FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Buckley, MR Lippincott, WH AF Buckley, Matthew R. Lippincott, W. Hugh TI Spin-dependent interpretation for possible signals of light dark matter SO PHYSICAL REVIEW D LA English DT Article ID 730 KG DAYS; SEARCH AB Signals broadly compatible with light (7-10 GeV) dark matter have been reported in three direct detection experiments: CoGeNT, DAMA/LIBRA, and CDMS-II silicon. These possible signals have been interpreted in the context of spin-independent interactions between the target nuclei and dark matter, although there is tension with null results, particularly from xenon-based experiments. In this paper, we demonstrate that the CoGeNT and CDMS-II silicon results are also compatible assuming a spin-dependent neutron interaction, though this is in tension with xenon-based experiments and PICASSO. The tension with the null results from XENON100 and XENON10 is approximately the same as for the spin-independent coupling. All three experimental signals can be made compatible through a combination of spin-dependent interactions with both the proton and neutron, although such a scenario increases the conflict with the null results of other experiments. C1 [Buckley, Matthew R.; Lippincott, W. Hugh] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. RP Buckley, MR (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. NR 56 TC 9 Z9 9 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 3 PY 2013 VL 88 IS 5 AR 056003 DI 10.1103/PhysRevD.88.056003 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 211GG UT WOS:000323893400014 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Eroe, J Fabjan, C Friedl, M Fruehwirth, R Ghete, VM Hoermann, N Hrubec, J Jeitler, M Kiesenhofer, W Knuenz, V Krammer, M Kraeschmer, I Liko, D Mikulec, I Rabady, D Rahbaran, B Rohringer, C Rohringer, H Schoefbeck, R Strauss, J Taurok, A Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Bansal, M Bansal, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Luyckx, S Mucibello, L Ochesanu, S Roland, B Rougny, R Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Kalogeropoulos, A Keaveney, J Maes, M Olbrechts, A Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Clerbaux, B De Lentdecker, G Favart, L Gay, APR Hreus, T Leonard, A Marage, PE Mohammadi, A Pernie, L Reis, T Seva, T Thomas, L Vander Velde, C Vanlaer, P Wang, J Adler, V Beernaert, K Benucci, L Cimmino, A Costantini, S Dildick, S Garcia, G Klein, B Lellouch, J Marinov, A Mccartin, J Rios, AAO Ryckbosch, D Sigamani, M Strobbe, N Thyssen, F Tytgat, M Walsh, S Yazgan, E Zaganidis, N Basegmez, S Beluffi, C Bruno, G Castello, R Caudron, A Ceard, L Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Lemaitre, V Liao, J Militaru, O Nuttens, C Pagano, D Pin, A Piotrzkowski, K Popov, A Selvaggi, M Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alves, GA Martins, MC Martins, T Pol, ME Souza, MHG Alda, WL Carvalho, W Chinellato, J Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Malbouisson, H Malek, M Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santoro, A Jorge, LS Sznajder, A Manganote, EJT Pereira, AV Anjos, TS Bernardes, CA Dias, FA Tomei, TRFP Gregores, EM Lagana, C Marinho, F Mercadante, PG Novaes, SF Padula, SS Genchev, V Iaydjiev, P Piperov, S Rodozov, M Sultanov, G Vutova, M Dimitrov, A Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Meng, X Tao, J Wang, J Wang, X Wang, Z Xiao, H Xu, M Asawatangtrakuldee, C Ban, Y Guo, Y Li, Q Li, W Liu, S Mao, Y Qian, SJ Wang, D Zhang, L Zou, W Avila, C Montoya, CAC Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Plestina, R Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Duric, S Kadija, K Luetic, J Mekterovic, D Morovic, S Tikvica, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Finger, M Finger, M Assran, Y Kamel, AE Mahmoud, MA Mahrous, A Radi, A Kadastik, M Muntel, M Murumaa, M Raidal, M Rebane, L Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Korpela, A Tuuva, T Besancon, M Choudhury, S Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Millischer, L Nayak, A Rander, J Rosowsky, A Titov, M Baffioni, S Beaudette, F Benhabib, L Bianchini, L Bluj, M Busson, P Charlot, C Daci, N Dahms, T Dalchenko, M Dobrzynski, L Florent, A de Cassagnac, RG Haguenauer, M Mine, P Mironov, C Naranjo, IN Nguyen, M Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Veelken, C Zabi, A Agram, JL Andrea, J Bloch, D Bodin, D Brom, JM Chabert, EC Collard, C Conte, E Drouhin, F Fontaine, JC Gele, D Goerlach, U Goetzmann, C Juillot, P Le Bihan, AC Van Hove, P Gadrat, S Beauceron, S Beaupere, N Boudoul, G Brochet, S Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Sgandurra, L Sordini, V Tschudi, Y Donckt, MV Verdier, P Viret, S Tsamalaidze, Z Autermann, C Beranek, S Calpas, B Edelhoff, M Feld, L Heracleous, N Hindrichs, O Klein, K Merz, J Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Wittmer, B Zhukov, V Ata, M Caudron, J Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Kreuzer, P Merschmeyer, M Meyer, A Olschewski, M Padeken, K Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Steggemann, J Teyssier, D Thuer, S Weber, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Lingemann, J Nowack, A Nugent, IM Perchalla, L Pooth, O Stahl, A Martin, MA Asin, I Bartosik, N Behr, J Behrenhoff, W Behrens, U Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Costanza, F Pardos, CD Dorland, T Eckerlin, G Eckstein, D Flucke, G Geiser, A Glushkov, I Gunnellini, P Habib, S Hauk, J Hellwig, G Jung, H Kasemann, M Katsas, P Kleinwort, C Kluge, H Kramer, M Krucker, D Kuznetsova, E Lange, W Leonard, J Lipka, K Lohmann, W Lutz, B Mankel, R Marfin, I Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Naumann-Emme, S Novgorodova, O Nowak, F Olzem, J Perrey, H Petrukhin, A Pitzl, D Placakyte, R Raspereza, A Cipriano, PMR Riedl, C Ron, E Sahin, MO Salfeld-Nebgen, J Schmidt, R Schoerner-Sadenius, T Sen, N Stein, M Walsh, R Wissing, C Blobel, V Enderle, H Erfle, J Gebbert, U Gorner, M Gosselink, M Haller, J Heine, K Hoing, RS Kaussen, G Kirschenmann, H Klanner, R Kogler, R Lange, J Marchesini, I Peiffer, T Pietsch, N Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Schroeder, M Schum, T Seidel, M Sibille, J Sola, V Stadie, H Steinbruck, G Thomsen, J Troendle, D Vanelderen, L Barth, C Baus, C Berger, J Boser, C Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Guthoff, M Hackstein, C Hartmann, F Hauth, T Heinrich, M Held, H Hoffmann, KH Husemann, U Katkov, I Komaragiri, JR Kornmayer, A Pardo, PL Martschei, D Mueller, S Muller, T Niegel, M Nurnberg, A Oberst, O Ott, J Quast, G Rabbertz, K Ratnikov, F Rocker, S Schilling, FP Schott, G Simonis, HJ Stober, FM Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Zeise, M Anagnostou, G Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Markou, A Markou, C Ntomari, E Gouskos, L Mertzimekis, TJ Panagiotou, A Saoulidou, N Stiliaris, E Aslanoglou, X Evangelou, I Flouris, G Foudas, C Kokkas, P Manthos, N Papadopoulos, I Paradas, E Bencze, G Hajdu, C Hidas, P Horvath, D Radics, B Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Molnar, J Palinkas, J Szillasi, Z Karancsi, J Raics, P Trocsanyi, ZL Ujvari, B Beri, SB Bhatnagar, V Dhingra, N Gupta, R Kaur, M Mehta, MZ Mittal, M Nishu, N Saini, LK Sharma, A Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Malhotra, S Naimuddin, M Ranjan, K Saxena, P Sharma, V Shivpuri, RK Banerjee, S Bhattacharya, S Chatterjee, K Dutta, S Gomber, B Jain, S Jain, S Khurana, R Modak, A Mukherjee, S Roy, D Sarkar, S Sharan, M Abdulsalam, A Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Chatterjee, RM Ganguly, S Ghosh, S Guchait, M Gurtu, A Kole, G Kumar, S Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Banerjee, S Dugad, S Arfaei, H Bakhshiansohi, H Etesami, SM Fahim, A Hesari, H Jafari, A Khakzad, M Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Grunewald, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M Marangelli, B My, S Nuzzo, S Pacifico, N Pompili, A Pugliese, G Selvaggi, G Silvestris, L Singh, G Venditti, R Verwilligen, P Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Albergo, S Chiorboli, M Costa, S Giordano, F Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Gonzi, S Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Tosi, S Benaglia, A De Guio, F Di Matteo, L Fiorendi, S Gennai, S Ghezzi, A Govoni, P Lucchini, MT Malvezzi, S Manzoni, RA Martelli, A Massironi, A Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fatis, TT Buontempo, S Cavallo, N De Cosa, A Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Bisello, D Branca, A Carlin, R Checchia, P Dorigo, T Dosselli, U Galanti, M Gasparini, F Giubilato, P Gozzelino, A Kanishchev, K Lacaprara, S Lazzizzera, I Margoni, M Meneguzzo, AT Passaseo, M Pazzini, J Pegoraro, M Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Ventura, S Zotto, P Zucchetta, A Zumerle, G Gabusi, M Ratti, SP Riccardi, C Vitulo, P Biasini, M Bilei, GM Fano, L Lariccia, P Mantovani, G Menichelli, M Nappi, A Romeo, F Saha, A Santocchia, A Spiezia, A Androsov, K Azzurri, P Bagliesi, G Boccali, T Broccolo, G Castaldi, R D'Agnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Rizzi, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Vernieri, C Barone, L Cavallari, F Del Re, D Diemoz, M Grassi, M Longo, E Margaroli, F Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Soffi, L Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Cartiglia, N Casasso, S Costa, M De Remigis, P Demaria, N Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Tamponi, U Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B La Licata, C Marone, M Montanino, D Penzo, A Schizzi, A Zanetti, A Kim, TY Nam, SK Chang, S Kim, DH Kim, GN Kim, JE Kong, DJ Oh, YD Park, H Son, DC Kim, JY Kim, ZJ Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, TJ Lee, KS Park, SK Roh, Y Choi, M Kim, JH Park, C Park, IC Park, S Ryu, G Choi, Y Choi, YK Goh, J Kim, MS Kwon, E Lee, B Lee, J Lee, S Seo, H Yu, I Grigelionis, I Juodagalvis, A Castilla-Valdez, H De la Cruz-Burelo, E Heredia-De La Cruz, I Martinez-Ortega, J Sanchez-Hernandez, A Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Krofcheck, D Bell, AJ Butler, PH Doesburg, R Reucroft, S Silverwood, H Ahmad, M Asghar, MI Butt, J Hoorani, HR Khalid, S Khan, WA Khurshid, T Qazi, S Shah, MA Shoaib, M Bialkowska, H Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Wolszczak, W Almeida, N Bargassa, P David, A Faccioli, P Parracho, PGF Gallinaro, M Antunes, JR Seixas, J Varela, J Vischia, P Bunin, P Gavrilenko, M Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Konoplyanikov, V Kozlov, G Lanev, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Shmatov, S Skatchkov, N Smirnov, V Zarubin, A Evstyukhin, S Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Erofeeva, M Gavrilov, V Lychkovskaya, N Popov, V Safronov, G Semenov, S Spiridonov, A Stolin, V Vlasov, E Zhokin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Markina, A Obraztsov, S Petrushanko, S Savrin, V Snigirev, A Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Ekmedzic, M Krpic, D Milosevic, J Aguilar-Benitez, M Maestre, JA Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De la Cruz, B Peris, AD Vazquez, DD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G De Martino, EN Pelayo, JP Olmeda, AQ Redondo, I Romero, L Santaolalla, J Soares, MS Willmott, C Albajar, C de Troconiz, JF Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Gomez, JP Cifuentes, JAB Cabrillo, IJ Calderon, A Chuang, SH Campderros, JD Fernandez, M Gomez, G Sanchez, JG Graziano, A Jorda, C Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Bendavid, J Benitez, JF Bernet, C Bianchi, G Bloch, P Bocci, A Bonato, A Bondu, O Botta, C Breuker, H