Schlegel, David J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Chuang, Chia-Hsun; Prada, Francisco] Univ Autonoma Madrid, Inst Fis Teor UAM CSIC, E-28049 Madrid, Spain. [Eisenstein, Daniel J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Manera, Marc; Percival, Will J.; Ross, Ashley J.; Tojeiro, Rita; Nichol, Robert C.; Thomas, Daniel] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Prada, Francisco] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [Tinker, Jeremy] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Xu, Xiaoying] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Brinkmann, J.] Apache Point Observ, Sunspot, NM 88349 USA. [Joel, Brownstein] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Schneider, Donald P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. RP Kazin, EA (reprint author), Swinburne Univ Technol, Ctr Astrophys & Supercomp, POB 218, Hawthorn, Vic 3122, Australia. EM eyalkazin@gmail.com FU Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) [CE110001020]; Trans-regional Collaborative Research Centre TR33 of the German Research Foundation (DFG); Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy Office of Science FX It is a pleasure to thank Chris Blake for his insight. We also thank David Kirkby, Felipe Marin, Cameron McBride and Uros Seljak for useful discussions. EK is supported by the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020. AGS acknowledges support by the Trans-regional Collaborative Research Centre TR33 'The Dark Universe' of the German Research Foundation (DFG). EAK thanks Erin Sheldon for software used here. Numerical computations for the PTHalos mocks were done on the Sciama High Performance Compute (HPC) cluster which is supported by the ICG, SEPNet and the University of Portsmouth. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation and the US Department of Energy Office of Science. The SDSS-III website is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington and Yale University. NR 92 TC 28 Z9 28 U1 0 U2 11 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT PY 2013 VL 435 IS 1 BP 64 EP 86 DI 10.1093/mnras/stt1261 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 236NL UT WOS:000325804300005 ER PT J AU Zaks, J Amarnath, K Sylak-Glassman, EJ Fleming, GR AF Zaks, Julia Amarnath, Kapil Sylak-Glassman, Emily J. Fleming, Graham R. TI Models and measurements of energy-dependent quenching SO PHOTOSYNTHESIS RESEARCH LA English DT Review DE Non-photochemical quenching; Energy-dependent quenching; Fluorescence yield; Fluorescence lifetime ID LIGHT-HARVESTING COMPLEX; PHOTOSYSTEM-II ANTENNA; CHLOROPHYLL ALPHA-FLUORESCENCE; TIME-RESOLVED FLUORESCENCE; PIGMENT-BINDING PROTEIN; IN-VIVO; THYLAKOID MEMBRANE; HIGHER-PLANTS; GREEN PLANTS; DELTA-PH AB Energy-dependent quenching (qE) in photosystem II (PSII) is a pH-dependent response that enables plants to regulate light harvesting in response to rapid fluctuations in light intensity. In this review, we aim to provide a physical picture for understanding the interplay between the triggering of qE by a pH gradient across the thylakoid membrane and subsequent changes in PSII. We discuss how these changes alter the energy transfer network of chlorophyll in the grana membrane and allow it to switch between an unquenched and quenched state. Within this conceptual framework, we describe the biochemical and spectroscopic measurements and models that have been used to understand the mechanism of qE in plants with a focus on measurements of samples that perform qE in response to light. In addition, we address the outstanding questions and challenges in the field. One of the current challenges in gaining a full understanding of qE is the difficulty in simultaneously measuring both the photophysical mechanism of quenching and the physiological state of the thylakoid membrane. We suggest that new experimental and modeling efforts that can monitor the many processes that occur on multiple timescales and length scales will be important for elucidating the quantitative details of the mechanism of qE. C1 [Zaks, Julia; Amarnath, Kapil; Sylak-Glassman, Emily J.; Fleming, Graham R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Zaks, Julia; Fleming, Graham R.] Univ Calif Berkeley, Grad Grp Appl Sci & Technol, Berkeley, CA 94720 USA. [Amarnath, Kapil; Sylak-Glassman, Emily J.; Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Fleming, GR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM grfleming@lbl.gov FU Office of Science, Office of Basic Energy Sciences of the US Department of Energy [DEAC02-05CH11231]; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy [DE-AC03-76SF000098]; National Science Foundation FX We thank Matt Brooks, Alizee Malnoe, and Anna Schneider for helpful comments on the manuscript and Doran Bennett and Eleonora De Re for helpful discussions. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract DEAC02-05CH11231 and the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy through Grant DE-AC03-76SF000098. EJ S-G was supported by a National Science Foundation Graduate Research Fellowship. NR 121 TC 26 Z9 27 U1 3 U2 45 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0166-8595 EI 1573-5079 J9 PHOTOSYNTH RES JI Photosynth. Res. PD OCT PY 2013 VL 116 IS 2-3 SI SI BP 389 EP 409 DI 10.1007/s11120-013-9857-7 PG 21 WC Plant Sciences SC Plant Sciences GA 237DP UT WOS:000325848800020 PM 23793348 ER PT J AU Neary, VS Gunawan, B Sale, DC AF Neary, V. S. Gunawan, B. Sale, D. C. TI Turbulent inflow characteristics for hydrokinetic energy conversion in rivers SO RENEWABLE & SUSTAINABLE ENERGY REVIEWS LA English DT Review DE Open channel flows; Turbulence characterization; Hydrokinetic turbines; Resource assessment ID OPEN-CHANNEL FLOW AB Marine and hydrokinetic technologies, which convert kinetic energy from currents in open-channel flows to electricity, require inflow characteristics (e.g. mean velocity and turbulence intensity profiles) for their siting, design, and evaluation. The present study reviews mean velocity and turbulence intensity profiles reported in the literature for open-channel flows to gain a better understanding of the range of current magnitudes and longitudinal turbulence intensities that these technologies may be exposed to. We compare 47 measured vertical profiles of mean current velocity and longitudinal turbulence intensity (normalized by the shear velocity) that have been reported for medium-large rivers, a large canal, and laboratory flumes with classical models developed for turbulent flat plate boundary layer flows. The comparison suggests that a power law (with exponent, 1/a = 1/6) and a semi-theoretical exponential decay model can be used to provide first-order approximations of the mean velocity and turbulence intensity profiles in rivers suitable for current energy conversion. Over the design life of a current energy converter, these models can be applied to examine the effects of large spatiotemporal variations of river flow depth on inflow conditions acting over the energy capture area. Significant engineering implications on current energy converter structural loads, annual energy production, and cost of energy arise due to these spatiotemporal variations in the mean velocity, turbulence intensity, hydrodynamic force, and available power over the energy capture area. Published by Elsevier Ltd. C1 [Neary, V. S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Gunawan, B.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Sale, D. C.] Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA. RP Neary, VS (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM vsneary@sandia.gov FU U.S. Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy, Wind and Water Power Technologies Program; DOE [DE-AC05-00OR22725] FX This research was supported by the U.S. Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy, Wind and Water Power Technologies Program. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for DOE under contract DE-AC05-00OR22725. We thank Bob Holmes of the United States Geological Survey for providing velocity and turbulence measurement data he collected on the Missouri River, and Ed Lovelace of Free Flow Power, LLC, who provided information on turbine design locations at the Scotlandville Bend, Mississippi River site. Discussions with Leonardo P. Chamorro, assistant professor at the University of Illinois, motivated the detailed derivations in Appendix 1. The final result is well known in the wind energy research community, but we were unable to find any published derivation to cite. NR 18 TC 6 Z9 6 U1 1 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-0321 J9 RENEW SUST ENERG REV JI Renew. Sust. Energ. Rev. PD OCT PY 2013 VL 26 BP 437 EP 445 DI 10.1016/j.rser.2013.05.033 PG 9 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA 236YV UT WOS:000325836300033 ER PT J AU Parker, D Singh, DJ AF Parker, David Singh, David J. TI Alkaline earth lead and tin compounds Ae(2)Pb, Ae(2)Sn, Ae = Ca, Sr, Ba, as thermoelectric materials SO SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS LA English DT Article DE thermoelectric; electronic transport ID PERFORMANCE BULK THERMOELECTRICS AB We present a detailed theoretical study of three alkaline earth compounds Ca2Pb, Sr2Pb and Ba2Pb, which have undergone little previous study, calculating electronic band structures and Boltzmann transport and bulk moduli using density functional theory. We also study the corresponding tin compounds Ca2Sn, Sr2Sn and Ba2Sn. We find that these are all narrow band gap semiconductors with an electronic structure favorable for thermoelectric performance, with substantial thermopowers for the lead compounds at temperature ranges from 300 to 800 K. For the lead compounds, we further find very low calculated bulk moduli-roughly half of the values for the lead chalcogenides, suggestive of soft phonons and hence low lattice thermal conductivity. All these facts indicate that these materials merit experimental investigation as potential high performance thermoelectrics. We find good potential for thermoelectric performance in the environmentally friendly stannide materials, particularly at high temperature. C1 [Parker, David; Singh, David J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Parker, D (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM parkerds@ornl.gov FU US Department of Energy, EERE, Vehicle Technologies, Propulsion Materials Program FX This research was supported by the US Department of Energy, EERE, Vehicle Technologies, Propulsion Materials Program. NR 30 TC 8 Z9 8 U1 4 U2 33 PU NATL INST MATERIALS SCIENCE PI IBARAKI PA NATL INST MATERIALS SCIENCE, 1-2-1 SENGEN, TSUKUBA-CITY, IBARAKI, 305-0047, JAPAN SN 1468-6996 J9 SCI TECHNOL ADV MAT JI Sci. Technol. Adv. Mater. PD OCT PY 2013 VL 14 IS 5 AR 055003 DI 10.1088/1468-6996/14/5/055003 PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA 241LE UT WOS:000326167600007 PM 27877610 ER PT J AU Karimabadi, H Roytershteyn, V Daughton, W Liu, YH AF Karimabadi, Homa Roytershteyn, Vadim Daughton, William Liu, Yi-Hsin TI Recent Evolution in the Theory of Magnetic Reconnection and Its Connection with Turbulence SO SPACE SCIENCE REVIEWS LA English DT Review DE Magnetic; Reconnection; Turbulence ID KINETIC SIMULATIONS; SOLAR-WIND; FIELDS; RESISTIVITY; CHALLENGE; MECHANISM; TRANSPORT; PLASMAS; LINES AB The concept of reconnection is found in many fields of physics with the closest analogue to magnetic reconnection being the reconnection of vortex tubes in hydrodynamics. In plasmas, magnetic reconnection plays an important role in release of energy associated with the magnetic shear into particle energy. Although most studies to date have focused on 2D reconnection, the availability of 3D petascale kinetic simulations have brought the complexity of 3D reconnection to the forefront in collisionless reconnection studies. Here we briefly review the latest advances in 2D and compare and contrast the results with recent 3D studies that address role of anomalous transport in reconnection, effects of turbulence on the rate and structure, among others. Another outcome of recent research is the realization of a deeper link between turbulence and reconnection where the common denominator is the generic formation of electron scale sheets which dissipate the energy through reconnection. Finally, we close the review by listing some of the major outstanding problems in reconnection physics. C1 [Karimabadi, Homa] Univ Calif San Diego, La Jolla, CA 92093 USA. [Karimabadi, Homa; Roytershteyn, Vadim] SciberQuest Inc, Del Mar, CA 92014 USA. [Daughton, William; Liu, Yi-Hsin] Los Alamos Natl Lab, Los Alamos, NM USA. RP Karimabadi, H (reprint author), Univ Calif San Diego, La Jolla, CA 92093 USA. EM homakar@gmail.com; vroytersh@gmail.com; daughton@lanl.gov; yhliu10@gmail.com RI Daughton, William/L-9661-2013; OI Roytershteyn, Vadim/0000-0003-1745-7587 FU NSF through EAGER [1105084, 1202152]; NASA's grant [NNH11CC65C]; DOE [DE-AC05-00OR22725]; NSF [OCI 07-25070]; state of Illinois FX This work was partially supported by NSF through EAGER 1105084 and 1202152 and by NASA's NNH11CC65C grant. Simulations were performed on Kraken provided by the NSF at NICS, on Pleiades provided by NASA's HEC Program, and resources of the National Center for Computational Sciences at Oak Ridge National Laboratory (Jaguar/Lens), which is supported by DOE under Contract No. DE-AC05-00OR22725. Some of the research and simulations were part of the Blue Waters sustained-petascale computing project, which is supported by the NSF (OCI 07-25070) and the state of Illinois. Visualization and analysis were performed on Nautilus and Longhorn systems using ParaView and visualization software developed by the NICS RDAV group. We especially thank Burlen Loring for help with the visualization and preparation of the figures. We acknowledge useful conversations with A. Bhattacharjee, J. Birn, Paul Cassak, L. Chacon, M. Hesse, A. Lazarian, N. F. Loureiro, W. Matthaeus, S. Servidio, and J. Scudder. We thank A. Boozer for comments on an earlier draft, A. Le for discussions and preparation of one of the figures, and for the referee for many useful comments and suggestions that led to a significant improvement in the manuscript. NR 77 TC 25 Z9 25 U1 3 U2 38 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD OCT PY 2013 VL 178 IS 2-4 BP 307 EP 323 DI 10.1007/s11214-013-0021-7 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 240PZ UT WOS:000326110700009 ER PT J AU Brown, MR Browning, PK Dieckmann, ME Furno, I Intrator, TP AF Brown, M. R. Browning, P. K. Dieckmann, M. E. Furno, I. Intrator, T. P. TI Microphysics of Cosmic Plasmas: Hierarchies of Plasma Instabilities from MHD to Kinetic SO SPACE SCIENCE REVIEWS LA English DT Review DE MHD; Turbulence; Reconnection; Relaxation; Instability ID ION-CYCLOTRON INSTABILITY; FORCED MAGNETIC RECONNECTION; TIED CORONAL LOOPS; KINK INSTABILITY; SPHEX SPHEROMAK; ENERGY-RELEASE; CURRENT SHEETS; NONLINEAR EVOLUTION; ELECTRIC-FIELDS; CURRENT DRIVE AB In this article, we discuss the idea of a hierarchy of instabilities that can rapidly couple the disparate scales of a turbulent plasma system. First, at the largest scale of the system, L, current carrying flux ropes can undergo a kink instability. Second, a kink instability in adjacent flux ropes can rapidly bring together bundles of magnetic flux and drive reconnection, introducing a new scale of the current sheet width, a"", perhaps several ion inertial lengths (delta (i) ) across. Finally, intense current sheets driven by reconnection electric fields can destabilize kinetic waves such as ion cyclotron waves as long as the drift speed of the electrons is large compared to the ion thermal speed, v (D) a parts per thousand << v (i) . Instabilities such as these can couple MHD scales to kinetic scales, as small as the proton Larmor radius, rho (i) . C1 [Brown, M. R.] Swarthmore Coll, Dept Phys & Astron, Swarthmore, PA 19081 USA. [Browning, P. K.] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Dieckmann, M. E.] Linkoping Univ, Dept Sci & Technol ITN, S-60174 Norrkoping, Sweden. [Furno, I.] Ecole Polytech Fed Lausanne, Ctr Rech Phys Plasmas, CRPP, Lausanne, Switzerland. [Intrator, T. P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Brown, MR (reprint author), Swarthmore Coll, Dept Phys & Astron, Swarthmore, PA 19081 USA. EM doc@swarthmore.edu RI Dieckmann, Mark Eric/C-8591-2009 OI Dieckmann, Mark Eric/0000-0003-4055-0552 NR 107 TC 3 Z9 3 U1 1 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD OCT PY 2013 VL 178 IS 2-4 BP 357 EP 383 DI 10.1007/s11214-013-0005-7 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 240PZ UT WOS:000326110700011 ER PT J AU Kane, M Krafcik, K AF Kane, Marie Krafcik, Karen TI Nanostructured soluble conducting polyaniline produced by emulsion polymerization SO SYNTHETIC METALS LA English DT Article DE Polyaniline; Conducting polymer; Dopants; Morphology ID AQUEOUS DISPERSIONS; SULFONIC-ACID; MORPHOLOGY AB Conducting polymers, such as the emeraldine salt form of polyaniline, have many industrial applications due to high conductivity and environmental stability. However, the traditional method of synthesis yields an insoluble powder that is difficult to process. Here, an emulsion synthesis is used to produce a soluble conducting form of polyaniline and the effects of both dopant and oxidant on material conductivity are investigated. The results of this study suggest improvements in the emulsion polymerization pathway, as well as provide a way to predict conductivity of synthesized conductive PANi using multiple linear regression analysis. A model is suggested taking into account both the dopant and oxidant variables, which have been shown to have a significant effect on the overall conductivity of the material. (C) 2013 Elsevier B.V. All rights reserved. C1 [Kane, Marie; Krafcik, Karen] Sandia Natl Labs, Dept Chem Mat, Livermore, CA 94551 USA. RP Kane, M (reprint author), Sandia Natl Labs, POB 969,MS 9403, Livermore, CA 94551 USA. EM mkane@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors acknowledge M. Hekmaty for high resolution TEM images and J. Chames for SEM images. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 19 TC 6 Z9 6 U1 1 U2 28 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0379-6779 J9 SYNTHETIC MET JI Synth. Met. PD OCT 1 PY 2013 VL 181 BP 129 EP 135 DI 10.1016/j.synthmet.2013.08.021 PG 7 WC Materials Science, Multidisciplinary; Physics, Condensed Matter; Polymer Science SC Materials Science; Physics; Polymer Science GA 239EG UT WOS:000326004800020 ER PT J AU Reiner, A Isacoff, EY AF Reiner, Andreas Isacoff, Ehud Y. TI The Brain Prize 2013: the optogenetics revolution SO TRENDS IN NEUROSCIENCES LA English DT Editorial Material ID GREEN-ALGAE; NEURAL ACTIVITY; OPTICAL CONTROL; REMOTE-CONTROL; ION CHANNELS; ACTIVATION; NEURONS; CHANNELRHODOPSIN-2; RECEPTORS; RESPONSES AB The 2013 Grete Lundbeck European Brain Research Prize was awarded to Ernst Bamberg, Edward Boyden, Karl Deisseroth, Peter Hegemann, Gero Miesenbock, and Georg Nagel 'for their invention and refinement of optogenetics'. Why optogenetics? And why this sextet? To appreciate why, we turn first to some of the core questions of neuroscience and the technical difficulties that long obstructed their resolution. C1 [Reiner, Andreas; Isacoff, Ehud Y.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Reiner, Andreas; Isacoff, Ehud Y.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Isacoff, EY (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM ehud@berkeley.edu RI Reiner, Andreas/E-4897-2011 OI Reiner, Andreas/0000-0003-0802-7278 FU NEI NIH HHS [PN2EY018241] NR 15 TC 7 Z9 9 U1 2 U2 28 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0166-2236 J9 TRENDS NEUROSCI JI Trends Neurosci. PD OCT PY 2013 VL 36 IS 10 BP 557 EP 560 DI 10.1016/j.tins.2013.08.005 PG 4 WC Neurosciences SC Neurosciences & Neurology GA 239ZE UT WOS:000326063700002 PM 24054067 ER PT J AU Gunn, JP Barron, JL Bowman, BA Merritt, RK Cogswell, ME Angell, SY Bauer, UE Frieden, TR AF Gunn, Janelle P. Barron, Jessica L. Bowman, Barbara A. Merritt, Robert K. Cogswell, Mary E. Angell, Sonia Y. Bauer, Ursula E. Frieden, Thomas R. TI Sodium Reduction Is a Public Health Priority: Reflections on the Institute of Medicine's Report, Sodium Intake in Populations: Assessment of Evidence SO AMERICAN JOURNAL OF HYPERTENSION LA English DT Review ID BLOOD-PRESSURE; DIETARY-SODIUM; UNITED-STATES; DASH DIET; HYPERTENSION; EXCRETION C1 [Gunn, Janelle P.; Bowman, Barbara A.; Merritt, Robert K.; Cogswell, Mary E.; Bauer, Ursula E.] Ctr Dis Control & Prevent, Natl Ctr Chron Dis Prevent & Hlth Promot, Atlanta, GA 30333 USA. [Barron, Jessica L.] Ctr Dis Control & Prevent, Natl Ctr Chron Dis Prevent & Hlth Promot, Oak Ridge Inst Sci & Educ Fellow, Atlanta, GA USA. [Angell, Sonia Y.] Ctr Dis Control & Prevent, Ctr Global Hlth, Atlanta, GA USA. [Frieden, Thomas R.] Ctr Dis Control & Prevent, Atlanta, GA USA. RP Gunn, JP (reprint author), Ctr Dis Control & Prevent, Natl Ctr Chron Dis Prevent & Hlth Promot, Atlanta, GA 30333 USA. EM bfy2@cdc.gov NR 19 TC 16 Z9 16 U1 4 U2 10 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0895-7061 EI 1941-7225 J9 AM J HYPERTENS JI Am. J. Hypertens. PD OCT PY 2013 VL 26 IS 10 BP 1178 EP 1180 DI 10.1093/ajh/hpt143 PG 3 WC Peripheral Vascular Disease SC Cardiovascular System & Cardiology GA 239TF UT WOS:000326047700002 PM 24042543 ER PT J AU Meskhidze, N Petters, MD Tsigaridis, K Bates, T O'Dowd, C Reid, J Lewis, ER Gantt, B Anguelova, MD Bhave, PV Bird, J Callaghan, AH Ceburnis, D Chang, R Clarke, A de Leeuw, G Deane, G DeMott, PJ Elliot, S Facchini, MC Fairall, CW Hawkins, L Hu, YX Hudson, JG Johnson, MS Kaku, KC Keene, WC Kieber, DJ Long, MS Martensson, M Modini, RL Osburn, CL Prather, KA Pszenny, A Rinaldi, M Russell, LM Salter, M Sayer, AM Smirnov, A Suda, SR Toth, TD Worsnop, DR Wozniak, A Zorn, SR AF Meskhidze, Nicholas Petters, Markus D. Tsigaridis, Kostas Bates, Tim O'Dowd, Colin Reid, Jeff Lewis, Ernie R. Gantt, Brett Anguelova, Magdalena D. Bhave, Prakash V. Bird, James Callaghan, Adrian H. Ceburnis, Darius Chang, Rachel Clarke, Antony de Leeuw, Gerrit Deane, Grant DeMott, Paul J. Elliot, Scott Facchini, Maria Cristina Fairall, Chris W. Hawkins, Lelia Hu, Yongxiang Hudson, James G. Johnson, Matthew S. Kaku, Kathleen C. Keene, William C. Kieber, David J. Long, Michael S. Martensson, Monica Modini, Rob L. Osburn, Chris L. Prather, Kimberly A. Pszenny, Alex Rinaldi, Matteo Russell, Lynn M. Salter, Matthew Sayer, Andrew M. Smirnov, Alexander Suda, Sarah R. Toth, Travis D. Worsnop, Douglas R. Wozniak, Andrew Zorn, Soeren R. TI Production mechanisms, number concentration, size distribution, chemical composition, and optical properties of sea spray aerosols SO ATMOSPHERIC SCIENCE LETTERS LA English DT Article DE sea spray aerosol; source function; chemical composition; number concentration; optical properties C1 [Meskhidze, Nicholas; Petters, Markus D.; Gantt, Brett; Johnson, Matthew S.; Osburn, Chris L.; Suda, Sarah R.] N Carolina State Univ, Raleigh, NC 27695 USA. [Tsigaridis, Kostas] Columbia Univ, New York, NY USA. [Tsigaridis, Kostas] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Bates, Tim] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA. [O'Dowd, Colin; Callaghan, Adrian H.; Ceburnis, Darius] Natl Univ Ireland, Galway, Ireland. [Reid, Jeff; Anguelova, Magdalena D.; Kaku, Kathleen C.] Naval Res Lab, Washington, DC USA. [Lewis, Ernie R.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Bhave, Prakash V.] US EPA, Res Triangle Pk, NC USA. [Bird, James] Boston Univ, Boston, MA 02215 USA. [Callaghan, Adrian H.; Modini, Rob L.] Scripps Inst Oceanog, San Diego, CA USA. [Chang, Rachel; Long, Michael S.] Harvard Univ, Cambridge, MA 02138 USA. [Clarke, Antony] Univ Hawaii Manoa, Honolulu, HI 96822 USA. [de Leeuw, Gerrit] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland. [de Leeuw, Gerrit] Univ Helsinki, Deptartment Phys, Helsinki, Finland. [Deane, Grant; Prather, Kimberly A.; Russell, Lynn M.] Univ Calif San Diego, San Diego, CA 92103 USA. [DeMott, Paul J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Elliot, Scott] Los Alamos Natl Lab, Los Alamos, NM USA. [Facchini, Maria Cristina; Rinaldi, Matteo] CNR, Inst Atmospher Sci & Climate, Bologna, Italy. [Fairall, Chris W.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Hawkins, Lelia] Harvey Mudd Coll, Claremont, CA 91711 USA. [Hu, Yongxiang] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Hudson, James G.] Univ Nevada, Desert Res Inst, Reno, NV 89506 USA. [Johnson, Matthew S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Keene, William C.] Univ Virginia, Charlottesville, VA USA. [Kieber, David J.] SUNY, New York, NY USA. [Martensson, Monica] Uppsala Univ, Uppsala, Sweden. [Pszenny, Alex] Univ New Hampshire, Durham, NH 03824 USA. [Salter, Matthew] Stockholm Univ, S-10691 Stockholm, Sweden. [Sayer, Andrew M.; Smirnov, Alexander] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Sayer, Andrew M.] Univ Space Res Assoc, Columbia, MD USA. [Toth, Travis D.] Univ N Dakota, Grand Forks, ND 58201 USA. [Worsnop, Douglas R.] Aerodyne Res Inc, Billerica, MA USA. [Wozniak, Andrew] Old Dominion Univ, Norfolk, VA USA. RP Meskhidze, N (reprint author), N Carolina State Univ, Raleigh, NC 27695 USA. EM nmeskhidze@ncsu.edu RI FACCHINI, MARIA CRISTINA/O-1230-2015; Bates, Timothy/L-6080-2016; Prather, Kimberly/A-3892-2008; Smirnov, Alexander/C-2121-2009; Sayer, Andrew/H-2314-2012; Worsnop, Douglas/D-2817-2009; Hu, Yongxiang/K-4426-2012; Petters, Sarah/N-8450-2014; Modini, Rob/A-8451-2014; Facchini, Maria Cristina/B-3369-2014; rinaldi, matteo/K-6083-2012; CHEMATMO Group, Isac/P-7180-2014; Gantt, Brett/G-2525-2013; DeMott, Paul/C-4389-2011; Reid, Jeffrey/B-7633-2014; Petters, Markus/D-2144-2009; O'Dowd , Colin/K-8904-2012 OI FACCHINI, MARIA CRISTINA/0000-0003-4833-9305; Prather, Kimberly/0000-0003-3048-9890; Smirnov, Alexander/0000-0002-8208-1304; Salter, Matthew/0000-0003-0645-3265; Ceburnis, Darius/0000-0003-0231-5324; Sayer, Andrew/0000-0001-9149-1789; Worsnop, Douglas/0000-0002-8928-8017; Petters, Sarah/0000-0002-4501-7127; Facchini, Maria Cristina/0000-0003-4833-9305; rinaldi, matteo/0000-0001-6543-4000; Gantt, Brett/0000-0001-7217-2715; DeMott, Paul/0000-0002-3719-1889; Reid, Jeffrey/0000-0002-5147-7955; Petters, Markus/0000-0002-4082-1693; O'Dowd , Colin/0000-0002-3068-2212 FU National Science Foundation - NSF [AGS-1236957]; Department of Energy office of Biological and Environmental Research [DOE-DE-SC0007995]; National Oceanic and Atmospheric Administration - NOAA [Z763701]; National Aeronautics and Space Administration - NASA [NNX12AK27G]; Marine Meteorology and Atmospheric Effects Program at the Department of Defense Office of Naval Research (DOD-ONR); NSF [CHE-1038028]; Irish Research Council; Marie Curie actions under FP7; National Science Foundation Physical Oceanography Division [OCE-1155123] FX Funding for this workshop was provided by the National Science Foundation - NSF (AGS-1236957), the Department of Energy office of Biological and Environmental Research (DOE-DE-SC0007995), the National Oceanic and Atmospheric Administration - NOAA (Z763701), the National Aeronautics and Space Administration - NASA (NNX12AK27G), and the Marine Meteorology and Atmospheric Effects Program at the Department of Defense Office of Naval Research (DOD-ONR). D. Ceburnis acknowledges EPA Ireland fellowship grant for travel support. K. Prather and G. Deane were supported by NSF (CHE-1038028) grant. A. H. Callaghan would like to acknowledge financial support from the Irish Research Council and Marie Curie actions under FP7 and the National Science Foundation Physical Oceanography Division (Grant OCE-1155123). NR 5 TC 11 Z9 11 U1 5 U2 107 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1530-261X J9 ATMOS SCI LETT JI Atmos. Sci. Lett. PD OCT PY 2013 VL 14 IS 4 BP 207 EP 213 DI 10.1002/asl2.441 PG 7 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 239NV UT WOS:000326033400002 ER PT J AU Jansen, AN AF Jansen, Andrew N. TI LITHIUM-ION BATTERIES Endless Uses SO CHEMICAL ENGINEERING PROGRESS LA English DT Article C1 Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Jansen, AN (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jansen@anl.gov RI Jansen, Andrew/Q-5912-2016 OI Jansen, Andrew/0000-0003-3244-7790 FU Vehicle Technologies Office of the Office of Energy Efficiency and Renewable Energy of the U.S. Dept. of Energy FX This work was supported by the Vehicle Technologies Office of the Office of Energy Efficiency and Renewable Energy of the U.S. Dept. of Energy. See www.eere.energy.gov for more information on the many energy programs taking place within the DOE-EERE. NR 22 TC 5 Z9 5 U1 0 U2 5 PU AMER INST CHEMICAL ENGINEERS PI NEW YORK PA 3 PARK AVE, NEW YORK, NY 10016-5901 USA SN 0360-7275 EI 1945-0710 J9 CHEM ENG PROG JI Chem. Eng. Prog. PD OCT PY 2013 VL 109 IS 10 BP 57 EP 64 PG 8 WC Engineering, Chemical SC Engineering GA 240US UT WOS:000326123800021 ER PT J AU Sabharwall, P Bragg-Sitton, SM Stoots, C AF Sabharwall, Piyush Bragg-Sitton, Shannon M. Stoots, Carl TI Challenges in the development of high temperature reactors SO ENERGY CONVERSION AND MANAGEMENT LA English DT Article DE Molten salt; Advanced High Temperature Reactor (AHTR); Very High Temperature Reactor (VHTR) AB Advanced reactor designs offer potentially significant improvements over currently operating light water reactors including improved fuel utilization, increased efficiency, higher temperature operation (enabling a new suite of non-electric industrial process heat applications), and increased safety. As with most technologies, these potential performance improvements come with a variety of challenges to bringing advanced designs to the marketplace. There are technical challenges in material selection and thermal hydraulic and power conversion design that arise particularly for higher temperature, long life operation (possibly >60 years). The process of licensing a new reactor design is also daunting, requiring significant data collection for model verification and validation to provide confidence in safety margins associated with operating a new reactor design under normal and off-normal conditions. This paper focuses on the key technical challenges associated with two proposed advanced reactor concepts: the helium gas cooled Very High Temperature Reactor (VHTR) and the molten salt cooled Advanced High Temperature Reactor (AHTR). Published by Elsevier Ltd. C1 [Sabharwall, Piyush; Bragg-Sitton, Shannon M.; Stoots, Carl] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Sabharwall, P (reprint author), Idaho Natl Lab, POB 3860, Idaho Falls, ID 83415 USA. EM Piyush.Sabharwall@inl.gov NR 16 TC 4 Z9 4 U1 3 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0196-8904 EI 1879-2227 J9 ENERG CONVERS MANAGE JI Energy Conv. Manag. PD OCT PY 2013 VL 74 BP 574 EP 581 DI 10.1016/j.enconman.2013.02.021 PG 8 WC Thermodynamics; Energy & Fuels; Mechanics SC Thermodynamics; Energy & Fuels; Mechanics GA 229YB UT WOS:000325302700061 ER PT J AU Goodrich, AC Powell, DM James, TL Woodhouse, M Buonassisi, T AF Goodrich, Alan C. Powell, Douglas M. James, Ted L. Woodhouse, Michael Buonassisi, Tonio TI Assessing the drivers of regional trends in solar photovoltaic manufacturing SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID SILICON PHOTOVOLTAICS; COSTS AB The photovoltaic (PV) industry has grown rapidly as a source of energy and economic activity. Since 2008, the average manufacturer-sale price of PV modules has declined by over a factor of two, coinciding with a significant increase in the scale of manufacturing in China. Using a bottom-up model for wafer-based silicon PV, we examine both historical and future factory-location decisions from the perspective of a multinational corporation. Our model calculates the cost of PV manufacturing with process step resolution, while considering the impact of corporate financing and operations with a calculation of the minimum selling price that provides an adequate rate of return. We quantify the conditions of China's historical PV price advantage, examine if these conditions can be reproduced elsewhere, and evaluate the role of innovative technology in altering regional competitive advantage. We find that the historical price advantage of a China-based factory relative to a U.S.-based factory is not driven by country-specific advantages, but instead by scale and supply-chain development. Looking forward, we calculate that technology innovations may result in effectively equivalent minimum sustainable manufacturing prices for the two locations. In this long-run scenario, the relative share of module shipping costs, as well as other factors, may promote regionalization of module-manufacturing operations to cost-effectively address local market demand. Our findings highlight the role of innovation, importance of manufacturing scale, and opportunity for global collaboration to increase the installed capacity of PV worldwide. C1 [Goodrich, Alan C.; James, Ted L.; Woodhouse, Michael] Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Golden, CO 80401 USA. [Powell, Douglas M.; Buonassisi, Tonio] MIT, Cambridge, MA 02139 USA. RP Goodrich, AC (reprint author), Natl Renewable Energy Lab, Strateg Energy Anal Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM alan.goodrich@nrel.gov; dmpowell@alum.mit.edu; buonassisi@mit.edu FU DOE [DE-EE0005314, DE-AC36-08GO28308]; National Renewable Energy Laboratory; DOE Solar Energy Technologies Program; Department of Defense through the National Defense Science & Engineering Graduate Fellowship Program; NSF CAREER award [ECCS-1150878] FX We thank John Parsons, Jesse Jenkins, Jonas Nahm, Allyna Nguyen, and Dick Schmalensee (MIT); Bin Fu and Sriram Krishnan; Paul Basore (Hanwha); John Lushetsky, Minh Le and Ramesh Ramamoorthy (DOE); Chung-wen Lan (NTU, Taiwan); and several captains of industry for valuable input. We thank Felice Frankel (MIT) for graphics advice. The DOE supported this work in part under Contract nos DE-EE0005314 and DE-AC36-08GO28308 with the National Renewable Energy Laboratory, with support from the DOE Solar Energy Technologies Program. D.M.P was supported by the Department of Defense through the National Defense Science & Engineering Graduate Fellowship Program; T.B. acknowledges NSF CAREER award ECCS-1150878. NR 71 TC 30 Z9 30 U1 3 U2 37 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD OCT PY 2013 VL 6 IS 10 BP 2811 EP 2821 DI 10.1039/c3ee40701b PG 11 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 236AG UT WOS:000325765100003 ER PT J AU Pylypenko, S Borisevich, A More, KL Corpuz, AR Holme, T Dameron, AA Olson, TS Dinh, HN Gennett, T O'Hayre, R AF Pylypenko, Svitlana Borisevich, Albina More, Karren L. Corpuz, April R. Holme, Timothy Dameron, Arrelaine A. Olson, Tim S. Dinh, Huyen N. Gennett, Thomas O'Hayre, Ryan TI Nitrogen: unraveling the secret to stable carbon-supported Pt-alloy electrocatalysts SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID OXYGEN REDUCTION ACTIVITY; MODEL CATALYST SUPPORTS; METHANOL FUEL-CELL; MULTIVARIATE-ANALYSIS; SPECTRUM IMAGES; DURABILITY; ELECTROLYTE; OXIDATION; ELECTROOXIDATION; INFORMATION AB Nitrogen functionalities significantly improve performance for metal-based carbon-supported catalysts, yet their specific role is not well understood. In this work, a direct observation of the nanoscale spatial relationship between surface nitrogen and metal catalyst nanoparticles on a carbon support is established through principal component analysis (PCA) of electron energy loss spectral (EELS) imaging datasets acquired on an aberration-corrected scanning transmission electron microscope (STEM). Improved catalyst-support interactions correlated to high substrate nitrogen content in immediate proximity to stabilized nanoparticles are first demonstrated using model substrates. These insights are applied in direct methanol fuel cell prototypes to achieve substantial improvements in performance and long-term stability using both in-house and commercial catalysts doped with nitrogen. These results have immediate impact in advanced design and optimization of next generation high performance catalyst materials. C1 [Pylypenko, Svitlana; O'Hayre, Ryan] Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA. [Borisevich, Albina; More, Karren L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Corpuz, April R.] Colorado Sch Mines, Dept Chem, Golden, CO 80401 USA. [Holme, Timothy] Stanford Univ, Dept Mech Engn, Stanfordx, CA 90305 USA. [Dameron, Arrelaine A.; Olson, Tim S.; Dinh, Huyen N.; Gennett, Thomas] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Pylypenko, S (reprint author), Colorado Sch Mines, Dept Met & Mat Engn, 1500 Illinois St, Golden, CO 80401 USA. EM rohayre@mines.edu RI Borisevich, Albina/B-1624-2009; More, Karren/A-8097-2016 OI Borisevich, Albina/0000-0002-3953-8460; More, Karren/0000-0001-5223-9097 FU Army Research Office [W911NF-09-1-0528]; U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory; Office of Basic Energy Sciences, U.S. Department of Energy; Colorado School of Mines through the Golden Energy Computing Organization (NSF) [CNS-0722415]; Renewable Energy MRSEC program (NSF) [DMR-0820518] FX This work was supported by the Army Research Office under grant #W911NF-09-1-0528 and the U.S. Department of Energy under Contract no. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. Microscopy supported by Oak Ridge National Laboratory's Shared Research Equipment (ShaRE) user facility, sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy. We acknowledge other members of the team for their contributions to this work: Katherine E. Hurst, Steven T. Christensen, Kevin O'Neill, David S. Ginley and Bryan Pivovar (NREL) and Kevin N. Wood, Prabhuram Joghee, Michael Sanders, Ryan M. Richards and Brian Gorman (CSM). We also acknowledge the surface analysis facilities at the National Renewable Energy Laboratory and the microscopy facilities at Colorado school of Mines. Computing resources were provided by the Colorado School of Mines through the Golden Energy Computing Organization (NSF grant no. CNS-0722415) and the Renewable Energy MRSEC program (NSF grant no. DMR-0820518). NR 52 TC 37 Z9 37 U1 4 U2 64 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD OCT PY 2013 VL 6 IS 10 BP 2957 EP 2964 DI 10.1039/c3ee40189h PG 8 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 236AG UT WOS:000325765100019 ER PT J AU Hu, S Xiang, CX Haussener, S Berger, AD Lewis, NS AF Hu, Shu Xiang, Chengxiang Haussener, Sophia Berger, Alan D. Lewis, Nathan S. TI An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID SHUTTLE REDOX MEDIATOR; SOLAR-CELLS; OXYGEN-EVOLUTION; HYDROGEN-PRODUCTION; VISIBLE-LIGHT; CONVERSION EFFICIENCY; LIMITING EFFICIENCIES; ENERGY-CONVERSION; ELECTROCATALYSTS; ELECTROLYSIS AB The solar-to-hydrogen (STH) efficiency limits, along with the maximum efficiency values and the corresponding optimal band gap combinations, have been evaluated for various combinations of light absorbers arranged in a tandem configuration in realistic, operational water-splitting prototypes. To perform the evaluation, a current-voltage model was employed, with the light absorbers, electrocatalysts, solution electrolyte, and membranes coupled in series, and with the directions of optical absorption, carrier transport, electron transfer and ionic transport in parallel. The current density vs. voltage characteristics of the light absorbers were determined by detailed-balance calculations that accounted for the Shockley-ueisser limit on the photovoltage of each absorber. The maximum STH efficiency for an integrated photoelectrochemical system was found to be similar to 31.1% at 1 Sun (=1 kWm(-2), air mass 1.5), fundamentally limited by a matching photocurrent density of 25.3 mA cm(-2) produced by the light absorbers. Choices of electrocatalysts, as well as the fill factors of the light absorbers and the Ohmic resistance of the solution electrolyte also play key roles in determining the maximum STH efficiency and the corresponding optimal tandem band gap combination. Pairing 1.6-1.8 eV band gap semiconductors with Si in a tandem structure produces promising light absorbers for water splitting, with theoretical STH efficiency limits of > 25%. C1 [Hu, Shu; Xiang, Chengxiang; Lewis, Nathan S.] CALTECH, Div Chem & Chem Engn, Noyes Lab 201, Pasadena, CA 91125 USA. [Haussener, Sophia] Ecole Polytech Fed Lausanne, Inst Engn Mech, CH-1015 Lausanne, Switzerland. [Berger, Alan D.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Haussener, Sophia; Berger, Alan D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. [Hu, Shu; Xiang, Chengxiang; Lewis, Nathan S.] CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA. RP Hu, S (reprint author), CALTECH, Div Chem & Chem Engn, Noyes Lab 201, Pasadena, CA 91125 USA. EM nslewis@caltech.edu RI Hu, Shu/B-8120-2013 FU Office of Science of the U.S. Department of Energy [DE-SC0004993] FX This work was supported through the Office of Science of the U.S. Department of Energy under Award no. DE-SC0004993 to the Joint Center for Artifical Photosynthesis, a DOE Energy Innovation Hub. NR 45 TC 181 Z9 182 U1 25 U2 215 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD OCT PY 2013 VL 6 IS 10 BP 2984 EP 2993 DI 10.1039/c3ee40453f PG 10 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 236AG UT WOS:000325765100022 ER PT J AU Yang, MH Zakutayev, A Vidal, J Zhang, XW Ginley, DS DiSalvo, FJ AF Yang, Minghui Zakutayev, Andriy Vidal, Julien Zhang, Xiuwen Ginley, David S. DiSalvo, Francis J. TI Strong optical absorption in CuTaN2 nitride delafossite SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID CRYSTAL-STRUCTURE; SEMICONDUCTORS; EFFICIENCY; CUALO2 AB We report on synthesis, stability, electronic structure and optical properties of CuTaN2 with the delafossite crystal structure and its potential use as an absorber for solar energy conversion applications. According to theoretical first-principles calculations, the formation enthalpy of CuTaN2 is negative (similar to 0.66 eV per atom), but this material is metastable with respect to decomposition into Cu, Ta3N5 and N-2. Nevertheless, the experimental thermal stability limit of single phase CuTaN2 powders synthesized using an ion exchange method is 250 degrees C in ambient atmosphere, according to combined temperature-dependent X-ray diffraction and thermo-gravimetric analyses. Electronic structure of the CuTaN2 is different compared to that of CuAlO2, in particular the band gap of this nitride delafossite (1.3 eV) calculated using HSE06+G(0)W(0) is much smaller than the band gap of the oxide delafossite. The onset of optical absorption onset of CuTaN2 at 1.5 eV determined from experimental diffuse reflectance measurements is consistent with the theoretical 1.4 eV optical band gap and large calculated absorption coefficient (> 10(5) cm(-1) above 1.5 eV) determined from time-dependent HSE06 calculations corrected by a scissors operator. The significance of our findings is that optical properties of CuTaN2 are nearly optimal for photovoltaic energy conversion. C1 [Yang, Minghui; DiSalvo, Francis J.] Cornell Univ, Dept Chem, Ithaca, NY 14853 USA. [Zakutayev, Andriy; Vidal, Julien; Ginley, David S.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Zhang, Xiuwen] Colorado Sch Mines, Golden, CO 80401 USA. RP Yang, MH (reprint author), Cornell Univ, Dept Chem, Ithaca, NY 14853 USA. EM Andriy.Zakutayev@nrel.gov; David.Ginley@nrel.gov; fjd3@cornell.edu RI ZHANG, XIUWEN/K-7383-2012; OI Zakutayev, Andriy/0000-0002-3054-5525 FU REMRSEC; NSF [DMR-0820518]; Colorado School of Mines, Golden, Colorado FX This research is supported by the U. S. Department of Energy, office of Energy Efficiency and Renewable Energy, as a part of the "Ternary Copper Nitride Absorbers" Next Generation PV II project within the SunShot initiative. We thank Amy J. Allen for contribution to synthesis, Philip A. Parilla for help with temperature dependent XRD setup, Joey M. Luther for assistance with diffuse re. ectance measurement instrument, Stephan Lany and Christopher M. Caskey for valuable discussions. X. Z. also acknowledges the administrative support of REMRSEC under NSF grant number DMR-0820518, Colorado School of Mines, Golden, Colorado. NR 39 TC 18 Z9 18 U1 2 U2 76 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD OCT PY 2013 VL 6 IS 10 BP 2994 EP 2999 DI 10.1039/c3ee40621k PG 6 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 236AG UT WOS:000325765100023 ER PT J AU Ahn, HS Yano, J Tilley, TD AF Ahn, Hyun S. Yano, Junko Tilley, T. Don TI Photocatalytic water oxidation by very small cobalt domains on a silica surface SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID PERIODIC MESOPOROUS SILICA; AQUEOUS HYDROGEN-PEROXIDE; CARBON NANOTUBES; OXIDE CLUSTERS; CR CENTERS; MU-OXO; COMPLEXES; CATALYSTS; MECHANISM; OXYGEN AB Small domains of cobalt on silica (CoSBA) were prepared by the reaction of Co[ N(SiMe3)(2)](2) and SBA-15, resulting in a range of surface structures as the cobalt loading varied from 0.27 to 5.11 wt%. X-ray absorption spectroscopy (XAS) was employed to characterize these surface structures, which range from single-site cobalt atoms to small clusters of Co3O4 . The CoSBA materials exhibit photochemical water oxidation catalysis, revealing distinct catalytic activities associated with characteristic types of surface structures that are dominant in particular concentration regimes. The catalytic turnover frequency for water oxidation of an isolated single-site cobalt atom (0.0143 s(-1)) is much greater than that observed for a surface atom of a small cluster Co3O4 on silica (0.0006 s(-1)). The CoSBA catalysts were recyclable for more than seven catalytic cycles (> 200 turnovers) with additional sacrificial oxidant, and no leaching of cobalt was observed. Post-catalytic analysis of CoSBA by XAS revealed that the cobalt atoms were partially oxidized to Co3+, without exhibiting significant surface migration and aggregation of cobalt atoms. C1 [Ahn, Hyun S.; Tilley, T. Don] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Ahn, Hyun S.; Tilley, T. Don] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Ahn, Hyun S.; Tilley, T. Don] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Yano, Junko] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Ahn, HS (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM tdtilley@berkeley.edu FU Director, Office of Science; Office of Basic Energy Sciences; U.S. Department of Energy [DE-AC0205CH11231] FX Funding for this work was provided by the Helios Solar Energy Research Center, which is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract no. DE-AC0205CH11231. The authors would like to acknowledge A. Paul Alivisatos (optical setup, XRD, TEM), Alexis T. Bell (Raman), and Kristie Boering (RGA) for use of instrumentation. The authors also thank Dr Chang Won Yoon for helpful discussions and advice. NR 50 TC 26 Z9 26 U1 1 U2 72 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD OCT PY 2013 VL 6 IS 10 BP 3080 EP 3087 DI 10.1039/c3ee42067a PG 8 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 236AG UT WOS:000325765100033 ER PT J AU Oh, S Tandukar, M Pavlostathis, SG Chain, PSG Konstantinidis, KT AF Oh, Seungdae Tandukar, Madan Pavlostathis, Spyros G. Chain, Patrick S. G. Konstantinidis, Konstantinos T. TI Microbial community adaptation to quaternary ammonium biocides as revealed by metagenomics SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID PSEUDOMONAS-NITROREDUCENS; ACTIVATED-SLUDGE; CATIONIC SURFACTANT; RIVER SEDIMENTS; SEQUENCING DATA; BACTERIAL; CHLORIDE; BIODEGRADATION; RESISTANCE; METABOLISM AB Quaternary ammonium compounds (QACs) represent widely used cationic biocides that persist in natural environments. Although microbial degradation, sensitivity and resistance to QACs have been extensively documented, a quantitative understanding of how whole communities adapt to QAC exposure remain elusive. To gain insights into these issues, we exposed a microbial community from a contaminated river sediment to varied levels of benzalkonium chlorides (BACs, a family of QACs) for 3 years. Comparative metagenomic analysis showed that the BAC-fed communities were dramatically decreased in phylogenetic diversity compared with the control (no BAC exposure), resulting presumably from BAC toxicity, and dominated by Pseudomonas species (>50% of the total). Time-course metagenomics revealed that community adaptation occurred primarily via selective enrichment of BAC-degrading Pseudomonas populations, particularly P.nitroreducens, and secondarily via amino acid substitutions and horizontal transfer of a few selected genes in the Pseudomonas populations, including a gene encoding a PAS/PAC sensor protein and ring-hydroxylating dioxygenase genes. P.nitroreducens isolates were reproducibly recoverable from communities after prolonged periods of no-BAC exposure, suggesting that they are robust BAC-degraders. Our study provides new insights into the mechanisms and tempo of microbial community adaptation to QAC exposure and has implications for treating QACs in biological engineered systems. C1 [Oh, Seungdae; Tandukar, Madan; Pavlostathis, Spyros G.; Konstantinidis, Konstantinos T.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Konstantinidis, Konstantinos T.] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA. [Konstantinidis, Konstantinos T.] Georgia Inst Technol, Ctr Bioinformat & Computat Genom, Atlanta, GA 30332 USA. [Chain, Patrick S. G.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Konstantinidis, KT (reprint author), Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. EM kostas@ce.gatech.edu RI Oh, Seungdae/E-7293-2016; OI Chain, Patrick/0000-0003-3949-3634 FU U.S. National Science Foundation (NSF) [0967130, 1241046] FX This work was supported by the U.S. National Science Foundation (NSF), awards no. 0967130 (to SGP and KTK) and no. 1241046 (to KTK). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSF. We thank Ulas Tezel for helpful discussions and suggestions regarding this study and the personnel of the Emory University Genomics Facility and the Los Alamos National Laboratory for sequencing of the samples. NR 53 TC 25 Z9 25 U1 6 U2 83 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1462-2912 EI 1462-2920 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD OCT PY 2013 VL 15 IS 10 BP 2850 EP 2864 DI 10.1111/1462-2920.12154 PG 15 WC Microbiology SC Microbiology GA 230TY UT WOS:000325367200017 PM 23731340 ER PT J AU Singh, DJ Parker, D AF Singh, David J. Parker, David TI ELECTRONIC AND TRANSPORT PROPERTIES OF THERMOELECTRIC Ru2Si3 SO FUNCTIONAL MATERIALS LETTERS LA English DT Article DE Thermoelectric; silicide; Ru2Si3 ID CHIMNEY-LADDER COMPOUNDS; DIFFUSIONLESS PHASE-TRANSFORMATIONS; CRYSTAL-STRUCTURE; BAND-STRUCTURE; OPTICAL CHARACTERIZATION; SINGLE-CRYSTALS; SI SYSTEM; RU2GE3; SILICIDES; DENSITY AB We report calculations of the doping and temperature dependent thermopower of Ru2Si3 based on Boltzmann transport theory and the first principles electronic structure. We find that the performance reported to date can be significantly improved by optimization of the doping level and that ultimately n-type should have higher ZT than p-type. C1 [Singh, David J.; Parker, David] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Singh, DJ (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM singhdj@ornl.gov FU Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division FX Work at ORNL was supported by the Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 43 TC 1 Z9 1 U1 0 U2 25 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 1793-6047 EI 1793-7213 J9 FUNCT MATER LETT JI Funct. Mater. Lett. PD OCT PY 2013 VL 6 IS 5 AR 1340013 DI 10.1142/S1793604713400134 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA 239AC UT WOS:000325992600014 ER PT J AU Singh, DJ Zhu, TJ AF Singh, David J. Zhu, Tiejun TI INTRODUCTION TO THE TOPICAL ISSUE ON THERMOELECTRIC MATERIALS AND DEVICES SO FUNCTIONAL MATERIALS LETTERS LA English DT Editorial Material C1 [Singh, David J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Zhu, Tiejun] Zhejiang Univ, Hangzhou, Zhejiang, Peoples R China. RP Singh, DJ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. NR 0 TC 0 Z9 0 U1 2 U2 19 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 1793-6047 EI 1793-7213 J9 FUNCT MATER LETT JI Funct. Mater. Lett. PD OCT PY 2013 VL 6 IS 5 AR 1302001 DI 10.1142/S1793604713020013 PG 1 WC Materials Science, Multidisciplinary SC Materials Science GA 239AC UT WOS:000325992600001 ER PT J AU Arrowsmith, SJ Marcillo, O Drob, DP AF Arrowsmith, Stephen J. Marcillo, Omar Drob, Douglas P. TI A framework for estimating stratospheric wind speeds from unknown sources and application to the 2010 December 25 bolide SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE Inverse theory; Seismic monitoring and test-ban treaty verification; Wave propagation ID INFRASOUND PROPAGATION; UPPER-ATMOSPHERE; OCEAN SWELLS; TEMPERATURE; MODEL; PREDICTION; MORPHOLOGY; WEATHER; ARRAYS; MIDDLE AB We present a methodology for infrasonic remote sensing of winds in the stratosphere that does not require discrete ground-truth events. Our method uses measured time delays between arrays of sensors to provide group velocities (referred to here as celerities) and then minimizes the difference between observed and predicted celerities by perturbing an initial atmospheric specification. Because we focus on interarray propagation effects, it is not necessary to simulate the full propagation path from source to receiver. This feature allows us to use a relatively simple forward model that is applicable over short-regional distances. By focusing on stratospheric returns, we show that our non-linear inversion scheme converges much better if the starting model contains a strong stratospheric duct. Using the Horizontal Wind Model (HWM)/Mass Spectrometer Incoherent Scatter (MSISE) empirical climatology as a starting model, we demonstrate that the inversion scheme is robust to large uncertainties in backazimuth, but that uncertainties in the measured trace velocity and celerity require the use of prior constraints to ensure suitable convergence. The inversion of synthetic data, using realistic estimates of measurement error, shows that our scheme will nevertheless improve upon a starting model under most scenarios. The inversion scheme is applied to infrasound data recorded from a large event on 2010 December 25, which is presumed to be a bolide, using data from a nine-element infrasound network in Utah. We show that our recorded data require a stronger zonal wind speed in the stratosphere than is present in the HWM profile, and are more consistent with the Ground-to-Space (G2S) profile. C1 [Arrowsmith, Stephen J.; Marcillo, Omar] Los Alamos Natl Lab, Geophys Grp, Los Alamos, NM 87544 USA. [Drob, Douglas P.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. RP Arrowsmith, SJ (reprint author), Los Alamos Natl Lab, Geophys Grp, Los Alamos, NM 87544 USA. EM sarrowsmith@gmail.com RI Drob, Douglas/G-4061-2014 OI Drob, Douglas/0000-0002-2045-7740 FU Los Alamos Laboratory Directed Research and Development program; Office of Naval Research FX We are grateful to the editor, J. Wassermann, and to two anonymous reviewers for their thoughtful reviews that helped to improve this manuscript. We thank Rod Whitaker and Roger Waxler for their comments on aspects of this work, which helped to strengthen this paper. This research was funded by the Los Alamos Laboratory Directed Research and Development program. The MERRA/GEOS-5 data utilized in the G2S atmospheric specifications were provided by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center through the online data portal in the NASA Center for Climate Simulation. The NOAA GFS, also utilized in the G2S specifications, was obtained from NOAA's National Operational Model Archive and Distribution System (NOMADS), which is maintained at NOAA's National Climatic Data Center (NCDC). DPD acknowledges support from Office of Naval Research. NR 26 TC 8 Z9 8 U1 0 U2 9 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0956-540X EI 1365-246X J9 GEOPHYS J INT JI Geophys. J. Int. PD OCT PY 2013 VL 195 IS 1 BP 491 EP 503 DI 10.1093/gji/ggt228 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 236BX UT WOS:000325769800037 ER PT J AU Kalinin, IV Kats, EI Koza, M Lauter, VV Lauter, H Puchkov, AV AF Kalinin, I. V. Kats, E. I. Koza, M. Lauter, V. V. Lauter, H. Puchkov, A. V. TI Neutron diffraction study of polycrystalline He-4 in a porous medium SO JETP LETTERS LA English DT Article ID SOLID HELIUM; PHASE AB The elastic (diffraction) component of the neutron scattering cross section, which carries information on the atomic structure of solid helium confined in silica aerogel, has been studied. Analysis of the crystalline structure of solid helium in a porous medium, which is determined from the existing neutron diffraction data, indicates that the superfluid phase is localized inside a hexagonal close-packed phase and is not present in a body-centered cubic crystal. It has also been revealed that the addition of the He-3 isotope changes the structure of solid helium and hardly affects the formation of a superfluid phase. C1 [Kalinin, I. V.; Puchkov, A. V.] Leipunsky Inst Phys & Power Engn, Obninsk 249033, Kaluga Region, Russia. [Kats, E. I.] Russian Acad Sci, Landau Inst Theoret Phys, Moscow 119334, Russia. [Koza, M.] Inst Laue Langevin, F-38042 Grenoble 9, France. [Lauter, V. V.; Lauter, H.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Kalinin, IV (reprint author), Leipunsky Inst Phys & Power Engn, Pl Bondarenko 1, Obninsk 249033, Kaluga Region, Russia. FU Russian Foundation for Basic Research; Government of the Kaluga region [12-02-97502] FX This work was supported by the Russian Foundation for Basic Research and the Government of the Kaluga region (project no. 12-02-97502). NR 13 TC 0 Z9 0 U1 3 U2 8 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 0021-3640 EI 1090-6487 J9 JETP LETT+ JI Jetp Lett. PD OCT PY 2013 VL 98 IS 4 BP 233 EP 236 DI 10.1134/S0021364013170062 PG 4 WC Physics, Multidisciplinary SC Physics GA 240QD UT WOS:000326111100010 ER PT J AU Beasley, JC Eagan, TS Page, LK Hennessy, CA Rhodes, OE AF Beasley, J. C. Eagan, T. S., II Page, L. K. Hennessy, C. A. Rhodes, O. E., Jr. TI BAYLISASCARIS PROCYONIS INFECTION IN WHITE-FOOTED MICE: PREDICTING PATTERNS OF INFECTION FROM LANDSCAPE HABITAT ATTRIBUTES SO JOURNAL OF PARASITOLOGY LA English DT Article ID LYME-DISEASE RISK; HELMINTH COMMUNITY STRUCTURE; NORTHERN INDIANA; FOREST FRAGMENTATION; METAPOPULATION DYNAMICS; WILDLIFE DAMAGE; MELES-MELES; RACCOONS; HETEROGENEITY; DENSITY AB There is a growing body of evidence that habitat fragmentation resulting from anthropogenic land use can alter the transmission dynamics of infectious disease. Baylisascaris procyonis, a parasitic roundworm with the ability to cause fatal central nervous system disease in many mammals, including humans, is a zoonotic threat, and research suggests that parasite recruitment rates by intermediate hosts are highly variable among forest patches in fragmented landscapes. During 2008, we sampled 353 white-footed mice (Peromyscus leucopus) from 22 forest patches distributed throughout a fragmented agricultural ecosystem to determine the influence of landscape-level habitat attributes on infection rates of B. procyonis in mice. We characterized each mouse in terms of infection status and intensity of infection, and calculated (on a patch-wide basis) prevalence, mean abundance of B. procyonis, and mean intensity of infection. We used an information-theoretic approach to develop a suite of candidate models characterizing the influence of landscape attributes on each of our measured characteristics of B. procyonis infection in white-footed mice, based on previous knowledge of raccoon (Procyon lotor) ecology and B. procyonis distribution in agricultural ecosystems. We observed evidence of B. procyonis infection in mice across all 22 habitat patches sampled. However, parasite recruitment rates and intensity were highly variable among patches, and the results of our analyses suggest that spatial variability in B. procyonis infections was primarily driven by emergent properties of fragmented ecosystems. In particular, prevalence, abundance, and intensity of B. procyonis infections in mice were negatively associated with the size and connectivity of forest patches. These results support previous studies indicating that habitat fragmentation can alter the transmission dynamics of infectious disease, and suggest that factors below the scale of landscape, i.e., fine-scale habitat structure or demographic and behavioral attributes of intermediate and/or definitive hosts, also may be important for predicting patterns of B. procyonis infection in intermediate hosts. C1 [Beasley, J. C.; Eagan, T. S., II; Page, L. K.; Hennessy, C. A.; Rhodes, O. E., Jr.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Beasley, JC (reprint author), Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. EM beasley@srel.edu FU Purdue University FX The authors wish to thank the many landowners who gave permission for research to be conducted on their property, without which this study would not have been possible. We also wish to thank Z. Olson and M. Wieczorek for help with data collection in the field, and S. McCord for help with laboratory work. We thank P. Zollner and 2 anonymous reviewers for their helpful comments that improved this manuscript. Finally, we thank Purdue University for providing the funding for this research. NR 46 TC 3 Z9 3 U1 4 U2 51 PU AMER SOC PARASITOLOGISTS PI LAWRENCE PA 810 EAST 10TH STREET, LAWRENCE, KS 66044 USA SN 0022-3395 EI 1937-2345 J9 J PARASITOL JI J. Parasitol. PD OCT PY 2013 VL 99 IS 5 BP 743 EP 747 DI 10.1645/GE-2887.1 PG 5 WC Parasitology SC Parasitology GA 235YQ UT WOS:000325759700001 PM 23656487 ER PT J AU Leishear, RA AF Leishear, Robert A. TI A Hydrogen Ignition Mechanism for Explosions in Nuclear Facility Piping Systems SO JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article DE hydrogen; explosions; nuclear facility; nuclear reactor; power plant safety; reactor safety; off-shore drilling; oil drilling; Gulf oil spill/disaster; Three Mile Island; Chernobyl; Fukushima hydrogen explosions; fluid transients; water hammer; fluid transients; adiabatic compression ID PIPE AB Hydrogen explosions may occur simultaneously with fluid transients' accidents in nuclear facilities, and a theoretical mechanism to relate fluid transients to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in piping systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the piping system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany (Fig. 1). Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism. In fact, this explosion mechanism may be pertinent to explosions in major nuclear accidents, and a similar explosion mechanism is also possible in oil pipelines during offshore drilling. C1 Savannah River Natl Lab, Aiken, SC 29808 USA. RP Leishear, RA (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM Robert.Leishear@SRNL.DOE.gov FU Savannah River Nuclear Solutions, LLC [DE-AC09-08SR22470]; U.S. Department of Energy FX This manuscript has been authored by Savannah River Nuclear Solutions, LLC under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy. The United States Government retains and publisher, by accepting this article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes. NR 17 TC 0 Z9 0 U1 2 U2 20 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0094-9930 EI 1528-8978 J9 J PRESS VESS-T ASME JI J. Press. Vessel Technol.-Trans. ASME PD OCT PY 2013 VL 135 IS 5 AR 054501 DI 10.1115/1.4024639 PG 5 WC Engineering, Mechanical SC Engineering GA 239JU UT WOS:000326019800018 ER PT J AU Sham, TL Eno, DR AF Sham, T. -L. Eno, Daniel R. TI Procedure for Uncertainty Estimation in Determining the Master Curve Reference Temperature SO JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article AB The master curve reference temperature, T-0, characterizes the fracture performance of structural steels in the ductile-to-brittle transition region. For a given material, this reference temperature is estimated via fracture toughness testing. A methodology is presented to compute the standard error of an estimated T-0 value from a finite sample of toughness data, in a unified manner for both single temperature and multiple temperature test methods. Using the asymptotic properties of maximum likelihood estimators, closed-form expressions for the standard error of the estimate of T-0 are presented for both test methods. This methodology includes statistically rigorous treatment of censored data, which represents an advance over the current ASTM E1921 methodology ("E1921-10, Standard Test Method for Determination of Reference Temperature, T-0, for Ferritic Steels in the Transition Range," ASTM International, West Conshohocken, PA, 2010). Through Monte Carlo simulations of realistic single temperature and multiple temperature test plans, the recommended likelihood-based procedure is shown to provide better statistical performance than the methods in the ASTM E1921 standard. C1 [Sham, T. -L.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Eno, Daniel R.] Bechtel Marine Prop Corp, Schenectady, NY 12301 USA. RP Sham, TL (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, 1 Bethel Valley Rd,POB 2008,MS 6115, Oak Ridge, TN 37831 USA. EM shamt@ORNL.gov FU U.S. Department of Energy [DE-AC05-00OR22725]; Oak Ridge National Laboratory FX The work of T.-L. Sham was sponsored by the U.S. Department of Energy, under Contract No. DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. NR 7 TC 0 Z9 0 U1 0 U2 4 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0094-9930 EI 1528-8978 J9 J PRESS VESS-T ASME JI J. Press. Vessel Technol.-Trans. ASME PD OCT PY 2013 VL 135 IS 5 AR 051401 DI 10.1115/1.4024434 PG 7 WC Engineering, Mechanical SC Engineering GA 239JU UT WOS:000326019800010 ER PT J AU Stull, CJ Taylor, SG Wren, J Mascarenas, DL Farrar, CR AF Stull, Christopher J. Taylor, Stuart G. Wren, James Mascarenas, David L. Farrar, Charles R. TI Real-Time Condition Assessment of RAPTOR Telescope Systems SO JOURNAL OF STRUCTURAL ENGINEERING LA English DT Article DE Telescopes; Structural health monitoring; Experimentation ID SKY AB The RAPid Telescopes for Optical Response (RAPTOR) observatory network consists of several ground-based, autonomous, robotic, astronomical observatories primarily designed to search for astrophysical transients called gamma-ray bursts. To make these observations, however, the RAPTOR telescopes must remain in peak operating condition at a high duty-cycle. Currently, the telescopes are maintained in an ad hoc manner, often in a run-to-failure mode. The required maintenance logistics are further complicated by the fact that many of the observatories are situated in remote locations. To ameliorate this situation, an effort has been initiated to develop a structural health monitoring (SHM) system capable of real-time, remote assessment of the RAPTOR telescopes. This paper summarizes the results from that effort. Common damage scenarios are identified to guide the instrumentation of the telescope system. A comprehensive analysis of the data acquired during experimental testing is then presented, highlighting the capability of the SHM system to discern between damaged and undamaged states. The paper concludes with a summary of future planned refinements for the RAPTOR SHM system. C1 [Taylor, Stuart G.] Los Alamos Natl Lab, Appl Engn & Technol AET 1, Los Alamos, NM 87545 USA. [Farrar, Charles R.] Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA. EM stull@lanl.gov OI Farrar, Charles/0000-0001-6533-6996 NR 19 TC 1 Z9 1 U1 0 U2 1 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9445 EI 1943-541X J9 J STRUCT ENG JI J. Struct. Eng. PD OCT 1 PY 2013 VL 139 IS 10 SI SI BP 1763 EP 1770 DI 10.1061/(ASCE)ST.1943-541X.0000567 PG 8 WC Construction & Building Technology; Engineering, Civil SC Construction & Building Technology; Engineering GA 218GF UT WOS:000324420100013 ER PT J AU Mun, BS Yoon, J Mo, SK Chen, K Tamura, N Dejoie, C Kunz, M Liu, Z Lee, YY Moon, K Park, C Ju, H AF Mun, Bongjin Simon Yoon, Joonseok Mo, Sung-Kwan Chen, Kai Tamura, Nobumichi Dejoie, Catherine Kunz, Martin Liu, Zhi Lee, Y. Yvette Moon, Kyungsun Park, Changwoo Ju, Honglyoul TI Metal insulator transition characteristics of macro-size single domain VO2 crystals SO PHASE TRANSITIONS LA English DT Article DE metal insulator transition; VO2; optical microscopy; phase boundary ID VANADIUM DIOXIDE; THIN-FILMS; DEPOSITION AB The metal insulator transition (MIT) characteristics of macro-size single-domain VO2 crystal were investigated. At the MIT, the VO2 crystal exhibited a rectangular shape hysteresis curve, a large change in resistance between the insulating and the metallic phases, in the order of approximate to 10(5), and a small transition width (i.e. temperature difference before and after MIT) as small as 10(-3)degrees C. These MIT characteristics of the VO2 crystals are discussed in terms of phase boundary motion and the possibility of controlling the speed of the phase boundary, with change in size of crystal, is suggested. C1 [Mun, Bongjin Simon] Hanyang Univ, Dept Appl Phys, Ansan, South Korea. [Mun, Bongjin Simon] Gwangju Inst Sci & Technol, Ertl Ctr Electrochem & Catalysis, Kwangju, South Korea. [Yoon, Joonseok; Lee, Y. Yvette; Moon, Kyungsun; Ju, Honglyoul] Yonsei Univ, Dept Phys, Seoul 120749, South Korea. [Mo, Sung-Kwan; Chen, Kai; Tamura, Nobumichi; Dejoie, Catherine; Kunz, Martin; Liu, Zhi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Chen, Kai] Xi An Jiao Tong Univ, Ctr Adv Mat Performance Nanoscale CAMP Nano, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China. [Park, Changwoo] Hanbat Natl Univ, Div Appl Chem & Biotechnol, Taejon, South Korea. [Park, Changwoo] Adv Nano Prod, Chungwon, South Korea. RP Ju, H (reprint author), Yonsei Univ, Dept Phys, Seoul 120749, South Korea. EM tesl@yonsei.ac.kr RI Chen, Kai/O-5662-2014; Liu, Zhi/B-3642-2009; Mo, Sung-Kwan/F-3489-2013; xjtu, campnano/Q-1904-2015; OI Chen, Kai/0000-0002-4917-4445; Liu, Zhi/0000-0002-8973-6561; Mo, Sung-Kwan/0000-0003-0711-8514; Yoon, Joonseok/0000-0001-5937-1787 FU Basic Science Research Program through the National Research Foundation of Korea (NRF); Ministry of Education, Science and Technology [2009-0073366]; NSFC [50925104]; 973 program of China [2010CB631003]; Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division of the US Department of Energy [DE-AC02-05CH11231]; NSF [0 416 243] FX This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0073366). K. Chen is supported by NSFC (50925104) and the 973 program of China (2010CB631003). The Advanced Light Source at the Lawrence Berkeley National Laboratory is supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division of the US Department of Energy under Contract No. DE-AC02-05CH11231. BL upgrade of BL 12.3.2. was made possible through the NSF grant No. 0 416 243. NR 15 TC 0 Z9 0 U1 0 U2 41 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0141-1594 EI 1029-0338 J9 PHASE TRANSIT JI Phase Transit. PD OCT 1 PY 2013 VL 86 IS 10 BP 941 EP 946 DI 10.1080/01411594.2012.717291 PG 6 WC Crystallography; Physics, Condensed Matter SC Crystallography; Physics GA 238AZ UT WOS:000325914100001 ER PT J AU Zhang, XS Izaurralde, RC Arnold, JG Williams, JR Srinivasan, R AF Zhang, Xuesong Izaurralde, R. Cesar Arnold, Jeffrey G. Williams, Jimmy R. Srinivasan, Raghavan TI Modifying the Soil and Water Assessment Tool to simulate cropland carbon flux: Model development and initial evaluation SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Carbon; Climate change; Evapotranspiration; Net ecosystem exchange; Spatial and Temporal Variation; Watershed modeling ID ORGANIC-MATTER DYNAMICS; EFFECTS ASSESSMENT PROJECT; LONG-TERM EXPERIMENTS; NITROGEN DYNAMICS; RIVER-BASIN; AGRICULTURAL SYSTEMS; CHANGE IMPACTS; SEQUESTRATION; SWAT; AGROECOSYSTEMS AB Climate change is one of the most compelling modern issues and has important implications for almost every aspect of natural and human systems. The Soil and Water Assessment Tool (SWAT) model has been applied worldwide to support sustainable land and water management in a changing climate. However, the inadequacies of the existing carbon algorithm in SWAT limit its application in assessing impacts of human activities on CO2 emission, one important source of greenhouse gasses (GHGs) that traps heat in the earth system and results in global warming. In this research, we incorporate a revised version of the CENTURY carbon model into SWAT to describe dynamics of soil organic matter (SOM)-residue and simulate land-atmosphere carbon exchange. We test this new SWAT-C model with daily eddy covariance (EC) observations of net ecosystem exchange (NEE) and evapotranspiration (ET) and annual crop yield at six sites across the U.S. Midwest. Results show that SWAT-C simulates well multi-year average NEE and ET across the spatially distributed sites and capture the majority of temporal variation of thesetwo variables at a daily time scale at each site. Our analyses also reveal that performance of SWAT-C is influenced by multiple factors, such as crop management practices (irrigated vs. rainfed), completeness and accuracy of input data, crop species, and initialization of state variables. Overall, the new SWAT-C demonstrates favorable performance for simulating land-atmosphere carbon exchange across agricultural sites with different soils, climate, and management practices. SWAT-C is expected to serve as a useful tool for including carbon flux into consideration in sustainable watershed management under a changing climate. We also note that extensive assessment of SWAT-C with field observations is required for further improving the model and understanding potential uncertainties of applying it across large regions with complex landscapes. (C) 2013 Elsevier B.V. All rights reserved. C1 [Zhang, Xuesong; Izaurralde, R. Cesar] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Zhang, Xuesong; Izaurralde, R. Cesar] Univ Maryland, College Pk, MD 20740 USA. [Arnold, Jeffrey G.] USDA ARS, Grassland Soil & Water Res Lab, Temple, TX 76502 USA. [Williams, Jimmy R.] AgriLIFE Res, Blackland Res & Extens Ctr, Temple, TX 76502 USA. [Srinivasan, Raghavan] Texas A&M Univ, Spatial Sci Lab, Dept Ecosyst Sci & Management, College Stn, TX 77845 USA. RP Zhang, XS (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. RI zhang, xuesong/B-7907-2009; Srinivasan, R/D-3937-2009 FU DOE Office of Science [DE-FCO2-07ER64494, KP1601050]; Office of Energy Efficiency and Renewable Energy [DE-ACO5-76RL01830, OBP 20469-19145]; NASA [NNH12AUO3I, NNHO8ZDA001N] FX We would like to thank the two anonymous reviewers for their thorough and constructive comments, which substantially improved the quality of this paper. We sincerely appreciate Dr. Cindy Keough at the Natural Resource Ecology Laboratory, Colorado state University, for sharing the latest of code of the Daily CENTURY model. This research received financial support from DOE Office of Science (DE-FCO2-07ER64494, KP1601050) and Office of Energy Efficiency and Renewable Energy (DE-ACO5-76RL01830, OBP 20469-19145), and NASA (NNH12AUO3I and NNHO8ZDA001N). We would like to thank the North American Carbon Program Site-Level Interim Synthesis team, the Modeling and Synthesis Thematic Data Center, the Oak Ridge National Laboratory Distributed Active Archive Center, and the Carbon Dioxide Information Analysis Center, AmeriFlux Network internet site, for collecting, organizing, and distributing the model input data and flux observations employed in this analysis. NR 76 TC 12 Z9 12 U1 4 U2 83 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD OCT 1 PY 2013 VL 463 BP 810 EP 822 DI 10.1016/j.scitotenv.2013.06.056 PG 13 WC Environmental Sciences SC Environmental Sciences & Ecology GA 236WW UT WOS:000325831200090 PM 23859899 ER PT J AU Sarkar, A Mao, XL Chan, GCY Russo, RE AF Sarkar, Arnab Mao, Xianglei Chan, George C. -Y. Russo, Richard E. TI Laser ablation molecular isotopic spectrometry of water for D-1(2)/H-1(1) ratio analysis SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article DE LAMIS; LIBS; Hydrogen; Deuterium; PLSR ID INDUCED BREAKDOWN SPECTROSCOPY; ANALYTICAL-CHEMISTRY; MULTIVARIATE CALIBRATION; ATMOSPHERIC-PRESSURE; INDUCED PLASMA; HEAVY-WATER; OH; DEUTERIUM; HYDROGEN; HELIUM AB Laser Ablation Molecular Isotopic Spectrometry (LAMIS) has been investigated for optical isotopic analysis of the deuterium to protium ratio in enriched water samples in ambient air at atmospheric pressure. Multivariate PLSR (Partial Least Squares Regression) based calibrations were carried out and validated using multiple statistical parameters. Comparisons of results are reported using two spectrometers having two orders of magnitude difference in spectral resolution. The accuracy and precision of isotopic analysis depends on the spectral resolution and the inherent isotope shift of the elements. The requirements for spectral resolution of the measurement system can be significantly relaxed when the isotopic abundance ratio is determined using chemometric processing of the spectra. Large isotopic shifts in the individual rotational branches of OH/OD molecular emission spectra were measured. Optimized temporal conditions for IAMIS measurements were established. Several sub-regions of spectra were used for PLSR calibration and the results demonstrate that both the emission intensity and degree of spectral differentiation affect the quality of the PLSR calibration. LAMIS results also were compared with traditional LIBS results obtained using PLSR and a spectral deconvolution method, demonstrating the advantages of LAMIS over LIBS with respect to isotopic composition determination. Published by Elsevier B.V. C1 [Sarkar, Arnab; Mao, Xianglei; Chan, George C. -Y.; Russo, Richard E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Sarkar, Arnab] Bhabha Atom Res Ctr, Div Fuel Chem, Bombay 400085, Maharashtra, India. RP Russo, RE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM rerusso@lbl.gov OI Sarkar, Arnab/0000-0003-3783-8299 FU Chemical Science Division, Office of Basic Energy Sciences; Defense Nuclear Nonproliferation Research and Development Office of the U.S. Department of Energy [DE-AC02-05CH11231]; Indo-US Science & Technology Forum FX This work was supported by the Chemical Science Division, Office of Basic Energy Sciences and the Defense Nuclear Nonproliferation Research and Development Office of the U.S. Department of Energy under contract number DE-AC02-05CH11231 at the Lawrence Berkeley National Laboratory. Arnab Sarkar also gratefully acknowledges the Indo-US Science & Technology Forum for providing him an IUSSTF - 2012 fellowship. NR 39 TC 18 Z9 18 U1 3 U2 34 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD OCT 1 PY 2013 VL 88 BP 46 EP 53 DI 10.1016/j.sab.2013.08.002 PG 8 WC Spectroscopy SC Spectroscopy GA 236ZV UT WOS:000325838900008 ER PT J AU Cha, JH Seol, Y AF Cha, Jong-Ho Seol, Yongkoo TI Increasing Gas Hydrate Formation Temperature for Desalination of High Salinity Produced Water with Secondary Guests SO ACS SUSTAINABLE CHEMISTRY & ENGINEERING LA English DT Article DE Desalination; Gas hydrate; Produced water; Brine; Cyclopentane; Cyclohexane ID PHASE-EQUILIBRIUM MEASUREMENTS; FIELD-PRODUCED WATER; CARBON-DIOXIDE; NATURAL-GAS; CO2 HYDRATE; SEA-WATER; FLUE-GAS; CLATHRATE; HYDROGEN; CYCLOPENTANE AB We suggest a new gas hydrate-based desalination process using water-immiscible hydrate formers; cyclopentane (CP) and cyclohexane (CH) as secondary hydrate guests to alleviate temperature requirements for hydrate formation. The hydrate formation reactions were carried out in an isobaric condition of 3.1 MPa to find the upper temperature limit of CO2 hydrate formation. Simulated produced water (8.95 wt % salinity) mixed with the hydrate formers shows an increased upper temperature limit from -2 degrees C for simple CO2 hydrate to 16 and 7 degrees C for double (CO2 + CP) and (CO2 + CH) hydrates, respectively. The resulting conversion rate to double hydrate turned out to be similar to that with simple CO2 hydrate at the upper temperature limit. Hydrate formation rates (R-f) for the double hydrates with CP and CH are shown to be 22 and 16 times higher, respectively, than that of the simple CO2 hydrate at the upper temperature limit. Such mild hydrate formation temperature and fast formation kinetics indicate increased energy efficiency of the double hydrate system for the desalination process. Dissociated water from the hydrates shows greater than 90% salt removal efficiency for the hydrates with the secondary guests, which is also improved from about 70% salt removal efficiency for the simple hydrates. C1 [Cha, Jong-Ho; Seol, Yongkoo] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Seol, Y (reprint author), US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. EM Yongkoo.Seol@netl.doe.gov FU National Energy Technology Laboratory FX The authors thank the National Energy Technology Laboratory for financial support. The authors also thank Jinesh Jain for assistance of analysis on cation concentrations and Wu Zhang and Prof. Ki-Sub Kim for valuable comments for improving the paper. NR 46 TC 42 Z9 43 U1 8 U2 65 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2168-0485 J9 ACS SUSTAIN CHEM ENG JI ACS Sustain. Chem. Eng. PD OCT PY 2013 VL 1 IS 10 BP 1218 EP 1224 DI 10.1021/sc400160u PG 7 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Chemical SC Chemistry; Science & Technology - Other Topics; Engineering GA 232RP UT WOS:000325512000002 ER PT J AU Li, TW Benyahia, S AF Li, Tingwen Benyahia, Sofiane TI Evaluation of Wall Boundary Condition Parameters for Gas-Solids Fluidized Bed Simulations SO AICHE JOURNAL LA English DT Article DE computational fluid dynamics; fluidized bed; gas-solids flow; boundary condition; granular flow; two-fluid model ID GRANULAR FLOWS; KINETIC-THEORY; PARTICLES; FLAT; MODEL AB Wall boundary conditions for the solids phase have significant effects on numerical predictions of various gas-solids fluidized beds. Several models for the granular flow wall boundary condition are available in the open literature for numerical modeling of gas-solids flow. A model for specularity coefficient used in Johnson and Jackson boundary conditions by Li and Benyahia (Li and Benyahia, AIChE J. 2012;58:2058-2068) is implemented in the open-source CFD code-MFIX. The variable specularity coefficient model provides a physical way to calculate the specularity coefficient needed by the partial-slip boundary conditions for the solids phase. Through a series of two-dimensional numerical simulations of bubbling fluidized bed and circulating fluidized bed riser, the model predicts qualitatively consistent trends to the previous studies. Furthermore, a quantitative comparison is conducted between numerical results of variable and constant specularity coefficients to investigate the effect of spatial and temporal variations in specularity coefficient. Published 2013 American Institute of Chemical Engineers AIChE J, 59: 3624-3632, 2013 C1 [Li, Tingwen; Benyahia, Sofiane] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Li, Tingwen] URS Corp, Morgantown, WV 26505 USA. RP Li, TW (reprint author), US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. EM tingwen.li@contr.netl.doe.gov FU National Energy Technology Laboratory's ongoing research in advanced multiphase flow simulation under the RES contract [DE-FE0004000]; agency of the United States Government FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in advanced multiphase flow simulation under the RES contract DE-FE0004000. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 19 TC 16 Z9 19 U1 0 U2 30 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0001-1541 EI 1547-5905 J9 AICHE J JI AICHE J. PD OCT PY 2013 VL 59 IS 10 BP 3624 EP 3632 DI 10.1002/aic.14132 PG 9 WC Engineering, Chemical SC Engineering GA 220ZA UT WOS:000324625100009 ER PT J AU Orellana, R Leavitt, JJ Comolli, LR Csencsits, R Janot, N Flanagan, KA Gray, AS Leang, C Izallalen, M Mester, T Lovley, DR AF Orellana, Roberto Leavitt, Janet J. Comolli, Luis R. Csencsits, Roseann Janot, Noemie Flanagan, Kelly A. Gray, Arianna S. Leang, Ching Izallalen, Mounir Mester, Tuende Lovley, Derek R. TI U(VI) Reduction by Diverse Outer Surface c-Type Cytochromes of Geobacter sulfurreducens SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID METALLIC-LIKE CONDUCTIVITY; ELECTRON-TRANSFER; FE(III) REDUCTION; OXIDE REDUCTION; FUEL-CELLS; URANIUM; PILI; BIOREMEDIATION; SUBSURFACE; EXCHANGE AB Early studies with Geobacter sulfurreducens suggested that outer-surface c-type cytochromes might play a role in U(VI) reduction, but it has recently been suggested that there is substantial U(VI) reduction at the surface of the electrically conductive pili known as microbial nanowires. This phenomenon was further investigated. A strain of G. sulfurreducens, known as Aro-5, which produces pili with substantially reduced conductivity reduced U(VI) nearly as well as the wild type, as did a strain in which the gene for PilA, the structural pilin protein, was deleted. In order to reduce rates of U(VI) reduction to levels less than 20% of the wild-type rates, it was necessary to delete the genes for the five most abundant outer surface c-type cytochromes of G. sulfurreducens. X-ray absorption near-edge structure spectroscopy demonstrated that whereas 83% +/- 10% of the uranium associated with wild-type cells correspond to U(IV) after 4 h of incubation, with the quintuple mutant, 89% +/- 10% of uranium was U(VI). Transmission electron microscopy and X-ray energy dispersion spectroscopy revealed that wild-type cells did not precipitate uranium along pili as previously reported, but U(IV) was precipitated at the outer cell surface. These findings are consistent with those of previous studies, which have suggested that G. sulfurreducens requires outer-surface c-type cytochromes but not pili for the reduction of soluble extracellular electron acceptors. C1 [Orellana, Roberto; Flanagan, Kelly A.; Gray, Arianna S.; Leang, Ching; Izallalen, Mounir; Mester, Tuende; Lovley, Derek R.] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA. [Leavitt, Janet J.] Univ New Mexico, Dept Civil Engn, Albuquerque, NM 87131 USA. [Comolli, Luis R.; Csencsits, Roseann] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Janot, Noemie] SLAC Natl Accelerator Lab, Menlo Pk, CA USA. RP Orellana, R (reprint author), Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA. EM orellana@microbio.umass.edu RI Janot, Noemie/C-4486-2012; Foundry, Molecular/G-9968-2014 OI Janot, Noemie/0000-0001-9287-2532; FU Office of Science (Office of Biological and Environmental Research), U.S. Department of Energy [DE-SC0004114]; Fulbright-CONICYT Equal Opportunities Scholarship; Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy Office of Science (DOE-SC), Office of Biological and Environmental Research (BER) [10094]; DOE-SC-BER; NIH Institute of General Medical Sciences [P41GM103393]; National Center for Research Resources [P41RR001209] FX This research was supported by the Office of Science (Office of Biological and Environmental Research), U.S. Department of Energy, award number DE-SC0004114. R.O. was supported by a Fulbright-CONICYT 2008 Equal Opportunities Scholarship. The work of L.R.C. and R.C. was supported by the Director, Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. Work at the Molecular Foundry (EDS analysis) was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. The SLAC SFA (N.J.) was funded by the U.S. Department of Energy Office of Science (DOE-SC), Office of Biological and Environmental Research (BER), work package number 10094. SSRL is a USDOE User Facility operated by Stanford University. The SSRL Structural Molecular Biology Program is supported by DOE-SC-BER and by the NIH Institute of General Medical Sciences (including P41GM103393) and the National Center for Research Resources (P41RR001209). NR 31 TC 17 Z9 17 U1 10 U2 61 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD OCT PY 2013 VL 79 IS 20 BP 6369 EP 6374 DI 10.1128/AEM.02551-13 PG 6 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 236OH UT WOS:000325807200021 PM 23934497 ER PT J AU Wang, YG Hopke, PK AF Wang, Yungang Hopke, Philip K. TI A ten-year source apportionment study of ambient fine particulate matter in San Jose, California SO ATMOSPHERIC POLLUTION RESEARCH LA English DT Article DE Positive matrix factorization (PMF); source apportionment; particulate matter (PM); wood combustion; road dust ID EMISSIONS; AEROSOL; MODELS AB Fine particulate matter (PM2.5) composition data from the Speciation Trends Network (STN) site in San Jose, CA, were analyzed by positive matrix factorization (PMF) using U.S. Environmental Protection Agency (EPA) PMF version 5.0. These data were 24-h average mass concentrations and compositions obtained from samples taken every third day from October 2002 to February 2012. The eight identified sources include secondary sulfate, secondary nitrate, fresh sea salt, aged sea salt, diesel emission, road salt, gasoline vehicles, and wood combustion. The contributions to PM2.5 of these eight sources were 13.1%, 20.0%, 5.5%, 7.8%, 9.4%, 5.1%, 14.8, and 24.3%, respectively. The Ni-related industrial source, which was detected in previous PMF analysis, was not identified in our study and a sharp decrease in Ni concentrations was observed after the end of 2004. The contribution of road dust source decreased significantly after 2004 (Mann-Whitney test, p<0.01), which is probably the result of the city wide enhanced street sweeping programs starting in 2005. A 40% reduction in the wood combustion PM2.5 contribution between winter 2008 and winter 2009 was found. This decrease could be attributed to the San Francisco Bay Area Air Quality Management District (BAAQMD) wood burning rule implemented in July 2008. In the future, the effectiveness and benefits of the wood burning rule could be evaluated using the multi-wavelength aethalometer delta-c method. C1 [Wang, Yungang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Hopke, Philip K.] Clarkson Univ, Ctr Air Resource Engn & Sci, Potsdam, NY 13699 USA. RP Wang, YG (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM yungangwang@lbl.gov RI Hopke, Philip/C-6020-2008 OI Hopke, Philip/0000-0003-2367-9661 NR 20 TC 6 Z9 6 U1 2 U2 48 PU TURKISH NATL COMMITTEE AIR POLLUTION RES & CONTROL-TUNCAP PI BUCA PA DOKUZ EYLUL UNIV, DEPT ENVIRONMENTAL ENGINEERING, TINAZTEPE CAMPUS, BUCA, IZMIR 35160, TURKEY SN 1309-1042 J9 ATMOS POLLUT RES JI Atmos. Pollut. Res. PD OCT PY 2013 VL 4 IS 4 BP 398 EP 404 DI 10.5094/APR.2013.045 PG 7 WC Environmental Sciences SC Environmental Sciences & Ecology GA 234IE UT WOS:000325635500006 ER PT J AU Ellis, MJ Gillette, M Carr, SA Paulovich, AG Smith, RD Rodland, KK Townsend, RR Kinsinger, C Mesri, M Rodriguez, H Liebler, DC AF Ellis, Matthew J. Gillette, Michael Carr, Steven A. Paulovich, Amanda G. Smith, Richard D. Rodland, Karin K. Townsend, R. Reid Kinsinger, Christopher Mesri, Mehdi Rodriguez, Henry Liebler, Daniel C. CA CPTAC TI Connecting Genomic Alterations to Cancer Biology with Proteomics: The NCI Clinical Proteomic Tumor Analysis Consortium SO CANCER DISCOVERY LA English DT Editorial Material ID MASS-SPECTROMETRY; CELL-LINES; QUANTIFICATION; PROTEINS AB The National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium is applying the latest generation of proteomic technologies to genomically annotated tumors from The Cancer Genome Atlas (TCGA) program, a joint initiative of the NCI and the National Human Genome Research Institute. By providing a fully integrated accounting of DNA, RNA, and protein abnormalities in individual tumors, these datasets will illuminate the complex relationship between genomic abnormalities and cancer phenotypes, thus producing biologic insights as well as a wave of novel candidate biomarkers and therapeutic targets amenable to verifi cation using targeted mass spectrometry methods. (C) 2013 AACR. C1 [Ellis, Matthew J.] Washington Univ, Sch Med, Dept Med, Div Oncol, St Louis, MO 63110 USA. [Townsend, R. Reid] Washington Univ, Sch Med, Dept Med, Div Endocrinol & Metab, St Louis, MO 63110 USA. [Gillette, Michael; Carr, Steven A.] Broad Inst MIT & Harvard, Cambridge, MA USA. [Paulovich, Amanda G.] Fred Hutchinson Canc Res Ctr, Seattle, WA 98104 USA. [Smith, Richard D.; Rodland, Karin K.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Kinsinger, Christopher; Mesri, Mehdi; Rodriguez, Henry] NCI, Off Canc Clin Prote Res, NIH, Bethesda, MD 20892 USA. [Liebler, Daniel C.] Vanderbilt Ingram Canc Ctr, Jim Ayers Inst Canc Detect & Diag, Nashville, TN USA. RP Liebler, DC (reprint author), Vanderbilt Univ, Sch Med, Vanderbilt Ingram Canc Ctr, Jim Ayers Inst Canc Detect & Diag, U1213 MRBIII,465 21st Ave South, Nashville, TN 37232 USA. EM mellis@dom.wustl.edu; daniel.liebler@vanderbilt.edu RI Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; Liebler, Daniel/0000-0002-7873-3031 FU NCI NIH HHS [U24 CA159988, U24 CA160019, U24 CA160034, U24 CA160035, U24 CA160036, U24CA159988, U24CA160019, U24CA160034, U24CA160035, U24CA160036] NR 20 TC 48 Z9 49 U1 2 U2 13 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 2159-8274 EI 2159-8290 J9 CANCER DISCOV JI Cancer Discov. PD OCT PY 2013 VL 3 IS 10 BP 1108 EP 1112 DI 10.1158/2159-8290.CD-13-0219 PG 5 WC Oncology SC Oncology GA 235WH UT WOS:000325751600021 PM 24124232 ER PT J AU Li, JY Liu, GF Xu, W Li, WM Li, YJ AF Li Jing-Yi Liu Gong-Fa Xu Wei Li Wei-Min Li Yong-Jun TI A possible approach to reduce the emittance of HLS-II storage ring using a Robinson wiggler SO CHINESE PHYSICS C LA English DT Article DE storage ring; emittance; Robinson wiggler ID RADIATION AB In this paper, we present some preliminary studies on using a Robinson wiggler to reduce the horizontal beam emittance in the Hefei Light Source II (HLS-II) storage ring. A proof-of-principle lattice demonstrates that it is possible to reduce its emittance by 50% with a 2-meter long wiggler. This encouraging result suggests a feasible option to significantly improve the machine performance at a relatively low cost. C1 [Li Jing-Yi; Liu Gong-Fa; Xu Wei; Li Wei-Min] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Peoples R China. [Li Yong-Jun] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. RP Li, JY (reprint author), Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Peoples R China. EM jingyili@ustc.edu.cn FU Introdution of Outstanding Technological Talents Program of Chinese Academy of Sciences; Fundamental Research Funds for the Central Universities [WK2310000032] FX Supported by Introdution of Outstanding Technological Talents Program of Chinese Academy of Sciences, 2010, and Fundamental Research Funds for the Central Universities (WK2310000032) NR 12 TC 1 Z9 1 U1 0 U2 4 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1674-1137 J9 CHINESE PHYS C JI Chin. Phys. C PD OCT PY 2013 VL 37 IS 10 AR UNSP 107006 DI 10.1088/1674-1137/37/10/107006 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 231UZ UT WOS:000325445200019 ER PT J AU Mitchell, JM O'Neil, JP Jagust, WJ Fields, HL AF Mitchell, Jennifer M. O'Neil, James P. Jagust, William J. Fields, Howard L. TI Catechol-O-Methyltransferase Genotype Modulates Opioid Release in Decision Circuitry SO CTS-CLINICAL AND TRANSLATIONAL SCIENCE LA English DT Article DE alcohol; impulsivity; dopamine; positron emission tomography; mu opioid receptor ID POSITRON-EMISSION-TOMOGRAPHY; HUMAN BRAIN; COMT; IMMEDIATE; DOPAMINE; RATS; POLYMORPHISM; ALCOHOLICS; PREFERENCE; BLOCKADE AB Impulsivity, a risk factor for substance abuse disorders, is modulated by the Val158 variant of the catechol-O-methyltransferase (COMT) gene. Rodent studies have shown that opioids enhance impulsivity. Furthermore, alcohol consumption leads to endogenous opioid release in the cortex and nucleus accumbens (NAc), and this opioid release is correlated with greater positive hedonic effect. Using the selective mu opioid receptor radioligand [C-11] carfentanil, we find that, following alcohol consumption, individuals with the COMT Val158 allele have greater opioid release in the right NAc but less release in medial orbital frontal cortex (OFC). These data suggest that genetic regulation of dopamine levels can affect alcohol consumption in part by modulating endogenous opioid release in specific brain regions implicated in reward, which in turn promotes impulsive choice. C1 [Mitchell, Jennifer M.; Fields, Howard L.] Univ Calif San Francisco, Ernest Gallo Clin & Res Ctr, Emeryville, CA USA. [Mitchell, Jennifer M.; Fields, Howard L.] Univ Calif San Francisco, Dept Neurol, San Francisco, CA USA. [Jagust, William J.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [O'Neil, James P.; Jagust, William J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Mitchell, JM (reprint author), Univ Calif San Francisco, Ernest Gallo Clin & Res Ctr, Emeryville, CA USA. EM jennifer.mitchell@ucsf.edu FU Department of Defense [W81XWH-07-1-0431]; California State Funds for Research on Drug and Alcohol Abuse FX The authors thank A. Coker, C. Teague, and I. Yen for their technical contributions to this manuscript. The authors also thank S. Jivan at UBC/TRIUMF PET Centre for the generous donation of desmethylcarfentanil. This study was supported by Department of Defense W81XWH-07-1-0431 and by California State Funds for Research on Drug and Alcohol Abuse. NR 26 TC 1 Z9 1 U1 1 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1752-8054 EI 1752-8062 J9 CTS-CLIN TRANSL SCI JI CTS-Clin. Transl. Sci. PD OCT PY 2013 VL 6 IS 5 BP 400 EP 403 DI 10.1111/cts.12075 PG 4 WC Medicine, Research & Experimental SC Research & Experimental Medicine GA 234IR UT WOS:000325637000013 PM 24127930 ER PT J AU El Khoury, GK Schlatter, P Noorani, A Fischer, PF Brethouwer, G Johansson, AV AF El Khoury, George K. Schlatter, Philipp Noorani, Azad Fischer, Paul F. Brethouwer, Geert Johansson, Arne V. TI Direct Numerical Simulation of Turbulent Pipe Flow at Moderately High Reynolds Numbers SO FLOW TURBULENCE AND COMBUSTION LA English DT Article DE Wall turbulence; Pipes; Channels; Boundary layers; Direct numerical simulation ID LARGE-SCALE MOTIONS; BOUNDARY-LAYERS AB Fully resolved direct numerical simulations (DNSs) have been performed with a high-order spectral element method to study the flow of an incompressible viscous fluid in a smooth circular pipe of radius R and axial length 25R in the turbulent flow regime at four different friction Reynolds numbers Re (tau) = 180, 360, 550 and . The new set of data is put into perspective with other simulation data sets, obtained in pipe, channel and boundary layer geometry. In particular, differences between different pipe DNS are highlighted. It turns out that the pressure is the variable which differs the most between pipes, channels and boundary layers, leading to significantly different mean and pressure fluctuations, potentially linked to a stronger wake region. In the buffer layer, the variation with Reynolds number of the inner peak of axial velocity fluctuation intensity is similar between channel and boundary layer flows, but lower for the pipe, while the inner peak of the pressure fluctuations show negligible differences between pipe and channel flows but is clearly lower than that for the boundary layer, which is the same behaviour as for the fluctuating wall shear stress. Finally, turbulent kinetic energy budgets are almost indistinguishable between the canonical flows close to the wall (up to y (+) a parts per thousand aEuro parts per thousand 100), while substantial differences are observed in production and dissipation in the outer layer. A clear Reynolds number dependency is documented for the three flow configurations. C1 [El Khoury, George K.; Schlatter, Philipp; Noorani, Azad; Brethouwer, Geert; Johansson, Arne V.] Royal Inst Technol, KTH Mech, Linne FLOW Ctr, S-10044 Stockholm, Sweden. [El Khoury, George K.; Schlatter, Philipp; Noorani, Azad; Brethouwer, Geert; Johansson, Arne V.] Royal Inst Technol, Swedish E Sci Res Ctr SeRC, Linne FLOW Ctr, S-10044 Stockholm, Sweden. [Fischer, Paul F.] Argonne Natl Lab, MCS, Argonne, IL 60439 USA. RP El Khoury, GK (reprint author), Royal Inst Technol, KTH Mech, Linne FLOW Ctr, S-10044 Stockholm, Sweden. EM georgeek@mech.kth.se FU Goran Gustafsson Foundation; U.S. Department of Energy; Swedish Research Council VR [2010 - 4147, 2010 - 6965] FX Computer time on Lindgren was granted by The Swedish National Infrastructure for Computing (SNIC) and on HECToR by PRACE through the DECI project PIPETURB. We would also like to thank the Goran Gustafsson Foundation for the financial support. Development of the nek5000 algorithm is supported by the U.S. Department of Energy Applied Mathematics Research Program. Financial support from the Swedish Research Council VR (2010 - 4147, 2010 - 6965), is gratefully acknowledged. NR 36 TC 21 Z9 21 U1 5 U2 38 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1386-6184 EI 1573-1987 J9 FLOW TURBUL COMBUST JI Flow Turbul. Combust. PD OCT PY 2013 VL 91 IS 3 SI SI BP 475 EP 495 DI 10.1007/s10494-013-9482-8 PG 21 WC Thermodynamics; Mechanics SC Thermodynamics; Mechanics GA 234AU UT WOS:000325612100004 ER PT J AU Kiger, CJ Johnson, SW Hashemian, HM Hudson, EK AF Kiger, Chad J. Johnson, Steve W. Hashemian, H. M. Hudson, Edward K. TI Harnessing Wireless Data from the Containment of a Nuclear Power Plant SO IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE LA English DT Article C1 [Kiger, Chad J.] AMS, Knoxville, TN 37923 USA. [Kiger, Chad J.; Johnson, Steve W.] US DOE, Washington, DC 20585 USA. [Johnson, Steve W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Hashemian, H. M.] AMS Corp, Knoxville, TN 37923 USA. [Hudson, Edward K.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Kiger, CJ (reprint author), AMS, Knoxville, TN 37923 USA. FU Department of Energy [DE-NE0000378] FX The material herein is based upon work supported by the Department of Energy under Award Number DE-NE0000378. NR 7 TC 1 Z9 1 U1 0 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1094-6969 EI 1941-0123 J9 IEEE INSTRU MEAS MAG JI IEEE Instrum. Meas. Mag. PD OCT PY 2013 VL 16 IS 5 BP 18 EP 23 PG 6 WC Engineering, Electrical & Electronic; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 234QP UT WOS:000325659300004 ER PT J AU Rodenbeck, CT Elsbury, MM Dimsdle, JW AF Rodenbeck, Christopher T. Elsbury, Michael M. Dimsdle, Jeffrey W. TI Techniques for the Analysis and Elimination of Transient Oscillations in Wideband and Ultra-Wideband Pulsed Power Amplifiers SO IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES LA English DT Article DE Microwave stability analysis; pulse modulation; radiofrequency integrated circuit (RFIC) design; ultra-wideband (UWB) technology ID UWB; STABILITY; DESIGN; TRANSMITTER; GENERATION; DISPERSION; DEVICES; MODEL AB Wideband pulsed power amplifiers (PAs) often exhibit undesirable transient oscillations at the trailing edges of the pulsed radiofrequency (RF) output. To combat this problem, this paper introduces an approach for predicting and eliminating such transient oscillations in pulsed PAs. Root causes for the transient oscillations are identified and contrasted with other time-domain pulse-distortion phenomena. Effective analytical techniques are presented for predicting transient instability during the PA design process. These techniques are demonstrated using a series of monolithic GaAs HBT Class-A and Class-C ultra-wideband (UWB) pulsed PA RF integrated circuits (RFICs). RFIC variants designed to exhibit no transient oscillations successfully show no such effects; RFIC variants designed without considering transient stability as a design tradeoff do indeed generate pulsed transients with measured oscillation frequencies and damping ratio parameters in less than 2% error with predictions. These results should greatly facilitate the design of pulsed transmitters for wideband/UWB communications and radar applications. C1 [Rodenbeck, Christopher T.; Elsbury, Michael M.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Dimsdle, Jeffrey W.] Honeywell Fed Mfg & Technol, Kansas City, MO 64131 USA. RP Rodenbeck, CT (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. EM chris.rodenbeck@ieee.org FU National Nuclear Security Administration, U.S. Department of Energy [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by the Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration, U.S. Department of Energy, under Contract DE-AC04-94AL85000. NR 41 TC 2 Z9 2 U1 1 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9480 EI 1557-9670 J9 IEEE T MICROW THEORY JI IEEE Trans. Microw. Theory Tech. PD OCT PY 2013 VL 61 IS 10 BP 3733 EP 3742 DI 10.1109/TMTT.2013.2280114 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA 236AC UT WOS:000325764600025 ER PT J AU Peng, QY Choong, WS Moses, WW AF Peng, Qiyu Choong, Woon-Seng Moses, W. William TI Evaluation of the Timing Properties of a High Quantum Efficiency Photomultiplier Tube SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Collection efficiency; photomultiplier tube; quantum efficiency; time resolution ID TOF PET; TIME; RESOLUTION; DETECTOR; SYSTEMS AB We measured the timing resolution of 189 R9800-100 photomultiplier tubes (PMTs), which are a SBA (Super Bialkali, high quantum efficiency) variant of the R9800 high-performance PMT manufactured by Hamamatsu Photonics, and correlated their timing resolutions with various measures of PMT performance, namely Cathode Luminous Sensitivity (CLS), Anode Luminous Sensitivity (ALS), Gain times Collection Efficiency (GCE), Cathode Blue Sensitivity Index (CBSI), Anode Blue Sensitivity Index (ABSI) and dark current. The correlation results show: (1) strong correlations between timing resolution and ALS, ABSI, and GCE; (2) moderate correlations between timing resolution and CBSI; and (3) weak or no correlations between timing resolution and dark current and CLS. The results disclosed that all three measures that include data collected from the anode (ALS, ABSI, and GCE) affect the timing resolution more than either of the two measures that only include photocathode data (CBSI and CLS). We conclude that: (1) the photocathode Quantum Efficiency (QE) and the product of the Gain and the Collection Efficiency (GCE) are the two dominant factors that affect the timing resolution, (2) the GCE variation affects the timing resolution more than the QE variation in the R9800 PMT, and (3) the performance depends on photocathode position. C1 [Peng, Qiyu; Choong, Woon-Seng; Moses, W. William] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Peng, QY (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM qpeng@lbl.gov FU Office of Science, Office of Biological and Environmental Research, Biological Systems Science Division, U.S. Department of Energy [DE-AC02-05CH11231]; National Institutes of Health, National Institute of Biomedical Imaging and Bioengineering [R01EB006085, R21EB007081] FX Manuscript received December 22, 2012; revised April 15, 2013; accepted September 01, 2013. Date of publication October 01, 2013; date of current version October 09, 2013. This work was supported in part by the Director, Office of Science, Office of Biological and Environmental Research, Biological Systems Science Division, U.S. Department of Energy under contract DE-AC02-05CH11231, and in part by the National Institutes of Health, National Institute of Biomedical Imaging and Bioengineering, under Grants R01EB006085 and R21EB007081. NR 11 TC 3 Z9 3 U1 0 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD OCT PY 2013 VL 60 IS 5 BP 3212 EP 3219 DI 10.1109/TNS.2013.2281176 PN 1 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 236VJ UT WOS:000325827200007 PM 24526798 ER PT J AU Underwood, DG Drake, G Fernando, WS Stanek, RW AF Underwood, David G. Drake, G. Fernando, W. S. Stanek, R. W. TI Modulator-Based, High Bandwidth Optical Links for HEP Experiments SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 18th IEEE-NPSS Real Time Conference (RT) on Computing Applications in Nuclear and Plasma Sciences CY JUN 11-15, 2012 CL Berkeley, CA DE High energy physics instrumentation; optical modulators; radiation effects; vertical cavity surface emitting lasers AB As a concern with the reliability, bandwidth and mass of future optical links in large High Energy Physics experiments, we are investigating CW lasers and separate light modulators as an alternative to modulated lasers called VCSELs. These links will be particularly useful if they can utilize light modulators which are very small, low power, high bandwidth, and are very radiation hard. We have constructed a test system with 3 such links, each operating at 10 Gb/s. We present the quality of these links (jitter, rise and fall time, and bit error rate (BER)) and eye mask margins (10 GbE) for 3 different types of modulators: LiNbO3-based, InP-based, and Si-based. We present the results of radiation hardness measurements with up to similar to 10(12) protons/cm(2) and 64 krad total ionizing dose (TID), confirming no single event effects (SEE) at 10 Gb/s with any of the 3 types of modulators. We have used a Si-based photonic transceiver to build a complete 40 Gb/s bi-directional link (10 Gb/s in each of four fibers) for a 100 m run and have characterized it to compare with standard VCSEL-based optical links. Some future developments of optical modulator-based high bandwidth optical readout systems, and applications based on both fiber and free space data links, such as local triggering and data readout and trigger-clock distribution, are also discussed. C1 [Underwood, David G.; Drake, G.; Fernando, W. S.; Stanek, R. W.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Underwood, DG (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dgu@hep.anl.gov FU UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"); Argonne, a U.S. Department of Energy Office of Science [DE-AC02-06CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 19 TC 0 Z9 0 U1 0 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD OCT PY 2013 VL 60 IS 5 BP 3497 EP 3501 DI 10.1109/TNS.2013.2281134 PN 2 PG 5 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 236VO UT WOS:000325827700010 ER PT J AU Schambach, J Greiner, L Stezelberger, T Sun, XM Szelezniak, M Vu, C AF Schambach, Joachim Greiner, Leo Stezelberger, Thorsten Sun, Xiangming Szelezniak, Michal Chinh Vu TI Readout Hardware and Firmware Architecture of the HFT PXL Detector at STAR SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 18th IEEE-NPSS Real Time Conference (RT) on Computing Applications in Nuclear and Plasma Sciences CY JUN 11-15, 2012 CL Berkeley, CA DE Data acquisition; FPGA; MAPS; pixel; readout electronics; vertex detector ID MAPS AB The "Heavy Flavor Tracker" (HFT) is an approved micro-vertex detector upgrade to the STAR experiment at RHIC, consisting of three subsystems with various technologies of silicon sensors arranged in 4 concentric cylinders, to be installed in STAR by 2014. This new vertex detector will improve the track-pointing resolution in STAR to a distance of closest approach (DCA) of similar to 30 mu m in order to allow for a direct and full topological reconstruction of heavy quark meson decays and a better determination of the heavy quark meson spectra. The two innermost layers of the HFT close to the beam pipe, the Pixel ("PXL") subsystem, employ CMOS monolithic active pixel sensor (MAPS) technology that integrates the sensor, front-end electronics, and zero-suppression circuitry in one silicon wafer. The PXL layers of the HFT will consist of 400 MAPS sensors arranged in 40 ladders (10 ladders at a radius of 2.5 cm and 30 ladders at 8 cm from the beam), each containing 10 of these sensors. This paper will present selected design characteristics of the PXL detector part of the HFT and the hardware and firmware architecture of the proposed readout system for this detector, as well as its integration into the existing STAR framework. A prototype of this readout system has recently been used at CERN to take data from a telescope consisting of 7 sensors arranged in parallel planes and shown to be fully functional. C1 [Schambach, Joachim] Univ Texas Austin, Austin, TX 78712 USA. [Greiner, Leo; Stezelberger, Thorsten; Sun, Xiangming; Szelezniak, Michal; Chinh Vu] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Schambach, J (reprint author), Univ Texas Austin, Austin, TX 78712 USA. EM jschamba@physics.utexas.edu FU U.S. DoE Office of Nuclear Physics [DE-FG02-94ER40845, DE-AC02-05CH11231] FX This work was supported in part by U.S. DoE Office of Nuclear Physics Grants DE-FG02-94ER40845 and DE-AC02-05CH11231. NR 10 TC 1 Z9 1 U1 0 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD OCT PY 2013 VL 60 IS 5 BP 3689 EP 3693 DI 10.1109/TNS.2013.2272762 PN 2 PG 5 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 236VO UT WOS:000325827700040 ER PT J AU Spruck, B Gessler, T Kuhn, W Lange, JS Lin, HC Liu, ZA Munchow, D Xu, H Zhao, JZ AF Spruck, Bjoern Gessler, Thomas Kuehn, Wolfgang Lange, Jens Soeren Lin, Haichuan Liu, Zhen'An Muenchow, David Xu, Hao Zhao, Jingzhou TI The Belle II Pixel Detector Data Acquisition and Reduction System SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 18th IEEE-NPSS Real Time Conference (RT) on Computing Applications in Nuclear and Plasma Sciences CY JUN 11-15, 2012 CL Berkeley, CA DE Data acquisition; field programmable gate arrays; high energy physics instrumentation computing AB The upcoming Belle II experiment is designed to work at a luminosity of 8 x 10(35) cm(-2) s(-1), 40 times higher than its predecessor. The pixel detector of Belle II with its similar to 8 million channels will deliver ten times more data than all other sub-detectors together. A data rate of 22 Gbytes/s is expected for a trigger rate of 30 kHz and an estimated pixel detector occupancy of 3%, which is by far exceeding the specifications of the Belle II event builder system. Therefore a realtime data reduction of a factor >30 is needed. A hardware platform capable of processing this amount of data is the ATCA based Compute Node (CN). Each CN consists of an xTCA carrier board and four AMC/xTCA daughter boards. The carrier board supplies the high bandwidth connectivity to the other CNs via Rocket-IO links. In the current prototype design, each AMC board is equipped with a Xilinx Virtex-5 FX70T FPGA, 4 GB of memory, Gbit Ethernet and two bi-directional optical links allowing for a bandwidth of up to 12.5 Gbits/s. IPMI control of mother and daughter board is foreseen. One ATCA shelf containing 10 mother boards/40 daughter boards is sufficient to process the data from the 40 front end boards. The data reduction on the CN is done in two steps. First, the event data delivered by the front end electronics via optical links is stored in memory until the high level trigger (HLT) decision has been made. The HLT rejects >2/3 of these events. In a second step, pixel data of positively triggered events is reduced with the help of regions of interest (ROI), calculated by the HLT from projecting trajectories back to the pixel detector plane. The design allows additional ROI inputs computed from hit cluster properties or tracklets from the surrounding silicon strip detector. The final data reduction is achieved by sending only data within these ROIs to the main event builder. C1 [Spruck, Bjoern; Gessler, Thomas; Kuehn, Wolfgang; Lange, Jens Soeren; Muenchow, David] Univ Giessen, Phys Inst 2, D-35392 Giessen, Germany. [Lin, Haichuan; Liu, Zhen'An; Zhao, Jingzhou] Chinese Acad Sci, IHEP, State Key Lab Particle Detect & Elect, Beijing 100049, Peoples R China. [Xu, Hao] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Spruck, B (reprint author), Univ Giessen, Phys Inst 2, D-35392 Giessen, Germany. EM bjoern.spruck@exp2.physik.uni-giessen.de FU BMBF Germany [05H10RG8] FX This work was supported in part by BMBF Germany under Grant 05H10RG8. NR 12 TC 8 Z9 8 U1 1 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD OCT PY 2013 VL 60 IS 5 BP 3709 EP 3713 DI 10.1109/TNS.2013.2281571 PN 2 PG 5 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 236VO UT WOS:000325827700044 ER PT J AU Gu, JHW Abbott, DJ Cuevas, RC Dong, HT Gyurjyan, VH Heyes, WG Jastrzembski, EA Kaneta, SR Moffit, BJ Nganga, NN Raydo, BJ Timmer, CA Wilson, JS AF Gu, Jianhui W. Abbott, David J. Cuevas, R. C. Dong, Hai T. Gyurjyan, Vardan H. Heyes, William G. Jastrzembski, Edward A. Kaneta, Scott R. Moffit, Bryan J. Nganga, Nicholas N. Raydo, Benjamin J. Timmer, Carl A. Wilson, Jeffrey S. TI Design of the Trigger Interface and Distribution Board for TJNAF 12 GeV Upgrade SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 18th IEEE-NPSS Real Time Conference (RT) on Computing Applications in Nuclear and Plasma Sciences CY JUN 11-15, 2012 CL Berkeley, CA DE Data acquisition; field programmable gate arrays; printed circuits AB The design of the Trigger Interface and Distribution (TID) board for the 12 GeV Upgrade at Thomas Jefferson National Accelerator Facility (TJNAF) is described. The TID board distributes a low jitter system clock, synchronized trigger, and synchronized multi-purpose SYNC signal. The TID also initiates readout for the data acquisition front-end crate. With the TID boards, a multi-crate system can be setup for large scale nuclear physics experiments. The TID board can be selectively populated as a Trigger Interface (TI) board, or a Trigger Distribution (TD) board for the 12 GeV upgrade experiments. When the TID is populated as a TI, The TID can be located in the VXS crate and distribute the CLOCK/TRIGGER/SYNC (CTS) through the VXS/P0 connector; it can also be located in the standard VME64 crate, and distribute the CTS through the VME/P2 connector or front panel connectors. It initiates the data acquisition for the front-end crate where the TI is positioned in. When the TID is populated as a TD, it fans out the CTS from the trigger supervisor to the front-end crates through optical fibres. The TD board monitors the trigger processing on the TI boards, and sends feedback to the Trigger Supervisor (TS) board for event readout flow control. A Field Programmable Gate Arrays (FPGA) is utilised on the TID board to provide programmability. The TID board was intensively tested on the bench. The TID production version has been released to industry for contract manufacturing. C1 [Gu, Jianhui W.; Abbott, David J.; Cuevas, R. C.; Dong, Hai T.; Gyurjyan, Vardan H.; Heyes, William G.; Jastrzembski, Edward A.; Kaneta, Scott R.; Moffit, Bryan J.; Nganga, Nicholas N.; Raydo, Benjamin J.; Timmer, Carl A.; Wilson, Jeffrey S.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Gu, JHW (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM jgu@jlab.org FU U.S. DOE [DE-AC05-06OR23177] FX Authored by Jefferson Science Associates, LLC under U.S. DOE Contract DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce this manuscript for U.S. Government purposes. NR 8 TC 0 Z9 0 U1 0 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD OCT PY 2013 VL 60 IS 5 BP 3714 EP 3719 DI 10.1109/TNS.2013.2264822 PN 2 PG 6 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 236VO UT WOS:000325827700045 ER PT J AU Biery, K Green, C Kowalkowski, J Paterno, M Rechenmacher, R AF Biery, K. Green, C. Kowalkowski, J. Paterno, M. Rechenmacher, R. TI artdaq: An Event-Building, Filtering, and Processing Framework SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 18th IEEE-NPSS Real Time Conference (RT) on Computing Applications in Nuclear and Plasma Sciences CY JUN 11-15, 2012 CL Berkeley, CA DE Concurrent programming; data acquisition; distributed programming AB Several current and proposed experiments at the Fermi National Accelerator Laboratory, Batavia, IL, USA, have novel data acquisition needs. These include 1) continuous digitization, using commercial high-speed digitizers, of signals from the detectors, 2) the transfer of all of the digitized waveform data to commercial off-the-shelf (COTS) processors, 3) the filtering or compression of the waveform data, or both, and 4) the writing of the resultant data to disk for later, more complete, analysis. To address these needs, members of the Accelerator and Detector Simulation and Support Department within the Scientific Computing Division at Fermilab are using parallel processing technologies in the development of artdaq, a generic data acquisition toolkit. The artdaq toolkit uses Message Passing Interface (MPI) and art, an established event-processing framework shared by new experiments at Fermilab. In an artdaq program, the digitized data are transferred into computing nodes using commodity Peripheral Component Interconnect Express (PCIe) cards, and event fragments are transferred between distributed processes using MPI and assembled into complete events. These events are then processed by a configurable selection of user-specified algorithms, commonly including filtering and compression algorithms, using the art event-processing framework. This paper describes the architecture and implementation of the first phase of the artdaq toolkit and shows early performance results with configurations that match upcoming experiments both at Fermilab and elsewhere. C1 [Biery, K.; Green, C.; Kowalkowski, J.; Paterno, M.; Rechenmacher, R.] Fermilab Natl Accelerator Lab, Div Comp Sci, Batavia, IL 60510 USA. RP Biery, K (reprint author), Fermilab Natl Accelerator Lab, Div Comp Sci, POB 500, Batavia, IL 60510 USA. EM biery@fnal.gov; greenc@fnal.gov; jbk@fnal.gov; paterno@fnal.gov; ron@fnal.gov FU U.S. Department of Energy, Office of Science, HEP, Scientific Computing FX Manuscript received July 21, 2012; revised December 07, 2012 and January 23, 2013; accepted February 25, 2013. Date of publication April 08, 2013; date of current version October 09, 2013. This work was supported in part by the U.S. Department of Energy, Office of Science, HEP, Scientific Computing. NR 10 TC 1 Z9 1 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD OCT PY 2013 VL 60 IS 5 BP 3764 EP 3771 DI 10.1109/TNS.2013.2251660 PN 2 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 236VO UT WOS:000325827700053 ER PT J AU Sioshansi, R Denholm, P AF Sioshansi, Ramteen Denholm, Paul TI Benefits of Colocating Concentrating Solar Power and Wind SO IEEE TRANSACTIONS ON SUSTAINABLE ENERGY LA English DT Article DE Concentrating solar power (CSP); thermal energy storage; transmission; wind ID THERMAL-ENERGY STORAGE; CAPACITY VALUE; PLANTS; SYSTEM AB We analyze the potential benefits of colocating wind and concentrating solar power (CSP) plants in the southwestern U.S. Using a location in western Texas as a case study, we demonstrate that such a deployment strategy can improve the capacity factor of the combined plant and the associated transmission investment. This is because of two synergies between wind and CSP: 1) the negative correlation between real-time wind and solar resource availability and 2) the use of low-cost high-efficiency thermal energy storage in CSP. The economic tradeoff between transmission and system performance is highly sensitive to CSP and transmission costs. We demonstrate that a number of deployment configurations, which include up to 67% CSP, yield a positive net return on investment. C1 [Sioshansi, Ramteen] Ohio State Univ, Integrated Syst Engn Dept, Columbus, OH 43210 USA. [Denholm, Paul] Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Golden, CO 80401 USA. RP Sioshansi, R (reprint author), Ohio State Univ, Integrated Syst Engn Dept, Columbus, OH 43210 USA. EM sioshansi.1@osu.edu; paul.denholm@nrel.gov FU U.S. Department of Energy [DE-AC36-08GO28308]; Alliance for Sustainable Energy, LLC [AGG-0-40365-01] FX Manuscript received October 11, 2012; revised February 15, 2013; accepted March 17, 2013. Date of publication April 16, 2013; date of current version September 16, 2013. This work was supported by the U.S. Department of Energy through prime contract DE-AC36-08GO28308 and by the Alliance for Sustainable Energy, LLC through subcontract AGG-0-40365-01. NR 31 TC 7 Z9 10 U1 1 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3029 J9 IEEE T SUSTAIN ENERG JI IEEE Trans. Sustain. Energy PD OCT PY 2013 VL 4 IS 4 BP 877 EP 885 DI 10.1109/TSTE.2013.2253619 PG 9 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Electrical & Electronic SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 231XO UT WOS:000325451900005 ER PT J AU Nichols, JL Owens, EO Dutton, SJ Luben, TJ AF Nichols, Jennifer L. Owens, Elizabeth Oesterling Dutton, Steven J. Luben, Thomas J. TI Systematic review of the effects of black carbon on cardiovascular disease among individuals with pre-existing disease SO INTERNATIONAL JOURNAL OF PUBLIC HEALTH LA English DT Review DE Air pollution; Cardiovascular disease; Susceptible populations; Black carbon; Elemental carbon ID HEART-RATE-VARIABILITY; CORONARY-ARTERY-DISEASE; DIESEL-EXHAUST INHALATION; PARTICULATE AIR-POLLUTION; GLOBAL BURDEN; MYOCARDIAL-INFARCTION; AIRBORNE PARTICLES; ELDERLY SUBJECTS; BLOOD-PRESSURE; EXPOSURE AB Recent interest has developed in understanding the health effects attributable to different components of particulate matter. This review evaluates the effects of black carbon (BC) on cardiovascular disease in individuals with pre-existing disease using evidence from epidemiologic and experimental studies. A systematic literature search was conducted to identify epidemiologic and experimental studies examining the relationship between BC and cardiovascular health effects in humans with pre-existing diseases. Nineteen epidemiologic and six experimental studies were included. Risk of bias was evaluated for each study. Evidence across studies suggested ambient BC is associated with changes in subclinical cardiovascular health effects in individuals with diabetes and coronary artery disease (CAD). Limited evidence demonstrated that chronic respiratory disease does not modify the effect of BC on cardiovascular health. Results in these studies consistently demonstrated that diabetes is a risk factor for BC-related cardiovascular effects, including increased interleukin-6 and ECG parameters. Cardiovascular effects were associated with BC in individuals with CAD, but few comparisons to individuals without CAD were provided in the literature. C1 [Nichols, Jennifer L.; Owens, Elizabeth Oesterling; Dutton, Steven J.; Luben, Thomas J.] US EPA, Natl Ctr Environm Assessment, Off Res & Dev, Res Triangle Pk, NC 27711 USA. [Nichols, Jennifer L.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. RP Nichols, JL (reprint author), US EPA, Natl Ctr Environm Assessment, Off Res & Dev, 109 TW Alexander Dr B243-01, Res Triangle Pk, NC 27711 USA. EM nichols.jennifer@epa.gov; owens.beth@epa.gov; dutton.steven@epa.gov; luben.tom@epa.gov FU National Center for Environmental Assessment, Office of Research and Development, US Environmental Protection Agency FX The authors thank Jason Sacks, Lindsay Wichers Stanek, Laura Datko-Williams, Mary Ross, and John Vandenberg for providing assistance with and critical review of the manuscript. This project was supported in part by an appointment to the Research Participation Program in the National Center for Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the US Department of Energy and Environmental Protection Agency. NR 54 TC 10 Z9 10 U1 3 U2 25 PU SPRINGER BASEL AG PI BASEL PA PICASSOPLATZ 4, BASEL, 4052, SWITZERLAND SN 1661-8556 EI 1661-8564 J9 INT J PUBLIC HEALTH JI Int. J. Public Health PD OCT PY 2013 VL 58 IS 5 BP 707 EP 724 DI 10.1007/s00038-013-0492-z PG 18 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA 226CW UT WOS:000325013000008 PM 23892931 ER PT J AU Chan, YGY Frankel, MB Dengler, V Schneewind, O Missiakas, D AF Chan, Yvonne G. Y. Frankel, Matthew B. Dengler, Vanina Schneewind, Olaf Missiakas, Dominique TI Staphylococcus aureus Mutants Lacking the LytR-CpsA-Psr Family of Enzymes Release Cell Wall Teichoic Acids into the Extracellular Medium SO JOURNAL OF BACTERIOLOGY LA English DT Article ID GRAM-POSITIVE BACTERIA; UNDECAPRENYL PYROPHOSPHATE PHOSPHATASE; BACILLUS-SUBTILIS W23; SURFACE-PROTEINS; STREPTOCOCCUS-PNEUMONIAE; CAPSULAR POLYSACCHARIDE; MUREIN HYDROLASE; ANCHOR STRUCTURE; LPXTG MOTIF; CROSS-WALL AB The LytR-CpsA-Psr (LCP) proteins are thought to transfer bactoprenol-linked biosynthetic intermediates of wall teichoic acid (WTA) to the peptidoglycan of Gram-positive bacteria. In Bacillus subtilis, mutants lacking all three LCP enzymes do not deposit WTA in the envelope, while Staphylococcus aureus Delta lcp mutants display impaired growth and reduced levels of envelope phosphate. We show here that the S. aureus Delta lcp mutant synthesized WTA yet released ribitol phosphate polymers into the extracellular medium. Further, Delta lcp mutant staphylococci no longer restricted the deposition of LysM-type murein hydrolases to cell division sites, which was associated with defects in cell shape and increased autolysis. Mutations in S. aureus WTA synthesis genes (tagB, tarF, or tarJ2) inhibit growth, which is attributed to the depletion of bactoprenol, an essential component of peptidoglycan synthesis (lipid II). The growth defect of S. aureus tagB and tarFJ mutants was alleviated by inhibition of WTA synthesis with tunicamycin, whereas the growth defect of the Delta lcp mutant was not relieved by tunicamycin treatment or by mutation of tagO, whose product catalyzes the first committed step of WTA synthesis. Further, sortase A-mediated anchoring of proteins to peptidoglycan, which also involves bactoprenol and lipid II, was not impaired in the Delta lcp mutant. We propose a model whereby the S. aureus Delta lcp mutant, defective in tethering WTA to the cell wall, cleaves WTA synthesis intermediates, releasing ribitol phosphate into the medium and recycling bactoprenol for peptidoglycan synthesis. C1 [Chan, Yvonne G. Y.; Frankel, Matthew B.; Schneewind, Olaf; Missiakas, Dominique] Univ Chicago, Dept Microbiol, Chicago, IL 60637 USA. [Dengler, Vanina] Univ Zurich, Inst Med Microbiol, Zurich, Switzerland. [Schneewind, Olaf; Missiakas, Dominique] Argonne Natl Lab, Howard Taylor Ricketts Lab, Argonne, IL 60439 USA. RP Missiakas, D (reprint author), Univ Chicago, Dept Microbiol, Chicago, IL 60637 USA. EM dmissiak@bsd.uchicago.edu FU American Heart Association [13POST16980091]; NIAID grant [RO1 AI38897]; Region V Great Lakes Regional Center of Excellence in Biodefense and Emerging Infectious Diseases Consortium [1-U54-AI-057153] FX Yvonne G. Y. Chan acknowledges support from the American Heart Association (award 13POST16980091). This work was supported by NIAID grant RO1 AI38897. We acknowledge membership within and support from the Region V Great Lakes Regional Center of Excellence in Biodefense and Emerging Infectious Diseases Consortium (GLRCE; NIAID award 1-U54-AI-057153). NR 58 TC 32 Z9 32 U1 2 U2 11 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 EI 1098-5530 J9 J BACTERIOL JI J. Bacteriol. PD OCT PY 2013 VL 195 IS 20 BP 4650 EP 4659 DI 10.1128/JB.00544-13 PG 10 WC Microbiology SC Microbiology GA 224SK UT WOS:000324909200011 PM 23935043 ER PT J AU Seth, A Rauscher, SA Biasutti, M Giannini, A Camargo, SJ Rojas, M AF Seth, Anji Rauscher, Sara A. Biasutti, Michela Giannini, Alessandra Camargo, Suzana J. Rojas, Maisa TI CMIP5 Projected Changes in the Annual Cycle of Precipitation in Monsoon Regions SO JOURNAL OF CLIMATE LA English DT Article DE Monsoons; Precipitation; Climate change; Water budget; Coupled models; Ensembles ID ASIAN SUMMER MONSOON; TROPICAL TROPOSPHERIC TEMPERATURE; NORTH-AMERICAN MONSOON; GLOBAL WARMING IMPACTS; SOIL-MOISTURE; SURFACE-TEMPERATURE; CLIMATE-CHANGE; SOUTH-AMERICA; MODELS; SIMULATIONS AB Analyses of phase 5 of the Coupled Model Intercomparison Project (CMIP5) experiments show that the global monsoon is expected to increase in area, precipitation, and intensity as the climate system responds to anthropogenic forcing. Concurrently, detailed analyses for several individual monsoons indicate a redistribution of rainfall from early to late in the rainy season. This analysis examines CMIP5 projected changes in the annual cycle of precipitation in monsoon regions, using a moist static energy framework to evaluate competing mechanisms identified to be important in precipitation changes over land. In the presence of sufficient surface moisture, the local response to the increase in downwelling energy is characterized by increased evaporation, increased low-level moist static energy, and decreased stability with consequent increases in precipitation. A remote mechanism begins with warmer oceans and operates on land regions via a warmer tropical troposphere, increased stability, and decreased precipitation. The remote mechanism controls the projected changes during winter, and the local mechanism controls the switch to increased precipitation during summer in most monsoon regions. During the early summer transition, regions where boundary layer moisture availability is reduced owing to decreases in evaporation and moisture convergence experience an enhanced convective barrier. Regions characterized by adequate evaporation and moisture convergence do not experience reductions in early summer precipitation.This enhanced convective barrier leads to a redistribution of rainfall from early to late summer, and is robust in the American and African monsoons but muddled in Asia. As described here, viewing monsoons from their inherent ties to the annual cycle could help to fingerprint changes as they evolve. C1 [Seth, Anji] Univ Connecticut, Dept Geog, Storrs, CT 06269 USA. [Rauscher, Sara A.] Los Alamos Natl Lab, Los Alamos, NM USA. [Biasutti, Michela; Giannini, Alessandra; Camargo, Suzana J.] Columbia Univ, New York, NY USA. [Rojas, Maisa] Univ Chile, Santiago, Chile. RP Seth, A (reprint author), Univ Connecticut, Dept Geog, U-4148 215 Glenbrook Rd, Storrs, CT 06269 USA. EM anji.seth@uconn.edu RI Camargo, Suzana/C-6106-2009; Biasutti, Michela/G-3804-2012; Rojas, Maisa/A-7229-2013; Giannini, Alessandra/F-7163-2016 OI Camargo, Suzana/0000-0002-0802-5160; Biasutti, Michela/0000-0001-6681-1533; Giannini, Alessandra/0000-0001-5425-4995 FU Climate Program Office at NOAA Model Analysis and Prediction Program (MAPP) Award [NA11OAR4310109]; DOE through the LANL LDRD program; NSF [AGS-0946849] FX We acknowledge the World Climate Research Programme Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. For CMIP the U. S. Department of Energy Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. This research was funded in part by the Climate Program Office at NOAA Model Analysis and Prediction Program (MAPP) Award NA11OAR4310109. SR acknowledges the support of the DOE through the LANL LDRD program. MB acknowledges NSF Award AGS-0946849. NR 59 TC 30 Z9 31 U1 2 U2 40 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD OCT PY 2013 VL 26 IS 19 BP 7328 EP 7351 DI 10.1175/JCLI-D-12-00726.1 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 222TH UT WOS:000324753900002 ER PT J AU Lipscomb, WH Fyke, JG Vizcaino, M Sacks, WJ Wolfe, J Vertenstein, M Craig, A Kluzek, E Lawrence, DM AF Lipscomb, William H. Fyke, Jeremy G. Vizcaino, Miren Sacks, William J. Wolfe, Jon Vertenstein, Mariana Craig, Anthony Kluzek, Erik Lawrence, David M. TI Implementation and Initial Evaluation of the Glimmer Community Ice Sheet Model in the Community Earth System Model SO JOURNAL OF CLIMATE LA English DT Article DE Arctic; Ice sheets; Climate models; Coupled models ID SEA-LEVEL RISE; BENCHMARK EXPERIMENTS; HIGHER-ORDER; ISMIP-HOM; MASS-LOSS; CLIMATE; SIMULATIONS; SENSITIVITY; PROJECT AB The Glimmer Community Ice Sheet Model (Glimmer-CISM) has been implemented in the Community Earth System Model (CESM). Glimmer-CISM is forced by a surface mass balance (SMB) computed in multiple elevation classes in the CESM land model and downscaled to the ice sheet grid. Ice sheet evolution is governed by the shallow-ice approximation with thermomechanical coupling and basal sliding. This paper describes and evaluates the initial model implementation for the Greenland Ice Sheet (GIS). The ice sheet model was spun up using the SMB from a coupled CESM simulation with preindustrial forcing. The model's sensitivity to three key ice sheet parameters was explored by running an ensemble of 100 GIS simulations to quasi equilibrium and ranking each simulation based on multiple diagnostics. With reasonable parameter choices, the steady-state GIS geometry is broadly consistent with observations. The simulated ice sheet is too thick and extensive, however, in some marginal regions where the SMB is anomalously positive. The top-ranking simulations were continued using surface forcing from CESM simulations of the twentieth century (1850-2005) and twenty-first century (2005-2100, with RCP8.5 forcing). In these simulations the GIS loses mass, with a resulting global-mean sea level rise of 16 mm during 1850-2005 and 60 mm during 2005-2100. This mass loss is caused mainly by increased ablation near the ice sheet margin, offset by reduced ice discharge to the ocean. Projected sea level rise is sensitive to the initial geometry, showing the importance of realistic geometry in the spun-up ice sheet. C1 [Lipscomb, William H.; Fyke, Jeremy G.] Los Alamos Natl Lab, Grp T3, Los Alamos, NM 87545 USA. [Vizcaino, Miren] Univ Utrecht, Inst Marine & Atmospher Res, Utrecht, Netherlands. [Vizcaino, Miren] Univ Calif Berkeley, Dept Geog, Berkeley, CA 94720 USA. [Sacks, William J.; Wolfe, Jon; Vertenstein, Mariana; Craig, Anthony; Kluzek, Erik; Lawrence, David M.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Wolfe, Jon] Precis Wind, Boulder, CO USA. RP Lipscomb, WH (reprint author), Los Alamos Natl Lab, MS B216, Los Alamos, NM 87545 USA. EM lipscomb@lanl.gov RI Lawrence, David/C-4026-2011; Vizcaino, Miren/D-4443-2013 OI Lawrence, David/0000-0002-2968-3023; Vizcaino, Miren/0000-0002-9553-7104 FU Scientific Discovery through Advanced Computing (SciDAC) project; U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Biological and Environmental Research (BER); Regional Arctic System Modeling project; BER; National Science Foundation's Office of Polar Programs; DOE National Nuclear Security Administration [DE-AC52-06NA25396]; Marie Curie Incoming International Fellowship at Utrecht University; National Science Foundation [ATM-0917755, ANT-1103686]; National Science Foundation and the Office of Science (BER) of the U.S. Department of Energy; National Science Foundation; Office of Science of the Department of Energy [DE-AC05-00OR22725]; NSF [ANT-0424589]; NASA [NNX10AT68G] FX We thank Gail Gutowski and Charles Jackson for valuable interactions and advice during model testing. We also thank Janneke Ettema, Jonathan Gregory, Magnus Hagdorn, Matthew Hoffman, David Holland, Jesse Johnson, Tony Payne, Stephen Price, Jeff Ridley, Ian Rutt, and Michiel van den Broeke for useful discussions. Support forWHL was provided by the Scientific Discovery through Advanced Computing (SciDAC) project funded by the U. S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Biological and Environmental Research (BER). JGFwas supported by the Regional Arctic System Modeling project funded by BER and the National Science Foundation's Office of Polar Programs. The Los Alamos National Laboratory is operated by the DOE National Nuclear Security Administration under Contract DE-AC52-06NA25396. MV was supported by a Marie Curie Incoming International Fellowship at Utrecht University. Support was also provided by the National Science Foundation through Awards ATM-0917755 (for MV), ANT-1103686 (for WJS), and a Small Grant for Exploratory Research (for WHL). The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the U.S. Department of Energy.; Computing resources were provided by the Climate Simulation Laboratory at the NCAR Computational and Information Systems Laboratory (CISL), sponsored by the National Science Foundation and other agencies. The CMIP5 simulations used in this research were enabled by CISL compute and storage resources. Bluefire, a 4064-processor IBM Power6 resource with a peak of 77 TeraFLOPS, provided more than 7.5 million computing hours, the GLADE high-speed disk resources provided 0.4 PetaBytes of dedicated disk, and CISL's 12-PB HPSS archive provided over 1 PetaByte of storage in support of this research project. In addition, this work used resources of the Oak Ridge Leadership Computing Facility, located in the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy under Contract DE-AC05-00OR22725. We acknowledge the use of data and/or data products from CReSIS generated with support from NSF Grant ANT-0424589 and NASA Grant NNX10AT68G. NR 58 TC 26 Z9 27 U1 0 U2 25 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD OCT PY 2013 VL 26 IS 19 BP 7352 EP 7371 DI 10.1175/JCLI-D-12-00557.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 222TH UT WOS:000324753900003 ER PT J AU Min, SK Zhang, XB Zwiers, F Shiogama, H Tung, YS Wehner, M AF Min, Seung-Ki Zhang, Xuebin Zwiers, Francis Shiogama, Hideo Tung, Yu-Shiang Wehner, Michael TI Multimodel Detection and Attribution of Extreme Temperature Changes SO JOURNAL OF CLIMATE LA English DT Article DE Extreme events; Climate change; Climate records; Climate models ID CLIMATE-CHANGE; PRECIPITATION EXTREMES; VOLCANIC-ERUPTIONS; COUPLED MODEL; UNITED-STATES; SIMULATIONS; 20TH-CENTURY; ENSEMBLE; 21ST-CENTURY; VARIABILITY AB Recent studies have detected anthropogenic influences due to increases in greenhouse gases on extreme temperature changes during the latter half of the twentieth century at global and regional scales. Most of the studies, however, were based on a limited number of climate models and also separation of anthropogenic influence from natural factors due to changes in solar and volcanic activities remains challenging at regional scales. Here, the authors conduct optimal fingerprinting analyses using 12 climate models integrated under anthropogenic-only forcing or natural plus anthropogenic forcing. The authors compare observed and simulated changes in annual extreme temperature indices of coldest night and day (TNn and TXn) and warmest night and day (TNx and TXx) from 1951 to 2000. Spatial domains from global mean to continental and subcontinental regions are considered and standardization of indices is employed for better intercomparisons between regions and indices. The anthropogenic signal is detected in global and northern continental means of all four indices, albeit less robustly for TXx, which is consistent with previous findings. The detected anthropogenic signals are also found to be separable from natural forcing influence at the global scale and to a lesser extent at continental and subcontinental scales. Detection occurs more frequently in TNx and TNn than in other indices, particularly at smaller scales, supporting previous studies based on different methods. A combined detection analysis of daytime and nighttime temperature extremes suggests potential applicability to a multivariable assessment. C1 [Min, Seung-Ki] CSIRO Marine & Atmospher Res, Aspendale, Vic, Australia. [Min, Seung-Ki; Zhang, Xuebin] Environm Canada, Div Climate Res, Toronto, ON, Canada. [Zwiers, Francis] Univ Victoria, Pacific Climate Impacts Consortium, Victoria, BC, Canada. [Shiogama, Hideo] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan. [Tung, Yu-Shiang] Natl Taiwan Normal Univ, Dept Earth Sci, Taipei, Taiwan. [Wehner, Michael] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Min, SK (reprint author), Pohang Univ Sci & Technol, Sch Environm Sci & Engn, Pohang 790784, Gyungbuk, South Korea. EM skmin@postech.ac.kr RI Shiogama, Hideo/B-9598-2012; Min, Seung-Ki/B-1431-2010 OI Shiogama, Hideo/0000-0001-5476-2148; FU Goyder Institute for Water Research FX We are grateful to two anonymous reviewers for their constructive comments. We also thank Jonas Bhend and Penny Whetton for useful comments. We acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP's Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP3 multimodel dataset. Support of this dataset is provided by the Office of Science, U.S. Department of Energy. This study is in part supported by the Goyder Institute for Water Research. NR 45 TC 23 Z9 24 U1 3 U2 34 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD OCT PY 2013 VL 26 IS 19 BP 7430 EP 7451 DI 10.1175/JCLI-D-12-00551.1 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 222TH UT WOS:000324753900007 ER PT J AU Li, YF Leung, LR Xiao, ZN Wei, M Li, QQ AF Li, Yuefeng Leung, L. Ruby Xiao, Ziniu Wei, Min Li, Qingquan TI Interdecadal Connection between Arctic Temperature and Summer Precipitation over the Yangtze River Valley in the CMIP5 Historical Simulations SO JOURNAL OF CLIMATE LA English DT Article DE Arctic; Asia; Monsoons; Model comparison; Model evaluation; performance; Interdecadal variability ID SEA-SURFACE TEMPERATURE; TIBETAN PLATEAU; COUPLED PATTERNS; WEAKENING TREND; SNOW COVER; EAST-ASIA; PART I; MONSOON; CHINA; RAINFALL AB This study assesses the ability of the Coupled Model Intercomparison Project phase 5 (CMIP5) simulations in capturing the interdecadal precipitation enhancement over the Yangtze River valley (YRV) and investigates the contributions of Arctic temperature and mid- to high-latitude warming to the interdecadal variability of the East Asian summer monsoon rainfall. Six CMIP5 historical simulations including models from the Canadian Centre for Climate Modeling and Analysis (CCCma), the Beijing Climate Center, the Max Planck Institute for Meteorology, the Meteorological Research Institute, the Met Office Hadley Centre, and NCAR are used. The NCEP-NCAR reanalysis and observed precipitation are also used for comparison. Among the six CMIP5 simulations, only CCCma can approximately simulate the enhancement of interdecadal summer precipitation over the YRV in 1990-2005 relative to 1960-75; the various relationships between the summer precipitation and surface temperature (T-s), 850-hPa winds, and 500-hPa height field (H500); and the relationships between T-s and H500 determined using regression, correlation, and singular value decomposition (SVD) analyses. It is found that CCCma can reasonably simulate the interdecadal surface warming over the boreal mid- to high latitudes in winter, spring, and summer. The summer Baikal blocking anomaly is postulated to be the bridge that links the winter and spring surface warming over the mid- to high latitude and Arctic with the enhancement of summer precipitation over the YRV. Models that missed some or all of these relationships found in CCCma and the reanalysis failed to simulate the interdecadal enhancement of precipitation over the YRV. This points to the importance of Arctic and mid- to high-latitude processes on the interdecadal variability of the East Asian summer monsoon and the challenge for global climate models to correctly simulate the linkages. C1 [Li, Yuefeng; Leung, L. Ruby] Pacific NW Natl Lab, Richland, WA 99352 USA. [Li, Yuefeng; Xiao, Ziniu] WMO Reg Training Ctr, China Meteorol Adm Training Ctr, Beijing, Peoples R China. [Wei, Min] Natl Meteorol Informat Ctr, Beijing, Peoples R China. [Li, Qingquan] Natl Climate Ctr, Beijing, Peoples R China. RP Leung, LR (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, 902 Battelle Blvd, Richland, WA 99352 USA. EM ruby.leung@pnnl.gov FU Office of Science of the U.S. Department of Energy as part of the Regional and Global Climate Modeling Program; U.S. Department of Energy by Battelle Memorial Institute [DE-AC05-76RLO1830]; National Important Basic Research Program of China [2012CB957804]; Special Fund for Meteorological Scientific Research in the Public Interest of China Meteorological Administration [GYHY201006022] FX This study was supported by the Office of Science of the U.S. Department of Energy as part of the Regional and Global Climate Modeling Program, which supported the bilateral agreement between the U.S. Department of Energy and China Ministry of Science and Technology on regional climate research. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC05-76RLO1830. This work is also supported by the National Important Basic Research Program of China (2012CB957804) and by the Special Fund for Meteorological Scientific Research in the Public Interest of China Meteorological Administration (Grant GYHY201006022). The authors are grateful for the comments and suggestions provided by three anonymous reviewers that helped improve the paper. NR 55 TC 0 Z9 1 U1 2 U2 26 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD OCT PY 2013 VL 26 IS 19 BP 7464 EP 7488 DI 10.1175/JCLI-D-12-00776.1 PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 222TH UT WOS:000324753900009 ER PT J AU Astroza, GM Neisius, A Wang, AJ Nguyen, G Toncheva, G Wang, C Januzis, N Lowry, C Ferrandino, MN Neville, AN Yoshizumi, TT Preminger, GM Lipkin, ME AF Astroza, Gaston M. Neisius, Andreas Wang, Agnes J. Giao Nguyen Toncheva, Greta Wang, Chu Januzis, Natalie Lowry, Carolyn Ferrandino, Michael N. Neville, Amy N. Yoshizumi, Terry T. Preminger, Glenn M. Lipkin, Michael E. TI Radiation Exposure in the Follow-Up of Patients with Urolithiasis Comparing Digital Tomosynthesis, Non-Contrast CT, Standard KUB, and IVU SO JOURNAL OF ENDOUROLOGY LA English DT Article ID UNENHANCED HELICAL CT; LOW-DOSE CT; COMPUTED-TOMOGRAPHY; DIAGNOSTIC PERFORMANCE; URETERAL CALCULI; X-RAY; RADIOGRAPHY AB Objective: To compare the effective doses (EDs) associated with imaging modalities for follow-up of patients with urolithiasis, including stone protocol non-contrast computed tomography (NCCT), kidney, ureter, and bladder radiograph (KUB), intravenous urogram (IVU), and digital tomosynthesis (DT). Methods: A validated Monte-Carlo simulation-based software PCXMC 2.0 (STUK) designed for estimation of patient dose from medical X-ray exposures was used to determine the ED for KUB, IVU (KUB scout plus three tomographic images), and DT (two scouts and one tomographic sweep). Simulations were performed using a two-dimensional stationary field onto the corresponding body area of the built-in digital phantom, with actual kVp, mAs, and geometrical parameters of the protocols. The ED for NCCT was determined using an anthropomorphic male phantom that was placed prone on a 64-slice GE Healthcare volume computed tomography (VCT) scanner. High-sensitivity metal oxide semiconductor field effect transistors dosimeters were placed at 20 organ locations and used to measure organ radiation doses. Results: The ED for a stone protocol NCCT was 3.040.34mSv. The ED for a KUB was 0.63 and 1.1mSv for the additional tomographic film. The total ED for IVU was 3.93mSv. The ED for DT performed with two scouts and one sweep (14.2 degrees) was 0.83mSv. Conclusions: Among the different imaging modalities for follow-up of patients with urolithiasis, DT was associated with the least radiation exposure (0.83mSv). This ED corresponds to a fifth of NCCT or IVU studies. Further studies are needed to demonstrate the sensitivity and specificity of DT for the follow-up of nephrolithiasis patients. C1 [Astroza, Gaston M.; Neisius, Andreas; Wang, Agnes J.; Ferrandino, Michael N.; Preminger, Glenn M.; Lipkin, Michael E.] Duke Univ, Div Urol Surg, Med Ctr, Durham, NC 27710 USA. [Neisius, Andreas] Univ Med Mainz, Dept Urol, Mainz, Germany. [Giao Nguyen; Wang, Chu; Januzis, Natalie; Lowry, Carolyn; Yoshizumi, Terry T.] Duke Univ, Duke Radiat Dosimetry Lab, Med Ctr, Durham, NC 27710 USA. [Toncheva, Greta] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Neville, Amy N.] Duke Univ, Dept Radiol, Med Ctr, Durham, NC 27710 USA. RP Lipkin, ME (reprint author), Duke Univ, Div Urol Surg, Med Ctr, DUMC 3167, Durham, NC 27710 USA. EM michael.lipkin@duke.edu FU Ferdinand Eisenberger grant of the Deutsche Gesellschaft fur Urologie (German Society of Urology) [NeA1/FE-11]; Endourological Society; Cook Urological FX This work was supported in part by a Ferdinand Eisenberger grant of the Deutsche Gesellschaft fur Urologie (German Society of Urology), ID NeA1/FE-11 (Andreas Neisius). Gaston M. Astroza has been supported by the Endourological Society and Cook Urological. The authors thank Matvey Tsivian for a critical reading of this article. NR 25 TC 15 Z9 18 U1 1 U2 5 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 0892-7790 EI 1557-900X J9 J ENDOUROL JI J. Endourol. PD OCT 1 PY 2013 VL 27 IS 10 BP 1187 EP 1191 DI 10.1089/end.2013.0255 PG 5 WC Urology & Nephrology SC Urology & Nephrology GA 227WW UT WOS:000325147400002 PM 23734577 ER PT J AU Schwen, D Wang, M Averback, RS Bellon, P AF Schwen, Daniel Wang, Miao Averback, Robert S. Bellon, Pascal TI Compositional patterning in immiscible alloys subjected to severe plastic deformation SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID PHASE-TRANSFORMATIONS; TEMPERATURE; SYSTEMS; SHEAR; CU; ALUMINUM; POWDERS AB Compositional patterning in two-phase immiscible alloys during severe plastic deformation at elevated temperatures has been investigated. Kinetic Monte Carlo computer simulations were used to test the proposed idea that patterning derives from a dynamic competition between homogenization by forced chemical mixing and phase separation by thermally activated diffusion [P. Bellon and R. S. Averback, Phys. Rev. Lett. 74, 1819 (1995) and F. Wu et al., Acta Mater. 