Camporesi, T Cerminara, G Christiansen, T Perez, JAC Colafranceschi, S d'Enterria, D Dabrowski, A De Roeck, A De Visscher, S Di Guida, S Dobson, M Dupont-Sagorin, N Elliott-Peisert, A Eugster, J Funk, W Georgiou, G Giffels, M Gigi, D Gill, K Giordano, D Girone, M Giunta, M Glege, F Garrido, RGR Gowdy, S Guida, R Hammer, J Hansen, M Harris, P Hartl, C Hegner, B Hinzmann, A Innocente, V Janot, P Karavakis, E Kousouris, K Krajczar, K Lecoq, P Lee, YJ Lourenco, C Magini, N Malberti, M Malgeri, L Mannelli, M Masetti, L Meijers, F Mersi, S Meschi, E Moser, R Mulders, M Musella, P Nesvold, E Orsini, L Cortezon, EP Perez, E Perrozzi, L Petrilli, A Pfeiffer, A Pierini, M Pimia, M Piparo, D Plagge, M Polese, G Quertenmont, L Racz, A Reece, W Rolandi, G Rovelli, C Rovere, M Sakulin, H Santanastasio, F Schafer, C Schwick, C Segoni, I Sekmen, S Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Stoye, M Tsirou, A Veres, GI Vlimant, JR Wohri, HK Worm, SD Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Renker, D Rohe, T Bachmair, F Bani, L Bortignon, P Buchmann, MA Casal, B Chanon, N Deisher, A Dissertori, G Dittmar, M Donega, M Dunser, M Eller, P Freudenreich, K Grab, C Hits, D Lecomte, P Lustermann, W Marini, AC del Arbol, PMR Mohr, N Moortgat, F Nageli, C Nef, P Nessi-Tedaldi, F Pandolfi, F Pape, L Pauss, F Peruzzi, M Ronga, FJ Rossini, M Sala, L Sanchez, AK Starodumov, A Stieger, B Takahashi, M Tauscher, L Thea, A Theofilatos, K Treille, D Urscheler, C Wallny, R Weber, HA Amsler, C Chiochia, V Favaro, C Rikova, MI Kilminster, B Mejias, BM Otiougova, P Robmann, P Snoek, H Taroni, S Tupputi, S Verzetti, M Cardaci, M Chen, KH Ferro, C Kuo, CM Li, SW Lin, W Lu, YJ Volpe, R Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Dietz, C Grundler, U Hou, WS Hsiung, Y Kao, KY Lei, YJ Lu, RS Majumder, D Petrakou, E Shi, X Shiu, JG Tzeng, YM Wang, M Asavapibhop, B Suwonjandee, N Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Vergili, M Akin, IV Aliev, T Bilin, B Bilmis, S Deniz, M Gamsizkan, H Guler, AM Karapinar, G Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yalvac, M Zeyrek, M Guulmez, E Isildak, B Kaya, M Kaya, O Ozkorucuklu, S Sonmez, N Bahtiyar, H Barlas, E Cankocak, K Gunaydin, YO Vardarli, FI Yuucel, M Levchuk, L Sorokin, P Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Kreczko, L Metson, S Newbold, DM Nirunpong, K Poll, A Senkin, S Smith, VJ Williams, T Basso, L Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Jackson, J Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Bainbridge, R Buchmuller, O Burton, D Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Ferguson, W Fulcher, J Futyan, D Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Kenzie, M Lane, R Lucas, R Lyons, L Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rose, A Seez, C Sharp, P Sparrow, A Tapper, A Acosta, MV Virdee, T Wakefield, S Wardle, N Whyntie, T Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Dittmann, J Hatakeyama, K Kasmi, A Liu, H Scarborough, T Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Heister, A Lawson, P Lazic, D Rohlf, J Sperka, D John, JS Sulak, L Alimena, J Bhattacharya, S Christopher, G Cutts, D Demiragli, Z Ferapontov, A Garabedian, A Heintz, U Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Segala, M Sinthuprasith, T Speer, T Breedon, R Breto, G De La Barca Sanchez, MC Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Gardner, M Houtz, R Ko, W Kopecky, A Lander, R Mall, O Miceli, T Nelson, R Pellett, D Ricci-Tam, F Rutherford, B Searle, M Smith, J Squires, M Tripathi, M Wilbur, S Yohay, R Andreev, V Cline, D Cousins, R Erhan, S Everaerts, P Farrell, C Felcini, M Hauser, J Ignatenko, M Jarvis, C Rakness, G Schlein, P Takasugi, E Traczyk, P Valuev, V Weber, M Babb, J Clare, R Dinardo, ME Ellison, J Gary, JW Hanson, G Liu, H Long, OR Luthra, A Nguyen, H Paramesvaran, S Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S Evans, D Holzner, A Kelley, R Lebourgeois, M Letts, J Macneill, I Mangano, B Padhi, S Palmer, C Petrucciani, G Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Wasserbaech, S Wurthwein, F Yagil, A Yoo, J Barge, D Bellan, R Campagnari, C D'Alfonso, M Danielson, T Flowers, K Geffert, P George, C Golf, F Incandela, J Justus, C Kalavase, P Kovalskyi, D Krutelyov, V Lowette, S Villalba, RM Mccoll, N Pavlunin, V Ribnik, J Richman, J Rossin, R Stuart, D To, W West, C Apresyan, A Bornheim, A Bunn, J Chen, Y Di Marco, E Duarte, J Kcira, D Ma, Y Mott, A Newman, HB Rogan, C Spiropulu, M Timciuc, V Veverka, J Wilkinson, R Xie, S Yang, Y Zhu, RY Azzolini, V Calamba, A Carroll, R Ferguson, T Iiyama, Y Jang, DW Liu, YF Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Drell, BR Ford, WT Gaz, A Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Eggert, N Gibbons, LK Hopkins, W Khukhunaishvili, A Kreis, B Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Sun, W Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gao, Y Gottschalk, E Gray, L Green, D Gutsche, O Hare, D Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Klima, B Kunori, S Kwan, S Leonidopoulos, C Linacre, J Lincoln, D Lipton, R Lykken, J Maeshima, K Marraffino, JM Outschoorn, VIM Maruyama, S Mason, D McBride, P Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Prokofyev, O Ratnikova, N Sexton-Kennedy, E Sharma, S Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yang, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Cheng, T Das, S De Gruttola, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fisher, M Fu, Y Furic, IK Hugon, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Remington, R Rinkevicius, A Skhirtladze, N Snowball, M Yelton, J Zakaria, M Gaultney, V Hewamanage, S Lebolo, LM Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Dorney, B Hohlmann, M Kalakhety, H Yumiceva, F Adams, MR Apanasevich, L Bazterra, VE Betts, RR Bucinskaite, I Callner, J Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Kurt, P Lacroix, F Moon, DH O'Brien, C Silkworth, C Strom, D Turner, P Varelas, N Akgun, U Albayrak, EA Bilki, B Clarida, W Dilsiz, K Duru, F Griffiths, S Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Ogul, H Onel, Y Ozok, F Sen, S Tan, P Tiras, E Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Giurgiu, G Gritsan, AV Guo, ZJ Hu, G Maksimovic, P Swartz, M Whitbeck, A Baringer, P Bean, A Benelli, G Kenny, RP Murray, M Noonan, D Sanders, S Stringer, R Wood, JS Barfuss, AF Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Shrestha, S Svintradze, I Gronberg, J Lange, D Rebassoo, F Wright, D Baden, A Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Peterman, A Skuja, A Temple, J Tonjes, MB Tonwar, SC Apyan, A Bauer, G Busza, W Butz, E Cali, IA Chan, M Dutta, V Ceballos, GG Goncharov, M Kim, Y Klute, M Lai, YS Levin, A Luckey, PD Ma, T Nahn, S Paus, C Ralph, D Roland, C Roland, G Stephans, GSF Stoeckli, F Sumorok, K Sung, K Velicanu, D Wolf, R Wyslouch, B Yang, M Yilmaz, Y Yoon, AS Zanetti, M Zhukova, V Dahmes, B De Benedetti, A Franzoni, G Gude, A Haupt, J Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Sasseville, M Singovsky, A Tambe, N Turkewitz, J Cremaldi, LM Kroeger, R Perera, L Rahmat, R Sanders, DA Summers, D Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Eads, M Suarez, RG Keller, J Kravchenko, I Lazo-Flores, J Malik, S Meier, F Snow, GR Dolen, J Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Rappoccio, S Wan, Z Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Nash, D Orimoto, T Trocino, D Wood, D Zhang, J Anastassov, A Hahn, KA Kubik, A Lusito, L Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Berry, D Brinkerhoff, A Chan, KM Hildreth, M Jessop, C Karmgard, DJ Kolb, J Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Planer, M Ruchti, R Slaunwhite, J Valls, N Wayne, M Wolf, M Antonelli, L Bylsma, B Durkin, LS Hill, C Hughes, R Kotov, K Ling, TY Puigh, D Rodenburg, M Smith, G Vuosalo, C Williams, G Winer, BL Wolfe, H Berry, E Elmer, P Halyo, V Hebda, P Hegeman, J Hunt, A Jindal, P Koay, SA Pegna, DL Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Raval, A Saka, H Stickland, D Tully, C Werner, JS Zenz, SC Zuranski, A Brownson, E Lopez, A Mendez, H Vargas, JER Alagoz, E Benedetti, D Bolla, G Bortoletto, D De Mattia, M Everett, A Hu, Z Jones, M Jung, K Koybasi, O Kress, M Leonardo, N Maroussov, V Merkel, P Miller, DH Neumeister, N Shipsey, I Silvers, D Svyatkovskiy, A Marono, MV Wang, F Xu, L Yoo, HD Zablocki, J Zheng, Y Guragain, S Parashar, N Adair, A Akgun, B Ecklund, KM Geurts, FJM Li, W Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Covarelli, R De Barbaro, P Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Miner, DC Petrillo, G Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Malik, S Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Lath, A Panwalkar, S Park, M Patel, R Rekovic, V Robles, J Rose, K Salur, S Schnetzer, S Seitz, C Somalwar, S Stone, R Thomas, S Walker, M Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Safonov, A Sakuma, T Suarez, I Tatarinov, A Toback, D Akchurin, N Damgov, J Dragoiu, C Dudero, PR Jeong, C Kovitanggoon, K Lee, SW Libeiro, T Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Johns, W Maguire, C Mao, Y Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Lin, C Neu, C Wood, J Gollapinni, S Harr, R Karchin, PE Don, CKK Lamichhane, P Sakharov, A Anderson, M Belknap, DA Borrello, L Carlsmith, D Cepeda, M Dasu, S Friis, E Grogg, KS Grothe, M Hall-Wilton, R Herndon, M Herve, A Kaadze, K Klabbers, P Klukas, J Lanaro, A Lazaridis, C Loveless, R Mohapatra, A Mozer, MU Ojalvo, I Pierro, GA Ross, I Savin, A Smith, WH Swanson, J AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Kraeschmer, I. Liko, D. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, C. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Bansal, M. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Luyckx, S. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Kalogeropoulos, A. Keaveney, J. Maes, M. Olbrechts, A. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Clerbaux, B. De Lentdecker, G. Favart, L. Gay, A. P. R. Hreus, T. Leonard, A. Marage, P. E. Mohammadi, A. Pernie, L. Reis, T. Seva, T. Thomas, L. Vander Velde, C. Vanlaer, P. Wang, J. Adler, V. Beernaert, K. Benucci, L. Cimmino, A. Costantini, S. Dildick, S. Garcia, G. Klein, B. Lellouch, J. Marinov, A. Mccartin, J. Ocampo Rios, A. A. Ryckbosch, D. Sigamani, M. Strobbe, N. Thyssen, F. Tytgat, M. Walsh, S. Yazgan, E. Zaganidis, N. Basegmez, S. Beluffi, C. Bruno, G. Castello, R. Caudron, A. Ceard, L. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Lemaitre, V. Liao, J. Militaru, O. Nuttens, C. Pagano, D. Pin, A. Piotrzkowski, K. Popov, A. Selvaggi, M. Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alves, G. A. Martins, M. Correa Junior Martins, T. Pol, M. E. Souza, M. H. G. Alda, W. L. Junior Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Malbouisson, H. Malek, M. Matos Figueiredo, D. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santoro, A. Soares Jorge, L. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Anjos, T. S. Bernardes, C. A. Dias, F. A. Fernandez Perez Tomei, T. R. Gregores, E. M. Lagana, C. Marinho, F. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Genchev, V. Iaydjiev, P. Piperov, S. Rodozov, M. Sultanov, G. Vutova, M. Dimitrov, A. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Meng, X. Tao, J. Wang, J. Wang, X. Wang, Z. Xiao, H. Xu, M. Asawatangtrakuldee, C. Ban, Y. Guo, Y. Li, Q. Li, W. Liu, S. Mao, Y. Qian, S. J. Wang, D. Zhang, L. Zou, W. Avila, C. Carrillo Montoya, C. A. Gomez, J. P. Gomez Moreno, B. Sanabria, J. C. Godinovic, N. Lelas, D. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Duric, S. Kadija, K. Luetic, J. Mekterovic, D. Morovic, S. Tikvica, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Finger, M. Finger, M., Jr. Assran, Y. Kamel, A. Ellithi Mahmoud, M. A. Mahrous, A. Radi, A. Kadastik, M. Muentel, M. Murumaa, M. Raidal, M. Rebane, L. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Haerkoenen, J. Karimaeki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maeenpaeae, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Korpela, A. Tuuva, T. Besancon, M. Choudhury, S. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Millischer, L. Nayak, A. Rander, J. Rosowsky, A. Titov, M. Baffioni, S. Beaudette, F. Benhabib, L. Bianchini, L. Bluj, M. Busson, P. Charlot, C. Daci, N. Dahms, T. Dalchenko, M. Dobrzynski, L. Florent, A. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Naranjo, I. N. Nguyen, M. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Veelken, C. Zabi, A. Agram, J. -L. Andrea, J. Bloch, D. Bodin, D. Brom, J. -M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Fontaine, J. -C. Gele, D. Goerlach, U. Goetzmann, C. Juillot, P. Le Bihan, A. -C. Van Hove, P. Gadrat, S. Beauceron, S. Beaupere, N. Boudoul, G. Brochet, S. Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Sgandurra, L. Sordini, V. Tschudi, Y. Donckt, M. Vander Verdier, P. Viret, S. Tsamalaidze, Z. Autermann, C. Beranek, S. Calpas, B. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Klein, K. Merz, J. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Caudron, J. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Kreuzer, P. Merschmeyer, M. Meyer, A. Olschewski, M. Padeken, K. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Steggemann, J. Teyssier, D. Thueer, S. Weber, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Lingemann, J. Nowack, A. Nugent, I. M. Perchalla, L. Pooth, O. Stahl, A. Martin, M. Aldaya Asin, I. Bartosik, N. Behr, J. Behrenhoff, W. Behrens, U. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Costanza, F. Pardos, C. Diez Dorland, T. Eckerlin, G. Eckstein, D. Flucke, G. Geiser, A. Glushkov, I. Gunnellini, P. Habib, S. Hauk, J. Hellwig, G. Jung, H. Kasemann, M. Katsas, P. Kleinwort, C. Kluge, H. Kraemer, M. Kruecker, D. Kuznetsova, E. Lange, W. Leonard, J. Lipka, K. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Naumann-Emme, S. Novgorodova, O. Nowak, F. Olzem, J. Perrey, H. Petrukhin, A. Pitzl, D. Placakyte, R. Raspereza, A. Cipriano, P. M. Ribeiro Riedl, C. Ron, E. Sahin, M. OE. Salfeld-Nebgen, J. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Stein, M. Walsh, R. Wissing, C. Blobel, V. Enderle, H. Erfle, J. Gebbert, U. Goerner, M. Gosselink, M. Haller, J. Heine, K. Hoeing, R. S. Kaussen, G. Kirschenmann, H. Klanner, R. Kogler, R. Lange, J. Marchesini, I. Peiffer, T. Pietsch, N. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Schroeder, M. Schum, T. Seidel, M. Sibille, J. Sola, V. Stadie, H. Steinbrueck, G. Thomsen, J. Troendle, D. Vanelderen, L. Barth, C. Baus, C. Berger, J. Boeser, C. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Guthoff, M. Hackstein, C. Hartmann, F. Hauth, T. Heinrich, M. Held, H. Hoffmann, K. H. Husemann, U. Katkov, I. Komaragiri, J. R. Kornmayer, A. Pardo, P. Lobelle Martschei, D. Mueller, S. Mueller, Th. Niegel, M. Nuernberg, A. Oberst, O. Ott, J. Quast, G. Rabbertz, K. Ratnikov, F. Roecker, S. Schilling, F. -P. Schott, G. Simonis, H. J. Stober, F. M. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Zeise, M. Anagnostou, G. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Markou, A. Markou, C. Ntomari, E. Gouskos, L. Mertzimekis, T. J. Panagiotou, A. Saoulidou, N. Stiliaris, E. Aslanoglou, X. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Paradas, E. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Radics, B. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Molnar, J. Palinkas, J. Szillasi, Z. Karancsi, J. Raics, P. Trocsanyi, Z. L. Ujvari, B. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Kaur, M. Mehta, M. Z. Mittal, M. Nishu, N. Saini, L. K. Sharma, A. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Malhotra, S. Naimuddin, M. Ranjan, K. Saxena, P. Sharma, V. Shivpuri, R. K. Banerjee, S. Bhattacharya, S. Chatterjee, K. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Modak, A. Mukherjee, S. Roy, D. Sarkar, S. Sharan, M. Abdulsalam, A. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Chatterjee, R. M. Ganguly, S. Ghosh, S. Guchait, M. Gurtu, A. Kole, G. Kumar, S. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Arfaei, H. Bakhshiansohi, H. Etesami, S. M. Fahim, A. Hesari, H. Jafari, A. Khakzad, M. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Grunewald, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pompili, A. Pugliese, G. Selvaggi, G. Silvestris, L. Singh, G. Venditti, R. Verwilligen, P. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Albergo, S. Chiorboli, M. Costa, S. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Gonzi, S. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Tosi, S. Benaglia, A. De Guio, F. Di Matteo, L. Fiorendi, S. Gennai, S. Ghezzi, A. Govoni, P. Lucchini, M. T. Malvezzi, S. Manzoni, R. A. Martelli, A. Massironi, A. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. De Cosa, A. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dorigo, T. Dosselli, U. Galanti, M. Gasparini, U. Giubilato, P. Gozzelino, A. Kanishchev, K. Lacaprara, S. Lazzizzera, I. Margoni, M. Meneguzzo, A. T. Passaseo, M. Pazzini, J. Pegoraro, M. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Ventura, S. Zotto, P. Zucchetta, A. Zumerle, G. Gabusi, M. Ratti, S. P. Riccardi, C. Vitulo, P. Biasini, M. Bilei, G. M. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Nappi, A. Romeo, F. Saha, A. Santocchia, A. Spiezia, A. Androsov, K. Azzurri, P. Bagliesi, G. Boccali, T. Broccolo, G. Castaldi, R. D'Agnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Rizzi, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Vernieri, C. Barone, L. Cavallari, F. Del Re, D. Diemoz, M. Grassi, M. Longo, E. Margaroli, F. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Soffi, L. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Cartiglia, N. Casasso, S. Costa, M. De Remigis, P. Demaria, N. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Tamponi, U. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. La Licata, C. Marone, M. Montanino, D. Penzo, A. Schizzi, A. Zanetti, A. Kim, T. Y. Nam, S. K. Chang, S. Kim, D. H. Kim, G. N. Kim, J. E. Kong, D. J. Oh, Y. D. Park, H. Son, D. C. Kim, J. Y. Kim, Zero J. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, T. J. Lee, K. S. Park, S. K. Roh, Y. Choi, M. Kim, J. H. Park, C. Park, I. C. Park, S. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Kim, M. S. Kwon, E. Lee, B. Lee, J. Lee, S. Seo, H. Yu, I. Grigelionis, I. Juodagalvis, A. Castilla-Valdez, H. De la Cruz-Burelo, E. Heredia-De la Cruz, I. Martinez-Ortega, J. Sanchez-Hernandez, A. Villasenor-Cendejas, L. M. Moreno, S. Carrillo Valencia, F. Vazquez Ibarguen, H. A. Salazar Linares, E. Casimiro Pineda, A. Morelos Reyes-Santos, M. A. Krofcheck, D. Bell, A. J. Butler, P. H. Doesburg, R. Reucroft, S. Silverwood, H. Ahmad, M. Asghar, M. I. Butt, J. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Qazi, S. Shah, M. A. Shoaib, M. Bialkowska, H. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Wolszczak, W. Almeida, N. Bargassa, P. David, A. Faccioli, P. Parracho, P. G. Ferreira Gallinaro, M. Antunes, J. Rodrigues Seixas, J. Varela, J. Vischia, P. Bunin, P. Gavrilenko, M. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Konoplyanikov, V. Kozlov, G. Lanev, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Skatchkov, N. Smirnov, V. Zarubin, A. Evstyukhin, S. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Erofeeva, M. Gavrilov, V. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Spiridonov, A. Stolin, V. Vlasov, E. Zhokin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Markina, A. Obraztsov, S. Petrushanko, S. Savrin, V. Snigirev, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Ekmedzic, M. Krpic, D. Milosevic, J. Aguilar-Benitez, M. Maestre, J. Alcaraz Battilana, C. Calvo, E. Cerrada, M. Llatas, M. Chamizo Colino, N. De la Cruz, B. Peris, A. Delgado Vazquez, D. Dominguez Bedoya, C. Fernandez Ramos, J. P. Fernandez Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Lopez, O. Gonzalez Lopez, S. Goy Hernandez, J. M. Josa, M. I. Merino, G. De Martino, E. Navarro Pelayo, J. Puerta Olmeda, A. Quintario Redondo, I. Romero, L. Santaolalla, J. Soares, M. S. Willmott, C. Albajar, C. de Troconiz, J. F. Brun, H. Cuevas, J. Menendez, J. Fernandez Folgueras, S. Caballero, I. Gonzalez Iglesias, L. Lloret Gomez, J. Piedra Cifuentes, J. A. Brochero Cabrillo, I. J. Calderon, A. Chuang, S. H. Campderros, J. Duarte Fernandez, M. Gomez, G. Sanchez, J. Gonzalez Graziano, A. Jorda, C. Virto, A. Lopez Marco, J. Marco, R. Rivero, C. Martinez Matorras, F. Sanchez, F. J. Munoz Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Cortabitarte, R. Vilar Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Bendavid, J. Benitez, J. F. Bernet, C. Bianchi, G. Bloch, P. Bocci, A. Bonato, A. Bondu, O. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa Colafranceschi, S. d'Enterria, D. Dabrowski, A. De Roeck, A. De Visscher, S. Di Guida, S. Dobson, M. Dupont-Sagorin, N. Elliott-Peisert, A. Eugster, J. Funk, W. Georgiou, G. Giffels, M. Gigi, D. Gill, K. Giordano, D. Girone, M. Giunta, M. Glege, F. Garrido, R. Gomez-Reino Gowdy, S. Guida, R. Hammer, J. Hansen, M. Harris, P. Hartl, C. Hegner, B. Hinzmann, A. Innocente, V. Janot, P. Karavakis, E. Kousouris, K. Krajczar, K. Lecoq, P. Lee, Y. -J. Lourenco, C. Magini, N. Malberti, M. Malgeri, L. Mannelli, M. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mulders, M. Musella, P. Nesvold, E. Orsini, L. Cortezon, E. Palencia Perez, E. Perrozzi, L. Petrilli, A. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Plagge, M. Polese, G. Quertenmont, L. Racz, A. Reece, W. Rolandi, G. Rovelli, C. Rovere, M. Sakulin, H. Santanastasio, F. Schaefer, C. Schwick, C. Segoni, I. Sekmen, S. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Stoye, M. Tsirou, A. Veres, G. I. Vlimant, J. R. Woehri, H. K. Worm, S. D. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Renker, D. Rohe, T. Bachmair, F. Baeni, L. Bortignon, P. Buchmann, M. A. Casal, B. Chanon, N. Deisher, A. Dissertori, G. Dittmar, M. Donega, M. Duenser, M. Eller, P. Freudenreich, K. Grab, C. Hits, D. Lecomte, P. Lustermann, W. Marini, A. C. del Arbol, P. Martinez Ruiz Mohr, N. Moortgat, F. Naegeli, C. Nef, P. Nessi-Tedaldi, F. Pandolfi, F. Pape, L. Pauss, F. Peruzzi, M. Ronga, F. J. Rossini, M. Sala, L. Sanchez, A. K. Starodumov, A. Stieger, B. Takahashi, M. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Urscheler, C. Wallny, R. Weber, H. A. Amsler, C. Chiochia, V. Favaro, C. Rikova, M. Ivova Kilminster, B. Mejias, B. Millan Otiougova, P. Robmann, P. Snoek, H. Taroni, S. Tupputi, S. Verzetti, M. Cardaci, M. Chen, K. H. Ferro, C. Kuo, C. M. Li, S. W. Lin, W. Lu, Y. J. Volpe, R. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Dietz, C. Grundler, U. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lu, R. -S. Majumder, D. Petrakou, E. Shi, X. Shiu, J. G. Tzeng, Y. M. Wang, M. Asavapibhop, B. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, M. Akin, I. V. Aliev, T. Bilin, B. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Karapinar, G. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yalvac, M. Zeyrek, M. Guelmez, E. Isildak, B. Kaya, M. Kaya, O. Ozkorucuklu, S. Sonmez, N. Bahtiyar, H. Barlas, E. Cankocak, K. Guenaydin, Y. O. Vardarli, F. I. Yuecel, M. Levchuk, L. Sorokin, P. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Kreczko, L. Metson, S. Newbold, D. M. Nirunpong, K. Poll, A. Senkin, S. Smith, V. J. Williams, T. Basso, L. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Jackson, J. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Bainbridge, R. Buchmuller, O. Burton, D. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Kenzie, M. Lane, R. Lucas, R. Lyons, L. Magnan, A. -M. Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rose, A. Seez, C. Sharp, P. Sparrow, A. Tapper, A. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Whyntie, T. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Dittmann, J. Hatakeyama, K. Kasmi, A. Liu, H. Scarborough, T. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Heister, A. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. John, J. St. Sulak, L. Alimena, J. Bhattacharya, S. Christopher, G. Cutts, D. Demiragli, Z. Ferapontov, A. Garabedian, A. Heintz, U. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Segala, M. Sinthuprasith, T. Speer, T. Breedon, R. Breto, G. De La Barca Sanchez, M. Calderon Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Gardner, M. Houtz, R. Ko, W. Kopecky, A. Lander, R. Mall, O. Miceli, T. Nelson, R. Pellett, D. Ricci-Tam, F. Rutherford, B. Searle, M. Smith, J. Squires, M. Tripathi, M. Wilbur, S. Yohay, R. Andreev, V. Cline, D. Cousins, R. Erhan, S. Everaerts, P. Farrell, C. Felcini, M. Hauser, J. Ignatenko, M. Jarvis, C. Rakness, G. Schlein, P. Takasugi, E. Traczyk, P. Valuev, V. Weber, M. Babb, J. Clare, R. Dinardo, M. E. Ellison, J. Gary, J. W. Hanson, G. Liu, H. Long, O. R. Luthra, A. Nguyen, H. Paramesvaran, S. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. Evans, D. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Macneill, I. Mangano, B. Padhi, S. Palmer, C. Petrucciani, G. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Wuerthwein, F. Yagil, A. Yoo, J. Barge, D. Bellan, R. Campagnari, C. D'Alfonso, M. Danielson, T. Flowers, K. Geffert, P. George, C. Golf, F. Incandela, J. Justus, C. Kalavase, P. Kovalskyi, D. Krutelyov, V. Lowette, S. Villalba, R. Magana Mccoll, N. Pavlunin, V. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. West, C. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Di Marco, E. Duarte, J. Kcira, D. Ma, Y. Mott, A. Newman, H. B. Rogan, C. Spiropulu, M. Timciuc, V. Veverka, J. Wilkinson, R. Xie, S. Yang, Y. Zhu, R. Y. Azzolini, V. Calamba, A. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Liu, Y. F. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Drell, B. R. Ford, W. T. Gaz, A. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Eggert, N. Gibbons, L. K. Hopkins, W. Khukhunaishvili, A. Kreis, B. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Gray, L. Green, D. Gutsche, O. Hare, D. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Klima, B. Kunori, S. Kwan, S. Leonidopoulos, C. Linacre, J. Lincoln, D. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Outschoorn, V. I. Martinez Maruyama, S. Mason, D. McBride, P. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Ratnikova, N. Sexton-Kennedy, E. Sharma, S. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yang, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Cheng, T. Das, S. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Hugon, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Remington, R. Rinkevicius, A. Skhirtladze, N. Snowball, M. Yelton, J. Zakaria, M. Gaultney, V. Hewamanage, S. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Dorney, B. Hohlmann, M. Kalakhety, H. Yumiceva, F. Adams, M. R. Apanasevich, L. Bazterra, V. E. Betts, R. R. Bucinskaite, I. Callner, J. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Kurt, P. Lacroix, F. Moon, D. H. O'Brien, C. Silkworth, C. Strom, D. Turner, P. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Clarida, W. Dilsiz, K. Duru, F. Griffiths, S. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Ogul, H. Onel, Y. Ozok, F. Sen, S. Tan, P. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Giurgiu, G. Gritsan, A. V. Guo, Z. J. Hu, G. Maksimovic, P. Swartz, M. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Kenny, R. P., III Murray, M. Noonan, D. Sanders, S. Stringer, R. Wood, J. S. Barfuss, A. F. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Shrestha, S. Svintradze, I. Gronberg, J. Lange, D. Rebassoo, F. Wright, D. Baden, A. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Peterman, A. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Apyan, A. Bauer, G. Busza, W. Butz, E. Cali, I. A. Chan, M. Dutta, V. Ceballos, G. Gomez Goncharov, M. Kim, Y. Klute, M. Lai, Y. S. Levin, A. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Ralph, D. Roland, C. Roland, G. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Sung, K. Velicanu, D. Wolf, R. Wyslouch, B. Yang, M. Yilmaz, Y. Yoon, A. S. Zanetti, M. Zhukova, V. Dahmes, B. De Benedetti, A. Franzoni, G. Gude, A. Haupt, J. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Sasseville, M. Singovsky, A. Tambe, N. Turkewitz, J. Cremaldi, L. M. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Summers, D. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Eads, M. Suarez, R. Gonzalez Keller, J. Kravchenko, I. Lazo-Flores, J. Malik, S. Meier, F. Snow, G. R. Dolen, J. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Rappoccio, S. Wan, Z. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Nash, D. Orimoto, T. Trocino, D. Wood, D. Zhang, J. Anastassov, A. Hahn, K. A. Kubik, A. Lusito, L. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Berry, D. Brinkerhoff, A. Chan, K. M. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Planer, M. Ruchti, R. Slaunwhite, J. Valls, N. Wayne, M. Wolf, M. Antonelli, L. Bylsma, B. Durkin, L. S. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Smith, G. Vuosalo, C. Williams, G. Winer, B. L. Wolfe, H. Berry, E. Elmer, P. Halyo, V. Hebda, P. Hegeman, J. Hunt, A. Jindal, P. Koay, S. A. Pegna, D. Lopes Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Raval, A. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zenz, S. C. Zuranski, A. Brownson, E. Lopez, A. Mendez, H. Vargas, J. E. Ramirez Alagoz, E. Benedetti, D. Bolla, G. Bortoletto, D. De Mattia, M. Everett, A. Hu, Z. Jones, M. Jung, K. Koybasi, O. Kress, M. Leonardo, N. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Shipsey, I. Silvers, D. Svyatkovskiy, A. Marono, M. Vidal Wang, F. Xu, L. Yoo, H. D. Zablocki, J. Zheng, Y. Guragain, S. Parashar, N. Adair, A. Akgun, B. Ecklund, K. M. Geurts, F. J. M. Li, W. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Covarelli, R. De Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Miner, D. C. Petrillo, G. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Malik, S. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Lath, A. Panwalkar, S. Park, M. Patel, R. Rekovic, V. Robles, J. Rose, K. Salur, S. Schnetzer, S. Seitz, C. Somalwar, S. Stone, R. Thomas, S. Walker, M. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Safonov, A. Sakuma, T. Suarez, I. Tatarinov, A. Toback, D. Akchurin, N. Damgov, J. Dragoiu, C. Dudero, P. R. Jeong, C. Kovitanggoon, K. Lee, S. W. Libeiro, T. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Johns, W. Maguire, C. Mao, Y. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Wood, J. Gollapinni, S. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sakharov, A. Anderson, M. Belknap, D. A. Borrello, L. Carlsmith, D. Cepeda, M. Dasu, S. Friis, E. Grogg, K. S. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Kaadze, K. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Loveless, R. Mohapatra, A. Mozer, M. U. Ojalvo, I. Pierro, G. A. Ross, I. Savin, A. Smith, W. H. Swanson, J. CA CMS Collaboration TI Measurement of neutral strange particle production in the underlying event in proton-proton collisions at root s=7 TeV SO PHYSICAL REVIEW D LA English DT Article AB Measurements are presented of the production of primary K-S(0) and Lambda particles in proton-proton collisions at root s = 7 TeV in the region transverse to the leading charged-particle jet in each event. The average multiplicity and average scalar transverse momentum sum of K-S(0) and Lambda particles measured at pseudorapidities vertical bar eta vertical bar < 2 rise with increasing charged-particle jet p(T) in the range 1-10 GeV/c and saturate in the region 10-50 GeV/c. The rise and saturation of the strange-particle yields and transverse momentum sums in the underlying event are similar to those observed for inclusive charged particles, which confirms the impact-parameter picture of multiple parton interactions. The results are compared to recent tunes of the PYTHIA Monte Carlo event generator. The PYTHIA simulations underestimate the data by 15%-30% for K-S(0) mesons and by about 50% for Lambda baryons, a deficit similar to that observed for the inclusive strange-particle production in non-single-diffractive proton-proton collisions. The constant strange-to charged-particle activity ratios with respect to the leading jet p(T) and similar trends for mesons and baryons indicate that the multiparton-interaction dynamics is decoupled from parton hadronization, which occurs at a later stage. C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraeschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Kalogeropoulos, A.; Keaveney, J.; Maes, M.; Olbrechts, A.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Clerbaux, B.; De Lentdecker, G.; Favart, L.; Gay, A. P. R.; Hreus, T.; Leonard, A.; Marage, P. E.; Mohammadi, A.; Pernie, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Dildick, S.; Garcia, G.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.] Univ Ghent, B-9000 Ghent, Belgium. [Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Popov, A.; Selvaggi, M.; Garcia, J. M. Vizan] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Martins, M. Correa Junior; Martins, T.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Alda, W. L. Junior; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dias, F. A.; Fernandez Perez Tomei, T. R.; Lagana, C.; Marinho, F.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Anjos, T. S.; Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Carrillo Montoya, C. A.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Tikvica, L.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Kamel, A. Ellithi; Mahmoud, M. A.; Mahrous, A.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Giammanco, A.; Kadastik, M.; Muentel, M.; Murumaa, M.; Raidal, M.; Rebane, L.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Haerkoenen, J.; Karimaeki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maeenpaeae, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Choudhury, S.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Bernet, C.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Beluffi, C.; Agram, J. -L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J. -M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Juillot, P.; Le Bihan, A. -C.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS,IN2P3, Strasbourg, France. [Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Donckt, M. Vander; Verdier, P.] Univ Lyon 1, Univ Lyon, CNRS, IN2P3,Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Viret, S.; Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Thueer, S.; Weber, M.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Martin, M. Aldaya; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Costanza, F.; Pardos, C. Diez; Dorland, T.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Kraemer, M.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Leonard, J.; Lipka, K.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Cipriano, P. M. Ribeiro; Riedl, C.; Ron, E.; Sahin, M. OE.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Stein, M.