54, 2605 (2006)]. We utilize the concept of pair diffusion coefficients to compare thermal diffusion with forced chemical mixing and discuss the fundamentally different behavior with respect to pair separation distance in both mechanisms. While the general ideas of this model are verified and are in good quantitative agreement with our simulations, it is found that the dynamic processes of alloys under high-temperature shear are very complex, even in highly idealized systems, making experimental verification of this model very difficult. We illustrate our findings for a model AB alloy with properties similar to Cu-Ag by showing how alloy morphology and solubility depend on shear rate, temperature, and composition. C1 [Schwen, Daniel; Wang, Miao; Averback, Robert S.; Bellon, Pascal] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Schwen, Daniel] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Schwen, D (reprint author), Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA. EM dschwen@illinois.edu OI Schwen, Daniel/0000-0002-8958-4748 FU U.S. National Science Foundation [DMR 1005813, 0906703]; Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center; US Department of Energy [2008LANL1026] FX This research was supported by the U.S. National Science Foundation under Grant Nos. DMR 1005813 and 0906703. Part of this work was performed with support from the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the US Department of Energy (Grant No. 2008LANL1026) at Los Alamos National Laboratory. NR 20 TC 3 Z9 3 U1 5 U2 35 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 EI 2044-5326 J9 J MATER RES JI J. Mater. Res. PD OCT PY 2013 VL 28 IS 19 BP 2687 EP 2693 DI 10.1557/jmr.2013.224 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA 234NG UT WOS:000325650400004 ER PT J AU Phani, PS Johanns, KE George, EP Pharr, GM AF Phani, P. Sudharshan Johanns, Kurt E. George, Easo P. Pharr, George M. TI A stochastic model for the size dependence of spherical indentation pop-in SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID DISLOCATION DENSITY; MECHANICAL-PROPERTIES; YIELD STRENGTH; CRYSTAL PLASTICITY; SINGLE-CRYSTALS; MICRON SCALE; NANOINDENTATION; DEFORMATION; COMPRESSION; DIMENSIONS AB A simple stochastic model is developed to determine the pop-in load and maximum shear stress at pop-in in nanoindentation experiments conducted with spherical indenters that accounts for recent experimental observations of a dependence of these parameters on the indenter radius. The model incorporates two separate mechanisms: pop-in due to nucleation of dislocations in dislocation-free regions and pop-in by activation of preexisting dislocations. Two different types of randomness are used to model the stochastic behavior, which include randomness in the spatial location of the dislocations beneath the indenter and randomness in the orientation of the dislocations, i. e., randomness in the stress needed to activate them. In addition to correctly predicting the experimentally observed average maximum shear stress at pop-in, the model also correctly describes the scatter in pop-in loads and how it varies with indenter radius. Monte Carlo simulations are used to validate the model and visualize the scatter expected for a limited number of tests. C1 [Phani, P. Sudharshan; Johanns, Kurt E.; Pharr, George M.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [George, Easo P.; Pharr, George M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Pharr, GM (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM pharr@utk.edu RI George, Easo/L-5434-2014 FU U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. NR 36 TC 8 Z9 8 U1 2 U2 33 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 EI 2044-5326 J9 J MATER RES JI J. Mater. Res. PD OCT PY 2013 VL 28 IS 19 BP 2728 EP 2739 DI 10.1557/jmr.2013.254 PG 12 WC Materials Science, Multidisciplinary SC Materials Science GA 234NG UT WOS:000325650400010 ER PT J AU Pandrea, I Haret-Richter, G Ma, DZ Ribeiro, R Xu, CL Kristoff, J Raehtz, K Trichel, A Wilson, C Tracy, R Landay, A Apetrei, C AF Pandrea, Ivona Haret-Richter, George Ma, Dongzhu Ribeiro, Ruy Xu, Cuiling Kristoff, Jan Raehtz, Kevin Trichel, Anita Wilson, Cara Tracy, Russell Landay, Alan Apetrei, Cristian TI ADMINISTRATION OF RIFAXIMIN AND SULFASALAZINE DURING ACUTE SIV INFECTION DECREASES MICROBIAL TRANSLOCATION AND COAGULATION MARKER LEVELS AND SIGNIFICANTLY IMPACTS VIRAL REPLICATION SO JOURNAL OF MEDICAL PRIMATOLOGY LA English DT Meeting Abstract C1 [Pandrea, Ivona; Haret-Richter, George; Ma, Dongzhu; Xu, Cuiling; Kristoff, Jan; Raehtz, Kevin; Trichel, Anita; Apetrei, Cristian] Univ Pittsburgh, Ctr Vaccine Res, Pittsburgh, PA 15260 USA. [Ribeiro, Ruy] Los Alamos Natl Lab, Los Alamos, NM USA. [Wilson, Cara] Univ Colorado, Denver, CO 80202 USA. [Landay, Alan] Rush Univ, Med Ctr, Chicago, IL 60612 USA. RI Haret-Richter, George S/G-3563-2015 NR 0 TC 0 Z9 0 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0047-2565 EI 1600-0684 J9 J MED PRIMATOL JI J. Med. Primatol. PD OCT PY 2013 VL 42 IS 5 MA 38 BP 267 EP 268 PG 2 WC Veterinary Sciences; Zoology SC Veterinary Sciences; Zoology GA 217BR UT WOS:000324332000044 ER PT J AU Foulds, KE Donaldson, MM Kao, SF Quinn, DS Fischer, W Korber, BT Letvin, NL Koup, RA Rao, SS Mascola, JR Nabel, GJ Roederer, M AF Foulds, Kathryn E. Donaldson, Mitzi M. Kao, Shing-Fen Quinn, David S. Fischer, Will Korber, Bette T. Letvin, Norman L. Koup, Richard A. Rao, Srinivas S. Mascola, John R. Nabel, Gary J. Roederer, Mario TI IMMUNOGENICITY OF SIV ENV AND GAG MOSAIC CONSTRUCTS IN RHESUS MACAQUES SO JOURNAL OF MEDICAL PRIMATOLOGY LA English DT Meeting Abstract C1 [Foulds, Kathryn E.; Donaldson, Mitzi M.; Kao, Shing-Fen; Quinn, David S.; Koup, Richard A.; Rao, Srinivas S.; Mascola, John R.; Nabel, Gary J.; Roederer, Mario] NIAID, Vaccine Res Ctr, NIH, Bethesda, MD 20892 USA. [Fischer, Will; Korber, Bette T.] Los Alamos Natl Lab, Los Alamos, NM USA. [Letvin, Norman L.] Harvard Univ, Beth Israel Deaconess Med Ctr, Med School, Div Viral Pathogenesis,Dept Med, Cambridge, MA 02138 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0047-2565 EI 1600-0684 J9 J MED PRIMATOL JI J. Med. Primatol. PD OCT PY 2013 VL 42 IS 5 MA 48 BP 271 EP 271 PG 1 WC Veterinary Sciences; Zoology SC Veterinary Sciences; Zoology GA 217BR UT WOS:000324332000054 ER PT J AU Matsuda, K Brown, CR Foley, B Goeken, R Whitted, S Dang, Q Wu, F Plishka, R White, AB Hirsch, VM AF Matsuda, Kenta Brown, Charles R. Foley, Brian Goeken, Robert Whitted, Sonya Dang, Que Wu, Fan Plishka, Ronald White, Alicia-Buckler Hirsch, Vanessa M. TI LASER CAPTURE MICRODISSECTION STUDY OF VIRAL POPULATIONS IN THE CENTRAL NERVOUS SYSTEM OF MACAQUES WITH SIV ENCEPHALITIS SO JOURNAL OF MEDICAL PRIMATOLOGY LA English DT Meeting Abstract C1 [Matsuda, Kenta; Brown, Charles R.; Goeken, Robert; Whitted, Sonya; Dang, Que; Wu, Fan; Plishka, Ronald; White, Alicia-Buckler; Hirsch, Vanessa M.] NIH, Bethesda, MD USA. [Foley, Brian] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0047-2565 EI 1600-0684 J9 J MED PRIMATOL JI J. Med. Primatol. PD OCT PY 2013 VL 42 IS 5 MA 73 BP 278 EP 279 PG 2 WC Veterinary Sciences; Zoology SC Veterinary Sciences; Zoology GA 217BR UT WOS:000324332000079 ER PT J AU Yang, L Zhu, ZQ Peng, SM Long, XG Zhou, XS Zu, XT Heinisch, HL Kurtz, RJ Gao, F AF Yang, L. Zhu, Z. Q. Peng, S. M. Long, X. G. Zhou, X. S. Zu, X. T. Heinisch, H. L. Kurtz, R. J. Gao, F. TI Effects of temperature on the interactions of helium-vacancy clusters with gliding edge dislocations in alpha-Fe SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID DISPLACEMENT CASCADES; INTERSTITIAL CLUSTERS; COMPUTER-SIMULATION; DEFECT PRODUCTION; IRON; IRRADIATION; METALS; EMBRITTLEMENT; DYNAMICS; ALUMINUM AB The interaction of helium-vacancy (He-V) clusters with a gliding a/2<1 1 1>{1 1 0} edge dislocation in alpha-Fe is investigated by molecular dynamics methods under a constant strain rate at temperatures of 100-600 K. A number of small HenVm (n/m = 0-4) clusters initially placed at different positions relative to the slip plane are comparatively studied. The results show that the interaction of He-V clusters with gliding edge dislocations depends on the helium-to-vacancy (He/V) ratio, the position of the clusters relative to the slip plane, the cluster size, and also temperature. The obstacle strength of the He-V clusters relevant to the dislocation motion generally increases with increasing He/V ratio at the same temperature, but decreases slightly with increasing temperature for the same He-V cluster. One of the interesting results is that He-V clusters do not move along with the dislocation, even at 600 K. (C) 2013 Elsevier B.V. All rights reserved. C1 [Yang, L.; Zhu, Z. Q.; Zu, X. T.] Univ Elect Sci & Technol China, Sch Phys Elect, Chengdu 610054, Peoples R China. [Peng, S. M.; Long, X. G.; Zhou, X. S.] China Acad Engn Phys, Inst Nucl Phys & Chem, Mianyang 621900, Peoples R China. [Yang, L.; Heinisch, H. L.; Kurtz, R. J.; Gao, F.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Yang, L (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM yanglildk@uestc.edu.cn; fei.gao@pnnl.gov FU National Natural Science Foundation of China - NSAF [10976007]; US Department of Energy, Office of Fusion Energy Science [DE-AC06-76RLO 1830] FX L. Yang and X.T. Zu are grateful for the support by National Natural Science Foundation of China - NSAF (Grant No: 10976007). F. Gao, H.L. Heinisch and R.J. Kurtz are grateful for the support by the US Department of Energy, Office of Fusion Energy Science, under Contract DE-AC06-76RLO 1830. NR 31 TC 5 Z9 5 U1 2 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2013 VL 441 IS 1-3 BP 6 EP 14 DI 10.1016/j.jnucmat.2013.05.002 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 231VX UT WOS:000325447600002 ER PT J AU Kim, I Jiao, L Khatkhatay, F Martin, MS Lee, J Shao, L Zhang, X Swadener, JG Wang, YQ Gan, J Cole, JI Wang, H AF Kim, I. Jiao, L. Khatkhatay, F. Martin, M. S. Lee, J. Shao, L. Zhang, X. Swadener, J. G. Wang, Y. Q. Gan, J. Cole, J. I. Wang, H. TI Size-dependent radiation tolerance in ion irradiated TiN/AlN nanolayer films SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID MECHANICAL-PROPERTIES; ALN/TIN SUPERLATTICES; NEUTRON-IRRADIATION; THIN-FILMS; TIN FILMS; HELIUM; DAMAGE; IMPLANTATION; TEMPERATURE; COATINGS AB Interface effects on ion-irradiation tolerance properties are investigated in nanolayered TiN/AlN films with individual layer thickness varied from 5 nm to 50 nm, prepared by pulsed laser deposition. Evolution of the microstructure and hardness of the multilayer films are examined on the specimens before and after He ion-implantation to a fluence of 4 x 10(20) m(-2) at 50 keV. The suppression of amorphization in AlN layers and the reduction of radiation-induced softening are observed in all nanolayer films. A clear size-dependent radiation tolerance characteristic is observed in the nanolayer films, i.e., the samples with the optimum layer thickness from 10 nm to 20 nm show the best ion irradiation tolerance properties, and a critical layer thickness of more than 5 nm is necessary to prevent severe intermixing. This study suggests that both the interface characteristics and the critical length scale (layer thickness) contribute to the reduction of the radiation-induced damages in nitride-based ceramic materials. (C) 2013 Elsevier B.V. All rights reserved. C1 [Kim, I.; Khatkhatay, F.; Wang, H.] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. [Martin, M. S.; Shao, L.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Jiao, L.; Lee, J.; Wang, H.] Texas A&M Univ, Mat Sci & Engn Program, College Stn, TX 77843 USA. [Zhang, X.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [Swadener, J. G.; Wang, Y. Q.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gan, J.; Cole, J. I.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Wang, H (reprint author), Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. EM wangh@ece.tamu.edu RI Zhang, Xinghang/H-6764-2013; Wang, Haiyan/P-3550-2014; OI Zhang, Xinghang/0000-0002-8380-8667; Wang, Haiyan/0000-0002-7397-1209; Cole, James/0000-0003-1178-5846; Swadener, John G/0000-0001-5493-3461 FU National Science Foundation [NSF-0846504]; Idaho National Laboratory; Center for Integrated Nanotechnologies (CINT) at Los Alamos National Laboratory, Office of Basic Energy Sciences user facility; U.S. Department of Energy (CINT) [2009A006]; NSF [CMMI-0846835] FX This work was partially supported by the National Science Foundation (NSF-0846504), the Idaho National Laboratory subcontract, and the Center for Integrated Nanotechnologies (CINT) at Los Alamos National Laboratory, Office of Basic Energy Sciences user facility funded by the U.S. Department of Energy (CINT user project-2009A006). LS acknowledges the support by NSF under Grant no. CMMI-0846835. NR 39 TC 9 Z9 11 U1 3 U2 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2013 VL 441 IS 1-3 BP 47 EP 53 DI 10.1016/j.jnucmat.2013.05.035 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 231VX UT WOS:000325447600007 ER PT J AU Crum, JV Strachan, D Rohatgi, A Zumhoff, M AF Crum, Jarrod V. Strachan, Denis Rohatgi, Aashish Zumhoff, Mac TI Epsilon metal waste form for immobilization of noble metals from used nuclear fuel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID NATURAL FISSION REACTORS; HYDROGEN REDUCTION; VITRIFICATION; DISSOLUTION; RH; RU; MO; CRYSTALLIZATION; MOLYBDENUM; KINETICS AB Epsilon metal (c-metal), an alloy of Mo, Pd, Rh, Ru, and Tc, is being developed as a waste form to treat and immobilize the undissolved solids and dissolved noble metals from aqueous reprocessing of commercial used nuclear fuel. Epsilon metal is an attractive waste form for several reasons: increased durability relative to borosilicate glass, it can be fabricated without additives (100% waste loading), and in addition it also benefits borosilicate glass waste loading by eliminating noble metals from the glass, thus the processing problems related to their insolubility in glass. This work focused on the processing aspects of the epsilon metal waste form development. Epsilon metal is comprised of refractory metals resulting in high alloying temperatures, expected to be 1500-2000 degrees C, making it a non-trivial phase to fabricate by traditional methods. Three commercially available advanced technologies were identified: spark-plasma sintering, microwave sintering, and hot isostatic pressing, and investigated as potential methods to fabricate this waste form. Results of these investigations are reported and compared in terms of bulk density, phase assemblage (X-ray diffraction and elemental analysis), and microstructure (scanning electron microscopy). (C) 2013 Elsevier B.V. All rights reserved. C1 [Crum, Jarrod V.; Strachan, Denis; Rohatgi, Aashish; Zumhoff, Mac] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Crum, JV (reprint author), Mail Stop K6-24,POB 999, Richland, WA 99354 USA. EM Jarrod.Crum@pnnl.gov; Denis.Strachan@pnnl.gov; Aashish.Rohatgi@pnnl.gov; Mac.Zumhoff@pnnl.gov NR 35 TC 6 Z9 6 U1 4 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2013 VL 441 IS 1-3 BP 103 EP 112 DI 10.1016/j.jnucmat.2013.05.043 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 231VX UT WOS:000325447600014 ER PT J AU Idrees, Y Yao, Z Sattari, M Kirk, MA Daymond, MR AF Idrees, Y. Yao, Z. Sattari, M. Kirk, M. A. Daymond, M. R. TI Irradiation induced microstructural changes in Zr-Excel alloy SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID STRENGTH ZIRCONIUM ALLOYS; C-COMPONENT DISLOCATIONS; HEAVY-ION IRRADIATION; NEUTRON-IRRADIATION; NB ALLOYS; OMEGA TRANSFORMATION; PHASE-TRANSFORMATION; ALPHA-ZIRCONIUM; FOIL THICKNESS; IN-SITU AB The in situ ion irradiation technique has been employed to elucidate irradiation damage in the dual phase Zr-Excel alloy. 1 MeV Kr ion irradiation experiments were conducted at different temperatures ranging from 100 degrees C to 400 degrees C. Damage microstructures have been characterized by transmission electron microscopy in both the alpha (alpha) and beta (beta) phases after a maximum dose of 10 dpa at different temperatures. Several important observations including low temperature < c >-component loop formation, and irradiation induced omega (omega) phase precipitation have been reported. In situ irradiation provided an opportunity to observe the nucleation and growth of basal plane < c >-component loops and irradiation induced dissolution of secondary phase precipitates at the same time. It has been shown that under Kr ion irradiation the < c >-component loops start to nucleate and grow above a threshold dose, as has been observed for neutron irradiation. Furthermore, the role of temperature, material composition and pre-irradiation microstructure has been discussed in detail. (C) 2013 Elsevier B.V. All rights reserved. C1 [Idrees, Y.; Yao, Z.; Sattari, M.; Daymond, M. R.] Queens Univ, Dept Mech & Mat Engn, Kingston, ON K7L 3N6, Canada. [Kirk, M. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Yao, Z (reprint author), Queens Univ, Dept Mech & Mat Engn, Kingston, ON K7L 3N6, Canada. EM yaoz@me.queensu.ca OI Daymond, Mark/0000-0001-6242-7489 FU NSERC; UNENE; Nu-Tech Precision Metals under the Industrial Research Chair Program in Nuclear Materials at Queen's University; US Department of Energy Office of Science Laboratory by U. Chicago Argonne, LLC. [DE-AC02-06CH11357] FX This work is sponsored by NSERC, UNENE and Nu-Tech Precision Metals under the Industrial Research Chair Program in Nuclear Materials at Queen's University. Electron microscopy was accomplished at the Electron Microscopy Centre for Materials Research at Argonne National Laboratory, a US Department of Energy Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by U. Chicago Argonne, LLC. We acknowledge Rick Holt of Queen's university for valuable advice and Malcolm Griffiths of Chalk river laboratories for fruitful discussion. We thank Pete Boldo of Argonne National Lab for his help on the ion beam facility. NR 62 TC 7 Z9 7 U1 0 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2013 VL 441 IS 1-3 BP 138 EP 151 DI 10.1016/j.jnucmat.2013.05.036 PG 14 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 231VX UT WOS:000325447600019 ER PT J AU Perez, E Keiser, DD Sohn, YH AF Perez, E. Keiser, D. D., Jr. Sohn, Y. H. TI Phase development in a U-7 wt.% Mo vs. Al-7 wt.% Ge diffusion couple SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID PERCENT MOLYBDENUM ALLOY; TRANSMISSION ELECTRON-MICROSCOPY; NUCLEAR-RESEARCH REACTORS; MO/AL DISPERSION FUEL; 550 DEGREES-C; U-MO; HIGH-DENSITY; IRRADIATION BEHAVIOR; URANIUM ALLOYS; THERMAL COMPATIBILITY AB Fuel development for the Reduced Enrichment for Research and Test Reactors (RERTR) program has demonstrated that U-Mo alloys in contact with Al develop interaction regions with phases that have poor irradiation behavior. The addition of Si to the Al has been considered with positive results. In this study, compositional modification is considered by replacing Si with Ge to determine the effect on the phase development in the system. The microstructural and phase development of a diffusion couple of U-7 wt.% Mo in contact with Al-7 wt.% Ge was examined by transmission electron microscopy, scanning electron microscopy and energy dispersive spectroscopy. The interdiffusion zone developed a microstructure that included the cubic-UGe3 phase and amorphous phases. The UGe3 phase was observed with and without Mo and Al solid solution developing a (U,Mo)(Al,Ge)(3) phase. (C) 2013 Elsevier B.V. All rights reserved. C1 [Perez, E.; Keiser, D. D., Jr.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Sohn, Y. H.] Univ Cent Florida, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. [Sohn, Y. H.] Univ Cent Florida, Dept Mat Sci & Engn, Orlando, FL 32816 USA. RP Perez, E (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Emmanuel.Perez@inl.gov RI Sohn, Yongho/A-8517-2010 OI Sohn, Yongho/0000-0003-3723-4743 FU U.S. Department of Energy; U.S. Government under DOE-NE Idaho Operations Office [DE-AC07-05ID14517, 00051953]; U.S. Government FX The work described in this manuscript was supported by the U.S. Department of Energy and was authored by a contractor of the U.S. Government under DOE-NE Idaho Operations Office Contract DE-AC07-05ID14517 through a subcontract No. 00051953 administered by Battelle Energy Alliances, LLC and Idaho National Laboratory. Accordingly, the U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes.; This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof. NR 71 TC 0 Z9 0 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2013 VL 441 IS 1-3 BP 159 EP 167 DI 10.1016/j.jnucmat.2013.05.069 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 231VX UT WOS:000325447600021 ER PT J AU Yang, Y Tan, LZ Bei, HB Busby, JT AF Yang, Ying Tan, Lizhen Bei, Hongbin Busby, Jeremy T. TI Thermodynamic modeling and experimental study of the Fe-Cr-Zr system SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID STEEL-ZIRCONIUM ALLOYS; PHASE-DIAGRAM; IRON-ZIRCONIUM; CREEP STRENGTH; WASTE FORMS; MICROSTRUCTURE; COMPOUND; ENTHALPY; ENERGY; FUEL AB This work developed thermodynamic models for describing phase stability and thermodynamic property of the Fe-Cr-Zr system using the Calphad approach coupled with experimental study. Thermodynamic descriptions of the Fe-Cr and Cr-Zr systems were either directly adopted or slightly modified from literature. The Fe-Zr system has been remodeled to accommodate recent ab-initio calculation of formation enthalpies of various Fe-Zr compounds. Reliable ternary experimental data and thermodynamic models were mainly available in the Zr-rich region. Therefore, selected ternary alloys located in the vicinity of the eutectic valley of beta(Fe,Cr,Zr) and (Fe,Cr)(2)Zr laves phase in the Fe-rich region have been experimentally investigated in this study. Microstructure has been examined by using scanning electron microscope, energy-dispersive X-ray spectroscopy and X-ray diffraction. These experimental results, along with the literature data were then used to develop thermodynamic models for phases in the Fe-Cr-Zr system. Calculated phase equilibria and thermodynamic properties of the ternary system yield satisfactory agreements with available experimental data. (C) 2013 Elsevier B.V. All rights reserved. C1 [Yang, Ying; Tan, Lizhen; Bei, Hongbin; Busby, Jeremy T.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Busby, Jeremy T.] Oak Ridge Natl Lab, Fuel Cycle & Isotopes Div, Oak Ridge, TN 37831 USA. RP Yang, Y (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM yangying@ornl.gov RI Tan, Lizhen/A-7886-2009; Yang, Ying/E-5542-2017; OI Tan, Lizhen/0000-0002-3418-2450; Yang, Ying/0000-0001-6480-2254; Bei, Hongbin/0000-0003-0283-7990 FU US Department of Energy (DOE), Office of Nuclear Energy, Nuclear Engineering Enabling Technology (NEET) Advanced Reactor Material Program [DE-AC05-00OR22725]; UT-Battelle, LLC.; Office of Basic Energy Sciences, US DOE FX This research was supported by the US Department of Energy (DOE), Office of Nuclear Energy, Nuclear Engineering Enabling Technology (NEET) Advanced Reactor Material Program, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. SEM and EDS was conducted in ORNL's Shared Research Equipment (ShaRE) User Facility, which is sponsored by the Office of Basic Energy Sciences, US DOE. NR 43 TC 2 Z9 2 U1 2 U2 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2013 VL 441 IS 1-3 BP 190 EP 202 DI 10.1016/j.jnucmat.2013.05.061 PG 13 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 231VX UT WOS:000325447600024 ER PT J AU Piro, MHA Banfield, J Clarno, KT Simunovic, S Besmann, TM Lewis, BJ Thompson, WT AF Piro, M. H. A. Banfield, J. Clarno, K. T. Simunovic, S. Besmann, T. M. Lewis, B. J. Thompson, W. T. TI Coupled thermochemical, isotopic evolution and heat transfer simulations in highly irradiated UO2 nuclear fuel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID BURN-UP MODEL; OXYGEN DIFFUSION; THERMODYNAMIC TREATMENT; URANIUM-DIOXIDE; CODE; TRANSURANUS; SYSTEMS; CAPABILITIES; VALIDATION; EXTENSION AB Predictive capabilities for simulating irradiated nuclear fuel behavior are enhanced in the current work by coupling thermochemistry, isotopic evolution and heat transfer. Thermodynamic models that are incorporated into this framework not only predict the departure from stoichiometry of UO2, but also consider dissolved fission and activation products in the fluorite oxide phase, noble metal inclusions, secondary oxides including uranates, zirconates, molybdates and the gas phase. Thermochemical computations utilize the spatial and temporal evolution of the fission and activation product inventory in the pellet, which is typically neglected in nuclear fuel performance simulations. Isotopic computations encompass the depletion, decay and transmutation of more than 2000 isotopes that are calculated at every point in space and time. These computations take into consideration neutron flux depression and the increased production of fissile plutonium near the fuel pellet periphery (i.e., the so-called "rim effect"). Thermochemical and isotopic predictions are in very good agreement with reported experimental measurements of highly irradiated UO2 fuel with an average burnup of 102 GW d t(U)(-1). Simulation results demonstrate that predictions are considerably enhanced when coupling thermochemical and isotopic computations in comparison to empirical correlations. Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-000R22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. (c) 2013 Elsevier B.V. All rights reserved. C1 [Piro, M. H. A.; Besmann, T. M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37830 USA. [Banfield, J.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Clarno, K. T.] Oak Ridge Natl Lab, Reactor & Nucl Syst Div, Oak Ridge, TN 37830 USA. [Simunovic, S.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37830 USA. [Lewis, B. J.; Thompson, W. T.] Royal Mil Coll Canada, Dept Chem & Chem Engn, Kingston, ON, Canada. RP Piro, MHA (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37830 USA. EM markuspiro@gmail.com; clarnokt@ornl.gov OI Clarno, Kevin/0000-0002-5999-2978 FU Fuels Integrated Performance and Safety Code (IPSC) element of the Nuclear Energy Advanced Modeling and Simulations (NEAMS) program of the U.S. Department of Energy Office of Nuclear Energy (DOE/NE), Advanced Modeling and Simulation Office (AMSO) FX The development of the Advanced Multi-Physics (AMP) nuclear fuel performance code was funded by the Fuels Integrated Performance and Safety Code (IPSC) element of the Nuclear Energy Advanced Modeling and Simulations (NEAMS) program of the U.S. Department of Energy Office of Nuclear Energy (DOE/NE), Advanced Modeling and Simulation Office (AMSO). NR 56 TC 14 Z9 14 U1 3 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2013 VL 441 IS 1-3 BP 240 EP 251 DI 10.1016/j.jnucmat.2013.05.060 PG 12 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 231VX UT WOS:000325447600030 ER PT J AU Brown, DW Okuniewski, MA Almer, JD Balogh, L Clausen, B Okasinski, JS Rabin, BH AF Brown, D. W. Okuniewski, M. A. Almer, J. D. Balogh, L. Clausen, B. Okasinski, J. S. Rabin, B. H. TI High energy X-ray diffraction measurement of residual stresses in a monolithic aluminum clad uranium-10 wt% molybdenum fuel plate assembly SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID DU-XMO ALLOYS; NEUTRON-DIFFRACTION; RIETVELD REFINEMENT; MINI-PLATES; ANISOTROPY; SPECTRA; PIPE AB Residual stresses are expected in monolithic, aluminum clad uranium 10 wt% molybdenum (U-10Mo) nuclear fuel plates because of the large mismatch in thermal expansion between the two bonded materials. The full residual stress tensor of the U-10Mo foil in a fuel plate assembly was mapped with 0.1 mm resolution using high-energy (86 key) X-ray diffraction. The in-plane stresses in the U-10Mo foil are strongly compressive, roughly -250 MPa in the longitudinal direction and -140 MPa in the transverse direction near the center of the fuel foil. The normal component of the stress is weakly compressive near the center of the foil and tensile near the corner. The disparity in the residual stress between the two in-plane directions far from the edges and the tensile normal stress suggest that plastic deformation in the aluminum cladding during fabrication by hot isostatic pressing also contributes to the residual stress field. A tensile in-plane residual stress is presumed to be present in the aluminum cladding to balance the large in-plane compressive stresses in the U-10Mo fuel foil, but cannot be directly measured with the current technique due to large grain size. (C) 2013 Elsevier B.V. All rights reserved. C1 [Brown, D. W.; Balogh, L.; Clausen, B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Okuniewski, M. A.; Rabin, B. H.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Almer, J. D.; Okasinski, J. S.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Brown, DW (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM dbrown@lanl.gov RI Clausen, Bjorn/B-3618-2015; Balogh, Levente/S-1238-2016 OI Clausen, Bjorn/0000-0003-3906-846X; FU US Department of Energy (DOE); National Nuclear Security Administration's Office of Global Threat Reduction through the DOE Idaho Operations Office [DE-AC07-05ID14517]; US Department of Energy, Office of Basic Energy Sciences [DE-ACO2-06CH11357]; DOE [DE AC52 06NA25396]; Advanced Test Reactor National Scientific User Facility FX This research was supported by the US Department of Energy (DOE) and the National Nuclear Security Administration's Office of Global Threat Reduction through the DOE Idaho Operations Office Contract DE-AC07-05ID14517. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Basic Energy Sciences under Contract No. DE-ACO2-06CH11357. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE AC52 06NA25396. The initial scoping study was funded by the Advanced Test Reactor National Scientific User Facility. The authors would like to acknowledge Mr. Blair Park, Mr. Steve Steffier, Mr. Mike Chapple, and Mr. Glenn Moore for the fabrication of the alloys and fuel plates. NR 33 TC 7 Z9 7 U1 1 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2013 VL 441 IS 1-3 BP 252 EP 261 DI 10.1016/j.jnucmat.2013.05.064 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 231VX UT WOS:000325447600031 ER PT J AU Xu, K Hrma, P Um, W Heo, J AF Xu, Kai Hrma, Pavel Um, Wooyong Heo, Jong TI Iron phosphate glass for immobilization of Tc-99 SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID WASTE VITRIFICATION; TECHNETIUM AB Technetium-99 (Tc-99) can bring serious environmental threats because of its long half-life (tau(1/2) = similar to 2.1 x 10(5) years), high fission yield (similar to 6%), and high solubility and mobility in the ground water. The high volatility makes it difficult to immobilize Tc-99 in continuous melters vitrifying Tc-99-containing nuclear wastes in borosilicate glasses. This work explores a possibility of incorporating a high concentration of Tc-99, surrogated by the non-radioactive Re, in an iron phosphate glass by melting mixtures of iron phosphate glass frits with 1.5-6 mass% KReO4 at similar to 1000 degrees C. The retention of Re achieved was similar to 1.1 mass%. The normalized Re release by the 7-day Product Consistency Test was <10(-2) g/m(2). Surprisingly, the Re escaped from the melt within a short time of heating, especially when the temperature was increased. Therefore, Tc-99 volatilization would still be a challenging task for its immobilization in iron phosphate glasses. (C) 2013 Elsevier B.V. All rights reserved. C1 [Xu, Kai; Hrma, Pavel; Um, Wooyong; Heo, Jong] Pohang Univ Sci & Technol POSTECH, Div Adv Nucl Engn, Pohang 790784, Gyeongbuk, South Korea. [Xu, Kai; Heo, Jong] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci & Engn, Pohang 790784, Gyeongbuk, South Korea. [Hrma, Pavel; Um, Wooyong] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Heo, J (reprint author), San 31, Pohang 790784, Gyeongbuk, South Korea. EM jheo@postech.ac.kr RI Xu, Kai/B-8001-2010 OI Xu, Kai/0000-0003-3572-3455 FU World Class University [R31-30005]; Priority Research Center Programs through the National Research Foundation of Korea [2009-0094036]; Ministry of Education, Science and Technology FX This work was supported by World Class University (R31-30005) and Priority Research Center (2009-0094036) Programs through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology. NR 21 TC 7 Z9 8 U1 2 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2013 VL 441 IS 1-3 BP 262 EP 266 DI 10.1016/j.jnucmat.2013.06.008 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 231VX UT WOS:000325447600032 ER PT J AU Teague, M Gorman, B King, J Porter, D Hayes, S AF Teague, Melissa Gorman, Brian King, Jeffrey Porter, Douglas Hayes, Steven TI Microstructural characterization of high burn-up mixed oxide fast reactor fuel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID CLADDING GAP; PWR-FUELS; EVOLUTION; IRRADIATION; BEHAVIOR; PINS AB High burn-up mixed oxide fuel with local burn-ups of 3.4-23.7% FIMA (fissions per initial metal atom) were destructively examined as part of a research project to understand the performance of oxide fuel at extreme burn-ups. Optical metallography of fuel cross-sections measured the fuel-to-cladding gap, clad thickness, and central void evolution in the samples. The fuel-to-cladding gap closed significantly in samples with burn-ups below 7-9% FIMA. Samples with burn-ups in excess of 7-9% FIMA had a reopening of the fuel-to-cladding gap and evidence of joint oxide-gain (JOG) formation. Signs of axial fuel migration to the top of the fuel column were observed in the fuel pin with a peak burn-up of 23.7% FIMA. Additionally, high burn-up structure (HBS) was observed in the two highest burn-up samples (23.7% and 21.3% FIMA). The HBS layers were found to be 3-5 times thicker than the layers found in typical LWR fuel. The results of the study indicate that formation of JOG and or HBS prevents any significant fuel-cladding mechanical interaction from occurring, thereby extending the potential life of the fuel elements. Published by Elsevier B.V. C1 [Teague, Melissa; Porter, Douglas; Hayes, Steven] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Gorman, Brian; King, Jeffrey] Colorado Sch Mines, Golden, CO 80401 USA. RP Teague, M (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM melissa.teague@inl.gov RI Hayes, Steven/D-8373-2017 OI Hayes, Steven/0000-0002-7583-2069 NR 26 TC 6 Z9 6 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2013 VL 441 IS 1-3 BP 267 EP 273 DI 10.1016/j.jnucmat.2013.05.067 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 231VX UT WOS:000325447600033 ER PT J AU Barrow, ATW Toffolon-Masclet, C Almer, J Daymond, MR AF Barrow, A. T. W. Toffolon-Masclet, C. Almer, J. Daymond, M. R. TI The role of chemical free energy and elastic strain in the nucleation of zirconium hydride SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID HOOP MECHANICAL-PROPERTIES; TERMINAL SOLID SOLUBILITY; PRECIPITATION KINETICS; ALPHA-ZIRCONIUM; CLADDING TUBES; ALLOYS; ZIRCALOY-4; HYDROGEN; DIFFRACTION; DISSOLUTION AB In this work a combination of synchrotron X-ray diffraction and thermodynamic modelling has been used to study the dissolution and precipitation of zirconium hydride in alpha-Zr establishing the role of elastic misfit strain and chemical free energy in the alpha -> alpha + delta phase transformation. The nucleation of zirconium hydride is dominated by the chemical free energy where the chemical driving force for hydride precipitation is proportional to the terminal-solid solubility for precipitation and can be predicted by a function that is analogous to the universal nucleation parameter for the bainite transformation in ferrous alloys. The terminal-solid solubility for precipitation was found to be kinetically limited >= 287 degrees C at a cooling rate of 5 degrees C min(-1) or greater. The terminal solubilities were established using an offset method applied to the lattice strain data where a resolution of similar to 10 wppm H can be achieved in the < c >-direction. This is aided by the introduction of intra-granular strains in the < c >-direction during cooling as a result of the thermal expansion anisotropy which increases the anisotropy associated with the misfitting H atoms within the alpha-Zr lattice. (C) 2013 Elsevier B.V. All rights reserved. C1 [Barrow, A. T. W.; Daymond, M. R.] Queens Univ, Dept Mech & Mat Engn, Nucl Mat Grp, Kingston, ON K7L 3N6, Canada. [Toffolon-Masclet, C.] CEA Saclay, Nucl Mat Dept, SRMA LA2M, F-91191 Gif Sur Yvette, France. [Almer, J.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Daymond, MR (reprint author), Queens Univ, Dept Mech & Mat Engn, Nucl Mat Grp, Kingston, ON K7L 3N6, Canada. EM daymond@me.queensu.ca OI Daymond, Mark/0000-0001-6242-7489 FU NSERC; COG; OPG; Nu-Tech Precision Metals under the Industrial Research Chair program in Nuclear Materials at Queen's University; US Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was sponsored by NSERC, COG, OPG and Nu-Tech Precision Metals under the Industrial Research Chair program in Nuclear Materials at Queen's University. Usage of the Advanced Photon Source (APS) was supported by the US Department of Energy, Office of Basic Energy Sciences under contract number DE-AC02-06CH11357. NR 58 TC 6 Z9 8 U1 5 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2013 VL 441 IS 1-3 BP 395 EP 401 DI 10.1016/j.jnucmat.2013.06.013 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 231VX UT WOS:000325447600051 ER PT J AU Leenaers, A Van den Berghe, S Van Eyken, J Koonen, E Charollais, F Lemoine, P Calzavara, Y Guyon, H Jarousse, C Geslin, D Wachs, D Keiser, D Robinson, A Hofman, G Kim, YS AF Leenaers, A. Van den Berghe, S. Van Eyken, J. Koonen, E. Charollais, F. Lemoine, P. Calzavara, Y. Guyon, H. Jarousse, C. Geslin, D. Wachs, D. Keiser, D. Robinson, A. Hofman, G. Kim, Y. S. TI Microstructural evolution of U(Mo)-Al(Si) dispersion fuel under irradiation - Destructive analyses of the LEONIDAS E-FUTURE plates SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article AB Several irradiation experiments have confirmed the positive effect of adding Si to the matrix of an U(Mo) dispersion fuel plate on its in-pile irradiation behavior. E-FUTURE, the first experiment of the LEONIDAS program, was performed to select an optimum Si concentration and fuel plate heat treatment parameters for further qualification. It consisted of the irradiation of 4 distinct (regarding Si content and heat treatments), full size flat fuel plates in the BR2 reactor under bounding conditions (470 W/cm(2) peak BOL power, similar to 70% peak burn-up). After the irradiation, the E-FUTURE plates were examined non-destructively and found to have pillowed in the highest burn-up positions. The destructive post-irradiation examination confirmed that the fuel evolves in a stable way up to a burn-up of 60%U-235. Even in the deformed area (pillow) the U(Mo) fuel itself shows stable behavior and remaining matrix material was present. From the calculation of the volume fractions, the positive effect of a higher Si amount added to the matrix and the higher annealing temperature can be derived. (C) 2013 Elsevier B.V. All rights reserved. C1 [Leenaers, A.; Van den Berghe, S.; Van Eyken, J.; Koonen, E.] SCK CEN, B-2400 Mol, Belgium. [Charollais, F.] CEA, DEN, DEC, F-13108 Cadarache, St Paul Lez Dur, France. [Lemoine, P.] CEA, DEN, DISN, F-91191 Gif Sur Yvette, France. [Calzavara, Y.; Guyon, H.] ILL Grenoble, F-38042 Grenoble 9, France. [Jarousse, C.; Geslin, D.; Wachs, D.; Keiser, D.; Robinson, A.] AREVA CERCA, F-26104 Romans Sur Isere, France. [Jarousse, C.; Geslin, D.; Wachs, D.; Keiser, D.; Robinson, A.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Hofman, G.; Kim, Y. S.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Leenaers, A (reprint author), SCK CEN, Boeretang 200, B-2400 Mol, Belgium. EM ann.leenaers@sckcen.be OI Van den Berghe, Sven/0000-0002-2537-4645 NR 19 TC 16 Z9 16 U1 3 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2013 VL 441 IS 1-3 BP 439 EP 448 DI 10.1016/j.jnucmat.2013.06.027 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 231VX UT WOS:000325447600056 ER PT J AU Choi, KJ Kim, JJ Lee, BH Bahn, CB Kim, JH AF Choi, Kyoung Joon Kim, Jong Jin Lee, Bong Ho Bahn, Chi Bum Kim, Ji Hyun TI Effects of thermal aging on microstructures of low alloy steel-Ni base alloy dissimilar metal weld interfaces SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT Conference on Nuclear Materials (NuMat) CY OCT 22-25, 2012 CL Osaka, JAPAN ID STRESS-CORROSION CRACKING; FUSION BOUNDARY REGION; STAINLESS-STEEL; ATOM-PROBE; JOINT; CHEMISTRY; WATER AB In this study, the advanced instrumental analysis has been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at 450 degrees C for 2750 h. The micro- and nano-scale characterization were conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy, and three dimensional atom probe tomography. It was observed that the weld root was generally divided into several regions including dilution zone in the Ni-base alloy weld metal, fusion boundary, and heat-affected zone in the low alloy steel. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. The precipitation of carbides was also observed along and near the fusion boundary of as-welded and aged dissimilar metal joints. It was also found that the precipitation of Cr carbides was enhanced by the thermal aging near the fusion boundary. (C) 2013 Elsevier B.V. All rights reserved. C1 [Choi, Kyoung Joon; Kim, Jong Jin; Kim, Ji Hyun] UNIST, Interdisciplinary Sch Green Energy, Ulsan 689798, South Korea. [Lee, Bong Ho] Pohang Univ Sci & Technol POSTECH, NCNT, Pohang 790784, Gyeongbuk, South Korea. [Bahn, Chi Bum] Argonne Natl Lab, Argonne, IL 60439 USA. RP Kim, JH (reprint author), UNIST, Interdisciplinary Sch Green Energy, 100 Banyeon Ri, Ulsan 689798, South Korea. EM kimjh@unist.ac.kr RI Kim, Ji Hyun/F-5704-2010 OI Kim, Ji Hyun/0000-0002-3984-0686 NR 17 TC 15 Z9 15 U1 1 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2013 VL 441 IS 1-3 BP 493 EP 502 DI 10.1016/j.jnucmat.2013.07.003 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 231VX UT WOS:000325447600062 ER PT J AU Snead, L Allen, T Wiffen, B AF Snead, Lance Allen, Todd Wiffen, Bill TI Special Section on Proceedings of the Third Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors (NFSM-3) Preface SO JOURNAL OF NUCLEAR MATERIALS LA English DT Editorial Material C1 [Snead, Lance; Wiffen, Bill] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Allen, Todd] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Snead, L (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM wiffenfw@ornl.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2013 VL 441 IS 1-3 BP 514 EP 514 DI 10.1016/j.jnucmat.2013.08.011 PG 1 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 231VX UT WOS:000325447600065 ER PT J AU Delage, F Carmack, J Lee, CB Mizuno, T Pelletier, M Somers, J AF Delage, F. Carmack, J. Lee, C. B. Mizuno, T. Pelletier, M. Somers, J. TI Status of advanced fuel candidates for Sodium Fast Reactor within the Generation IV International Forum SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 3rd Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors (NFSM) held as an Embedded Topical within the American-Nuclear-Society Annual Meeting CY JUN 13-17, 2010 CL San Diego, CA SP Amer Nucl Soc ID US PERSPECTIVE; SPHERE-PAC; BEHAVIOR; FLUX AB The main challenge for fuels for future Sodium Fast Reactor systems is the development and qualification of a nuclear fuel sub-assembly which meets the Generation IV International Forum goals. The Advanced Fuel project investigates high burn-up minor actinide bearing fuels as well as claddings and wrappers to withstand high neutron doses and temperatures. The R&D outcome of national and collaborative programs has been collected and shared between the AF project members in order to review the capability of sub-assembly material and fuel candidates, to identify the issues and select the viable options. Based on historical experience and knowledge, both oxide and metal fuels emerge as primary options to meet the performance and the reliability goals of Generation IV SFR systems. There is a significant positive experience on carbide fuels but major issues remain to be overcome: strong in-pile swelling, atmosphere required for fabrication as well as Pu and Am losses. The irradiation performance database for nitride fuels is limited with longer term R&D activities still required. The promising core material candidates are Ferritic/Martensitic (F/M) and Oxide Dispersed Strengthened (ODS) steels. (C) 2012 Elsevier B.V. All rights reserved. C1 [Delage, F.; Pelletier, M.] DEN CAD DEC SESC, Commissariat Energie Atom & Energies Alternat, St Paul Les Durance, France. [Carmack, J.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Lee, C. B.] Korea Atom Energy Res Inst, Taejon, South Korea. [Mizuno, T.] Japan Atom Energy Agcy, Oarai, Ibaraki, Japan. [Somers, J.] Commiss European Communities, Joint Res Ctr, Inst Transuranium Elements, Karlsruhe, Germany. RP Delage, F (reprint author), DEN CAD DEC SESC, Commissariat Energie Atom & Energies Alternat, BP 171, St Paul Les Durance, France. EM fabienne.delage@cea.fr NR 24 TC 7 Z9 8 U1 0 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2013 VL 441 IS 1-3 BP 515 EP 519 DI 10.1016/j.jnucmat.2012.09.036 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 231VX UT WOS:000325447600066 ER PT J AU Kim, YS Hofman, GL Yacout, AM Kim, TK AF Kim, Yeon Soo Hofman, G. L. Yacout, A. M. Kim, T. K. TI U-Mo alloy fuel for TRU-burning advanced fast reactors SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 3rd Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors (NFSM) held as an Embedded Topical within the American-Nuclear-Society Annual Meeting CY JUN 13-17, 2010 CL San Diego, CA SP Amer Nucl Soc ID METALLIC FUEL AB The use of U-Mo instead of U-Zr as the base alloy fuel for transuranics (TRU)-burning advanced fast reactors is assessed in several aspects. While the replacement of Zr with Mo involves no significant differences in terms of neutron physics (core design), U-TRU-Mo does provide advantages. U-TRU-Mo has lower TRU migration to cladding because of its simpler phase diagram, is advantageous in safety margin due to its higher thermal conductivity and better fuel-cladding-chemical-interaction resistance. High fuel swelling data, obtained at low temperatures, available in the literature are not directly applicable to the TRU-burning advanced fast reactors. The potential high swelling can also be controlled when strong cladding and degassing are used as are adopted for typical U-Pu-Zr fuel. Results and detailed analysis are presented in this paper, indicating the benefits of U-Mo base alloy fuel in TRU-burning advanced fast reactors. (C) 2013 Elsevier B.V. All rights reserved. C1 [Kim, Yeon Soo; Hofman, G. L.; Yacout, A. M.; Kim, T. K.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Kim, YS (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM yskim@anl.gov NR 17 TC 3 Z9 3 U1 2 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2013 VL 441 IS 1-3 BP 520 EP 524 DI 10.1016/j.jnucmat.2013.01.324 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 231VX UT WOS:000325447600067 ER PT J AU Ye, B Oaks, A Kirk, M Yun, D Chen, WY Holtzman, B Stubbins, JF AF Ye, Bei Oaks, Aaron Kirk, Mark Yun, Di Chen, Wei-Ying Holtzman, Benjamin Stubbins, James F. TI Irradiation effects in UO2 and CeO2 SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 3rd Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors (NFSM) held as an Embedded Topical within the American-Nuclear-Society Annual Meeting CY JUN 13-17, 2010 CL San Diego, CA SP Amer Nucl Soc ID FISSION-GAS BUBBLES; URANIUM-DIOXIDE; SINGLE-CRYSTALS; BURNUP; FUELS; TEM; POLYGONIZATION; RELEASE; GROWTH AB Single crystal CeO2, as a surrogate material to UO2, was irradiated with 500 keV xenon ions at 800 degrees C while being observed using in situ transmission electron microscopy (TEM). Experimental results show the formation and growth of defect clusters including dislocation loops and cavities as a function of increasing atomic displacement dose. At high dose, the dislocation loop structure evolves into an extended dislocation line structure, which appears to remain stable to the high dose levels examined in this study. A high concentration of cavities was also present in the microstructure. Despite high atomic displacement doses, the specimen remained crystalline to a cumulated dose of 5 x 10(15) ions/cm(2), which is consistent with the known stability of the fluorite structure under high dose irradiation. Kinetic Monte Carlo calculations show that oxygen mobility is substantially higher in hypo-stoichiometric UO2/CeO2 than hyper-stoichiometric systems. This result is consistent with the ability of irradiation damage to recover even at intermediate irradiation temperatures. (C) 2012 Elsevier B.V. All rights reserved. C1 [Ye, Bei; Oaks, Aaron; Yun, Di; Chen, Wei-Ying; Holtzman, Benjamin; Stubbins, James F.] Univ Illinois, Talbot Lab, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA. [Ye, Bei; Kirk, Mark; Yun, Di] Argonne Natl Lab, Argonne, IL 60493 USA. RP Ye, B (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM bye@anl.gov OI Oaks, Aaron/0000-0001-8552-242X NR 17 TC 7 Z9 7 U1 1 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2013 VL 441 IS 1-3 BP 525 EP 529 DI 10.1016/j.jnucmat.2012.09.035 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 231VX UT WOS:000325447600068 ER PT J AU Fielding, RS Porter, DL AF Fielding, Randall S. Porter, Douglas L. TI Volatile species retention during metallic fuel casting SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 3rd Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors (NFSM) held as an Embedded Topical within the American-Nuclear-Society Annual Meeting CY JUN 13-17, 2010 CL San Diego, CA SP Amer Nucl Soc ID ENERGY AB Metallic nuclear fuels are candidate transmutation fuel forms for advanced fuel cycles. Through the operation of the Experimental Breeder Reactor II metallic nuclear fuels have been shown to be robust and easily manufactured. However, concerns have been raised concerning loss of americium during the casting process because of its high vapor pressure. In order to address these concerns a gaseous diffusion model was developed and a series of experiments using both manganese and samarium as surrogates for americium were conducted. The modeling results showed that volatility losses can be controlled to essentially no losses with a modest overpressure. Experimental results also showed volatile species retention down to no detectable losses through overpressure, and although the loss values varied from the model results the same trend was seen. Based on these results it is very probable that americium losses through volatility can be controlled to no detectable losses through application of a modest overpressure during casting. (C) 2013 Elsevier B.V. All rights reserved. C1 [Fielding, Randall S.; Porter, Douglas L.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Fielding, RS (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM randall.fielding@inl.gov NR 9 TC 2 Z9 2 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2013 VL 441 IS 1-3 BP 530 EP 534 DI 10.1016/j.jnucmat.2013.04.077 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 231VX UT WOS:000325447600069 ER PT J AU Kim, KH Lee, CT Lee, CB Fielding, RS Kennedy, JR AF Kim, Ki Hwan Lee, Chong Tak Lee, Chan Bock Fielding, R. S. Kennedy, J. R. TI Ceramic plasma-sprayed coating of melting crucibles for casting metal fuel slugs SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 3rd Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors (NFSM) held as an Embedded Topical within the American-Nuclear-Society Annual Meeting CY JUN 13-17, 2010 CL San Diego, CA SP Amer Nucl Soc AB Thermal cycling and melt reaction studies of ceramic coatings plasma-sprayed on Nb substrates were carried out to evaluate the performance of barrier coatings for metallic fuel casting applications. Thermal cycling tests of the ceramic plasma-sprayed coatings to 1450 degrees C showed that HfN, TiC, ZrC, and Y2O3 coating had good cycling characteristics with few interconnected cracks even after 20 cycles. Interaction studies by 1550 degrees C melt dipping tests of the plasma-sprayed coatings also indicated that HfN and Y2O3 do not form significant reaction layer between U-20 wt.% Zr melt and the coating layer. Plasma-sprayed Y2O3 coating exhibited the most promising characteristics among HfN, TiC, ZrC, and Y2O3 coating. (C) 2013 Elsevier B.V. All rights reserved. C1 [Kim, Ki Hwan; Lee, Chong Tak; Lee, Chan Bock] Korea Atom Energy Res Inst, Taejon 305353, South Korea. [Fielding, R. S.; Kennedy, J. R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Kim, KH (reprint author), Korea Atom Energy Res Inst, 150 Deogjin Dong, Taejon 305353, South Korea. EM khkim2@kaeri.re.kr NR 10 TC 0 Z9 0 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2013 VL 441 IS 1-3 BP 535 EP 538 DI 10.1016/j.jnucmat.2013.04.076 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 231VX UT WOS:000325447600070 ER PT J AU Pham, BT Einerson, JJ AF Pham, Binh T. Einerson, Jeffrey J. TI The statistical analysis techniques to support the NGNP fuel performance experiments SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 3rd Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors (NFSM) held as an Embedded Topical within the American-Nuclear-Society Annual Meeting CY JUN 13-17, 2010 CL San Diego, CA SP Amer Nucl Soc AB This paper describes the development and application of statistical analysis techniques to support the Advanced Gas Reactor (AGR) experimental program on Next Generation Nuclear Plant (NGNP) fuel performance. The experiments conducted in the Idaho National Laboratory's Advanced Test Reactor employ fuel compacts placed in a graphite cylinder shrouded by a steel capsule. The tests are instrumented with thermocouples embedded in graphite blocks and the target quantity (fuel temperature) is regulated by the He-Ne gas mixture that fills the gap volume. Three techniques for statistical analysis, namely control charting, correlation analysis, and regression analysis, are implemented in the NGNP Data Management and Analysis System for automated processing and qualification of the AGR measured data. The neutronic and thermal code simulation results are used for comparative scrutiny. The ultimate objective of this work includes (a) a multi-faceted system for data monitoring and data accuracy testing, (b) identification of possible modes of diagnostics deterioration and changes in experimental conditions, (c) qualification of data for use in code validation, and (d) identification and use of data trends to support effective control of test conditions with respect to the test target. Analysis results and examples given in the paper show the three statistical analysis techniques providing a complementary capability to warn of thermocouple failures. It also suggests that the regression analysis models relating calculated fuel temperatures and thermocouple readings can enable online regulation of experimental parameters (i.e. gas mixture content), to effectively maintain the fuel temperature within a given range. (C) 2013 Elsevier B.V. All rights reserved. C1 [Pham, Binh T.; Einerson, Jeffrey J.] Idaho Natl Lab, Human Factor Controls & Stat Dept, Idaho Falls, ID 83415 USA. RP Pham, BT (reprint author), Idaho Natl Lab, Human Factor Controls & Stat Dept, Idaho Falls, ID 83415 USA. EM Binh.Pham@inl.gov NR 20 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2013 VL 441 IS 1-3 BP 563 EP 573 DI 10.1016/j.jnucmat.2013.04.082 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 231VX UT WOS:000325447600073 ER PT J AU Gulsoy, G Was, GS Pawel, SJ Busby, JT AF Gulsoy, G. Was, G. S. Pawel, S. J. Busby, J. T. TI Degradation modes of austenitic and ferritic-martensitic stainless steels in He-CO-CO2 and liquid sodium environments of equivalent oxygen and carbon chemical potentials SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 3rd Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors (NFSM) held as an Embedded Topical within the American-Nuclear-Society Annual Meeting CY JUN 13-17, 2010 CL San Diego, CA SP Amer Nucl Soc ID SOLUBILITY AB The objective of this work is to explore possible thermodynamic correlations between the degradation modes of austenitic and ferritic-martensitic alloys observed in high temperature He-CO-CO2 environments with oxygen and carbon chemical potentials equivalent to that in a liquid sodium environment containing 2-5 molppm oxygen and 0.02-0.2 molppm carbon at temperatures 500-700 degrees C. Two He-CO-CO2 environments (PCO/PCO2 = 1320, PCO = 1980 molppm, and PCO/PCO2 = 9, PCO = 13.5 molppm) were selected to test alloys NF616 and 316L at 700 and 850 degrees C. Upon exposure to He environments at 850 degrees C, 316L samples exhibited thick surface Cr2O3 scales and substantial internal oxidation; however at 700 degrees C no significant internal oxidation was observed. NF616 samples exhibited relatively thinner surface Cr2O3 scales compared to 316L samples at both temperatures. NF616 samples exposed to liquid sodium at 700 degrees C and He-PCO/PCO2 = 9 at 850 degrees C showed decarburization. No surface oxide formation was observed on the sample exposed to the Na environment. Results obtained from He exposure experiments provide insight into what may occur during long exposure times in a sodium environment. (C) 2013 Elsevier B.V. All rights reserved. C1 [Gulsoy, G.; Was, G. S.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Pawel, S. J.; Busby, J. T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Gulsoy, G (reprint author), Univ Michigan, Dept Mat Sci & Engn, 2355 Bonisteel Blvd, Ann Arbor, MI 48109 USA. EM gulsoy@umich.edu NR 14 TC 1 Z9 1 U1 1 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2013 VL 441 IS 1-3 BP 633 EP 643 DI 10.1016/j.jnucmat.2013.03.063 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 231VX UT WOS:000325447600081 ER PT J AU Zhang, J Kapernick, RJ McClure, PR Trapp, TJ AF Zhang, J. Kapernick, R. J. McClure, P. R. Trapp, T. J. TI Lead-bismuth eutectic technology for Hyperion reactor SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 3rd Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors (NFSM) held as an Embedded Topical within the American-Nuclear-Society Annual Meeting CY JUN 13-17, 2010 CL San Diego, CA SP Amer Nucl Soc ID COOLED FAST-REACTOR; OXYGEN CONCENTRATION; MOLTEN LEAD; SYSTEMS; COOLANT AB A small lead-bismuth eutectic-cooled reactor concept (referred to as the Hyperion reactor concept) is being studied at Los Alamos National Laboratory and Hyperion Power Generation. In this report, a critical assessment of the lead-bismuth eutectic technology for Hyperion reactor is presented based on currently available knowledge. Included are: material compatibility, oxygen control, thermal hydraulics, polonium control. The key advances in the technology and their applications to Hyperion reactor design are analyzed. Also, the near future studies in main areas of the technology are recommended for meeting the design requirements. (C) 2013 Elsevier B.V. All rights reserved. C1 [Zhang, J.] Ohio State Univ, Dept Mech & Aerosp Engn, Columbus, OH 43210 USA. [Zhang, J.; Kapernick, R. J.; McClure, P. R.] Los Alamos Natl Lab, Nucl Engn & Nonproliferat Div, Los Alamos, NM 87544 USA. [Trapp, T. J.] Hyper Power Generat, Santa Fe, NM 87501 USA. RP Zhang, J (reprint author), Ohio State Univ, Dept Mech & Aerosp Engn, 201 W,19th Ave, Columbus, OH 43210 USA. EM Zhang.3558@osu.edu RI Zhang, Jinsuo/H-4717-2012 OI Zhang, Jinsuo/0000-0002-3412-7769 NR 23 TC 5 Z9 5 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2013 VL 441 IS 1-3 BP 644 EP 649 DI 10.1016/j.jnucmat.2013.04.079 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 231VX UT WOS:000325447600082 ER PT J AU Tan, L Allen, TR Busby, JT AF Tan, L. Allen, T. R. Busby, J. T. TI Grain boundary engineering for structure materials of nuclear reactors SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 3rd Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors (NFSM) held as an Embedded Topical within the American-Nuclear-Society Annual Meeting CY JUN 13-17, 2010 CL San Diego, CA SP Amer Nucl Soc ID CHARACTER-DISTRIBUTION GBCD; STRESS-CORROSION CRACKING; INCOLOY ALLOY 800H; SUPERCRITICAL WATER; STAINLESS-STEEL; POLYCRYSTALLINE MATERIALS; PURE ZR; TEXTURE; MICROSTRUCTURE; NICKEL AB Grain boundary engineering (GBE), primarily implemented by thermomechanical processing, is an effective and economical method of enhancing the properties of polycrystalline materials. Among the factors affecting grain boundary character distribution, literature data showed definitive effect of grain size and texture. GBE is more effective for austenitic stainless steels and Ni-base alloys compared to other structural materials of nuclear reactors, such as refractory metals, ferritic and ferritic-martensitic steels, and Zr alloys. GBE has shown beneficial effects on improving the strength, creep strength, and resistance to stress corrosion cracking and oxidation of austenitic stainless steels and Ni-base alloys. (C) 2013 Elsevier B.V. All rights reserved. C1 [Tan, L.; Busby, J. T.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA. [Allen, T. R.] Univ Wisconsin Madison, Dept Engn Phys, Madison, WI 53706 USA. RP Tan, L (reprint author), 1 Bethel Valley Rd,POB 2008,MS 6151, Oak Ridge, TN 37831 USA. EM tanl@ornl.gov RI Tan, Lizhen/A-7886-2009; OI Tan, Lizhen/0000-0002-3418-2450; Allen, Todd/0000-0002-2372-7259 NR 53 TC 22 Z9 22 U1 4 U2 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2013 VL 441 IS 1-3 BP 661 EP 666 DI 10.1016/j.jnucmat.2013.03.050 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 231VX UT WOS:000325447600084 ER PT J AU Li, MM Olive, D Trenikhina, Y Ganegoda, H Terry, J Maloy, SA AF Li, Meimei Olive, Dan Trenikhina, Yulia Ganegoda, Hasitha Terry, Jeff Maloy, Stuart A. TI Study of irradiated mod.9Cr-1Mo steel by synchrotron extended X-ray absorption fine structure SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 3rd Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors (NFSM) held as an Embedded Topical within the American-Nuclear-Society Annual Meeting CY JUN 13-17, 2010 CL San Diego, CA SP Amer Nucl Soc ID DISPERSION-STRENGTHENED STEEL; CR-NI ALLOYS; MICROSTRUCTURAL EVOLUTION; STRUCTURE SPECTROSCOPY; POSITRON-ANNIHILATION; DEFECT ACCUMULATION; EXAFS; PHOSPHORUS AB Synchrotron extended X-ray absorption fine structure (EXAFS) spectroscopy measurements were performed to study the dose dependence of and alloying effects on irradiation-induced changes in the local atomic environments in a mod.9Cr-1Mo ferritic-martensitic steel. The measurements were carried out at room temperature on non-irradiated and irradiated specimens exposed to 1,4, and 10 displacement per atom (dpa) at 40-70 degrees C. The EXAFS data for Fe, Cr, Mo, and Nb K-edges were recorded, and the local structure close to the X-ray absorbing atom was determined. Irradiation caused significant reductions in peak amplitude in the Fe, Mo and Nb K-edge Fourier transformed EXAFS. The data showed a systematic decrease in coordination number of neighbor atoms with increasing irradiation dose, and the dose dependence of the coordination loss was dependent on the specific element. The measured damage around Fe sites can be correlated with the dpa value, while the loss of near neighbors around Mo saturated at similar to 1 dpa. The coordination in the Fe matrix was reduced less by irradiation than either the coordination of Mo in solution or Nb in carbides. It was demonstrated that EXAFS can provide a detailed, atomic level description of radiation damage in complex alloy systems. (C) 2012 Elsevier B.V. All rights reserved. C1 [Li, Meimei] Argonne Natl Lab, Argonne, IL 60439 USA. [Olive, Dan; Trenikhina, Yulia; Ganegoda, Hasitha; Terry, Jeff] IIT, Chicago, IL 60616 USA. [Maloy, Stuart A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Li, MM (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mli@anl.gov RI Maloy, Stuart/A-8672-2009; OI Maloy, Stuart/0000-0001-8037-1319; Olive, Daniel/0000-0002-6465-4981 NR 27 TC 3 Z9 3 U1 0 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2013 VL 441 IS 1-3 BP 674 EP 680 DI 10.1016/j.jnucmat.2012.09.039 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 231VX UT WOS:000325447600086 ER PT J AU Tan, L Busby, JT Maziasz, PJ Yamamoto, Y AF Tan, L. Busby, J. T. Maziasz, P. J. Yamamoto, Y. TI Effect of thermomechanical treatment on 9Cr ferritic-martensitic steels SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 3rd Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors (NFSM) held as an Embedded Topical within the American-Nuclear-Society Annual Meeting CY JUN 13-17, 2010 CL San Diego, CA SP Amer Nucl Soc ID CREEP AB High-Cr (9 wt.%) ferritic-martensitic steels are important materials for use in nuclear reactors. This study shows a development activity for this category of steels via thermomechanical treatment (TMT) optimization and alloying element adjustment based on Grade 92 steels. Vickers microhardness and tensile tests were employed to assess the mechanical properties of the materials in the normalized-tempered (N&T) and optimized TMT conditions. The treatment of one of the modified heats produced similar to 29% and similar to 47% increases in hardness and yield strength, respectively, compared to the Grade 92 in the N&T condition. The TMT-treated alloys showed comparable or superior strength relative to the oxide-dispersion-strengthened steel PM2000. Microstructure analyses by optical and transmission electron microscopy together with thermodynamic calculations identified the strengthening mechanisms of the TMT and precipitates. (C) 2013 Elsevier B.V. All rights reserved. C1 [Tan, L.; Busby, J. T.; Maziasz, P. J.; Yamamoto, Y.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA. RP Tan, L (reprint author), 1 Bethel Valley Rd,POB 2008,MS 6151, Oak Ridge, TN 37831 USA. EM tanl@ornl.gov RI Tan, Lizhen/A-7886-2009; OI Tan, Lizhen/0000-0002-3418-2450; Maziasz, Philip/0000-0001-8207-334X NR 8 TC 6 Z9 6 U1 0 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2013 VL 441 IS 1-3 BP 713 EP 717 DI 10.1016/j.jnucmat.2013.01.323 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 231VX UT WOS:000325447600091 ER PT J AU Katoh, Y Vasudevamurthy, G Nozawa, T Snead, LL AF Katoh, Yutai Vasudevamurthy, Gokul Nozawa, Takashi Snead, Lance L. TI Properties of zirconium carbide for nuclear fuel applications SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 3rd Symposium on Nuclear Fuels and Structural Materials for Next Generation Nuclear Reactors (NFSM) held as an Embedded Topical within the American-Nuclear-Society Annual Meeting CY JUN 13-17, 2010 CL San Diego, CA SP Amer Nucl Soc ID TRANSITION-METAL CARBIDES; FISSION-PRODUCT RELEASE; ZRC SINGLE-CRYSTALS; 2000 DEGREES-C; THERMAL EXPANSION; HIGH TEMPERATURES; BROMIDE PROCESS; MICROSTRUCTURAL OBSERVATION; THERMOPHYSICAL PROPERTIES; MECHANICAL-PROPERTIES AB Zirconium carbide (ZrC) is a potential coating, oxygen-gettering, or inert matrix material for advanced high temperature reactor fuels. ZrC has demonstrated attractive properties for these fuel applications including excellent resistance against fission product corrosion and fission product retention capabilities. However, fabrication of ZrC results in a range of stable sub-stoichiometric and carbon-rich compositions with or without substantial microstructural inhomogeneity, textural anisotropy, and a phase separation, leading to variations in physical, chemical, thermal, and mechanical properties. The effects of neutron irradiation at elevated temperatures, currently only poorly understood, are believed to be substantially influenced by those compositional and microstructural features further adding complexity to understanding the key ZrC properties. This article provides a survey of properties data for ZrC, as required by the United States Department of Energy's advanced fuel programs in support of the current efforts toward fuel performance modeling and providing guidance for future research on ZrC for fuel applications. (C) 2013 Elsevier B.V. All rights reserved. C1 [Katoh, Yutai; Vasudevamurthy, Gokul; Nozawa, Takashi; Snead, Lance L.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN USA. RP Vasudevamurthy, G (reprint author), Virginia Commonwealth Univ, Sch Engn, Dept Mech & Nucl Engn, East Hall,Room E2253,401 West Main St,POB 843015, Richmond, VA 23284 USA. EM gvasudev@vcu.edu NR 126 TC 44 Z9 44 U1 6 U2 89 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT PY 2013 VL 441 IS 1-3 BP 718 EP 742 DI 10.1016/j.jnucmat.2013.05.037 PG 25 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 231VX UT WOS:000325447600092 ER PT J AU Smith, EA Cinquin, BP McDermott, G Le Gros, MA Parkinson, DY Kim, HT Larabell, CA AF Smith, Elizabeth A. Cinquin, Bertrand P. McDermott, Gerry Le Gros, Mark A. Parkinson, Dilworth Y. Kim, Hong Tae Larabell, Carolyn A. TI Correlative microscopy methods that maximize specimen fidelity and data completeness, and improve molecular localization capabilities SO JOURNAL OF STRUCTURAL BIOLOGY LA English DT Article DE Cellular imaging; Cryo-Flourescence microscopy; Hybrid methods; Localization; Tomography ID X-RAY TOMOGRAPHY; CRYOELECTRON TOMOGRAPHY; ELECTRON-MICROSCOPY; LIGHT-MICROSCOPY; BIOLOGICAL SPECIMENS; VITREOUS SECTIONS; RESOLUTION; CELLS; RECONSTRUCTION; FLUORESCENCE AB Correlative microscopy techniques interrogate biological systems more thoroughly than is possible using a single modality. This is particularly true if disparate data types can be acquired from the same specimen. Recently, there has been significant progress towards combining the structural information obtained from soft X-ray tomography (SXT) with molecular localization data. Here we will compare methods for determining the position of molecules in a cell viewed by SXT, including direct visualization using electron dense labels, and by indirect methods, such as fluorescence microscopy and high numerical aperture cryo-light microscopy. We will also discuss available options for preserving the in vivo structure and organization of the specimen during multi-modal data collection, and how some simple specimen mounting concepts can ensure maximal data completeness in correlative imaging experiments. (c) 2013 Elsevier Inc. All rights reserved. C1 [Smith, Elizabeth A.; Cinquin, Bertrand P.; McDermott, Gerry; Le Gros, Mark A.; Larabell, Carolyn A.] Univ Calif San Francisco, Dept Anat, Sch Med, San Francisco, CA 94143 USA. [Le Gros, Mark A.; Larabell, Carolyn A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys BioSci Div, Berkeley, CA 94720 USA. [Parkinson, Dilworth Y.