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Blobel, V.; Enderle, H.; Erfle, J.; Gebbert, U.; Goerner, M.; Gosselink, M.; Haller, J.; Heine, K.; Hoeing, R. S.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Marchesini, I.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schroeder, M.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrueck, G.; Thomsen, J.; Troendle, D.; Vanelderen, L.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Kornmayer, A.; Pardo, P. Lobelle; Martschei, D.; Mueller, S.; Mueller, Th.; Niegel, M.; Nuernberg, A.; Oberst, O.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Roecker, S.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Ntomari, E.] NCSR Demokritos, INPP, Aghia Paraskevi, Greece. [Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Sphicas, P.] Univ Athens, Athens, Greece. [Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Radics, B.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, H-4012 Debrecen, Hungary. [Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Mittal, M.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Saxena, P.; Sharma, V.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Bylsma, B.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Aziz, T.; Chatterjee, R. M.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res, EHEP, Bombay 400005, Maharashtra, India. [Guchait, M.; Banerjee, S.; Dugad, S.] Tata Inst Fundamental Res, HECR, Bombay 400005, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hesari, H.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Marangelli, B.; Nuzzo, S.; Pompili, A.; Selvaggi, G.; Singh, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Meneghelli, M.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, Catania, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.; Gori, V.; Lenzi, P.; Tropiano, A.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Fabbricatore, P.; Musenich, R.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Tosi, S.] Univ Genoa, Genoa, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, Milan, Italy. [De Guio, F.; Di Matteo, L.; Fiorendi, S.; Ghezzi, A.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; De Cosa, A.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [De Cosa, A.; Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata Potenza, Naples, Italy. [Meola, S.] Univ G Marconi Roma, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Galanti, M.; Gasparini, U.; Giubilato, P.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Ventura, S.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bisello, D.; Branca, A.; Carlin, R.; Galanti, M.; Gasparini, U.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy. [Kanishchev, K.; Lazzizzera, I.] Univ Trento, Padua, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.] Ist Nazl Fis Nucl, Sez Perugia, Perugia, Italy. [Biasini, M.; Fano, L.; Lariccia, P.; Mantovani, G.; Nappi, A.; Romeo, F.; Santocchia, A.; Spiezia, A.] Univ Perugia, I-06100 Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Broccolo, G.; D'Agnolo, R. T.; Fiori, F.; Foa, L.; Ligabue, F.; Verdini, P. G.; Vernieri, C.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Grassi, M.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Soffi, L.; Rovelli, C.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Grassi, M.; Longo, E.; Margaroli, F.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Rahatlou, S.; Soffi, L.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; De Remigis, P.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy. [Amapane, N.; Argiro, S.; Casasso, S.; Costa, M.; Migliore, E.; Monaco, V.; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.] Univ Trieste, Trieste, Italy. [Kim, T. Y.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Chang, S.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Oh, Y. D.; Park, H.; Son, D. C.; Kamon, T.] Kyungpook Natl Univ, Daegu, South Korea. [Kim, J. Y.; Kim, Zero J.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Grigelionis, I.; Juodagalvis, A.] Vilnius State Univ, Vilnius, Lithuania. [Castilla-Valdez, H.; De la Cruz-Burelo, E.; Heredia-De la Cruz, I.; Martinez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] Ctr Invest & Estudios Avanzados IPN, Mexico City, DF, Mexico. [Moreno, S. Carrillo; Valencia, F. Vazquez] Univ Iberoamer, Mexico City, DF, Mexico. [Ibarguen, H. A. Salazar] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Linares, E. Casimiro; Pineda, A. Morelos; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bluj, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Wolszczak, W.] Univ Warsaw, Fac Phys, Inst Expt Phys, Warsaw, Poland. [Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Antunes, J. Rodrigues; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Viret, S.; Tsamalaidze, Z.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Popov, A.; Zhukov, V.; Katkov, I.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Maestre, J. Alcaraz; Battilana, C.; Calvo, E.; Cerrada, M.; Llatas, M. Chamizo; Colino, N.; De la Cruz, B.; Peris, A. Delgado; Vazquez, D. Dominguez; Bedoya, C. Fernandez; Ramos, J. P. Fernandez; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Lopez, O. Gonzalez; Lopez, S. Goy; Hernandez, J. M.; Josa, M. I.; Merino, G.; De Martino, E. Navarro; Pelayo, J. Puerta; Olmeda, A. Quintario; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.] CIEMAT, E-28040 Madrid, Spain. [Albajar, C.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Menendez, J. Fernandez; Folgueras, S.; Caballero, I. Gonzalez; Iglesias, L. Lloret; Gomez, J. Piedra; Anastassov, A.] Univ Oviedo, Oviedo, Spain. [Cifuentes, J. A. Brochero; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Campderros, J. Duarte; Fernandez, M.; Gomez, G.; Sanchez, J. Gonzalez; Graziano, A.; Jorda, C.; Virto, A. Lopez; Marco, J.; Marco, R.; Rivero, C. Martinez; Matorras, F.; Sanchez, F. J. Munoz; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Cortabitarte, R. Vilar] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; Colafranceschi, S.; d'Enterria, D.; Dabrowski, A.; De Roeck, A.; De Visscher, S.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Garrido, R. Gomez-Reino; Gowdy, S.; Guida, R.; Hammer, J.; Hansen, M.; Harris, P.; Hartl, C.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Karavakis, E.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lee, Y. -J.; Lourenco, C.; Magini, N.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mulders, M.; Musella, P.; Nesvold, E.; Orsini, L.; Cortezon, E. Palencia; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Plagge, M.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schaefer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Stoye, M.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Woehri, H. K.; Worm, S. D.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Abdulsalam, A.; Bachmair, F.; Baeni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donega, M.; Duenser, M.; Eller, P.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Mohr, N.; Moortgat, F.; Naegeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.] ETH, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Chiochia, V.; Favaro, C.; Rikova, M. Ivova; Kilminster, B.; Mejias, B. Millan; Otiougova, P.; Robmann, P.; Snoek, H.; Taroni, S.; Tupputi, S.; Verzetti, M.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Suwonjandee, N.] Chulalongkorn Univ, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Karapinar, G.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Guelmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey. [Bahtiyar, H.; Barlas, E.; Cankocak, K.; Guenaydin, Y. O.; Vardarli, F. I.; Yuecel, M.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.; Sorokin, P.] Kharkov Phys & Technol Inst, Natl Sci Ctr, UA-310108 Kharkov, Ukraine. [Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Worm, S. D.; Newbold, D. M.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Lucas, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.] Imperial Coll, London, England. [Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; John, J. St.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Alimena, J.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; De La Barca Sanchez, M. Calderon; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Nelson, R.; Pellett, D.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Andreev, V.; Cline, D.; Cousins, R.; Erhan, S.; Everaerts, P.; Farrell, C.; Felcini, M.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Takasugi, E.; Traczyk, P.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Hanson, G.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wuerthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Kalavase, P.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Villalba, R. Magana; Mccoll, N.; Pavlunin, V.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dias, F. A.; Dubinin, M.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Kcira, D.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.] CALTECH, Pasadena, CA 91125 USA. [Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Gutsche, O.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Ratnikova, N.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Remington, R.; Rinkevicius, A.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Lacroix, F.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Strom, D.; Turner, P.] UIC, Chicago, IL USA. [Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Griffiths, S.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Ogul, H.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Swartz, M.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD USA. [Sibille, J.; Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Wood, J. S.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Bauer, G.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Kim, Y.; Klute, M.; Lai, Y. S.; Levin, A.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Haupt, J.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Suarez, R. Gonzalez; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.] Univ Nebraska Lincoln, Lincoln, NE USA. [Dolen, J.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Wan, Z.] SUNY Coll Buffalo, Buffalo, NY 14222 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Williams, G.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Pegna, D. Lopes; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Brownson, E.; Lopez, A.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA. [Abdulsalam, A.; Alagoz, E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Jung, K.; Koybasi, O.; Kress, M.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Marono, M. Vidal; Wang, F.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Guragain, S.; Parashar, N.] Purdue Univ Calumet, Hammond, IN USA. [Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Covarelli, R.; De Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY USA. [Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Toback, D.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sakharov, A.] Wayne State Univ, Detroit, MI USA. [Anderson, M.; Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Kaadze, K.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Loveless, R.; Mohapatra, A.; Mozer, M. U.; Ojalvo, I.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.] Univ Wisconsin, Madison, WI USA. [Fabjan, C.; Fruehwirth, R.; Jeitler, M.; Krammer, M.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Rabady, D.; Genchev, V.; Iaydjiev, P.; Lingemann, J.; Guthoff, M.; Hartmann, F.; Hauth, T.; Kornmayer, A.; Mohanty, A. K.; Safarzadeh, B.; De Filippis, N.; Masetti, G.; Giordano, F.; Lucchini, M. T.; Martelli, A.; Meola, S.; Paolucci, P.; Galanti, M.; D'Agnolo, R. T.; Ligabue, F.; Grassi, M.; Pelliccioni, M.; Cossutti, F.; Seixas, J.; Llatas, M. Chamizo] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Chinellato, J.; Tonelli Manganote, E. J.] Univ Estadual Campinas, Campinas, SP, Brazil. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Mahrous, A.] Helwan Univ, Cairo, Egypt. [Radi, A.] British Univ Egypt, Cairo, Egypt. [Agram, J. -L.; Conte, E.; Drouhin, F.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Arfaei, H.; Fahim, A.] Sharif Univ Technol, Tehran, Iran. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Safarzadeh, B.; Leonidopoulos, C.] Islamic Azad Univ, Plasma Phys Res Ctr, Sci & Res Branch, Tehran, Iran. [Androsov, K.; Martini, L.] Univ Siena, I-53100 Siena, Italy. [Heredia-De la Cruz, I.] Univ Michoacana, Morelia, Michoacan, Mexico. [Adzic, P.; Krpic, D.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Rolandi, G.] Ist Nazl Fis Nucl, Scuola Normale & Sez, Pisa, Italy. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Ozturk, S.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey. [Sonmez, N.] Ege Univ, Izmir, Turkey. [Bahtiyar, H.; Albayrak, E. A.; Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Guenaydin, Y. O.] Kahramanmaras Sutcu Imam Univ, TR-46050 Kahramanmaras, Turkey. [Basso, L.; Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Pioppi, M.] Univ Perugia, Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Leonidopoulos, C.] Univ Edinburgh, Edinburgh, Midlothian, Scotland. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Yetkin, T.] Yildiz Tekn Univ, Istanbul, Turkey. RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Rolandi, Luigi (Gigi)/E-8563-2013; Sguazzoni, Giacomo/J-4620-2015; Inst. of Physics, Gleb Wataghin/A-9780-2017; Menasce, Dario Livio/A-2168-2016; Bargassa, Pedrame/O-2417-2016; Seixas, Joao/F-5441-2013; Sznajder, Andre/L-1621-2016; Vilela Pereira, Antonio/L-4142-2016; Mundim, Luiz/A-1291-2012; Haj Ahmad, Wael/E-6738-2016; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; Matorras, Francisco/I-4983-2015; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Azarkin, Maxim/N-2578-2015; Flix, Josep/G-5414-2012; Della Ricca, Giuseppe/B-6826-2013; Tomei, Thiago/E-7091-2012; Dubinin, Mikhail/I-3942-2016; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Raidal, Martti/F-4436-2012; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Stahl, Achim/E-8846-2011; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Hernandez Calama, Jose Maria/H-9127-2015; My, Salvatore/I-5160-2015; Ragazzi, Stefano/D-2463-2009; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; VARDARLI, Fuat Ilkehan/B-6360-2013; Paulini, Manfred/N-7794-2014; Vogel, Helmut/N-8882-2014; Ferguson, Thomas/O-3444-2014; Benussi, Luigi/O-9684-2014; Russ, James/P-3092-2014; Leonidov, Andrey/P-3197-2014; vilar, rocio/P-8480-2014; Dahms, Torsten/A-8453-2015; Calderon, Alicia/K-3658-2014; da Cruz e Silva, Cristovao/K-7229-2013; Grandi, Claudio/B-5654-2015; Bernardes, Cesar Augusto/D-2408-2015; Janssen, Xavier/E-1915-2013; Novaes, Sergio/D-3532-2012; Hill, Christopher/B-5371-2012; Bartalini, Paolo/E-2512-2014; Ligabue, Franco/F-3432-2014; Wulz, Claudia-Elisabeth/H-5657-2011; Montanari, Alessandro/J-2420-2012; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Josa, Isabel/K-5184-2014; Calvo Alamillo, Enrique/L-1203-2014; Venturi, Andrea/J-1877-2012; Marlow, Daniel/C-9132-2014; de Jesus Damiao, Dilson/G-6218-2012; Manganote, Edmilson/K-8251-2013; Wimpenny, Stephen/K-8848-2013; Lokhtin, Igor/D-7004-2012; Markina, Anastasia/E-3390-2012; Petrushanko, Sergey/D-6880-2012; Dudko, Lev/D-7127-2012; Dermenev, Alexander/M-4979-2013; Tinoco Mendes, Andre David/D-4314-2011; Wolszczak, Weronika/N-3113-2013 OI Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235; Ciulli, Vitaliano/0000-0003-1947-3396; Androsov, Konstantin/0000-0003-2694-6542; Fiorendi, Sara/0000-0003-3273-9419; Martelli, Arabella/0000-0003-3530-2255; Gonzi, Sandro/0000-0003-4754-645X; Levchenko, Petr/0000-0003-4913-0538; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Lloret Iglesias, Lara/0000-0002-0157-4765; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Sguazzoni, Giacomo/0000-0002-0791-3350; Casarsa, Massimo/0000-0002-1353-8964; Diemoz, Marcella/0000-0002-3810-8530; Tricomi, Alessia Rita/0000-0002-5071-5501; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Ghezzi, Alessio/0000-0002-8184-7953; bianco, stefano/0000-0002-8300-4124; Demaria, Natale/0000-0003-0743-9465; Vieira de Castro Ferreira da Silva, Pedro Manuel/0000-0002-5725-041X; Bean, Alice/0000-0001-5967-8674; Longo, Egidio/0000-0001-6238-6787; Di Matteo, Leonardo/0000-0001-6698-1735; Baarmand, Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Bargassa, Pedrame/0000-0001-8612-3332; Seixas, Joao/0000-0002-7531-0842; Sznajder, Andre/0000-0001-6998-1108; Vilela Pereira, Antonio/0000-0003-3177-4626; Mundim, Luiz/0000-0001-9964-7805; Haj Ahmad, Wael/0000-0003-1491-0446; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Matorras, Francisco/0000-0003-4295-5668; TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; Flix, Josep/0000-0003-2688-8047; Della Ricca, Giuseppe/0000-0003-2831-6982; Tomei, Thiago/0000-0002-1809-5226; Dubinin, Mikhail/0000-0002-7766-7175; Paganoni, Marco/0000-0003-2461-275X; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Stahl, Achim/0000-0002-8369-7506; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Hernandez Calama, Jose Maria/0000-0001-6436-7547; My, Salvatore/0000-0002-9938-2680; Ragazzi, Stefano/0000-0001-8219-2074; Rovelli, Tiziano/0000-0002-9746-4842; Paulini, Manfred/0000-0002-6714-5787; Vogel, Helmut/0000-0002-6109-3023; Ferguson, Thomas/0000-0001-5822-3731; Benussi, Luigi/0000-0002-2363-8889; Russ, James/0000-0001-9856-9155; Dahms, Torsten/0000-0003-4274-5476; Grandi, Claudio/0000-0001-5998-3070; Novaes, Sergio/0000-0003-0471-8549; Hill, Christopher/0000-0003-0059-0779; Ligabue, Franco/0000-0002-1549-7107; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Montanari, Alessandro/0000-0003-2748-6373; Cerrada, Marcos/0000-0003-0112-1691; Scodellaro, Luca/0000-0002-4974-8330; Calvo Alamillo, Enrique/0000-0002-1100-2963; de Jesus Damiao, Dilson/0000-0002-3769-1680; Wimpenny, Stephen/0000-0003-0505-4908; Dudko, Lev/0000-0002-4462-3192; Tinoco Mendes, Andre David/0000-0001-5854-7699; FU Austrian Federal Ministry of Science and Research; Austrian Science Fund; Belgian Fonds de la Recherche Scientifique; Fonds voor Wetenschappelijk Onderzoek; CNPq; CAPES; FAPERJ; FAPESP; Bulgarian Ministry of Education, Youth and Science; CERN; Chinese Academy of Sciences; Ministry of Science and Technology; National Natural Science Foundation of China; Colombian Funding Agency (COLCIENCIAS); Croatian Ministry of Science, Education and Sport; Research Promotion Foundation, Cyprus; Ministry of Education and Research [SF0690030s09]; European Regional Development Fund, Estonia; Academy of Finland; Finnish Ministry of Education and Culture; Helsinki Institute of Physics; Institut National de Physique Nucleaire et de Physique des Particules/CNRS; Commissariat a l'Energie Atomique et aux Energies Alternatives/CEA, France; Bundesministerium fur Bildung und Forschung; Deutsche Forschungsgemeinschaft; Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; General Secretariat for Research and Technology, Greece; National Scientific Research Foundation; National Office for Research and Technology, Hungary; Department of Atomic Energy; Department of Science and Technology, India; Institute for Studies in Theoretical Physics and Mathematics, Iran; Science Foundation, Ireland; Istituto Nazionale di Fisica Nucleare, Italy; Korean Ministry of Education, Science and Technology; World Class University program of NRF, Republic of Korea; Lithuanian Academy of Sciences; CINVESTAV; CONACYT; SEP; UASLP-FAI; Ministry of Science and Innovation, New Zealand; Pakistan Atomic Energy Commission; Ministry of Science and Higher Education; National Science Centre, Poland; Fundacao para a Ciencia e a Tecnologia, Portugal; JINR (Armenia); JINR (Belarus); JINR (Georgia); JINR (Ukraine); JINR (Uzbekistan); Ministry of Education and Science of the Russian Federation; Federal Agency of Atomic Energy of the Russian Federation; Russian Academy of Sciences; Russian Foundation for Basic Research; Ministry of Science and Technological Development of Serbia; Secretaria de Estado de Investigacion; Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain; ETH Board; ETH Zurich; PSI; SNF; UniZH; Canton Zurich; SER; National Science Council, Taipei; Thailand Center of Excellence in Physics; Institute for the Promotion of Teaching Science and Technology of Thailand; National Science and Technology Development Agency of Thailand; Scientific and Technical Research Council of Turkey; Turkish Atomic Energy Authority; Science and Technology Facilities Council, UK; US Department of Energy; National Science Foundation; Marie-Curie programme; European Research Council; EPLANET (European Union); Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of Czech Republic; Council of Science and Industrial Research, India; Compagnia di San Paolo (Torino); HOMING PLUS programme of Foundation for Polish Science; EU; Regional Development Fund; EU-ESF; Greek NSRF FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science and Research and the Austrian Science Fund; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education, Youth and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Recurrent financing Contract No. SF0690030s09 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucleaire et de Physique des Particules/CNRS, and Commissariat a l'Energie Atomique et aux Energies Alternatives/CEA, France; the Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Office for Research and Technology, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Republic of Korea; the Lithuanian Academy of Sciences; the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Science and Innovation, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundacao para a Ciencia e a Tecnologia, Portugal; JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Science and Technological Development of Serbia; the Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the National Science Council, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the Science and Technology Facilities Council, UK; and the US Department of Energy and National Science Foundation.; Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); the HOMING PLUS programme of Foundation for Polish Science, cofinanced by EU, Regional Development Fund; and the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF. NR 31 TC 2 Z9 2 U1 3 U2 113 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD SEP 3 PY 2013 VL 88 IS 5 AR UNSP 052001 DI 10.1103/PhysRevD.88.052001 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 211GG UT WOS:000323893400001 ER PT J AU Dai, LY Portoles, J Shekhovtsova, O AF Dai, L. Y. Portoles, J. Shekhovtsova, O. TI Three pseudoscalar meson production in e(+)e(-) annihilation SO PHYSICAL REVIEW D LA English DT Article ID ELECTRON-POSITRON ANNIHILATION; TO-LEADING ORDER; CHIRAL PERTURBATION-THEORY; HADRONIC CROSS-SECTION; INTERVAL 1350-2400 MEV; LOW-ENERGY CONSTANTS; RADIATIVE RETURN; PHENOMENOLOGICAL LAGRANGIANS; QUANTUM CHROMODYNAMICS; PHOTON-EMISSION AB We study-at leading order in the large number of colors expansion and within the resonance chiral theory framework-the odd-intrinsic-parity e(+)e(-) -> pi(+)pi(-) (pi(0); eta) cross sections in the energy regime populated by hadron resonances, namely 3m(pi) less than or similar to E less than or similar to 2 GeV. In addition, we implement our results in the Monte Carlo generator PHOKHARA 7.0 and we simulate hadron production through the radiative return method. C1 [Dai, L. Y.] Peking Univ, Dept Phys, Beijing 1000871, Peoples R China. [Dai, L. Y.