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Kim, Hong Tae] Catholic Univ Daegu, Sch Med, Dept Anat, Taegu, South Korea. RP Larabell, CA (reprint author), Univ Calif San Francisco, Dept Anat, 513 Parnassus Ave,Box 0452, San Francisco, CA 94143 USA. EM calarabell@lbl.gov RI Parkinson, Dilworth/A-2974-2015 OI Parkinson, Dilworth/0000-0002-1817-0716 FU US Department of Energy, Office of Biological and Environmental Research [DE-AC02-05CH11231]; National Center for Research Resources of the National Institutes of Health [P41RR019664]; National Institutes of General Medicine of the National Institutes of Health [GM63948] FX This work was funded by the US Department of Energy, Office of Biological and Environmental Research (DE-AC02-05CH11231), the National Center for Research Resources of the National Institutes of Health (P41RR019664) and the National Institutes of General Medicine of the National Institutes of Health (GM63948). NR 58 TC 8 Z9 8 U1 1 U2 27 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1047-8477 EI 1095-8657 J9 J STRUCT BIOL JI J. Struct. Biol. PD OCT PY 2013 VL 184 IS 1 BP 12 EP 20 DI 10.1016/j.jsb.2013.03.006 PG 9 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 234WM UT WOS:000325675000003 PM 23531637 ER PT J AU Voisin, S Pinto, F Morin-Ducote, G Hudson, KB Tourassi, GD AF Voisin, Sophie Pinto, Frank Morin-Ducote, Garnetta Hudson, Kathleen B. Tourassi, Georgia D. TI Predicting diagnostic error in radiology via eye-tracking and image analytics: Preliminary investigation in mammography SO MEDICAL PHYSICS LA English DT Article DE modeling; diagnostic radiology error; mammography; eye-tracking; machine learning ID TEXTURE ANALYSIS; LUNG-CANCER; SCREENING MAMMOGRAPHY; SEARCHING MAMMOGRAMS; PERCEPTUAL ERRORS; CHEST RADIOGRAPH; MASSES; CLASSIFICATION; PERFORMANCE; ACCURACY AB Purpose: The primary aim of the present study was to test the feasibility of predicting diagnostic errors in mammography by merging radiologists' gaze behavior and image characteristics. A secondary aim was to investigate group-based and personalized predictive models for radiologists of variable experience levels. Methods: The study was performed for the clinical task of assessing the likelihood of malignancy of mammographic masses. Eye-tracking data and diagnostic decisions for 40 cases were acquired from four Radiology residents and two breast imaging experts as part of an IRB-approved pilot study. Gaze behavior features were extracted from the eye-tracking data. Computer-generated and BIRADS images features were extracted from the images. Finally, machine learning algorithms were used to merge gaze and image features for predicting human error. Feature selection was thoroughly explored to determine the relative contribution of the various features. Group-based and personalized user modeling was also investigated. Results: Machine learning can be used to predict diagnostic error by merging gaze behavior characteristics from the radiologist and textural characteristics from the image under review. Leveraging data collected from multiple readers produced a reasonable group model [ area under the ROC curve (AUC) = 0.792 +/- 0.030]. Personalized user modeling was far more accurate for the more experienced readers (AUC = 0.837 +/- 0.029) than for the less experienced ones (AUC = 0.667 +/- 0.099). The best performing group-based and personalized predictive models involved combinations of both gaze and image features. Conclusions: Diagnostic errors in mammography can be predicted to a good extent by leveraging the radiologists' gaze behavior and image content. (c) 2013 American Association of Physicists in Medicine. C1 [Voisin, Sophie; Tourassi, Georgia D.] Oak Ridge Natl Lab, Biomed Sci & Engn Ctr, Oak Ridge, TN 37831 USA. [Pinto, Frank] Virginia State Univ, Sch Engn Sci & Technol, Petersburg, VA 23806 USA. [Morin-Ducote, Garnetta; Hudson, Kathleen B.] Univ Tennessee Med Ctr Knoxville, Dept Radiol, Knoxville, TN 37920 USA. RP Tourassi, GD (reprint author), Oak Ridge Natl Lab, Biomed Sci & Engn Ctr, Oak Ridge, TN 37831 USA. EM tourassig@ornl.gov OI Voisin, Sophie/0000-0002-9726-4605; Tourassi, Georgia/0000-0002-9418-9638 FU U.S. Department of Energy; [DE-AC05 00OR22725] FX This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05 00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the paper for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 67 TC 11 Z9 11 U1 2 U2 9 PU AMER ASSOC PHYSICISTS MEDICINE AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0094-2405 J9 MED PHYS JI Med. Phys. PD OCT PY 2013 VL 40 IS 10 AR 101906 DI 10.1118/1.4820536 PG 10 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 231DT UT WOS:000325394400022 PM 24089908 ER PT J AU Hanson, DE Barber, JL AF Hanson, David E. Barber, John L. TI The theoretical strength of rubber: numerical simulations of polyisoprene networks at high tensile strains evidence the role of average chain tortuosity SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article ID NATURAL-RUBBER; STATISTICAL-MECHANICS; POLYMER NETWORKS; DEFORMATION; ELASTICITY; BEHAVIOR; SYSTEMS; MODEL AB The ultimate stress and strain of polyisoprene rubber were studied by numerical simulations of three-dimensional random networks, subjected to tensile strains high enough to cause chain rupture. Previously published molecular chain force extension models and a numerical network construction procedure were used to perform the simulations for network crosslink densities between 2 x 10(19) and 1x10(20) cm(-3), corresponding to experimental dicumyl-peroxide concentrations of 1-5 parts per hundred. At tensile failure (defined as the point of maximum stress), we find that the fraction of network chains ruptured is between 0.1% and 1%, depending on the crosslink density. The fraction of network chains that are taut, i.e. their end-to-end distance is greater than their unstretched contour length, ranges between 10% and 15% at failure. Our model predicts that the theoretical (defect-free) failure stress should be about twice the highest experimental value reported. For extensions approaching failure, tensile stress is dominated by the network morphology and purely enthalpic bond distortion forces and, in this regime, the model has essentially no free parameters. The average initial chain tortuosity (tau) appears to be an important statistical property of rubber networks; if the stress is scaled by tau and the tensile strain is scaled by tau(-1), we obtain a master curve for stress versus strain, valid for all crosslink densities. We derive an analytic expression for the average tortuosity, which is in agreement with values calculated in the simulations. C1 [Hanson, David E.; Barber, John L.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Hanson, DE (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM deh@lanl.gov; jlbarber@lanl.gov FU Los Alamos National Laboratory; US Department of Energy [DE-AC52-06NA25396] FX This work was performed under the auspices of Los Alamos National Laboratory, which is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. NR 26 TC 1 Z9 1 U1 3 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 EI 1361-651X J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD OCT PY 2013 VL 21 IS 7 AR 075013 DI 10.1088/0965-0393/21/7/075013 PG 13 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 233QY UT WOS:000325585500023 ER PT J AU Muller, RP Schultz, PA AF Muller, Richard P. Schultz, Peter A. TI Modelling challenges for battery materials and electrical energy storage PREFACE SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Editorial Material C1 [Muller, Richard P.; Schultz, Peter A.] Sandia Natl Labs, Adv Device Technol Dept, Albuquerque, NM 87185 USA. RP Muller, RP (reprint author), Sandia Natl Labs, Adv Device Technol Dept, POB 5800, Albuquerque, NM 87185 USA. EM rmuller@sandia.gov; paschal@sandia.gov NR 0 TC 1 Z9 1 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 EI 1361-651X J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD OCT PY 2013 VL 21 IS 7 AR 070301 DI 10.1088/0965-0393/21/7/070301 PG 1 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 233QY UT WOS:000325585500001 ER PT J AU Gordon, L Weber, JR Varley, JB Janotti, A Awschalom, DD Van de Walle, CG AF Gordon, Luke Weber, Justin R. Varley, Joel B. Janotti, Anderson Awschalom, David D. Van de Walle, Chris G. TI Quantum computing with defects SO MRS BULLETIN LA English DT Article ID SILICON VACANCY; SPIN QUBITS; SEMICONDUCTORS; IMPURITIES; CARBIDE; DIAMOND; CENTERS; BAND; CAO AB The successful development of quantum computers is dependent on identifying quantum systems to function as qubits. Paramagnetic states of point defects in semiconductors or insulators have been shown to provide an effective implementation, with the nitrogen-vacancy center in diamond being a prominent example. The spin-1 ground state of this center can be initialized, manipulated, and read out at room temperature. Identifying defects with similar properties in other materials would add flexibility in device design and possibly lead to superior performance or greater functionality. A systematic search for defect-based qubits has been initiated, starting from a list of physical criteria that such centers and their hosts should satisfy. First-principles calculations of atomic and electronic structure are essential in supporting this quest: They provide a deeper understanding of defects that are already being exploited and allowefficient exploration of new materials systems and "defects by design." C1 [Gordon, Luke; Janotti, Anderson; Van de Walle, Chris G.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Weber, Justin R.] Intel Corp, Proc & Mat Modeling Grp, Hillsboro, OR 97124 USA. [Varley, Joel B.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA USA. [Awschalom, David D.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. RP Gordon, L (reprint author), Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. EM lukegordon@engineering.ucsb.edu; justin.r.weber@intel.com; varley2@llnl.gov; janotti@engineering.ucsb.edu; awsch@uchicago.edu; vandewalle@mrl.ucsb.edu RI Van de Walle, Chris/A-6623-2012; Janotti, Anderson/F-1773-2011; OI Van de Walle, Chris/0000-0002-4212-5990; Janotti, Anderson/0000-0001-5028-8338; Weber, Justin/0000-0002-7352-1638 FU Center for Scientific Computing at the CNSI and MRL [DMR-1121053, CNS-0960316]; XSEDE [OCI-1053575, DMR070072N] FX We are grateful to A. Alkauskas, B. Buckley, and W. Koehl for collaborations and discussions. This work was supported by the AFOSR MURI Program on Quantum Memories. Computational resources were provided by the Center for Scientific Computing at the CNSI and MRL (an NSF MRSEC, DMR-1121053) (NSF CNS-0960316), and by XSEDE (NSF OCI-1053575 and DMR070072N). NR 44 TC 6 Z9 6 U1 0 U2 55 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 EI 1938-1425 J9 MRS BULL JI MRS Bull. PD OCT PY 2013 VL 38 IS 10 BP 802 EP 807 DI 10.1557/mrs.2013.206 PG 6 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 236BR UT WOS:000325769200016 ER PT J AU Kirschke, S Bousquet, P Ciais, P Saunois, M Canadell, JG Dlugokencky, EJ Bergamaschi, P Bergmann, D Blake, DR Bruhwiler, L Cameron-Smith, P Castaldi, S Chevallier, F Feng, L Fraser, A Heimann, M Hodson, EL Houweling, S Josse, B Fraser, PJ Krummel, PB Lamarque, JF Langenfelds, RL Le Quere, C Naik, V O'Doherty, S Palmer, PI Pison, I Plummer, D Poulter, B Prinn, RG Rigby, M Ringeval, B Santini, M Schmidt, M Shindell, DT Simpson, IJ Spahni, R Steele, LP Strode, SA Sudo, K Szopa, S van der Werf, GR Voulgarakis, A van Weele, M Weiss, RF Williams, JE Zeng, G AF Kirschke, Stefanie Bousquet, Philippe Ciais, Philippe Saunois, Marielle Canadell, Josep G. Dlugokencky, Edward J. Bergamaschi, Peter Bergmann, Daniel Blake, Donald R. Bruhwiler, Lori Cameron-Smith, Philip Castaldi, Simona Chevallier, Frederic Feng, Liang Fraser, Annemarie Heimann, Martin Hodson, Elke L. Houweling, Sander Josse, Beatrice Fraser, Paul J. Krummel, Paul B. Lamarque, Jean-Francois Langenfelds, Ray L. Le Quere, Corinne Naik, Vaishali O'Doherty, Simon Palmer, Paul I. Pison, Isabelle Plummer, David Poulter, Benjamin Prinn, Ronald G. Rigby, Matt Ringeval, Bruno Santini, Monia Schmidt, Martina Shindell, Drew T. Simpson, Isobel J. Spahni, Renato Steele, L. Paul Strode, Sarah A. Sudo, Kengo Szopa, Sophie van der Werf, Guido R. Voulgarakis, Apostolos van Weele, Michiel Weiss, Ray F. Williams, Jason E. Zeng, Guang TI Three decades of global methane sources and sinks SO NATURE GEOSCIENCE LA English DT Review ID INTERCOMPARISON PROJECT ACCMIP; PAST 2 DECADES; ATMOSPHERIC METHANE; GROWTH-RATE; BIOGEOCHEMISTRY MODEL; TROPOSPHERIC METHANE; ISOTOPIC COMPOSITION; METHYL CHLOROFORM; CARBON-DIOXIDE; EMISSIONS AB Methane is an important greenhouse gas, responsible for about 20% of the warming induced by long-lived greenhouse gases since pre-industrial times. By reacting with hydroxyl radicals, methane reduces the oxidizing capacity of the atmosphere and generates ozone in the troposphere. Although most sources and sinks of methane have been identified, their relative contributions to atmospheric methane levels are highly uncertain. As such, the factors responsible for the observed stabilization of atmospheric methane levels in the early 2000s, and the renewed rise after 2006, remain unclear. Here, we construct decadal budgets for methane sources and sinks between 1980 and 2010, using a combination of atmospheric measurements and results from chemical transport models, ecosystem models, climate chemistry models and inventories of anthropogenic emissions. The resultant budgets suggest that data-driven approaches and ecosystem models overestimate total natural emissions. We build three contrasting emission scenarios - which differ in fossil fuel and microbial emissions - to explain the decadal variability in atmospheric methane levels detected, here and in previous studies, since 1985. Although uncertainties in emission trends do not allow definitive conclusions to be drawn, we show that the observed stabilization of methane levels between 1999 and 2006 can potentially be explained by decreasing-to-stable fossil fuel emissions, combined with stable-to-increasing microbial emissions. We show that a rise in natural wetland emissions and fossil fuel emissions probably accounts for the renewed increase in global methane levels after 2006, although the relative contribution of these two sources remains uncertain. C1 [Kirschke, Stefanie; Bousquet, Philippe; Ciais, Philippe; Saunois, Marielle; Chevallier, Frederic; Pison, Isabelle; Poulter, Benjamin; Schmidt, Martina; Szopa, Sophie] LSCE CEA UVSQ CNRS, F-91190 Gif Sur Yvette, France. [Canadell, Josep G.] CSIRO Marine & Atmospher Res, Global Carbon Project, Canberra, ACT 2601, Australia. [Dlugokencky, Edward J.; Bruhwiler, Lori] NOAA ESRL, Boulder, CO 80305 USA. [Bergamaschi, Peter] Joint Res Ctr, Inst Environm & Sustainabil, I-21027 Ispra, Va, Italy. [Bergmann, Daniel; Cameron-Smith, Philip] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Blake, Donald R.; Simpson, Isobel J.] Univ Calif Irvine, Irvine, CA 92697 USA. [Castaldi, Simona] Univ Naples 2, Dept Environm Sci, I-81100 Caserta, Italy. [Castaldi, Simona; Santini, Monia] Ctr Euro Mediterraneo Cambiamenti Climatici CMCC, I-73100 Lecce, Italy. [Feng, Liang; Fraser, Annemarie; Palmer, Paul I.] Univ Edinburgh, Sch Geosci, Edinburgh EH9 3JN, Midlothian, Scotland. [Heimann, Martin] Max Planck Inst Biogeochem, D-07701 Jena, Germany. [Hodson, Elke L.] Swiss Fed Res Inst WSL, CH-8903 Birmensdorf, Switzerland. [Houweling, Sander] SRON Netherlands Inst Space Res, SRON, NL-3584 CA Utrecht, Netherlands. [Houweling, Sander; Ringeval, Bruno] Inst Marine & Atmospher Res Utrecht, NL-3584 CA Utrecht, Netherlands. [Josse, Beatrice] CNRM GMGEC CARMA, Meteo France, F-31057 Toulouse, France. [Fraser, Paul J.; Krummel, Paul B.; Langenfelds, Ray L.; Steele, L. Paul] CSIRO Marine & Atmospher Res, Ctr Australian Weather & Climate Res, Aspendale, Vic 3195, Australia. [Lamarque, Jean-Francois] NCAR, Boulder, CO 80307 USA. [Le Quere, Corinne] Univ E Anglia, Tyndall Ctr Climate Change Res, Norwich NR4 7TJ, Norfolk, England. [Naik, Vaishali] NOAA, UCAR, Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA. [O'Doherty, Simon] Univ Bristol, Bristol BS8 1TS, Avon, England. [Plummer, David] Environm Canada, Canadian Ctr Climate Modelling & Anal, Montreal, PQ H3A 1B9, Canada. [Prinn, Ronald G.] MIT, Cambridge, MA 02139 USA. [Rigby, Matt] Univ Bristol, Sch Chem, Bristol BS8 1TS, Avon, England. [Ringeval, Bruno] Univ Utrecht, IMAU, NL-3584 CC Utrecht, Netherlands. [Ringeval, Bruno] Vrije Univ Amsterdam, Dept Syst Ecol, NL-1081 HV Amsterdam, Netherlands. [Shindell, Drew T.; Voulgarakis, Apostolos] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Spahni, Renato] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. [Strode, Sarah A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Strode, Sarah A.] NASA, Univ Space Res Assoc, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Sudo, Kengo] Nagoya Univ, Grad Sch Environm Studies, Chikusa Ku, Nagoya, Aichi 4648601, Japan. [van der Werf, Guido R.] Vrije Univ Amsterdam, Fac Earth & Life Sci, NL-1081 HV Amsterdam, Netherlands. [Voulgarakis, Apostolos] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England. [van Weele, Michiel; Williams, Jason E.] Royal Netherlands Meteorol Inst KNMI, NL-3730 AE De Bilt, Netherlands. [Weiss, Ray F.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Zeng, Guang] Natl Inst Water & Atmospher Res, Omakau 9352, Central Otago, New Zealand. RP Bousquet, P (reprint author), LSCE CEA UVSQ CNRS, F-91190 Gif Sur Yvette, France. EM Philippe.Bousquet@lsce.ipsl.fr RI Strode, Sarah/H-2248-2012; Chevallier, Frederic/E-9608-2016; Heimann, Martin/H-7807-2016; van der Werf, Guido/M-8260-2016; Castaldi, Simona/B-1699-2012; Le Quere, Corinne/C-2631-2017; Langenfelds, Raymond/B-5381-2012; Krummel, Paul/A-4293-2013; Fraser, Annemarie/D-3874-2012; Fraser, Paul/D-1755-2012; Rigby, Matthew/A-5555-2012; Szopa, Sophie/F-8984-2010; Shindell, Drew/D-4636-2012; Bergmann, Daniel/F-9801-2011; Naik, Vaishali/A-4938-2013; Lamarque, Jean-Francois/L-2313-2014; Palmer, Paul/F-7008-2010; Cameron-Smith, Philip/E-2468-2011; Canadell, Josep/E-9419-2010; Steele, Paul/B-3185-2009; OI Strode, Sarah/0000-0002-8103-1663; Chevallier, Frederic/0000-0002-4327-3813; Heimann, Martin/0000-0001-6296-5113; van der Werf, Guido/0000-0001-9042-8630; Castaldi, Simona/0000-0003-3937-8169; Le Quere, Corinne/0000-0003-2319-0452; SANTINI, Monia/0000-0002-8041-8241; Ringeval, Bruno/0000-0001-8405-1304; Krummel, Paul/0000-0002-4884-3678; Rigby, Matthew/0000-0002-2020-9253; Szopa, Sophie/0000-0002-8641-1737; Bergmann, Daniel/0000-0003-4357-6301; Naik, Vaishali/0000-0002-2254-1700; Lamarque, Jean-Francois/0000-0002-4225-5074; Cameron-Smith, Philip/0000-0002-8802-8627; Canadell, Josep/0000-0002-8788-3218; Steele, Paul/0000-0002-8234-3730; Poulter, Benjamin/0000-0002-9493-8600 FU UK NERC National Centre for Earth Observation; European Commission's 7th Framework Programme (FP7) [218793, 283080]; US DOE [DE-AC52-07NA27344, DE-AC02-05CH1123]; NOAA; Australian Climate Change Science Program; ERC [247349] FX This paper is the result of an international collaboration of scientists organized by the Global Carbon Project, a joint project of the Earth System Science Partnership. This work was supported by: the UK NERC National Centre for Earth Observation; the European Commission's 7th Framework Programme (FP7/2007-2013) projects MACC (grant agreement no. 218793) and GEOCARBON (grant agreement no. 283080); contract DE-AC52-07NA27344 with different parts supported by the US DOE IMPACTS and SciDAC Climate Consortium projects; computing resources of NERSC, which is supported by the US DOE under contract DE-AC02-05CH11231; NOAA flask data for CH3CCl3 (made available by S. Montzka); the Australian Climate Change Science Program, and ERC grant 247349. Simulations from LSCE were performed using HPC resources from DSM-CCRT and CCRT/CINES/IDRIS under the allocation 2012-t2012012201 made by GENCI (Grand Equipement National de Calcul Intensif). We thank the EDGAR group at JRC (Italy) and US-EPA for providing estimates of anthropogenic emissions. NR 91 TC 330 Z9 337 U1 63 U2 505 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD OCT PY 2013 VL 6 IS 10 BP 813 EP 823 DI 10.1038/NGEO1955 PG 11 WC Geosciences, Multidisciplinary SC Geology GA 225ZL UT WOS:000325003700010 ER PT J AU Orozco, AF Williams, KH Kemna, A AF Orozco, Adrian Flores Williams, Kenneth H. Kemna, Andreas TI Time-lapse spectral induced polarization imaging of stimulated uranium bioremediation SO NEAR SURFACE GEOPHYSICS LA English DT Article ID DISSEMINATED SULFIDE ORES; RESISTIVITY TOMOGRAPHY; ENVIRONMENTAL APPLICATIONS; MULTIFREQUENCY-IP; DATA SETS; SURFACE; CONDUCTIVITY; INVERSION; MINERALIZATION; DISPERSION AB Tomographic measurements of the spectral induced polarization (SIP) response of aquifer sediments were conducted at the U.S. Department of Energy's (DOE) Integrated Field Research Challenge site (IFRC) in Rifle, Colorado (USA), where biostimulation research is ongoing with the purpose to immobilize uranium in tailings-contaminated groundwater. The aims of the SIP surveys were to (a) collect data over a sufficiently broad bandwidth so as to determine the characteristic frequency of the spectral response (at which the strongest polarization response takes places), (b) investigate the distribution of spectral parameters (e.g., characteristic time constant) in an imaging framework and (c) evaluate the potential of these images to delineate changes in the hydraulic properties of the aquifer. Careful field procedures provided high-quality SIP data from 0.060 256 Hz for three different periods during the remediation experiment. Data quality was evaluated by means of analysis of the discrepancy between normal and reciprocal measurements. A Cole-Cole model was fitted to pixel values extracted from the inverted images in order to assess changes in the SIP response particularly in time constant (z) and chargeability (m) due to processes accompanying the stimulation of subsurface microbial activity. A significant increase in both v and m was observed after halting acetate injection, consistent with the accumulation of semi-conductive minerals (e.g., FeS) during biostimulation and the post-injection rebound in aqueous Fe(II). The reliability of the imaged spectral parameters was assessed by means of a numerical study. C1 [Orozco, Adrian Flores; Kemna, Andreas] Univ Bonn, Dept Geodynam & Geophys, D-53115 Bonn, Germany. [Williams, Kenneth H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Orozco, AF (reprint author), Vienna Univ Technol, Inst Geodesy & Geophys, Gusshausstr 27-29, A-1040 Vienna, Austria. EM adrian.flores-orozco@geo.tuwien.ac.at RI Williams, Kenneth/O-5181-2014 OI Williams, Kenneth/0000-0002-3568-1155 FU Integrated Field Research Challenge Site (IFRC) at Rifle; Colorado and the Lawrence Berkeley National Laboratory's Sustainable Systems Scientific Focus Area; U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231, DE-AC06-76RL01830] FX This material is based upon work equally supported through the Integrated Field Research Challenge Site (IFRC) at Rifle, Colorado and the Lawrence Berkeley National Laboratory's Sustainable Systems Scientific Focus Area. The U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research funded the work under contracts DE-AC02-05CH11231 (Lawrence Berkeley National Laboratory; operated by the University of California) and DE-AC06-76RL01830 (Pacific Northwest National Laboratory; operated by Battelle). Adrian Flores Orozco gratefully acknowledges CONACyT and DAAD for his scholarship, which financed part of his time to work on the presented study. Part of this work was also funded by the German Ministry of Education and Research (BMBF) in the framework of the GEOTECHNOLOGIEN programme (Grant 03G0743A). We thank Lee Slater and Dimitri Ntarlagiannis for their comments that significantly improved the quality of this study. NR 51 TC 9 Z9 9 U1 2 U2 25 PU EUROPEAN ASSOC GEOSCIENTISTS & ENGINEERS PI 3990 DB, HOUTEN PA PO BOX 59, 3990 DB, HOUTEN, 00000, NETHERLANDS SN 1569-4445 EI 1873-0604 J9 NEAR SURF GEOPHYS JI Near Surf. Geophys. PD OCT PY 2013 VL 11 IS 5 BP 531 EP 544 DI 10.3997/1873-0604.2013020 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 236GS UT WOS:000325784100006 ER PT J AU Azechi, H Mima, K Shiraga, S Fujioka, S Nagatomo, H Johzaki, T Jitsuno, T Key, M Kodama, R Koga, M Kondo, K Kawanaka, J Miyanaga, N Murakami, M Nagai, K Nakai, M Nakamura, H Nakamura, T Nakazato, T Nakao, Y Nishihara, K Nishimura, H Norimatsu, T Norreys, P Ozaki, T Pasley, J Sakagami, H Sakawa, Y Sarukura, N Shigemori, K Shimizu, T Sunahara, A Taguchi, T Tanaka, K Tsubakimoto, K Fujimoto, Y Homma, H Iwamoto, A AF Azechi, H. Mima, K. Shiraga, S. Fujioka, S. Nagatomo, H. Johzaki, T. Jitsuno, T. Key, M. Kodama, R. Koga, M. Kondo, K. Kawanaka, J. Miyanaga, N. Murakami, M. Nagai, K. Nakai, M. Nakamura, H. Nakamura, T. Nakazato, T. Nakao, Y. Nishihara, K. Nishimura, H. Norimatsu, T. Norreys, P. Ozaki, T. Pasley, J. Sakagami, H. Sakawa, Y. Sarukura, N. Shigemori, K. Shimizu, T. Sunahara, A. Taguchi, T. Tanaka, K. Tsubakimoto, K. Fujimoto, Y. Homma, H. Iwamoto, A. TI Present status of fast ignition realization experiment and inertial fusion energy development SO NUCLEAR FUSION LA English DT Article ID LASER AB One of the most advanced fast ignition programmes is the fast ignition realization experiment (FIREX). The goal of its first phase is to demonstrate ignition temperature of 5 keV, followed by the second phase to demonstrate ignition-and-burn. The second series experiment of FIREX-I, from late 2010 to early 2011, has demonstrated a high (>10%) coupling efficiency from laser to thermal energy of the compressed core, suggesting that the ignition temperature can be achieved at laser energy below 10 kJ. Further improvement of the coupling efficiency is expected by introducing laser-driven magnetic fields. C1 [Azechi, H.; Shiraga, S.; Fujioka, S.; Nagatomo, H.; Jitsuno, T.; Kawanaka, J.; Miyanaga, N.; Murakami, M.; Nakai, M.; Nakazato, T.; Nishihara, K.; Nishimura, H.; Norimatsu, T.; Sakawa, Y.; Sarukura, N.; Shigemori, K.; Shimizu, T.; Tsubakimoto, K.; Fujimoto, Y.] Osaka Univ, Inst Laser Engn, Suita, Osaka 5650871, Japan. [Mima, K.] Grad Sch Creat New Photon Ind, Hamamatsu, Shizuoka 4311202, Japan. [Johzaki, T.] Hiroshima Univ, Grad Sch Engn, Hiroshima 7398527, Japan. [Key, M.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Kodama, R.; Tanaka, K.] Osaka Univ, Grad Sch Engn, Suita, Osaka 5650871, Japan. [Koga, M.] Univ Hyogo, Fac Engn, Himeji, Hyogo 6712201, Japan. [Kondo, K.; Nakamura, T.] Japan Atom Energy Agcy, Kansai Photon Sci Inst, Kizugawa 6190215, Japan. [Nagai, K.] Tokyo Inst Technol, Chem Resources Lab, Yokohama, Kanagawa 2268503, Japan. [Nakamura, H.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BZ, England. [Nakao, Y.] Kyushu Univ, Grad Sch Engn, Fukuoka 8190395, Japan. [Norreys, P.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Ozaki, T.; Sakagami, H.; Iwamoto, A.] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Pasley, J.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Sunahara, A.] Inst Laser Technol, Suita, Osaka 5650871, Japan. [Taguchi, T.] Setsunan Univ, Dept Elect & Elect Engn, Neyagawa, Osaka 5728508, Japan. [Homma, H.] Tokyo Univ Agr & Technol, Fuchu, Tokyo 1830057, Japan. RP Azechi, H (reprint author), Osaka Univ, Inst Laser Engn, 2-2 Yamadaoka, Suita, Osaka 5650871, Japan. EM azechi@ile.osaka-u.ac.jp RI Kawanaka, Junji/P-8065-2015; murakami, masakatsu/I-2309-2015; Mima, Kunioki/H-9014-2016; Kodama, Ryosuke/G-2627-2016; Nishihara, Katsunobu/J-8172-2016; Sakawa, Youichi/J-5707-2016; Brennan, Patricia/N-3922-2015; Nakazato, Tomoharu/J-5181-2016; Nagai, Keiji/E-5155-2014; Tsubakimoto, Koji/O-9200-2015; Johzaki, Tomoyuki/D-8678-2012; Fujimoto, Yasushi/E-9321-2014; Miyanaga, Noriaki/F-1340-2015; Shimizu, Toshihiko/F-5079-2015; Sarukura, Nobuhiko/F-3276-2015; Azechi, Hiroshi/H-5876-2015; Nakai, Mitsuo/I-6758-2015; Norimatsu, Takayoshi/I-5710-2015; Nishimura, Hiroaki/I-4908-2015; Fujioka, Shinsuke/J-5530-2015; Shigemori, Keisuke/B-3262-2013; Jitsuno, Takahisa/M-6056-2015 OI Kawanaka, Junji/0000-0001-5655-7981; murakami, masakatsu/0000-0003-2220-7638; Nishihara, Katsunobu/0000-0002-5572-1169; Sakawa, Youichi/0000-0003-4165-1048; Nakazato, Tomoharu/0000-0001-5609-3945; SUNAHARA, ATSUSHI/0000-0001-7543-5226; Tsubakimoto, Koji/0000-0001-9412-9339; Fujimoto, Yasushi/0000-0003-0071-783X; Miyanaga, Noriaki/0000-0002-9902-5392; Shimizu, Toshihiko/0000-0001-6712-3804; Sarukura, Nobuhiko/0000-0003-2353-645X; Nakai, Mitsuo/0000-0001-6076-756X; Fujioka, Shinsuke/0000-0001-8406-1772; Shigemori, Keisuke/0000-0002-3978-8427; NR 13 TC 14 Z9 14 U1 1 U2 31 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2013 VL 53 IS 10 SI SI AR 104021 DI 10.1088/0029-5515/53/10/104021 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 226AD UT WOS:000325005600022 ER PT J AU Becoulet, A Hoang, GT Abiteboul, J Achard, J Alarcon, T Alba-Duran, J Allegretti, L Allfrey, S Amiel, S Ane, JM Aniel, T Antar, G Argouarch, A Armitano, A Arnaud, J Arranger, D Artaud, JF Audisio, D Aumeunier, M Autissier, E Azcona, L Back, A Bahat, A Bai, X Baiocchi, B Balaguer, D Balme, S Balorin, C Barana, O Barbier, D Barbuti, A Basiuk, V Baulaigue, O Bayetti, P Baylard, C Beaufils, S Beaute, A Becoulet, M Bej, Z Benkadda, S Benoit, F Berger-By, G Bernard, JM Berne, A Bertrand, B Bertrand, E Beyer, P Bigand, A Bonhomme, G Borel, G Boron, A Bottereau, C Bottollier-Curtet, H Bouchand, C Bouquey, F Bourdelle, C Bourg, J Bourmaud, S Bremond, S Argomedo, FB Brieu, M Brun, C Bruno, V Bucalossi, J Bufferand, H Buravand, Y Cai, L Cantone, V Cantone, B Caprin, E Cartier-Michaud, T Castagliolo, A Belo, J Catherine-Dumont, V Caulier, G Chaix, J Chantant, M Chatelier, M Chauvin, D Chenevois, J Chouli, B Christin, L Ciazynski, D Ciraolo, G Clairet, F Clapier, R Cloez, H Coatanea-Gouachet, M Colas, L Colledani, G Commin, L Coquillat, P Corbel, E Corre, Y Cottet, J Cottier, P Courtois, X Crest, I Dachicourt, R Febrer, MD Daumas, C de Esch, HPL De Gentile, B Dechelle, C Decker, J Decool, P Deghaye, V Delaplanche, J Delchambre-Demoncheaux, E Delpech, L Desgranges, C Devynck, P Bernardo, JDP Dif-Pradalier, G Doceul, L Dong, Y Douai, D Dougnac, H Dubuit, N Duchateau, JL Ducobu, L Dugue, B Dumas, N Dumont, R Durocher, A Durocher, A Duthoit, F Ekedahl, A Elbeze, D Escarguel, A Escop, J Faisse, F Falchetto, G Farjon, J Faury, M Fedorzack, N Fejoz, P Fenzi, C Ferlay, F Fiet, P Firdaouss, M Francisquez, M Franel, B Frauche, J Frauel, Y Futtersack, R Garbet, X Garcia, J Gardarein, J Gargiulo, L Garibaldi, P Garin, P Garnier, D Gauthier, E Gaye, O Geraud, A Gerome, M Gervaise, V Geynet, M Ghendrih, P Giacalone, I Gibert, S Gil, C Ginoux, S Giovannangelo, L Girard, S Giruzzi, G Goletto, C Goncalves, R Gonde, R Goniche, M Goswami, R Grand, C Grandgirard, V Gravil, B Grisolia, C Gros, G Grosman, A Guigue, J Guilhem, D Guillemaut, C Guillerminet, B Guimaraes, Z Guirlet, R Gunn, JP Gurcan, O Guzman, F Hacquin, S Hariri, F Hasenbeck, F Hatchressian, JC Hennequin, P Hernandez, C Hertout, P Heuraux, S Hillairet, J Honore, C Hornung, G Houry, M Hunstad, I Hutter, T Huynh, P Icard, V Imbeaux, F Irishkin, M Isoardi, L Jacquinot, J Jacquot, J Jiolat, G Joanny, M Joffrin, E Johner, J Joubert, P Jourd'Heuil, L Jouve, M Junique, C Keller, D Klepper, C Kogut, D Kubic, M Labasse, F Lacroix, B Lallier, Y Lamaison, V Lambert, R Larroque, S Latu, G Lausenaz, Y Laviron, C Le, R Le Luyer, A Le Niliot, C Le Tonqueze, Y Lebourg, P Lefevre, T Leroux, F Letellier, L Li, Y Lipa, M Lister, J Litaudon, X Liu, F Loarer, T Lombard, G Lotte, P Lozano, M Lucas, J Lutjens, H Magaud, P Maget, P Magne, R Mahieu, JF Maini, P Malard, P Manenc, L Marandet, Y Marbach, G Marechal, JL Marfisi, L Marle, M Martin, C Martin, V Martin, G Martinez, A Martino, P Masset, R Mazon, D Mellet, N Mercadier, L Merle, A Meshcheriakov, D Messina, P Meyer, O Millon, L Missirlian, M Moerel, J Molina, D Mollard, P Moncada, V Monier-Garbet, P Moreau, D Moreau, M Moreau, P Morel, P Moriyama, T Motassim, Y Mougeolle, G Moulton, D Moureau, G Mouyon, D Habib, MN Nardon, E Negrier, V Nemeth, J Nguyen, C Nguyen, M Nicolas, L Nicolas, T Nicollet, S Nilsson, E N'Konga, B Noel, F Nooman, A Norscini, C Nouailletas, R Oddon, P Ohsako, T Orain, F Ottaviani, M Pagano, M Palermo, F Panayotis, S Parrat, H Pascal, JY Passeron, C Pastor, P Patterlini, J Pavy, K Pecquet, AL Pegourie, B Peinturier, C Pelletier, T Peluso, B Petrzilka, V Peysson, Y Pignoly, E Pirola, R Pocheau, C Poitevin, E Poli, V Poli, S Pompon, F Porchy, I Portafaix, C Preynas, M Prochet, P Prou, M Ratnani, A Raulin, D Ravenel, N Renard, S Ricaud, B Richou, M Ritz, G Roche, H Roubin, P Roux, C Ruiz, K Sabathier, F Sabot, R Saille, A Saint-Laurent, F Sakamoto, R Salasca, S Salmon, T Salmon, T Samaille, F Sanchez, S Santagiustina, A Saoutic, B Sarazin, Y Sardain, P Schlosser, J Schneider, M Schwob, J Segui, J Seguin, N Selig, G Serret, D Signoret, J Signoret, J Simonin, A Soldaini, M Soler, B Soltane, C Song, S Sourbier, F Sparagna, J Spitz, P Spuig, P Storelli, A Strugarek, A Tamain, P Tena, M Theis, J Thomine, O Thouvenin, D Torre, A Toulouse, L Travere, J Tsitrone, E Turck, B Urban, J Vallet, JC Vallory, J Valognes, A Van Helvoirt, J Vartanian, S Verger, JM Vermare, L Vermare, C Vezinet, D Vicente, K Vidal, J Vignal, N Vigne, T Villecroze, F Villedieu, E Vincent, B Volpe, B Volpe, D Volpe, R Wagrez, J Wang, H Wauters, T Wintersdorff, O Wittebol, E Zago, B Zani, L Zarzoso, D Zhang, Y Zhong, W Zou, XL AF Becoulet, A. Hoang, G. T. Abiteboul, J. Achard, J. Alarcon, T. Alba-Duran, J. Allegretti, L. Allfrey, S. Amiel, S. Ane, J. M. Aniel, T. Antar, G. Argouarch, A. Armitano, A. Arnaud, J. Arranger, D. Artaud, J. F. Audisio, D. Aumeunier, M. Autissier, E. Azcona, L. Back, A. Bahat, A. Bai, X. Baiocchi, B. Balaguer, D. Balme, S. Balorin, C. Barana, O. Barbier, D. Barbuti, A. Basiuk, V. Baulaigue, O. Bayetti, P. Baylard, C. Beaufils, S. Beaute, A. Becoulet, M. Bej, Z. Benkadda, S. Benoit, F. Berger-By, G. Bernard, J. M. Berne, A. Bertrand, B. Bertrand, E. Beyer, P. Bigand, A. Bonhomme, G. Borel, G. Boron, A. Bottereau, C. Bottollier-Curtet, H. Bouchand, C. Bouquey, F. Bourdelle, C. Bourg, J. Bourmaud, S. Bremond, S. Argomedo, F. Bribiesca Brieu, M. Brun, C. Bruno, V. Bucalossi, J. Bufferand, H. Buravand, Y. Cai, L. Cantone, V. Cantone, B. Caprin, E. Cartier-Michaud, T. Castagliolo, A. Belo, J. Catherine-Dumont, V. Caulier, G. Chaix, J. Chantant, M. Chatelier, M. Chauvin, D. Chenevois, J. Chouli, B. Christin, L. Ciazynski, D. Ciraolo, G. Clairet, F. Clapier, R. Cloez, H. Coatanea-Gouachet, M. Colas, L. Colledani, G. Commin, L. Coquillat, P. Corbel, E. Corre, Y. Cottet, J. Cottier, P. Courtois, X. Crest, I. Dachicourt, R. Febrer, M. Dapena Daumas, C. de Esch, H. P. L. De Gentile, B. Dechelle, C. Decker, J. Decool, P. Deghaye, V. Delaplanche, J. Delchambre-Demoncheaux, E. Delpech, L. Desgranges, C. Devynck, P. Bernardo, J. Dias Pereira Dif-Pradalier, G. Doceul, L. Dong, Y. Douai, D. Dougnac, H. Dubuit, N. Duchateau, J. -L. Ducobu, L. Dugue, B. Dumas, N. Dumont, R. Durocher, A. Durocher, A. Duthoit, F. Ekedahl, A. Elbeze, D. Escarguel, A. Escop, J. Faisse, F. Falchetto, G. Farjon, J. Faury, M. Fedorzack, N. Fejoz, P. Fenzi, C. Ferlay, F. Fiet, P. Firdaouss, M. Francisquez, M. Franel, B. Frauche, J. Frauel, Y. Futtersack, R. Garbet, X. Garcia, J. Gardarein, J. Gargiulo, L. Garibaldi, P. Garin, P. Garnier, D. Gauthier, E. Gaye, O. Geraud, A. Gerome, M. Gervaise, V. Geynet, M. Ghendrih, P. Giacalone, I. Gibert, S. Gil, C. Ginoux, S. Giovannangelo, L. Girard, S. Giruzzi, G. Goletto, C. Goncalves, R. Gonde, R. Goniche, M. Goswami, R. Grand, C. Grandgirard, V. Gravil, B. Grisolia, C. Gros, G. Grosman, A. Guigue, J. Guilhem, D. Guillemaut, C. Guillerminet, B. Guimaraes Filho, Z. Guirlet, R. Gunn, J. P. Gurcan, O. Guzman, F. Hacquin, S. Hariri, F. Hasenbeck, F. Hatchressian, J. C. Hennequin, P. Hernandez, C. Hertout, P. Heuraux, S. Hillairet, J. Honore, C. Hornung, G. Houry, M. Hunstad, I. Hutter, T. Huynh, P. Icard, V. Imbeaux, F. Irishkin, M. Isoardi, L. Jacquinot, J. Jacquot, J. Jiolat, G. Joanny, M. Joffrin, E. Johner, J. Joubert, P. Jourd'Heuil, L. Jouve, M. Junique, C. Keller, D. Klepper, C. Kogut, D. Kubic, M. Labasse, F. Lacroix, B. Lallier, Y. Lamaison, V. Lambert, R. Larroque, S. Latu, G. Lausenaz, Y. Laviron, C. Le, R. Le Luyer, A. Le Niliot, C. Le Tonqueze, Y. Lebourg, P. Lefevre, T. Leroux, F. Letellier, L. Li, Y. Lipa, M. Lister, J. Litaudon, X. Liu, F. Loarer, T. Lombard, G. Lotte, P. Lozano, M. Lucas, J. Luetjens, H. Magaud, P. Maget, P. Magne, R. Mahieu, J. -F. Maini, P. Malard, P. Manenc, L. Marandet, Y. Marbach, G. Marechal, J. -L. Marfisi, L. Marle, M. Martin, C. Martin, V. Martin, G. Martinez, A. Martino, P. Masset, R. Mazon, D. Mellet, N. Mercadier, L. Merle, A. Meshcheriakov, D. Messina, P. Meyer, O. Millon, L. Missirlian, M. Moerel, J. Molina, D. Mollard, P. Moncada, V. Monier-Garbet, P. Moreau, D. Moreau, M. Moreau, P. Morel, P. Moriyama, T. Motassim, Y. Mougeolle, G. Moulton, D. Moureau, G. Mouyon, D. Habib, M. Naim Nardon, E. Negrier, V. Nemeth, J. Nguyen, C. Nguyen, M. Nicolas, L. Nicolas, T. Nicollet, S. Nilsson, E. N'Konga, B. Noel, F. Nooman, A. Norscini, C. Nouailletas, R. Oddon, P. Ohsako, T. Orain, F. Ottaviani, M. Pagano, M. Palermo, F. Panayotis, S. Parrat, H. Pascal, J. -Y. Passeron, C. Pastor, P. Patterlini, J. Pavy, K. Pecquet, A. -L. Pegourie, B. Peinturier, C. Pelletier, T. Peluso, B. Petrzilka, V. Peysson, Y. Pignoly, E. Pirola, R. Pocheau, C. Poitevin, E. Poli, V. Poli, S. Pompon, F. Porchy, I. Portafaix, C. Preynas, M. Prochet, P. Prou, M. Ratnani, A. Raulin, D. Ravenel, N. Renard, S. Ricaud, B. Richou, M. Ritz, G. Roche, H. Roubin, P. Roux, C. Ruiz, K. Sabathier, F. Sabot, R. Saille, A. Saint-Laurent, F. Sakamoto, R. Salasca, S. Salmon, T. Salmon, T. Samaille, F. Sanchez, S. Santagiustina, A. Saoutic, B. Sarazin, Y. Sardain, P. Schlosser, J. Schneider, M. Schwob, J. Segui, J. Seguin, N. Selig, G. Serret, D. Signoret, J. Signoret, J. Simonin, A. Soldaini, M. Soler, B. Soltane, C. Song, S. Sourbier, F. Sparagna, J. Spitz, P. Spuig, P. Storelli, A. Strugarek, A. Tamain, P. Tena, M. Theis, J. Thomine, O. Thouvenin, D. Torre, A. Toulouse, L. Travere, J. Tsitrone, E. Turck, B. Urban, J. Vallet, J. -C. Vallory, J. Valognes, A. Van Helvoirt, J. Vartanian, S. Verger, J. -M. Vermare, L. Vermare, C. Vezinet, D. Vicente, K. Vidal, J. Vignal, N. Vigne, T. Villecroze, F. Villedieu, E. Vincent, B. Volpe, B. Volpe, D. Volpe, R. Wagrez, J. Wang, H. Wauters, T. Wintersdorff, O. Wittebol, E. Zago, B. Zani, L. Zarzoso, D. Zhang, Y. Zhong, W. Zou, X. L. TI Science and technology research and development in support to ITER and the Broader Approach at CEA SO NUCLEAR FUSION LA English DT Article ID SYSTEM; PLASMA AB In parallel to the direct contribution to the procurement phase of ITER and Broader Approach, CEA has initiated research & development programmes, accompanied by experiments together with a significant modelling effort, aimed at ensuring robust operation, plasma performance, as well as mitigating the risks of the procurement phase. This overview reports the latest progress in both fusion science and technology including many areas, namely the mitigation of superconducting magnet quenches, disruption-generated runaway electrons, edge-localized modes (ELMs), the development of imaging surveillance, and heating and current drive systems for steady-state operation. The WEST (W Environment for Steady-state Tokamaks) project, turning Tore Supra into an actively cooled W-divertor platform open to the ITER partners and industries, is presented. C1 [Becoulet, A.; Hoang, G. T.; Abiteboul, J.; Achard, J.; Alarcon, T.; Alba-Duran, J.; Allegretti, L.; Allfrey, S.; Amiel, S.; Ane, J. M.; Aniel, T.; Antar, G.; Argouarch, A.; Armitano, A.; Arnaud, J.; Arranger, D.; Artaud, J. F.; Audisio, D.; Aumeunier, M.; Autissier, E.; Azcona, L.; Back, A.; Bahat, A.; Bai, X.; Baiocchi, B.; Balaguer, D.; Balme, S.; Balorin, C.; Barana, O.; Barbier, D.; Barbuti, A.; Basiuk, V.; Baulaigue, O.; Bayetti, P.; Baylard, C.; Beaufils, S.; Beaute, A.; Becoulet, M.; Bej, Z.; Benkadda, S.; Benoit, F.; Berger-By, G.; Bernard, J. M.; Berne, A.; Bertrand, B.; Bertrand, E.; Beyer, P.; Bigand, A.; Bonhomme, G.; Borel, G.; Boron, A.; Bottereau, C.; Bottollier-Curtet, H.; Bouchand, C.; Bouquey, F.; Bourdelle, C.; Bourg, J.; Bourmaud, S.; Bremond, S.; Argomedo, F. Bribiesca; Brieu, M.; Brun, C.; Bruno, V.; Bucalossi, J.; Bufferand, H.; Buravand, Y.; Cai, L.; Cantone, V.; Cantone, B.; Caprin, E.; Cartier-Michaud, T.; Castagliolo, A.; Belo, J.; Catherine-Dumont, V.; Caulier, G.; Chaix, J.; Chantant, M.; Chatelier, M.; Chauvin, D.; Chenevois, J.; Chouli, B.; Christin, L.; Ciazynski, D.; Ciraolo, G.; Clairet, F.; Clapier, R.; Cloez, H.; Coatanea-Gouachet, M.; Colas, L.; Colledani, G.; Commin, L.; Coquillat, P.; Corbel, E.; Corre, Y.; Cottet, J.; Cottier, P.; Courtois, X.; Crest, I.; Dachicourt, R.; Febrer, M. Dapena; Daumas, C.; de Esch, H. P. L.; De Gentile, B.; Dechelle, C.; Decker, J.; Decool, P.; Deghaye, V.; Delaplanche, J.; Delchambre-Demoncheaux, E.; Delpech, L.; Desgranges, C.; Devynck, P.; Bernardo, J. Dias Pereira; Dif-Pradalier, G.; Doceul, L.; Dong, Y.; Douai, D.; Dougnac, H.; Dubuit, N.; Duchateau, J. -L.; Ducobu, L.; Dugue, B.; Dumas, N.; Dumont, R.; Durocher, A.; Duthoit, F.; Ekedahl, A.; Elbeze, D.; Escarguel, A.; Escop, J.; Faisse, F.; Falchetto, G.; Farjon, J.; Faury, M.; Fedorzack, N.; Fejoz, P.; Fenzi, C.; Ferlay, F.; Fiet, P.; Firdaouss, M.; Francisquez, M.; Franel, B.; Frauche, J.; Frauel, Y.; Futtersack, R.; Garbet, X.; Garcia, J.; Gardarein, J.; Gargiulo, L.; Garibaldi, P.; Garin, P.; Garnier, D.; Gauthier, E.; Gaye, O.; Geraud, A.; Gerome, M.; Gervaise, V.; Geynet, M.; Ghendrih, P.; Giacalone, I.; Gibert, S.; Gil, C.; Ginoux, S.; Giovannangelo, L.; Girard, S.; Giruzzi, G.; Goletto, C.; Goncalves, R.; Gonde, R.; Goniche, M.; Goswami, R.; Grand, C.; Grandgirard, V.; Gravil, B.; Grisolia, C.; Gros, G.; Grosman, A.; Guigue, J.; Guilhem, D.; Guillemaut, C.; Guillerminet, B.; Guimaraes Filho, Z.; Guirlet, R.; Gunn, J. P.; Gurcan, O.; Guzman, F.; Hacquin, S.; Hariri, F.; Hasenbeck, F.; Hatchressian, J. C.; Hennequin, P.; Hernandez, C.; Hertout, P.; Heuraux, S.; Hillairet, J.; Honore, C.; Hornung, G.; Houry, M.; Hunstad, I.; Hutter, T.; Huynh, P.; Icard, V.; Imbeaux, F.; Irishkin, M.; Isoardi, L.; Jacquinot, J.; Jacquot, J.; Jiolat, G.; Joanny, M.; Joffrin, E.; Johner, J.; Joubert, P.; Jourd'Heuil, L.; Jouve, M.; Junique, C.; Keller, D.; Klepper, C.; Kogut, D.; Kubic, M.; Labasse, F.; Lacroix, B.; Lallier, Y.; Lamaison, V.; Lambert, R.; Larroque, S.; Latu, G.; Lausenaz, Y.; Laviron, C.; Le, R.; Le Luyer, A.; Le Niliot, C.; Le Tonqueze, Y.; Lebourg, P.; Lefevre, T.; Leroux, F.; Letellier, L.; Li, Y.; Lipa, M.; Lister, J.; Litaudon, X.; Liu, F.; Loarer, T.; Lombard, G.; Lotte, P.; Lozano, M.; Lucas, J.; Luetjens, H.; Magaud, P.; Maget, P.; Magne, R.; Mahieu, J. -F.; Maini, P.; Malard, P.; Manenc, L.; Marandet, Y.; Marbach, G.; Marechal, J. -L.; Marfisi, L.; Marle, M.; Martin, C.; Martin, V.; Martin, G.; Martinez, A.; Martino, P.; Masset, R.; Mazon, D.; Mellet, N.; Mercadier, L.; Merle, A.; Meshcheriakov, D.; Messina, P.; Meyer, O.; Millon, L.; Missirlian, M.; Moerel, J.; Molina, D.; Mollard, P.; Moncada, V.; Monier-Garbet, P.; Moreau, D.; Moreau, M.; Moreau, P.; Morel, P.; Moriyama, T.; Motassim, Y.; Mougeolle, G.; Moulton, D.; Moureau, G.; Mouyon, D.; Habib, M. Naim; Nardon, E.; Negrier, V.; Nemeth, J.; Nguyen, C.; Nguyen, M.; Nicolas, L.; Nicolas, T.; Nicollet, S.; Nilsson, E.; N'Konga, B.; Noel, F.; Nooman, A.; Norscini, C.; Nouailletas, R.; Oddon, P.; Ohsako, T.; Orain, F.; Ottaviani, M.; Pagano, M.; Palermo, F.; Panayotis, S.; Parrat, H.; Pascal, J. -Y.; Passeron, C.; Pastor, P.; Patterlini, J.; Pavy, K.; Pecquet, A. -L.; Pegourie, B.; Peinturier, C.; Pelletier, T.; Peluso, B.; Petrzilka, V.; Peysson, Y.; Pignoly, E.; Pirola, R.; Pocheau, C.; Poitevin, E.; Poli, V.; Poli, S.; Pompon, F.; Porchy, I.; Portafaix, C.; Preynas, M.; Prochet, P.; Prou, M.; Ratnani, A.; Raulin, D.; Ravenel, N.; Renard, S.; Ricaud, B.; Richou, M.; Ritz, G.; Roche, H.; Roubin, P.; Roux, C.; Ruiz, K.; Sabathier, F.; Sabot, R.; Saille, A.; Saint-Laurent, F.; Sakamoto, R.; Salasca, S.; Salmon, T.; Samaille, F.; Sanchez, S.; Santagiustina, A.; Saoutic, B.; Sarazin, Y.; Sardain, P.; Schlosser, J.; Schneider, M.; Schwob, J.; Segui, J.; Seguin, N.; Selig, G.; Serret, D.; Signoret, J.; Simonin, A.; Soldaini, M.; Soler, B.; Soltane, C.; Song, S.; Sourbier, F.; Sparagna, J.; Spitz, P.; Spuig, P.; Storelli, A.; Strugarek, A.; Tamain, P.; Tena, M.; Theis, J.; Thomine, O.; Thouvenin, D.; Torre, A.; Toulouse, L.; Travere, J.; Tsitrone, E.; Turck, B.; Urban, J.; Vallet, J. -C.; Vallory, J.; Valognes, A.; Van Helvoirt, J.; Vartanian, S.; Verger, J. -M.; Vermare, L.; Vermare, C.; Vezinet, D.; Vicente, K.; Vidal, J.; Vignal, N.; Vigne, T.; Villecroze, F.; Villedieu, E.; Vincent, B.; Volpe, B.; Volpe, D.; Volpe, R.; Wagrez, J.; Wang, H.; Wauters, T.; Wintersdorff, O.; Wittebol, E.; Zago, B.; Zani, L.; Zarzoso, D.; Zhang, Y.; Zhong, W.; Zou, X. L.] CEA, IRFM, F-13108 St Paul Les Durance, France. [Antar, G.] Amer Univ Beirut, Beirut, Lebanon. [Back, A.; Benkadda, S.; Beyer, P.; Dubuit, N.; Escarguel, A.; Guimaraes Filho, Z.; Marandet, Y.; Martin, C.; Roubin, P.] Univ Aix Marseille, Lab Phys Interact Ion & Mol, Marseille, France. [Bonhomme, G.; Heuraux, S.] Univ Nancy, Inst Jean Lamour, Nancy, France. [Argomedo, F. Bribiesca] Univ Grenoble, Grenoble, France. [Bufferand, H.; Ciraolo, G.] Univ Aix Marseille, Lab Mecan Modelisat & Procedes Propres, Marseille, France. [Belo, J.; Bernardo, J. Dias Pereira] Inst Super Tecn, Inst Plasmas & Fusao Nucl, Assoc Euratom IST, P-1049001 Lisbon, Portugal. [Dong, Y.; Gurcan, O.; Hennequin, P.; Honore, C.; Luetjens, H.; Morel, P.; Nguyen, M.; Pelletier, T.; Storelli, A.; Vermare, L.] Ecole Polytech, Lab Phys Plasmas, F-91128 Palaiseau, France. [Francisquez, M.] Darthmouth Coll Hanover, Hanover, NH USA. [Futtersack, R.] Univ Toulouse 3, F-31062 Toulouse, France. [Guzman, F.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [Hasenbeck, F.] FZJ Julich, Julich, Germany. [Klepper, C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Lister, J.] Ecole Polytech Fed Lausanne, Ctr Rech Phys Plasmas, CH-1015 Lausanne, Switzerland. [Moriyama, T.] Tokyo Inst Technol, Tokyo, Japan. [Nilsson, E.] Chalmers, Gothenburg, Sweden. [N'Konga, B.] Univ Nice, F-06108 Nice 2, France. Univ Strasbourg & Nancy, Nancy, France. [Petrzilka, V.] IPP Prague, Prague, Czech Republic. [Pompon, F.] EURATOM, Max Planck Inst Plasmaphys, D-14476 Garching, Germany. RP Becoulet, A (reprint author), CEA, IRFM, F-13108 St Paul Les Durance, France. EM alain.becoulet@cea.fr RI Falchetto, Gloria/B-4320-2010; Belo, Jorge/C-7100-2012; Gurcan, Ozgur/A-1362-2013; Morel, Pierre/H-3091-2011; Vermare, Laure/L-7488-2014; Schneider, Mireille/B-7821-2010; Artaud, Jean-Francois/J-2068-2012; Urban, Jakub/B-5541-2008; Sakamoto, Ryuichi/E-7557-2013; Dif-Pradalier, Guilhem/K-7442-2015; Orain, Francois/L-6816-2015; Decker, Joan/B-7779-2010; Guimaraes Filho, Zwinglio/B-8281-2012; Douai, David/H-2848-2012 OI heuraux, stephane/0000-0001-7035-4574; Belo, Jorge/0000-0001-5866-3083; Gurcan, Ozgur/0000-0002-2278-1544; Morel, Pierre/0000-0002-0790-8711; Vermare, Laure/0000-0002-3090-2713; Urban, Jakub/0000-0002-1796-3597; Sakamoto, Ryuichi/0000-0002-4453-953X; Dif-Pradalier, Guilhem/0000-0003-4869-7049; Decker, Joan/0000-0003-0220-2653; Guimaraes Filho, Zwinglio/0000-0003-3584-1419; FU European Communities FX Part of this work, supported by the European Communities under the contract of Association between EURATOM and CEA, was carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission. NR 65 TC 3 Z9 3 U1 4 U2 67 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2013 VL 53 IS 10 SI SI AR 104023 DI 10.1088/0029-5515/53/10/104023 PG 17 WC Physics, Fluids & Plasmas SC Physics GA 226AD UT WOS:000325005600024 ER PT J AU Diamond, PH Kosuga, Y Gurcan, OD McDevitt, CJ Hahm, TS Fedorczak, N Rice, JE Wang, WX Ku, S Kwon, JM Dif-Pradalier, G Abiteboul, J Wang, L Ko, WH Shi, YJ Ida, K Solomon, W Jhang, H Kim, SS Yi, S Ko, SH Sarazin, Y Singh, R Chang, CS AF Diamond, P. H. Kosuga, Y. Guercan, Oe. D. McDevitt, C. J. Hahm, T. S. Fedorczak, N. Rice, J. E. Wang, W. X. Ku, S. Kwon, J. M. Dif-Pradalier, G. Abiteboul, J. Wang, L. Ko, W. H. Shi, Y. J. Ida, K. Solomon, W. Jhang, H. Kim, S. S. Yi, S. Ko, S. H. Sarazin, Y. Singh, R. Chang, C. S. TI An overview of intrinsic torque and momentum transport bifurcations in toroidal plasmas SO NUCLEAR FUSION LA English DT Article ID ALCATOR C-MOD; STRONG EDGE RADIATION; HIGH CONFINEMENT; BARRIER PLASMAS; TOKAMAK PLASMA; MAGNETIC FIELD; VELOCITY SHEAR; JFT-2M TOKAMAK; HIGH-DENSITY; DIII-D AB An overview of the physics of intrinsic torque is presented, with special emphasis on the phenomenology of intrinsic toroidal rotation in tokamaks, its theoretical understanding, and the variety of momentum transport bifurcation dynamics. Ohmic reversals and electron cyclotron heating-driven counter torque are discussed in some detail. Symmetry breaking by lower single null versus upper single null asymmetry is related to the origin of intrinsic torque at the separatrix. C1 [Diamond, P. H.; Kosuga, Y.; Kwon, J. M.; Wang, L.; Ko, W. H.; Shi, Y. J.; Jhang, H.; Kim, S. S.; Yi, S.; Ko, S. H.; Singh, R.] Natl Fus Res Inst, WCI Ctr Fus Theory, Taejon 305333, South Korea. [Diamond, P. H.] Univ Calif San Diego, Ctr Momentum Transport & Flow Org, San Diego, CA 92093 USA. [Diamond, P. H.] Univ Calif San Diego, Ctr Astrophys & Space Sci, San Diego, CA 92093 USA. [Guercan, Oe. D.] Ecole Polytech, CNRS, Lab Phys Plasmas, F-91128 Palaiseau, France. [McDevitt, C. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hahm, T. S.] Seoul Natl Univ, Seoul 151744, South Korea. [Fedorczak, N.; Dif-Pradalier, G.; Abiteboul, J.; Sarazin, Y.] CEA Cadarache, F-13197 St Paul Lex Durance, France. [Rice, J. E.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Wang, W. X.; Ku, S.; Solomon, W.; Chang, C. S.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. [Ko, W. H.; Shi, Y. J.] KSTAR, Natl Fus Res Inst, Taejon 305333, South Korea. [Ida, K.] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Wang, L.] Huazhong Univ Sci & Technol, Wuhan 430074, Peoples R China. [Kosuga, Y.] Kyushu Univ, Inst Adv Study, Higashi Ku, Fukuoka 8128581, Japan. RP Diamond, PH (reprint author), Natl Fus Res Inst, WCI Ctr Fus Theory, Taejon 305333, South Korea. RI Gurcan, Ozgur/A-1362-2013; Ku, Seung-Hoe/D-2315-2009; Wang, Lu/F-1875-2010; Dif-Pradalier, Guilhem/K-7442-2015; U-ID, Kyushu/C-5291-2016; Ida, Katsumi/E-4731-2016; Kyushu, RIAM/F-4018-2015; OI Gurcan, Ozgur/0000-0002-2278-1544; Ku, Seung-Hoe/0000-0002-9964-1208; Dif-Pradalier, Guilhem/0000-0003-4869-7049; Ida, Katsumi/0000-0002-0585-4561; Solomon, Wayne/0000-0002-0902-9876; McDevitt, Christopher/0000-0002-3674-2909 FU WCI Program of KNRF; US DOE FX The authors thank M. Yoshida, G. Tynan, X. Garbet, V. Naulin, K. Itoh, S.-I. Itoh, A. Bortolon, A. P. Sun, K. Burrell, Z. Yan and M. Xu for stimulating discussions. We also thank members of the CMTFO (Center for Momentum Transport and Flow Organization) at UCSD and participants in the 2009 and 2011 Festival de Theorie (CEA, France) for useful discussions and encouragement. We acknowledge the WCI Program of KNRF and the US DOE for financial support of this work. NR 89 TC 39 Z9 39 U1 6 U2 41 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2013 VL 53 IS 10 SI SI AR 104019 DI 10.1088/0029-5515/53/10/104019 PG 21 WC Physics, Fluids & Plasmas SC Physics GA 226AD UT WOS:000325005600020 ER PT J AU Greenwald, M Bader, A Baek, S Barnard, H Beck, W Bergerson, W Bespamyatnov, I Bitter, M Bonoli, P Brookman, M Brower, D Brunner, D Burke, W Candy, J Chilenski, M Chung, M Churchill, M Cziegler, I Davis, E Dekow, G Delgado-Aparicio, L Diallo, A Ding, W Dominguez, A Ellis, R Ennever, P Ernst, D Faust, I Fiore, C Fitzgerald, E Fredian, T Garcia, OE Gao, C Garrett, M Golfinopoulos, T Granetz, R Groebner, R Harrison, S Harvey, R Hartwig, Z Hill, K Hillairet, J Howard, N Hubbard, AE Hughes, JW Hutchinson, I Irby, J James, AN Kanojia, A Kasten, C Kesner, J Kessel, C Kube, R LaBombard, B Lau, C Lee, J Liao, K Lin, Y Lipschultz, B Ma, Y Marmar, E McGibbon, P Meneghini, O Mikkelsen, D Miller, D Mumgaard, R Murray, R Ochoukov, R Olynyk, G Pace, D Park, S Parker, R Podpaly, Y Porkolab, M Preynas, M Pusztai, I Reinke, M Rice, J Rowan, W Scott, S Shiraiwa, S Sierchio, J Snyder, P Sorbom, B Soukhanovskii, V Stillerman, J Sugiyama, L Sung, C Terry, D Terry, J Theiler, C Tsujii, N Vieira, R Walk, J Wallace, G White, A Whyte, D Wilson, J Wolfe, S Woller, K Wright, G Wright, J Wukitch, S Wurden, G Xu, P Yang, C Zweben, S AF Greenwald, M. Bader, A. Baek, S. Barnard, H. Beck, W. Bergerson, W. Bespamyatnov, I. Bitter, M. Bonoli, P. Brookman, M. Brower, D. Brunner, D. Burke, W. Candy, J. Chilenski, M. Chung, M. Churchill, M. Cziegler, I. Davis, E. Dekow, G. Delgado-Aparicio, L. Diallo, A. Ding, W. Dominguez, A. Ellis, R. Ennever, P. Ernst, D. Faust, I. Fiore, C. Fitzgerald, E. Fredian, T. Garcia, O. E. Gao, C. Garrett, M. Golfinopoulos, T. Granetz, R. Groebner, R. Harrison, S. Harvey, R. Hartwig, Z. Hill, K. Hillairet, J. Howard, N. Hubbard, A. E. Hughes, J. W. Hutchinson, I. Irby, J. James, A. N. Kanojia, A. Kasten, C. Kesner, J. Kessel, C. Kube, R. LaBombard, B. Lau, C. Lee, J. Liao, K. Lin, Y. Lipschultz, B. Ma, Y. Marmar, E. McGibbon, P. Meneghini, O. Mikkelsen, D. Miller, D. Mumgaard, R. Murray, R. Ochoukov, R. Olynyk, G. Pace, D. Park, S. Parker, R. Podpaly, Y. Porkolab, M. Preynas, M. Pusztai, I. Reinke, M. Rice, J. Rowan, W. Scott, S. Shiraiwa, S. Sierchio, J. Snyder, P. Sorbom, B. Soukhanovskii, V. Stillerman, J. Sugiyama, L. Sung, C. Terry, D. Terry, J. Theiler, C. Tsujii, N. Vieira, R. Walk, J. Wallace, G. White, A. Whyte, D. Wilson, J. Wolfe, S. Woller, K. Wright, G. Wright, J. Wukitch, S. Wurden, G. Xu, P. Yang, C. Zweben, S. TI Overview of experimental results and code validation activities at Alcator C-Mod SO NUCLEAR FUSION LA English DT Article ID EDGE TURBULENCE; TOKAMAK; INSTABILITIES; PLASMAS; WAVES; MITIGATION; SIMULATION; SOLVER AB Recent research on the Alcator C-Mod tokamak has focused on a range of scientific issues with particular emphasis on ITER needs and on detailed comparisons between experimental measurements and predictive models. Research on ICRF (ion cyclotron range of frequencies) heating emphasized the origins and mitigation of metallic impurities while work on lower hybrid current drive experiments have focused on linear and nonlinear wave interactions that limit efficiency at high densities in regimes with low single pass absorption. Experiments in core turbulence and transport focused on quantitative, multi-field comparisons between nonlinear gyro-kinetics simulations and experimental measurements of profiles, fluxes and fluctuations. Experiments into self-generated rotation observed spontaneous flow reversal at a critical density identical to the transition density between linear ohmic confinement and saturated ohmic confinement regimes. H-mode studies have measured pedestal widths consistent with kinetic-ballooning-mode-like instabilities, while the pedestal heights quantitatively match the EPED code predictions. Experiments with I-mode have increased the operating window for this promising edge-localized-mode-free regime. Extrapolation of I-mode to ITER suggests that the fusion gain Q similar to 10 could be possible in ITER. Investigations into the physics and scaling of the power exhaust channel width in attached enhanced D-alpha H-mode and L-mode plasma showed a direct connection between the midplane pressure-folding length and the outer divertor target footprint. The width was found to scale inversely with I-P, while being independent of conducted power, B-T or q(95) and insensitive to the scrape-off layer connection length-a behaviour that suggests critical-gradient physics sets both pressure and heat-flux profiles. C1 [Greenwald, M.; Baek, S.; Barnard, H.; Beck, W.; Bonoli, P.; Brunner, D.; Burke, W.; Chilenski, M.; Chung, M.; Churchill, M.; Davis, E.; Dekow, G.; Ennever, P.; Ernst, D.; Faust, I.; Fiore, C.; Fitzgerald, E.; Fredian, T.; Gao, C.; Garrett, M.; Golfinopoulos, T.; Granetz, R.; Hartwig, Z.; Howard, N.; Hubbard, A. E.; Hughes, J. W.; Hutchinson, I.; Irby, J.; Kanojia, A.; Kasten, C.; Kesner, J.; LaBombard, B.; Lau, C.; Lee, J.; Lin, Y.; Lipschultz, B.; Ma, Y.; Marmar, E.; McGibbon, P.; Miller, D.; Mumgaard, R.; Murray, R.; Ochoukov, R.; Olynyk, G.; Park, S.; Parker, R.; Porkolab, M.; Pusztai, I.; Reinke, M.; Rice, J.; Shiraiwa, S.; Sierchio, J.; Sorbom, B.; Stillerman, J.; Sugiyama, L.; Sung, C.; Terry, D.; Terry, J.; Theiler, C.; Tsujii, N.; Vieira, R.; Walk, J.; Wallace, G.; White, A.; Whyte, D.; Wolfe, S.; Woller, K.; Wright, G.; Wright, J.; Wukitch, S.; Xu, P.] MIT, Cambridge, MA 02139 USA. [Bader, A.] Univ Wisconsin, Madison, WI 53706 USA. [Bergerson, W.; Brower, D.; Ding, W.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Bespamyatnov, I.; Brookman, M.; Liao, K.; Rowan, W.] Univ Texas Austin, Austin, TX 78712 USA. [Bitter, M.; Delgado-Aparicio, L.; Diallo, A.; Dominguez, A.; Ellis, R.; Harrison, S.; Hill, K.; Kessel, C.; Mikkelsen, D.; Scott, S.; Wilson, J.; Zweben, S.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Candy, J.; Groebner, R.; Meneghini, O.; Pace, D.; Snyder, P.] Gen Atom, San Diego, CA 94121 USA. [James, A. N.; Soukhanovskii, V.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Garcia, O. E.; Kube, R.] Univ Tromso, Tromso, Norway. [Yang, C.] Hefei Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China. [Cziegler, I.] Univ Calif San Diego, San Diego, CA 92903 USA. [Harvey, R.] CompX Corp, Del Mar, CA 92014 USA. [Podpaly, Y.] NIST, Gaithersburg, MD 20899 USA. [Wurden, G.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Hillairet, J.; Preynas, M.] CEA, IRFM, F-13115 St Paul Les Durance, France. RP Greenwald, M (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM g@psfc.mit.edu RI Diallo, Ahmed/M-7792-2013; Lipschultz, Bruce/J-7726-2012; Garcia, Odd Erik/A-4417-2013; Ernst, Darin/A-1487-2010; Kube, Ralph/I-5894-2015; Wurden, Glen/A-1921-2017 OI , Cornwall/0000-0002-8576-5867; Theiler, Christian/0000-0003-3926-1374; Lipschultz, Bruce/0000-0001-5968-3684; Garcia, Odd Erik/0000-0002-2377-8718; Ernst, Darin/0000-0002-9577-2809; Greenwald, Martin/0000-0002-4438-729X; Kube, Ralph/0000-0003-1635-6151; Wurden, Glen/0000-0003-2991-1484 FU US Department of Energy FX The authors would like to thank the entire C-Mod team. This work is supported by the US Department of Energy. NR 79 TC 6 Z9 6 U1 1 U2 40 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2013 VL 53 IS 10 SI SI AR 104004 DI 10.1088/0029-5515/53/10/104004 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 226AD UT WOS:000325005600005 ER PT J AU Hill, DN AF Hill, D. N. CA DIII-D Team TI DIII-D research towards resolving key issues for ITER and steady-state tokamaks SO NUCLEAR FUSION LA English DT Article ID STABILIZATION; CONFINEMENT; MODE; TRANSPORT; CODE AB The DIII-D research program is addressing key ITER research needs and developing the physics basis for future steady-state tokamaks. Pellet pacing edge-localized mode (ELM) control in the ITER configuration reduces ELM energy loss in proportion to 1/f(pellet) by inducing ELMs at up to 12x the natural ELM rate. Complete suppression of ELMs with resonant magnetic perturbations has been extended to the q(95) expected for ITER baseline scenario discharges, and long-duration ELM-free QH-mode discharges have been produced with ITER-relevant co-current neutral-beam injection (NBI) using external n = 3 coils to generate sufficient counter-I-p torque. ITER baseline discharges at beta(N) similar to 2 and scaled NBI torque have been maintained in stationary conditions for more than four resistive times using electron cyclotron current drive (ECCD) for tearing mode suppression and disruption avoidance; active tracking with steerable launchers and feedback control catch these modes at small amplitude, reducing the ECCD power required to suppress them. Massive high-Z gas injection into disruption-induced 300-600 kA 20 MeV runaway electron (RE) beams yield dissipation rates similar to 10x faster than expected from e-e collisions and demonstrate the possibility of benign dissipation of such REs should they occur in ITER. Other ITER-related experiments show measured intrinsic plasma torque in good agreement with a physics-based model over a wide range of conditions, while first-time main-ion rotation measurements show it to be lower than expected from neoclassical theory. Core turbulence measurements show increased temperature fluctuations correlated with sharply enhanced electron transport when del T-e/T-e(-1) exceeds a critical-gradient scale length. In H-mode, data show the pedestal height and width growing between ELMs with. P at the computed kinetic-ballooning limit, in agreement with the EPED model. Successful modification of a neutral-beam line to provide 5 MW of adjustable off-axis injection has enabled sustained operation at beta(N) similar to 3 with broader current and pressure profiles at higher q(min) than previously possible, though energy confinement is lower than expected. Initial experiments aimed at developing integrated core and boundary solutions demonstrated heat flux reduction using enhanced edge radiation from neon injection and innovative divertor geometries (e.g. snowflake configuration). C1 [Hill, D. N.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [DIII-D Team] Gen Atom, San Diego, CA 92186 USA. RP Hill, DN (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM hilldn@fusion.gat.com FU US Department of Energy [DE-AC52-07NA27344, DE-FC02-04ER54698] FX This work was supported by the US Department of Energy under DE-AC52-07NA27344 and DE-FC02-04ER54698. NR 89 TC 25 Z9 25 U1 2 U2 20 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2013 VL 53 IS 10 SI SI AR 104001 DI 10.1088/0029-5515/53/10/104001 PG 18 WC Physics, Fluids & Plasmas SC Physics GA 226AD UT WOS:000325005600002 ER PT J AU Hinkel, DE AF Hinkel, D. E. TI Scientific and technological advancements in inertial fusion energy SO NUCLEAR FUSION LA English DT Article AB Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well as to directly driven laser fusion. This synergy is summarized here, and future scientific studies are detailed. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Hinkel, DE (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The author thanks the Programme Committee for the invitation to prepare this IFE summary. The author also thanks the other IAEA FEC authors who provided information for this IFE summary. The author acknowledges valuable input from J.D. Lindl and M.D. Rosen. NR 32 TC 3 Z9 3 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2013 VL 53 IS 10 SI SI AR 104027 DI 10.1088/0029-5515/53/10/104027 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 226AD UT WOS:000325005600028 ER PT J AU Kaneko, O Yamada, H Inagaki, S Jakubowski, M Kajita, S Kitajima, S Kobayashi Koga, K Morisaki, T Morita, S Mutoh, T Sakakibara, S Suzuki, Y Takahashi, H Tanaka, K Toi, K Yoshimura, Y Akiyama, T Asahi, Y Ashikawa, N Chikaraishi, H Cooper, A Darrow, DS Drapiko, E Drewelow, P Du, X Ejiri, A Emoto, M Evans, T Ezumi, N Fujii, K Fukuda, T Funaba, H Furukawa, M Gates, DA Goto, M Goto, T Guttenfelder, W Hamaguchi, S Hasuo, M Hino, T Hirooka, Y Ichiguchi, K Ida, K Idei, H Ido, T Igami, H Ikeda, K Imagawa, S Imai, T Isobe, M Itagaki, M Ito, T Itoh, K Itoh, S Iwamoto, A Kamiya, K Kariya, T Kasahara, H Kasuya, N Kato, D Kato, T Kawahata, K Koike, F Kubo, S Kumazawa, R Kuwahara, D Lazerson, S Lee, H Masuzaki, S Matsuoka, S Matsuura, H Matsuyama, A Michael, C Mikkelsen, D Mitarai, O Mito, T Miyazawa, J Motojima, G Mukai, K Murakami, A Murakami, I Murakami, S Muroga, T Muto, S Nagaoka, K Nagasaki, K Nagayama, Y Nakajima, N Nakamura, H Nakamura, Y Nakanishi, H Nakano, H Nakano, T Narihara, K Narushima, Y Nishimura, K Nishimura, S Nishiura, M Nunami, YM Obana, T Ogawa, K Ohdachi, S Ohno, N Ohyabu, N Oishi, T Okamoto, M Okamoto, A Osakabe, M Oya, Y Ozaki, T Pablant, N Peterson, BJ Sagara, A Saito, K Sakamoto, R Sakaue, H Sasao, M Sato, K Sato, M Sawada, K Seki, R Seki, T Sergeev, V Sharapov, S Sharov, I Shimizu, A Shimozuma, T Shiratani, M Shoji, M Sudo, S Sugama, H Suzuki, C Takahata, K Takeiri, Y Takemura, Y Takeuchi, M Tamura, H Tamura, N Tanaka, H Tanaka, T Tingfeng, M Todo, Y Tokitani, M Tokunaga, K Tokuzawa, T Tsuchiya, H Tsumori, K Ueda, Y Vyacheslavov, L Watanabe, KY Watanabe, T Watanabe, TH Wieland, B Yamada, I Yamada, S Yamamoto, S Yanagi, N Yasuhara, R Yokoyama, M Yoshida, N Yoshimura, S Yoshinaga, T Yoshinuma, M Komori, A AF Kaneko, O. Yamada, H. Inagaki, S. Jakubowski, M. Kajita, S. Kitajima, S. Kobayashi Koga, K. Morisaki, T. Morita, S. Mutoh, T. Sakakibara, S. Suzuki, Y. Takahashi, H. Tanaka, K. Toi, K. Yoshimura, Y. Akiyama, T. Asahi, Y. Ashikawa, N. Chikaraishi, H. Cooper, A. Darrow, D. S. Drapiko, E. Drewelow, P. Du, X. Ejiri, A. Emoto, M. Evans, T. Ezumi, N. Fujii, K. Fukuda, T. Funaba, H. Furukawa, M. Gates, D. A. Goto, M. Goto, T. Guttenfelder, W. Hamaguchi, S. Hasuo, M. Hino, T. Hirooka, Y. Ichiguchi, K. Ida, K. Idei, H. Ido, T. Igami, H. Ikeda, K. Imagawa, S. Imai, T. Isobe, M. Itagaki, M. Ito, T. Itoh, K. Itoh, S. Iwamoto, A. Kamiya, K. Kariya, T. Kasahara, H. Kasuya, N. Kato, D. Kato, T. Kawahata, K. Koike, F. Kubo, S. Kumazawa, R. Kuwahara, D. Lazerson, S. Lee, H. Masuzaki, S. Matsuoka, S. Matsuura, H. Matsuyama, A. Michael, C. Mikkelsen, D. Mitarai, O. Mito, T. Miyazawa, J. Motojima, G. Mukai, K. Murakami, A. Murakami, I. Murakami, S. Muroga, T. Muto, S. Nagaoka, K. Nagasaki, K. Nagayama, Y. Nakajima, N. Nakamura, H. Nakamura, Y. Nakanishi, H. Nakano, H. Nakano, T. Narihara, K. Narushima, Y. Nishimura, K. Nishimura, S. Nishiura, M. Nunami, Y. M. Obana, T. Ogawa, K. Ohdachi, S. Ohno, N. Ohyabu, N. Oishi, T. Okamoto, M. Okamoto, A. Osakabe, M. Oya, Y. Ozaki, T. Pablant, N. Peterson, B. J. Sagara, A. Saito, K. Sakamoto, R. Sakaue, H. Sasao, M. Sato, K. Sato, M. Sawada, K. Seki, R. Seki, T. Sergeev, V. Sharapov, S. Sharov, I. Shimizu, A. Shimozuma, T. Shiratani, M. Shoji, M. Sudo, S. Sugama, H. Suzuki, C. Takahata, K. Takeiri, Y. Takemura, Y. Takeuchi, M. Tamura, H. Tamura, N. Tanaka, H. Tanaka, T. Tingfeng, M. Todo, Y. Tokitani, M. Tokunaga, K. Tokuzawa, T. Tsuchiya, H. Tsumori, K. Ueda, Y. Vyacheslavov, L. Watanabe, K. Y. Watanabe, T. Watanabe, T. H. Wieland, B. Yamada, I. Yamada, S. Yamamoto, S. Yanagi, N. Yasuhara, R. Yokoyama, M. Yoshida, N. Yoshimura, S. Yoshinaga, T. Yoshinuma, M. Komori, A. TI Extension of operation regimes and investigation of three-dimensional currentless plasmas in the Large Helical Device SO NUCLEAR FUSION LA English DT Article AB The progress of physical understanding as well as parameter improvement of net-current-free helical plasma is reported for the Large Helical Device since the last Fusion Energy Conference in Daejeon in 2010. The second low-energy neutral beam line was installed, and the central ion temperature has exceeded 7 keV, which was obtained by carbon pellet injection. Transport analysis of the high-T-i plasmas shows that the ion-thermal conductivity and viscosity decreased after the pellet injection although the improvement does not last long. The effort has been focused on the optimization of plasma edge conditions to extend the operation regime towards higher ion temperature and more stable high density and high beta. For this purpose a portion of the open helical divertors are being modified to the baffle-structured closed ones aimed at active control of the edge plasma. It is compared with the open case that the neutral pressure in the closed helical divertor increased by ten times as predicted by modelling. Studies of physics in a three-dimensional geometry are highlighted in the topics related to the response to a resonant magnetic perturbation at the plasma periphery such as edge-localized-mode mitigation and divertor detachment. Novel approaches of non-local and non-diffusive transport have also been advanced. C1 [Kaneko, O.; Yamada, H.; Kobayashi; Morisaki, T.; Morita, S.; Mutoh, T.; Sakakibara, S.; Suzuki, Y.; Takahashi, H.; Tanaka, K.; Toi, K.; Yoshimura, Y.; Akiyama, T.; Asahi, Y.; Ashikawa, N.; Chikaraishi, H.; Cooper, A.; Drapiko, E.; Emoto, M.; Funaba, H.; Goto, M.; Goto, T.; Hamaguchi, S.; Hirooka, Y.; Ichiguchi, K.; Ida, K.; Ido, T.; Igami, H.; Ikeda, K.; Imagawa, S.; Isobe, M.; Ito, T.; Itoh, K.; Iwamoto, A.; Kasahara, H.; Kasuya, N.; Kato, D.; Kato, T.; Kawahata, K.; Kubo, S.; Kumazawa, R.; Kuwahara, D.; Masuzaki, S.; Matsuoka, S.; Mito, T.; Miyazawa, J.; Motojima, G.; Mukai, K.; Murakami, A.; Murakami, I.; Muroga, T.; Muto, S.; Nagaoka, K.; Nagayama, Y.; Nakajima, N.; Nakamura, H.; Nakamura, Y.; Nakanishi, H.; Nakano, H.; Narihara, K.; Narushima, Y.; Nishimura, K.; Nishimura, S.; Nishiura, M.; Nunami, Y. M.; Obana, T.; Ogawa, K.; Ohdachi, S.; Ohyabu, N.; Oishi, T.; Osakabe, M.; Ozaki, T.; Peterson, B. J.; Sagara, A.; Saito, K.; Sakamoto, R.; Sakaue, H.; Sato, K.; Sato, M.; Seki, R.; Seki, T.; Shimizu, A.; Shimozuma, T.; Shoji, M.; Sudo, S.; Sugama, H.; Suzuki, C.; Takahata, K.; Takeiri, Y.; Tamura, H.; Tamura, N.; Tanaka, H.; Tanaka, T.; Tingfeng, M.; Todo, Y.; Tokitani, M.; Tokuzawa, T.; Tsuchiya, H.; Tsumori, K.; Watanabe, K. Y.; Watanabe, T.; Watanabe, T. H.; Wieland, B.; Yamada, I.; Yamada, S.; Yanagi, N.; Yasuhara, R.; Yokoyama, M.; Yoshimura, S.; Yoshinaga, T.; Yoshinuma, M.; Komori, A.] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Cooper, A.] Ctr Rech Phys Plasmas, CH-1015 Lausanne, Switzerland. [Matsuyama, A.] Japan Atom Energy Agcy, Rokkasho, Aomori 0393212, Japan. [Darrow, D. S.; Gates, D. A.; Lazerson, S.; Mikkelsen, D.; Pablant, N.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Jakubowski, M.; Drewelow, P.] Max Planck Inst Plasma Phys, Greifswald, Germany. [Ejiri, A.] Univ Tokyo, Grad Sch Frontier Sci, Kashiwa, Chiba 2778561, Japan. [Evans, T.] Gen Atom Co, San Diego, CA USA. [Ezumi, N.] Nagano Natl Coll Technol, Nagano 3818550, Japan. [Fujii, K.; Hasuo, M.] Kyoto Univ, Grad Sch Engn, Dept Mech Engn & Sci, Kyoto 6068501, Japan. [Fukuda, T.] Osaka Univ, Ctr Atom & Mol Technol, Suita, Osaka 5650871, Japan. [Furukawa, M.] Tottori Univ, Fac Engn, Dept Appl Math & Phys, Tottori 6808552, Japan. [Sergeev, V.; Sharov, I.] Polytech Univ, Fac Phys & Technol, Dept Plasma Phys, St Petersburg 195251, Russia. [Kaneko, O.; Yamada, H.; Kobayashi; Morita, S.; Mutoh, T.; Sakakibara, S.; Suzuki, Y.; Chikaraishi, H.; Du, X.; Funaba, H.; Goto, M.; Hirooka, Y.; Ichiguchi, K.; Ida, K.; Imagawa, S.; Isobe, M.; Kawahata, K.; Masuzaki, S.; Mito, T.; Miyazawa, J.; Murakami, I.; Muroga, T.; Muto, S.; Nagayama, Y.; Nakajima, N.; Nakamura, Y.; Nakanishi, H.; Narushima, Y.; Nunami, Y. M.; Ohdachi, S.; Peterson, B. J.; Sagara, A.; Sakamoto, R.; Sudo, S.; Sugama, H.; Takahata, K.; Takeiri, Y.; Takemura, Y.; Tanaka, T.; Todo, Y.; Tokitani, M.; Watanabe, K. Y.; Watanabe, T. H.; Yanagi, N.; Yokoyama, M.; Yoshinuma, M.; Komori, A.] Grad Univ Adv Studies, Toki, Gifu 5095292, Japan. [Lee, H.] Natl Fus Res Inst, Taejon 305333, South Korea. [Itagaki, M.] Hokkaido Univ, Fac Engn, Div Quantum Sci & Engn, Kita Ku, Sapporo, Hokkaido 0608628, Japan. [Murakami, S.] Kyoto Univ, Dept Nucl Engn, Kyoto 6068501, Japan. [Imai, T.; Kariya, T.] Univ Tsukuba, Plasma Res Ctr, Tsukuba, Ibaraki 3058577, Japan. [Inagaki, S.; Idei, H.; Itoh, S.; Tokunaga, K.; Yoshida, N.] Kyushu Univ, Appl Mech Res Inst, Kasuga, Fukuoka 8168580, Japan. [Kamiya, K.; Nakano, T.; Takeuchi, M.] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan. [Hino, T.] Hokkaido Univ, Fac Engn, Div Quantum Sci & Engn, Kita Ku, Sapporo, Hokkaido 0608628, Japan. [Kajita, S.] Nagoya Univ, EcoTopia Sci Inst, Chikusa Ku, Nagoya, Aichi 4648601, Japan. [Kitajima, S.; Okamoto, A.] Tohoku Univ, Dept Quantum Sci & Energy Engn, Sendai, Miyagi 9808579, Japan. [Nagasaki, K.; Yamamoto, S.] Kyoto Univ, Inst Adv Energy, Kyoto 6110011, Japan. [Koga, K.; Shiratani, M.] Kyushu Univ, Dept Elect, Fukuoka 8190395, Japan. [Koike, F.] Kitasato Univ, Sch Med, Phys Lab, Kanagawa 2288555, Japan. [Matsuura, H.] Osaka Prefecture Univ, Grad Sch Engn, Sakai, Osaka 5998531, Japan. [Michael, C.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Mitarai, O.] Tokai Univ, Inst Ind Sci & Tech Res, Kumamoto 8628652, Japan. [Ohno, N.] Nagoya Univ, Dept Energy Engn & Sci, Chikusa Ku, Nagoya, Aichi 4648603, Japan. [Okamoto, M.] Ishikawa Natl Coll Technol, Tsubata, Ishikawa 9290392, Japan. [Oya, Y.] Shizuoka Univ, Fac Sci, Radiosci Res Lab, Shizuoka 4228529, Japan. [Sasao, M.] Doshisha Univ, Org Res Initiat & Dev, Kyotanabe 6100394, Japan. [Sawada, K.] Shinshu Univ, Dept Engn, Fac Engn, Nagano 3808553, Japan. [Sharapov, S.] Euratom CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Ueda, Y.] Osaka Univ, Grad Sch Engn, Suita, Osaka 5650871, Japan. [Vyacheslavov, L.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. RP Kaneko, O (reprint author), Natl Inst Nat Sci, Natl Inst Fus Sci, 322-6 Oroshi, Toki, Gifu 5095292, Japan. EM kaneko.osamu@LHD.nifs.ac.jp RI Sharov, Igor/P-4416-2016; Michael, Clive /M-1327-2013; U-ID, Kyushu/C-5291-2016; Ida, Katsumi/E-4731-2016; Oishi, Tetsutarou/C-5342-2014; Kuwahara, Daisuke/G-1128-2013; Kasuya, Naohiro/D-3871-2015; Sakamoto, Ryuichi/E-7557-2013; Kyushu, RIAM/F-4018-2015; Idei, Hiroshi/F-3291-2015; Kajita, Shin/Q-1020-2015; Murakami, Sadayoshi/A-2191-2016; HAMAGUCHI, Shinji/B-8549-2016; Obana, Tetsuhiro/B-8944-2016; Mito, Toshiyuki/E-7537-2013 OI Sharov, Igor/0000-0002-8298-5119; Vyacheslavov, Leonid/0000-0002-5461-402X; Hideo, Sugama/0000-0001-5444-1758; Michael, Clive/0000-0003-1804-870X; Ida, Katsumi/0000-0002-0585-4561; Oishi, Tetsutarou/0000-0002-1171-8603; Kasuya, Naohiro/0000-0001-8210-5700; Sakamoto, Ryuichi/0000-0002-4453-953X; Murakami, Sadayoshi/0000-0002-2526-7137; Mito, Toshiyuki/0000-0002-1705-9039 NR 36 TC 17 Z9 17 U1 2 U2 32 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2013 VL 53 IS 10 SI SI AR 104015 DI 10.1088/0029-5515/53/10/104015 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 226AD UT WOS:000325005600016 ER PT J AU Kwak, JG Oh, YK Yang, HL Park, KR Kim, YS Kim, WC Kim, JY Lee, SG Na, HK Kwon, M Lee, GS Ahn, HS Ahn, JW Bae, YS Bak, JG Bang, EN Chang, CS Chang, DH Chen, ZY Cho, KW Cho, MH Choi, M Choe, W Choi, JH Chu, Y Chung, KS Diamond, P Delpech, L Do, HJ Eidietis, N England, AC Ellis, R Evans, T Choe, G Grisham, L Gorelov, Y Hahn, HS Hahn, SH Han, WS Hatae, T Hillis, D Hoang, T Hong, JS Hong, SH Hong, SR Hosea, J Humphreys, D Hwang, YS Hyatt, A Ida, K In, YK Ide, S Jang, B Jeon, YM Jeong, JI Jeong, NY Jeong, SH Jin, JK Joung, M Ju, J Kawahata, K Kim, CH Kim, HS Kim, HS Kim, HJ Kim, HK Kim, HT Kim, JH Kim, J Kim, JC Kim, JS Kim, JS Kim, JH Kim, KM Kim, KJ Kim, KP Kim, MK Kim, ST Kim, SW Kim, YJ Kim, YK Kim, YO Ko, JS Ko, WH Kogi, Y Kolemen, E Kong, JD Kwak, SW Kwon, JM Kwon, OJ Lee, DG Lee, DR Lee, DS Lee, HJ Lee, J Lee, JH Lee, KD Lee, KS Lee, SH Lee, SI Lee, SM Lee, TG Lee, W Lee, WL Lim, DS Litaudon, X Lohr, J Mueller, D Moon, KM Na, DH Na, YS Nam, YU Namkung, W Narihara, K Oh, ST Oh, DG Ono, T Park, BH Park, DS Park, GY Park, H Park, HT Park, JK Park, JS Park, MK Park, SH Park, S Park, YM Park, YS Parker, R Rhee, DR Sabbagh, SA Sakamoto, K Shiraiwa, S Seo, DC Seo, SH Seol, JC Shi, YJ Son, SH Song, NH Suzuki, T Terzolo, L Walker, M Wallace, G Watanabe, K Wang, SJ Woo, HJ Woo, IS Yagi, M Yu, YW Yamada, I Yonekawa, Y Yoo, CM You, KI Yoo, JW Yun, GS Yu, MG Yoon, SW Xiao, W Zoletnik, S AF Kwak, Jong-Gu Oh, Y. K. Yang, H. L. Park, K. R. Kim, Y. S. Kim, W. C. Kim, J. Y. Lee, S. G. Na, H. K. Kwon, M. Lee, G. S. Ahn, H. S. Ahn, J. -W. Bae, Y. S. Bak, J. G. Bang, E. N. Chang, C. S. Chang, D. H. Chen, Z. Y. Cho, K. W. Cho, M. H. Choi, M. Choe, W. Choi, J. H. Chu, Y. Chung, K. S. Diamond, P. Delpech, L. Do, H. J. Eidietis, N. England, A. C. Ellis, R. Evans, T. Choe, G. Grisham, L. Gorelov, Y. Hahn, H. S. Hahn, S. H. Han, W. S. Hatae, T. Hillis, D. Hoang, T. Hong, J. S. Hong, S. H. Hong, S. R. Hosea, J. Humphreys, D. Hwang, Y. S. Hyatt, A. Ida, K. In, Y. K. Ide, S. Jang, B. Jeon, Y. M. Jeong, J. I. Jeong, N. Y. Jeong, S. H. Jin, J. K. Joung, M. Ju, J. Kawahata, K. Kim, C. H. Kim, Hee-Su Kim, H. S. Kim, H. J. Kim, H. K. Kim, H. T. Kim, J. H. Kim, J. Kim, J. C. Kim, Jong-Su Kim, Jung-Su Kim, J. H. Kim, Kyung-Min Kim, K. J. Kim, K. P. Kim, M. K. Kim, S. T. Kim, S. W. Kim, Y. J. Kim, Y. K. Kim, Y. O. Ko, J. S. Ko, W. H. Kogi, Y. Kolemen, E. Kong, J. D. Kwak, S. W. Kwon, J. M. Kwon, O. J. Lee, D. G. Lee, D. R. Lee, D. S. Lee, H. J. Lee, J. Lee, J. H. Lee, K. D. Lee, K. S. Lee, S. H. Lee, S. I. Lee, S. M. Lee, T. G. Lee, W. Lee, W. L. Lim, D. S. Litaudon, X. Lohr, J. Mueller, D. Moon, K. M. Na, D. H. Na, Y. S. Nam, Y. U. Namkung, W. Narihara, K. Oh, S. T. Oh, D. G. Ono, T. Park, B. H. Park, D. S. Park, G. Y. Park, H. Park, H. T. Park, J. K. Park, J. S. Park, M. K. Park, S. H. Park, S. Park, Y. M. Park, Y. S. Parker, R. Rhee, D. R. Sabbagh, S. A. Sakamoto, K. Shiraiwa, S. Seo, D. C. Seo, S. H. Seol, J. C. Shi, Y. J. Son, S. H. Song, N. H. Suzuki, T. Terzolo, L. Walker, M. Wallace, G. Watanabe, K. Wang, S. J. Woo, H. J. Woo, I. S. Yagi, M. Yu, Y. W. Yamada, I. Yonekawa, Y. Yoo, C. M. You, K. I. Yoo, J. W. Yun, G. S. Yu, M. G. Yoon, S. W. Xiao, W. Zoletnik, S. CA KSTAR Team TI An overview of KSTAR results SO NUCLEAR FUSION LA English DT Article ID TOROIDAL-MOMENTUM DISSIPATION; DISRUPTIONS; MITIGATION; TURBULENCE; INJECTION; PLASMAS AB Since the first H-mode discharges in 2010, the duration of the H-mode state has been extended and a significantly wider operational window of plasma parameters has been attained. Using a second neutral beam (NB) source and improved tuning of equilibrium configuration with real-time plasma control, a stored energy of W-tot similar to 450 kJ has been achieved with a corresponding energy confinement time of tau(E) similar to 163 ms. Recent discharges, produced in the fall of 2012, have reached plasma beta(N) up to 2.9 and surpassed the n = 1 ideal no-wall stability limit computed for H-mode pressure profiles, which is one of the key threshold parameters defining advanced tokamak operation. Typical H-mode discharges were operated with a plasma current of 600 kA at a toroidal magnetic field B-T = 2 T. L-H transitions were obtained with 0.8-3.0MW of NB injection power in both single-and double-null configurations, with H-mode durations up to similar to 15 s at 600 kA of plasma current. The measured power threshold as a function of line-averaged density showed a roll-over with a minimum value of similar to 0.8 MW at (n) over bar (e) similar to 2 x 10(19) m(-3). Several edge-localized mode (ELM) control techniques during H-mode were examined with successful results including resonant magnetic perturbation, supersonic molecular beam injection (SMBI), vertical jogging and electron cyclotron current drive injection into the pedestal region. We observed various ELM responses, i.e. suppression or mitigation, depending on the relative phase of in-vessel control coil currents. In particular, with the 90 degrees phase of the n = 1 RMP as the most resonant configuration, a complete suppression of type-I ELMs was demonstrated. In addition, fast vertical jogging of the plasma column was also observed to be effective in ELM pace-making. SMBI-mitigated ELMs, a state of mitigated ELMs, were sustained for a few tens of ELM periods. A simple cellular automata ('sand-pile') model predicted that shallow deposition near the pedestal foot induced small-sized high-frequency ELMs, leading to the mitigation of large ELMs. In addition to the ELM control experiments, various physics topics were explored focusing on ITER-relevant physics issues such as the alteration of toroidal rotation caused by both electron cyclotron resonance heating (ECRH) and externally applied 3D fields, and the observed rotation drop by ECRH in NB-heated plasmas was investigated in terms of either a reversal of the turbulence-driven residual stress due to the transition of ion temperature gradient to trapped electron mode turbulence or neoclassical toroidal viscosity (NTV) torque by the internal kink mode. The suppression of runaway electrons using massive gas injection of deuterium showed that runaway electrons were avoided only below 3 T in KSTAR. Operation in 2013 is expected to routinely exceed the n = 1 ideal MHD no-wall stability boundary in the long-pulse H-mode (>= 10 s) by applying real-time shaping control, enabling n = 1 resistive wall mode active control studies. In addition, intensive works for ELM mitigation, ELM dynamics, toroidal rotation changes by both ECRH and NTV variations, have begun in the present campaign, and will be investigated in more detail with profile measurements of different physical quantities by techniques such as electron cyclotron emission imaging, charge exchange spectroscopy, Thomson scattering and beam emission spectroscopy diagnostics. C1 [Kwak, Jong-Gu; Oh, Y. K.; Yang, H. L.; Park, K. R.; Kim, Y. S.; Kim, W. C.; Kim, J. Y.; Lee, S. G.; Na, H. K.; Kwon, M.; Lee, G. S.; Ahn, H. S.; Bae, Y. S.; Bak, J. G.; Bang, E. N.; Chen, Z. Y.; Cho, K. W.; Choi, J. H.; Chu, Y.; Do, H. J.; Hahn, H. S.; Hahn, S. H.; Han, W. S.; Hong, J. S.; Hong, S. H.; Hong, S. R.; Jang, B.; Jeon, Y. M.; Jeong, J. I.; Jeong, N. Y.; Jin, J. K.; Joung, M.; Ju, J.; Kim, C. H.; Kim, Hee-Su; Kim, H. J.; Kim, H. K.; Kim, H. T.; Kim, J.; Kim, J. C.; Kim, Jong-Su; Kim, Jung-Su; Kim, Kyung-Min; Kim, K. P.; Kim, M. K.; Kim, S. T.; Kim, S. W.; Kim, Y. J.; Kim, Y. O.; Ko, J. S.; Ko, W. H.; Kong, J. D.; Kwak, S. W.; Kwon, J. M.; Lee, D. G.; Lee, D. R.; Lee, D. S.; Lee, H. J.; Lee, J. H.; Lee, K. D.; Lee, K. S.; Lee, S. I.; Lee, S. M.; Lee, T. G.; Lee, W. L.; Lim, D. S.; Moon, K. M.; Nam, Y. U.; Oh, S. T.; Oh, D. G.; Park, B. H.; Park, D. S.; Park, G. Y.; Park, H. T.; Park, J. S.; Park, M. K.; Park, S. H.; Park, S.; Park, Y. M.; Rhee, D. R.; Seo, D. C.; Seo, S. H.; Seol, J. C.; Shi, Y. J.; Son, S. H.; Song, N. H.; Terzolo, L.; Wang, S. J.; Woo, I. S.; Yonekawa, Y.; You, K. I.; Yoo, J. W.; Yoon, S. W.; KSTAR Team] Natl Fus Res Inst, Taejon 305333, South Korea. [Chang, D. H.; Jeong, S. H.] Korea Atom Energy Res Inst, Taejon, South Korea. [Hwang, Y. S.; Kim, H. S.; Kim, K. J.; Na, D. H.; Na, Y. S.; Yu, M. G.] Seoul Natl Univ, Seoul, South Korea. [Cho, M. H.; Choi, M.; Choe, G.; Kim, J. H.; Lee, J.; Lee, W.; Namkung, W.; Park, H.; Yoo, C. M.; Yun, G. S.] Pohang Univ Sci & Technol, Pohang, South Korea. [Choe, W.; Lee, S. H.] Korea Adv Inst Sci & Technol, Taejon 305701, South Korea. [Chung, K. S.; Kim, Y. K.; Woo, H. J.] Hanyang Univ, Seoul 133791, South Korea. [Kwon, O. J.] Daegu Univ, Taegu, South Korea. Ajou Univ, Sawon, Kyonggi, South Korea. [Diamond, P.] Univ San Diego, San Diego, CA 92110 USA. [Ahn, J. -W.; England, A. C.; Hillis, D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Chang, C. S.; Ellis, R.; Grisham, L.; Hosea, J.; Kolemen, E.; Mueller, D.; Park, J. K.