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Portoles, J.] Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain. [Shekhovtsova, O.] NSC Kharkov Inst Phys & Technol, UA-61108 Kharkov, Ukraine. [Shekhovtsova, O.] PAN, Inst Nucl Phys, Krakow, Poland. RP Dai, LY (reprint author), Peking Univ, Dept Phys, Beijing 1000871, Peoples R China. EM lingyun@jlab.org; Jorge.Portoles@ific.uv.es; olga.shekhovtsova@ifj.edu.pl RI Portoles, Jorge/A-1219-2007 OI Portoles, Jorge/0000-0003-1038-4303 FU China Scholarship Council; Polish National Science Centre [DEC-2012/04/M/ST2/00240, DEC-2011/03/B/ST2/00107]; Spanish Government; ERDF funds from the EU Commission [FPA2007-60323, FPA2011-23778, CSD2007-00042]; U.S. DOE [DE-AC05-06OR23177] FX Conversations with German Rodrigo on the topic of this paper are warmly acknowledged. We would like to thank Henryk Czyz for fruitful discussions on context of MC PHOKHARA 7.0. We also wish to thank Michael R. Pennington for a careful reading of our manuscript and for his suggestions. Lingyun Dai thanks the China Scholarship Council for their support. This research has been supported in part by the funds of the Polish National Science Centre under decisions DEC-2012/04/M/ST2/00240 and DEC-2011/03/B/ST2/00107 (O. S.) and by the Spanish Government and ERDF funds from the EU Commission [Grants No. FPA2007-60323, No. FPA2011-23778, No. CSD2007-00042 (Consolider Project CPAN)]. This paper has been authored in part by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. NR 65 TC 8 Z9 8 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD SEP 3 PY 2013 VL 88 IS 5 AR 056001 DI 10.1103/PhysRevD.88.056001 PG 23 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 211GG UT WOS:000323893400012 ER PT J AU Liu, YZ Meurice, Y Qin, MP Unmuth-Yockey, J Xiang, T Xie, ZY Yu, JF Zou, HY AF Liu, Yuzhi Meurice, Y. Qin, M. P. Unmuth-Yockey, J. Xiang, T. Xie, Z. Y. Yu, J. F. Zou, Haiyuan TI Exact blocking formulas for spin and gauge models SO PHYSICAL REVIEW D LA English DT Article ID MATRIX RENORMALIZATION-GROUP; LATTICE; SYSTEMS; DUALITY; FLAVORS AB Using the example of the two-dimensional (2D) Ising model, we show that in contrast to what can be done in configuration space, the tensor renormalization group formulation allows one to write exact, compact, and manifestly local blocking formulas and exact coarse-grained expressions for the partition function. We argue that similar results should hold for most models studied by lattice gauge theorists. We provide exact blocking formulas for several 2D spin models [the O(2) and O(3) sigma models and the SU(2) principal chiral model] and for the three-dimensional gauge theories with groups Z(2), U(1) and SU(2). We briefly discuss generalizations to other groups, higher dimensions and practical implementations. C1 [Liu, Yuzhi; Meurice, Y.; Unmuth-Yockey, J.; Zou, Haiyuan] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Liu, Yuzhi] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. [Qin, M. P.; Xiang, T.; Xie, Z. Y.; Yu, J. F.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. RP Liu, YZ (reprint author), Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. RI qin, mingpu/S-1545-2016; OI qin, mingpu/0000-0001-7733-9684; Meurice, Yannick/0000-0002-0995-9694 FU Department of Energy [DE-SC0010114, FG02-91ER40664]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; URA Visiting Scholars' program; United States Department of Energy; NSF [1066293]; [DE-AC02-07CH11359] FX This research was supported in part by the Department of Energy under Awards No. DE-SC0010114 and No. FG02-91ER40664. Preliminary numerical work checking the validity of analytical formulas presented here used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Y.L. is supported by the URA Visiting Scholars' program. Fermilab is operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. Our work on the subject started while attending the KITPC workshop "Critical Properties of Lattice Models" in summer 2012. Y. M. did part of the work while at the workshop "LGT in the LHC Era" in summer 2013 at the Aspen Center for Physics supported by NSF Grant No 1066293. We thank M. C. Banuls, S. Chandrasekharan, A. Denbleyker, A. Hasenfratz, A. Li, M. Ogilvie, P. Orland, W. Polyzou, C. Pryor, V. Rodgers, T. Tomboulis, and X.-G. Wen, for valuable conversations and suggestions. NR 36 TC 11 Z9 11 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD SEP 3 PY 2013 VL 88 IS 5 AR 056005 DI 10.1103/PhysRevD.88.056005 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 211GG UT WOS:000323893400016 ER PT J AU Schneider, AR Geissler, PL AF Schneider, Anna R. Geissler, Phillip L. TI Coexistence of Fluid and Crystalline Phases of Proteins in Photosynthetic Membranes SO BIOPHYSICAL JOURNAL LA English DT Article ID LIGHT-HARVESTING COMPLEX; PHOTOSYSTEM-II SUPERCOMPLEX; HIGHER-PLANT CHLOROPLASTS; GRANA MEMBRANES; THYLAKOID MEMBRANE; SUPRAMOLECULAR ORGANIZATION; MACRO-ORGANIZATION; STATE TRANSITIONS; GREEN PLANTS; ARABIDOPSIS-THALIANA AB Photosystem II (PSII) and its associated light-harvesting complex II (LHCII) are highly concentrated in the stacked grana regions of photosynthetic thylakoid membranes. PSII-LHCII supercomplexes can be arranged in disordered packings, ordered arrays, or mixtures thereof. The physical driving forces underlying array formation are unknown, complicating attempts to determine a possible functional role for arrays in regulating light harvesting or energy conversion efficiency. Here, we introduce a coarse-grained model of protein interactions in coupled photosynthetic membranes, focusing on just two particle types that feature simple shapes and potential energies motivated by structural studies. Reporting on computer simulations of the model's equilibrium fluctuations, we demonstrate its success in reproducing diverse structural features observed in experiments, including extended PSII-LHCII arrays. Free energy calculations reveal that the appearance of arrays marks a phase transition from the disordered fluid state to a system-spanning crystal. The predicted region of fluid-crystal coexistence is broad, encompassing much of the physiologically relevant parameter regime; we propose experiments that could test this prediction. Our results suggest that grana membranes lie at or near phase coexistence, conferring significant structural and functional flexibility to this densely packed membrane protein system. C1 [Schneider, Anna R.] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. [Geissler, Phillip L.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Geissler, Phillip L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Geissler, Phillip L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Geissler, PL (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM geissler@berkeley.edu FU Office of Science of the U. S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation FX Some computations were performed using resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U. S. Department of Energy under contract No. DE-AC02-05CH11231. A.R.S. was supported in part by a National Science Foundation Graduate Research Fellowship. NR 75 TC 9 Z9 9 U1 1 U2 35 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD SEP 3 PY 2013 VL 105 IS 5 BP 1161 EP 1170 DI 10.1016/j.bpj.2013.06.052 PG 10 WC Biophysics SC Biophysics GA 212NP UT WOS:000323990400009 PM 24010659 ER PT J AU Chiu, CC Singh, S de Pablo, JJ AF Chiu, Chi-cheng Singh, Sadanand de Pablo, Juan J. TI Effect of Proline Mutations on the Monomer Conformations of Amylin SO BIOPHYSICAL JOURNAL LA English DT Article ID ISLET AMYLOID POLYPEPTIDE; MOLECULAR-DYNAMICS METHOD; TYPE-2 DIABETES-MELLITUS; ALPHA-HELICAL STATES; PARTICLE MESH EWALD; INSULAR AMYLOIDOSIS; FIBRIL FORMATION; RAT AMYLIN; HUMAN IAPP; PRAMLINTIDE AB The formation of human islet amyloid polypeptide (hIAPP) is implicated in the loss of pancreatic beta-cells in type II diabetes. Rat amylin, which differs from human amylin at six residues, does not lead to formation of amyloid fibrils. Pramlintide is a synthetic analog of human amylin that shares three proline substitutions with rat amylin. Pramlintide has a much smaller propensity to form amyloid aggregates and has been widely prescribed in amylin replacement treatment. It is known that the three prolines attenuate beta-sheet formation. However, the detailed effects of these proline substitutions on full-length hIAPP remain poorly understood. In this work, we use molecular simulations and bias-exchange metadynamics to investigate the effect of proline substitutions on the conformation of the hIAPP monomer. Our results demonstrate that hIAPP can adopt various beta-sheet conformations, some of which have been reported in experiments. The proline substitutions perturb the formation of long beta-sheets and reduce their stability. More importantly, we find that all three proline substitutions of pramlintide are required to inhibit beta conformations and stabilize the alpha-helical conformation. Fewer substitutions do not have a significant inhibiting effect. C1 [Chiu, Chi-cheng; de Pablo, Juan J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Chiu, Chi-cheng; de Pablo, Juan J.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Singh, Sadanand] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI USA. RP de Pablo, JJ (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM depablo@uchicago.edu FU Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-06CH11357]; National Institutes of Health [1R01DK088184] FX The authors are grateful to James L. Skinner and Martin T. Zanni for fruitful discussions. This work was supported by the Office of Basic Energy Sciences, U.S. Department of Energy, under contract No. DE-AC02-06CH11357, and the National Institutes of Health under grant No. 1R01DK088184. NR 74 TC 20 Z9 20 U1 2 U2 49 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 EI 1542-0086 J9 BIOPHYS J JI Biophys. J. PD SEP 3 PY 2013 VL 105 IS 5 BP 1227 EP 1235 DI 10.1016/j.bpj.2013.07.029 PG 9 WC Biophysics SC Biophysics GA 212NP UT WOS:000323990400016 PM 24010666 ER PT J AU Borysov, SS Platz, D de Wijn, AS Forchheimer, D Tolen, EA Balatsky, AV Haviland, DB AF Borysov, Stanislav S. Platz, Daniel de Wijn, Astrid S. Forchheimer, Daniel Tolen, Eric A. Balatsky, Alexander V. Haviland, David B. TI Reconstruction of tip-surface interactions with multimodal intermodulation atomic force microscopy SO PHYSICAL REVIEW B LA English DT Article ID LATERAL FORCE; CANTILEVERS; MODE; SPECTROSCOPY; MOTION; FLUIDS AB We propose a theoretical framework for reconstructing tip-surface interactions using the intermodulation technique when more than one eigenmode is required to describe the cantilever motion. Two particular cases of bimodal motion are studied numerically: one bending and one torsional mode, and two bending modes. We demonstrate the possibility of accurate reconstruction of a two-dimensional conservative force field for the former case, while dissipative forces are studied for the latter. C1 [Borysov, Stanislav S.; Platz, Daniel; Forchheimer, Daniel; Haviland, David B.] KTH Royal Inst Technol, SE-10691 Stockholm, Sweden. [Borysov, Stanislav S.; Balatsky, Alexander V.] KTH Royal Inst Technol, Nordita, SE-10691 Stockholm, Sweden. [Borysov, Stanislav S.; Balatsky, Alexander V.] Stockholm Univ, SE-10691 Stockholm, Sweden. [de Wijn, Astrid S.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Tolen, Eric A.] Intermodulat Prod AB, SE-16958 Solna, Sweden. [Balatsky, Alexander V.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Balatsky, Alexander V.