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Eidietis, N.; Evans, T.; Gorelov, Y.; Humphreys, D.; Hyatt, A.; Lohr, J.; Walker, M.] Gen Atom Co, San Diego, CA USA. [Park, Y. S.; Sabbagh, S. A.] Columbia Univ, New York, NY USA. [In, Y. K.] Fartech, San Diego, CA USA. [Hatae, T.; Ide, S.; Ono, T.; Sakamoto, K.; Suzuki, T.; Watanabe, K.] Japan Atom Energy Agcy, Naka, Ibaraki, Japan. [Ida, K.; Kawahata, K.; Narihara, K.; Yamada, I.] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Kogi, Y.] Fukuoka Inst Technol, Fukuoka, Japan. [Yagi, M.] Kyushu Univ, Fukuoka 812, Japan. [Yu, Y. W.] Acad Sinica, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China. [Xiao, W.] Southwestern Inst Phys, Chengdu, Peoples R China. [Parker, R.; Shiraiwa, S.; Wallace, G.] MIT, Cambridge, MA 02139 USA. [Zoletnik, S.] EURATOM Assoc HAS, Wigner RCP, Budapest, Hungary. RP Kwak, JG (reprint author), Natl Fus Res Inst, Taejon 305333, South Korea. EM jgkwak@nfri.re.kr RI Choe, Wonho/C-1556-2011; Ida, Katsumi/E-4731-2016; OI Ida, Katsumi/0000-0002-0585-4561; Walker, Michael/0000-0002-4341-994X FU Ministry of Education, Science and Technology of Korea FX This work was supported by the Ministry of Education, Science and Technology of Korea. The KSTAR Team is grateful to the domestic and international collaboration partners for their support with various research activities. NR 50 TC 21 Z9 21 U1 5 U2 48 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2013 VL 53 IS 10 SI SI AR 104005 DI 10.1088/0029-5515/53/10/104005 PG 15 WC Physics, Fluids & Plasmas SC Physics GA 226AD UT WOS:000325005600006 ER PT J AU Martin, P Puiatti, ME Agostinetti, P Agostini, M Alonso, JA Antoni, V Apolloni, L Auriemma, F Avino, F Barbalace, A Barbisan, M Barbui, T Barison, S Barp, M Baruzzo, M Bettini, P Bigi, M Bilel, R Boldrin, M Bolzonella, T Bonfiglio, D Bonomo, F Brombin, M Buffa, A Bustreo, C Canton, A Cappello, S Carralero, D Carraro, L Cavazzana, R Chacon, L Chapman, B Chitarin, G Ciaccio, G Cooper, WA Dal Bello, S Palma, MD Delogu, R De Lorenzi, A Delzanno, GL De Masi, G De Muri, M Dong, JQ Escande, DF Fantini, F Fasoli, A Fassina, A Fellin, F Ferro, A Fiameni, S Finn, JM Finotti, C Fiorentin, A Fonnesu, N Framarin, J Franz, P Frassinetti, L Furno, I Palumbo, MF Gaio, E Gazza, E Ghezzi, F Giudicotti, L Gnesotto, F Gobbin, M Gonzales, WA Grando, L Guo, SC Hanson, JD Hidalgo, C Hirano, Y Hirshman, SP Ide, S In, Y Innocente, P Jackson, GL Kiyama, S Liu, SF Liu, YQ Bruna, DL Lorenzini, R Luce, TC Luchetta, A Maistrello, A Manduchi, G Mansfield, DK Marchiori, G Marconato, N Marcuzzi, D Marrelli, L Martini, S Matsunaga, G Martines, E Mazzitelli, G McCollam, K Momo, B Moresco, M Munaretto, S Novello, L Okabayashi, M Olofsson, E Paccagnella, R Pasqualotto, R Pavei, M Peruzzo, S Pesce, A Pilan, N Piovan, R Piovesan, P Piron, C Piron, L Pomaro, N Predebon, I Recchia, M Rigato, V Rizzolo, A Roquemore, AL Rostagni, G Ruzzon, A Sakakita, H Sanchez, R Sarff, JS Sartori, E Sattin, F Scaggion, A Scarin, P Schneider, W Serianni, G Sonato, P Spada, E Soppelsa, A Spagnolo, S Spolaore, M Spong, DA Spizzo, G Takechi, M Taliercio, C Terranova, D Theiler, C Toigo, V Trevisan, GL Valente, M Valisa, M Veltri, P Veranda, M Vianello, N Villone, F Wang, ZR White, RB Xu, XY Zaccaria, P Zamengo, A Zanca, P Zaniol, B Zanotto, L Zilli, E Zollino, G Zuin, M AF Martin, P. Puiatti, M. E. Agostinetti, P. Agostini, M. Alonso, J. A. Antoni, V. Apolloni, L. Auriemma, F. Avino, F. Barbalace, A. Barbisan, M. Barbui, T. Barison, S. Barp, M. Baruzzo, M. Bettini, P. Bigi, M. Bilel, R. Boldrin, M. Bolzonella, T. Bonfiglio, D. Bonomo, F. Brombin, M. Buffa, A. Bustreo, C. Canton, A. Cappello, S. Carralero, D. Carraro, L. Cavazzana, R. Chacon, L. Chapman, B. Chitarin, G. Ciaccio, G. Cooper, W. A. Dal Bello, S. Dalla Palma, M. Delogu, R. De Lorenzi, A. Delzanno, G. L. De Masi, G. De Muri, M. Dong, J. Q. Escande, D. F. Fantini, F. Fasoli, A. Fassina, A. Fellin, F. Ferro, A. Fiameni, S. Finn, J. M. Finotti, C. Fiorentin, A. Fonnesu, N. Framarin, J. Franz, P. Frassinetti, L. Furno, I. Palumbo, M. Furno Gaio, E. Gazza, E. Ghezzi, F. Giudicotti, L. Gnesotto, F. Gobbin, M. Gonzales, W. A. Grando, L. Guo, S. C. Hanson, J. D. Hidalgo, C. Hirano, Y. Hirshman, S. P. Ide, S. In, Y. Innocente, P. Jackson, G. L. Kiyama, S. Liu, S. F. Liu, Y. Q. Lopez Bruna, D. Lorenzini, R. Luce, T. C. Luchetta, A. Maistrello, A. Manduchi, G. Mansfield, D. K. Marchiori, G. Marconato, N. Marcuzzi, D. Marrelli, L. Martini, S. Matsunaga, G. Martines, E. Mazzitelli, G. McCollam, K. Momo, B. Moresco, M. Munaretto, S. Novello, L. Okabayashi, M. Olofsson, E. Paccagnella, R. Pasqualotto, R. Pavei, M. Peruzzo, S. Pesce, A. Pilan, N. Piovan, R. Piovesan, P. Piron, C. Piron, L. Pomaro, N. Predebon, I. Recchia, M. Rigato, V. Rizzolo, A. Roquemore, A. L. Rostagni, G. Ruzzon, A. Sakakita, H. Sanchez, R. Sarff, J. S. Sartori, E. Sattin, F. Scaggion, A. Scarin, P. Schneider, W. Serianni, G. Sonato, P. Spada, E. Soppelsa, A. Spagnolo, S. Spolaore, M. Spong, D. A. Spizzo, G. Takechi, M. Taliercio, C. Terranova, D. Theiler, C. Toigo, V. Trevisan, G. L. Valente, M. Valisa, M. Veltri, P. Veranda, M. Vianello, N. Villone, F. Wang, Z. R. White, R. B. Xu, X. Y. Zaccaria, P. Zamengo, A. Zanca, P. Zaniol, B. Zanotto, L. Zilli, E. Zollino, G. Zuin, M. TI Overview of the RFX-mod fusion science programme SO NUCLEAR FUSION LA English DT Article ID RESONANT MAGNETIC PERTURBATIONS; REAL-TIME CONTROL; CONTROL-SYSTEM; TOKAMAK; TRANSPORT; STABILITY; BEHAVIOR AB This paper reports the highlights of the RFX-mod fusion science programme since the last 2010 IAEA Fusion Energy Conference. The RFX-mod fusion science programme focused on two main goals: exploring the fusion potential of the reversed field pinch (RFP) magnetic configuration and contributing to the solution of key science and technology problems in the roadmap to ITER. Active control of several plasma parameters has been a key tool in this endeavour. New upgrades on the system for active control of magnetohydrodynamic (MHD) stability are underway and will be presented in this paper. Unique among the existing fusion devices, RFX-mod has been operated both as an RFP and as a tokamak. The latter operation has allowed the exploration of edge safety factor q(edge) < 2 with active control of MHD stability and studies concerning basic energy and flow transport mechanisms. Strong interaction has continued with the stellarator community in particular on the physics of helical states and on three-dimensional codes. C1 [Martin, P.; Puiatti, M. E.; Agostinetti, P.; Agostini, M.; Antoni, V.; Apolloni, L.; Auriemma, F.; Barbalace, A.; Barbisan, M.; Barbui, T.; Barp, M.; Baruzzo, M.; Bettini, P.; Bigi, M.; Bilel, R.; Boldrin, M.; Bolzonella, T.; Bonfiglio, D.; Bonomo, F.; Brombin, M.; Buffa, A.; Bustreo, C.; Canton, A.; Cappello, S.; Carraro, L.; Cavazzana, R.; Chitarin, G.; Ciaccio, G.; Dal Bello, S.; Dalla Palma, M.; Delogu, R.; De Lorenzi, A.; De Masi, G.; De Muri, M.; Fantini, F.; Fasoli, A.; Fassina, A.; Fellin, F.; Ferro, A.; Finotti, C.; Fiorentin, A.; Fonnesu, N.; Framarin, J.; Franz, P.; Palumbo, M. Furno; Gaio, E.; Gazza, E.; Giudicotti, L.; Gnesotto, F.; Gobbin, M.; Gonzales, W. A.; Grando, L.; Guo, S. C.; Innocente, P.; Lorenzini, R.; Luchetta, A.; Maistrello, A.; Manduchi, G.; Marchiori, G.; Marconato, N.; Marcuzzi, D.; Marrelli, L.; Martini, S.; Martines, E.; Momo, B.; Moresco, M.; Munaretto, S.; Novello, L.; Paccagnella, R.; Pasqualotto, R.; Pavei, M.; Peruzzo, S.; Pesce, A.; Pilan, N.; Piovan, R.; Piovesan, P.; Piron, C.; Piron, L.; Pomaro, N.; Predebon, I.; Recchia, M.; Rigato, V.; Rizzolo, A.; Roquemore, A. L.; Rostagni, G.; Ruzzon, A.; Sartori, E.; Sattin, F.; Scaggion, A.; Scarin, P.; Serianni, G.; Sonato, P.; Spada, E.; Soppelsa, A.; Spagnolo, S.; Spolaore, M.; Spizzo, G.; Taliercio, C.; Terranova, D.; Toigo, V.; Trevisan, G. L.; Valente, M.; Valisa, M.; Veltri, P.; Veranda, M.; Vianello, N.; Wang, Z. R.; Xu, X. Y.; Zaccaria, P.; Zamengo, A.; Zanca, P.; Zaniol, B.; Zanotto, L.; Zilli, E.; Zollino, G.; Zuin, M.] Assoc EURATOM ENEA Fus, Consorzio RFX, I-35137 Padua, Italy. [Alonso, J. A.; Carralero, D.; Hidalgo, C.; Lopez Bruna, D.] CIEMAT, Asociac EURATOM, Lab Nacl Fus, E-28040 Madrid, Spain. [Avino, F.; Cooper, W. A.; Fasoli, A.; Furno, I.; Theiler, C.] Assoc Euratom Suisse, EPFL, CRPP, CH-1015 Lausanne, Switzerland. [Barison, S.; Fiameni, S.] CNR IENI, I-35127 Padua, Italy. [Chacon, L.; Delzanno, G. L.; Finn, J. M.] Los Alamos Natl Lab, Los Alamos, NM USA. [Chapman, B.; McCollam, K.; Sarff, J. S.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Dong, J. Q.] Zhejiang Univ, Inst Fus Theory & Simulat, Southwestern Inst Phys, Hangzhou 310027, Peoples R China. [Escande, D. F.] Univ Aix Marseille 1, CNRS, UMR 6633, Marseille, France. [Frassinetti, L.; Olofsson, E.] KTH, EES, Assoc EURATOM VR, Stockholm, Sweden. [Ghezzi, F.] CNR IFP, I-20125 Milan, Italy. [Hanson, J. D.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Hirano, Y.; Kiyama, S.; Sakakita, H.] Natl Inst Adv Ind Sci & Technol, Energy Technol Res Inst, Plasma Frontier Grp, Tsukuba, Ibaraki 3058568, Japan. [Hirshman, S. P.; Sanchez, R.; Spong, D. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Ide, S.; Matsunaga, G.; Takechi, M.] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan. [In, Y.] FAR TECH Inc, San Diego, CA 92121 USA. [Jackson, G. L.; Luce, T. C.] Gen Atom Co, San Diego, CA 92186 USA. [Liu, S. F.] Nankai Univ, Dept Phys, Tianjin 300071, Peoples R China. [Liu, Y. Q.] EURATOM CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Mansfield, D. K.; Okabayashi, M.; Roquemore, A. L.; White, R. B.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Mazzitelli, G.] Assoc Euratom ENEA Fus, Ctr Ric Energia ENEA Frascati, Frascati, Italy. [Sanchez, R.] Univ Carlos III Madrid, Dept Fis, Madrid, Spain. [Schneider, W.] EURATOM, Max Planck Inst Plasmaphys, Greifswald, Germany. [Villone, F.] Univ Cassino, DAEIMI, Ass Euratom ENEA CREATE, I-03043 Cassino, Italy. RP Martin, P (reprint author), Assoc EURATOM ENEA Fus, Consorzio RFX, I-35137 Padua, Italy. EM piero.martin@igi.cnr.it RI spagnolo, silvia/E-9384-2017; Marchiori, Giuseppe/I-6853-2013; Cappello, Susanna/H-9968-2013; Momo, Barbara/I-7686-2015; Chitarin, Giuseppe/H-6133-2012; Luchetta, Adriano/I-8004-2013; Marrelli, Lionello/G-4451-2013; Martines, Emilio/B-1418-2009; Alonso, Juan Arturo/K-9009-2014; Spizzo, Gianluca/B-7075-2009; Vianello, Nicola/B-6323-2008; Lopez Bruna, Daniel/L-6539-2014; Bonfiglio, Daniele/I-9398-2012; Dalla Palma, Mauro/J-7709-2012; Hidalgo, Carlos/H-6109-2015 OI antoni, vanni/0000-0002-4588-8168; Theiler, Christian/0000-0003-3926-1374; Finotti, Claudio/0000-0003-3699-2091; Barison, Simona/0000-0002-6324-0859; Frassinetti, Lorenzo/0000-0002-9546-4494; , Vanni/0000-0002-4925-4752; Rigato, Valentino/0000-0003-0671-7750; Munaretto, Stefano/0000-0003-1465-0971; BETTINI, PAOLO/0000-0001-7084-4071; Escande, Dominique/0000-0002-0460-8385; AGOSTINI, MATTEO/0000-0002-3823-1002; POMARO, NICOLA/0000-0002-5024-1457; Sartori, Emanuele/0000-0002-5651-1825; Chacon, Luis/0000-0002-4566-8763; Cappello, Susanna/0000-0002-2022-1113; Momo, Barbara/0000-0001-7760-8960; Chitarin, Giuseppe/0000-0003-3060-8466; Marrelli, Lionello/0000-0001-5370-080X; Martines, Emilio/0000-0002-4181-2959; Alonso, Juan Arturo/0000-0001-6863-8578; Spizzo, Gianluca/0000-0001-8586-2168; Vianello, Nicola/0000-0003-4401-5346; Bonfiglio, Daniele/0000-0003-2638-317X; Dalla Palma, Mauro/0000-0003-4239-8929; FU Euratom Communities FX This contract was supported by the Euratom Communities under the contract of Association Euratom/ENEA. The views and opinions expressed herein do not necessarily reflect those of the European Commission. NR 49 TC 9 Z9 9 U1 6 U2 47 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2013 VL 53 IS 10 SI SI AR 104018 DI 10.1088/0029-5515/53/10/104018 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 226AD UT WOS:000325005600019 ER PT J AU Meyer, H Abel, IG Akers, RJ Allan, A Allan, SY Appel, LC Asunta, O Barnes, M Barratt, NC Ben Ayed, N Bradley, JW Canik, J Cahyna, P Cecconello, M Challis, CD Chapman, IT Ciric, D Colyer, G Conway, NJ Cox, M Crowley, BJ Cowley, SC Cunningham, G Danilov, A Darke, A De Bock, MFM De Temmerman, G Dendy, RO Denner, P Dickinson, D Dnestrovsky, AY Dnestrovsky, Y Driscoll, MD Dudson, B Dunai, D Dunstan, M Dura, P Elmore, S Field, AR Fishpool, G Freethy, S Fundamenski, W Garzotti, L Ghim, YC Gibson, KJ Gryaznevich, MP Harrison, J Havlickova, E Hawkes, NC Heidbrink, WW Hender, TC Highcock, E Higgins, D Hill, P Hnat, B Hole, MJ Horacek, J Howell, DF Imada, K Jones, O Kaveeva, E Keeling, D Kirk, A Kocan, M Lake, RJ Lehnen, M Leggate, HJ Liang, Y Lilley, MK Lisgo, SW Liu, YQ Lloyd, B Maddison, GP Mailloux, J Martin, R McArdle, GJ McClements, KG McMillan, B Michael, C Militello, F Molchanov, P Mordijck, S Morgan, T Morris, AW Muir, DG Nardon, E Naulin, V Naylor, G Nielsen, AH O'Brien, MR O'Gorman, T Pamela, S Parra, FI Patel, A Pinches, SD Price, MN Roach, CM Robinson, JR Romanelli, M Rozhansky, V Saarelma, S Sangaroon, S Saveliev, A Scannell, R Seidl, J Sharapov, SE Schekochihin, AA Shevchenko, V Shibaev, S Stork, D Storrs, J Sykes, A Tallents, GJ Tamain, P Taylor, D Temple, D Thomas-Davies, N Thornton, A Turnyanskiy, MR Valovic, M Vann, RGL Verwichte, E Voskoboynikov, P Voss, G Warder, SEV Wilson, HR Wodniak, I Zoletnik, S Zagorski, R AF Meyer, H. Abel, I. G. Akers, R. J. Allan, A. Allan, S. Y. Appel, L. C. Asunta, O. Barnes, M. Barratt, N. C. Ben Ayed, N. Bradley, J. W. Canik, J. Cahyna, P. Cecconello, M. Challis, C. D. Chapman, I. T. Ciric, D. Colyer, G. Conway, N. J. Cox, M. Crowley, B. J. Cowley, S. C. Cunningham, G. Danilov, A. Darke, A. De Bock, M. F. M. De Temmerman, G. Dendy, R. O. Denner, P. Dickinson, D. Dnestrovsky, A. Y. Dnestrovsky, Y. Driscoll, M. D. Dudson, B. Dunai, D. Dunstan, M. Dura, P. Elmore, S. Field, A. R. Fishpool, G. Freethy, S. Fundamenski, W. Garzotti, L. Ghim, Y. C. Gibson, K. J. Gryaznevich, M. P. Harrison, J. Havlickova, E. Hawkes, N. C. Heidbrink, W. W. Hender, T. C. Highcock, E. Higgins, D. Hill, P. Hnat, B. Hole, M. J. Horacek, J. Howell, D. F. Imada, K. Jones, O. Kaveeva, E. Keeling, D. Kirk, A. Kocan, M. Lake, R. J. Lehnen, M. Leggate, H. J. Liang, Y. Lilley, M. K. Lisgo, S. W. Liu, Y. Q. Lloyd, B. Maddison, G. P. Mailloux, J. Martin, R. McArdle, G. J. McClements, K. G. McMillan, B. Michael, C. Militello, F. Molchanov, P. Mordijck, S. Morgan, T. Morris, A. W. Muir, D. G. Nardon, E. Naulin, V. Naylor, G. Nielsen, A. H. O'Brien, M. R. O'Gorman, T. Pamela, S. Parra, F. I. Patel, A. Pinches, S. D. Price, M. N. Roach, C. M. Robinson, J. R. Romanelli, M. Rozhansky, V. Saarelma, S. Sangaroon, S. Saveliev, A. Scannell, R. Seidl, J. Sharapov, S. E. Schekochihin, A. A. Shevchenko, V. Shibaev, S. Stork, D. Storrs, J. Sykes, A. Tallents, G. J. Tamain, P. Taylor, D. Temple, D. Thomas-Davies, N. Thornton, A. Turnyanskiy, M. R. Valovic, M. Vann, R. G. L. Verwichte, E. Voskoboynikov, P. Voss, G. Warder, S. E. V. Wilson, H. R. Wodniak, I. Zoletnik, S. Zagorski, R. CA MAST Team NBI Team TI Overview of physics results from MAST towards ITER/DEMO and the MAST Upgrade SO NUCLEAR FUSION LA English DT Article ID SPHERICAL TOKAMAK; ITER; INSTABILITIES; JET AB New diagnostic, modelling and plant capability on the Mega Ampere Spherical Tokamak (MAST) have delivered important results in key areas for ITER/DEMO and the upcoming MAST Upgrade, a step towards future ST devices on the path to fusion currently under procurement. Micro-stability analysis of the pedestal highlights the potential roles of micro-tearing modes and kinetic ballooning modes for the pedestal formation. Mitigation of edge localized modes (ELM) using resonant magnetic perturbation has been demonstrated for toroidal mode numbers n = 3, 4, 6 with an ELM frequency increase by up to a factor of 9, compatible with pellet fuelling. The peak heat flux of mitigated and natural ELMs follows the same linear trend with ELM energy loss and the first ELM-resolved T-i measurements in the divertor region are shown. Measurements of flow shear and turbulence dynamics during L-H transitions show filaments erupting from the plasma edge whilst the full flow shear is still present. Off-axis neutral beam injection helps to strongly reduce the redistribution of fast-ions due to fishbone modes when compared to on-axis injection. Low-k ion-scale turbulence has been measured in L-mode and compared to global gyro-kinetic simulations. A statistical analysis of principal turbulence time scales shows them to be of comparable magnitude and reasonably correlated with turbulence decorrelation time. T-e inside the island of a neoclassical tearing mode allow the analysis of the island evolution without assuming specific models for the heat flux. Other results include the discrepancy of the current profile evolution during the current ramp-up with solutions of the poloidal field diffusion equation, studies of the anomalous Doppler resonance compressional Alfven eigenmodes, disruption mitigation studies and modelling of the new divertor design for MAST Upgrade. The novel 3D electron Bernstein synthetic imaging shows promising first data sensitive to the edge current profile and flows. C1 [Meyer, H.; Akers, R. J.; Allan, S. Y.; Appel, L. C.; Ben Ayed, N.; Challis, C. D.; Chapman, I. T.; Ciric, D.; Colyer, G.; Conway, N. J.; Cox, M.; Crowley, B. J.; Cowley, S. C.; Cunningham, G.; Darke, A.; Dendy, R. O.; Dickinson, D.; Driscoll, M. D.; Dunstan, M.; Elmore, S.; Field, A. R.; Fishpool, G.; Freethy, S.; Fundamenski, W.; Garzotti, L.; Ghim, Y. C.; Gryaznevich, M. P.; Harrison, J.; Havlickova, E.; Hawkes, N. C.; Hender, T. C.; Howell, D. F.; Keeling, D.; Kirk, A.; Liu, Y. Q.; Lloyd, B.; Maddison, G. P.; Mailloux, J.; Martin, R.; McArdle, G. J.; McClements, K. G.; Michael, C.; Militello, F.; Morris, A. W.; Muir, D. G.; Naylor, G.; O'Brien, M. R.; Patel, A.; Pinches, S. D.; Price, M. N.; Roach, C. M.; Romanelli, M.; Saarelma, S.; Scannell, R.; Sharapov, S. E.; Shevchenko, V.; Shibaev, S.; Stork, D.; Storrs, J.; Sykes, A.; Taylor, D.; Thomas-Davies, N.; Thornton, A.; Turnyanskiy, M. R.; Valovic, M.; Voss, G.; Warder, S. E. V.] Culham Sci Ctr, EURATOM CCFE Fus Assoc, Abingdon, Oxon, England. [Abel, I. G.; Barnes, M.; Ghim, Y. C.; Highcock, E.; Hill, P.; Parra, F. I.; Schekochihin, A. A.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England. [Allan, A.; Barratt, N. C.; Denner, P.; Dudson, B.; Gibson, K. J.; Imada, K.; O'Gorman, T.; Tallents, G. J.; Vann, R. G. L.; Wilson, H. R.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Asunta, O.] Aalto Univ, Assoc EURATOM TEKES, Espoo, Finland. [Barnes, M.; Parra, F. I.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Bradley, J. W.; Elmore, S.] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3BX, Merseyside, England. [Canik, J.; Seidl, J.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Cahyna, P.; Horacek, J.; Sangaroon, S.; Wodniak, I.] Assoc EURATOM IPP CR, Inst Plasma Phys AS CR Vvi, Prague, Czech Republic. [Cecconello, M.] Uppsala Univ, EURATOM VR Assoc, SE-75120 Uppsala, Sweden. [Danilov, A.; Dnestrovsky, A. Y.; Dnestrovsky, Y.] Inst Nucl Fus, Kruchatov Inst, Russian Res Ctr, Moscow, Russia. [De Bock, M. F. M.] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands. [De Temmerman, G.; Morgan, T.] Assoc EURATOM DIFFER, DIFFER, Nieuwegein, Netherlands. [Dunai, D.; Zoletnik, S.] EURATOM, KFKI RMKI, H-1525 Budapest, Hungary. [Dura, P.; Higgins, D.; Hnat, B.; Lake, R. J.; McMillan, B.; Robinson, J. R.; Verwichte, E.] Univ Warwick, Dept Phys, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England. [Heidbrink, W. W.] Univ Calif Irvine, Sch Phys Sci, Irvine, CA 92697 USA. [Hole, M. J.] Australian Natl Univ, Res Sch Phys Sci & Engn, Plasma Res Lab, Canberra, ACT 0200, Australia. [Jones, O.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Kaveeva, E.; Molchanov, P.; Rozhansky, V.; Voskoboynikov, P.] St Petersburg State Polytech Univ, Dept Plasma Phys, St Petersburg, Russia. [Kocan, M.] EURATOM, Max Planck Inst Plasmaphys, Garching, Germany. [Lehnen, M.; Liang, Y.] Forschungszentrum Julich, EURATOM Assoc, Trilateral Euregio Cluster, D-52425 Julich, Germany. [Leggate, H. J.] Dublin City Univ, EURATOM DCU Fus Assoc, Dublin 9, Ireland. [Lilley, M. K.; Temple, D.] Univ London Imperial Coll Sci Technol & Med, London, England. [Lisgo, S. W.; Pinches, S. D.] ITER Org, F-13067 St Paul Les Durance, France. [Mordijck, S.] Coll William & Mary, Williamsburg, VA 23187 USA. [Nardon, E.; Tamain, P.] CEA, EURATOM Assoc, CEA Cadarache, F-13108 St Paul Les Durance, France. [Naulin, V.; Nielsen, A. H.] Assoc EURATOM Riso, Natl Lab Sustainable Energy, DK-4000 Roskilde, Denmark. [Pamela, S.] Aix Marseille Univ, CNRS, IIFS, PIIM, F-13397 Marseille 20, France. [Saveliev, A.] AF Ioffe Phys Tech Inst, St Petersburg, Russia. [Zagorski, R.] Inst Plasma Phys & Laser Microfus, Assoc EURATOM IPPLM, Warsaw, Poland. RP Meyer, H (reprint author), Culham Sci Ctr, EURATOM CCFE Fus Assoc, Abingdon, Oxon, England. EM Hendrik.Meyer@ccfe.ac.uk RI Naulin , Volker/A-2419-2012; Kaveeva, Elizaveta/P-2275-2016; Morgan, Thomas/B-3789-2017; Michael, Clive /M-1327-2013; Parra, Felix I./C-1442-2012; Dendy, Richard/A-4533-2009; Saveliev, Alexander/C-1095-2014; Dnestrovskij, Alexei/F-2202-2014; Horacek, Jan/G-8301-2014; Cahyna, Pavel/G-9116-2014; Nielsen, Anders/A-3973-2012; Ghim, Young-chul/A-4365-2009; OI Michael, Clive/0000-0003-1804-870X; Naulin , Volker/0000-0001-5452-9215; Morgan, Thomas/0000-0002-5066-015X; Parra, Felix I./0000-0001-9621-7404; Dnestrovskij, Alexei/0000-0002-4827-9421; Horacek, Jan/0000-0002-4276-3124; Nielsen, Anders/0000-0003-3642-3905; Ghim, Young-chul/0000-0003-4123-9416; Canik, John/0000-0001-6934-6681 FU RCUK Energy Programme [EP/I501045]; European Communities FX This work was funded by the RCUK Energy Programme under grant EP/I501045 and the European Communities under the contract of Association between EURATOM and CCFE. The views and opinions expressed herein do not necessarily reect those of the European Commission. NR 94 TC 13 Z9 13 U1 2 U2 51 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2013 VL 53 IS 10 SI SI AR 104008 DI 10.1088/0029-5515/53/10/104008 PG 15 WC Physics, Fluids & Plasmas SC Physics GA 226AD UT WOS:000325005600009 ER PT J AU Moses, EI AF Moses, E. I. CA NIC Collaborators TI The National Ignition Campaign: status and progress SO NUCLEAR FUSION LA English DT Article AB The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been operational since March 2009 and a variety of experiments have been completed and many more are planned in support of NIF's mission areas: national security, fundamental science, and fusion energy. NIF capabilities and infrastructure are in place to support all of its missions with nearly 60 x-ray, optical and nuclear diagnostic systems and the ability to shoot cryogenic targets and DT layered capsules. The NIF has also been qualified for the use of tritium and other special materials as well as to perform high-yield experiments and classified experiments. Implosions with record indirect-drive neutron yield of 7.5 x 10(14) neutrons have been achieved. NIF, a Nd : Glass laser facility, is routinely operating at 1.6 MJ of ultraviolet (3 omega) light on target with very high reliability. It recently reached its design goal of 1.8 MJ and 500 TW of 3 omega light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The National Ignition Campaign (NIC), an international effort with the goal of demonstrating thermonuclear burn in the laboratory, is making steady progress towards achieving ignition. Other experiments have been completed in support of high-energy science, materials equation of state, and materials strength. In all cases, records of extreme temperatures and pressures, highest neutron yield and highest energy densities have been achieved. This paper describes the unprecedented experimental capabilities of the NIF and the results achieved so far on the path towards ignition. C1 [Moses, E. I.] Lawrence Livermore Natl Lab, Livermore, CA 94450 USA. RP Moses, EI (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94450 USA. FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 24 TC 13 Z9 16 U1 9 U2 27 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2013 VL 53 IS 10 SI SI AR 104020 DI 10.1088/0029-5515/53/10/104020 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 226AD UT WOS:000325005600021 ER PT J AU Romanelli, F Abel, I Afanesyev, V Aftanas, M Agarici, G Aggarwal, KM Aho-Mantila, L Ahonen, E Aints, M Airila, M Akers, R Alarcon, T Albanese, R Alexeev, A Alfier, A Allan, P Almaviva, S Alonso, A Alper, B Altmann, H Alves, D Ambrosino, G Amosov, V Andersson, F Sunden, EA Andreev, V Andrew, Y Angelone, M Anghel, M Anghel, A Angioni, C Apruzzese, G Arcis, N Arena, P Argouarch, A Ariola, M Armitano, A Arnoux, G Arshad, S Artaserse, G Artaud, JF Ash, A Asp, E Asunta, O Atanasiu, CV Atkins, G Avotina, L Axton, MD Ayres, C Baciero, A Bailescu, V Baiocchi, B Baker, RA Balboa, I Balden, M Balorin, C Balshaw, N Banks, JW Baranov, YF Barbier, D Barlow, IL Barnard, MA Barnsley, R Barrena, L Barrera, L Baruzzo, M Basiuk, V Bateman, G Batistoni, P Baumgarten, N Baylor, L Bazylev, B Beaumont, PS Beausang, K Becoulet, M Bekris, N Beldishevski, M Bell, AC Belli, F Bellinger, M Bellizio, T Belo, PSA Belonohy, E Bennett, PE Benterman, NA Berger-By, G Bergsaker, H Berk, H Bernardo, J Bernert, M Bertrand, B Beurskens, MNA Bieg, B Bienkowska, B Biewer, TM Bigi, M Bilkova, P Bin, W Bird, J Bizarro, J Bjorkas, C Blackman, TR Blanchard, P Blanco, E Blum, J Bobkov, V Boboc, A Boilson, D Bolshakova, I Bolzonella, T Boncagni, L Bonheure, G Bonnin, X Borba, D Borthwick, A Botrugno, A Boulbe, C Bouquey, F Bourdelle, C Von Bovert, K Bowden, M Boyce, T Boyer, HJ Bozhenkov, A Brade, RJ Bradshaw, JMA Braet, J Braic, V Braithwaite, GC Brault, C Breizman, B Bremond, S Brennan, PD Brett, A Breue, J Brezinsek, S Bright, MDJ Briscoe, F Brix, M Brombin, M Brown, BC Brown, DPD Brzozowski, J Bucalossi, J Buckley, MA Budd, T Budny, RV Bunting, P Buratti, P Burcea, G Burckhart, A Butcher, PR Buttery, RJ Cahyna, P Calabro, G Callaghan, CP Caminade, JP Camp, PG Campling, DC Caniello, R Canik, J Cannas, B Capel, AJ Carannante, G Card, PJ Cardinali, A Carlstrom, T Carman, P Carralero, D Carraro, L Carter, T Carvalho, BB Carvalho, I Carvalho, P Casati, A Castaldo, C Caughman, J Cavazzana, R Cavinato, M Cecconello, M Cecil, E Cecil, FE Cenedese, A Centioli, C Cesario, R Challis, CD Chandler, M Chang, C Chankin, A Chapman, IT Chektybayev, B Chernyshova, M Child, DJ Chiru, P Chitarin, G Chugonov, I Ciric, D Clairet, F Clarke, RH Clay, R Clever, M Coad, JP Coates, PA Cocilovo, V Coda, S Coelho, R Coenen, J Coffey, I Colas, L Cole, M Collins, S Combs, S Compan, J Conboy, JE Conroy, S Cook, N Cook, SP Coombs, D Cooper, SR Corre, Y Corrigan, G Cortes, S Coster, D Counsell, GF Courtois, X Cox, M Craciunescu, T Cramp, S Crisanti, F Croci, G Croft, O Crombe, K Crombe, K Crowley, BJ Cruz, N Cseh, G Cupido, L Curuia, M Cusack, RA Czarnecka, A Czarski, T Dalley, S Daly, ET Dalziel, A Daniel, R Darrow, D David, O Davies, N Davies, W Davies, JJ Day, IE Day, C De Angelis, R de Arcas, G de Baar, MR de la Cal, E de la Luna, E de Pablos, JL De Tommasi, G de Vries, PC De-Angelis, R Degli Agostini, F Delabie, E del-Castillo-Negrete, D Delpech, L Denisov, G Denyer, AJ Denyer, RF Devaux, S Devynck, P Di Matteo, L Di Pace, L Dirken, PJ Dittmar, T Dnestrovskiy, A Dodt, D Doerner, R Doldatov, S Dominiczak, K Dooley, P Dorling, SE Douai, D Down, AP Doyle, PT Drake, JR Dreischuh, T Drozdov, V Dumortier, P Dunai, D Duran, I Durodie, F Dutta, P Dux, R Dylst, K Eaton, R Edlington, T Edwards, AM Edwards, DT Edwards, PK Eich, T Ekedahl, A Elevant, T Ellingboe, B Elsmore, CG Emmoth, B Erdei, G Ericsson, G Eriksson, LG Eriksson, A Esposito, B Esser, HG Estrada, T Evangelidis, EA Evans, GE Ewart, GD Ewers, DT Falchetto, G Falie, D Fanthome, JGA Farthing, JW Fasoli, A Faugeras, B Fedorczak, N Felton, RC Fenzi, C Fernades, A Fernandes, H Ferreira, JA Ferreira, J Ferron, J Fessey, JA Figini, L Figueiredo, J Figueiredo, A Finburg, P Finken, KH Fischer, U Fitzgerald, N Flanagan, J Fleming, C Forbes, AD Ford, O Formisano, A Fraboulet, D Francis, RJ Frassinetti, L Fresa, R Friconneau, JP Frigione, D Fullard, K Fundamenski, W Palumbo, MF Gal, K Gao, X Garavaglia, S Garbet, X Garcia, J Munoz, MG Gardner, W Garibaldi, P Garnier, D Garzotti, L Johnson, MG Gaudio, P Gauthier, E Gaze, JW Gear, DF Gedney, J Gee, SJ Gelfusa, M Genangeli, E Gerasimov, S Geraud, A Gerbaud, T Gherendi, M Ghirelli, N Giacalone, JC Giacomelli, L Gibson, CS Gil, C Gilligan, SJ Gimblett, CG Gin, D Giovannozzi, E Giroud, C Giruzzi, G Godwin, J Goff, JK Gohil, P Gojska, A Goloborod'ko, V Goncalves, B Goniche, M Gonzales, S de Vicente, SMG Goodyear, A Gorelenkov, N Gorini, G Goulding, R Graham, B Graham, D Graham, ME Graves, J Green, NR Greuner, H Grigore, E Griph, FS Grisolia, C Gros, G Groth, M Grunhagen, S Gryaznevich, MP Guirlet, R Gunn, J Gupta, A Guzdar, P Hackett, LJ Hacquin, S Haist, B Hakola, A Halitovs, M Hall, SJ Cook, SPH Hamilton, DT Han, H Handley, RC Harding, S Harling, JDW Harting, D Harvey, MJ Haupt, TDV Hawkes, NC Hawryluk, R Hay, JH Hayashi, N Haydon, PW Hayward, IR Hazel, S Heesterman, PJL Heidbrink, W Heinola, K Hellesen, C Hellsten, T Hemming, ON Hender, TC Henderson, M Hennion, V Hidalgo, C Higashijima, S Hill, JW Hill, M Hill, K Hillairet, J Hillis, D Hirai, T Hitchin, M Hobirk, J Hogan, C Hogben, CHA Hogeweij, GMD Hollingham, IC Holyaka, R Homfray, DA Honeyands, G Hong, SH Hong, JH Horacek, J Horn, BA Horton, AR Horton, LD Hotchin, SP Hough, MR Houlberg, W Howell, DF Huber, A Huddleston, TM Hudson, Z Hughes, M Huhnerbein, M Hume, CC Hunt, AJ Hunter, CL Hutchinson, TS Huygen, S Huysmans, G Ide, S Illescas, C Imbeaux, F Ivanova, D Ivanova-Stanik, I Ivings, E Jachmich, S Jackson, G Jacquet, P Jakubowska, K James, PV Janky, F Jarvinen, A Jednorog, S Jenkins, I Jennison, MAC Jeskins, C Kwon, OJ Joffrin, E Johnson, MF Johnson, R Johnson, T Jolovic, D Jonauskas, V Jones, EM Jones, G Jones, HD Jones, TTC Jouvet, M Jupen, C Kachtchouk, I Kaczmarczyk, J Kallenbach, A Kallne, J Kalupin, D Kalvin, S Kamelander, G Kamendje, R Kamiya, K Kappatou, A Kasparek, W Kasprowicz, G Katramados, I Kaveney, G Kaye, AS Kear, MJ Keeling, DL Kelliher, D Kempenaars, M Khilar, P Khilkevich, E Kidd, NG Kiisk, M Kim, KM Kim, H King, RF Kinna, DJ Kiptily, V Kirnev, G Kirneva, N Kirov, K Kirschner, A Kisielius, R Kislov, D Kiss, G Kizane, G Klein, A Klepper, C Klimov, N Klix, A Knaup, M Kneuper, K Kneupner, H Knight, PJ Knipe, SJ Kocan, M Koch, R Kochl, F Kocsis, G Koivuranta, S Koppitz, T Korotkov, A Koskela, T Koslowski, HR Kotov, V Kovari, MD Kramer, G Krasilnikov, A Krasilnikov, V Kraus, S Kreter, A Krieger, K Kritz, A Krivchenkov, Y Kruezi, U Krylov, S Ksiazek, I Kuhn, S Kuhnlein, W Kukushkin, A Kundu, A Kurki-Suonio, T Kurowski, A Kuteev, B Kuyanov, A Kyrytsya, V La Haye, R Laan, M Labate, C Lachichi, A Laguardia, L Lam, N Lang, P Large, MT Lasa, A Lassiwe, I Last, JR Lawson, KD Laxaback, M Layne, RA Le Guern, F LeBlanc, B Lee, S Lee, J Leggate, HJ Lehnen, M Leigheb, M Lengar, I Lennholm, M Lerche, E Lescure, CN Li, Y Li Puma, A Liang, Y Likonen, J Lin, Y Lindholm, V Linke, J Linstead, SA Lipshultz, B Litaudon, X Litvak, AG Liu, Y Loarer, T Loarte, A Lobel, RC Lomas, PJ Long, FD Lonnroth, J Looker, DJ Lopez, J Lotte, P Louche, F Loughlin, MJ Loving, AB Lowry, C Luce, T Lucock, RMA Lukanitsa, A Lukin, A Lungu, AM Lungu, CP Lyssoivan, A Macheta, P Mackenzie, AS Macrae, M Maddaluno, G Maddison, GP Madsen, J Magesh, B Maget, P Maggi, CF Maier, H Mailloux, J Makkonen, T Makowski, M Malaquias, A Manning, CJ Mansfield, M Manso, ME Mantica, P Marcenko, N Marchitti, MA Mardenfeld, M Marechal, JL Marinelli, M Marinucci, M Marocco, D Marren, CA Marsen, S Martin, D Martin, DL Martin, G Martin, Y Martin-Solis, JR Masaki, K Masiello, A Maszl, C Matejcik, S Matilal, A Mattei, M Matthews, GF Mattoo, S Matveev, D Maviglia, F May, CR Mayer, M Mayoral, ML Mazon, D Mazzotta, C Mazzucato, E McCarthy, P McClements, KG McCormick, K McCullen, PA McCune, D McDonald, DC Mcgregor, R Mckivitt, JP Meakins, A Medina, F Meigs, AG Menard, M Meneses, L Menmuir, S Merrigan, IR Mertens, P Messiaen, A Meszaros, B Meyer, H Miano, G Michling, R Miele, M Miettunen, J Migliucci, P Miller, AG Mills, SF Milnes, JJ Kim, KM Mindham, T Miorin, E Mirizzi, F Mirones, E Mironov, M Mitteau, R Mlynar, J Mollard, P Monakhov, I Monier-Garbet, P Mooney, R Moreau, D Moreau, P Moreira, L Morgan, A Morgan, PD Morlock, C Morris, AW Mort, GL Murakami, M Murari, A Mustata, I Nabais, F Nakano, T Nardon, E Nash, G Naulin, V Nave, MFF Nazikian, R Nedzelski, I Negus, CR Neilson, JD Nemtsev, G Neto, A Neu, R Neubauer, O Newbert, GJ Newman, M Nicholls, KJ Nicolai, A Nicolas, L Nieckchen, P Nielsen, AH Nielsen, SK Nielsen, P Nielsen, G Nieto, J Nightingale, MPS Nishijima, D Noble, C Nocente, M Nordman, H Norman, M Nowak, S Nunes, I Oberkofler, M Odstrcil, M O'Gorman, T Ohsako, T Okabayashi, M Olariu, S Oleynikov, A O'Mullane, M Ongena, J Orsitto, F Oswuigwe, OI Ottaviani, M Oyama, N Pacella, D Paget, K Pajuste, E Palazzo, S Palenic, J Pamela, J Pamela, S Pangione, L Panin, A Panja, S Pankin, A Pantea, A Parail, V Paris, P Parisot, T Park, M Parkin, A Parsloe, A Parsons, BT Pasqualotto, R Pastor, P Paterson, R Paul, MK Peach, D Pearce, RJH Pearson, BJ Pearson, IJ Pedrick, LC Pedrosa, MA Pegourie, B Pereira, R Pereslavtsev, P Perevezentsev, A von Thun, CP Pericoli-Ridolfini, V Perona, A Perrot, Y Peruzzo, S Peschanyy, S Petravich, G Petrizzi, L Petrov, V Petrzilka, V Philipps, V Piccolo, F Pietropaolo, A Pillon, M Pinches, SD Pinna, T Pintsuk, G Piovesan, P Pironti, A Pisano, F Pitts, R Plaum, B Plyusnin, V Polasik, M Poli, FM Pomaro, N Pompilian, O Poncet, L Pool, PJ Popovichev, S Porcelli, F Porfiri, MT Portafaix, C Pospieszczyk, A Possnert, G Pozniak, K Pradhan, S Pragash, R Prajapati, V Prestopino, G Prior, P Prokopowicz, R Puiatti, ME Purahoo, K Pustovitov, V Putterich, T Puttmann-Kneupner, D Quercia, A Rachlew, E Rademaker, R Rafiq, T Rainford, MSJ Ramogida, G Rapp, J Rasmussen, JJ Rathod, K Ratta, G Ravera, G Refy, D Reichle, R Reinelt, M Reiser, D Reiss, R Reiter, D Rendell, D Reux, C Rewoldt, G Ribeiro, TT Riccardo, V Richards, D Rigollet, F Rimini, FG Rios, L Riva, M Roberts, JEC Robins, RJ Robinson, DS Robinson, SA Robson, DW Roche, H Rodig, M Rodionov, N Rohde, V Rolfe, A Romanelli, M Romanelli, F Romano, A Romero, J Ronchi, E Rosanvallon, S Roux, C Rowe, S Rubel, M Rubinacci, G Ruiz, M Ruset, C Russell, M Ruth, A Ryc, L Rydzy, A Rzadkiewicz, J Saarelma, S Sabathier, F Sabot, R Sadakov, S Sadvakassova, A Sadykov, A Sagar, P Saibene, G Saille, A Saint-Laurent, F Salewski, M Salmi, A Salzedas, F Samm, U Sanchez, P Sanders, S Sanders, SG Sandford, G Sandland, K Sandquist, P Sands, DEG Santala, MIK Santra, P Sartori, F Sartori, R Sauter, O Savelyev, A Savtchkov, A Scales, SC Scarabosio, A Schaefer, N Schmidt, V Schmidt, A Schmitz, O Schmuck, S Schneider, M Scholz, M Schopf, K Schweer, B Schweinzer, J Seki, M Semeraro, L Semerok, A Sergienko, G Sertoli, M Shannon, MMJ Sharapov, SE Shaw, SR Shevelev, A Sieglin, B Sievering, R Silva, CA Simmons, PA Simonetto, A Simpson, D Sipila, SK Sips, ACC Siren, P Sirinelli, A Sjostrand, H Skopintsev, D Slabkowska, K Smith, PG Snipes, J Snoj, L Snyder, S Soare, S Solano, ER Soleto, A Solomon, W Soltane, C Sonato, P Sopplesa, A Sorrentino, A Sousa, J Sowden, CBC Sozzi, C Spah, P Spelzini, T Spence, J Spineanu, F Spuig, P Stagg, RD Stamp, MF Stancalie, V Stangeby, P Stankiewicz, R Stan-Sion, C Starkey, DE Stead, MJ Stejner, M Stephen, AV Stephen, M Stevens, AL Stokes, RB Stork, D Stoyanov, D Strachan, J Strand, P Stransky, M Strauss, D Strintzi, D Studholme, W Na, YS Subba, F Summers, HP Sun, Y Surdu-Bob, C Surrey, E Sutton, DJ Svensson, J Swain, D Syme, BD Symonds, ID Szabolics, T Szepesi, T Szydlowski, A Tabares, F Takalo, V Takenaga, H Tala, T Talbot, AR Taliercio, C Tame, C Tardocchi, M Taroni, L Telesca, G Terra, A Terrington, AO Testa, D Theis, JM Thomas, JD Thomas, PD Thomas, PR Thompson, VK Thomser, C Thyagaraja, A Tigwell, PA Tiseanu, I Tivey, R Todd, JM Todd, TN Tokar, MZ Tosti, S Trabuc, P Travere, JM Trimble, P Trkov, A Trukhina, E Tsalas, M Tsitrone, E Jun, DT Tudisco, O Tugarinov, S Turner, MM Tyrrell, SGJ Umeda, N Unterberg, B Urano, H Urquhart, AJ Uytdenhouwen, I Vaccaro, A Vadgama, AP Vagliasindi, G Valcarcel, D Valisa, M Vallory, J Valovic, M Van Eester, D van Milligen, B van Rooij, GJ Varandas, CAF Vartanian, S Vasava, K Vdovin, V Vega, J Verdoolaege, G Verger, JM Vermare, L Verona, C Versloot, T Vervier, M Vicente, J Villari, S Villedieu, E Villone, F Vince, JE Vine, GJ Vinyar, I Viola, B Vitale, E Vitelli, R Vitins, A Vlad, M Voitsekhovitch, I Vrancken, M Vulliez, K Waldon, CWF Walker, M Walsh, MJ Waterhouse, J Watkins, ML Watson, MJ Wauters, T Way, MW Webb, CR Weiland, J Weisen, H Weiszflog, M Wenninger, R West, AT Weulersse, JM Wheatley, MR Whiteford, AD Whitehead, AM Whitehurst, AG Widdowson, AM Wiegmann, C Wiesen, S Wilson, A Wilson, D Wilson, DJ Wilson, HR Wischmeier, M Witts, DM Wolf, RC Wolowski, J Woscov, P Wright, J Xu, GS Yavorskij, V Yerashok, V Yoo, M Yorkshades, J Young, C Young, D Young, ID Yuhong, X Yun, S Zabeo, L Zabolotny, W Zaccarian, L Zagorski, R Zaitsev, FS Zakharov, L Zanino, R Zaroschi, V Zastrow, KD Zatz, I Zefran, B Zeidner, W Zerbini, M Zhang, T Zhitlukin, A Zhu, Y Zimmermann, O Zoita, V Zoletnik, S Zwingman, W AF Romanelli, F. Abel, I. Afanesyev, V. Aftanas, M. Agarici, G. Aggarwal, K. M. Aho-Mantila, L. Ahonen, E. Aints, M. Airila, M. Akers, R. Alarcon, Th. Albanese, R. Alexeev, A. Alfier, A. Allan, P. Almaviva, S. Alonso, A. Alper, B. Altmann, H. Alves, D. Ambrosino, G. Amosov, V. Andersson, F. Sunden, E. Andersson Andreev, V. Andrew, Y. Angelone, M. Anghel, M. Anghel, A. Angioni, C. Apruzzese, G. Arcis, N. Arena, P. Argouarch, A. Ariola, M. Armitano, A. Arnoux, G. Arshad, S. Artaserse, G. Artaud, J. F. Ash, A. Asp, E. Asunta, O. Atanasiu, C. V. Atkins, G. Avotina, L. Axton, M. D. Ayres, C. Baciero, A. Bailescu, V. Baiocchi, B. Baker, R. A. Balboa, I. Balden, M. Balorin, C. Balshaw, N. Banks, J. W. Baranov, Y. F. Barbier, D. Barlow, I. L. Barnard, M. A. Barnsley, R. Barrena, L. Barrera, L. Baruzzo, M. Basiuk, V. Bateman, G. Batistoni, P. Baumgarten, N. Baylor, L. Bazylev, B. Beaumont, P. S. Beausang, K. Becoulet, M. Bekris, N. Beldishevski, M. Bell, A. C. Belli, F. Bellinger, M. Bellizio, T. Belo, P. S. A. Belonohy, E. Bennett, P. E. Benterman, N. A. Berger-By, G. Bergsaker, H. Berk, H. Bernardo, J. Bernert, M. Bertrand, B. Beurskens, M. N. A. Bieg, B. Bienkowska, B. Biewer, T. M. Bigi, M. Bilkova, P. Bin, W. Bird, J. Bizarro, J. Bjorkas, C. Blackman, T. R. Blanchard, P. Blanco, E. Blum, J. Bobkov, V. Boboc, A. Boilson, D. Bolshakova, I. Bolzonella, T. Boncagni, L. Bonheure, G. Bonnin, X. Borba, D. Borthwick, A. Botrugno, A. Boulbe, C. Bouquey, F. Bourdelle, C. Von Bovert, K. Bowden, M. Boyce, T. Boyer, H. J. Bozhenkov, A. Brade, R. J. Bradshaw, J. M. A. Braet, J. Braic, V. Braithwaite, G. C. Brault, C. Breizman, B. Bremond, S. Brennan, P. D. Brett, A. Breue, J. Brezinsek, S. Bright, M. D. J. Briscoe, F. Brix, M. Brombin, M. Brown, B. C. Brown, D. P. D. Brzozowski, J. Bucalossi, J. Buckley, M. A. Budd, T. Budny, R. V. Bunting, P. Buratti, P. Burcea, G. Burckhart, A. Butcher, P. R. Buttery, R. J. Cahyna, P. Calabro, G. Callaghan, C. P. Caminade, J. P. Camp, P. G. Campling, D. C. Caniello, R. Canik, J. Cannas, B. Capel, A. J. Carannante, G. Card, P. J. Cardinali, A. Carlstrom, T. Carman, P. Carralero, D. Carraro, L. Carter, T. Carvalho, B. B. Carvalho, I. Carvalho, P. Casati, A. Castaldo, C. Caughman, J. Cavazzana, R. Cavinato, M. Cecconello, M. Cecil, E. Cecil, F. E. Cenedese, A. Centioli, C. Cesario, R. Challis, C. D. Chandler, M. Chang, C. Chankin, A. Chapman, I. T. Chektybayev, B. Chernyshova, M. Child, D. J. Chiru, P. Chitarin, G. Chugonov, I. Ciric, D. Clairet, F. Clarke, R. H. Clay, R. Clever, M. Coad, J. P. Coates, P. A. Cocilovo, V. Coda, S. Coelho, R. Coenen, J. Coffey, I. Colas, L. Cole, M. Collins, S. Combs, S. Compan, J. Conboy, J. E. Conroy, S. Cook, N. Cook, S. P. Coombs, D. Cooper, S. R. Corre, Y. Corrigan, G. Cortes, S. Coster, D. Counsell, G. F. Courtois, X. Cox, M. Craciunescu, T. Cramp, S. Crisanti, F. Croci, G. Croft, O. Crombe, K. Crombe, K. Crowley, B. J. Cruz, N. Cseh, G. Cupido, L. Curuia, M. Cusack, R. A. Czarnecka, A. Czarski, T. Dalley, S. Daly, E. T. Dalziel, A. Daniel, R. Darrow, D. David, O. Davies, N. Davies, W. Davies, J. J. Day, I. E. Day, C. De Angelis, R. de Arcas, G. de Baar, M. R. de la Cal, E. de la Luna, E. de Pablos, J. L. De Tommasi, G. de Vries, P. C. De-Angelis, R. Degli Agostini, F. Delabie, E. del-Castillo-Negrete, D. Delpech, L. Denisov, G. Denyer, A. J. Denyer, R. F. Devaux, S. Devynck, P. Di Matteo, L. Di Pace, L. Dirken, P. J. Dittmar, T. Dnestrovskiy, A. Dodt, D. Doerner, R. Doldatov, S. Dominiczak, K. Dooley, P. Dorling, S. E. Douai, D. Down, A. P. Doyle, P. T. Drake, J. R. Dreischuh, T. Drozdov, V. Dumortier, P. Dunai, D. Duran, I. Durodie, F. Dutta, P. Dux, R. Dylst, K. Eaton, R. Edlington, T. Edwards, A. M. Edwards, D. T. Edwards, P. K. Eich, Th. Ekedahl, A. Elevant, T. Ellingboe, B. Elsmore, C. G. Emmoth, B. Erdei, G. Ericsson, G. Eriksson, L. G. Eriksson, A. Esposito, B. Esser, H. G. Estrada, T. Evangelidis, E. A. Evans, G. E. Ewart, G. D. Ewers, D. T. Falchetto, G. Falie, D. Fanthome, J. G. A. Farthing, J. W. Fasoli, A. Faugeras, B. Fedorczak, N. Felton, R. C. Fenzi, C. Fernades, A. Fernandes, H. Ferreira, J. A. Ferreira, J. Ferron, J. Fessey, J. A. Figini, L. Figueiredo, J. Figueiredo, A. Finburg, P. Finken, K. H. Fischer, U. Fitzgerald, N. Flanagan, J. Fleming, C. Forbes, A. D. Ford, O. Formisano, A. Fraboulet, D. Francis, R. J. Frassinetti, L. Fresa, R. Friconneau, J. P. Frigione, D. Fullard, K. Fundamenski, W. Palumbo, M. Furno Gal, K. Gao, X. Garavaglia, S. Garbet, X. Garcia, J. Munoz, M. Garcia Gardner, W. Garibaldi, P. Garnier, D. Garzotti, L. Johnson, M. Gatu Gaudio, P. Gauthier, E. Gaze, J. W. Gear, D. F. Gedney, J. Gee, S. J. Gelfusa, M. Genangeli, E. Gerasimov, S. Geraud, A. Gerbaud, T. Gherendi, M. Ghirelli, N. Giacalone, J. C. Giacomelli, L. Gibson, C. S. Gil, C. Gilligan, S. J. Gimblett, C. G. Gin, D. Giovannozzi, E. Giroud, C. Giruzzi, G. Godwin, J. Goff, J. K. Gohil, P. Gojska, A. Goloborod'ko, V. Goncalves, B. Goniche, M. Gonzales, S. de Vicente, S. M. Gonzalez Goodyear, A. Gorelenkov, N. Gorini, G. Goulding, R. Graham, B. Graham, D. Graham, M. E. Graves, J. Green, N. R. Greuner, H. Grigore, E. Griph, F. S. Grisolia, C. Gros, G. Groth, M. Grunhagen, S. Gryaznevich, M. P. Guirlet, R. Gunn, J. Gupta, A. Guzdar, P. Hackett, L. J. Hacquin, S. Haist, B. Hakola, A. Halitovs, M. Hall, S. J. Cook, S. P. Hallworth Hamilton, D. T. Han, H. Handley, R. C. Harding, S. Harling, J. D. W. Harting, D. Harvey, M. J. Haupt, T. D. V. Hawkes, N. C. Hawryluk, R. Hay, J. H. Hayashi, N. Haydon, P. W. Hayward, I. R. Hazel, S. Heesterman, P. J. L. Heidbrink, W. Heinola, K. Hellesen, C. Hellsten, T. Hemming, O. N. Hender, T. C. Henderson, M. Hennion, V. Hidalgo, C. Higashijima, S. Hill, J. W. Hill, M. Hill, K. Hillairet, J. Hillis, D. Hirai, T. Hitchin, M. Hobirk, J. Hogan, C. Hogben, C. H. A. Hogeweij, G. M. D. Hollingham, I. C. Holyaka, R. Homfray, D. A. Honeyands, G. Hong, S. H. Hong, J. H. Horacek, J. Horn, B. A. Horton, A. R. Horton, L. D. Hotchin, S. P. Hough, M. R. Houlberg, W. Howell, D. F. Huber, A. Huddleston, T. M. Hudson, Z. Hughes, M. Huehnerbein, M. Hume, C. C. Hunt, A. J. Hunter, C. L. Hutchinson, T. S. Huygen, S. Huysmans, G. Ide, S. Illescas, C. Imbeaux, F. Ivanova, D. Ivanova-Stanik, I. Ivings, E. Jachmich, S. Jackson, G. Jacquet, P. Jakubowska, K. James, P. V. Janky, F. Jaervinen, A. Jednorog, S. Jenkins, I. Jennison, M. A. C. Jeskins, C. Kwon, O. Jin Joffrin, E. Johnson, M. F. Johnson, R. Johnson, T. Jolovic, D. Jonauskas, V. Jones, E. M. Jones, G. Jones, H. D. Jones, T. T. C. Jouvet, M. Jupen, C. Kachtchouk, I. Kaczmarczyk, J. Kallenbach, A. Kaellne, J. Kalupin, D. Kalvin, S. Kamelander, G. Kamendje, R. Kamiya, K. Kappatou, A. Kasparek, W. Kasprowicz, G. Katramados, I. Kaveney, G. Kaye, A. S. Kear, M. J. Keeling, D. L. Kelliher, D. Kempenaars, M. Khilar, P. Khilkevich, E. Kidd, N. G. Kiisk, M. Kim, K. M. Kim, H. King, R. F. Kinna, D. J. Kiptily, V. Kirnev, G. Kirneva, N. Kirov, K. Kirschner, A. Kisielius, R. Kislov, D. Kiss, G. Kizane, G. Klein, A. Klepper, C. Klimov, N. Klix, A. Knaup, M. Kneuper, K. Kneupner, H. Knight, P. J. Knipe, S. J. Kocan, M. Koch, R. Kochl, F. Kocsis, G. Koivuranta, S. Koppitz, T. Korotkov, A. Koskela, T. Koslowski, H. R. Kotov, V. Kovari, M. D. Kramer, G. Krasilnikov, A. Krasilnikov, V. Kraus, S. Kreter, A. Krieger, K. Kritz, A. Krivchenkov, Y. Kruezi, U. Krylov, S. Ksiazek, I. Kuhn, S. Kuhnlein, W. Kukushkin, A. Kundu, A. Kurki-Suonio, T. Kurowski, A. Kuteev, B. Kuyanov, A. Kyrytsya, V. La Haye, R. Laan, M. Labate, C. Lachichi, A. Laguardia, L. Lam, N. Lang, P. Large, M. T. Lasa, A. Lassiwe, I. Last, J. R. Lawson, K. D. Laxaback, M. Layne, R. A. Le Guern, F. LeBlanc, B. Lee, S. Lee, J. Leggate, H. J. Lehnen, M. Leigheb, M. Lengar, I. Lennholm, M. Lerche, E. Lescure, C. N. Li, Y. Li Puma, A. Liang, Y. Likonen, J. Lin, Y. Lindholm, V. Linke, J. Linstead, S. A. Lipshultz, B. Litaudon, X. Litvak, A. G. Liu, Y. Loarer, T. Loarte, A. Lobel, R. C. Lomas, P. J. Long, F. D. Lonnroth, J. Looker, D. J. Lopez, J. Lotte, Ph. Louche, F. Loughlin, M. J. Loving, A. B. Lowry, C. Luce, T. Lucock, R. M. A. Lukanitsa, A. Lukin, A. Lungu, A. M. Lungu, C. P. Lyssoivan, A. Macheta, P. Mackenzie, A. S. Macrae, M. Maddaluno, G. Maddison, G. P. Madsen, J. Magesh, B. Maget, P. Maggi, C. F. Maier, H. Mailloux, J. Makkonen, T. Makowski, M. Malaquias, A. Manning, C. J. Mansfield, M. Manso, M. E. Mantica, P. Marcenko, N. Marchitti, M. A. Mardenfeld, M. Marechal, J. L. Marinelli, M. Marinucci, M. Marocco, D. Marren, C. A. Marsen, S. Martin, D. Martin, D. L. Martin, G. Martin, Y. Martin-Solis, J. R. Masaki, K. Masiello, A. Maszl, C. Matejcik, S. Matilal, A. Mattei, M. Matthews, G. F. Mattoo, S. Matveev, D. Maviglia, F. May, C. R. Mayer, M. Mayoral, M. L. Mazon, D. Mazzotta, C. Mazzucato, E. McCarthy, P. McClements, K. G. McCormick, K. McCullen, P. A. McCune, D. McDonald, D. C. Mcgregor, R. Mckivitt, J. P. Meakins, A. Medina, F. Meigs, A. G. Menard, M. Meneses, L. Menmuir, S. Merrigan, I. R. Mertens, Ph. Messiaen, A. Meszaros, B. Meyer, H. Miano, G. Michling, R. Miele, M. Miettunen, J. Migliucci, P. Miller, A. G. Mills, S. F. Milnes, J. J. Kim, K. Min Mindham, T. Miorin, E. Mirizzi, F. Mirones, E. Mironov, M. Mitteau, R. Mlynar, J. Mollard, P. Monakhov, I. Monier-Garbet, P. Mooney, R. Moreau, D. Moreau, Ph. Moreira, L. Morgan, A. Morgan, P. D. Morlock, C. Morris, A. W. Mort, G. L. Murakami, M. Murari, A. Mustata, I. Nabais, F. Nakano, T. Nardon, E. Nash, G. Naulin, V. Nave, M. F. F. Nazikian, R. Nedzelski, I. Negus, C. R. Neilson, J. D. Nemtsev, G. Neto, A. Neu, R. Neubauer, O. Newbert, G. J. Newman, M. Nicholls, K. J. Nicolai, A. Nicolas, L. Nieckchen, P. Nielsen, A. H. Nielsen, S. K. Nielsen, P. Nielsen, G. Nieto, J. Nightingale, M. P. S. Nishijima, D. Noble, C. Nocente, M. Nordman, H. Norman, M. Nowak, S. Nunes, I. Oberkofler, M. Odstrcil, M. O'Gorman, T. Ohsako, T. Okabayashi, M. Olariu, S. Oleynikov, A. O'Mullane, M. Ongena, J. Orsitto, F. Oswuigwe, O. I. Ottaviani, M. Oyama, N. Pacella, D. Paget, K. Pajuste, E. Palazzo, S. Palenic, J. Pamela, J. Pamela, S. Pangione, L. Panin, A. Panja, S. Pankin, A. Pantea, A. Parail, V. Paris, P. Parisot, Th. Park, M. Parkin, A. Parsloe, A. Parsons, B. T. Pasqualotto, R. Pastor, P. Paterson, R. Paul, M. K. Peach, D. Pearce, R. J. H. Pearson, B. J. Pearson, I. J. Pedrick, L. C. Pedrosa, M. A. Pegourie, B. Pereira, R. Pereslavtsev, P. Perevezentsev, A. von Thun, Ch. Perez Pericoli-Ridolfini, V. Perona, A. Perrot, Y. Peruzzo, S. Peschanyy, S. Petravich, G. Petrizzi, L. Petrov, V. Petrzilka, V. Philipps, V. Piccolo, F. Pietropaolo, A. Pillon, M. Pinches, S. D. Pinna, T. Pintsuk, G. Piovesan, P. Pironti, A. Pisano, F. Pitts, R. Plaum, B. Plyusnin, V. Polasik, M. Poli, F. M. Pomaro, N. Pompilian, O. Poncet, L. Pool, P. J. Popovichev, S. Porcelli, F. Porfiri, M. T. Portafaix, C. Pospieszczyk, A. Possnert, G. Pozniak, K. Pradhan, S. Pragash, R. Prajapati, V. Prestopino, G. Prior, P. Prokopowicz, R. Puiatti, M. E. Purahoo, K. Pustovitov, V. Putterich, Th. Puttmann-Kneupner, D. Quercia, A. Rachlew, E. Rademaker, R. Rafiq, T. Rainford, M. S. J. Ramogida, G. Rapp, J. Rasmussen, J. J. Rathod, K. Ratta, G. Ravera, G. Refy, D. Reichle, R. Reinelt, M. Reiser, D. Reiss, R. Reiter, D. Rendell, D. Reux, C. Rewoldt, G. Ribeiro, T. T. Riccardo, V. Richards, D. Rigollet, F. Rimini, F. G. Rios, L. Riva, M. Roberts, J. E. C. Robins, R. J. Robinson, D. S. Robinson, S. A. Robson, D. W. Roche, H. Roedig, M. Rodionov, N. Rohde, V. Rolfe, A. Romanelli, M. Romanelli, F. Romano, A. Romero, J. Ronchi, E. Rosanvallon, S. Roux, Ch. Rowe, S. Rubel, M. Rubinacci, G. Ruiz, M. Ruset, C. Russell, M. Ruth, A. Ryc, L. Rydzy, A. Rzadkiewicz, J. Saarelma, S. Sabathier, F. Sabot, R. Sadakov, S. Sadvakassova, A. Sadykov, A. Sagar, P. Saibene, G. Saille, A. Saint-Laurent, F. Salewski, M. Salmi, A. Salzedas, F. Samm, U. Sanchez, P. Sanders, S. Sanders, S. G. Sandford, G. Sandland, K. Sandquist, P. Sands, D. E. G. Santala, M. I. K. Santra, P. Sartori, F. Sartori, R. Sauter, O. Savelyev, A. Savtchkov, A. Scales, S. C. Scarabosio, A. Schaefer, N. Schmidt, V. Schmidt, A. Schmitz, O. Schmuck, S. Schneider, M. Scholz, M. Schoepf, K. Schweer, B. Schweinzer, J. Seki, M. Semeraro, L. Semerok, A. Sergienko, G. Sertoli, M. Shannon, M. M. J. Sharapov, S. E. Shaw, S. R. Shevelev, A. Sieglin, B. Sievering, R. Silva, C. A. Simmons, P. A. Simonetto, A. Simpson, D. Sipilae, S. K. Sips, A. C. C. Siren, P. Sirinelli, A. Sjoestrand, H. Skopintsev, D. Slabkowska, K. Smith, P. G. Snipes, J. Snoj, L. Snyder, S. Soare, S. Solano, E. R. Soleto, A. Solomon, W. Soltane, C. Sonato, P. Sopplesa, A. Sorrentino, A. Sousa, J. Sowden, C. B. C. Sozzi, C. Spaeh, P. Spelzini, T. Spence, J. Spineanu, F. Spuig, P. Stagg, R. D. Stamp, M. F. Stancalie, V. Stangeby, P. Stankiewicz, R. Stan-Sion, C. Starkey, D. E. Stead, M. J. Stejner, M. Stephen, A. V. Stephen, M. Stevens, A. L. Stokes, R. B. Stork, D. Stoyanov, D. Strachan, J. Strand, P. Stransky, M. Strauss, D. Strintzi, D. Studholme, W. Na, Y. Su Subba, F. Summers, H. P. Sun, Y. Surdu-Bob, C. Surrey, E. Sutton, D. J. Svensson, J. Swain, D. Syme, B. D. Symonds, I. D. Szabolics, T. Szepesi, T. Szydlowski, A. Tabares, F. Takalo, V. Takenaga, H. Tala, T. Talbot, A. R. Taliercio, C. Tame, C. Tardocchi, M. Taroni, L. Telesca, G. Terra, A. Terrington, A. O. Testa, D. Theis, J. M. Thomas, J. D. Thomas, P. D. Thomas, P. R. Thompson, V. K. Thomser, C. Thyagaraja, A. Tigwell, P. A. Tiseanu, I. Tivey, R. Todd, J. M. Todd, T. N. Tokar, M. Z. Tosti, S. Trabuc, P. Travere, J. M. Trimble, P. Trkov, A. Trukhina, E. Tsalas, M. Tsitrone, E. Jun, D. Tskhakaya Tudisco, O. Tugarinov, S. Turner, M. M. Tyrrell, S. G. J. Umeda, N. Unterberg, B. Urano, H. Urquhart, A. J. Uytdenhouwen, I. Vaccaro, A. Vadgama, A. P. Vagliasindi, G. Valcarcel, D. Valisa, M. Vallory, J. Valovic, M. Van Eester, D. van Milligen, B. van Rooij, G. J. Varandas, C. A. F. Vartanian, S. Vasava, K. Vdovin, V. Vega, J. Verdoolaege, G. Verger, J. M. Vermare, L. Verona, C. Versloot, Th. Vervier, M. Vicente, J. Villari, S. Villedieu, E. Villone, F. Vince, J. E. Vine, G. J. Vinyar, I. Viola, B. Vitale, E. Vitelli, R. Vitins, A. Vlad, M. Voitsekhovitch, I. Vrancken, M. Vulliez, K. Waldon, C. W. F. Walker, M. Walsh, M. J. Waterhouse, J. Watkins, M. L. Watson, M. J. Wauters, T. Way, M. W. Webb, C. R. Weiland, J. Weisen, H. Weiszflog, M. Wenninger, R. West, A. T. Weulersse, J. M. Wheatley, M. R. Whiteford, A. D. Whitehead, A. M. Whitehurst, A. G. Widdowson, A. M. Wiegmann, C. Wiesen, S. Wilson, A. Wilson, D. Wilson, D. J. Wilson, H. R. Wischmeier, M. Witts, D. M. Wolf, R. C. Wolowski, J. Woscov, P. Wright, J. Xu, G. S. Yavorskij, V. Yerashok, V. Yoo, M. Yorkshades, J. Young, C. Young, D. Young, I. D. Yuhong, X. Yun, S. Zabeo, L. Zabolotny, W. Zaccarian, L. Zagorski, R. Zaitsev, F. S. Zakharov, L. Zanino, R. Zaroschi, V. Zastrow, K. D. Zatz, I. Zefran, B. Zeidner, W. Zerbini, M. Zhang, T. Zhitlukin, A. Zhu, Y. Zimmermann, O. Zoita, V. Zoletnik, S. Zwingman, W. CA JET EFDA Contributors TI Overview of the JET results with the ITER-like wall SO NUCLEAR FUSION LA English DT Article ID PLASMA-FACING COMPONENTS; TOKAMAK PLASMAS; PERFORMANCE; TUNGSTEN; DIVERTOR; REGIME AB Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Z(eff) (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H-98,H-y2 close to 1 and beta(N) similar to 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential. C1 [Romanelli, F.; JET EFDA Contributors] JET EFDA, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Abel, I.; Ford, O.] Univ London, Imperial Coll, London SW7 2AZ, England. [Afanesyev, V.; Chugonov, I.; Gin, D.; Khilkevich, E.; Mironov, M.; Savelyev, A.; Shevelev, A.] Ioffe Phys Tech Inst, St Petersburg 194021, Russia. [Aftanas, M.; Bilkova, P.; Cahyna, P.; Duran, I.; Horacek, J.; Janky, F.; Mlynar, J.; Odstrcil, M.; Petrzilka, V.] Assoc EURATOM IPP CR, Inst Plasma Phys AS CR, Prague 18221 8, Czech Republic. [Agarici, G.; Alarcon, Th.; Argouarch, A.; Armitano, A.; Artaud, J. F.; Balorin, C.; Barbier, D.; Basiuk, V.; Becoulet, M.; Berger-By, G.; Bertrand, B.; Bonnin, X.; Bouquey, F.; Bourdelle, C.; Brault, C.; Bremond, S.; Bucalossi, J.; Caminade, J. P.; Casati, A.; Clairet, F.; Colas, L.; Corre, Y.; Courtois, X.; Delpech, L.; Devynck, P.; Douai, D.; Ekedahl, A.; Falchetto, G.; Fedorczak, N.; Fenzi, C.; Fraboulet, D.; Garbet, X.; Garcia, J.; Garibaldi, P.; Garnier, D.; Gauthier, E.; Geraud, A.; Gerbaud, T.; Ghirelli, N.; Giacalone, J. C.; Gil, C.; Giruzzi, G.; Goniche, M.; Grisolia, C.; Gros, G.; Guirlet, R.; Gunn, J.; Hacquin, S.; Hennion, V.; Hillairet, J.; Hong, S. H.; Huysmans, G.; Imbeaux, F.; Jouvet, M.; Kocan, M.; Le Guern, F.; Li Puma, A.; Litaudon, X.; Loarer, T.; Lotte, Ph.; Maget, P.; Marechal, J. L.; Martin, G.; Mazon, D.; Mitteau, R.; Mollard, P.; Monier-Garbet, P.; Moreau, D.; Moreau, Ph.; Nardon, E.; Nicolas, L.; Ottaviani, M.; Pamela, J.; Pamela, S.; Parisot, Th.; Pastor, P.; Pegourie, B.; Poncet, L.; Portafaix, C.; Reichle, R.; Reiss, R.; Reux, C.; Rigollet, F.; Roche, H.; Rosanvallon, S.; Roux, Ch.; Sabathier, F.; Sabot, R.; Saille, A.; Saint-Laurent, F.; Schaefer, N.; Schneider, M.; Spuig, P.; Theis, J. M.; Trabuc, P.; Travere, J. M.; Tsitrone, E.; Vallory, J.; Vartanian, S.; Verger, J. M.; Vermare, L.; Villedieu, E.; Vulliez, K.; Zwingman, W.] Assoc Euratom CEA, CEA DSM IRFM, F-13108 Cadarache, St Paul Lez Dur, France. [Aggarwal, K. M.; Barnsley, R.; Coffey, I.] Queens Univ Belfast, Dept Pure & Appl Phys, Belfast BT7 1NN, Antrim, North Ireland. [Aho-Mantila, L.; Airila, M.; Coad, J. P.; Hakola, A.; Koivuranta, S.; Likonen, J.; Salmi, A.; Siren, P.; Tala, T.] Assoc EURATOM Tekes, VTT Tech Res Ctr Finland, FIN-02044 Espoo, Finland. [Ahonen, E.; Asunta, O.; Groth, M.; Jaervinen, A.; Koskela, T.; Kurki-Suonio, T.; Lindholm, V.; Lonnroth, J.; Makkonen, T.; Miettunen, J.; Santala, M. I. K.; Sipilae, S. K.] Aalto Univ, Assoc EURATOM Tekes, FIN-00076 Aalto, Finland. [Aints, M.; Kiisk, M.; Laan, M.; Paris, P.] Univ Tartu, EE-50090 Tartu, Estonia. [Akers, R.; Allan, P.; Alper, B.; Altmann, H.; Andrew, Y.; Arcis, N.; Arnoux, G.; Ash, A.; Atkins, G.; Axton, M. D.; Ayres, C.; Baker, R. A.; Balboa, I.; Balshaw, N.; Banks, J. W.; Baranov, Y. F.; Barlow, I. L.; Barnard, M. A.; Beaumont, P. S.; Beldishevski, M.; Bell, A. C.; Belli, F.; Bellinger, M.; Bennett, P. E.; Benterman, N. A.; Beurskens, M. N. A.; Bird, J.; Blackman, T. R.; Boboc, A.; Borthwick, A.; Bowden, M.; Boyce, T.; Boyer, H. J.; Brade, R. J.; Bradshaw, J. M. A.; Braithwaite, G. C.; Brennan, P. D.; Brett, A.; Bright, M. D. J.; Briscoe, F.; Brix, M.; Brown, B. C.; Brown, D. P. D.; Buckley, M. A.; Budd, T.; Bunting, P.; Buratti, P.; Butcher, P. R.; Callaghan, C. P.; Camp, P. G.; Campling, D. C.; Capel, A. J.; Card, P. J.; Carman, P.; Challis, C. D.; Chandler, M.; Chapman, I. T.; Child, D. J.; Ciric, D.; Clarke, R. H.; Clay, R.; Coad, J. P.; Coates, P. A.; Collins, S.; Conboy, J. E.; Cook, N.; Cook, S. P.; Coombs, D.; Cooper, S. R.; Corrigan, G.; Counsell, G. F.; Cox, M.; Cramp, S.; Croft, O.; Crowley, B. J.; Cusack, R. A.; Dalley, S.; Daly, E. T.; Dalziel, A.; Davies, N.; Davies, J. J.; Day, I. E.; Denyer, A. J.; Denyer, R. F.; Dirken, P. J.; Dorling, S. E.; Down, A. P.; Doyle, P. T.; Drozdov, V.; Eaton, R.; Edlington, T.; Edwards, A. M.; Edwards, D. T.; Edwards, P. K.; Elsmore, C. G.; Evans, G. E.; Ewart, G. D.; Ewers, D. T.; Fanthome, J. G. A.; Farthing, J. W.; Felton, R. C.; Fessey, J. A.; Finburg, P.; Flanagan, J.; Fleming, C.; Forbes, A. D.; Francis, R. J.; Fullard, K.; Fundamenski, W.; Garzotti, L.; Gaze, J. W.; Gear, D. F.; Gedney, J.; Gee, S. J.; Gerasimov, S.; Gibson, C. S.; Gilligan, S. J.; Gimblett, C. G.; Giroud, C.; Godwin, J.; Goff, J. K.; Goodyear, A.; Graham, B.; Graham, D.; Graham, M. E.; Green, N. R.; Griph, F. S.; Grunhagen, S.; Gryaznevich, M. P.; Hackett, L. J.; Haist, B.; Hall, S. J.; Cook, S. P. Hallworth; Hamilton, D. T.; Handley, R. C.; Harding, S.; Harling, J. D. W.; Harvey, M. J.; Haupt, T. D. V.; Hawkes, N. C.; Hay, J. H.; Haydon, P. W.; Hayward, I. R.; Hazel, S.; Heesterman, P. J. L.; Hemming, O. N.; Hender, T. C.; Hill, J. W.; Hill, M.; Hitchin, M.; Hogben, C. H. A.; Hollingham, I. C.; Homfray, D. A.; Honeyands, G.; Horn, B. A.; Horton, A. R.; Hotchin, S. P.; Hough, M. R.; Howell, D. F.; Huddleston, T. M.; Hudson, Z.; Hughes, M.; Hume, C. C.; Hunt, A. J.; Hunter, C. L.; Hutchinson, T. S.; Ivings, E.; Jacquet, P.; James, P. V.; Jenkins, I.; Jennison, M. A. C.; Jeskins, C.; Johnson, M. F.; Johnson, R.; Jones, E. M.; Jones, G.; Jones, H. D.; Jones, T. T. C.; Katramados, I.; Kaveney, G.; Kaye, A. S.; Kear, M. J.; Keeling, D. L.; Kempenaars, M.; Khilar, P.; Kidd, N. G.; King, R. F.; Kinna, D. J.; Kiptily, V.; Kirov, K.; Kneuper, K.; Knight, P. J.; Knipe, S. J.; Korotkov, A.; Kovari, M. D.; Krivchenkov, Y.; Lachichi, A.; Lam, N.; Large, M. T.; Last, J. R.; Lawson, K. D.; Layne, R. A.; Lescure, C. N.; Linstead, S. A.; Liu, Y.; Lobel, R. C.; Lomas, P. J.; Long, F. D.; Looker, D. J.; Loughlin, M. J.; Loving, A. B.; Lucock, R. M. A.; Macheta, P.; Mackenzie, A. S.; Macrae, M.; Maddison, G. P.; Mailloux, J.; Manning, C. J.; Marren, C. A.; Martin, D.; Martin, D. L.; Matilal, A.; Matthews, G. F.; May, C. R.; Mayoral, M. L.; McClements, K. G.; McCullen, P. A.; McDonald, D. C.; Mcgregor, R.; Mckivitt, J. P.; Meakins, A.; Meigs, A. G.; Merrigan, I. R.; Meyer, H.; Miller, A. G.; Mills, S. F.; Milnes, J. J.; Mindham, T.; Monakhov, I.; Mooney, R.; Moreira, L.; Morgan, A.; Morgan, P. D.; Morris, A. W.; Mort, G. L.; Nash, G.; Negus, C. R.; Neilson, J. D.; Newbert, G. J.; Newman, M.; Nicholls, K. J.; Nightingale, M. P. S.; Noble, C.; Norman, M.; Oswuigwe, O. I.; Paget, K.; Pangione, L.; Parail, V.; Parkin, A.; Parsloe, A.; Parsons, B. T.; Paterson, R.; Peach, D.; Pearce, R. J. H.; Pearson, B. J.; Pearson, I. J.; Pedrick, L. C.; Perevezentsev, A.; Piccolo, F.; Pinches, S. D.; Pool, P. J.; Popovichev, S.; Prior, P.; Purahoo, K.; Rainford, M. S. J.; Rendell, D.; Riccardo, V.; Richards, D.; Roberts, J. E. C.; Robins, R. J.; Robinson, D. S.; Robinson, S. A.; Robson, D. W.; Rolfe, A.; Romanelli, M.; Rowe, S.; Russell, M.; Saarelma, S.; Sagar, P.; Sanders, S.; Sanders, S. G.; Sandford, G.; Sandland, K.; Sands, D. E. G.; Scales, S. C.; Shannon, M. M. J.; Sharapov, S. E.; Shaw, S. R.; Simmons, P. A.; Simpson, D.; Sirinelli, A.; Smith, P. G.; Sowden, C. B. C.; Spelzini, T.; Spence, J.; Stagg, R. D.; Stamp, M. F.; Starkey, D. E.; Stead, M. J.; Stephen, A. V.; Stevens, A. L.; Stokes, R. B.; Stork, D.; Studholme, W.; Surrey, E.; Sutton, D. J.; Syme, B. D.; Symonds, I. D.; Talbot, A. R.; Tame, C.; Terrington, A. O.; Thomas, J. D.; Thomas, P. D.; Thompson, V. K.; Thyagaraja, A.; Tigwell, P. A.; Todd, J. M.; Todd, T. N.; Tosti, S.; Trimble, P.; Urquhart, A. J.; Vadgama, A. P.; Valovic, M.; Vince, J. E.; Vine, G. J.; Voitsekhovitch, I.; Waldon, C. W. F.; Walker, M.; Walsh, M. J.; Waterhouse, J.; Watson, M. J.; Way, M. W.; Webb, C. R.; West, A. T.; Wheatley, M. R.; Whitehead, A. M.; Whitehurst, A. G.; Widdowson, A. M.; Wilson, A.; Wilson, D.; Wilson, D. J.; Witts, D. M.; Yorkshades, J.; Young, C.; Young, D.; Young, I. D.; Zabeo, L.; Zastrow, K. D.] EURATOM CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Albanese, R.; Ambrosino, G.; Ariola, M.; Artaserse, G.; Bellizio, T.; Carannante, G.; De Tommasi, G.; Formisano, A.; Fresa, R.; Palumbo, M. Furno; Labate, C.; Marchitti, M. A.; Mattei, M.; Maviglia, F.; Miano, G.; Miele, M.; Pironti, A.; Quercia, A.; Rubinacci, G.; Sorrentino, A.; Villone, F.; Viola, B.] Assoc Euratom ENEA Sulla Fus, Consorzio CREATE, I-80125 Naples, Italy. [Alexeev, A.; Andreev, V.; Dnestrovskiy, A.; Kirnev, G.; Kirneva, N.; Kislov, D.; Krylov, S.; Kukushkin, A.; Kuteev, B.; Kuyanov, A.; Pustovitov, V.; Trukhina, E.; Vdovin, V.] NRC Kurchatov Inst, Moscow 123182, Russia. [Alexeev, A.; Amosov, V.; Kachtchouk, I.; Klimov, N.; Krasilnikov, A.; Krasilnikov, V.; Marcenko, N.; Nemtsev, G.; Oleynikov, A.; Petrov, V.; Rodionov, N.; Skopintsev, D.; Tugarinov, S.; Zhitlukin, A.] Troitsk Inst Innovat & Thermonucl Res TRINITI, Troitsk 142190, Moscow Region, Russia. [Alfier, A.; Baruzzo, M.; Bigi, M.; Bolzonella, T.; Brombin, M.; Carraro, L.; Cavazzana, R.; Cavinato, M.; Cenedese, A.; Chitarin, G.; Degli Agostini, F.; Masiello, A.; Nielsen, P.; Pasqualotto, R.; Peruzzo, S.; Piovesan, P.; Pomaro, N.; Puiatti, M. E.; Schmidt, V.; Sonato, P.; Sopplesa, A.; Taliercio, C.; Taroni, L.; Valisa, M.] Consorzio RFX, Assoc EURATOM ENEA Sulla Fus, Padua, Italy. [Almaviva, S.; Gaudio, P.; Gelfusa, M.; Marinelli, M.; Migliucci, P.; Prestopino, G.; Verona, C.; Vitelli, R.] Univ Roma, Assoc EURATOM ENEA Sulla Fus, Rome, Italy. [Alonso, A.; Baciero, A.; Barrena, L.; Barrera, L.; Blanco, E.; Carralero, D.; Coelho, R.; de la Cal, E.; de la Luna, E.; de Pablos, J. L.; Estrada, T.; Ferreira, J. A.; Gonzales, S.; Hidalgo, C.; Illescas, C.; Lopez, J.; Medina, F.; Mirones, E.; Pedrosa, M. A.; Ratta, G.; Rios, L.; Romero, J.; Sanchez, P.; Solano, E. R.; Soleto, A.; Tabares, F.; van Milligen, B.; Vega, J.] Asociac EURATOM CIEMAT, Lab Nacl Fus, Madrid, Spain. [Alves, D.; Belo, P. S. A.; Bernardo, J.; Bizarro, J.; Borba, D.; Carvalho, B. B.; Carvalho, I.; Carvalho, P.; Cortes, S.; Cruz, N.; Cupido, L.; Fernades, A.; Fernandes, H.; Ferreira, J.; Figueiredo, A.; Goncalves, B.; Manso, M. E.; Meneses, L.; Nabais, F.; Nave, M. F. F.; Nedzelski, I.; Neto, A.; Nunes, I.; Pereira, R.; Plyusnin, V.; Ribeiro, T. T.; Salzedas, F.; Silva, C. A.; Sousa, J.; Valcarcel, D.; Varandas, C. A. F.; Vicente, J.] Inst Super Tecn, Assoc Euratom IST, Inst Plasmas & Fusao Nucl, P-1049001 Lisbon, Portugal. [Andersson, F.; Eriksson, A.; Nordman, H.; Sandquist, P.; Strand, P.; Stransky, M.; Weiland, J.] Chalmers, Dept Earth & Space Sci, Assoc EURATOM VR, SE-41296 Gothenburg, Sweden. [Sunden, E. Andersson; Asp, E.; Cecconello, M.; Ericsson, G.; Johnson, M. Gatu; Hellesen, C.; Ronchi, E.; Sjoestrand, H.; Weiszflog, M.] Uppsala Univ, Dept Phys & Astron, Assoc EURATOM VR, SE-75120 Uppsala, Sweden. [Angelone, M.; Apruzzese, G.; Batistoni, P.; Boncagni, L.; Botrugno, A.; Calabro, G.; Cardinali, A.; Castaldo, C.; Centioli, C.; Cesario, R.; Cocilovo, V.; Conroy, S.; Crisanti, F.; De Angelis, R.; De-Angelis, R.; Di Matteo, L.; Di Pace, L.; Dooley, P.; Esposito, B.; Frigione, D.; Genangeli, E.; Giovannozzi, E.; Leigheb, M.; Maddaluno, G.; Marinucci, M.; Marocco, D.; Mazzotta, C.; Mirizzi, F.; Orsitto, F.; Pacella, D.; Petrizzi, L.; Pillon, M.; Pinna, T.; Porfiri, M. T.; Ramogida, G.; Ravera, G.; Riva, M.; Romanelli, F.; Romano, A.; Rydzy, A.; Semeraro, L.; Tudisco, O.; Tyrrell, S. G. J.; Vagliasindi, G.; Villari, S.; Vitale, E.; Zaccarian, L.; Zerbini, M.] CR Frascati, Assoc EURATOM ENEA Sulla Fus, Rome, Italy. [Anghel, M.; Curuia, M.; Soare, S.] Assoc EURATOM MEdC, Natl Inst Cryogen & Isotope Technol, Ramnicu Valcea, Romania. [Anghel, A.; Atanasiu, C. V.; Chiru, P.; Craciunescu, T.; Falie, D.; Gherendi, M.; Grigore, E.; Lungu, A. M.; Lungu, C. P.; Mustata, I.; Pantea, A.; Pompilian, O.; Ruset, C.; Spineanu, F.; Stancalie, V.; Surdu-Bob, C.; Tiseanu, I.; Vlad, M.; Zaroschi, V.] Natl Inst Laser Plasma & Radiat Phys, Assoc EURATOM MEdC, Bucharest, Magurele, Romania. [Angioni, C.; Balden, M.; Belonohy, E.; Bernert, M.; Bobkov, V.; Burckhart, A.; Chankin, A.; Coster, D.; Devaux, S.; Dodt, D.; Dux, R.; Eich, Th.; Munoz, M. Garcia; Greuner, H.; Hobirk, J.; Kallenbach, A.; Krieger, K.; Lang, P.; Maggi, C. F.; Maier, H.; Mayer, M.; McCormick, K.; Neu, R.; Oberkofler, M.; von Thun, Ch. Perez; Putterich, Th.; Reinelt, M.; Rohde, V.; Scarabosio, A.; Schweinzer, J.; Sertoli, M.; Sieglin, B.; Wenninger, R.; Wischmeier, M.; Zeidner, W.] EURATOM Ass, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. [Arena, P.; Palazzo, S.] Univ Catania, Dipartimento Ingegneria Elettr Elettron & Sistemi, I-95125 Catania, Italy. [Beausang, K.; Boilson, D.; Ellingboe, B.; Fitzgerald, N.; Kelliher, D.; Leggate, H. J.; Mansfield, M.; McCarthy, P.; O'Gorman, T.; Ruth, A.; Turner, M. M.] Dublin City Univ, Dublin 9, Ireland. [Arshad, S.; Saibene, G.; Sartori, F.; Sartori, R.; Thomas, P. R.] FUSION ENERGY Joint Undertaking, E-08019 Barcelona, Spain. [Avotina, L.; Halitovs, M.; Kizane, G.; Pajuste, E.; Vitins, A.] Univ Latvia, Riga, Latvia. [Bailescu, V.; Burcea, G.] Nucl Fuel Plant, Pitesti, Romania. [Baiocchi, B.; Bin, W.; Caniello, R.; Croci, G.; Figini, L.; Garavaglia, S.; Laguardia, L.; Mantica, P.; Miorin, E.; Nowak, S.; Pietropaolo, A.; Simonetto, A.; Sozzi, C.; Tardocchi, M.] Euratom ENEA CNR Assoc Fus, IFP CNR, I-20125 Milan, Italy. [Bateman, G.; Kritz, A.; Pankin, A.; Rafiq, T.; Snyder, S.] Lehigh Univ, Bethlehem, PA USA. [Baumgarten, N.; Von Bovert, K.; Bozhenkov, A.; Brezinsek, S.; Clever, M.; Coenen, J.; Esser, H. G.; Finken, K. H.; Gupta, A.; Harting, D.; Huber, A.; Jolovic, D.; Kalupin, D.; Kirschner, A.; Kiss, G.; Knaup, M.; Kneupner, H.; Koslowski, H. R.; Kotov, V.; Kraus, S.; Kreter, A.; Kruezi, U.; Lassiwe, I.; Lehnen, M.; Liang, Y.; Mertens, Ph.; Neubauer, O.; Nicolai, A.; Panin, A.; Paul, M. K.; Philipps, V.; Pospieszczyk, A.; Puttmann-Kneupner, D.; Rapp, J.; Reiser, D.; Reiter, D.; Sadakov, S.; Samm, U.; Savtchkov, A.; Schmidt, A.; Schmitz, O.; Schweer, B.; Sergienko, G.; Sun, Y.; Terra, A.; Thomser, C.; Tokar, M. Z.; Unterberg, B.; Wiegmann, C.; Wiesen, S.; Wolf, R. C.; Zhang, T.; Zimmermann, O.] Forschungszentrum Julich, Inst Energy Res Plasma Phys, EURATOM Assoc, D-52425 Julich, Germany. [Baylor, L.; Biewer, T. M.; Canik, J.; Caughman, J.; Cole, M.; Combs, S.; del-Castillo-Negrete, D.; Gardner, W.; Goulding, R.; Hillis, D.; Hogan, C.; Houlberg, W.; Klepper, C.; Murakami, M.; Swain, D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Bazylev, B.; Bekris, N.; Day, C.; Fischer, U.; Klix, A.; Michling, R.; Pereslavtsev, P.; Peschanyy, S.; Spaeh, P.; Strauss, D.; Vaccaro, A.] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany. [Bekris, N.; Borba, D.; Figueiredo, J.; Horton, L. D.; Joffrin, E.; Lennholm, M.; Lowry, C.; Malaquias, A.; Murari, A.; Rademaker, R.; Soltane, C.; Watkins, M. L.; Zoita, V.] Culham Sci Ctr, EFDA Close Support Unit, Abingdon OX14 3DB, Oxon, England. [Bergsaker, H.; Brzozowski, J.; Chernyshova, M.; Drake, J. R.; Elevant, T.; Frassinetti, L.; Hellsten, T.; Ivanova, D.; Johnson, T.; Laxaback, M.; Rubel, M.] Assoc EURATOM VR, Fusion Plasma Phys, EES, KTH, SE-10044 Stockholm, Sweden. [Berk, H.; Breizman, B.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. [Bieg, B.; Bienkowska, B.; Czarnecka, A.; Czarski, T.; Gojska, A.; Ivanova-Stanik, I.; Jakubowska, K.; Jednorog, S.; Kaczmarczyk, J.; Kasprowicz, G.; Ksiazek, I.; Kurowski, A.; Polasik, M.; Pozniak, K.; Prokopowicz, R.; Ryc, L.; Rzadkiewicz, J.; Scholz, M.; Slabkowska, K.; Stankiewicz, R.; Szydlowski, A.; Wolowski, J.; Zabolotny, W.] Assoc Euratom IPPLM, PL-01497 Warsaw, Poland. [Bjorkas, C.; Heinola, K.; Lasa, A.] Univ Helsinki, Assoc EURATOM TEKES, FI-00014 Helsinki, Finland. [Blanchard, P.; Fasoli, A.; Graves, J.; Martin, Y.; Sauter, O.; Testa, D.; Weisen, H.] Ecole Polytech Federale Lausanne EPFL, Assoc Euratom Confederat Suisse, CRPP, CH-1015 Lausanne, Switzerland. [Blum, J.; Boulbe, C.; Coda, S.; Faugeras, B.] Univ Nice Sophia Antipolis, Lab JA Dieudonne, F-06108 Nice 2, France. [Bolshakova, I.; Holyaka, R.; Yerashok, V.] Magnet Sensor Lab LPNU, UA-79013 Lvov, Ukraine. [Bonheure, G.; Giacomelli, L.; Gorini, G.; Nocente, M.] Univ Milano Bicoccae, EURATOM ENEA CNR Assoc Fus, I-20126 Milan, Italy. [Braet, J.; Dylst, K.; de Vicente, S. M. Gonzalez; Uytdenhouwen, I.] Assoc EURATOM SCK CEN, Nucl Res Ctr, B-2400 Mol, Belgium. [Braic, V.] Natl Inst Optoelect, Assoc EURATOM MEdC, Bucharest, Romania. [Breue, J.; Compan, J.; Dominiczak, K.; Hirai, T.; Huehnerbein, M.; Koppitz, T.; Kuhnlein, W.; Linke, J.; Pintsuk, G.; Roedig, M.; Sievering, R.] Forschungszentrum Julich, Inst Energy Research, EURATOM Assoc, D-52425 Julich, Germany. [Budny, R. V.; Cecil, E.; Darrow, D.; Davies, W.; Gorelenkov, N.; Hawryluk, R.; Heidbrink, W.; Hill, K.; Kramer, G.; LeBlanc, B.; Mardenfeld, M.; Mazzucato, E.; McCune, D.; Nazikian, R.; Nielsen, G.; Okabayashi, M.; Solomon, W.; Strachan, J.; Zakharov, L.; Zatz, I.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Buttery, R. J.; Carlstrom, T.; Ferron, J.; Gohil, P.; Jackson, G.; La Haye, R.; Luce, T.; Makowski, M.; Menard, M.; Stangeby, P.] Gen Atom Co, San Diego, CA 92186 USA. [Cannas, B.; Pisano, F.] Univ Cagliari, Dept Elect & Elect Engn, I-09123 Cagliari, Italy. [Carter, T.] Univ California, Oakland, CA 94607 USA. [Cecil, F. E.] Colorado Sch Mines, Golden, CO 80401 USA. [Chang, C.; Hayashi, N.; Higashijima, S.; Ide, S.; Kamiya, K.; Masaki, K.; Nakano, T.; Ohsako, T.; Oyama, N.; Seki, M.; Takenaga, H.; Umeda, N.; Urano, H.] Japan Atom Energy Agcy, Naka Fus Res Estab, Naka, Ibaraki 3110193, Japan. [Chektybayev, B.; Sadvakassova, A.; Sadykov, A.] ASE Inst Atom Energy, RSE NNC RK, Kurchatov, Kazakhstan. [Crombe, K.; Doldatov, S.; Matveev, D.; Telesca, G.; Verdoolaege, G.] UG Ghent Univ, Dept Appl Phys, B-9000 Ghent, Belgium. [Crombe, K.; Dumortier, P.; Durodie, F.; Huygen, S.; Jachmich, S.; Koch, R.; Kyrytsya, V.; Lerche, E.; Louche, F.; Lyssoivan, A.; Messiaen, A.; Ongena, J.; Van Eester, D.; Vervier, M.; Vrancken, M.; Wauters, T.; Yuhong, X.] Assoc EURATOM Belgian State Lab Plasma Phys, Koninklijke Mil Sch, Ecole Royale Mil, B-1000 Brussels, Belgium. [Cseh, G.; Dunai, D.; Gal, K.; Kalvin, S.; Kocsis, G.; Meszaros, B.; Petravich, G.; Refy, D.; Szabolics, T.; Szepesi, T.; Zoletnik, S.] Assoc EURATOM HAS, Wigner Res Ctr Phys, H-1525 Budapest, Hungary. [Daniel, R.; Dutta, P.; Kundu, A.; Magesh, B.; Mattoo, S.; Nishijima, D.; Panja, S.; Pradhan, S.; Pragash, R.; Prajapati, V.; Rathod, K.; Santra, P.; Stephen, M.; Vasava, K.] Inst Plasma Res, Bhat 382428, Gandhinagar, India. [David, O.; Friconneau, J. P.; Perrot, Y.] CEA Fontenay Roses, F-92265 Fontenay Aux Roses, France. [de Arcas, G.; Nieto, J.; Ruiz, M.] Univ Politecn Madrid, Madrid, Spain. [de Baar, M. R.; de Vries, P. C.; Delabie, E.; Hogeweij, G. M. D.; van Rooij, G. J.; Versloot, Th.] FOM Inst DIFFER, NL-3430 BE Nieuwegein, Netherlands. [Denisov, G.; Litvak, A. G.] Inst Appl Phys, Nizhnii Novgorod 603155, Russia. [Dittmar, T.; Doerner, R.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Dreischuh, T.; Stoyanov, D.] Bulgarian Acad Sci, Inst Elect, Assoc EURATOM INRNE, BU-1784 Sofia, Bulgaria. [Emmoth, B.] Assoc EURATOM VR, Dept Mat Phys, ICT, KTH, SE-16440 Kista, Sweden. [Erdei, G.] Budapest Univ Technol & Econ, Assoc EURATOM HAS, H-1111 Budapest, Hungary. [Eriksson, L. G.; Rimini, F. G.; Sips, A. C. C.; Tivey, R.] European Commiss, B-1049 Brussels, Belgium. [Evangelidis, E. A.; Tsalas, M.] Assoc EURATOM Hellen Republ, NCSR Demokritos, Attiki 15310, Aghia Paraskevi, Greece. [Gao, X.; Xu, G. S.; Zhu, Y.] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. [Goloborod'ko, V.; Kuhn, S.; Maszl, C.; Schoepf, K.; Jun, D. Tskhakaya; Yavorskij, V.] Univ Innsbruck, Assoc EURATOM OAW, Innsbruck, Austria. [Guzdar, P.] Univ Maryland, Inst Plasma Res, College Pk, MD 20742 USA. [Han, H.; Kim, K. M.; Kim, H.; Lee, J.; Kim, K. Min; Na, Y. Su; Yoo, M.] Seoul Natl Univ, Shilim Dong, Gwanak Gu, South Korea. [Henderson, M.; Loarte, A.; Pitts, R.] ITER Org, F-13067 St Paul Les Durance, France. [Kwon, O. Jin] Daegu Univ, Gyongsan 712714, Gyeongbuk, South Korea. [Jonauskas, V.; Kisielius, R.] Assoc EURATOM LEI, LT-44403 Kaunas, Lithuania. [Jupen, C.] Lund Univ, Dept Phys, Assoc EURATOM LEI, S-22100 Lund, Sweden. [Kaellne, J.; Possnert, G.] Uppsala Univ, Dept Engn Sci, Assoc EURATOM VR, SE-75120 Uppsala, Sweden. [Kamelander, G.; Kochl, F.] Vienna Univ Technol, Assoc EURATOM OAW, Vienna, Austria. [Kamendje, R.] IAEA, Phys Sect, Div Phys & Chem Sci, A-1400 Vienna, Austria. [Kappatou, A.; Strintzi, D.] Natl Tech Univ Athens, Assoc EURATOM Hellen Republ, GR-15773 Zografos, Athens, Greece. [Kasparek, W.; Plaum, B.] Univ Stuttgart, IPF, D-7000 Stuttgart, Germany. [Klein, A.; Li, Y.; Lin, Y.; Lipshultz, B.; Rewoldt, G.; Snipes, J.; Woscov, P.; Wright, J.] MIT Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Lengar, I.; Snoj, L.; Trkov, A.; Zefran, B.] Jozef Stefan Inst, Reactor Phys Dept, Assoc EURATOM MHST, SI-1000 Ljubljana, Slovenia. [Lukanitsa, A.] Moscow MV Lomonosov State Univ, Moscow 119991, Russia. [Madsen, J.; Naulin, V.; Nielsen, A. H.; Nielsen, S. K.; Rasmussen, J. J.; Salewski, M.; Stejner, M.] Tech Univ Denmark, Dept Phys, Assoc EURATOM DTU, DK-4000 Roskilde, Denmark. [Marsen, S.; Schmuck, S.; Svensson, J.] Teilinst Greifswald, Max Planck Inst Plasmaphys, EURATOM Assoc, D-17491 Greifswald, Germany. [Martin-Solis, J. R.] Univ Carlos III Madrid, Dept Fis, Madrid 28911, Spain. [Matejcik, S.; Palenic, J.; Zaitsev, F. S.] Comenius Univ Mlynska Dolina F2, Fac Math Phys & Informat, Dept Expt Phys, Bratislava 84248, Slovakia. [Menmuir, S.; Rachlew, E.] KTH, SCI, Dept Phys, Assoc EURATOM VR, SE-10691 Stockholm, Sweden. [Morlock, C.; Nieckchen, P.; Pericoli-Ridolfini, V.; Zagorski, R.] EFDA Close Support Unit, D-85748 Garching, Germany. [Olariu, S.; Stan-Sion, C.] Horia Hulubei Natl Inst Phys Nucl Engn, Assoc EURATOM MEdC, Magurele, Romania. [O'Mullane, M.; Summers, H. P.; Whiteford, A. D.] Univ Strathclyde, Dept Phys & Appl Phys, Glasgow G4 ONG, Lanark, Scotland. [Perona, A.; Porcelli, F.; Subba, F.; Zanino, R.] Assoc EURATOM ENEA Fus, Politecn Torino, Turin, Italy. [Poli, F. M.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Semerok, A.; Weulersse, J. M.] CEA Saclay, F-91191 Gif Sur Yvette, France. [Takalo, V.] Tampere Univ Technol, Assoc EURATOM Tekes, FI-33101 Tampere, Finland. [Wilson, H. R.] Univ York, York YO10 5DD, N Yorkshire, England. RP Romanelli, F (reprint author), JET EFDA, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. EM Francesco.Romanelli@jet.efda.org RI Silva, Carlos/L-6490-2013; Illescas, Clara/K-2254-2014; Baciero, Alfonso/B-4942-2008; Alonso, Juan Arturo/K-9009-2014; Vermare, Laure/L-7488-2014; Schneider, Mireille/B-7821-2010; Nave, Maria/A-5581-2013; Schweinzer, Josef/C-9242-2009; Artaud, Jean-Francois/J-2068-2012; Coster, David/B-4311-2010; Coelho, Rui/N-2692-2013; Lang, Peter/H-2507-2013; Maszl, Christian/G-6642-2014; Fresa, Raffaele/I-3330-2012; Salmi, Antti/I-7413-2013; Nocente, Massimo/I-7889-2014; Putterich, Thomas/A-6962-2012; Figueiredo, Antonio/F-9261-2011; Bekris Dr, Nicolas/F-9104-2014; Mantica, Paola/K-3033-2012; Duran, Ivan/G-7429-2014; Horacek, Jan/G-8301-2014; Cahyna, Pavel/G-9116-2014; Bilkova, Petra/G-9496-2014; Mlynar, Jan/G-9941-2014; Aftanas, Milan/H-3533-2014; Nielsen, Anders/A-3973-2012; Graham, Duncan/C-8440-2011; Stancalie, Viorica/B-7612-2011; Ribeiro, Tiago/J-7404-2013; Lungu, Cristian Petrica/C-2788-2011; Ratta, Giuseppe/I-5515-2012; Ariola, Marco/C-4633-2012; van Milligen, Boudewijn/H-5121-2015; Salewski, Mirko/C-7104-2008; Miano, Giovanni/L-3507-2014; Cruz, Nuno Sergio/K-4893-2015; Shevelev, Alexander/K-7526-2015; Groth, Mathias/G-2227-2013; Gin, Dmitry/E-7703-2013; Boboc, Alexandru/M-3650-2015; Slabkowska, katarzyna/O-8760-2015; Madsen, Jens/F-1333-2010; Naulin , Volker/A-2419-2012; Albanese, Raffaele/B-5394-2016; nielsen, stefan/G-6300-2013; Blanco, Emilio/F-8893-2016; Douai, David/H-2848-2012; TIseanu, Ion/G-1930-2011; De Tommasi, Gianmaria/A-8787-2012; Fernandes, Horacio/E-3292-2012; Stejner, Morten/J-8218-2016; Holyaka, Roman/K-4556-2016; Verdoolaege, Geert/I-4655-2012; Lukin, Alexander/M-9058-2013; faugeras, blaise/N-1788-2016; Blum, Jacques/N-1792-2016; Estrada, Teresa/N-9048-2016; Janky, Filip/G-9283-2014; Goncalves, Bruno/H-8679-2012; Maviglia, Francesco/H-5481-2012; Gerasimov, Sergei/O-4881-2015; Dnestrovskij, Alexei/F-2202-2014; Gorini, Giuseppe/H-9595-2016; Bizarro, Joao P. S./F-4124-2011; ramogida, giuseppe/B-8165-2017; Chitarin, Giuseppe/H-6133-2012; Hidalgo, Carlos/H-6109-2015; Solano, Emilia/A-1212-2009; Nunes, Isabel/D-1627-2017; Rasmussen, Jens Juul/A-2757-2012; Malaquias, Artur/L-7956-2013; Brezinsek, Sebastijan/B-2796-2017; Neu, Rudolf /B-4438-2010; OI Silva, Carlos/0000-0001-6348-0505; Illescas, Clara/0000-0001-7141-8461; Alonso, Juan Arturo/0000-0001-6863-8578; Vermare, Laure/0000-0002-3090-2713; Nave, Maria/0000-0003-2078-6584; Coster, David/0000-0002-2470-9706; Coelho, Rui/0000-0002-1127-1661; Lang, Peter/0000-0003-1586-8518; Maszl, Christian/0000-0003-4073-0625; Fresa, Raffaele/0000-0001-5140-0299; Nocente, Massimo/0000-0003-0170-5275; Putterich, Thomas/0000-0002-8487-4973; Figueiredo, Antonio/0000-0003-0487-8956; Bekris Dr, Nicolas/0000-0003-3621-9082; Horacek, Jan/0000-0002-4276-3124; Mlynar, Jan/0000-0003-4718-4321; Nielsen, Anders/0000-0003-3642-3905; Stancalie, Viorica/0000-0003-3750-9428; Ratta, Giuseppe/0000-0002-5676-9631; Ariola, Marco/0000-0002-8660-8468; van Milligen, Boudewijn/0000-0001-5344-6274; Salewski, Mirko/0000-0002-3699-679X; Miano, Giovanni/0000-0002-5765-799X; Cruz, Nuno Sergio/0000-0002-3976-4871; Shevelev, Alexander/0000-0001-7227-8448; Gin, Dmitry/0000-0003-3846-1091; Madsen, Jens/0000-0002-6874-2970; Naulin , Volker/0000-0001-5452-9215; Albanese, Raffaele/0000-0003-4586-8068; nielsen, stefan/0000-0003-4175-3829; Blanco, Emilio/0000-0002-1323-7547; TIseanu, Ion/0000-0001-6740-8535; De Tommasi, Gianmaria/0000-0002-8509-7176; Fernandes, Horacio/0000-0001-6542-7767; Stejner, Morten/0000-0003-1300-8135; Holyaka, Roman/0000-0002-7720-0372; Verdoolaege, Geert/0000-0002-2640-4527; Lukin, Alexander/0000-0002-8479-1836; Estrada, Teresa/0000-0001-6205-2656; Goncalves, Bruno/0000-0003-0670-1214; Gerasimov, Sergei/0000-0002-6249-2931; Dnestrovskij, Alexei/0000-0002-4827-9421; Gorini, Giuseppe/0000-0002-4673-0901; Bizarro, Joao P. S./0000-0002-0698-6259; Chitarin, Giuseppe/0000-0003-3060-8466; Solano, Emilia/0000-0002-4815-3407; Rasmussen, Jens Juul/0000-0002-3543-690X; Romanelli, Francesco/0000-0001-9778-1090; Malaquias, Artur/0000-0003-2688-1160; Fernandes, Ana/0000-0003-4155-7035; Mayer, Matej/0000-0002-5337-6963; Prestopino, Giuseppe/0000-0002-2916-5883; Coenen, Jan Willem/0000-0002-8579-908X; Frassinetti, Lorenzo/0000-0002-9546-4494; Nunes, Isabel/0000-0003-0542-1982; Tabares, Francisco/0000-0001-7045-8672; Solomon, Wayne/0000-0002-0902-9876; Gaudio, Pasqualino/0000-0003-0861-558X; garcia-munoz, manuel/0000-0002-3241-502X; Almaviva, Salvatore/0000-0002-8671-9969; Unterberg, Bernhard/0000-0003-0866-957X; Neubauer, Olaf/0000-0002-4516-4397; Brezinsek, Sebastijan/0000-0002-7213-3326; Neu, Rudolf /0000-0002-6062-1955; Ferreira, Jorge/0000-0001-5015-7207; del-Castillo-Negrete, Diego/0000-0001-7183-801X; Carvalho, Ivo/0000-0002-2458-8377; GARAVAGLIA, SAUL FRANCESCO/0000-0002-8433-1901 FU EURATOM FX This work was supported by EURATOM and carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission. NR 62 TC 100 Z9 100 U1 43 U2 326 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2013 VL 53 IS 10 SI SI AR 104002 DI 10.1088/0029-5515/53/10/104002 PG 19 WC Physics, Fluids & Plasmas SC Physics GA 226AD UT WOS:000325005600003 ER PT J AU Sabbagh, SA Ahn, JW Allain, J Andre, R Balbaky, A Bastasz, R Battaglia, D Bell, M Bell, R Beiersdorfer, P Belova, E Berkery, J Betti, R Bialek, J Bigelow, T Bitter, M Boedo, J Bonoli, P Boozer, A Bortolon, A Boyle, D Brennan, D Breslau, J Buttery, R Canik, J Caravelli, G Chang, C Crocker, N Darrow, D Davis, B Delgado-Aparicio, L Diallo, A Ding, S D'Ippolito, D Domier, C Dorland, W Ethier, S Evans, T Ferron, J Finkenthal, M Foley, J Fonck, R Frazin, R Fredrickson, E Fu, G Gates, D Gerhardt, S Glasser, A Gorelenkov, N Gray, T Guo, Y Guttenfelder, W Hahm, T Harvey, R Hassanein, A Heidbrink, W Hill, K Hirooka, Y Hooper, EB Hosea, J Humphreys, D Indireshkumar, K Jaeger, F Jarboe, T Jardin, S Jaworski, M Kaita, R Kallman, J Katsuro-Hopkins, O Kaye, S Kessel, C Kim, J Kolemen, E Kramer, G Krasheninnikov, S Kubota, S Kugel, H La Haye, RJ Lao, L LeBlanc, B Lee, W Lee, K Leuer, J Levinton, F Liang, Y Liu, D Lore, J Luhmann, N Maingi, R Majeski, R Manickam, J Mansfield, D Maqueda, R Mazzucato, E McLean, A McCune, D McGeehan, B McKee, G Medley, S Meier, E Menard, J Menon, M Meyer, H Mikkelsen, D Miloshevsky, G Mueller, D Munsat, T Myra, J Nelson, B Nishino, N Nygren, R Ono, M Osborne, T Park, H Park, J Park, YS Paul, S Peebles, W Penaflor, B Perkins, RJ Phillips, C Pigarov, A Podesta, M Preinhaelter, J Raman, R Ren, Y Rewoldt, G Rognlien, T Ross, P Rowley, C Ruskov, E Russell, D Ruzic, D Ryan, P Schaffer, M Schuster, E Scotti, F Shaing, K Shevchenko, V Shinohara, K Sizyuk, V Skinner, CH Smirnov, A Smith, D Snyder, P Solomon, W Sontag, A Soukhanovskii, V Stoltzfus-Dueck, T Stotler, D Stratton, B Stutman, D Takahashi, H Takase, Y Tamura, N Tang, X Taylor, G Taylor, C Tritz, K Tsarouhas, D Umansky, M Urban, J Untergberg, E Walker, M Wampler, W Wang, W Whaley, J White, R Wilgen, J Wilson, R Wong, KL Wright, J Xia, Z Youchison, D Yu, G Yuh, H Zakharov, L Zemlyanov, D Zimmer, G Zweben, SJ AF Sabbagh, S. A. Ahn, J. -W. Allain, J. Andre, R. Balbaky, A. Bastasz, R. Battaglia, D. Bell, M. Bell, R. Beiersdorfer, P. Belova, E. Berkery, J. Betti, R. Bialek, J. Bigelow, T. Bitter, M. Boedo, J. Bonoli, P. Boozer, A. Bortolon, A. Boyle, D. Brennan, D. Breslau, J. Buttery, R. Canik, J. Caravelli, G. Chang, C. Crocker, N. Darrow, D. Davis, B. Delgado-Aparicio, L. Diallo, A. Ding, S. D'Ippolito, D. Domier, C. Dorland, W. Ethier, S. Evans, T. Ferron, J. Finkenthal, M. Foley, J. Fonck, R. Frazin, R. Fredrickson, E. Fu, G. Gates, D. Gerhardt, S. Glasser, A. Gorelenkov, N. Gray, T. Guo, Y. Guttenfelder, W. Hahm, T. Harvey, R. Hassanein, A. Heidbrink, W. Hill, K. Hirooka, Y. Hooper, E. B. Hosea, J. Humphreys, D. Indireshkumar, K. Jaeger, F. Jarboe, T. Jardin, S. Jaworski, M. Kaita, R. Kallman, J. Katsuro-Hopkins, O. Kaye, S. Kessel, C. Kim, J. Kolemen, E. Kramer, G. Krasheninnikov, S. Kubota, S. Kugel, H. La Haye, R. J. Lao, L. LeBlanc, B. Lee, W. Lee, K. Leuer, J. Levinton, F. Liang, Y. Liu, D. Lore, J. Luhmann, N., Jr. Maingi, R. Majeski, R. Manickam, J. Mansfield, D. Maqueda, R. Mazzucato, E. McLean, A. McCune, D. McGeehan, B. McKee, G. Medley, S. Meier, E. Menard, J. Menon, M. Meyer, H. Mikkelsen, D. Miloshevsky, G. Mueller, D. Munsat, T. Myra, J. Nelson, B. Nishino, N. Nygren, R. Ono, M. Osborne, T. Park, H. Park, J. Park, Y. S. Paul, S. Peebles, W. Penaflor, B. Perkins, R. J. Phillips, C. Pigarov, A. Podesta, M. Preinhaelter, J. Raman, R. Ren, Y. Rewoldt, G. Rognlien, T. Ross, P. Rowley, C. Ruskov, E. Russell, D. Ruzic, D. Ryan, P. Schaffer, M. Schuster, E. Scotti, F. Shaing, K. Shevchenko, V. Shinohara, K. Sizyuk, V. Skinner, C. H. Smirnov, A. Smith, D. Snyder, P. Solomon, W. Sontag, A. Soukhanovskii, V. Stoltzfus-Dueck, T. Stotler, D. Stratton, B. Stutman, D. Takahashi, H. Takase, Y. Tamura, N. Tang, X. Taylor, G. Taylor, C. Tritz, K. Tsarouhas, D. Umansky, M. Urban, J. Untergberg, E. Walker, M. Wampler, W. Wang, W. Whaley, J. White, R. Wilgen, J. Wilson, R. Wong, K. L. Wright, J. Xia, Z. Youchison, D. Yu, G. Yuh, H. Zakharov, L. Zemlyanov, D. Zimmer, G. Zweben, S. J. TI Overview of physics results from the conclusive operation of the National Spherical Torus Experiment SO NUCLEAR FUSION LA English DT Article ID RESISTIVE WALL MODE; EXPERIMENT NSTX; INSTABILITIES; PLASMAS; TRANSPORT; TOKAMAK; STABILIZATION; EDGE; CONFINEMENT; PEDESTAL AB Research on the National Spherical Torus Experiment, NSTX, targets physics understanding needed for extrapolation to a steady-state ST Fusion Nuclear Science Facility, pilot plant, or DEMO. The unique ST operational space is leveraged to test physics theories for next-step tokamak operation, including ITER. Present research also examines implications for the coming device upgrade, NSTX-U. An energy confinement time, tau(E), scaling unified for varied wall conditions exhibits a strong improvement of B-T tau(E) with decreased electron collisionality, accentuated by lithium (Li) wall conditioning. This result is consistent with nonlinear microtearing simulations that match the experimental electron diffusivity quantitatively and predict reduced electron heat transport at lower collisionality. Beam-emission spectroscopy measurements in the steep gradient region of the pedestal indicate the poloidal correlation length of turbulence of about ten ion gyroradii increases at higher electron density gradient and lower T-i gradient, consistent with turbulence caused by trapped electron instabilities. Density fluctuations in the pedestal top region indicate ion-scale microturbulence compatible with ion temperature gradient and/or kinetic ballooning mode instabilities. Plasma characteristics change nearly continuously with increasing Li evaporation and edge localized modes (ELMs) stabilize due to edge density gradient alteration. Global mode stability studies show stabilizing resonant kinetic effects are enhanced at lower collisionality, but in stark contrast have almost no dependence on collisionality when the plasma is off-resonance. Combined resistive wall mode radial and poloidal field sensor feedback was used to control n = 1 perturbations and improve stability. The disruption probability due to unstable resistive wall modes (RWMs) was surprisingly reduced at very high beta(N)/l(i) > 10 consistent with low frequency magnetohydrodynamic spectroscopy measurements of mode stability. Greater instability seen at intermediate beta(N) is consistent with decreased kinetic RWM stabilization. A model-based RWM state-space controller produced long-pulse discharges exceeding beta(N) = 6.4 and beta(N)/l(i) = 13. Precursor analysis shows 96.3% of disruptions can be predicted with 10 ms warning and a false positive rate of only 2.8%. Disruption halo currents rotate toroidally and can have significant toroidal asymmetry. Global kinks cause measured fast ion redistribution, with full-orbit calculations showing redistribution from the core outward and towards V-parallel to/V = 1 where destabilizing compressional Alfven eigenmode resonances are expected. Applied 3D fields altered global Alfven eigenmode characteristics. High-harmonic fast-wave (HHFW) power couples to field lines across the entire width of the scrape-off layer, showing the importance of the inclusion of this phenomenon in designing future RF systems. The snowflake divertor configuration enhanced by radiative detachment showed large reductions in both steady-state and ELM heat fluxes (ELMing peak values down from 19 MW m(-2) to less than 1.5 MW m(-2)). Toroidal asymmetry of heat deposition was observed during ELMs or by 3D fields. The heating power required for accessing H-mode decreased by 30% as the triangularity was decreased by moving the X-point to larger radius, consistent with calculations of the dependence of E x B shear in the edge region on ion heat flux and X-point radius. Co-axial helicity injection reduced the inductive start-up flux, with plasmas ramped to 1 MA requiring 35% less inductive flux. Non-inductive current fraction (NICF) up to 65% is reached experimentally with neutral beam injection at plasma current I-p = 0.7 MA and between 70-100% with HHFW application at I-p = 0.3 MA. NSTX-U scenario development calculations project 100% NICF for a large range of 0.6 < I-p(MA) < 1.35. C1 [Sabbagh, S. A.; Balbaky, A.; Berkery, J.; Bialek, J.; Boozer, A.; Katsuro-Hopkins, O.; Park, Y. S.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Ahn, J. -W.; Bigelow, T.; Canik, J.; Gray, T.; Jaeger, F.; Lore, J.; Maingi, R.; McLean, A.; Ryan, P.; Sontag, A.; Wilgen, J.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Allain, J.; Hassanein, A.; Miloshevsky, G.; Sizyuk, V.; Taylor, C.; Tsarouhas, D.; Zemlyanov, D.] Purdue Univ, Sch Nucl Engn, W Lafayette, IN 47907 USA. [Andre, R.; Battaglia, D.; Bell, M.; Bell, R.; Belova, E.; Bitter, M.; Boyle, D.; Breslau, J.; Chang, C.; Darrow, D.; Davis, B.; Delgado-Aparicio, L.; Diallo, A.; Ethier, S.; Fredrickson, E.; Fu, G.; Gates, D.; Gerhardt, S.; Gorelenkov, N.; Guttenfelder, W.; Hahm, T.; Hill, K.; Hosea, J.; Indireshkumar, K.; Jardin, S.; Jaworski, M.; Kaita, R.; Kallman, J.; Kaye, S.; Kessel, C.; Kolemen, E.; Kramer, G.; LeBlanc, B.; Majeski, R.; Manickam, J.; Mansfield, D.; Mazzucato, E.; McCune, D.; Medley, S.; Menard, J.; Mikkelsen, D.; Mueller, D.; Ono, M.; Park, J.; Paul, S.; Perkins, R. J.; Phillips, C.; Podesta, M.; Ren, Y.; Rewoldt, G.; Ross, P.; Rowley, C.; Scotti, F.; Skinner, C. H.; Solomon, W.; Stoltzfus-Dueck, T.; Stotler, D.; Stratton, B.; Takahashi, H.; Taylor, G.; Wang, W.; White, R.; Wilson, R.; Wong, K. L.; Zakharov, L.; Zimmer, G.; Zweben, S. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Bastasz, R.; Nygren, R.; Wampler, W.; Whaley, J.; Youchison, D.] Sandia Natl Labs, Albuquerque, NM USA. [Beiersdorfer, P.; Hooper, E. B.; Meier, E.; Rognlien, T.; Soukhanovskii, V.; Umansky, M.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Betti, R.] Univ Rochester, Laser Energet Lab, Rochester, NY USA. [Betti, R.] Univ Rochester, Dept Mech Engn, Rochester, NY 14627 USA. [Boedo, J.; Krasheninnikov, S.; Pigarov, A.; Yu, G.] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA. [Bonoli, P.; Wright, J.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Bortolon, A.; Heidbrink, W.; Liu, D.; Ruskov, E.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Brennan, D.] Univ Tulsa, Dept Phys, Tulsa, OK 74104 USA. [Buttery, R.; Evans, T.; Ferron, J.; Humphreys, D.; La Haye, R. J.; Lao, L.; Leuer, J.; Osborne, T.; Penaflor, B.; Schaffer, M.; Snyder, P.; Untergberg, E.; Walker, M.] Gen Atom Co, San Diego, CA USA. [Caravelli, G.; Finkenthal, M.; Stutman, D.; Tritz, K.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Crocker, N.; Kubota, S.; Peebles, W.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA USA. [Ding, S.; Guo, Y.] Chinese Acad Sci, Inst Plasma Phys, Hefei, Peoples R China. [D'Ippolito, D.; Myra, J.; Russell, D.] Lodestar Res Corp, Boulder, CO USA. [Domier, C.; Lee, K.; Liang, Y.; Luhmann, N., Jr.; Xia, Z.] Univ Calif Davis, Dept Elect & Comp Engn, Davis, CA 95616 USA. [Dorland, W.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Foley, J.; Levinton, F.; Maqueda, R.; Yuh, H.] Nova Photon Inc, Princeton, NJ USA. [Fonck, R.; McKee, G.; Shaing, K.; Smith, D.] Univ Wisconsin, Dept Engn Phys, Madison, WI USA. [Frazin, R.; Ruzic, D.] Univ Illinois, Dept Nucl Plasma & Radiol Engn, Ctr Plasma Mat Interact, Urbana, IL 61801 USA. [Glasser, A.; Jarboe, T.; Nelson, B.; Raman, R.] Univ Washington, Dept Aeronaut & Astronaut, PSI Ctr, Seattle, WA 98195 USA. [Harvey, R.; Smirnov, A.] CompX, Del Mar, CA USA. [Hirooka, Y.; Tamura, N.] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Kim, J.; Park, H.] POSTECH, Pohang, South Korea. [Lee, W.; McGeehan, B.] Dickinson Coll, Carlisle, PA 17013 USA. [Menon, M.] Think Tank Inc, Silver Spring, MD USA. [Meyer, H.; Shevchenko, V.] Culham Ctr Fus Energy, Abingdon, Oxon, England. [Munsat, T.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Nishino, N.] Hiroshima Univ, Grad Sch Engn, Hiroshima, Japan. [Preinhaelter, J.; Urban, J.] AS CR, Inst Plasma Phys, Prague, Czech Republic. [Schuster, E.] Lehigh Univ, Dept Mech Engn & Mech, Bethlehem, PA 18015 USA. [Shinohara, K.] Japan Atom Energy Agcy, Naka, Ibaraki, Japan. [Takase, Y.] Univ Tokyo, Grad Sch Frontier Sci, Kashiwa, Chiba, Japan. [Tang, X.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Sabbagh, SA (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. EM sabbagh@pppl.gov RI Diallo, Ahmed/M-7792-2013; Preinhaelter, Josef/H-1394-2014; Urban, Jakub/B-5541-2008; Bortolon, Alessandro/H-5764-2015; Stotler, Daren/J-9494-2015; Stutman, Dan/P-4048-2015; Liu, Deyong/Q-2797-2015; OI Boyle, Dennis/0000-0001-8091-8169; Solomon, Wayne/0000-0002-0902-9876; Lore, Jeremy/0000-0002-9192-465X; Allain, Jean Paul/0000-0003-1348-262X; Urban, Jakub/0000-0002-1796-3597; Bortolon, Alessandro/0000-0002-0094-0209; Stotler, Daren/0000-0001-5521-8718; Liu, Deyong/0000-0001-9174-7078; Canik, John/0000-0001-6934-6681; Walker, Michael/0000-0002-4341-994X; Youchison, Dennis/0000-0002-7366-1710; Menard, Jonathan/0000-0003-1292-3286 FU United States Department of Energy [DE-AC02-09CH11466] FX This research was funded by the United States Department of Energy under contract DE-AC02-09CH11466, and additional contracts and grants supporting the collaborative team. NR 122 TC 22 Z9 22 U1 7 U2 72 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2013 VL 53 IS 10 SI SI AR 104007 DI 10.1088/0029-5515/53/10/104007 PG 23 WC Physics, Fluids & Plasmas SC Physics GA 226AD UT WOS:000325005600008 ER PT J AU Sarff, JS Almagri, AF Anderson, JK Borchardt, M Carmody, D Caspary, K Chapman, BE Den Hartog, DJ Duff, J Eilerman, S Falkowski, A Forest, CB Goetz, JA Holly, DJ Kim, JH King, J Ko, J Koliner, J Kumar, S Lee, JD Liu, D Magee, R McCollam, KJ McGarry, M Mirnov, VV Nornberg, MD Nonn, PD Oliva, SP Parke, E Reusch, JA Sauppe, JP Seltzman, A Sovinec, CR Stephens, H Stone, D Theucks, D Thomas, M Triana, J Terry, PW Waksman, J Bergerson, WF Brower, DL Ding, WX Lin, L Demers, DR Fimognari, P Titus, J Auriemma, F Cappello, S Franz, P Innocente, P Lorenzini, R Martines, E Momo, B Piovesan, P Puiatti, M Spolaore, M Terranova, D Zanca, P Belykh, V Davydenko, VI Deichuli, P Ivanov, AA Polosatkin, S Stupishin, NV Spong, D Craig, D Harvey, RW Cianciosa, M Hanson, JD AF Sarff, J. S. Almagri, A. F. Anderson, J. K. Borchardt, M. Carmody, D. Caspary, K. Chapman, B. E. Den Hartog, D. J. Duff, J. Eilerman, S. Falkowski, A. Forest, C. B. Goetz, J. A. Holly, D. J. Kim, J. -H. King, J. Ko, J. Koliner, J. Kumar, S. Lee, J. D. Liu, D. Magee, R. McCollam, K. J. McGarry, M. Mirnov, V. V. Nornberg, M. D. Nonn, P. D. Oliva, S. P. Parke, E. Reusch, J. A. Sauppe, J. P. Seltzman, A. Sovinec, C. R. Stephens, H. Stone, D. Theucks, D. Thomas, M. Triana, J. Terry, P. W. Waksman, J. Bergerson, W. F. Brower, D. L. Ding, W. X. Lin, L. Demers, D. R. Fimognari, P. Titus, J. Auriemma, F. Cappello, S. Franz, P. Innocente, P. Lorenzini, R. Martines, E. Momo, B. Piovesan, P. Puiatti, M. Spolaore, M. Terranova, D. Zanca, P. Belykh, V. Davydenko, V. I. Deichuli, P. Ivanov, A. A. Polosatkin, S. Stupishin, N. V. Spong, D. Craig, D. Harvey, R. W. Cianciosa, M. Hanson, J. D. TI Overview of results from the MST reversed field pinch experiment SO NUCLEAR FUSION LA English DT Article AB An overview of recent results from the MST programme on physics important for the advancement of the reversed field pinch (RFP) as well as for improved understanding of toroidal magnetic confinement more generally is reported. Evidence for the classical confinement of ions in the RFP is provided by analysis of impurity ions and energetic ions created by 1 MW neutral beam injection (NBI). The first appearance of energetic-particle-driven modes by NBI in a RFP plasma is described. MST plasmas robustly access the quasi-single-helicity state that has commonalities to the stellarator and 'snake' formation in tokamaks. In MST the dominant mode grows to 8% of the axisymmetric field strength, while the remaining modes are reduced. Predictive capability for tearing mode behaviour has been improved through nonlinear, 3D, resistive magnetohydrodynamic computation using the measured resistivity profile and Lundquist number, which reproduces the sawtooth cycle dynamics. Experimental evidence and computational analysis indicates two-fluid effects, e.g., Hall physics and gyro-viscosity, are needed to understand the coupling of parallel momentum transport and current profile relaxation. Large Reynolds and Maxwell stresses, plus separately measured kinetic stress, indicate an intricate momentum balance and a possible origin for MST's intrinsic plasma rotation. Gyrokinetic analysis indicates that micro-tearing modes can be unstable at high beta, with a critical gradient for the electron temperature that is larger than for tokamak plasmas by roughly the aspect ratio. C1 [Sarff, J. S.; Almagri, A. F.; Anderson, J. K.; Borchardt, M.; Carmody, D.; Caspary, K.; Chapman, B. E.; Den Hartog, D. J.; Duff, J.; Eilerman, S.; Falkowski, A.; Forest, C. B.; Goetz, J. A.; Holly, D. J.; Kim, J. -H.; King, J.; Ko, J.; Koliner, J.; Kumar, S.; Lee, J. D.; Liu, D.; Magee, R.; McCollam, K. J.; McGarry, M.; Mirnov, V. V.; Nornberg, M. D.; Nonn, P. D.; Oliva, S. P.; Parke, E.; Reusch, J. A.; Sauppe, J. P.; Seltzman, A.; Sovinec, C. R.; Stephens, H.; Stone, D.; Theucks, D.; Thomas, M.; Triana, J.; Terry, P. W.; Waksman, J.] Univ Wisconsin, Madison, WI USA. [Bergerson, W. F.; Brower, D. L.; Ding, W. X.; Lin, L.] Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90024 USA. [Demers, D. R.; Fimognari, P.] Xantho Technol LLC, Madison, WI USA. [Titus, J.] Florida A&M Univ, Dept Phys, Tallahassee, FL 32307 USA. [Auriemma, F.; Cappello, S.; Franz, P.; Innocente, P.; Lorenzini, R.; Martines, E.; Momo, B.; Piovesan, P.; Puiatti, M.; Spolaore, M.; Terranova, D.; Zanca, P.] Assoc EURATOM ENEA Fus, Consorzio RFX, Padua, Italy. [Belykh, V.; Davydenko, V. I.; Deichuli, P.; Ivanov, A. A.; Polosatkin, S.; Stupishin, N. V.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Spong, D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Craig, D.] Wheaton Coll, Dept Phys, Wheaton, IL 60187 USA. [Harvey, R. W.] CompX, Del Mar, CA USA. [Cianciosa, M.; Hanson, J. D.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. RP Sarff, JS (reprint author), Univ Wisconsin, Madison, WI USA. EM jssarff@wisc.edu RI Polosatkin, Sergey/A-6566-2010; Martines, Emilio/B-1418-2009; Lin, Liang/H-2255-2011; Kumar, Santhosh/H-2620-2013; Eilerman, Scott/N-7831-2014; Liu, Deyong/Q-2797-2015; Kumar, Santhosh/A-1331-2008; Cappello, Susanna/H-9968-2013; Momo, Barbara/I-7686-2015 OI King, Jacob/0000-0002-6325-8899; Polosatkin, Sergey/0000-0002-5602-0102; Martines, Emilio/0000-0002-4181-2959; Eilerman, Scott/0000-0002-9048-0110; Liu, Deyong/0000-0001-9174-7078; Kumar, Santhosh/0000-0002-6444-5178; Cappello, Susanna/0000-0002-2022-1113; Momo, Barbara/0000-0001-7760-8960 FU US Department of Energy; National Science Foundation FX Work supported by US Department of Energy and National Science Foundation. NR 32 TC 12 Z9 12 U1 6 U2 21 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2013 VL 53 IS 10 SI SI AR 104017 DI 10.1088/0029-5515/53/10/104017 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 226AD UT WOS:000325005600018 ER PT J AU Sharapov, SE Alper, B Berk, HL Borba, DN Breizman, BN Challis, CD Classen, IGJ Edlund, EM Eriksson, J Fasoli, A Fredrickson, ED Fu, GY Garcia-Munoz, M Gassner, T Ghantous, K Goloborodko, V Gorelenkov, NN Gryaznevich, MP Hacquin, S Heidbrink, WW Hellesen, C Kiptily, VG Kramer, GJ Lauber, P Lilley, MK Lisak, M Nabais, F Nazikian, R Nyqvist, R Osakabe, M von Thun, CP Pinches, SD Podesta, M Porkolab, M Shinohara, K Schoepf, K Todo, Y Toi, K Van Zeeland, MA Voitsekhovich, I White, RB Yavorskij, V AF Sharapov, S. E. Alper, B. Berk, H. L. Borba, D. N. Breizman, B. N. Challis, C. D. Classen, I. G. J. Edlund, E. M. Eriksson, J. Fasoli, A. Fredrickson, E. D. Fu, G. Y. Garcia-Munoz, M. Gassner, T. Ghantous, K. Goloborodko, V. Gorelenkov, N. N. Gryaznevich, M. P. Hacquin, S. Heidbrink, W. W. Hellesen, C. Kiptily, V. G. Kramer, G. J. Lauber, P. Lilley, M. K. Lisak, M. Nabais, F. Nazikian, R. Nyqvist, R. Osakabe, M. von Thun, C. Perez Pinches, S. D. Podesta, M. Porkolab, M. Shinohara, K. Schoepf, K. Todo, Y. Toi, K. Van Zeeland, M. A. Voitsekhovich, I. White, R. B. Yavorskij, V. CA ITPA EP TG Contributor JET-EFDA Contributor TI Energetic particle instabilities in fusion plasmas SO NUCLEAR FUSION LA English DT Article ID TOROIDAL ALFVEN EIGENMODES; MHD SPECTROSCOPY; WAVE CASCADES; DRIVEN; TRANSPORT; TOKAMAK; IONS; JET; MODES AB Remarkable progress has been made in diagnosing energetic particle instabilities on present-day machines and in establishing a theoretical framework for describing them. This overview describes the much improved diagnostics of Alfven instabilities and modelling tools developed world-wide, and discusses progress in interpreting the observed phenomena. A multi-machine comparison is presented giving information on the performance of both diagnostics and modelling tools for different plasma conditions outlining expectations for ITER based on our present knowledge. C1 [Sharapov, S. E.; Alper, B.; Challis, C. D.; Gryaznevich, M. P.; Kiptily, V. G.; Voitsekhovich, I.] Euratom CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Berk, H. L.; Breizman, B. N.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. [Borba, D. N.; Nabais, F.] Univ Tecn Lisboa, Inst Plasmas & Fusao Nucl IST, Assoc EURATOM IST, P-1049001 Lisbon, Portugal. [Classen, I. G. J.] EURATOM, FOM Inst DIFFER, Nieuwegein, Netherlands. [Edlund, E. M.; Fredrickson, E. D.; Fu, G. Y.; Ghantous, K.; Gorelenkov, N. N.; Kramer, G. J.; Nazikian, R.; Podesta, M.; White, R. B.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Eriksson, J.; Hellesen, C.] Uppsala Univ, Dept Phys & Astron, Euratom VR Fus Assoc, Uppsala, Sweden. [Fasoli, A.] Assoc Euratom Confederat Suisse, CRPP EPFL, Lausanne, Switzerland. [Garcia-Munoz, M.; Lauber, P.; von Thun, C. Perez] Max Planck Inst Plasma Phys, EURATOM Assoc, D-85748 Garching, Germany. [Gassner, T.; Goloborodko, V.; Schoepf, K.; Yavorskij, V.] Univ Innsbruck, Inst Theoret Phys, Euratom OEAW Fus Assoc, A-6020 Innsbruck, Austria. [Hacquin, S.] Assoc Euratom CEA, IRFM, CEA, St Paul Les Durance, France. [Heidbrink, W. W.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Lilley, M. K.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England. [Lisak, M.; Nyqvist, R.] Chalmers, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden. [Osakabe, M.; Todo, Y.; Toi, K.] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [von Thun, C. Perez] Culham Sci Ctr, JET EFDA Close Support Unit, Abingdon OX14 3DB, Oxon, England. [Pinches, S. D.] ITER Org, F-13115 St Paul Les Durance, France. [Porkolab, M.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Shinohara, K.] Japan Atom Energy Agcy, Naka, Ibaraki 3190193, Japan. [Van Zeeland, M. A.] Gen Atom Co, San Diego, CA 92186 USA. RP Sharapov, SE (reprint author), Euratom CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. EM Sergei.Sharapov@ccfe.ac.uk RI White, Roscoe/D-1773-2013; garcia-munoz, manuel/C-6825-2008; Borba, Duarte/K-6148-2015; OI White, Roscoe/0000-0002-4239-2685; garcia-munoz, manuel/0000-0002-3241-502X; Borba, Duarte/0000-0001-5305-2857; Nabais, Fernando/0000-0003-4644-2827; Eriksson, Jacob/0000-0002-0892-3358 FU European Communities; RCUK Energy Programme [EP/I501045] FX This work, supported by the European Communities under the contract of Association between EURATOM and CCFE, was carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission. This work was also part-funded by the RCUK Energy Programme under grant EP/I501045. NR 57 TC 23 Z9 23 U1 3 U2 32 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2013 VL 53 IS 10 SI SI AR 104022 DI 10.1088/0029-5515/53/10/104022 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 226AD UT WOS:000325005600023 ER PT J AU Zinkle, SJ Moslang, A Muroga, T Tanigawa, H AF Zinkle, S. J. Moeslang, A. Muroga, T. Tanigawa, H. TI Multimodal options for materials research to advance the basis for fusion energy in the ITER era SO NUCLEAR FUSION LA English DT Article ID RESEARCH-AND-DEVELOPMENT; TEMPERED MARTENSITIC STEELS; LIQUID LITHIUM BLANKET; SITU HELIUM IMPLANTER; RECENT PROGRESS; MECHANICAL-PROPERTIES; FRACTURE-TOUGHNESS; STRUCTURAL-MATERIALS; FERRITIC ALLOYS; FERRITIC/MARTENSITIC STEELS AB Well-coordinated international fusion materials research on multiple fundamental feasibility issues can serve an important role during the next ten years. Due to differences in national timelines and fusion device concepts, a parallel-track (multimodal) approach is currently being used for developing fusion energy. An overview is given of the current state-of-the-art of major candidate materials systems for next-step fusion reactors, including a summary of existing knowledge regarding operating temperature and neutron irradiation fluence limits due to high-temperature strength and radiation damage considerations, coolant compatibility information, and current industrial manufacturing capabilities. There are two inter-related overarching objectives of fusion materials research to be performed in the next decade: (1) understanding materials science phenomena in the demanding DT fusion energy environment, and (2) application of this knowledge to develop and qualify materials to provide the basis for next-step facility construction authorization by funding agencies and public safety licensing authorities. The critical issues and prospects for development of high-performance fusion materials are discussed along with recent research results and planned activities of the international materials research community. C1 [Zinkle, S. J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Moeslang, A.] Karlsruhe Inst Technol, D-76344 Eggenstein Leopoldshafen, Germany. [Muroga, T.] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Tanigawa, H.] Japan Atom Energy Agcy, Tokai, Ibaraki 3191195, Japan. RP Zinkle, SJ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM zinklesj@ornl.gov OI Zinkle, Steven/0000-0003-2890-6915 FU Office of Fusion Energy Sciences, US Department of Energy FX This work was supported in part by the Office of Fusion Energy Sciences, US Department of Energy. NR 121 TC 20 Z9 20 U1 0 U2 21 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD OCT PY 2013 VL 53 IS 10 SI SI AR 104024 DI 10.1088/0029-5515/53/10/104024 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 226AD UT WOS:000325005600025 ER PT J AU Look, DC Droubay, TC Chambers, SA AF Look, D. C. Droubay, T. C. Chambers, S. A. TI Optical/electrical correlations in ZnO: The plasmonic resonance phase diagram SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article DE Hall effect; plasmons; reflectance; ZnO AB The Drude equation for dielectric constant E(E) depends on four parameters: E, effective mass m*, optical mobility mu(opt), and optical carrier concentration n(opt). By solving this equation at E(E-res)=0, we obtain a relationship between mu(opt) and n(opt) at constant plasmonic resonance energy E-res [or wavelength (res) (mu m)=1.2395/E-res (eV)]. A family of mu(opt) versus n(opt) curves covering a range of (res) values (including the limiting wavelength (res)=) constitutes a plasmonic resonance phase diagram (PRPD) for a semiconductor defined by only E and m*. The PRPD is a convenient instrument that allows an immediate prediction of (res) from Hall-effect measurements of mu(H) and n(H). We apply the PRPD analysis to a series of ten ZnO samples grown by pulsed laser deposition at 200 degrees C in an ambient of 33%H-2:67%Ar and annealed in 25 degrees C steps for 10min in air at various temperatures from 400 to 600 degrees C. For the samples annealed at 550 degrees C or lower, the mu(H)/n(H) points yield predicted values of (res) that range from 1.07 to 2.80 mu m; however, the 575 and 600 degrees C samples are predicted to have no resonance at all. Reflectance curves for the eight samples annealed up to 550 degrees C decrease slowly from 6eV down to about E-res=0.5-1.15eV, and then increase rapidly for E Lambda(+)(c) pi(-) and Lambda(+)(c) -> pK(-) pi(-) decays. The analysis is based on a data sample corresponding to an integrated luminosity of 9.6 fb(-1) collected by an online event selection based on charged-particle tracks displaced from the proton-antiproton interaction point. The significance of the observed signal is 3.5 sigma. The mass of the observed state is found to be 5919.22 +/- 0.76 MeV/c(2) in agreement with similar findings in proton-proton collision experiments. C1 [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Auerbach, B.; Nodulman, L.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.] Univ Athens, GR-15771 Athens, Greece. [Camarda, S.; Cavalli-Sforza, M.; Grinstein, S.; Martinez, M.; Ortolan, L.; Sorin, V.] Univ Autonoma Barcelona, ICREA, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Bland, K. R.; Dittmann, J. R.; Hatakeyama, K.; Kasmi, A.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Gramellini, E.; Marchese, L.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Pilot, J.; Shalhout, S. Z.; Smith, J. R.; Wilbur, S.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Casal, B.; Cuevas, J.; Gomez, G.; Palencia, E.; Ruiz, A.; Scodellaro, L.; Vilar, R.; Vizan, J.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Calamba, A.; Jang, D.; Jun, S. Y.; Paulini, M.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Boveia, A.; Canelli, F.; Frisch, H.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Rosner, J. L.; Shochet, M.; Tang, J.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Goshaw, A. T.; Kotwal, A. V.; Kruse, M.; Limosani, A.; Oh, S. H.; Phillips, T. J.; Yu, G. B.; Zeng, Y.; Zhou, C.] Duke Univ, Durham, NC 27708 USA. [Anastassov, A.; Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Behari, S.; Beretvas, A.; Burkett, K.; Chlachidze, G.; Convery, M. E.; Corbo, M.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; Di Ruzza, B.; Flanagan, G.; Freeman, J. C.; Gerchtein, E.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harrington-Taber, T.; Hocker, A.; Hopkins, W.; James, E.; Jayatilaka, B.; Jindariani, S.; Junk, T. R.; Kilminster, B.; Kirby, M.; Knoepfel, K.; Lammel, S.; Lewis, J. D.; Liu, T.; Lukens, P.; Madrak, R.; Mazzacane, A.; Miao, T.; Moed, S.; Moon, C. S.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Poprocki, S.; Ristori, L.; Roser, R.; Rusu, V.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Snider, F. D.; Stancari, M.; Stentz, D.; Sukhanov, A.; Thom, J.; Tonelli, D.; Torretta, D.; Velev, G.; Vellidis, C.; Wallny, R.; Wester, W. C., III; Wilson, P.; Wittich, P.; Wolbers, S.; Yang, T.; Yeh, G. P.; Yi, K.; Yoh, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Konigsberg, J.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Luca, A.; Ptohos, F.; Torre, S.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Buzatu, A.; Robson, A.; St Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [da Costa, J. Guimaraes; Catastini, P.; Franklin, M.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Carls, B.; Cavaliere, V.; Errede, S.; Esham, B.; Gerberich, H.; Matera, K.; Norniella, O.; Pitts, K.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Blumenfeld, B.; Giurgiu, G.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Kambeitz, M.; Kreps, M.; Kuhr, T.; Lueck, J.; Muller, Th.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Ewha Womans Univ, Seoul 120750, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Lujan, P.; Lys, J.; Potamianos, K.; Pranko, A.; Yao, W. -M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [D'Onofrio, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Campanelli, M.; Cerrito, L.; Lancaster, M.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez Ramos, J. P.; Gonzalez Lopez, O.; Redondo Fernandez, I.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Gomez-Ceballos, G.; Goncharov, M.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Amidei, D.; Edgar, R.; Mietlicki, D.; Schwarz, T.; Tecchio, M.; Wilson, J. S.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Hussein, M.; Huston, J.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber-Tecker, I.] Inst Theoret & Expt Phys, ITEP, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Palni, P.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Hughes, R. E.; Lannon, K.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Yamamoto, K.; Yamato, D.; Yoshida, T.] Osaka City Univ, Osaka 5588585, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Oakes, L.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bauce, M.; Busetto, G.; D'Errico, M.; Lucchesi, D.; Totaro, P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Amerio, S.; Bauce, M.; Busetto, G.; D'Errico, M.; Lucchesi, D.] Univ Padua, I-35131 Padua, Italy. [Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Pianori, E.; Rodriguez, T.; Thomson, E.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Butti, P.; Carosi, R.; Chiarelli, G.; Cremonesi, M.; Di Canto, A.; Donati, S.; Galloni, C.; Garosi, P.; Introzzi, G.; Latino, G.; Leo, S.; Leone, S.; Maestro, P.; Marino, P.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Ronzani, M.; Ruffini, F.; Scuri, F.; Sforza, F.; Trovato, M.; Vernieri, C.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Butti, P.; Di Canto, A.; Donati, S.; Galloni, C.; Punzi, G.; Ronzani, M.; Sforza, F.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Garosi, P.; Latino, G.; Maestro, P.; Ruffini, F.] Univ Siena, I-56127 Pisa, Italy. [Marino, P.; Morello, M. J.; Trovato, M.; Vernieri, C.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Introzzi, G.] Ist Nazl Fis Nucl, I-27100 Pavia, Italy. [Introzzi, G.] Univ Pavia, I-27100 Pavia, Italy. [Boudreau, J.; Gibson, K.; Nigmanov, T.; Shepard, P. F.; Song, H.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Barnes, V. E.; Bortoletto, D.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Liu, Q.; Ranjan, N.; Vidal, M.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Budd, H. S.; de Barbaro, P.; Han, J. Y.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA. [Giagu, S.; Iori, M.; Margaroli, F.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Asaadi, J.; Aurisano, A.; Cruz, D.; Elagin, A.; Goldin, D.; Hong, Z.; Kamon, T.; Nett, J.; Thukral, V.; Toback, D.] Texas A&M Univ, Mitchell Inst Fundamental Phys & Astron, College Stn, TX 77843 USA. [Casarsa, M.; Cauz, D.; Dorigo, M.; Driutti, A.; Pagliarone, C.; Pauletta, G.; Santi, L.; Zanetti, A. M.] Ist Nazl Fis Nucl Trieste, I-33100 Udine, Italy. [Cauz, D.; Driutti, A.; Pauletta, G.; Santi, L.] Grp Collegato Udine, I-33100 Udine, Italy. [Cauz, D.; Driutti, A.; Pauletta, G.; Santi, L.] Univ Udine, I-33100 Udine, Italy. [Dorigo, M.] Univ Trieste, I-34127 Trieste, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Sato, K.; Shimojima, M.; Sudo, Y.; Takemasa, K.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.] Tufts Univ, Medford, MA 02155 USA. [Group, R. C.; Liu, H.; Neu, C.; Oksuzian, I.] Univ Virginia, Charlottesville, VA 22906 USA. [Arisawa, T.; Ebina, K.; Funakoshi, Y.; Kimura, N.; Kondo, K.; Naganoma, J.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Clarke, C.; Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Herndon, M.; Parker, W.; Pondrom, L.] Univ Wisconsin, Madison, WI 53706 USA. [Husemann, U.; Lockwitz, S.; Loginov, A.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Kim, Soo-Bong/B-7061-2014; Robson, Aidan/G-1087-2011; vilar, rocio/P-8480-2014; Cavalli-Sforza, Matteo/H-7102-2015; maestro, paolo/E-3280-2010; Chiarelli, Giorgio/E-8953-2012; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Punzi, Giovanni/J-4947-2012; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Marino, Pietro/N-7030-2015; song, hao/I-2782-2012; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; OI Group, Robert/0000-0002-4097-5254; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; Vidal Marono, Miguel/0000-0002-2590-5987; Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Dorigo, Mirco/0000-0002-0681-6946; Torre, Stefano/0000-0002-7565-0118; maestro, paolo/0000-0002-4193-1288; Chiarelli, Giorgio/0000-0001-9851-4816; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Punzi, Giovanni/0000-0002-8346-9052; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924; Marino, Pietro/0000-0003-0554-3066; song, hao/0000-0002-3134-782X; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Margaroli, Fabrizio/0000-0002-3869-0153 FU U.S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean World Class University Program; National Research Foundation of Korea; Science and Technology Facilities Council and the Royal Society, UK; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio, Spain; Slovak R D Agency; Academy of Finland; Australian Research Council (ARC); EU community Marie Curie Fellowship [302103] FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R& D Agency; the Academy of Finland; the Australian Research Council (ARC); the EU community Marie Curie Fellowship Contract No. 302103. NR 40 TC 10 Z9 10 U1 2 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD OCT 1 PY 2013 VL 88 IS 7 AR 071101 DI 10.1103/PhysRevD.88.071101 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 228EW UT WOS:000325169600001 ER PT J AU Gibson, LM Gopalan, B Pisupati, SV Shadle, LJ AF Gibson, LaTosha M. Gopalan, Balaji Pisupati, Sarma V. Shadle, Lawrence J. TI Image analysis measurements of particle coefficient of restitution for coal gasification applications SO POWDER TECHNOLOGY LA English DT Article DE Coefficient of restitution; Equancy; Particle rotation ID BLAST-FURNACE; PLANAR SURFACES; OBLIQUE IMPACT; MODEL; SPHERES; MICROSPHERES; TEMPERATURE; PREDICTION; TRANSITION; INJECTION AB New robust Lagrangian computational fluid dynamic (CFD) models are powerful tools that can be used to study the behavior of a diverse population of coal particle sizes, densities, and mineral compositions in entrained gasifiers. By using this approach, the responses of the particles impacting the wall were characterized over a range of velocities (1 to 8 m/s) and incident angles (90 to 20). Within CFD models, the kinematic coefficient of restitution is the boundary condition defining the particle wall behavior. Four surfaces were studied to simulate the physical conditions of different entrained-flow gasification particle-surface collision scenarios: 1) a flat metal plate 2) a low viscosity silicon adhesive, 3) a high viscosity silicon adhesive, and 4) adhered particles on a flat metal plate with Young's modulus of elasticity ranging from 0.9 to 190 GPa. Entrained flow and drop experiments were conducted with granular coke particles, polyethylene beads and polystyrene pellets. The particle normal and tangential coefficients of restitution were measured using high speed imaging and particle tracking. The measured coefficients of restitution were observed to have a strong dependence on the rebound angles for most of the data. Suitable algebraic expressions for the normal and the tangential component of the coefficient of restitution were developed based upon ANOVA analysis. These expressions quantify the effect of normalized Young's modulus, particle equancy, and relative velocity on the coefficient of restitution. The coefficient of restitution did not have a strong dependence on the particle velocity over the range considered as long as the velocity was above the critical velocity. However, strong correlations were found between the degree of equancy of the particles and the mean coefficient of restitution such that the coefficient of restitution decreased for smaller particle equancies. It was concluded that the degree of equancy and the normalized Young's modulus should be considered in applications such as gasification and other cases involving the impact of non-spherical particles and complex surfaces. Sliding was observed when particles impacted on oblique surfaces; however, the resulting effects were within the range of measurement uncertainties. Published by Elsevier B.V. C1 [Gibson, LaTosha M.; Gopalan, Balaji; Pisupati, Sarma V.; Shadle, Lawrence J.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Gibson, LaTosha M.; Pisupati, Sarma V.] Penn State Univ, John & Willie Leone Family Dept Energy & Mineral, University Pk, PA 16802 USA. [Gibson, LaTosha M.; Pisupati, Sarma V.] Penn State Univ, EMS Energy Inst, University Pk, PA 16802 USA. [Gopalan, Balaji] West Virginia Univ Res Corp, Morgantown, WV 26505 USA. RP Shadle, LJ (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM Ishadl@netl.doe.gov RI Pisupati, Sarma/A-9861-2009; OI Pisupati, Sarma/0000-0002-2098-3302; Shadle, Lawrence/0000-0002-6283-3628 FU Advanced Gasification Program from the Office of Fossil Energy of the Department of Energy FX The authors would like to acknowledge Jim Spenik for the construction of the apparatus for the particle wall experiments using the eductor and the calibration of the apparatus using the Fiber Optic System, Chris Ludlow for the design and construction of the particle target, and Paul Yue for the construction of the apparatus for the drop experiments and calibration using Laser Doppler Velocimetiy. Funding for this work was provided by the Advanced Gasification Program from the Office of Fossil Energy of the Department of Energy. NR 50 TC 5 Z9 5 U1 2 U2 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0032-5910 EI 1873-328X J9 POWDER TECHNOL JI Powder Technol. PD OCT PY 2013 VL 247 BP 30 EP 43 DI 10.1016/j.powtec.2013.06.001 PG 14 WC Engineering, Chemical SC Engineering GA 229BC UT WOS:000325235800006 ER PT J AU Cui, ZL Ren, SC Lu, J Wang, FB Xu, WD Sun, Y Wei, M Chen, JY Gao, X Xu, CL Mao, JH Sun, YH AF Cui, Zilian Ren, Shancheng Lu, Ji Wang, Fubo Xu, Weidong Sun, Yi Wei, Min Chen, Junyi Gao, Xu Xu, Chuanliang Mao, Jian-Hua Sun, Yinghao TI The prostate cancer-up-regulated long noncoding RNA PlncRNA-1 modulates apoptosis and proliferation through reciprocal regulation of androgen receptor SO UROLOGIC ONCOLOGY-SEMINARS AND ORIGINAL INVESTIGATIONS LA English DT Article DE Long noncoding RNA; Androgen receptor; Prostate cancer ID CHROMATIN; GENE; CARCINOMAS; CELLS AB Objective: Emerging evidences implicate long noncoding RNAs (lncRNAs) are deregulated in cancer development. The purpose of the current study is to investigate the role of new lncRNA, named PlncRNA-1, in prostate cancer (CaP) pathogenesis. Materials and methods: In this study, real-time q-PCR was used to demonstrate the expression of PlncRNA-1 in 16 pairs CaP tissues and matched normal tissues, 14 pairs CaP tissues and BPH tissues, 4 CaP cell lines, including LNCaP, LNCaP-AI, PC3, and C4-2, and 2 normal prostate epithelial cell lines RWPE-1 and PWR-1E. After PlncRNA-1 was suppressed by siRNA in LNCaP and LNCaP-AI cell lines, cell proliferation and apoptosis were assessed using CCK-8 and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). After PlncRNA-1 and AR was suppressed by siRNA in LNCaP and LNCaP-AI cell lines, real-time q-PCR and Western blotting were used to measure reciprocal regulation of PlncRNA-1 and AR. Results: We showed that expression PlncRNA-1, was significantly higher in CaP cells relative to normal prostate epithelial cells, as well as higher in human CaPs compared with normal tissues and benign prostatic hyperplasia (BPH). Silencing of PlncRNA-1 significantly reduced cell proliferation and induced apoptosis in CaP cell lines LNCaP and LNCaP-AI. Mechanistically, PlncRNA-1 suppression by siRNA resulted in a decrease of androgen receptor (AR) mRNA, protein and AR downstream target. Of note, blockade of AR signaling with siRNA also resulted in a suppression of PlncRNA-1 expression in CaP cell lines. Conclusions: Our study suggests reciprocal regulation of PlncRNA-1 and androgen receptor contribute to CaP pathogenesis and that PlncRNA-1 is a potential therapy target. (C) 2013 Elsevier Inc. All rights reserved. C1 [Cui, Zilian; Ren, Shancheng; Lu, Ji; Wang, Fubo; Xu, Weidong; Sun, Yi; Wei, Min; Chen, Junyi; Gao, Xu; Xu, Chuanliang; Sun, Yinghao] Second Mil Med Univ, Shanghai Changhai Hosp, Dept Urol, Shanghai, Peoples R China. [Mao, Jian-Hua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Sun, YH (reprint author), Second Mil Med Univ, Shanghai Changhai Hosp, Dept Urol, Shanghai, Peoples R China. EM sunyh@medmail.com.cn FU National "11th five" Major Research Grant for Creating New Drugs [2009ZX09312-025]; Ministry of Science and Technology of Shanghai [08410701500] FX This work was supported by funding from The National "11th five" Major Research Grant for Creating New Drugs (no. 2009ZX09312-025, Y.H.S), Ministry of Science and Technology of Shanghai (no. 08410701500, Y.H.S). NR 20 TC 52 Z9 61 U1 0 U2 23 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1078-1439 EI 1873-2496 J9 UROL ONCOL-SEMIN ORI JI Urol. Oncol.-Semin. Orig. Investig. PD OCT PY 2013 VL 31 IS 7 BP 1117 EP 1123 DI 10.1016/j.urolonc.2011.11.030 PG 7 WC Oncology; Urology & Nephrology SC Oncology; Urology & Nephrology GA 234SJ UT WOS:000325664300025 PM 22264502 ER PT J AU Jacob, RE Murphy, MK Creim, JA Carson, JP AF Jacob, Richard E. Murphy, Mark K. Creim, Jeffrey A. Carson, James P. TI Detecting Radiation-induced Injury Using Rapid 3D Variogram Analysis of CT Images of Rat Lungs SO ACADEMIC RADIOLOGY LA English DT Article DE Octree; variogram; lung; irradiation; CT imaging ID THORACIC IRRADIATION; PULMONARY-FUNCTION; DAMAGE AB Rationale and Objectives: To investigate the ability of variogram analysis of octree-decomposed computed tomography (Cl) images and volume change maps to detect radiation-induced damage in rat lungs. Materials and Methods: The lungs of female Sprague-Dawley rats were exposed to one of five absorbed doses (0, 6, 9, 12, or 15 Gy) of gamma radiation from a Co-60 source. At 6 months postexposure, pulmonary function tests were performed and four-dimensional (4D) CT images were acquired using a respiratory-gated microCT scanner. Volume change maps were then calculated from the 4DCT images. Octree decomposition was performed on CT images and volume-change maps, and variogram analysis was applied to the decomposed images. Correlations of measured parameters with dose were evaluated. Results: The effects of irradiation were not detectable from measured parameters, indicating only mild lung damage. Additionally, there were no significant correlations of pulmonary function results or CT densitometry with radiation dose. However, the variogram analysis did detect a significant correlation with dose in both the CT images (r = -0.57, P = .003) and the volume change maps (r = -0.53, P = .008). Conclusion: This is the first study to use variogram analysis of lung images to assess pulmonary damage in a model of radiation injury. Results show that this approach is more sensitive to detecting radiation damage than conventional measures such as pulmonary function tests or CT densitometry. C1 [Jacob, Richard E.; Murphy, Mark K.; Creim, Jeffrey A.; Carson, James P.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Jacob, RE (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM richird.jacob@pnnl.gov FU National Heart, Lung, and Blood Institute [R01HL073598]; Pacific Northwest National Laboratory (PNNL) [DE-AC05-76RL01830] FX This project was supported by National Heart, Lung, and Blood Institute Award Number R01HL073598 and by Pacific Northwest National Laboratory (PNNL) DE-AC05-76RL01830. The authors thank T. Curry of PNNL for help with animal handling: K. Thrall and B. Amidan of PNNL for helpful discussions, and J. Logan of Buxco for technical advice. NR 24 TC 1 Z9 1 U1 1 U2 8 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1076-6332 J9 ACAD RADIOL JI Acad. Radiol. PD OCT PY 2013 VL 20 IS 10 BP 1264 EP 1271 DI 10.1016/j.acra.2013.07.001 PG 8 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 228NX UT WOS:000325194600011 PM 24029058 ER PT J AU Coronado, MA Gabdulkhakov, A Georgieva, D Sankaran, B Murakami, MT Arni, RK Betzel, C AF Coronado, Monika A. Gabdulkhakov, Azat Georgieva, Dessislava Sankaran, Banumathi Murakami, Mario T. Arni, Raghuvir K. Betzel, Christian TI Structure of the polypeptide crotamine from the Brazilian rattlesnake Crotalus durissus terrificus SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID SOUTH-AMERICAN RATTLESNAKE; ANTIMICROBIAL PEPTIDES; INSECT DEFENSIN; BETA-DEFENSINS; VENOM; ANTIBACTERIAL; MYOTOXIN; DISTINCT; TOXIN; MODEL AB The crystal structure of the myotoxic, cell-penetrating, basic polypeptide crotamine isolated from the venom of Crotalus durissus terrificus has been determined by single-wavelength anomalous dispersion techniques and refined at 1.7 angstrom resolution. The structure reveals distinct cationic and hydrophobic surface regions that are located on opposite sides of the molecule. This surface-charge distribution indicates its possible mode of interaction with negatively charged phospholipids and other molecular targets to account for its diverse pharmacological activities. Although the sequence identity between crotamine and human beta-defensins is low, the three-dimensional structures of these functionally related peptides are similar. Since crotamine is a leading member of a large family of myotoxic peptides, its structure will provide a basis for the design of novel cell-penetrating molecules. C1 [Coronado, Monika A.; Arni, Raghuvir K.] Sao Paulo State Univ, UNESP IBILCE, Dept Phys, Multi User Ctr Biomol Innovat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil. [Coronado, Monika A.; Georgieva, Dessislava; Betzel, Christian] Univ Hamburg, Inst Biochem & Mol Biol, D-20146 Hamburg, Germany. [Gabdulkhakov, Azat] RAS, Inst Prot Res, Pushchino 142290, Moscow Region, Russia. [Sankaran, Banumathi] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94702 USA. [Murakami, Mario T.] Natl Ctr Energy & Mat Res, Biosci Natl Lab, BR-13083970 Campinas, SP, Brazil. RP Betzel, C (reprint author), Univ Hamburg, Inst Biochem & Mol Biol, Martin Luther King Pl 6, D-20146 Hamburg, Germany. EM christian.betzel@uni-hamburg.de RI Gabdulkhakov, Azat/H-4343-2013; Arni, Raghuvir/B-2222-2013; OI Gabdulkhakov, Azat/0000-0003-1016-5936; Murakami, Mario/0000-0002-0405-8010 FU Deutsche Forschungsgemeinschaft [BE 1443-18-1, 26-1]; FAPESP; CNPq; CAPES; DAAD [PROBAL 50754442]; CAPES [NR-8248/12-5]; Alexander von Humboldt Foundation (AvH), Bonn, Germany; National Institutes of Health, National Institute of General Medical Sciences; Howard Hughes Medical Institute; US Department of Energy [DE-AC02-05CH11231] FX This project was supported by grants from the Deutsche Forschungsgemeinschaft (Project BE 1443-18-1, 26-1), FAPESP, CNPq, CAPES and DAAD (PROBAL 50754442). MAC thanks CAPES (grant NR-8248/12-5) for the exchange fellowship. DG thanks the Alexander von Humboldt Foundation (AvH), Bonn, Germany for providing a Research Fellowship. The Berkeley Center for Structural Biology is supported in part by the National Institutes of Health, National Institute of General Medical Sciences and the Howard Hughes Medical Institute. The Advanced Light Source is supported by the US Department of Energy under Contract No. DE-AC02-05CH11231. We would like to thank Dr Alexey Kikhney and the staff of the Biological Small Angle Scattering group (EMBL/Hamburg, Germany) for providing the opportunity to perform SAXS measurements. NR 39 TC 6 Z9 7 U1 1 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0907-4449 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD OCT PY 2013 VL 69 BP 1958 EP 1964 DI 10.1107/S0907444913018003 PN 10 PG 7 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 231GM UT WOS:000325403900010 PM 24100315 ER PT J AU Uervirojnangkoorn, M Hilgenfeld, R Terwilliger, TC Read, RJ AF Uervirojnangkoorn, Monarin Hilgenfeld, Rolf Terwilliger, Thomas C. Read, Randy J. TI Improving experimental phases for strong reflections prior to density modification SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID POWDER DIFFRACTION DATA; GENETIC ALGORITHM; CRYSTAL-STRUCTURE; CRYSTALLOGRAPHY; RESOLUTION; ERRORS; PHENIX; RNA AB Experimental phasing of diffraction data from macromolecular crystals involves deriving phase probability distributions. These distributions are often bimodal, making their weighted average, the centroid phase, improbable, so that electron-density maps computed using centroid phases are often non-interpretable. Density modification brings in information about the characteristics of electron density in protein crystals. In successful cases, this allows a choice between the modes in the phase probability distributions, and the maps can cross the borderline between non-interpretable and interpretable. Based on the suggestions by Vekhter [ Vekhter (2005), Acta Cryst. D61, 899-902], the impact of identifying optimized phases for a small number of strong reflections prior to the density-modification process was investigated while using the centroid phase as a starting point for the remaining reflections. A genetic algorithm was developed that optimizes the quality of such phases using the skewness of the density map as a target function. Phases optimized in this way are then used in density modification. In most of the tests, the resulting maps were of higher quality than maps generated from the original centroid phases. In one of the test cases, the new method sufficiently improved a marginal set of experimental SAD phases to enable successful map interpretation. A computer program, SISA, has been developed to apply this method for phase improvement in macromolecular crystallography. C1 [Uervirojnangkoorn, Monarin; Hilgenfeld, Rolf] Med Univ Lubeck, Ctr Struct & Cell Biol Med, Inst Biochem, D-23538 Lubeck, Germany. [Uervirojnangkoorn, Monarin] Med Univ Lubeck, Grad Sch Comp Med & Life Sci, D-23538 Lubeck, Germany. [Hilgenfeld, Rolf] Chinese Acad Sci, Shanghai Inst Mat Med, Shanghai 201203, Peoples R China. [Terwilliger, Thomas C.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Terwilliger, Thomas C.] Los Alamos Natl Lab, Los Alamos Inst, Los Alamos, NM 87545 USA. [Read, Randy J.] Univ Cambridge, Cambridge Inst Med Res, Dept Haematol, Cambridge CB2 0XY, England. RP Hilgenfeld, R (reprint author), Med Univ Lubeck, Ctr Struct & Cell Biol Med, Inst Biochem, Ratzeburger Allee 160, D-23538 Lubeck, Germany. EM hilgenfeld@biochem.uni-luebeck.de RI Read, Randy/L-1418-2013; Terwilliger, Thomas/K-4109-2012; Hilgenfeld, Rolf/C-9675-2011 OI Read, Randy/0000-0001-8273-0047; Terwilliger, Thomas/0000-0001-6384-0320; FU Graduate School for Computing in Medicine and Life Sciences [DFG GSC 235/1]; Cluster of Excellence 'Inflammation at Interfaces' [DFG EXC 306/2]; NIH [P01GM063210]; Wellcome Trust [082961]; Chinese Academy of Sciences through a Visiting Professorship for Senior International Scientists [2010T1S6] FX We thank Lawrence Berkeley National Laboratory for the usage of computing grids to run the search algorithm and the model-building program PHENIX AutoBuild. This work was supported by the Graduate School for Computing in Medicine and Life Sciences (DFG GSC 235/1) and the Cluster of Excellence 'Inflammation at Interfaces' (DFG EXC 306/2). MU thanks Dr Ralf W. Grosse-Kunstleve for stimulating discussions. TCT and RJR thank the NIH (grant No. P01GM063210). RJR is supported by the Wellcome Trust (grant No. 082961). RH is supported by the Chinese Academy of Sciences through a Visiting Professorship for Senior International Scientists (grant No. 2010T1S6). NR 28 TC 5 Z9 5 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0907-4449 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD OCT PY 2013 VL 69 BP 2039 EP 2049 DI 10.1107/S0907444913018167 PN 10 PG 11 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 231GM UT WOS:000325403900017 PM 24100322 ER PT J AU Meilleur, F Munshi, P Robertson, L Stoica, AD Crow, L Kovalevsky, A Koritsanszky, T Chakoumakos, BC Blessing, R Myles, DAA AF Meilleur, Flora Munshi, Parthapratim Robertson, Lee Stoica, Alexandru D. Crow, Lowell Kovalevsky, Andrey Koritsanszky, Tibor Chakoumakos, Bryan C. Blessing, Robert Myles, Dean A. A. TI The IMAGINE instrument: first neutron protein structure and new capabilities for neutron macromolecular crystallography SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID RESOLUTION X-RAY; PYROCOCCUS-FURIOSUS; CRYSTAL DIFFRACTOMETER; LAUE DIFFRACTOMETER; DATA-COLLECTION; ATOMIC DETAILS; DIFFRACTION; RUBREDOXIN; DYNAMICS; POSITIONS AB The first high-resolution neutron protein structure of perdeuterated rubredoxin from Pyrococcus furiosus (PfRd) determined using the new IMAGINE macromolecular neutron crystallography instrument at the Oak Ridge National Laboratory is reported. Neutron diffraction data extending to 1.65 angstrom resolution were collected from a relatively small 0.7 mm(3) PfRd crystal using 2.5 d (60 h) of beam time. The refined structure contains 371 out of 391, or 95%, of the D atoms of the protein and 58 solvent molecules. The IMAGINE instrument is designed to provide neutron data at or near atomic resolution (1.5 angstrom) from crystals with volume <1.0 mm(3) and with unit-cell edges <100 angstrom. Beamline features include novel elliptical focusing mirrors that deliver neutrons into a 2.0 x 3.2 mm focal spot at the sample position with full-width vertical and horizontal divergences of 0.5 and 0.6 degrees, respectively. Variable short- and long-wavelength cutoff optics provide automated exchange between multiple-wavelength configurations (lambda(min) = 2.0, 2.8, 3.3 angstrom to lambda(max) = 3.0, 4.0, 4.5, similar to 20 angstrom). These optics produce a more than 20-fold increase in the flux density at the sample and should help to enable more routine collection of high-resolution data from submillimetre-cubed crystals. Notably, the crystal used to collect these PfRd data was 5-10 times smaller than those previously reported. C1 [Meilleur, Flora] NCSU, Dept Mol & Struct Biochem, Raleigh, NC 27695 USA. [Meilleur, Flora; Munshi, Parthapratim; Robertson, Lee; Stoica, Alexandru D.; Crow, Lowell; Kovalevsky, Andrey; Koritsanszky, Tibor; Chakoumakos, Bryan C.; Myles, Dean A. A.] ORNL, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. [Munshi, Parthapratim] MTSU, Dept Chem, Murfreesboro, TN 37132 USA. [Blessing, Robert] Hauptman Woodward Med Res Inst, Buffalo, NY 14203 USA. RP Meilleur, F (reprint author), NCSU, Dept Mol & Struct Biochem, Raleigh, NC 27695 USA. EM meilleurf@ornl.gov RI Stoica, Alexandru/K-3614-2013; Chakoumakos, Bryan/A-5601-2016; myles, dean/D-5860-2016; OI Stoica, Alexandru/0000-0001-5118-0134; Chakoumakos, Bryan/0000-0002-7870-6543; myles, dean/0000-0002-7693-4964; Kovalevsky, Andrey/0000-0003-4459-9142 FU US Department of Energy's Office of Biological and Environmental Research; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; National Science Foundation [0922719] FX We thank Kevin L. Weiss and Junhong He for their support with the production of deuterated rubredoxin at ORNL's Center for Structural Molecular Biology, which is supported by the US Department of Energy's Office of Biological and Environmental Research. Research conducted at ORNL's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. The IMAGINE project is partially supported by the National Science Foundation under grant No. 0922719. NR 45 TC 17 Z9 17 U1 1 U2 17 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0907-4449 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD OCT PY 2013 VL 69 BP 2157 EP 2160 DI 10.1107/S0907444913019604 PN 10 PG 4 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 231GM UT WOS:000325403900028 PM 24100333 ER PT J AU Xu, ZJ Meakin, P AF Xu, Zhijie Meakin, Paul TI Upscaling of solute transport in heterogeneous media with non-uniform flow and dispersion fields SO APPLIED MATHEMATICAL MODELLING LA English DT Article DE Solute transport; Multi-scale; Dispersion; Upscaling; Heterogeneous; Homogenization ID ONE-DIMENSIONAL TRANSPORT; POROUS-MEDIA; DEPENDENT DISPERSION; COEFFICIENTS; HOMOGENIZATION; DIFFUSION; ADVECTION AB An analytical and computational model for non-reactive solute transport in periodic heterogeneous media with arbitrary non-uniform flow and dispersion fields within the unit cell of length epsilon is described. The model lumps the effect of non-uniform flow and dispersion into an effective advection velocity V-e and an effective dispersion coefficient D-e. It is shown that both V-e and D-e are scale-dependent (dependent on the length scale of the microscopic heterogeneity, epsilon), dependent on the Peclet number P-e, and on a dimensionless parameter alpha that represents the effects of microscopic heterogeneity. The parameter alpha, confined to the range of [-0.5, 0.5] for the numerical example presented, depends on the flow direction and non-uniform flow and dispersion fields. Effective advection velocity V-e and dispersion coefficient D-e can be derived for any given flow and dispersion fields, and epsilon. Homogenized solutions describing the macroscopic variations can be obtained from the effective model. Solutions with sub-unit-cell accuracy can be constructed by homogenized solutions and its spatial derivatives. A numerical implementation of the model compared with direct numerical solutions using a fine grid, demonstrated that the new method was in good agreement with direct solutions, but with significant computational savings. (C) 2013 Elsevier Inc. All rights reserved. C1 [Xu, Zhijie] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Meakin, Paul] Idaho Natl Lab, Carbon Resource Management Dept, Idaho Falls, ID 83415 USA. [Meakin, Paul] Univ Oslo, Ctr Phys Geol Proc, N-0316 Oslo, Norway. [Meakin, Paul] Inst Energy Technol, N-2007 Kjeller, Norway. RP Xu, ZJ (reprint author), Pacific NW Natl Lab, Computat Math Grp, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM zhijie.xu@pnnl.gov RI Xu, Zhijie/A-1627-2009 OI Xu, Zhijie/0000-0003-0459-4531 NR 21 TC 2 Z9 2 U1 0 U2 11 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0307-904X J9 APPL MATH MODEL JI Appl. Math. Model. PD OCT 1 PY 2013 VL 37 IS 18-19 BP 8533 EP 8542 DI 10.1016/j.apm.2013.03.070 PG 10 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications; Mechanics SC Engineering; Mathematics; Mechanics GA 226LW UT WOS:000325038800020 ER PT J AU Gates, AJ Marritt, SJ Bradley, JM Shi, L McMillan, DGG Jeuken, LJC Richardson, DJ Butt, JN AF Gates, Andrew J. Marritt, Sophie J. Bradley, Justin M. Shi, Liang McMillan, Duncan G. G. Jeuken, Lars J. C. Richardson, David J. Butt, Julea N. TI Electrode assemblies composed of redox cascades from microbial respiratory electron transfer chains SO BIOCHEMICAL SOCIETY TRANSACTIONS LA English DT Article DE CymA; fumarate reductase; NapC; nitrate reductase; protein film voltammetry; quinone ID CYTOCHROME-C; FLAVOCYTOCHROME C(3); NITRATE REDUCTASE; VOLTAMMETRY; CATALYSIS; ENZYME; CYMA AB Respiratory and photosynthetic electron transfer chains are dependent on vectorial electron transfer through a series of redox proteins. Examples include electron transfer from NapC to NapAB nitrate reductase in Paracoccus denitrificans and from CymA to Fcc(3) (flavocytochrome c(3)) fumarate reductase in Shewanella oneidensis MR-1. In the present article, we demonstrate that graphite electrodes can serve as surfaces for the stepwise adsorption of NapC and NapAB, and the stepwise adsorption of CymA and Fcc(3). Aspects of the catalytic properties of these assemblies are different from those of NapAB and Fcc(3) adsorbed in isolation. We propose that this is due to the formation of NapC-NapAB and of CymA-Fcc(3) complexes that are capable of supporting vectorial electron transfer. C1 [Gates, Andrew J.; Marritt, Sophie J.; Bradley, Justin M.; Richardson, David J.; Butt, Julea N.] Univ E Anglia, Sch Chem, Ctr Mol & Struct Biochem, Norwich NR4 7TJ, Norfolk, England. [Gates, Andrew J.; Marritt, Sophie J.; Bradley, Justin M.; Richardson, David J.; Butt, Julea N.] Univ E Anglia, Sch Biol Sci, Norwich NR4 7TJ, Norfolk, England. [Shi, Liang] Pacific NW Natl Lab, Richland, WA 99352 USA. [McMillan, Duncan G. G.; Jeuken, Lars J. C.] Univ Leeds, Sch Phys & Astron, Sch Biomed Sci, Leeds LS2 9JT, W Yorkshire, England. RP Butt, JN (reprint author), Univ E Anglia, Sch Chem, Ctr Mol & Struct Biochem, Norwich Res Pk, Norwich NR4 7TJ, Norfolk, England. EM j.butt@uea.ac.uk RI Jeuken, Lars/A-6234-2008; Gates, Andrew/F-8218-2011; Butt, Julea/E-2133-2011 OI Jeuken, Lars/0000-0001-7810-3964; Gates, Andrew/0000-0002-4594-5038; Butt, Julea/0000-0002-9624-5226 FU Biotechnology and Biological Sciences Research Council [BB/G009228, BB/E0219991, BB/D5230191]; University of East Anglia; U.S. Department of Energy, Office of Biological and Environmental Research (BER) FX This research was supported by the Biotechnology and Biological Sciences Research Council [grant numbers BB/G009228, BB/E0219991 and BB/D5230191], the University of East Anglia and the U.S. Department of Energy, Office of Biological and Environmental Research (BER) through the Subsurface Biogeochemical Research (SBR) Program. The paper represents a contribution from the Pacific Northwest National Laboratory (PNNL) SBR SFA. PNNL is operated for the Department of Energy by Battelle. NR 16 TC 1 Z9 1 U1 1 U2 25 PU PORTLAND PRESS LTD PI LONDON PA THIRD FLOOR, EAGLE HOUSE, 16 PROCTER STREET, LONDON WC1V 6 NX, ENGLAND SN 0300-5127 J9 BIOCHEM SOC T JI Biochem. Soc. Trans. PD OCT PY 2013 VL 41 BP 1249 EP U298 DI 10.1042/BST20130147 PN 5 PG 6 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 224SR UT WOS:000324910200020 PM 24059515 ER PT J AU Nguyen, J Hayakawa, CK Mourant, JR Spanier, J AF Nguyen, Jennifer Hayakawa, Carole K. Mourant, Judith R. Spanier, Jerome TI Perturbation Monte Carlo methods for tissue structure alterations SO BIOMEDICAL OPTICS EXPRESS LA English DT Article ID TURBID MEDIA; OPTICAL-PROPERTIES; LIGHT-SCATTERING; IN-VIVO; REFLECTANCE SPECTROSCOPY; MAMMALIAN-CELLS; TRANSPORT; COLLECTION; PHANTOMS; PROBES AB This paper describes an extension of the perturbation Monte Carlo method to model light transport when the phase function is arbitrarily perturbed. Current perturbation Monte Carlo methods allow perturbation of both the scattering and absorption coefficients, however, the phase function can not be varied. The more complex method we develop and test here is not limited in this way. We derive a rigorous perturbation Monte Carlo extension that can be applied to a large family of important biomedical light transport problems and demonstrate its greater computational efficiency compared with using conventional Monte Carlo simulations to produce forward transport problem solutions. The gains of the perturbation method occur because only a single baseline Monte Carlo simulation is needed to obtain forward solutions to other closely related problems whose input is described by perturbing one or more parameters from the input of the baseline problem. The new perturbation Monte Carlo methods are tested using tissue light scattering parameters relevant to epithelia where many tumors originate. The tissue model has parameters for the number density and average size of three classes of scatterers; whole nuclei, organelles such as lysosomes and mitochondria, and small particles such as ribosomes or large protein complexes. When these parameters or the wavelength is varied the scattering coefficient and the phase function vary. Perturbation calculations give accurate results over variations of similar to 15-25% of the scattering parameters. (c) 2013 Optical Society of America C1 [Nguyen, Jennifer] Univ Calif Irvine, Dept Biomed Engn, Irvine, CA 92697 USA. [Hayakawa, Carole K.] Univ Calif Irvine, Dept Chem Engn & Mat Sci, Irvine, CA 92697 USA. [Mourant, Judith R.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Spanier, Jerome] Univ Calif Irvine, Dept Surg, Beckman Laser Inst & Med Clin, Irvine, CA 92612 USA. RP Nguyen, J (reprint author), Univ Calif Irvine, Dept Biomed Engn, 3120 Nat Sci 2, Irvine, CA 92697 USA. EM jmourant@lanl.gov FU NIH [CA71898, P41-EB-015890, EB007309] FX This work was supported by NIH CA71898, NIH P41-EB-015890 and NIH EB007309. The authors would also like to acknowledge help from the Virtual Photonics Team at the Beckman Laser Institute of the University of California, Irvine. JRM would like to thank her parents for the gift of the faster computer used in this work. NR 33 TC 1 Z9 1 U1 0 U2 4 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 2156-7085 J9 BIOMED OPT EXPRESS JI Biomed. Opt. Express PD OCT 1 PY 2013 VL 4 IS 10 BP 1946 EP 1963 DI 10.1364/BOE.4.001946 PG 18 WC Biochemical Research Methods; Optics; Radiology, Nuclear Medicine & Medical Imaging SC Biochemistry & Molecular Biology; Optics; Radiology, Nuclear Medicine & Medical Imaging GA 227UN UT WOS:000325140800014 PM 24156056 ER PT J AU Ford, SR Walter, WR AF Ford, Sean R. Walter, William R. TI An Explosion Model Comparison with Insights from the Source Physics Experiments SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA LA English DT Article AB Seismic spectral models for chemical and nuclear explosions are used in many applications including network modeling and yield estimation. Here we compare the models presented in Denny and Johnson (1991) and Mueller and Murphy (1971) with each other and with new results from the Source Physics Experiments (SPE). We demonstrate analytically the two models are in substantial agreement for large and normally buried explosions, consistent with much of the historic data collected during American and Soviet nuclear testing. However, for small and/or deeply buried explosions, the spectral predictions of the two models can differ significantly. For example, the predicted yield of a 1 km deep, M-w 2 nuclear explosion differs by more than a factor of 5; and, for the same moment and depth chemical explosion, the difference is greater than a factor of 10. We compare the models with initial data from the SPE, which include small and overburied chemical explosions. The corner frequency of the one-ton SPE explosion (SPE-2) is slightly higher than the Mueller and Murphy (1971) model and approximately double the Denny and Johnson (1991) model prediction. The absolute moment of the one-tenth ton SPE explosion (SPE-1) is near the Denny and Johnson (1991) prediction and an order of magnitude smaller than the Mueller and Murphy (1971) prediction. The low-frequency moment ratio for SPE-2/SPE-1 is more consistent with the Denny and Johnson (1991) model. The results presented here show the need for an improved explosion source model that can accommodate a wider range of yields and emplacement conditions. C1 [Ford, Sean R.; Walter, William R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Ford, SR (reprint author), Lawrence Livermore Natl Lab, POB 808,L-046, Livermore, CA 94550 USA. RI Walter, William/C-2351-2013; Ford, Sean/F-9191-2011 OI Walter, William/0000-0002-0331-0616; Ford, Sean/0000-0002-0376-5792 FU National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development (DNN RD); NNSA [DE-AC52-06NA25946]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-609992] FX We are very grateful to Rob Mellors for his work in quality control of the SPE data and a review of this manuscript. We are also grateful for internal review comments from Steve Myers and Cathy Snelson. We thank Howard Patton for discussions on explosion models and scaling over the course of the SPE. The SPE would not have been possible without the support of many people from several organizations. The authors wish to express their gratitude to the SPE working group, a multi-institutional and interdisciplinary group of scientists and engineers from National Security Technologies (NSTec), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), the Defense Threat Reduction Agency (DTRA), and the Air Force Technical Applications Center (AFTAC). Deepest appreciation to Bob White and Ryan Emmitt (NSTec) for their tireless support on the seismic array and to the University of Nevada, Reno (UNR) for their support with the seismic network and data aggregation. Thanks to U.S. Geological Survey (USGS), the Incorporated Research Institutions for Seismology (IRIS) Program for Array Seismic Studies of the Continental Lithosphere (PASSCAL) Instrument Center, Lawrence Berkeley National Laboratory (LBNL), and Roger-Waxler (University of Mississippi) for instrumentation partnership. The authors also wish to thank the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development (DNN R&D) for their sponsorship of the SPE. This work was sponsored by the NNSA under Award Number DE-AC52-06NA25946. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-JRNL-609992. NR 19 TC 5 Z9 5 U1 2 U2 6 PU SEISMOLOGICAL SOC AMER PI ALBANY PA 400 EVELYN AVE, SUITE 201, ALBANY, CA 94706-1375 USA SN 0037-1106 J9 B SEISMOL SOC AM JI Bull. Seismol. Soc. Amer. PD OCT PY 2013 VL 103 IS 5 BP 2937 EP 2945 DI 10.1785/0120130035 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 225TU UT WOS:000324986700033 ER PT J AU De Yoreo, JJ Chung, S Nielsen, MH AF De Yoreo, James J. Chung, Sungwook Nielsen, Michael H. TI The Dynamics and Energetics of Matrix Assembly and Mineralization SO CALCIFIED TISSUE INTERNATIONAL LA English DT Article DE Matrix assembly; Mineralization; Nucleation; S-layer proteins; Calcite ID CALCIUM-CARBONATE; CRYSTAL NUCLEATION; PRENUCLEATION CLUSTERS; PRECURSOR PHASE; PROTEIN CRYSTAL; S-LAYERS; MONOLAYERS; CRYSTALLIZATION; GROWTH; CACO3 AB Formation of biominerals commonly occurs within the context of an organic matrix composed of proteins, polysaccharides, and other macromolecules. Much has been learned about the structure of matrices and the spatial and molecular relationships between matrix and mineral. Only recently has quantitative study of matrix organization and subsequent mineralization been pursued. Here, we review findings from physical studies of matrix assembly in the system of microbial S-layer proteins and of calcium carbonate nucleation on organic templates composed of organothiol self-assembled monolayers on noble metals. Studies on S-layers reveal the importance of multistage assembly pathways and kinetic traps associated with the conformational transformations required to build the basic oligomeric building blocks of the matrix. Experimental investigations of calcium carbonate nucleation on carboxyl-terminated self-assembled monolayers combined with theoretical analyses demonstrate the applicability of classical concepts of nucleation, even when cluster-aggregation pathways are considered, and reveal the underlying energetic and structural source of matrix control over the process. Taken together, these studies highlight the ways in which matrix assembly and mineralization deviate from our classical concepts of crystallization but clearly demonstrate that the concepts of physical chemistry that date back to the days of Gibbs and Ostwald still serve us well in understanding the nucleation and growth of organic matrices and mineral phases. C1 [De Yoreo, James J.; Chung, Sungwook; Nielsen, Michael H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Chung, Sungwook] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Nielsen, Michael H.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP De Yoreo, JJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM james.deyoreo@pnnl.gov RI Nielsen, Michael/D-1881-2015; Foundry, Molecular/G-9968-2014 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Department of Defense, Air Force Office of Scientific Research, National Defense Science and Engineering graduate fellowship [32 CFR 168a] FX This work was performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, with support from the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract DE-AC02-05CH11231. Additional government support was awarded by Department of Defense, Air Force Office of Scientific Research, National Defense Science and Engineering graduate fellowship 32 CFR 168a. NR 54 TC 2 Z9 2 U1 3 U2 54 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0171-967X J9 CALCIFIED TISSUE INT JI Calcif. Tissue Int. PD OCT PY 2013 VL 93 IS 4 SI SI BP 316 EP 328 DI 10.1007/s00223-013-9707-9 PG 13 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA 231MF UT WOS:000325420000004 PM 23460339 ER PT J AU Su, J Dau, PD Xu, CF Huang, DL Liu, HT Wei, F Wang, LS Li, J AF Su, Jing Phuong Diem Dau Xu, Chao-Fei Huang, Dao-Ling Liu, Hong-Tao Wei, Fan Wang, Lai-Sheng Li, Jun TI A Joint Photoelectron Spectroscopy and Theoretical Study on the Electronic Structure of UCl5- and UCl5 SO CHEMISTRY-AN ASIAN JOURNAL LA English DT Article DE ab initio calculations; actinides; density functional calculations; photoelectron spectroscopy; uranium ID MULTIPLY-CHARGED ANIONS; 2-ELECTRON VALENCE INDEXES; SHAM ORBITAL ENERGIES; URANIUM PENTACHLORIDE; BASIS-SETS; INTERNUCLEAR DISTANCES; FORCE-CONSTANTS; VIBRATIONAL FREQUENCIES; MOLTEN-SALTS; HARTREE-FOCK AB We report a combined photoelectron spectroscopic and relativistic quantum chemistry study on gaseous UCl5- and UCl5. The UCl5- anion is produced using electrospray ionization and found to be highly electronically stable with an adiabatic electron binding energy of 4.76 +/- 0.03eV, which also represents the electron affinity of the neutral UCl5 molecule. Theoretical investigations reveal that the ground state of UCl5- has an open shell with two unpaired electrons occupying two primarily U 5f(z3) and 5f(xyz) based molecular orbitals. The structures of both UCl5- and UCl5 are theoretically optimized and confirmed to have C-4v symmetry. The computational results are in good agreement with the photoelectron spectra, providing insights into the electronic structures and valence molecular orbitals of UCl5- and UCl5. We also performed systematic theoretical studies on all the uranium pentahalide complexes UX5- (X=F, Cl, Br, I). Chemical bonding analyses indicate that the UX interactions in UX5- are dominated by ionic bonding, with increasing covalent contributions for the heavier halogen complexes. C1 [Su, Jing; Xu, Chao-Fei; Li, Jun] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China. [Su, Jing; Xu, Chao-Fei; Li, Jun] Tsinghua Univ, Key Lab Organ Optoelect & Mol Engn, Minist Educ, Beijing 100084, Peoples R China. [Phuong Diem Dau; Huang, Dao-Ling; Liu, Hong-Tao; Wang, Lai-Sheng] Brown Univ, Dept Chem, Providence, RI 02912 USA. [Wei, Fan] Chinese Acad Sci, Comp Network Informat Ctr, Supercomp Ctr, Beijing 100190, Peoples R China. [Li, Jun] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Wang, LS (reprint author), Brown Univ, Dept Chem, Providence, RI 02912 USA. EM lai-sheng_wang@brown.edu; junli@mail.tsinghua.edu.cn RI Li, Jun/E-5334-2011; Huang, Daoling/L-3273-2016 OI Li, Jun/0000-0002-8456-3980; FU U.S. Department of Energy, Office of Basics Energy Sciences, and Division of Chemical Sciences, Geosciences, and Biosciences [DE-FG02-11ER16261]; NSFC [20933003, 11079006, 91026003, 21201106]; China Postdoctoral Science Foundation [2012M520297]; US Department of Energy's Office of Biological and Environmental Research FX This work was supported by the U.S. Department of Energy, Office of Basics Energy Sciences, and Division of Chemical Sciences, Geosciences, and Biosciences under Grant No. DE-FG02-11ER16261. The theoretical work was supported by NSFC (20933003, 11079006, 91026003) to JL and NSFC (21201106) and the China Postdoctoral Science Foundation (2012M520297) to JS. The calculations were performed using the Deep-Comp 7000 computer at the Supercomputer Center of the Computer Network Information Center, Chinese Academy of Sciences. A portion of the calculations was performed using EMSL, a national scientific user facility sponsored by the US Department of Energy's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory, USA. NR 79 TC 8 Z9 8 U1 3 U2 30 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1861-4728 J9 CHEM-ASIAN J JI Chem.-Asian J. PD OCT PY 2013 VL 8 IS 10 SI SI BP 2489 EP 2496 DI 10.1002/asia.201300627 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 222RK UT WOS:000324748600030 PM 23853153 ER PT J AU Johnson, MT Childers, AS Ramirez-Rico, J Wang, H Faber, KT AF Johnson, M. T. Childers, A. S. Ramirez-Rico, J. Wang, H. Faber, K. T. TI Thermal conductivity of wood-derived graphite and copper-graphite composites produced via electrodeposition SO COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING LA English DT Article DE Finite element analysis (FEA); Porosity; Thermal properties; Biomorphic materials ID MECHANICAL-PROPERTIES; POROUS MATERIALS; FLASH METHOD; CERAMICS; DIFFUSIVITY; MANAGEMENT; FOAMS AB The thermal conductivity of wood-derived graphite and graphite/copper composites was studied both experimentally and using finite element analysis. The unique, naturally-derived, anisotropic porosity inherent to wood-derived carbon makes standard porosity-based approximations for thermal conductivity poor estimators. For this reason, a finite element technique which uses sample microstructure as model input was utilized to determine the conductivity of the carbon phase independent of porosity. Similar modeling techniques were also applied to carbon/copper composite microstructures and predicted conductivities compared well to those determined via experiment. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Johnson, M. T.; Childers, A. S.; Faber, K. T.] Northwestern Univ, Robert R McCormick Sch Engn & Appl Sci, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Ramirez-Rico, J.] Univ Seville, CSIC, Dept Fis Mat Condensada ICMS, Seville 41012, Spain. [Wang, H.] Oak Ridge Natl Lab, High Temp Mat Lab, Oak Ridge, TN 37831 USA. RP Faber, KT (reprint author), Northwestern Univ, Robert R McCormick Sch Engn & Appl Sci, Dept Mat Sci & Engn, 2220 N Campus Dr, Evanston, IL 60208 USA. EM k-faber@northwestern.edu RI Ramirez-Rico, Joaquin/A-7006-2009; Faber, Katherine/B-6741-2009; Wang, Hsin/A-1942-2013 OI Ramirez-Rico, Joaquin/0000-0002-1184-0756; Wang, Hsin/0000-0003-2426-9867 FU National Science Foundation [DMR-0710630]; NSF-NSEC; NSF-MRSEC; Keck Foundation; State of Illinois; Northwestern University; MRSEC program of the National Science Foundation at the Materials Research Center of Northwestern University [DMR-0520513]; United States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program FX This work was supported by the National Science Foundation, DMR-0710630. SEM work was performed in the EPIC facility of the NUANCE Center at Northwestern University. NUANCE Center is supported by NSF-NSEC, NSF-MRSEC, The Keck Foundation, The State of Illinois, and Northwestern University. Portions of this work made use of the Optical Microscopy and Metallography Facility, supported by the MRSEC program of the National Science Foundation, DMR-0520513, at the Materials Research Center of Northwestern University. DSC work was performed at CITIUS-University of Seville, Spain, with the assistance of J. Quispe Cancapa and C. Vera Garcia. Portions of this work made use of the High Temperature Materials Laboratory at Oak Ridge National Lab through the HTML User Program sponsored by the United States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. The authors also wish to thank Edwin Fuller Jr. for advice concerning OOF analysis. NR 34 TC 12 Z9 12 U1 3 U2 32 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1359-835X J9 COMPOS PART A-APPL S JI Compos. Pt. A-Appl. Sci. Manuf. PD OCT PY 2013 VL 53 BP 182 EP 189 DI 10.1016/j.compositesa.2013.06.009 PG 8 WC Engineering, Manufacturing; Materials Science, Composites SC Engineering; Materials Science GA 225KJ UT WOS:000324961500021 ER PT J AU Bogner, S Bulgac, A Carlson, J Engel, J Fann, G Furnstahl, RJ Gandolfi, S Hagen, G Horoi, M Johnson, C Kortelainen, M Lusk, E Maris, P Nam, H Navratil, P Nazarewicz, W Ng, E Nobre, GPA Ormand, E Papenbrock, T Pei, J Pieper, SC Quaglioni, S Roche, K Sarich, J Schunck, N Sosonkina, M Terasaki, J Thompson, I Vary, JP Wild, SM AF Bogner, S. Bulgac, A. Carlson, J. Engel, J. Fann, G. Furnstahl, R. J. Gandolfi, S. Hagen, G. Horoi, M. Johnson, C. Kortelainen, M. Lusk, E. Maris, P. Nam, H. Navratil, P. Nazarewicz, W. Ng, E. Nobre, G. P. A. Ormand, E. Papenbrock, T. Pei, J. Pieper, S. C. Quaglioni, S. Roche, Kj. Sarich, J. Schunck, N. Sosonkina, M. Terasaki, J. Thompson, I. Vary, J. P. Wild, S. M. TI Computational nuclear quantum many-body problem: The UNEDF project SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Configuration interaction; Coupled-cluster method; Density functional theory; Effective field theory; High-performance computing; Quantum Monte Carlo ID HARMONIC-OSCILLATOR BASIS; FOCK-BOGOLYUBOV EQUATIONS; AXIALLY DEFORMED SOLUTION; DENSITY-MATRIX EXPANSION; MONTE-CARLO CALCULATIONS; SHELL-MODEL; MULTIWAVELET BASES; LEVEL DENSITIES; SINGULAR-OPERATORS; LIGHT-NUCLEI AB The UNEDF project was a large-scale collaborative effort that applied high-performance computing to the nuclear quantum many-body problem. The primary focus of the project was on constructing, validating, and applying an optimized nuclear energy density functional, which entailed a wide range of pioneering developments in microscopic nuclear structure and reactions, algorithms, high-performance computing, and uncertainty quantification. UNEDF demonstrated that close associations among nuclear physicists, mathematicians, and computer scientists can lead to novel physics outcomes built on algorithmic innovations and computational developments. This review showcases a wide range of UNEDF science results to illustrate this interplay. (c) 2013 Elsevier B.V. All rights reserved. C1 [Lusk, E.; Sarich, J.; Wild, S. M.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Pieper, S. C.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Nobre, G. P. A.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. [Horoi, M.] Cent Michigan Univ, Mt Pleasant, MI 48859 USA. [Vary, J. P.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Carlson, J.; Gandolfi, S.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Ng, E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Navratil, P.; Ormand, E.; Quaglioni, S.; Schunck, N.; Thompson, I.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94551 USA. [Bogner, S.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Fann, G.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Nam, H.] Oak Ridge Natl Lab, Natl Ctr Computat Sci Div, Oak Ridge, TN 37831 USA. [Hagen, G.; Kortelainen, M.; Nazarewicz, W.; Pei, J.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Furnstahl, R. J.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Sosonkina, M.] Old Dominion Univ, Dept Modeling Simulat & Visualizat Engn, Norfolk, VA 23529 USA. [Roche, Kj.] Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA. [Pei, J.] Peking Univ, Sch Phys, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Johnson, C.] San Diego State Univ, Dept Phys, San Diego, CA 92182 USA. [Navratil, P.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Kortelainen, M.] Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland. [Engel, J.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. [Kortelainen, M.; Nazarewicz, W.; Papenbrock, T.; Pei, J.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Terasaki, J.] Univ Tsukuba, Div Phys, Tsukuba, Ibaraki 3058577, Japan. [Terasaki, J.] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058577, Japan. [Nazarewicz, W.] Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland. [Bulgac, A.; Roche, Kj.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Wild, SM (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM wild@mcs.anl.gov RI Pei, Junchen/E-3532-2010; Wild, Stefan/P-4907-2016; OI Wild, Stefan/0000-0002-6099-2772; Furnstahl, Richard/0000-0002-3483-333X; Gandolfi, Stefano/0000-0002-0430-9035; Schunck, Nicolas/0000-0002-9203-6849; Papenbrock, Thomas/0000-0001-8733-2849 FU SciDAC program; US Dept. of Energy (DOE), Office of Science, Advanced Scientific Computing Research and Nuclear Physics programs; DOE Contract [DE-FG02-96ER40963, DE-AC52-07NA27344, DE-AC02-05CH11231, DE-AC05-00OR22725, DE-AC02-06CH11357, DE-FC02-07ER41457, DE-FC02-09ER41584, DE-FC02-09ER41582, DE-FG02-87ER40371, DE-FC02-09ER41586] FX We are grateful to the numerous other UNEDF members who contributed throughout the collaboration to the works summarized here. Support for the UNEDF and NUCLEI collaborations was provided through the SciDAC program funded by the US Dept. of Energy (DOE), Office of Science, Advanced Scientific Computing Research and Nuclear Physics programs. This work was also supported by DOE Contract Nos. DE-FG02-96ER40963 (Univ. Tenn.), DE-AC52-07NA27344 (LLNL), DE-AC02-05CH11231 (LBNL), DE-AC05-00OR22725 (ORNL), DE-AC02-06CH11357 and DE-FC02-07ER41457 (ANL), DE-FC02-09ER41584 (Central Michigan Univ.), DE-FC02-09ER41582 (Iowa State Univ.), DE-FG02-87ER40371 (Iowa State Univ.), and DE-FC02-09ER41586 (Ohio State Univ.). This research used the computational resources of the Oak Ridge Leadership Computing Facility (OLCF) at ORNL and Argonne Leadership Computing Facility (ALCF) at ANL provided through the IN-CITE program. Computational resources were also provided by the National Institute for Computational Sciences (NICS) at ORNL, the Laboratory Computing Resource Center (LCRC) at ANL, and the National Energy Research Scientific Computing Center (NERSC) at LBNL. NR 169 TC 22 Z9 22 U1 1 U2 54 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD OCT PY 2013 VL 184 IS 10 BP 2235 EP 2250 DI 10.1016/j.cpc.2013.05.020 PG 16 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 220RI UT WOS:000324604200001 ER PT J AU Kim, J Moridis, GJ AF Kim, Jihoon Moridis, George J. TI Development of the T plus M coupled flow-geomechanical simulator to describe fracture propagation and coupled flow-thermal-geomechanical processes in tight/shale gas systems SO COMPUTERS & GEOSCIENCES LA English DT Article DE Hydraulic fracturing; Poromechanics; Tensile failure; Fracture propagation; Double porosity; Shale gas ID HYDRAULIC-FRACTURE; RESERVOIR SIMULATOR; POROSITY MATERIALS; FLUID-FLOW; FORMULATION; ROCK; GROWTH; STRAIN; MODEL AB We developed a hydraulic fracturing simulator by coupling a flow simulator to a geomechanics code, namely T+M simulator. Modeling of the vertical fracture development involves continuous updating of the boundary conditions and of the data connectivity, based on the finite element method for geomechanics. The T+M simulator can model the initial fracture development during the hydraulic fracturing operations, after which the domain description changes from single continuum to double or multiple continua in order to rigorously model both flow and geomechanics for fracture rock matrix systems. The T+H simulator provides two-way coupling between fluid-heat flow and geomechanics, accounting for thermo-poro-mechanics, treats nonlinear permeability and geomechanical moduli explicitly, and dynamically tracks changes in the fracture(s) and in the pore volume. We also fully account for leak-off in all directions during hydraulic fracturing. We first test the T+M simulator, matching numerical solutions with the analytical solutions for poromechanical effects, static fractures, and fracture propagations. Then, from numerical simulation of various cases of the planar fracture propagation, shear failure can limit the vertical fracture propagation of tensile failure, because of leak-off into the reservoirs. Slow injection causes more leak-off, compared with fast injection, when the same amount of fluid is injected. Changes in initial total stress and contributions of shear effective stress to tensile failure can also affect formation of the fractured areas, and the geomechanical responses are still well-posed. Published by Elsevier Ltd. C1 [Kim, Jihoon; Moridis, George J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Kim, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd 74R316C, Berkeley, CA 94720 USA. EM JihoonKim@lbl.gov FU U.S. Environmental Protection Agency [DW-89-922359-01-0]; Research Partnership to Secure Energy for America (RPSEA) through the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program [08122-45] FX The research described in this article has been funded by the U.S. Environmental Protection Agency through Interagency Agreement (DW-89-922359-01-0) to the Lawrence Berkeley National Laboratory, and by the Research Partnership to Secure Energy for America (RPSEA - Contract No. 08122-45) through the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program as authorized by the US Energy Policy Act (EPAct) of 2005. The views expressed in this article are those of the author(s) and do not necessarily reflect the views or policies of the EPA. NR 56 TC 12 Z9 12 U1 6 U2 59 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-3004 J9 COMPUT GEOSCI-UK JI Comput. Geosci. PD OCT PY 2013 VL 60 BP 184 EP 198 DI 10.1016/j.cageo.2013.04.023 PG 15 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 226MQ UT WOS:000325040900021 ER PT J AU McGuire, JM Scribner, KT Congdon, JD AF McGuire, Jeanette M. Scribner, Kim T. Congdon, Justin D. TI Spatial aspects of movements, mating patterns, and nest distributions influence gene flow among population subunits of Blanding's turtles (Emydoidea blandingii) SO CONSERVATION GENETICS LA English DT Article DE Functional connectivity; Blanding's turtle; Parentage; Gene flow; Life history; Behavioral ecology ID FRESH-WATER TURTLE; MULTILOCUS GENOTYPE DATA; REPRODUCTIVE SUCCESS; MULTIPLE PATERNITY; SPERM STORAGE; PAINTED TURTLES; MICROSATELLITE LOCI; TRACHEMYS-SCRIPTA; MOTTLED SCULPIN; SEXUAL-MATURITY AB The core habitats of semi-aquatic organisms are centered on wetlands, but also include terrestrial habitats. Patterns of movements among core area components can influence rates of genetic and demographic exchange among populations. A combination of 33 years of data on the life history and spatial biology of Blanding's turtles (Emydoidea blandingii) on the E. S. George Reserve (ESGR) and 8 years of genetic data (N = 244 adults and 611 offspring) were used to document resident wetlands, identify mating pairs, and estimate cohort levels of coancestry and degree of spatial genetic structuring. For ESGR resident females, 34 % of clutches were sired by non-resident males, whereas 56 % of clutches of non-resident females that nested on the ESGR were sired by ESGR resident males. The mean number of mates for males and females was 1.6 (SD = 0.67) and 2.02 (SD = 1.05), respectively, and the annual occurrence of multiple paternity averaged 47.6 % (min-max = 15.4-55.6 %, N = 8). Repeat paternity was common (69.6 %), regardless of residence of parents. The probability of adults mating with individuals from different residence wetlands and tendencies for hatchlings to disperse to wetlands other than their mother's residence contributed to demographic and genetic connectivity among residence wetlands. Similar allele frequencies among individuals from different residence wetlands (F-st = 0.002, P > 0.05) were consistent with the frequency and geographic extent of adult and juvenile movements. Data on mating patterns, individual movements, and core-habitat use helped identify mechanisms that influence genetic structuring within a population comprised of multiple sub-units. C1 [McGuire, Jeanette M.; Scribner, Kim T.] Michigan State Univ, Dept Zool, E Lansing, MI 48824 USA. [McGuire, Jeanette M.; Scribner, Kim T.] Michigan State Univ, Dept Fisheries & Wildlife, E Lansing, MI 48824 USA. [Congdon, Justin D.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. RP McGuire, JM (reprint author), Michigan State Univ, Dept Zool, 203 Nat Sci Bldg, E Lansing, MI 48824 USA. EM mcguir35@msu.edu OI McGuire, Jeanette/0000-0002-4706-447X FU National Science Foundation [DEB-74-070631, DEB-79-06301, BSR-90-19771]; US Department of Energy [DE-FC09-96SR18546] FX We thank the Museum of Zoology and Ecology and Evolutionary Biology Department at the University of Michigan for administering and maintaining the ESGR as a world-class research area. We thank the long-term field crew R. Nagle, O. Kinney, R. van Loben Sels, T. Quinter, and H. Avery for improvements to all aspects of the study. Special thanks to Cece Fabbro for emergency help processing hatchlings and spirited conversations. The laboratory portion of the study was assisted greatly by S. Libants, K. Bennett, and R. Komosinski. Improvements of earlier drafts of the manuscript are the results of comments from N. Dickson, K. Holekamp, R. van Loben Sels, D. Schemske, A. McAdam, and members of the Scribner lab and from reviews and comments from D. Pearse and other anonymous reviewers. Research for this paper was funded by the National Science Foundation (DEB-74-070631, DEB-79-06301, and BSR-90-19771) to JDC, the US Department of Energy Financial Assistant Award (DE-FC09-96SR18546 to the University of Georgia Research Foundation). Additional support was provided by N. Dickson, J. Congdon, the Fabbro family, and M. Tinkle. Research and manuscript preparation were aided by the University of Michigan Museum of Zoology and Ecology and Evolutionary Biology Department (J.M.), Michigan State University College of Natural Science (J.M.), Michigan State University Department of Zoology (J.M.), Michigan State University Department of Fisheries and Wildlife (K.S.), and the Michigan Agricultural Experimental Station (K.S.). NR 92 TC 5 Z9 5 U1 2 U2 61 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1566-0621 J9 CONSERV GENET JI Conserv. Genet. PD OCT PY 2013 VL 14 IS 5 BP 1029 EP 1042 DI 10.1007/s10592-013-0493-8 PG 14 WC Biodiversity Conservation; Genetics & Heredity SC Biodiversity & Conservation; Genetics & Heredity GA 227PZ UT WOS:000325127100011 ER PT J AU Bruemmer, SM Olszta, MJ Toloczko, MB Thomas, LE AF Bruemmer, S. M. Olszta, M. J. Toloczko, M. B. Thomas, L. E. TI Linking Grain Boundary Microstructure to Stress Corrosion Cracking of Cold-Rolled Alloy 690 in Pressurized Water Reactor Primary Water SO CORROSION LA English DT Article DE Alloy 690; carbide precipitation; cold work; grain boundaries; microstructure; pressurized water reactor primary water; stress corrosion cracking ID CHROMIUM DEPLETION; DEFORMATION; CHEMISTRY; BEHAVIOR AB Grain boundary microstructures and microchemistries are examined in cold-rolled Alloy 690 (UNS N06690) materials and comparisons are made to intergranular stress corrosion cracking (IGSCC) behavior in pressurized water reactor (PWR) primary water. Chromium carbide precipitation is found to be a key aspect for materials in both the mill-annealed and thermally treated conditions. Cold rolling to high levels of reduction was discovered to produce small IG voids and cracked carbides in alloys with a high density of grain boundary carbides. The degree of permanent grain boundary damage from cold rolling was found to depend directly on the initial IG carbide distribution. For the same degree of cold rolling, alloys with few IG precipitates exhibited much less permanent damage. Although this difference in grain boundary damage appears to correlate with measured SCC growth rates, crack tip examinations reveal that cracked carbides appeared to blunt propagation of IGSCC cracks in many cases. Preliminary results suggest that the localized grain boundary strains and stresses produced during cold rolling promote IGSCC susceptibility and not the cracked carbides and voids. C1 [Bruemmer, S. M.; Olszta, M. J.; Toloczko, M. B.; Thomas, L. E.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Bruemmer, SM (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM stephen.bruemmer@pnnl.gov FU U.S. Department of Energy by Battelle Memorial Institute [DE-AC06-76RLO1830] FX Support from the U.S. Nuclear Regulatory Commission for CGR testing and the Office of Basic Energy Sciences, U.S. Department of Energy, is recognized for TEM high-resolution characterization. In addition, key support was also obtained from Rolls Royce for EBSD examinations. Technical assistance of D.J. Edwards for EBSD analyses and R.J. Seffens and C. E. Chamberlin for materials preparation activities is acknowledged. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under contract DE-AC06-76RLO1830. NR 29 TC 0 Z9 0 U1 5 U2 27 PU NATL ASSOC CORROSION ENG PI HOUSTON PA 1440 SOUTH CREEK DRIVE, HOUSTON, TX 77084-4906 USA SN 0010-9312 J9 CORROSION JI Corrosion PD OCT PY 2013 VL 69 IS 10 AR 000171 DI 10.5006/0808 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 225WY UT WOS:000324997100002 ER PT J AU Urzhumtsev, A Afonine, PV Adams, PD AF Urzhumtsev, Alexandre Afonine, Pavel V. Adams, Paul D. TI TLS from fundamentals to practice SO CRYSTALLOGRAPHY REVIEWS LA English DT Article DE translation libration screw model; atomic displacement parameter; rigid-body motion; structure refinement ID ANISOTROPIC DISPLACEMENT PARAMETERS; LEAST-SQUARES REFINEMENT; RIGID-BODY MOTION; NORMAL-MODE REFINEMENT; MOLECULAR-DYNAMICS SIMULATIONS; PROTEIN CRYSTAL-STRUCTURES; 1.2 ANGSTROM RESOLUTION; BOVINE RIBONUCLEASE-A; THERMAL-MOTION; MACROMOLECULAR STRUCTURES AB The translation-libration-screw-rotation (TLS) model of rigid-body harmonic displacements introduced in crystallography by Schomaker and Trueblood [On the rigid-body motion of molecules in crystals. Acta Cryst. 1968;B24:63-76] is now a routine tool in macromolecular studies and is a feature of most modern crystallographic structure refinement packages. In this review, we consider a number of simple examples that illustrate important features of the TLS model. Based on these examples simplified formulae are given for several special cases that may occur in structure modelling and refinement. The derivation of general TLS formulae from basic principles is also provided. This manuscript describes the principles of TLS modelling as well as some selected algorithmic details for practical application. An extensive list of applications references as examples of TLS in macromolecular crystallography refinement is provided. C1 [Urzhumtsev, Alexandre] CNRS INSERM UdS, IGBMC, F-67404 Illkirch Graffenstaden, France. [Urzhumtsev, Alexandre] Univ Lorraine, Fac Sci & Technol, F-54506 Vandoeuvre Les Nancy, France. [Afonine, Pavel V.; Adams, Paul D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Adams, Paul D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Afonine, PV (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,BLDG 64R0121, Berkeley, CA 94720 USA. EM pafonine@lbl.gov RI Adams, Paul/A-1977-2013 OI Adams, Paul/0000-0001-9333-8219 FU NIH [GM063210]; PHENIX Industrial Consortium; US Department of Energy [DE-AC02-05CH11231]; national member subscription FX P.V.A. and P. D. A. thank the NIH [grant no. GM063210] and the PHENIX Industrial Consortium for support of the PHENIX project. This work was supported in part by the US Department of Energy under Contract No. DE-AC02-05CH11231. AU thanks the French Infrastructure for Integrated Structural Biology (FRISBI) ANR-10-INSB-05-01 and Instruct, part of the European Strategy Forum on Research Infrastructures (ESFRI) and supported by national member subscription. NR 123 TC 6 Z9 6 U1 1 U2 14 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0889-311X EI 1476-3508 J9 CRYSTALLOGR REV JI Crystallogr. Rev PD OCT 1 PY 2013 VL 19 IS 4 BP 230 EP 270 DI 10.1080/0889311X.2013.835806 PG 41 WC Crystallography SC Crystallography GA 229EP UT WOS:000325244900003 PM 25249713 ER PT J AU Marcinkevage, JA Alverson, CJ Narayan, KMV Kahn, HS Ruben, J Correa, A AF Marcinkevage, Jessica A. Alverson, C. J. Narayan, K. M. Venkat Kahn, Henry S. Ruben, Julia Correa, Adolfo TI Race/Ethnicity Disparities in Dysglycemia Among US Women of Childbearing Age Found Mainly in the Nonoverweight/Nonobese SO DIABETES CARE LA English DT Article ID BETA-CELL FUNCTION; INSULIN SENSITIVITY; GLYCATED HEMOGLOBIN; METABOLIC SYNDROME; AFRICAN-AMERICANS; DIABETES-MELLITUS; ADIPOSE-TISSUE; PREVALENCE; OBESITY; RISK AB OBJECTIVETo describe the burden of dysglycemiaabnormal glucose metabolism indicative of diabetes or high risk for diabetesamong U.S. women of childbearing age, focusing on differences by race/ethnicity.RESEARCH DESIGN AND METHODSUsing U.S. National Health and Nutrition Examination Survey data (1999-2008), we calculated the burden of dysglycemia (i.e., prediabetes or diabetes from measures of fasting glucose, A1C, and self-report) in nonpregnant women of childbearing age (15-49 years) by race/ethnicity status. We estimated prevalence risk ratios (PRRs) for dysglycemia in subpopulations stratified by BMI (measured as kilograms divided by the square of height in meters), using predicted marginal estimates and adjusting for age, waist circumference, C-reactive protein, and socioeconomic factors.RESULTSBased on data from 7,162 nonpregnant women, representing >59,000,000 women nationwide, 19% (95% CI 17.2-20.9) had some level of dysglycemia, with higher crude prevalence among non-Hispanic blacks and Mexican Americans vs. non-Hispanic whites (26.3% [95% CI 22.3-30.8] and 23.8% [19.5-28.7] vs. 16.8% [14.4-19.6], respectively). In women with BMI <25 kg/m(2), dysglycemia prevalence was roughly twice as high in both non-Hispanic blacks and Mexican Americans vs. non-Hispanic whites. This relative increase persisted in adjusted models (PRRadj 1.86 [1.16-2.98] and 2.23 [1.38-3.60] for non-Hispanic blacks and Mexican Americans, respectively). For women with BMI 25-29.99 kg/m(2), only non-Hispanic blacks showed increased prevalence vs. non-Hispanic whites (PRRadj 1.55 [1.03-2.34] and 1.28 [0.73-2.26] for non-Hispanic blacks and Mexican Americans, respectively). In women with BMI >30 kg/m(2), there was no significant increase in prevalence of dysglycemia by race/ethnicity category.CONCLUSIONSOur findings show that dysglycemia affects a significant portion of U.S. women of childbearing age and that disparities by race/ethnicity are most prominent in the nonoverweight/nonobese. C1 [Marcinkevage, Jessica A.; Alverson, C. J.] Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, Div Birth Defects & Dev Disabil, Atlanta, GA 30333 USA. [Marcinkevage, Jessica A.] Oak Ridge Associated Univ, Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Marcinkevage, Jessica A.; Narayan, K. M. Venkat] Emory Univ, Laney Grad Sch, Grad Div Biol & Biomed Sci, Program Nutr & Hlth Sci, Atlanta, GA 30322 USA. [Kahn, Henry S.] Ctr Dis Control & Prevent, Div Diabet Translat, Atlanta, GA USA. [Ruben, Julia] D Tree Int, Weston, MA USA. [Correa, Adolfo] Univ Mississippi Med Ctr, Dept Med, Jackson, MS USA. RP Marcinkevage, JA (reprint author), Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, Div Birth Defects & Dev Disabil, Atlanta, GA 30333 USA. EM jmarcinkevage@cdc.gov RI Narayan, K.M. Venkat /J-9819-2012; OI Narayan, K.M. Venkat /0000-0001-8621-5405; Kahn, Henry/0000-0003-2533-1562 FU Department of Energy; Centers of Disease Control and Prevention FX This project was supported in part by an appointment to the Research Participation Program for the Centers for Disease Control and Prevention administered by the Oak Ridge Institute for Science and Education through an agreement between the Department of Energy and the Centers of Disease Control and Prevention. NR 38 TC 4 Z9 4 U1 0 U2 6 PU AMER DIABETES ASSOC PI ALEXANDRIA PA 1701 N BEAUREGARD ST, ALEXANDRIA, VA 22311-1717 USA SN 0149-5992 J9 DIABETES CARE JI Diabetes Care PD OCT PY 2013 VL 36 IS 10 BP 3033 EP 3039 DI 10.2337/dc12-2312 PG 7 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA 222RT UT WOS:000324749500039 PM 23780951 ER PT J AU Amonette, JE Barr, JL Erikson, RL Dobeck, LM Barr, JL Shaw, JA AF Amonette, James E. Barr, Jonathan L. Erikson, Rebecca L. Dobeck, Laura M. Barr, Jamie L. Shaw, Joseph A. TI Measurement of advective soil gas flux: results of field and laboratory experiments with CO2 SO ENVIRONMENTAL EARTH SCIENCES LA English DT Article DE Geologic carbon sequestration; Soil gas flux; Continuous monitoring; Zero Emissions Research and Technology Program; ZERT; Venturi effect; Carbon dioxide; CO2 ID SEQUESTRATION; EMISSIONS; CHAMBER; SURFACE AB A multi-channel, steady-state flow-through (SSFT), soil-CO2 flux monitoring system was modified to include a larger-diameter vent tube and an array of inexpensive pyroelectric non-dispersive infrared detectors for full-range (0-100 %) coverage of CO2 concentrations without dilution. Field testing of this system was then conducted from late July to mid-September 2010 at the Zero Emissions Research and Technology project site located in Bozeman, Montana, USA. Subsequently, laboratory testing was conducted at the Pacific Northwest National Laboratory in Richland, WA, USA using a flux bucket filled with dry sand. In the field, an array of 25 SSFT and 3 non-steady-state (NSS) flux chambers was installed in a 10 x 4 m area, the long boundary of which was directly above a shallow (2-m depth) horizontal injection well located 0.5 m below the water table. Two additional chambers (one SSFT and one NSS) were installed 10 m from the well for background measurements. Volumetric soil moisture sensors were installed at each SSFT chamber to measure mean moisture levels in the top 0.15 m of soil. A total flux of 52 kg CO2 day(-1) was injected into the well for 27 days and the efflux from the soil was monitored by the chambers before, during, and for 27 days after the injection. Overall, the results were consistent with those from previous years, showing a radial efflux pattern centered on a known "hot spot", rapid responses to changes in injection rate and wind power, evidence for movement of the CO2 plume during the injection, and nominal flux levels from the SSFT chambers that were up to sevenfold higher than those measured by adjacent NSS chambers. Soil moisture levels varied during the experiment from moderate to near saturation with the highest levels occurring consistently at the hot spot. The effects of wind on measured flux were complex and decreased as soil moisture content increased. In the laboratory, flux-bucket testing with the SSFT chamber showed large measured-flux enhancement due to the Venturi effect on the chamber vent, but an overall decrease in measured flux when wind also reached the sand surface. Flux-bucket tests at a high flux (comparable to that at the hot spot) also showed that the measured flux levels increase linearly with the chamber-flushing rate until the actual level is reached. At the SSFT chamber-flushing rate used in the field experiment, the measured flux in the laboratory was only about a third of the actual flux. The ratio of measured to actual flux increased logarithmically as flux decreased, and reached parity at low levels typical of diffusive-flux systems. Taken together, the results suggest that values for advective CO2 flux measured by SSFT and NSS chamber systems are likely to be significantly lower than the actual values due to back pressure developed in the chamber that diverts flux from entering the chamber. Chamber designs that counteract the back pressure and also avoid large Venturi effects associated with vent tubes, such as the SSFT with a narrow vent tube operated at a high chamber-flushing rate, are likely to yield flux measurements closer to the true values. C1 [Amonette, James E.; Erikson, Rebecca L.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Barr, Jonathan L.] Pacific NW Natl Lab, BSRC, Richland, WA 99354 USA. [Dobeck, Laura M.] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA. [Barr, Jamie L.] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA. [Shaw, Joseph A.] Montana State Univ, Dept Elect & Comp Engn, Bozeman, MT 59717 USA. RP Amonette, JE (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99354 USA. EM jim.amonette@pnnl.gov FU DOE [DE-AC05-76RL01830]; Office of Sequestration, Hydrogen, and Clean Coal Fuels, and National Energy Technology Laboratory FX We thank Gary M. De Winkle for use of the hand-held anemometer, Chris J. Thompson for preparation of CO2 calibration standards, and Daniel R. Humphrys for logistical support. This work was carried out within the ZERT project, funded by the Assistant Secretary for Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, and National Energy Technology Laboratory. Parts of the work were conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a DOE User Facility operated by Battelle for the DOE Office of Biological and Environmental Research. Pacific Northwest National Laboratory (PNNL) is operated for the DOE under Contract DE-AC05-76RL01830. NR 13 TC 3 Z9 3 U1 2 U2 31 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1866-6280 J9 ENVIRON EARTH SCI JI Environ. Earth Sci. PD OCT PY 2013 VL 70 IS 4 BP 1717 EP 1726 DI 10.1007/s12665-013-2259-5 PG 10 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 226YU UT WOS:000325074400023 ER PT J AU Fellowes, JW Pattrick, RAD Boothman, C Al Lawati, WMM van Dongen, BE Charnock, JM Lloyd, JR Pearce, CI AF Fellowes, J. W. Pattrick, R. A. D. Boothman, C. Al Lawati, W. M. M. van Dongen, B. E. Charnock, J. M. Lloyd, J. R. Pearce, C. I. TI Microbial selenium transformations in seleniferous soils SO EUROPEAN JOURNAL OF SOIL SCIENCE LA English DT Article ID N-ALKANE DISTRIBUTIONS; RESPIRING BACTERIA; REDUCTION; SELENATE; SEDIMENTS; NITRATE; WATER; DRAINAGE; OXIDATION; LENGTH AB Selenium (Se) is an essential trace element for animals and displays a narrow range between dietary deficiency and toxicity. The toxicity of Se depends on its bioavailability, which is directly related to its oxidation states, of which four occur in the environment (Se-VI, Se-IV, Se-0 and SeII-). Microbial communities drive the cycling of Se between these oxidation states. In order to investigate the effect of microbial activity on Se cycling in the environment, a field site in County Meath, Ireland, was identified with anomalously large concentrations of Se as a result of weathering of black shales within the Lucan formation, leading to cases of Se toxicity in farm animals. Soil cores were extracted from the site for Se speciation and microbial community analysis prior to microcosm experiments to assess Se stability and microbial Se transformations. Selenium was present as a recalcitrant, reduced organic phase that was strongly coordinated with carbon, concordant with suggested hypotheses of Se phyto-concentration within a clay-lined, postglacial marshland. Selenium was not mobilized in microcosm experiments, and supplementation with Se-VI resulted in rapid reduction and removal from solution as Se-0. Additional electron donors did not affect Se stability or removal from solution, although nitrate did hinder Se-VI reduction. Terminal restriction fragment length polymorphism analysis indicated a significant shift in microbial community after amendment with Se-VI. This work extends the current knowledge of Se cycling in the environment, and provides information on the bioavailability of Se in the soil, which determines Se content of foodstuffs. C1 [Fellowes, J. W.; Pattrick, R. A. D.; Boothman, C.; Al Lawati, W. M. M.; van Dongen, B. E.; Charnock, J. M.; Lloyd, J. R.] Univ Manchester, Sch Earth Atmospher & Environm Sci, Manchester M13 9PL, Lancs, England. [Fellowes, J. W.; Pattrick, R. A. D.; Boothman, C.; Al Lawati, W. M. M.; van Dongen, B. E.; Charnock, J. M.; Lloyd, J. R.] Univ Manchester, Williamson Res Ctr Mol Environm Sci, Manchester M13 9PL, Lancs, England. [Al Lawati, W. M. M.] Minist Manpower, Higher Coll Technol, Muscat 113, Oman. [Pearce, C. I.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Fellowes, JW (reprint author), Univ Manchester, Sch Earth Atmospher & Environm Sci, Manchester M13 9PL, Lancs, England. EM Jonathan.Fellowes@Manchester.ac.uk OI van Dongen, Bart/0000-0003-1189-142X; Boothman, Christopher/0000-0002-4321-1719 FU Ministry of Manpower, Sultanate of Oman; NERC; RCUK FX The authors especially wish to acknowledge the generous assistance of Garrett A. Fleming and Cian Condon (Teagasc, Ireland) in this work. The authors are very grateful for the support of P. Lythgoe, A. Bewsher (of the Manchester Analytical Geochemistry Unit, University of Manchester) and J. Waters (of the Williamson Research Centre, University of Manchester) for ICP, IC and XRD analyses, respectively. WAL gratefully acknowledges receipt of a PhD studentship funded by the Ministry of Manpower, Sultanate of Oman. XAS analyses were undertaken on ID26 of the European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, F-38043 Grenoble Cedex, France, with the beamline support of Dr K Kvashnina. Finally, the authors wish to acknowledge the financial support of NERC and RCUK. NR 38 TC 6 Z9 7 U1 3 U2 55 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1351-0754 J9 EUR J SOIL SCI JI Eur. J. Soil Sci. PD OCT PY 2013 VL 64 IS 5 SI SI BP 629 EP 638 DI 10.1111/ejss.12051 PG 10 WC Soil Science SC Agriculture GA 227VN UT WOS:000325143700010 ER PT J AU Adams, D Collaboration, M Adey, D Alekou, A Apollonio, M Asfandiyarov, R Back, J Barber, G Barclay, P De Bari, A Bayes, R Bayliss, V Bertoni, R Blackmore, VJ Blondel, A Blot, S Bogomilov, M Bonesini, M Booth, CN Bowring, D Boyd, S Bradshaw, TW Bravar, U Bross, AD Capponi, M Carlisle, T Cecchet, G Charnley, G Cobb, JH Colling, D Collomb, N Coney, L Cooke, P Courthold, M Cremaldi, LM DeMello, A Dick, AJ Dobbs, A Dornan, P Fayer, S Filthaut, F Fish, A Fitzpatrick, T Fletcher, R Forrest, D Francis, V Freemire, B Fry, L Gallagher, A Gamet, R Gourlay, S Grant, A Graulich, JS Griffiths, S Hanlet, P Hansen, OM Hanson, GG Harrison, P Hart, TL Hartnett, T Hayler, T Heidt, C Hills, M Hodgson, P Hunt, C Iaciofano, A Ishimoto, S Kafka, G Kaplan, DM Karadzhov, Y Kim, YK Kolev, D Kuno, Y Kyberd, P Lau, W Leaver, J Leonova, M Li, D Lintern, A Littlefield, M Long, K Lucchini, G Luo, T Macwaters, C Martlew, B Martyniak, J Middleton, S Moretti, A Moss, A Muir, A Mullacrane, I Nebrensky, JJ Neuffer, D Nichols, A Nicholson, R Nugent, JC Onel, Y Orestano, D Overton, E Owens, P Palladino, V Palmer, RB Pasternak, J Pastore, F Pidcott, C Popovic, M Preece, R Prestemon, S Rajaram, D Ramberger, S Rayner, MA Ricciardi, S Richards, A Roberts, TJ Robinson, M Rogers, C Ronald, K Rubinov, P Rucinski, R Rusinov, I Sakamoto, H Sanders, DA Santos, E Savidge, T Smith, PJ Snopok, P Soler, FJP Stanley, T Summers, DJ Takahashi, M Tarrant, J Taylor, I Tortora, L Torun, Y Tsenov, R Tunnell, CD Vankova, G Verguilov, V Virostek, SP Vretenar, M Walaron, K Watson, S White, C Whyte, CG Wilson, A Wisting, H Zisman, MS AF Adams, D. Collaboration, Mice Adey, D. Alekou, A. Apollonio, M. Asfandiyarov, R. Back, J. Barber, G. Barclay, P. De Bari, A. Bayes, R. Bayliss, V. Bertoni, R. Blackmore, V. J. Blondel, A. Blot, S. Bogomilov, M. Bonesini, M. Booth, C. N. Bowring, D. Boyd, S. Bradshaw, T. W. Bravar, U. Bross, A. D. Capponi, M. Carlisle, T. Cecchet, G. Charnley, G. Cobb, J. H. Colling, D. Collomb, N. Coney, L. Cooke, P. Courthold, M. Cremaldi, L. M. DeMello, A. Dick, A. J. Dobbs, A. Dornan, P. Fayer, S. Filthaut, F. Fish, A. Fitzpatrick, T. Fletcher, R. Forrest, D. Francis, V. Freemire, B. Fry, L. Gallagher, A. Gamet, R. Gourlay, S. Grant, A. Graulich, J. S. Griffiths, S. Hanlet, P. Hansen, O. M. Hanson, G. G. Harrison, P. Hart, T. L. Hartnett, T. Hayler, T. Heidt, C. Hills, M. Hodgson, P. Hunt, C. Iaciofano, A. Ishimoto, S. Kafka, G. Kaplan, D. M. Karadzhov, Y. Kim, Y. K. Kolev, D. Kuno, Y. Kyberd, P. Lau, W. Leaver, J. Leonova, M. Li, D. Lintern, A. Littlefield, M. Long, K. Lucchini, G. Luo, T. Macwaters, C. Martlew, B. Martyniak, J. Middleton, S. Moretti, A. Moss, A. Muir, A. Mullacrane, I. Nebrensky, J. J. Neuffer, D. Nichols, A. Nicholson, R. Nugent, J. C. Onel, Y. Orestano, D. Overton, E. Owens, P. Palladino, V. Palmer, R. B. Pasternak, J. Pastore, F. Pidcott, C. Popovic, M. Preece, R. Prestemon, S. Rajaram, D. Ramberger, S. Rayner, M. A. Ricciardi, S. Richards, A. Roberts, T. J. Robinson, M. Rogers, C. Ronald, K. Rubinov, P. Rucinski, R. Rusinov, I. Sakamoto, H. Sanders, D. A. Santos, E. Savidge, T. Smith, P. J. Snopok, P. Soler, F. J. P. Stanley, T. Summers, D. J. Takahashi, M. Tarrant, J. Taylor, I. Tortora, L. Torun, Y. Tsenov, R. Tunnell, C. D. Vankova, G. Verguilov, V. Virostek, S. P. Vretenar, M. Walaron, K. Watson, S. White, C. Whyte, C. G. Wilson, A. Wisting, H. Zisman, M. S. TI Characterisation of the muon beams for the Muon Ionisation Cooling Experiment SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID DESIGN AB A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.2-2.3 pi mm-rad horizontally and 0.6-1.0 pi mm-rad vertically, a horizontal dispersion of 90-190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE. C1 [Bogomilov, M.; Kolev, D.; Rusinov, I.; Tsenov, R.; Vankova, G.] Sofia Univ St Kliment Ohridski, Dept Atom Phys, Sofia, Bulgaria. [Bertoni, R.; Bonesini, M.; Lucchini, G.] Sez INFN Milano Bicocca, Dipartimento Fis G Occhialini, Milan, Italy. [Palladino, V.] Univ Naples Federico II, Sez INFN Napoli, Naples, Italy. [Palladino, V.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [De Bari, A.; Cecchet, G.] Sez INFN Pavia, Pavia, Italy. [De Bari, A.; Cecchet, G.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. [Capponi, M.; Iaciofano, A.; Orestano, D.; Pastore, F.; Tortora, L.] Sez INFN Roma Tre, Rome, Italy. [Capponi, M.; Iaciofano, A.; Orestano, D.; Pastore, F.; Tortora, L.] Dipartimento Fis, Rome, Italy. [Kuno, Y.; Sakamoto, H.] Osaka Univ, Dept Phys, Grad Sch Sci, Toyonaka, Osaka 560, Japan. [Ishimoto, S.] High Energy Accelerator Res Org KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki, Japan. [Filthaut, F.] NIKHEF, Amsterdam, Netherlands. [Hansen, O. M.; Ramberger, S.; Vretenar, M.] CERN, Geneva, Switzerland. [Asfandiyarov, R.; Blondel, A.; Graulich, J. S.; Karadzhov, Y.; Verguilov, V.; Wisting, H.] Univ Geneva, DPNC, Sect Phys, CH-1211 Geneva, Switzerland. [Charnley, G.; Collomb, N.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Owens, P.; White, C.] STFC Daresbury Lab, Daresbury, Cheshire, England. [Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T. W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Watson, S.; Wilson, A.] Harwell Oxford, STFC Rutherford Appleton Lab, Didcot, Oxon, England. [Bayes, R.; Forrest, D.; Nugent, J. C.; Soler, F. J. P.; Walaron, K.] Univ Glasgow, Sch Phys & Astron, Glasgow, Lanark, Scotland. [Cooke, P.; Gamet, R.] Univ Liverpool, Dept Phys, Liverpool L69 3BX, Merseyside, England. [Alekou, A.; Apollonio, M.; Barber, G.; Colling, D.; Dobbs, A.; Dornan, P.; Fayer, S.; Fish, A.; Hunt, C.; Leaver, J.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Richards, A.; Santos, E.; Savidge, T.; Takahashi, M.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, Blackett Lab, London, England. [Blackmore, V. J.; Carlisle, T.; Cobb, J. H.; Lau, W.; Rayner, M. A.; Tunnell, C. D.] Univ Oxford, Dept Phys, Oxford, England. [Booth, C. N.; Hodgson, P.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P. J.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Dick, A. J.; Ronald, K.; Whyte, C. G.] Univ Strathclyde, Dept Phys, Glasgow, Lanark, Scotland. [Adey, D.; Back, J.; Boyd, S.; Harrison, P.; Pidcott, C.; Taylor, I.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Kyberd, P.; Littlefield, M.; Nebrensky, J. J.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Bross, A. D.; Fitzpatrick, T.; Leonova, M.; Moretti, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; Rucinski, R.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Roberts, T. J.] Muons Inc, Batavia, IL USA. [Bowring, D.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S. P.; Zisman, M. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Freemire, B.; Hanlet, P.; Kafka, G.; Kaplan, D. M.; Rajaram, D.; Snopok, P.; Torun, Y.] IIT, Chicago, IL 60616 USA. [Blot, S.; Kim, Y. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Bravar, U.] Univ New Hampshire, Durham, NH 03824 USA. [Onel, Y.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Cremaldi, L. M.; Hart, T. L.; Luo, T.; Sanders, D. A.; Summers, D. J.] Univ Mississippi, Oxford, MS USA. [Coney, L.; Fletcher, R.; Hanson, G. G.; Heidt, C.] Univ Calif Riverside, Riverside, CA 92521 USA. [Palmer, R. B.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Adams, D (reprint author), Harwell Oxford, STFC Rutherford Appleton Lab, Didcot, Oxon, England. EM v.blackmore1@physics.ox.ac.uk RI Verguilov, Vassil/A-5885-2014; Booth, Christopher/B-5263-2016; Soler, Paul/E-8464-2011; Asfandiyarov, Ruslan/B-5407-2017; OI Torun, Yagmur/0000-0003-2336-6585; Dobbs, Adam/0000-0001-6914-5302; Filthaut, Frank/0000-0003-3338-2247; Booth, Christopher/0000-0002-6051-2847; Soler, Paul/0000-0002-4893-3729; Asfandiyarov, Ruslan/0000-0002-6631-9220; Nebrensky, Jindrich/0000-0002-8412-4259; de Bari, Antonio/0000-0001-6693-0284 FU Department of Energy and National Science Foundation (USA); Instituto Nazionale di Fisica Nucleare (Italy); Science and Technology Facilities Council (UK); European Community under the European Commission; Japan Society for the Promotion of Science; Swiss National Science Foundation FX The work described here was made possible by grants from Department of Energy and National Science Foundation (USA), the Instituto Nazionale di Fisica Nucleare (Italy), the Science and Technology Facilities Council (UK), the European Community under the European Commission Framework Programme 7, the Japan Society for the Promotion of Science and the Swiss National Science Foundation, in the framework of the SCOPES programme, whose support we gratefully acknowledge. We are also grateful to the staff of ISIS for the reliable operation of ISIS. NR 22 TC 4 Z9 4 U1 1 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 J9 EUR PHYS J C JI Eur. Phys. J. C PD OCT 1 PY 2013 VL 73 IS 10 AR 2582 DI 10.1140/epjc/s10052-013-2582-8 PG 14 WC Physics, Particles & Fields SC Physics GA 227KZ UT WOS:000325113100001 ER PT J AU Kramer, SLB Beiermann, BA White, SR Sottos, NR AF Kramer, S. L. B. Beiermann, B. A. White, S. R. Sottos, N. R. TI Simultaneous Observation of Phase-Stepped Images for Photoelasticity Using Diffraction Gratings SO EXPERIMENTAL MECHANICS LA English DT Article DE Photoelasticity; Phase-stepping; Diffraction grating; Stress analysis; Single camera ID AUTOMATED PHOTOELASTICITY AB Phase-stepped photoelasticity is a powerful method for full-field stress analysis, but sequential collection of the multiple required images limits the technique to static loading applications. We have developed a system that utilizes diffraction gratings to collect four phase-stepped images simultaneously with a single camera for transient loading applications. Two adjacent, perpendicularly oriented, 1D Ronchi rulings are placed after a transparent sample to split the light into equal intensity beams for each diffraction order. The four beams that are diffracted once in the x direction and once in the y direction transmit through arrays of analyzing polariscope elements, with different combinations of fast-axis orientations for four phase-stepped images. The mirrors and imaging lenses in the system work in concert to focus each beam onto separate quadrants of the same CCD. We demonstrate the system for stress analysis of compressive loading of a Homalite-100 disk and of a Homalite-100 plate with a central hole. This system has the potential for photoelastic analysis of time-dependent materials and of dynamic events, when equipped with a high-speed camera. C1 [Kramer, S. L. B.; Beiermann, B. A.; White, S. R.; Sottos, N. R.] Univ Illinois, Urbana, IL 68122 USA. RP Kramer, SLB (reprint author), Sandia Natl Labs, 1515 Eubank Ave SE, Albuquerque, NM 87123 USA. EM slkrame@sandia.gov FU MURI grant from the Army Research Office [W911NF-07-1-0409] FX This work was supported by a MURI grant from the Army Research Office, grant number W911NF-07-1-0409. The authors would also like to thank the Beckman Institute for Science and Advanced Technology and the Aerospace Engineering machine shop at the University of Illinois for their assistance in this work. NR 15 TC 1 Z9 2 U1 2 U2 23 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4851 EI 1741-2765 J9 EXP MECH JI Exp. Mech. PD OCT PY 2013 VL 53 IS 8 BP 1343 EP 1355 DI 10.1007/s11340-013-9747-0 PG 13 WC Materials Science, Multidisciplinary; Mechanics; Materials Science, Characterization & Testing SC Materials Science; Mechanics GA 226BQ UT WOS:000325009600006 ER PT J AU Walker, RW Brown, RS Deters, KA Eppard, MB Cooke, SJ AF Walker, Ricardo W. Brown, Richard S. Deters, Katherine A. Eppard, M. Brad Cooke, Steven J. TI Does UV disinfection compromise sutures? An evaluation of tissue response and suture retention in salmon surgically implanted with transmitters SO FISHERIES RESEARCH LA English DT Article DE Ultraviolet radiation; Sterilization; Disinfection; Sutures; Juvenile Chinook ID JUVENILE CHINOOK SALMON; SURVIVAL; GROWTH; TROUT; FISH AB Ultraviolet radiation (UVR) can be used as a tool to disinfect surgery tools used for implanting transmitters into fish. However, the use of UVR could possibly degrade monofilament suture material used to close surgical incisions. This research examined the effect of UVR on monofilament sutures to determine if they were compromised and negatively influenced tag and suture retention, incision openness, or tissue reaction. Eighty juvenile Chinook salmon Oncorhynchus tshawytscha were surgically implanted with an acoustic transmitter and a passive integrated transponder. The incision was closed with a single stitch of either a suture exposed to 20 doses of UV radiation (5 min duration per dose) or a new, sterile suture. Fish were then held for 28 days and examined under a microscope at day 7, 14, 21 and 28 for incision openness, ulceration, redness, and the presence of water mold. There was no significant difference between treatments for incision openness, redness, ulceration or the presence of water mold on any examination day. On day 28 post-surgery, there were no lost sutures; however, 2 fish lost their transmitters (one from each treatment). The results of this study do not show any differences in negative influences such as tissue response, suture retention or tag retention between a new sterile suture and a suture disinfected with UVR. (C) 2013 Elsevier B.V. All rights reserved. C1 [Walker, Ricardo W.; Brown, Richard S.; Deters, Katherine A.] Pacific NW Natl Lab, Ecol Grp, Richland, WA 99352 USA. [Eppard, M. Brad] US Army Corps Engineers, Portland, OR 97208 USA. [Cooke, Steven J.] Carleton Univ, Dept Biol, Fish Ecol & Conservat Physiol Lab, Ottawa, ON K1S 5B6, Canada. [Cooke, Steven J.] Carleton Univ, Inst Environm Sci, Ottawa, ON K1S 5B6, Canada. RP Walker, RW (reprint author), Pacific NW Natl Lab, Ecol Grp, Richland, WA 99352 USA. EM Ricardo.walker@pnnl.gov RI Cooke, Steven/F-4193-2010 OI Cooke, Steven/0000-0002-5407-0659 FU U.S. Army Corps of Engineers (USACE); U.S. DOE [DE-AC05-76RL01830] FX Funding was provided by the U.S. Army Corps of Engineers (USACE). We thank Alison H. Colotelo, Jill M. Janak, Andrea P. Le Barge, Tim J. Linley, Gayle L. Dirkes, David R. Geist, and Brett D. Pflugrath of PNNL. PNNL animal facilities are AALAC certified; fish were handled in accordance with federal guidelines for the care and use of laboratory animals, and study protocols were approved by the PNNL IACUC. PNNL is operated by Battelle for the U.S. DOE (contract DE-AC05-76RL01830). NR 21 TC 2 Z9 2 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-7836 J9 FISH RES JI Fish Res. PD OCT PY 2013 VL 147 BP 32 EP 35 DI 10.1016/j.fishres.2013.04.010 PG 4 WC Fisheries SC Fisheries GA 228MW UT WOS:000325191900004 ER PT J AU Kominoski, JS Shah, JJF Canhoto, C Fischer, DG Giling, DP Gonzalez, E Griffiths, NA Larranaga, A LeRoy, CJ Mineau, MM McElarney, YR Shirley, SM Swan, CM Tiegs, SD AF Kominoski, John S. Shah, Jennifer J. Follstad Canhoto, Cristina Fischer, Dylan G. Giling, Darren P. Gonzalez, Eduardo Griffiths, Natalie A. Larranaga, Aitor LeRoy, Carri J. Mineau, Madeleine M. McElarney, Yvonne R. Shirley, Susan M. Swan, Christopher M. Tiegs, Scott D. TI Forecasting functional implications of global changes in riparian plant communities SO FRONTIERS IN ECOLOGY AND THE ENVIRONMENT LA English DT Article ID EUCALYPTUS-GLOBULUS; UNITED-STATES; TAMARIX-RAMOSISSIMA; ECOSYSTEM PROCESSES; CULTIVATED POPLARS; NATIVE POPULUS; NORTH-AMERICA; LEAF-LITTER; STREAMS; TREE AB Riparian ecosystems support mosaics of terrestrial and aquatic plant species that enhance regional biodiversity and provide important ecosystem services to humans. Species composition and the distribution of functional traits - traits that define species in terms of their ecological roles - within riparian plant communities are rapidly changing in response to various global change drivers. Here, we present a conceptual framework illustrating how changes in dependent wildlife communities and ecosystem processes can be predicted by examining shifts in riparian plant functional trait diversity and redundancy (overlap). Three widespread examples of altered riparian plant composition are: shifts in the dominance of deciduous and coniferous species; increases in drought-tolerant species; and the increasing global distribution of plantation and crop species. Changes in the diversity and distribution of critical plant functional traits influence terrestrial and aquatic food webs, organic matter production and processing, nutrient cycling, water quality, and water availability. Effective conservation efforts and riparian ecosystems management require matching of plant functional trait diversity and redundancy with tolerance to environmental changes in all biomes. C1 [Kominoski, John S.] Florida Int Univ, Dept Biol Sci, Miami, FL 33199 USA. [Kominoski, John S.] Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA. [Shah, Jennifer J. Follstad] Utah State Univ, Dept Watershed Sci, Logan, UT 84322 USA. [Shah, Jennifer J. Follstad] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [Canhoto, Cristina] Univ Coimbra, MAR CMA, Coimbra, Portugal. [Canhoto, Cristina] Univ Coimbra, Dept Life Sci, Coimbra, Portugal. [Fischer, Dylan G.; LeRoy, Carri J.] Evergreen State Coll, Environm Studies Program, Olympia, WA 98505 USA. [Giling, Darren P.] Monash Univ, Sch Biol Sci, Clayton, Vic, Australia. [Gonzalez, Eduardo] Univ Toulouse, UPS, INP, EcoLab, Toulouse, France. [Gonzalez, Eduardo] CNRS, EcoLab, Toulouse, France. [Griffiths, Natalie A.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Larranaga, Aitor] Univ Basque Country, Dept Plant Biol & Ecol, Bilbao, Spain. [Mineau, Madeleine M.] Univ New Hampshire, Earth Syst Res Ctr, Durham, NH 03824 USA. [McElarney, Yvonne R.] Agri Food & Biosci Inst, Belfast, Antrim, North Ireland. [Shirley, Susan M.] Oregon State Univ, Dept Forest Ecosyst & Soc, Corvallis, OR 97331 USA. [Swan, Christopher M.] Univ Maryland, Dept Geog & Environm Syst, Baltimore, MD 21201 USA. [Tiegs, Scott D.] Oakland Univ, Dept Biol Sci, Rochester, MI USA. RP Kominoski, JS (reprint author), Florida Int Univ, Dept Biol Sci, Miami, FL 33199 USA. EM jkominos@fiu.edu RI Larranaga, Aitor/A-6185-2009; OI Swan, Christopher/0000-0002-9763-9630; Canhoto, Cristina/0000-0003-3343-8757; Griffiths, Natalie/0000-0003-0068-7714 FU US National Science Foundation [DEB 0918894]; US Department of Energy, Office of Science, Biological and Environmental Research; Australian Research Council [LP 0990038] FX Ideas for this paper were stimulated by a special session on global changes in riparian ecosystems, organized by JSK and JJFS in Santa Fe, New Mexico, at the 2010 joint meeting of the American Society of Limnology and Oceanography and the Society for Freshwater Science (formerly the North American Benthological Society). JSK was partially funded by the US National Science Foundation (DEB 0918894). NAG was partially funded by the US Department of Energy, Office of Science, Biological and Environmental Research. DPG was supported by funding from the Australian Research Council (LP 0990038). M Scott provided substantive comments on earlier versions of this manuscript. NR 61 TC 31 Z9 31 U1 6 U2 103 PU ECOLOGICAL SOC AMER PI WASHINGTON PA 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA SN 1540-9295 EI 1540-9309 J9 FRONT ECOL ENVIRON JI Front. Ecol. Environ. PD OCT PY 2013 VL 11 IS 8 BP 423 EP 432 DI 10.1890/120056 PG 10 WC Ecology; Environmental Sciences SC Environmental Sciences & Ecology GA 227XH UT WOS:000325148500007 ER PT J AU Lo, TW Pickle, CS Lin, S Ralston, EJ Gurling, M Schartner, CM Bian, Q Doudna, JA Meyer, BJ AF Lo, Te-Wen Pickle, Catherine S. Lin, Steven Ralston, Edward J. Gurling, Mark Schartner, Caitlin M. Bian, Qian Doudna, Jennifer A. Meyer, Barbara J. TI Precise and Heritable Genome Editing in Evolutionarily Diverse Nematodes Using TALENs and CRISPR/Cas9 to Engineer Insertions and Deletions SO GENETICS LA English DT Article ID ZINC-FINGER NUCLEASES; DOSAGE COMPENSATION COMPLEX; TARGETED GENE DISRUPTION; GUIDED CAS9 NUCLEASE; C. ELEGANS; PRISTIONCHUS-PACIFICUS; EMBRYO MICROINJECTION; KNOCKOUT RATS; X-CHROMOSOMES; BREAK REPAIR AB Exploitation of custom-designed nucleases to induce DNA double-strand breaks (DSBs) at genomic locations of choice has transformed our ability to edit genomes, regardless of their complexity. DSBs can trigger either error-prone repair pathways that induce random mutations at the break sites or precise homology-directed repair pathways that generate specific insertions or deletions guided by exogenously supplied DNA. Prior editing strategies using site-specific nucleases to modify the Caenorhabditis elegans genome achieved only the heritable disruption of endogenous loci through random mutagenesis by error-prone repair. Here we report highly effective strategies using TALE nucleases and RNA-guided CRISPR/Cas9 nucleases to induce error-prone repair and homology-directed repair to create heritable, precise insertion, deletion, or substitution of specific DNA sequences at targeted endogenous loci. Our robust strategies are effective across nematode species diverged by 300 million years, including necromenic nematodes (Pristionchus pacificus), male/female species (Caenorhabditis species 9), and hermaphroditic species (C. elegans). Thus, genome-editing tools now exist to transform nonmodel nematode species into genetically tractable model organisms. We demonstrate the utility of our broadly applicable genome-editing strategies by creating reagents generally useful to the nematode community and reagents specifically designed to explore the mechanism and evolution of X chromosome dosage compensation. By developing an efficient pipeline involving germline injection of nuclease mRNAs and single-stranded DNA templates, we engineered precise, heritable nucleotide changes both close to and far from DSBs to gain or lose genetic function, to tag proteins made from endogenous genes, and to excise entire loci through targeted FLP-FRT recombination. C1 [Lo, Te-Wen; Pickle, Catherine S.; Lin, Steven; Ralston, Edward J.; Schartner, Caitlin M.; Bian, Qian; Doudna, Jennifer A.; Meyer, Barbara J.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Lo, Te-Wen; Pickle, Catherine S.; Lin, Steven; Ralston, Edward J.; Gurling, Mark; Schartner, Caitlin M.; Bian, Qian; Doudna, Jennifer A.; Meyer, Barbara J.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Meyer, BJ (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, 16 Barker Hall,MC 3204, Berkeley, CA 94720 USA. EM bjmeyer@berkeley.edu FU National Institutes of Health [R0130702] FX We thank members of the Meyer and Doudna laboratories for thoughtful discussions and technical support, particularly E. Anderson for construction of rex-1 TALEN plasmids, D. Lapidus for assistance with TALEN experiments, S. Uzawa for microscopy, M. Jinek for initial Cas9 experiments, and D. Stalford for figure graphics. We also thank T. Cline for critical discussions, R. Hong and R. Sommer for advice about P. pacificus, E. J. A. Hubbard for FLP-FRT plasmids, M.-A. Felix for C. sp. 9 strain JU1422, C. Frokjaer-Jensen and E. Jorgensen for gfp strains EG4601 and EG6171, and the Caenorhabditis Genetics Center for other nematode strains. We are grateful to Sangamo BioSciences for providing ZFNs to conduct initial genome-editing experiments in P. pacificus. This research was supported in part by National Institutes of Health grant R0130702 to B. J. M. J. A. D. and B. J. M. are investigators of the Howard Hughes Medical Institute. NR 63 TC 73 Z9 76 U1 4 U2 71 PU GENETICS SOC AM PI BETHESDA PA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA SN 1943-2631 J9 GENETICS JI Genetics PD OCT PY 2013 VL 195 IS 2 BP 331 EP + DI 10.1534/genetics.113.155382 PG 26 WC Genetics & Heredity SC Genetics & Heredity GA 229RY UT WOS:000325286200005 PM 23934893 ER PT J AU Lozupone, CA Stombaugh, J Gonzalez, A Ackermann, G Wendel, D Vazquez-Baeza, Y Jansson, JK Gordon, JI Knight, R AF Lozupone, Catherine A. Stombaugh, Jesse Gonzalez, Antonio Ackermann, Gail Wendel, Doug Vazquez-Baeza, Yoshiki Jansson, Janet K. Gordon, Jeffrey I. Knight, Rob TI Meta-analyses of studies of the human microbiota SO GENOME RESEARCH LA English DT Article ID HUMAN GUT MICROBIOME; INTESTINAL MICROBIOTA; BODY HABITATS; DIVERSITY; TWINS; DISEASE; ENTEROTYPES; PATTERNS; BACTERIA; DELIVERY AB Our body habitat-associated microbial communities are of intense research interest because of their influence on human health. Because many studies of the microbiota are based on the same bacterial 16S ribosomal RNA (rRNA) gene target, they can, in principle, be compared to determine the relative importance of different disease/physiologic/developmental states. However, differences in experimental protocols used may produce variation that outweighs biological differences. By comparing 16S rRNA gene sequences generated from diverse studies of the human microbiota using the QIIME database, we found that variation in composition of the microbiota across different body sites was consistently larger than technical variability across studies. However, samples from different studies of the Western adult fecal microbiota generally clustered by study, and the 16S rRNA target region, DNA extraction technique, and sequencing platform produced systematic biases in observed diversity that could obscure biologically meaningful compositional differences. In contrast, systematic compositional differences in the fecal microbiota that occurred with age and between Western and more agrarian cultures were great enough to outweigh technical variation. Furthermore, individuals with ileal Crohn's disease and in their third trimester of pregnancy often resembled infants from different studies more than controls from the same study, indicating parallel compositional attributes of these distinct developmental/physiological/disease states. Together, these results show that cross-study comparisons of human microbiota are valuable when the studied parameter has a large effect size, but studies of more subtle effects on the human microbiota require carefully selected control populations and standardized protocols. C1 [Lozupone, Catherine A.] Univ Colorado, Div Biomed Informat & Personalized Med, Dept Med, Aurora, CO 80045 USA. [Stombaugh, Jesse; Gonzalez, Antonio; Ackermann, Gail; Wendel, Doug; Vazquez-Baeza, Yoshiki; Knight, Rob] Univ Colorado, BioFrontiers Inst, Boulder, CO 80309 USA. [Jansson, Janet K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Gordon, Jeffrey I.] Washington Univ, Sch Med, Ctr Genome Sci & Syst Biol, St Louis, MO 63108 USA. [Knight, Rob] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Knight, Rob] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA. RP Knight, R (reprint author), Univ Colorado, BioFrontiers Inst, Boulder, CO 80309 USA. EM rob.knight@colorado.edu RI Knight, Rob/D-1299-2010 FU National Institutes of Health [K01DK090285]; National Institutes of Health; Crohns and Colitis Foundation of America; Howard Hughes Medical Institute FX C.L. was supported by the National Institutes of Health (K01DK090285). This work was supported in part by the National Institutes of Health, the Crohns and Colitis Foundation of America, and the Howard Hughes Medical Institute. NR 49 TC 103 Z9 109 U1 8 U2 113 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI COLD SPRING HARBOR PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA SN 1088-9051 J9 GENOME RES JI Genome Res. PD OCT PY 2013 VL 23 IS 10 BP 1704 EP 1714 DI 10.1101/gr.151803.112 PG 11 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity GA 228QQ UT WOS:000325202100012 PM 23861384 ER PT J AU Voss, LF Shao, QS Conway, AM Reinhardt, CE Graff, RT Nikolic, RJ AF Voss, Lars F. Shao, Qinghui Conway, Adam M. Reinhardt, Cathy E. Graff, Robert T. Nikolic, Rebecca J. TI Smooth Bosch Etch for Improved Si Diodes SO IEEE ELECTRON DEVICE LETTERS LA English DT Article DE Diode; etch; silicon ID DAMAGE; ARRAYS AB A modified Bosch process is used to reduce leakage current resulting from surface damage and roughness for high aspect ratio pillars fabricated from Si p-i-n structures. C4F8 is used during both the etch and passivation steps to achieve a scallop-free and vertical structure. A 5x decrease in both the reverse bias leakage current and corresponding improvement in effective carrier density, charge density, depletion width, and minority carrier lifetime are observed using this process, indicating that surface charge states are decreased using this process. This can impact a number of 3-D next-generation devices. C1 [Voss, Lars F.; Shao, Qinghui; Conway, Adam M.; Reinhardt, Cathy E.; Graff, Robert T.; Nikolic, Rebecca J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Voss, LF (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM voss5@llnl.gov FU U.S. Department of Homeland Security; Domestic Nuclear Detection Office [IAA HSHQDC-08-X-00874]; U.S. Department of Energy through the Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-639056] FX Manuscript received July 24, 2013; revised July 31, 2013; accepted August 3, 2013. Date of publication September 9, 2013; date of current version September 23, 2013. This work was supported in part by the U.S. Department of Homeland Security, and in part by the Domestic Nuclear Detection Office under Award IAA HSHQDC-08-X-00874, and in part by the U.S. Department of Energy through the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and Contract LLNL-JRNL-639056. The review of this letter was arranged by Editor A. Ortiz-Conde. NR 16 TC 1 Z9 1 U1 1 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0741-3106 J9 IEEE ELECTR DEVICE L JI IEEE Electron Device Lett. PD OCT PY 2013 VL 34 IS 10 BP 1226 EP 1228 DI 10.1109/LED.2013.2278374 PG 3 WC Engineering, Electrical & Electronic SC Engineering GA 228LB UT WOS:000325186600007 ER PT J AU Kuciauskas, D Kanevce, A Burst, JM Duenow, JN Dhere, R Albin, DS Levi, DH Ahrenkiel, RK AF Kuciauskas, Darius Kanevce, Ana Burst, James M. Duenow, Joel N. Dhere, Ramesh Albin, David S. Levi, Dean H. Ahrenkiel, Richard K. TI Minority Carrier Lifetime Analysis in the Bulk of Thin-Film Absorbers Using Subbandgap (Two-Photon) Excitation SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Cadmium telluride; minority carrier lifetime; photovoltaic (PV) device; time-resolved photoluminescence (TRPL) ID SURFACE RECOMBINATION; CDTE; PHOTOLUMINESCENCE; TEMPERATURE; ABSORPTION; GAAS AB We describe a new time-resolved photoluminescence (TRPL) analysis method for the determination of minority carrier lifetime tau(B). This analysis is based on subbandgap excitation (two-photon excitation, or 2PE) and allows selective lifetime determination at the surface or in the bulk of semiconductor absorbers. We show that for single-crystal CdTe, tau(B) could be determined even if surface recombination velocity is >10(5) cm s(-1). Two-photon excitation TRPL measurements indicate that radiative lifetime in undoped CdTe is >> 66 ns. We also compare one-photon excitation (1PE) and 2PE TRPL data for polycrystalline CdS/CdTe thin films. C1 [Kuciauskas, Darius; Kanevce, Ana; Burst, James M.; Duenow, Joel N.; Dhere, Ramesh; Albin, David S.; Levi, Dean H.; Ahrenkiel, Richard K.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Kuciauskas, D (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM darius.kuciauskas@nrel.gov; Ana.Kanevce@nrel.gov; james.burst@nrel.gov; joel.duenow@nrel.gov; ramesh.dhere@nrel.gov; David.albin@nrel.gov; dean.levi@nrel.gov; richard.ahrenkiel@nrel.gov FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX This work was supported by the U.S. Department of Energy under Contract DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 26 TC 44 Z9 44 U1 2 U2 38 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD OCT PY 2013 VL 3 IS 4 BP 1319 EP 1324 DI 10.1109/JPHOTOV.2013.2270354 PG 6 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 224JR UT WOS:000324881400028 ER PT J AU Dongaonkar, S Deline, C Alam, MA AF Dongaonkar, Sourabh Deline, Chris Alam, Muhammad Ashraful TI Performance and Reliability Implications of Two-Dimensional Shading in Monolithic Thin-Film Photovoltaic Modules SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Bypass diodes; circuit simulation; module simulation; partial shading; reverse-bias stress; thin-film photovoltaic (PV) ID SILICON SOLAR-CELLS; HOT-SPOTS; INVERTERS; BREAKDOWN AB We analyze the problem of partial shading in monolithically integrated thin-film photovoltaic (TFPV) modules, and explore how the shape and size of the shadows dictate their performance and reliability. We focus on the aspects of the shading problem unique to monolithic TFPV, arising from thin long rectangular series-connected cells, with partial shadows covering only a fraction of the cell area. Using calibrated 2-D circuit simulations, we show that due to the cell shape, the unshaded portion of partially shaded cell experiences higher heat dissipation due to redistribution of voltages and currents across the cells. We then use thermal imaging techniques to compare our results with module behavior under shade in realistic situations. We also analyze the effect of shadow size and orientation by considering several possible shading scenarios. We find that thin edge shadows can cause potentially catastrophic reverse bias damage, depending on their orientation. Finally, we show that external bypass diodes cannot protect the individual cells from shadow-induced reverse stress, but can limit the string output power loss for larger shadows. C1 [Dongaonkar, Sourabh; Alam, Muhammad Ashraful] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47906 USA. [Deline, Chris] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Dongaonkar, S (reprint author), Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47906 USA. EM sourabh@purdue.edu; chris.deline@nrel.gov; alam@purdue.edu OI Deline, Christopher/0000-0002-9867-8930 FU Semiconductor Research Corporation-Energy Research Initiative Network for Photovoltaic Technology FX This work was supported by the Semiconductor Research Corporation-Energy Research Initiative Network for Photovoltaic Technology. NR 38 TC 13 Z9 13 U1 1 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD OCT PY 2013 VL 3 IS 4 BP 1367 EP 1375 DI 10.1109/JPHOTOV.2013.2270349 PG 9 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 224JR UT WOS:000324881400035 ER PT J AU Jiang, CS Moutinho, HR Dhere, RG Al-Jassim, MM AF Jiang, C. -S. Moutinho, H. R. Dhere, R. G. Al-Jassim, M. M. TI The Nanometer-Resolution Local Electrical Potential and Resistance Mapping of CdTe Thin Films SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE CdTe; microelectrical property; scanning kelvin probe force microscopy; scanning spreading resistance; thin-film photovoltaic ID PROBE FORCE MICROSCOPY; CDS/CDTE SOLAR-CELLS; GRAIN-BOUNDARY; SILICON AB We have investigated the microelectrical properties of CdTe thin films using scanning Kelvin probe force microscopy (SKPFM) and scanning spreading resistance microscopy (SSRM). Two films with the configurations of substrate and superstrate were subjected to the characterization studies. The electrical potential and resistance were properly mapped with the substrate film but not with the superstrate film because the underlying CdS/CdTe junction largely impacted the characterizations. The higher SKPFM potential on grain boundaries (GBs) of the substrate film than on the grain surface indicates positively charged GBs and upward band bending around the GB; therefore, the GBs are either depleted or inverted. The SSRM resistance mapping on this film shows nonuniformities and features that are associated with the grain structure and facets. However, the GBs do not exhibit distinct characteristic resistance. Comparing the low resistance channel along the GBs of high-performance CIGS films, the SSRM mapping of CdTe supports depletion of the GBs. In SSRM measurement, it is critical to adequately indent the probe to the film, and to apply a bias voltage larger than the onset voltage of the probe/film barrier, so that the contact resistance is minimized and that the local spreading resistance of CdTe film beneath the probe is measured. C1 [Jiang, C. -S.; Moutinho, H. R.; Dhere, R. G.; Al-Jassim, M. M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Jiang, CS (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM chun.sheng.jiang@nrel.gov; helio.moutinho@nrel.gov; ramesh.dhere@nrel.gov; mowafak.aljassim@nrel.gov RI jiang, chun-sheng/F-7839-2012 FU U.S. Department of Energy [DOE-AC36-08GO28308]; National Renewable Energy Laboratory FX This work was supported by the U.S. Department of Energy under Contract DOE-AC36-08GO28308 with the National Renewable Energy Laboratory. NR 22 TC 12 Z9 12 U1 2 U2 24 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD OCT PY 2013 VL 3 IS 4 BP 1383 EP 1388 DI 10.1109/JPHOTOV.2013.2276932 PG 6 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 224JR UT WOS:000324881400037 ER PT J AU Mills, AD Wiser, RH AF Mills, Andrew D. Wiser, Ryan H. TI Changes in the Economic Value of Photovoltaic Generation at High Penetration Levels: A Pilot Case Study of California SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Power generation planning; power system economics; power system modeling ID DISTRIBUTED GENERATION; CAPACITY VALUE; COSTS; POWER; TECHNOLOGIES; INTERMITTENT; IMPACTS; SYSTEMS; MODEL; WIND AB We estimate the long-run economic value of photovoltaic (PV) generation with increasing penetration using a unique investment and dispatch model that captures long-run investment decisions while also incorporating detailed operational constraints and hourly time resolution over a full year. High time resolution and operational constraints can be important to estimate the economic value of variable generation resources like PV, as is the use of a modeling framework that accommodates new investment decisions. The model is herein applied to a case study that is loosely based on California in 2030. The marginal economic value of PV is decomposed into the capacity value, energy value, day-ahead forecast error cost, and ancillary services. The value of PV is found to exceed the value of a flat block of power by US$ 19/MWh at low penetration, largely due to the high capacity value of PV at low penetration. The value of PV is found to drop considerably (by more than US$ 60/MWh) as the penetration increases toward 30% on an energy basis, first primarily due to a steep drop in the capacity value followed by a decrease in the energy value. Day-ahead forecast error and ancillary service costs, although not insignificant, do not change as dramatically with increasing penetration. In the near term, efforts to mitigate changes in the value of PV with increasing penetration may be most effective if focused on maintaining the capacity value of PV. C1 [Mills, Andrew D.; Wiser, Ryan H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Dept, Berkeley, CA 94720 USA. RP Mills, AD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Dept, Berkeley, CA 94720 USA. EM ADMills@lbl.gov; rhwiser@lbl.gov RI Mills, Andrew/B-3469-2016 OI Mills, Andrew/0000-0002-9065-0458 FU Office of Electricity Delivery and Energy Reliability; Office of Energy Efficiency and Renewable Energy of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Office of Electricity Delivery and Energy Reliability (Research & Development Division and National Electricity Delivery Division) and by the Office of Energy Efficiency and Renewable Energy (Wind and Hydropower Technologies Program and Solar Energy Technologies Program) of the U.S. Department of Energy under Contract DE-AC02-05CH11231. NR 32 TC 7 Z9 7 U1 2 U2 16 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD OCT PY 2013 VL 3 IS 4 BP 1394 EP 1402 DI 10.1109/JPHOTOV.2013.2263984 PG 9 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 224JR UT WOS:000324881400039 ER PT J AU Friedman, DJ Geisz, JF Steiner, MA AF Friedman, Daniel J. Geisz, John F. Steiner, Myles A. TI Analysis of Multijunction Solar Cell Current-Voltage Characteristics in the Presence of Luminescent Coupling SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Efficiency; luminescent coupling; multijunction solar cells; optical thinning; radiative coupling ID EFFICIENCY AB Luminescent coupling in multijunction solar cells is the phenomenon in which a junction in forward bias radiates photons that are absorbed in and converted to photocurrent by the junction beneath the radiating one. This effect can be significant in modern high-efficiency multijunction cells. We have previously developed a combined measurement and analytical approach to characterize the short-circuit current including the effects of nonlinear coupling in terms of measurable parameters eta and phi that describe the coupling strength and linearity, respectively. Here, we develop an analytical model for the full current-voltage characteristic V (J) of a multijunction cell in the presence of luminescent coupling, in terms of the eta and phi parameters. We compare the model with the measured V (J) parameters of GaInP/GaAs two-junction cells that exhibit differing degrees of luminescent coupling, and show that the model well describes the measurements. We then use the model to explore the consequences of luminescent coupling on the operating parameters of an idealized two-junction cell as a function of the top-junction thickness, focusing on the open-circuit voltage, fill factor, and efficiency. The results demonstrate that the strong luminescent coupling can significantly alter the dependence of cell efficiency on junction thickness, and that consequently the well-known optical-thinning design rules must be modified. C1 [Friedman, Daniel J.; Geisz, John F.; Steiner, Myles A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Friedman, DJ (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM daniel.friedman@nrel.gov; john.geisz@nrel.gov; myles.steiner@nrel.gov FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory FX The research was supported by the U.S. Department of Energy under Contract DE-AC36-08GO28308 with the National Renewable Energy Laboratory. This work is subject to government rights. NR 22 TC 29 Z9 29 U1 2 U2 24 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD OCT PY 2013 VL 3 IS 4 BP 1429 EP 1436 DI 10.1109/JPHOTOV.2013.2275189 PG 8 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 224JR UT WOS:000324881400044 ER PT J AU Steiner, MA Geisz, JF Garcia, I Friedman, DJ Duda, A Olavarria, WJ Young, M Kuciauskas, D Kurtz, SR AF Steiner, Myles A. Geisz, John F. Garcia, Ivan Friedman, Daniel J. Duda, Anna Olavarria, Waldo J. Young, Michelle Kuciauskas, Darius Kurtz, Sarah R. TI Effects of Internal Luminescence and Internal Optics on V-oc and J(sc) of III-V Solar Cells SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Luminescence; luminescent coupling; photon recycling; radiative recombination; III-V solar cell AB For solar cells dominated by radiative recombination, the performance can be significantly enhanced by improving the internal optics. We demonstrate a detailed model for solar cells that calculates the external luminescent efficiency and discuss the relationship between the external and internal luminescence. The model accounts for wavelength-dependent optical properties in each layer, parasitic optical and electrical losses, multiple reflections within the cell, and assumes isotropic internal emission. For single-junction cells, the calculation leads to V-oc, and for multijunction cells, the calculation leads to the V-oc of each junction as well as the luminescent coupling constant. In both cases, the effects of the optics are most prominent in cells with high internal radiative efficiency. Exploiting good material quality and high luminescent coupling, we demonstrate a two-junction nonconcentrator cell with a conversion efficiency of (31.1 +/- 0.9)% under the global spectrum. C1 [Steiner, Myles A.; Geisz, John F.; Garcia, Ivan; Friedman, Daniel J.; Duda, Anna; Olavarria, Waldo J.; Young, Michelle; Kuciauskas, Darius; Kurtz, Sarah R.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Garcia, Ivan] Univ Politecn Madrid, Inst Energia Solar, E-28040 Madrid, Spain. RP Steiner, MA (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM myles.steiner@nrel.gov; john.geisz@nrel.gov; ivan.garcia@nrel.gov; daniel.friedman@nrel.gov; anna.duda@nrel.gov; waldo.olavarria@nrel.gov; michelle.young@nrel.gov; darius.kuciauskas@nrel.gov; Sarah.Kurtz@nrel.gov RI Garcia, Ivan/L-1547-2014 OI Garcia, Ivan/0000-0002-9895-2020 FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory; Foundational Program to Advance Cell Efficiency; IOF grant from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme under REA Grant [299878] FX This work was supported by the U.S. Department of Energy under Contract DE-AC36-08GO28308 with the National Renewable Energy Laboratory and in part by the Foundational Program to Advance Cell Efficiency. The work of I. Garcia was supported by an IOF grant from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant 299878. NR 14 TC 33 Z9 33 U1 3 U2 28 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD OCT PY 2013 VL 3 IS 4 BP 1437 EP 1442 DI 10.1109/JPHOTOV.2013.2278666 PG 6 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 224JR UT WOS:000324881400045 ER PT J AU Friedman, DJ King, RR Swanson, RM McJannet, J Gwinner, D AF Friedman, Daniel J. King, Richard R. Swanson, Richard M. McJannet, Jennifer Gwinner, Don TI Editorial: Toward 100 Gigawatts of Concentrator Photovoltaics by 2030 SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Commercialization; concentrator photovoltaics (CPV); cost modeling; multijunction cells; optics; reliability; tracking AB In this editorial, we report on the conclusions of a concentrator photovoltaics (CPV) industry group convened in July 2012 to develop pathways to large-scale CPV deployment, specifically targeting the installation of 100 GW of CPV in the United States by 2030. The group identified technical and financial barriers to this goal and developed a corresponding set of recommendations for overcoming these barriers. These recommendations focus on technical improvements at the system and cell levels and on activities needed to support the commercialization. C1 [Friedman, Daniel J.; Gwinner, Don] Natl Renewable Energy Lab, Golden, CO 80401 USA. [King, Richard R.] Spectrolab Inc, Sylmar, CA 91342 USA. [Swanson, Richard M.] SunPower Corp, San Jose, CA 95134 USA. [McJannet, Jennifer] Inst Energy Efficiency, Santa Barbara, CA 93016 USA. RP Friedman, DJ (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM daniel.friedman@nrel.gov; richard.r.king@boeing.com; richard.swanson@sunpowercorp.com; jen@iee.ucsb.edu; don.gwinner@nrel.gov FU Department of Energy, Office of Basic Energy Sciences; U.S. Department of Energy and the National Renewable Energy Laboratory FX The roundtable was co-hosted by UC Santa Barbara's Institute for Energy Efficiency and the Center for Energy Efficient Materials (an Energy Frontier Research Center funded by the Department of Energy, Office of Basic Energy Sciences) and was sponsored by the U.S. Department of Energy and the National Renewable Energy Laboratory. NR 7 TC 8 Z9 8 U1 2 U2 18 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD OCT PY 2013 VL 3 IS 4 BP 1460 EP 1463 DI 10.1109/JPHOTOV.2013.2270341 PG 4 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 224JR UT WOS:000324881400047 ER PT J AU Piepel, GF Ozler, C Sehirlioglu, AK AF Piepel, Greg F. Ozler, Cenk Sehirlioglu, Ali Kemal TI Optimum tolerance design using component-amount and mixture-amount experiments SO INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY LA English DT Article DE Assembly tolerance; Component-amount experiment; Component tolerances; Mixture-amount experiment; Tolerance design ID QUALITY LOSS; MANUFACTURING COST; OPTIMIZATION; ROBUST; PRODUCTS AB The tolerance design problem involves optimizing component and assembly tolerances to minimize the total cost (sum of manufacturing cost and quality loss). Previous literature recommended using traditional response surface methodology (RSM) designs, models, and optimization techniques to solve the tolerance design problem for the worst-case scenario in which the assembly characteristic is the sum of the component characteristics. In this article, component-amount (CA) and mixture-amount (MA) experiment approaches are proposed as more appropriate for solving this class of tolerance design problems. The CA and MA approaches are typically used for product formulation problems, but can also be applied to this type of tolerance design problem. The advantages of the CA and MA approaches over the RSM approach and over the standard, worst-case tolerance-design method are explained. Reasons for choosing between the CA and MA approaches are also discussed. The CA and MA approaches (experimental design, response modeling, and optimization) are illustrated using real examples. C1 [Piepel, Greg F.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Ozler, Cenk; Sehirlioglu, Ali Kemal] Dokuz Eylul Univ, Fac Econ & Adm Sci, Dept Econometr, TR-35160 Izmir, Turkey. RP Ozler, C (reprint author), Dokuz Eylul Univ, Fac Econ & Adm Sci, Dept Econometr, TR-35160 Izmir, Turkey. EM greg.piepel@pnnl.gov; cenk.ozler@deu.edu.tr NR 38 TC 3 Z9 3 U1 1 U2 12 PU SPRINGER LONDON LTD PI LONDON PA 236 GRAYS INN RD, 6TH FLOOR, LONDON WC1X 8HL, ENGLAND SN 0268-3768 J9 INT J ADV MANUF TECH JI Int. J. Adv. Manuf. Technol. PD OCT PY 2013 VL 68 IS 9-12 BP 2359 EP 2369 DI 10.1007/s00170-013-4844-x PG 11 WC Automation & Control Systems; Engineering, Manufacturing SC Automation & Control Systems; Engineering GA 229KD UT WOS:000325261400040 ER PT J AU Kodavasal, J McNenly, MJ Babajimopoulos, A Aceves, SM Assanis, DN Havstad, MA Flowers, DL AF Kodavasal, Janardhan McNenly, Matthew J. Babajimopoulos, Aristotelis Aceves, Salvador M. Assanis, Dennis N. Havstad, Mark A. Flowers, Daniel L. TI An accelerated multi-zone model for engine cycle simulation of homogeneous charge compression ignition combustion SO INTERNATIONAL JOURNAL OF ENGINE RESEARCH LA English DT Article DE Homogeneous charge compression ignition; multi-zone; gasoline; boosted; thermal stratification; GT-Power; computational fluid dynamics; adiabatic core ID HCCI COMBUSTION; EMISSIONS AB We have developed an accelerated multi-zone model for engine cycle simulation (AMECS) of homogeneous charge compression ignition (HCCI) combustion. This model incorporates chemical kinetics and is intended for use in system-level simulation software. A novel methodology to capture thermal stratification in the multi-zone model is proposed. The methodology calculates thermal stratification inside the cylinder based on a single computational fluid dynamics (CFD) calculation for motored conditions. CFD results are used for tuning zone heat loss multipliers that characterize wall heat loss from each individual engine zone based on the assumption that these heat loss multipliers can then be used at operating conditions different from those used in the single CFD run because the functional form of thermal stratification is more dependent on engine geometry than on operating conditions. The model is benchmarked against detailed CFD calculations and fully coupled HCCI CFD chemical kinetics calculations. The results indicate that the heat loss multiplier approach accurately predicts thermal stratification during the compression stroke and (therefore) HCCI combustion. The AMECS model with the thermal stratification methodology and reduced gasoline chemical kinetics shows good agreement with boosted gasoline HCCI experiments over a range of operating conditions, in terms of in-cylinder pressure and heat release rate predictions. The computational advantage of this method derives from the need for only a single motoring CFD run for a given engine, which makes the method very well suited for rapid HCCI calculations in system-level codes such as GT-Power, where it is often desirable to evaluate consecutive engine cycles. C1 [Kodavasal, Janardhan] Univ Michigan, Walter E Lay Automot Lab 2032, Ann Arbor, MI 48109 USA. [McNenly, Matthew J.; Aceves, Salvador M.; Havstad, Mark A.; Flowers, Daniel L.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Babajimopoulos, Aristotelis; Assanis, Dennis N.] SUNY Stony Brook, Stony Brook, NY 11794 USA. RP Kodavasal, J (reprint author), Univ Michigan, Walter E Lay Automot Lab 2032, 1231 Beal Ave, Ann Arbor, MI 48109 USA. EM jankod@umich.edu FU DOE, Office of Vehicle Technologies; US Department of Energy by Lawrence Livermore National Laboratory (LLNL) [DE-AC52-07NA27344] FX This project was funded by DOE, Office of Vehicle Technologies, Gurpreet Singh, Technology Development Manager. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344. AMECS model development was done at LLNL and at the University of Michigan. NR 55 TC 17 Z9 17 U1 1 U2 23 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1468-0874 J9 INT J ENGINE RES JI Int. J. Engine Res. PD OCT PY 2013 VL 14 IS 5 SI SI BP 416 EP 433 DI 10.1177/1468087413482480 PG 18 WC Thermodynamics; Engineering, Mechanical; Transportation Science & Technology SC Thermodynamics; Engineering; Transportation GA 232FF UT WOS:000325476400002 ER PT J AU Duchicela, J Sullivan, TS Bontti, E Bever, JD AF Duchicela, Jessica Sullivan, Tarah S. Bontti, Eliana Bever, James D. TI Soil aggregate stability increase is strongly related to fungal community succession along an abandoned agricultural field chronosequence in the Bolivian Altiplano SO JOURNAL OF APPLIED ECOLOGY LA English DT Article DE Altiplano Bolivia pampa; arbuscular mycorrhiza; fungi; land abandoned chronosequence; soil aggregate stability; soil micro-organism ID RESTRICTION-FRAGMENT-LENGTH; ARBUSCULAR MYCORRHIZAL FUNGI; ORGANIC-MATTER; LOESS PLATEAU; LAND-USE; MICROBIAL COMMUNITIES; PHYSICAL-PROPERTIES; CARBON; TILLAGE; RESTORATION AB Soil aggregate stability is an important ecosystem property which deteriorates overtime due to agricultural practices. The cessation of cultivation allows the potential recovery of soil aggregate binding agents such as soil micro-organisms and biochemical properties. Consequently, an increase in soil aggregate stability is expected. However, this outcome is difficult to predict because the response of each individual soil component and its contribution to soil stability varies. This study utilized a chronosequence of 12 ex-arable fields in the Bolivian Altiplano, representing six soil ages of abandonment after cessation of potato cultivation, to examine whether soil aggregate stability increases after abandonment and the extent to which changes in soil bacterial and fungal community composition and soil chemical properties are involved in stability recovery. Fields with the longest time since disturbance (15 and 20 years) have a greater proportion of water-stable aggregates than more recently abandoned fields (1 and 3 years) and exhibit larger differences in bacterial and fungal composition. Total N, NH4+, C and organic matter also increased with time since the last intensive agricultural practice. Water-stable aggregates were strongly correlated with soil fungal community composition. Analysis of covariance is also consistent with the soil fungal community being an important mediator of the recovery of aggregate stability. Synthesis and applications. Soil aggregate stability increased by 50% over the 20 years following disturbance. This recovery was associated with shifts in soil fungal community composition, as is consistent with fungal mediation of this recovery. Land management strategies focusing on restoration of the soil fungal community may enhance soil aggregate stability, a key aspect for soil conservation, restoration, sustainability of agroecosystems and erosion prevention. C1 [Duchicela, Jessica; Bever, James D.] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA. [Sullivan, Tarah S.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Bontti, Eliana] Colorado State Univ, Grad Degree Program Ecol, Ft Collins, CO 80523 USA. RP Duchicela, J (reprint author), Indiana Univ, Dept Biol, Bloomington, IN 47405 USA. EM jduchice@indiana.edu FU Inter-American Institute for Global Change Research (IAI) [CRN2014]; NSF [GEO-04523250, DEB-0919434]; Western Hemisphere Fulbright Programs, Bureau of Educational and Cultural Affairs, United States Department of State FX This study was supported by the Inter-American Institute for Global Change Research (IAI) grant CRN2014 and NSF grants GEO-04523250 and DEB-0919434. The authors would like to thank to the Western Hemisphere Fulbright Programs, Bureau of Educational and Cultural Affairs, United States Department of State for funding provided to the authors. Gratitude is also expressed to PROIMPA Foundation, in particular J. Franco and G. Main for co-operation with providing information about the sites and soil sampling; and U. Schuette for helpful comments on the manuscript. NR 59 TC 13 Z9 13 U1 10 U2 122 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8901 J9 J APPL ECOL JI J. Appl. Ecol. PD OCT PY 2013 VL 50 IS 5 BP 1266 EP 1273 DI 10.1111/1365-2664.12130 PG 8 WC Biodiversity Conservation; Ecology SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 227AP UT WOS:000325079800020 ER PT J AU Giangrande, SE Collis, S Straka, J Protat, A Williams, C Krueger, S AF Giangrande, Scott E. Collis, Scott Straka, Jerry Protat, Alain Williams, Christopher Krueger, Steven TI A Summary of Convective-Core Vertical Velocity Properties Using ARM UHF Wind Profilers in Oklahoma SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article DE Convective storms; Deep convection; Updrafts; In situ atmospheric observations; Profilers; atmospheric; Radars; Radar observations ID BULK MICROPHYSICS PARAMETERIZATION; INCLUDING MASS FLUXES; DOPPLER RADAR; SUPERCELL THUNDERSTORM; SINGLE-DOPPLER; PART I; PRECIPITATION; SYSTEMS; MOTION; CLOUD AB This study presents a summary of the properties of deep convective updraft and downdraft cores over the central plains of the United States, accomplished using a novel and now-standard Atmospheric Radiation Measurement Program (ARM) scanning mode for a commercial wind-profiler system. A unique profiler-based hydrometeor fall-speed correction method modeled for the convective environment was adopted. Accuracy of the velocity retrievals from this effort is expected to be within 2 m s(-1), with minimal bias and base core resolution expected near 1 km. Updraft cores are found to behave with height in reasonable agreement with aircraft observations of previous continental convection, including those of the Thunderstorm Project. Intense updraft cores with magnitudes exceeding 15 m s(-1) are routinely observed. Downdraft cores are less frequently observed, with weaker magnitudes than updrafts. Weak, positive correlations are found between updraft intensity (maximum) and updraft diameter length (coefficient r to 0.5 aloft). Negligible correlations are observed for downdraft core lengths and intensity. C1 [Giangrande, Scott E.] Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA. [Collis, Scott] Argonne Natl Lab, Div Environm Sci, Argonne, IL 60439 USA. [Straka, Jerry] Univ Oklahoma, Norman, OK 73019 USA. [Protat, Alain] Bur Meteorol, Melbourne, Vic, Australia. [Williams, Christopher] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Williams, Christopher] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Krueger, Steven] Univ Utah, Salt Lake City, UT USA. RP Giangrande, SE (reprint author), Brookhaven Natl Lab, Div Atmospher Sci, Bldg 490D,Bell Ave, Upton, NY 11973 USA. EM scott.giangrande@bnl.gov RI Williams, Christopher/A-2723-2015; Measurement, Global/C-4698-2015; Giangrande, Scott/I-4089-2016 OI Williams, Christopher/0000-0001-9394-8850; Giangrande, Scott/0000-0002-8119-8199 FU U.S. Department of Energy [DE-AC02-98CH10886]; Department of Energy, Office of Science, Office of Biological and Environmental Research (BER) [DE-AC02-06CH11357]; Office of Science (BER) of the Department of Energy [DE-FG02-08ER64553]; National Science Foundation [AGS-1036237]; [DE-SC0007080] FX This manuscript has been authored by employees of Brookhaven Science Associates, LLC, under Contract DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the U.S. government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or to allow others to do so, for U.S. government purposes. Argonne National Laboratory's (ANL) work was supported by the Department of Energy, Office of Science, Office of Biological and Environmental Research (BER), under Contract DE-AC02-06CH11357. This research was also supported by the Office of Science (BER) of the Department of Energy under Grant DE-FG02-08ER64553. The research was also supported under Grant DE-SC0007080. Additional support was provided by the National Science Foundation under AGS-1036237 (Dr. Chungu Lu, program manager). In addition, the authors thank Pavlos Kollias, Michael Jensen, and ARM mentor Richard Coulter for their leadership roles with respect to the associated ARM Profiler and MC3E IOP campaign configurations and dataset collection. We also thank Edwin Campos of ANL for an internal review of this manuscript and Zac Flamig (OU/NSSL) for access to NSSL NEXRAD NMQ dataset archives. NR 63 TC 19 Z9 21 U1 1 U2 19 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD OCT PY 2013 VL 52 IS 10 BP 2278 EP 2295 DI 10.1175/JAMC-D-12-0185.1 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 232GY UT WOS:000325482000006 ER PT J AU Vizcaino, M Lipscomb, WH Sacks, WJ van Angelen, JH Wouters, B van den Broeke, MR AF Vizcaino, Miren Lipscomb, William H. Sacks, William J. van Angelen, Jan H. Wouters, Bert van den Broeke, Michiel R. TI Greenland Surface Mass Balance as Simulated by the Community Earth System Model. Part I: Model Evaluation and 1850-2005 Results SO JOURNAL OF CLIMATE LA English DT Article DE Ice sheets; Sea level; Surface fluxes; Climate models ID REGIONAL CLIMATE MODEL; ICE-SHEET; SEA-ICE; MELT; ANTARCTICA; THICKNESS; GLACIER; RUNOFF; ENERGY; ZONE AB The modeling of the surface mass balance (SMB) of the Greenland Ice Sheet (GIS) requires high-resolution models in order to capture the observed large gradients in the steep marginal areas. Until now, global climate models have not been considered suitable to model ice sheet SMB owing to model biases and insufficient resolution. This study analyzes the GIS SMB simulated for the period 1850-2005 by the Community Earth System Model (CESM), which includes a new ice sheet component with multiple elevation classes for SMB calculations. The model is evaluated against observational data and output from the regional model Regional Atmospheric Climate Model version 2 (RACMO2). Because of a lack of major climate biases, a sophisticated calculation of snow processes (including surface albedo evolution) and an adequate downscaling technique, CESM is able to realistically simulate GIS surface climate and SMB. CESM SMB agrees reasonably well with in situ data from 475 locations (r = 0.80) and output from RACMO2 (r = 0.79). The simulated mean SMB for 1960-2005 is 359 +/- 120 Gt yr(-1) in the range of estimates from regional climate models. The simulated seasonal mass variability is comparable with mass observations from the Gravity Recovery and Climate Experiment (GRACE), with synchronous annual maximum (May) and minimum (August-September) and similar amplitudes of the seasonal cycle. CESM is able to simulate the bands of precipitation maxima along the southeast and northwest margins, but absolute precipitation rates are underestimated along the southeastern margin and overestimated in the high interior. The model correctly simulates the major ablation areas. Total refreezing represents 35% of the available liquid water (the sum of rain and melt). C1 [Vizcaino, Miren; van Angelen, Jan H.; van den Broeke, Michiel R.] Univ Utrecht, Inst Marine & Atmospher Res, Utrecht, Netherlands. [Vizcaino, Miren] Univ Calif Berkeley, Dept Geog, Berkeley, CA 94720 USA. [Lipscomb, William H.] Los Alamos Natl Lab, Grp T 3, Los Alamos, NM USA. [Sacks, William J.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Wouters, Bert] Univ Bristol, Sch Geog Sci, Bristol Glaciol Ctr, Bristol, Avon, England. [Wouters, Bert] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. RP Vizcaino, M (reprint author), Stevinweg 1, NL-2628 CN Delft, Netherlands. EM m.vizcaino@tudelft.nl RI Vizcaino, Miren/D-4443-2013; Van den Broeke, Michiel/F-7867-2011; OI Vizcaino, Miren/0000-0002-9553-7104; Van den Broeke, Michiel/0000-0003-4662-7565; Wouters, Bert/0000-0002-1086-2435 FU NSF FX M. Vizcaino was funded via NSF Grant ATM-0917755 to UC Berkeley and a Marie Curie International Incoming Fellowship within the 7th European Community Framework (EC FP7) Programme (FP7-PEOPLE-2010-IIF-272956). W. Lipscomb was supported by the Scientific Discovery through Advanced Computing (SciDAC) project funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Biological and Environmental Research. The Los Alamos National Laboratory is operated by the DOE National Nuclear Security Administration under Contract DE-AC52-06NA25396. Additional support was provided by NSF through Awards ANT-1103686 (for W. Sacks) and a Small Grant for Exploratory Research (for W. Lipscomb). B. Wouters is funded by a Marie Curie International Outgoing Fellowship within the EC FP7 Programme (FP7-PEOPLE-2011-IOF-301260). The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the U.S. Department of Energy. Computing resources were provided by the Climate Simulation Laboratory at the NCAR Computational and Information Systems Laboratory (CISL), sponsored by the National Science Foundation and other agencies. The CMIP5 simulations used in this research were enabled by CISL compute and storage resources. Bluefire, a 4064-processor IBM Power6 resource with a peak of 77 TeraFlops, provided more than 7.5 million computing hours, the GLADE high-speed disk resources provided 0.4 PetaBytes of dedicated disk and the CISL 12-PB HPSS archive provided over 1 PetaByte of storage in support of this research project. In addition, this work used resources of the Oak Ridge Leadership Computing Facility, located in the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy under Contract DE-AC05-00OR22725. Janneke Ettema provided RACMO2 data from a previous version for preliminary evaluation of CESM. GRACE data were provided by Bert Wouters. J. Ettema, W. J. van de Berg, J. Lenaerts, and X. Fettweis are thanked for insightful discussions about the surface mass balance of the Greenland Ice Sheet. NR 46 TC 16 Z9 16 U1 4 U2 36 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD OCT PY 2013 VL 26 IS 20 BP 7793 EP 7812 DI 10.1175/JCLI-D-12-00615.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 229MM UT WOS:000325269800001 ER PT J AU Mahajan, S Evans, KJ Hack, JJ Truesdale, JE AF Mahajan, Salil Evans, Katherine J. Hack, James J. Truesdale, John E. TI Linearity of Climate Response to Increases in Black Carbon Aerosols SO JOURNAL OF CLIMATE LA English DT Article DE Aerosols; Climate change; Climate sensitivity; Climate variability; Hydrologic cycle; Radiative forcing ID ABSORBING AEROSOLS; TROPICAL ATLANTIC; OCEAN; PERTURBATIONS; STRATOCUMULUS; VARIABILITY; SENSITIVITY; MODELS; IMPACT; COVER AB The impacts of absorbing aerosols on global climate are not completely understood. This paper presents the results of idealized experiments conducted with the Community Atmosphere Model, version 4 (CAM4), coupled to a slab ocean model (CAM4-SOM) to simulate the climate response to increases in tropospheric black carbon aerosols (BC) by direct and semidirect effects. CAM4-SOM was forced with 0, 1x, 2x, 5x, and 10x an estimate of the present day concentration of BC while maintaining the estimated present day global spatial and vertical distribution. The top-of-atmosphere (TOA) radiative forcing of BC in these experiments is positive (warming) and increases linearly as the BC burden increases. The total semidirect effect for the 1 x BC experiment is positive but becomes increasingly negative for higher BC concentrations. The global-average surface temperature response is found to be a linear function of the TOA radiative forcing. The climate sensitivity to BC from these experiments is estimated to be 0.42 K W-1 m(2) when the semidirect effects are accounted for and 0.22 K W-1 m(2) with only the direct effects considered. Global-average precipitation decreases linearly as BC increases, with a precipitation sensitivity to atmospheric absorption of 0.4% W-1 m(2). The hemispheric asymmetry of BC also causes an increase in southward cross-equatorial heat transport and a resulting northward shift of the intertropical convergence zone in the simulations at a rate of 4 degrees PW-1. Global-average mid- and high-level clouds decrease, whereas the low-level clouds increase linearly with BC. The increase in marine stratocumulus cloud fraction over the southern tropical Atlantic is caused by increased BC-induced diabatic heating of the free troposphere. C1 [Mahajan, Salil; Evans, Katherine J.; Hack, James J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Truesdale, John E.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. RP Mahajan, S (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd,POB 2008, Oak Ridge, TN 37831 USA. EM mahajans@ornl.gov OI Mahajan, Salil/0000-0001-5767-8590; Evans, Katherine/0000-0001-8174-6450 FU Office of Science [Biological and Environmental Research (BER)] of the U.S. Department of Energy (DOE); Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725] FX This work was funded by a grant from the Office of Science [Biological and Environmental Research (BER)] of the U.S. Department of Energy (DOE). This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract DE-AC05-00OR22725. The authors wish to thank three anonymous reviewers whose comments helped improve the manuscript significantly. NR 50 TC 9 Z9 9 U1 2 U2 36 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD OCT PY 2013 VL 26 IS 20 BP 8223 EP 8237 DI 10.1175/JCLI-D-12-00715.1 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 229MM UT WOS:000325269800030 ER PT J AU Nurk, S Bankevich, A Antipov, D Gurevich, AA Korobeynikov, A Lapidus, A Prjibelski, AD Pyshkin, A Sirotkin, A Sirotkin, Y Stepanauskas, R Clingenpeel, SR Woyke, T Mclean, JS Lasken, R Tesler, G Alekseyev, MA Pevzner, PA AF Nurk, Sergey Bankevich, Anton Antipov, Dmitry Gurevich, Alexey A. Korobeynikov, Anton Lapidus, Alla Prjibelski, Andrey D. Pyshkin, Alexey Sirotkin, Alexander Sirotkin, Yakov Stepanauskas, Ramunas Clingenpeel, Scott R. Woyke, Tanja Mclean, Jeffrey S. Lasken, Roger Tesler, Glenn Alekseyev, Max A. Pevzner, Pavel A. TI Assembling Single-Cell Genomes and Mini-Metagenomes From Chimeric MDA Products SO JOURNAL OF COMPUTATIONAL BIOLOGY LA English DT Article DE bacterial assembly; chimeric reads; de Bruijn graph; multiple displacement amplification (MDA); single cell ID HUMAN MICROBIOME; SEQUENCE; BIOFILM; SAMPLES AB Recent advances in single-cell genomics provide an alternative to largely gene-centric metagenomics studies, enabling whole-genome sequencing of uncultivated bacteria. However, single-cell assembly projects are challenging due to (i) the highly nonuniform read coverage and (ii) a greatly elevated number of chimeric reads and read pairs. While recently developed single-cell assemblers have addressed the former challenge, methods for assembling highly chimeric reads remain poorly explored. We present algorithms for identifying chimeric edges and resolving complex bulges in de Bruijn graphs, which significantly improve single-cell assemblies. We further describe applications of the single-cell assembler SPAdes to a new approach for capturing and sequencing microbial dark matter that forms small pools of randomly selected single cells (called a mini-metagenome) and further sequences all genomes from the mini-metagenome at once. On single-cell bacterial datasets, SPAdes improves on the recently developed E+V-SC and IDBA-UD assemblers specifically designed for single-cell sequencing. For standard (cultivated monostrain) datasets, SPAdes also improves on A5, ABySS, CLC, EULER-SR, Ray, SOAPdenovo, and Velvet. Thus, recently developed single-cell assemblers not only enable single-cell sequencing, but also improve on conventional assemblers on their own turf. SPAdes is available for free online download under a GPLv2 license. C1 [Nurk, Sergey; Bankevich, Anton; Antipov, Dmitry; Gurevich, Alexey A.; Korobeynikov, Anton; Lapidus, Alla; Prjibelski, Andrey D.; Pyshkin, Alexey; Sirotkin, Alexander; Sirotkin, Yakov; Pevzner, Pavel A.] St Petersburg Acad Univ, Russian Acad Sci, Algorithm Biol Lab, St Petersburg, Russia. [Korobeynikov, Anton] St Petersburg State Univ, Dept Math & Mech, St Petersburg 199034, Russia. [Lapidus, Alla] St Petersburg State Univ, Theodosius Dobzhansky Ctr Genome Bioinformat, St Petersburg 199034, Russia. [Stepanauskas, Ramunas] Bigelow Lab Ocean Sci, East Boothbay, ME USA. [Clingenpeel, Scott R.; Woyke, Tanja] US DOE, Joint Genome Inst, Walnut Creek, CA USA. [Mclean, Jeffrey S.; Lasken, Roger] J Craig Venter Inst, La Jolla, CA USA. [Tesler, Glenn] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA. [Pevzner, Pavel A.] Univ Calif San Diego, Dept Comp Sci & Engn, La Jolla, CA 92093 USA. [Alekseyev, Max A.] Univ S Carolina, Dept Comp Sci & Engn, Columbia, SC 29208 USA. RP Tesler, G (reprint author), Univ Calif San Diego, Dept Math, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM gptesler@math.ucsd.edu RI Sirotkin, Alexander/B-5964-2013; Korobeynikov, Anton/D-3555-2009; Alekseyev, Max/D-9362-2016; Gurevich, Alexey/Q-6888-2016; Lapidus, Alla/I-4348-2013; OI Clingenpeel, Scott/0000-0002-6619-6320; Sirotkin, Alexander/0000-0002-6251-4651; Korobeynikov, Anton/0000-0002-2937-9259; Alekseyev, Max/0000-0002-5140-8095; Gurevich, Alexey/0000-0002-5855-3519; Lapidus, Alla/0000-0003-0427-8731; McLean, Jeffrey/0000-0001-9934-5137; Stepanauskas, Ramunas/0000-0003-4458-3108 FU Government of the Russian Federation [11.G34.31.0018]; U.S. National Institutes of Health (NIH) [3P41RR024851-02S1]; U.S. National Science Foundation (NSF) [CCF-1115206]; NSF [OCE-1148017, OCE-821374, OCE-1019242]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Alfred P. Sloan Foundation [2007-10-19]; NIH [1R01GM095373, 2R01HG003647] FX P.A.P. was supported by the Government of the Russian Federation grant 11.G34.31.0018. P. A. P. and G. T. were supported by the U.S. National Institutes of Health (NIH) grant 3P41RR024851-02S1. G. T. was also supported by the U.S. National Science Foundation (NSF) grant CCF-1115206. R. S. was supported by NSF grants OCE-1148017, OCE-821374, and OCE-1019242. T. W. and S. R. C. were funded by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. R. S. L. and J.S.M. were supported by the Alfred P. Sloan Foundation grant 2007-10-19. J.S.M. was also supported by NIH grant 1R01GM095373. R. S. L. was also supported by NIH grant 2R01HG003647. NR 37 TC 82 Z9 82 U1 4 U2 41 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1066-5277 EI 1557-8666 J9 J COMPUT BIOL JI J. Comput. Biol. PD OCT 1 PY 2013 VL 20 IS 10 BP 714 EP 737 DI 10.1089/cmb.2013.0084 PG 24 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA 229LQ UT WOS:000325266900002 PM 24093227 ER PT J AU Ochoa, CG Fernald, AG Guldan, SJ Tidwell, VC Shukla, MK AF Ochoa, Carlos G. Fernald, Alexander G. Guldan, Steven J. Tidwell, Vincent C. Shukla, Manoj K. TI Shallow Aquifer Recharge from Irrigation in a Semiarid Agricultural Valley in New Mexico SO JOURNAL OF HYDROLOGIC ENGINEERING LA English DT Article DE Aquifers; Irrigation; Water table; New Mexico; Arid lands; Agriculture; Groundwater recharge; Surface water; Shallow groundwater; Agriculture; Aquifer; Surface irrigation; Water balance; Water levels ID GROUNDWATER RECHARGE; DEEP-PERCOLATION; LEVEL; FIELD; SEEPAGE; QUALITY; ALFALFA; ZONE AB Irrigation percolation can be an important source of shallow aquifer replenishment in arid regions of the southwestern United States. Aquifer recharge derived from irrigation percolation can be more significant in fluvial valleys overlying shallow aquifers, where highly permeable soils allow rapid water infiltration and aquifer replenishment. This study used data from various irrigation experiments and data at the piezometric level to assess the irrigation percolation effects on the recharge of a shallow aquifer in an agricultural valley of northern New Mexico. The water balance method (WBM) and the water table fluctuation method (WTFM) were used to estimate aquifer recharge at the field scale (<1ha) and the WTFM was used to determine recharge at the entire valley scale (40km2). Also, the temporal and spatial distribution of aquifer response to irrigation percolation and canal seepage inputs was characterized. The results showed that for separate irrigation events at the field scale, aquifer recharge values ranged from 0 to 369mm when using the WBM and from 0 to 230mm when using the WTFM. For the cumulative irrigation season at the valley scale, recharge ranged from 1,044 to 1,350mmyear-1. A relatively rapid water table response with sharp water table rises and declines was observed in all but dryland location wells in response to canal seepage and irrigation percolation inputs. The results of this study add to the understanding of the mechanisms of shallow aquifer recharge and the interactions between surface water and groundwater in a floodplain agricultural valley of northern New Mexico. C1 [Ochoa, Carlos G.] Oregon State Univ, Dept Anim & Rangeland Sci, Corvallis, OR 97331 USA. [Ochoa, Carlos G.; Fernald, Alexander G.] New Mexico State Univ, Dept Anim & Range Sci, Las Cruces, NM 88003 USA. [Guldan, Steven J.] New Mexico State Univ, Sustainable Agr Sci Ctr, Alcalde, NM 87511 USA. [Tidwell, Vincent C.] Sandia Natl Labs, Geohydrol Dept, Albuquerque, NM 87185 USA. [Shukla, Manoj K.] New Mexico State Univ, Dept Plant & Environm Sci, Las Cruces, NM USA. RP Ochoa, CG (reprint author), Oregon State Univ, Dept Anim & Rangeland Sci, 112 Withycombe Hall, Corvallis, OR 97331 USA. EM carochoa@nmsu.edu FU Cooperative State Research, Education and Extension Service, U.S. Department of Agriculture [2005-34461-15661, 2005-45049-03209]; National Science Foundation [0814449, 1010516]; New Mexico Agricultural Experiment Station FX Authors gratefully acknowledge the technical assistance of the NMSU-Alcalde Science Center staff, especially David Archuleta, Val Archuleta, David Salazar, and Estevan Herrera. This material is based upon work supported by the Cooperative State Research, Education and Extension Service, U.S. Department of Agriculture under Agreement No. 2005-34461-15661 and 2005-45049-03209, by the National Science Foundation, Award No. 0814449 and Award No. 1010516, and by the New Mexico Agricultural Experiment Station. NR 33 TC 3 Z9 3 U1 1 U2 31 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 1084-0699 EI 1943-5584 J9 J HYDROL ENG JI J. Hydrol. Eng. PD OCT 1 PY 2013 VL 18 IS 10 BP 1219 EP 1230 DI 10.1061/(ASCE)HE.1943-5584.0000718 PG 12 WC Engineering, Civil; Environmental Sciences; Water Resources SC Engineering; Environmental Sciences & Ecology; Water Resources GA 218XT UT WOS:000324466700005 ER PT J AU Guba, O Lorenz, J Sulsky, D AF Guba, Oksana Lorenz, Jens Sulsky, Deborah TI On Well-Posedness of the Viscous-Plastic Sea Ice Model SO JOURNAL OF PHYSICAL OCEANOGRAPHY LA English DT Article DE Differential equations ID RHEOLOGY; STABILITY; FLOW; DYNAMICS AB This study examines the well-posedness of the initial-value problems that arise in common models of sea ice. The model equations describe the balance of linear momentum combined with simplified thermodynamics represented by two continuity equations for effective ice thickness and ice concentration. The constitutive model for sea ice is given by two possible variants of the viscous-plastic model: the viscous-plastic model with pressure replacement and the viscous-plastic model with pressure replacement plus a tensile cutoff. The authors identify regimes of well- and ill-posedness for both models in one and two space dimensions. In one space dimension, the study finds that the viscous-plastic model and viscous-plastic model with pressure replacement behave similarly: there is ill-posedness when the divergent flow rate is larger than a minimum value. On the other hand, the viscous-plastic model with pressure replacement plus a tensile cutoff is ill-posed for all divergent flows. In two space dimensions the analysis is inconclusive for the viscous-plastic model with pressure replacement, but with the tensile cutoff the problem is ill-posed for certain divergent flows. The authors also discuss energy bounds and the difference between ill-posedness and stability of a solution. The study shows by examples that boundedness of solutions does not imply well-posedness and that it is possible for well-posed problems to have unstable solutions. The analysis shows that previous arguments in the literature, which state that a bound on the energy in sea ice models provides control over ill-posedness, are flawed. C1 [Guba, Oksana] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Lorenz, Jens; Sulsky, Deborah] Univ New Mexico, Albuquerque, NM 87131 USA. RP Sulsky, D (reprint author), Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA. EM sulsky@math.unm.edu FU National Science Foundation [ARC-1023667] FX This material is based upon work supported by the National Science Foundation under Grant ARC-1023667. NR 17 TC 0 Z9 0 U1 2 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-3670 J9 J PHYS OCEANOGR JI J. Phys. Oceanogr. PD OCT PY 2013 VL 43 IS 10 BP 2185 EP 2199 DI 10.1175/JPO-D-13-014.1 PG 15 WC Oceanography SC Oceanography GA 232ZT UT WOS:000325534400010 ER PT J AU Kunaseth, M Richards, DF Glosli, JN Kalia, RK Nakano, A Vashishta, P AF Kunaseth, Manaschai Richards, David F. Glosli, James N. Kalia, Rajiv K. Nakano, Aiichiro Vashishta, Priya TI Analysis of scalable data-privatization threading algorithms for hybrid MPI/OpenMP parallelization of molecular dynamics SO JOURNAL OF SUPERCOMPUTING LA English DT Article DE Hybrid MPI/OpenMP parallelization; Thread scheduling; Memory optimization; Load balancing; Parallel molecular dynamics ID PARTICLE-MESH; EWALD SUMS; PERFORMANCE; SIMULATION; CLUSTERS AB We propose and analyze threading algorithms for hybrid MPI/OpenMP parallelization of a molecular-dynamics simulation, which are scalable on large multicore clusters. Two data-privatization thread scheduling algorithms via nucleation-growth allocation are introduced: (1) compact-volume allocation scheduling (CVAS); and (2) breadth-first allocation scheduling (BFAS). The algorithms combine fine-grain dynamic load balancing and minimal memory-footprint data privatization threading. We show that the computational costs of CVAS and BFAS are bounded by I similar to(n (5/3) p (-2/3)) and I similar to(n), respectively, for p threads working on n particles on a multicore compute node. Memory consumption per node of both algorithms scales as O(n+n (2/3) p (1/3)), but CVAS has smaller prefactors due to a geometric effect. Based on these analyses, we derive the selection criterion between the two algorithms in terms of the granularity, n/p. We observe that memory consumption is reduced by 75 % for p=16 and n=8,192 compared to a na < ve data privatization, while maintaining thread imbalance below 5 %. We obtain a strong-scaling speedup of 14.4 with 16-way threading on a four quad-core AMD Opteron node. In addition, our MPI/OpenMP code achieves 2.58x and 2.16x speedups over the MPI-only implementation on 32,768 cores of BlueGene/P for 0.84 and 1.68 million particle systems, respectively. C1 [Kunaseth, Manaschai; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya] Univ So Calif, Dept Comp Sci, Collaboratory Adv Comp & Simulat, Los Angeles, CA 90089 USA. [Richards, David F.; Glosli, James N.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Kunaseth, M (reprint author), Univ So Calif, Dept Comp Sci, Collaboratory Adv Comp & Simulat, Los Angeles, CA 90089 USA. EM kunaseth@usc.edu; richards12@llnl.gov; glosli@llnl.gov; rkalia@usc.edu; anakano@usc.edu; priyav@usc.edu FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344 (LLNL-JRNL-528373)]; DOE BES/EFRC/SciDAC/SciDAC-e/INCITE; NSF PetaApps/CDI FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-JRNL-528373). The work at USC was partially supported by DOE BES/EFRC/SciDAC/SciDAC-e/INCITE and NSF PetaApps/CDI. NR 32 TC 4 Z9 4 U1 2 U2 15 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0920-8542 J9 J SUPERCOMPUT JI J. Supercomput. PD OCT PY 2013 VL 66 IS 1 BP 406 EP 430 DI 10.1007/s11227-013-0915-x PG 25 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 226GL UT WOS:000325022800023 ER PT J AU Zhang, JS Perelson, AS AF Zhang, Jingshan Perelson, Alan S. TI Contribution of Follicular Dendritic Cells to Persistent HIV Viremia (vol 87, pg 7893, 2013) SO JOURNAL OF VIROLOGY LA English DT Correction C1 [Zhang, Jingshan; Perelson, Alan S.] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. RP Zhang, JS (reprint author), Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. NR 1 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD OCT PY 2013 VL 87 IS 20 BP 11313 EP 11313 DI 10.1128/JVI.02107-13 PG 1 WC Virology SC Virology GA 229OF UT WOS:000325275800037 ER PT J AU Floyd, RL Johnson, KA Owens, JR Verbiest, S Moore, CA Boyle, C AF Floyd, R. Louise Johnson, Kay A. Owens, Jasmine R. Verbiest, Sarah Moore, Cynthia A. Boyle, Coleen TI A National Action Plan for Promoting Preconception Health and Health Care in the United States (2012-2014) SO JOURNAL OF WOMENS HEALTH LA English DT Article AB Preconception health and health care (PCHHC) has gained increasing popularity as a key prevention strategy for improving outcomes for women and infants, both domestically and internationally. The Action Plan for the National Initiative on Preconception Health and Health Care: A Report of the PCHHC Steering Committee (2012-2014) provides a model that states, communities, public, and private organizations can use to help guide strategic planning for promoting preconception care projects. Since 2005, a national public-private PCHHC initiative has worked to create and implement recommendations on this topic. Leadership and funding from the Centers for Disease Control and Prevention combined with the commitment of maternal and child health leaders across the country brought together key partners from the public and private sector to provide expertise and technical assistance to develop an updated national action plan for the PCHHC Initiative. Key activities for this process included the identification of goals, objectives, strategies, actions, and anticipated timelines for the five workgroups that were established as part of the original PCHHC Initiative. These are further described in the action plan. To assist other groups doing similar work, this article discusses the approach members of the PCHHC Initiative took to convene local, state, and national leaders to enhance the implementation of preconception care nationally through accomplishments, lessons learned, and projections for future directions. C1 [Floyd, R. Louise; Owens, Jasmine R.; Moore, Cynthia A.; Boyle, Coleen] Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, Atlanta, GA USA. [Johnson, Kay A.] Dartmouth Coll, Hitchcock Med Ctr, Dartmouth Med Sch, Dept Pediat, Hanover, NH 03756 USA. [Owens, Jasmine R.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Verbiest, Sarah] Univ N Carolina, Ctr Maternal & Infant Hlth, Chapel Hill, NC USA. RP Floyd, RL (reprint author), Natl Ctr Birth Defects & Dev Disabil, Div Birth Defects & Dev Disabil, 1825 Century Blvd MS E86, Atlanta, GA 30345 USA. EM rlf3@bellsouth.net FU national Preconception Health and Health Care Initiative; Centers for Disease Control and Prevention FX This article was supported by the national Preconception Health and Health Care Initiative, the Centers for Disease Control and Prevention, and a research appointment by the Oak Ridge Institute for Science and Education. We thank those who provided comments and reviewed earlier versions of this manuscript. NR 24 TC 10 Z9 10 U1 0 U2 10 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1540-9996 J9 J WOMENS HEALTH JI J. Womens Health PD OCT 1 PY 2013 VL 22 IS 10 BP 797 EP 802 DI 10.1089/jwh.2013.4505 PG 6 WC Public, Environmental & Occupational Health; Medicine, General & Internal; Obstetrics & Gynecology; Women's Studies SC Public, Environmental & Occupational Health; General & Internal Medicine; Obstetrics & Gynecology; Women's Studies GA 227TD UT WOS:000325136500003 PM 23944970 ER PT J AU Hoffman, FM Kumar, J Mills, RT Hargrove, WW AF Hoffman, Forrest M. Kumar, Jitendra Mills, Richard T. Hargrove, William W. TI Representativeness-based sampling network design for the State of Alaska SO LANDSCAPE ECOLOGY LA English DT Article DE Ecoregions; Representativeness; Network design; Cluster analysis; Alaska; Permafrost ID CONTERMINOUS UNITED-STATES; CLIMATE-CHANGE; NORTHERN ALASKA; ECOREGIONS; DELINEATION; REGIONS AB Resource and logistical constraints limit the frequency and extent of environmental observations, particularly in the Arctic, necessitating the development of a systematic sampling strategy to maximize coverage and objectively represent environmental variability at desired scales. A quantitative methodology for stratifying sampling domains, informing site selection, and determining the representativeness of measurement sites and networks is described here. Multivariate spatiotemporal clustering was applied to down-scaled general circulation model results and data for the State of Alaska at 4 km(2) resolution to define multiple sets of ecoregions across two decadal time periods. Maps of ecoregions for the present (2000-2009) and future (2090-2099) were produced, showing how combinations of 37 characteristics are distributed and how they may shift in the future. Representative sampling locations are identified on present and future ecoregion maps. A representativeness metric was developed, and representativeness maps for eight candidate sampling locations were produced. This metric was used to characterize the environmental similarity of each site. This analysis provides model-inspired insights into optimal sampling strategies, offers a framework for up-scaling measurements, and provides a down-scaling approach for integration of models and measurements. These techniques can be applied at different spatial and temporal scales to meet the needs of individual measurement campaigns. C1 [Hoffman, Forrest M.] Oak Ridge Natl Lab, CCSI, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Hoffman, Forrest M.; Kumar, Jitendra; Mills, Richard T.] Oak Ridge Natl Lab, Div Environm Sci, CCSI, Oak Ridge, TN 37831 USA. [Hargrove, William W.] US Forest Serv, Eastern Forest Environm Threat Assessment Ctr, USDA, Southern Res Stn, Asheville, NC USA. RP Hoffman, FM (reprint author), Oak Ridge Natl Lab, CCSI, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. EM forrest@climatemodeling.org; jkumar@climatemodeling.org; rmills@ornl.gov; hnw@geobabble.org RI Kumar, Jitendra/G-8601-2013; Hoffman, Forrest/B-8667-2012 OI Kumar, Jitendra/0000-0002-0159-0546; Hoffman, Forrest/0000-0001-5802-4134 FU Climate and Environmental Sciences Division (CESD) of the Office of Biological and Environmental Research (BER) within the U.S. Department of Energy (DOE) Office of Science; U.S. Department of Agriculture (USDA) Forest Service, Eastern Forest Environmental Threat Assessment Center (EFETAC); Office of Biological and Environmental Research in the DOE Office of Science; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725]; U.S. Government [DE-AC05-00OR22725] FX This research was partially sponsored by the Climate and Environmental Sciences Division (CESD) of the Office of Biological and Environmental Research (BER) within the U.S. Department of Energy (DOE) Office of Science. Additional support was provided by the U.S. Department of Agriculture (USDA) Forest Service, Eastern Forest Environmental Threat Assessment Center (EFETAC). The Next-Generation Ecosystem Experiments (NGEE Arctic) project is supported by the Office of Biological and Environmental Research in the DOE Office of Science. This research used resources of the Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. The submitted manuscript has been authored by a contractor of the U.S. Government under Contract No. DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. NR 44 TC 8 Z9 8 U1 0 U2 15 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0921-2973 J9 LANDSCAPE ECOL JI Landsc. Ecol. PD OCT PY 2013 VL 28 IS 8 BP 1567 EP 1586 DI 10.1007/s10980-013-9902-0 PG 20 WC Ecology; Geography, Physical; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Physical Geography; Geology GA 226ZI UT WOS:000325076100011 ER PT J AU Salvador, JR Waldo, RA Wong, CA Tessema, M Brown, DN Miller, DJ Wang, H Wereszczak, AA Cai, W AF Salvador, James R. Waldo, Richard A. Wong, Curtis A. Tessema, Misle Brown, David N. Miller, David J. Wang, Hsin Wereszczak, Andrew A. Cai, Wei TI Thermoelectric and mechanical properties of melt spun and spark plasma sintered n-type Yb- and Ba-filled skutterudites SO MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS LA English DT Article DE Thermoelectrics; Skutterudites; Melt spinning; Elastic modulus ID TRANSPORT-PROPERTIES; HIGH FIGURE; MERIT; PERFORMANCE; STRESS AB Here we present thermoelectric and mechanical properties of n-type filled-skutterudites produced by a combination of melt spinning of pre-melted charges with subsequent consolidation by spark plasma sintering, a process we refer to as MS-SPS. This combination of processing steps leads to phase-pure n-type filled-skutterudites and obviates more energy and time intensive annealing steps. We show that both the thermoelectric properties and the tensile fracture strength compare favorably to materials made by traditional methods. The process is scalable to at least 80 g billets, such that the transport properties measured on test bars harvested from these larger billets compare favorably to those measured on lab-scale billets (5 g total billet mass). ZT values approaching 1.1 at 750K were observed in materials made by MS-SPS. In addition, the tensile fracture strength of test bars cut from an 80 g billet is similar to 128 MPa at room temperature and decreases with increasing temperature. Fractography of the test bars reveals that the majority failed due to surface and edge flaws with few failures due to volume type flaws. This indicates that the powder metallurgical methods employed to produce these samples is mature. (C) 2013 Elsevier B.V. All rights reserved. C1 [Salvador, James R.; Waldo, Richard A.; Wong, Curtis A.] Gen Motors Res & Dev Ctr, Warren, MI 48090 USA. [Tessema, Misle] Optimal Inc, Plymouth, MI 48170 USA. [Brown, David N.; Miller, David J.] Molycorp Inc, Ctr Res & Dev, Singapore 117252, Singapore. [Wang, Hsin; Wereszczak, Andrew A.; Cai, Wei] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Salvador, JR (reprint author), Gen Motors Res & Dev Ctr, 30500 Mound Rd, Warren, MI 48090 USA. EM james.salvador@gm.com RI Wang, Hsin/A-1942-2013; Wereszczak, Andrew/I-7310-2016 OI Wang, Hsin/0000-0003-2426-9867; Wereszczak, Andrew/0000-0002-8344-092X FU GM; DOE [DE-EE0000014]; Oak Ridge National Laboratory; Department of Energy [DE-AC05000OR22725] FX JRS would like to thank J.F. Herbst and M.W. Verbrugge for their continued support and encouragement. The work is supported by GM and by DOE under corporate agreement DE-EE0000014. This work is also supported by Oak Ridge National Laboratory managed by the UT-Battelle LLC, for the Department of Energy under contract DE-AC05000OR22725. NR 39 TC 14 Z9 14 U1 6 U2 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-5107 J9 MATER SCI ENG B-ADV JI Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. PD OCT 1 PY 2013 VL 178 IS 17 BP 1087 EP 1096 DI 10.1016/j.mseb.2013.06.023 PG 10 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 228OQ UT WOS:000325196500001 ER PT J AU Hou, ZS Engel, DW Lin, G Fang, YL Fang, ZF AF Hou, Zhangshuan Engel, Dave W. Lin, Guang Fang, Yilin Fang, Zhufeng TI An Uncertainty Quantification Framework for Studying the Effect of Spatial Heterogeneity in Reservoir Permeability on CO2 Sequestration SO MATHEMATICAL GEOSCIENCES LA English DT Article DE Uncertainty quantification; Efficient sampling; Reservoir heterogeneity; Carbon sequestration ID MINIMUM RELATIVE ENTROPY; MONOMIAL CUBATURE RULES; SALINE AQUIFERS; FLUID-FLOW; INJECTION; STORAGE; COMPILATION; LEAKAGE; STROUD AB A new uncertainty quantification framework is adopted for carbon sequestration to evaluate the effect of spatial heterogeneity of reservoir permeability on CO2 migration. Sequential Gaussian simulation is used to generate multiple realizations of permeability fields with various spatial statistical attributes. In order to deal with the computational difficulties, the following ideas/approaches are integrated. First, different efficient sampling approaches (probabilistic collocation, quasi-Monte Carlo, and adaptive sampling) are used to reduce the number of forward calculations, explore effectively the parameter space, and quantify the input uncertainty. Second, a scalable numerical simulator, extreme-scale Subsurface Transport Over Multiple Phases, is adopted as the forward modeling simulator for CO2 migration. The framework has the capability to quantify input uncertainty, generate exploratory samples effectively, perform scalable numerical simulations, visualize output uncertainty, and evaluate input-output relationships. The framework is demonstrated with a given CO2 injection scenario in heterogeneous sandstone reservoirs. Results show that geostatistical parameters for permeability have different impacts on CO2 plume radius: the mean parameter has positive effects at the top layers, but affects the bottom layers negatively. The variance generally has a positive effect on the plume radius at all layers, particularly at middle layers, where the transport of CO2 is highly influenced by the subsurface heterogeneity structure. The anisotropy ratio has weak impacts on the plume radius, but affects the shape of the CO2 plume. C1 [Hou, Zhangshuan; Fang, Yilin; Fang, Zhufeng] Pacific NW Natl Lab, Earth Syst Sci Div, Richland, WA 99352 USA. [Engel, Dave W.; Lin, Guang] Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA. RP Hou, ZS (reprint author), Pacific NW Natl Lab, Earth Syst Sci Div, POB 999, Richland, WA 99352 USA. EM Zhangshuan.Hou@pnnl.gov RI Hou, Zhangshuan/B-1546-2014; Fang, Yilin/J-5137-2015 OI Hou, Zhangshuan/0000-0002-9388-6060; FU US Department of Energy [DE-AC05-76RL01830]; Pacific Northwest National Laboratory's Carbon Sequestration Initiative, Laboratory Directed Research and Development Program FX This research has been accomplished and funded through Pacific Northwest National Laboratory's Carbon Sequestration Initiative, which is part of the Laboratory Directed Research and Development Program. This study was conducted at the Pacific Northwest National Laboratory, operated by Battelle Memorial Institute for the US Department of Energy under Contract DE-AC05-76RL01830. NR 37 TC 6 Z9 6 U1 0 U2 22 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1874-8961 EI 1874-8953 J9 MATH GEOSCI JI Math Geosci. PD OCT PY 2013 VL 45 IS 7 BP 799 EP 817 DI 10.1007/s11004-013-9459-0 PG 19 WC Geosciences, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Geology; Mathematics GA 227TN UT WOS:000325137700002 ER PT J AU Hearin, AP Watson, DF AF Hearin, Andrew P. Watson, Douglas F. TI The dark side of galaxy colour SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; galaxies: haloes; cosmology: theory; dark matter; large-scale structure of Universe ID DIGITAL SKY SURVEY; HALO OCCUPATION DISTRIBUTION; STAR-FORMATION HISTORIES; BRIGHTEST CLUSTER GALAXIES; BAND OPTICAL-PROPERTIES; LARGE-SCALE STRUCTURE; SDSS REDSHIFT SURVEY; SIMILAR-TO 1; STELLAR MASS; SATELLITE GALAXIES AB We present age distribution matching, a theoretical formalism for predicting how galaxies of luminosity L and colour C occupy dark matter haloes. Our model supposes that there are just two fundamental properties of a halo that determine the colour and brightness of the galaxy it hosts: the maximum circular velocity V-max and the redshift z(starve) that correlates with the epoch at which the star formation in the galaxy ceases. The halo property z(starve) is intended to encompass physical characteristics of halo mass assembly that may deprive the galaxy of its cold gas supply and, ultimately, quench its star formation. The new, defining feature of the model is that, at fixed luminosity, galaxy colour is in monotonic correspondence with z(starve), with the larger values of z(starve) being assigned redder colours. We populate an N-body simulation with a mock galaxy catalogue based on age distribution matching and show that the resulting mock galaxy distribution accurately describes a variety of galaxy statistics. Our model suggests that halo and galaxy assembly are indeed correlated. We make publicly available our low-redshift, Sloan Digital Sky Survey M-r < -19 mock galaxy catalogue, and main progenitor histories of all z = 0 haloes, at http://logrus.uchicago.edu/similar to aphearin C1 [Hearin, Andrew P.] Fermilab Natl Accelerator Lab, Fermilab Ctr Particle Astrophys, Batavia, IL 60510 USA. [Watson, Douglas F.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Watson, Douglas F.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. RP Hearin, AP (reprint author), Fermilab Natl Accelerator Lab, Fermilab Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. EM aphearin@fnal.gov FU US Department of Energy [DE-AC02-07CH11359]; National Science Foundation [AST-1202698] FX APH is also supported by the US Department of Energy under contract no. DE-AC02-07CH11359. DFW is supported by the National Science Foundation under award no. AST-1202698. NR 116 TC 53 Z9 53 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT PY 2013 VL 435 IS 2 BP 1313 EP 1324 DI 10.1093/mnras/stt1374 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 229KY UT WOS:000325264600030 ER EF