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Borysov, SS (reprint author), KTH Royal Inst Technol, Roslagstullsbacken 21, SE-10691 Stockholm, Sweden. EM borysov@kth.se OI Forchheimer, Daniel/0000-0003-0675-974X; de Wijn, Astrid S./0000-0003-4664-6811 FU Nordita; DOE; VR VCB [621-2012-2983]; Knut and Allice Wallenberg Foundation; Olle Enqvist Foundation FX This work is supported by Nordita, DOE, VR VCB 621-2012-2983, the Knut and Allice Wallenberg Foundation, and the Olle Enqvist Foundation. NR 66 TC 8 Z9 8 U1 1 U2 36 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 3 PY 2013 VL 88 IS 11 AR 115405 DI 10.1103/PhysRevB.88.115405 PG 11 WC Physics, Condensed Matter SC Physics GA 211FO UT WOS:000323891100012 ER PT J AU Peng, HW Scanlon, DO Stevanovic, V Vidal, J Watson, GW Lany, S AF Peng, Haowei Scanlon, David O. Stevanovic, Vladan Vidal, Julien Watson, Graeme W. Lany, Stephan TI Convergence of density and hybrid functional defect calculations for compound semiconductors SO PHYSICAL REVIEW B LA English DT Article ID AUGMENTED-WAVE METHOD; ELECTRON-GAS; EXCHANGE; ENERGY AB Recent revisions of defect formation energy calculations based on bandgap corrected hybrid functionals have raised concerns about the validity of earlier results based on standard density functionals and about the reliability of the theoretical prediction of electrical properties in semiconductor materials in general. We show here that a close agreement between the two types of functionals can be achieved by determining appropriate values for the electronic and atomic reference energies, thereby mitigating uncertainties associated with the choice of the underlying functional. C1 [Peng, Haowei; Stevanovic, Vladan; Lany, Stephan] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Scanlon, David O.] UCL, Kathleen Lonsdale Mat Chem, Dept Chem, London WC1H 0AJ, England. [Scanlon, David O.] Diamond Light Source Ltd, Didcot OX11 0DE, Oxon, England. [Stevanovic, Vladan] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Vidal, Julien] Chim ParisTech, EDF R&D, UMR CNRS 7174, IRDEP, F-78401 Chatou, France. [Watson, Graeme W.] Univ Dublin Trinity Coll, Sch Chem, Dublin 2, Ireland. [Watson, Graeme W.] Univ Dublin Trinity Coll, CRANN, Dublin 2, Ireland. RP Peng, HW (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Scanlon, David/B-1516-2008; Peng, Haowei/K-4654-2012; Watson, Graeme/B-4262-2008; OI Scanlon, David/0000-0001-9174-8601; Peng, Haowei/0000-0002-6502-8288; Watson, Graeme/0000-0001-6732-9474; Lany, Stephan/0000-0002-8127-8885 FU NREL; CSM; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Next Generation Photovoltaics II (SunShot initiative) [DE-AC36-08GO28308]; SFI through the PI programme (PI) [06/IN.1/I92, 06/IN.1/I92/EC07]; UCL; Ramsay Memorial Trust; UCL Ramsay Fellowship; EPSRC [EP/F067496] FX Financial support: For NREL and CSM (H. P., V. S., and S. L.), the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Next Generation Photovoltaics II (SunShot initiative), under Contract No. DE-AC36-08GO28308 to NREL. For TCD (D.O.S and G. W. W.), the SFI through the PI programme (PI Grant Nos. 06/IN.1/I92 and 06/IN.1/I92/EC07). UCL (D.O.S.), Ramsay Memorial Trust and UCL Ramsay Fellowship. High performance computing resources: RedMesa by NREL's Computational Science Center, Kelvin by TCHPC, the Stokes cluster by ICHEC, and HECToR through membership of the HPC Materials Chemistry Consortium under EPSRC (Grant No. EP/F067496). Administrative support: For V.S., REMRSEC at CSM. NR 49 TC 27 Z9 27 U1 3 U2 51 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD SEP 3 PY 2013 VL 88 IS 11 AR 115201 DI 10.1103/PhysRevB.88.115201 PG 7 WC Physics, Condensed Matter SC Physics GA 211FO UT WOS:000323891100006 ER PT J AU Staar, P Maier, T Schulthess, TC AF Staar, Peter Maier, Thomas Schulthess, Thomas C. TI Dynamical cluster approximation with continuous lattice self-energy SO PHYSICAL REVIEW B LA English DT Article ID MEAN-FIELD THEORY; STRONGLY CORRELATED SYSTEMS; ELECTRONIC-STRUCTURE; FUNCTIONAL APPROACH; DELTA-PLUTONIUM; TRANSITION; SPECTRA; SUPERCONDUCTIVITY; DIMENSIONS AB The dynamical cluster approximation (DCA) is a systematic extension beyond the single-site approximation in dynamical mean field theory, to include spatially nonlocal correlations in quantum many-body simulations of strongly correlated systems. We extend the DCA with a continuous lattice self-energy in order to achieve better convergence with cluster size. This method, which we call DCA(+), cures the cluster-shape dependence problems of the DCA, without suffering from causality violations of previous attempts to interpolate the cluster self-energy. A practical approach based on standard inference techniques is given to deduce the continuous lattice self-energy from an interpolated cluster self-energy. We study the pseudogap region of a hole-doped two-dimensional Hubbard model and find that, in the DCA(+) algorithm, the self-energy and pseudogap temperature T* converge monotonously with cluster size. Introduction of a continuous lattice self-energy eliminates artificial long-range correlations and thus significantly reduces the sign problem of the quantum Monte Carlo cluster solver in the DCA(+) algorithm compared to the normal DCA. Simulations with much larger cluster sizes thus become feasible, which, along with the improved convergence in cluster size, raises hope that precise extrapolations to the exact infinite cluster size limit can be reached for other physical quantities as well. C1 [Staar, Peter; Schulthess, Thomas C.] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland. [Maier, Thomas; Schulthess, Thomas C.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Maier, Thomas] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Schulthess, Thomas C.] Swiss Fed Inst Technol, Swiss Natl Supercomp Ctr, CH-6900 Lugano, Switzerland. RP Staar, P (reprint author), Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland. RI Maier, Thomas/F-6759-2012 OI Maier, Thomas/0000-0002-1424-9996 FU Office of Science [DE-AC05-00OR22725]; Scientific User Facilities Division, Office of Basic Energy Sciences, of the Department of Energy FX This research was carried out with resources of the Swiss National Supercomputing Center (CSCS), Oak Ridge Leadership Computing Facility (OLCF), and the Center for Nanophase Materials Sciences (CNMS). OLCF and CNMS are located at Oak Ridge National Laboratory and supported, respectively, by the Office of Science under Contract No. DE-AC05-00OR22725 and by the Scientific User Facilities Division, Office of Basic Energy Sciences, of the Department of Energy. NR 60 TC 9 Z9 9 U1 0 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 3 PY 2013 VL 88 IS 11 AR 115101 DI 10.1103/PhysRevB.88.115101 PG 16 WC Physics, Condensed Matter SC Physics GA 211FO UT WOS:000323891100001 ER PT J AU Ross, TJ Hughes, RO Beausang, CW Allmond, JM Angell, CT Basunia, MS Bleuel, DL Burke, JT Casperson, RJ Escher, JE Fallon, P Hatarik, R Munson, J Paschalis, S Petri, M Phair, LW Ressler, JJ Scielzo, ND AF Ross, T. J. Hughes, R. O. Beausang, C. W. Allmond, J. M. Angell, C. T. Basunia, M. S. Bleuel, D. L. Burke, J. T. Casperson, R. J. Escher, J. E. Fallon, P. Hatarik, R. Munson, J. Paschalis, S. Petri, M. Phair, L. W. Ressler, J. J. Scielzo, N. D. TI Remnants of spherical shell structures in deformed nuclei: The impact of an N=64 neutron subshell closure on the structure of N approximate to 90 gadolinium nuclei SO PHYSICAL REVIEW C LA English DT Article ID SINGLE-PARTICLE STATES; DATA SHEETS; CHARGE RADII; ISOTOPES; SM-153 AB Odd-mass gadolinium isotopes around N = 90 were populated by the (p,d) reaction, utilizing 25-MeV protons, resulting in population of low-spin quasineutron states at energies near and below the Fermi surface. Systematics of the single quasineutron levels populated are presented. A large excitation energy gap is observed between levels originating from the 2d(3/2), 1h(11/2), and 3s(1/2) spherical parents (above the N = 64 gap), and the 2d(5/2) (below the gap), indicating that the spherical shell model level spacing is maintained at least to moderate deformations. C1 [Ross, T. J.; Hughes, R. O.; Beausang, C. W.] Univ Richmond, Dept Phys, Richmond, VA 23173 USA. [Ross, T. J.] Univ Surrey, Dept Phys, Guildford GU2 7JL, Surrey, England. [Allmond, J. M.] Oak Ridge Natl Lab, JIHIR, Oak Ridge, TN 37831 USA. [Angell, C. T.; Munson, J.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Basunia, M. S.; Fallon, P.; Hatarik, R.; Paschalis, S.; Petri, M.; Phair, L. W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Bleuel, D. L.; Burke, J. T.; Casperson, R. J.; Escher, J. E.; Ressler, J. J.; Scielzo, N. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Ross, TJ (reprint author), Univ Kentucky, Dept Chem, Lexington, KY 40506 USA. RI Burke, Jason/I-4580-2012; Petri, Marina/H-4630-2016; Paschalis, Stefanos/H-8758-2016; OI Petri, Marina/0000-0002-3740-6106; Paschalis, Stefanos/0000-0002-9113-3778; Angell, Christopher/0000-0003-0333-6557 FU National Science Foundation; US Department of Energy; University of Richmond [DE-FG52-06NA26206, DE-FG02-05ER41379]; Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC52-07NA27344]; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Lawrence Berkeley National Laboratory through the TORUS topical collaboration FX The authors thank the 88-Inch Cyclotron operations and facilities staff for their help in performing this experiment. This work was performed under the auspices of the National Science Foundation and the US Department of Energy by the University of Richmond under Grants No. DE-FG52-06NA26206 and No. DE-FG02-05ER41379, Lawrence Livermore National Laboratory under Contracts No. W-7405-Eng-48 and No. DE-AC52-07NA27344, and Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231 with partial support through the TORUS topical collaboration. NR 30 TC 3 Z9 3 U1 2 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD SEP 3 PY 2013 VL 88 IS 3 AR 031301 DI 10.1103/PhysRevC.88.031301 PG 4 WC Physics, Nuclear SC Physics GA 211GE UT WOS:000323893200001 ER PT J AU Rzaca-Urban, T Czerwinski, M Urban, W Smith, AG Ahmad, I Nowacki, F Sieja, K AF Rzaca-Urban, T. Czerwinski, M. Urban, W. Smith, A. G. Ahmad, I. Nowacki, F. Sieja, K. TI First observation of excited states in Se-87: Collectivity and j-1 anomaly at N=53 SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR-DATA SHEETS; SHELL-MODEL; ALAGA MODEL; ISOTOPES; FISSION; REGION AB The Se-87 nucleus has been studied via prompt gamma-ray spectroscopy using the Eurogam2 Ge array to measure gamma rays following fission of Cm-248. Excited levels in Se-87 have been observed for the first time. The yrast excitation scheme in this nucleus is similar to the excitations schemes of its N = 53 neighbors and fits the energy systematics, indicating j - 1 anomaly below Z = 38. Large-scale shell-model calculations reproduce in detail yrast excitations in Se-87 and other N = 53 isotones. The j - 1 anomaly is explained as due to the enhancement of collectivity towards the proton midshell. The coexistence of collective and single-particle excitations is predicted in Se-87. C1 [Rzaca-Urban, T.; Czerwinski, M.; Urban, W.] Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland. [Smith, A. G.] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England. [Ahmad, I.] Argonne Natl Lab, Argonne, IL 60439 USA. [Nowacki, F.; Sieja, K.] Univ Strasbourg, IPHC, F-67037 Strasbourg, France. [Nowacki, F.; Sieja, K.] CNRS, UMR7178, F-67037 Strasbourg, France. RP Rzaca-Urban, T (reprint author), Univ Warsaw, Fac Phys, Ulica Hoza 69, PL-00681 Warsaw, Poland. FU US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX This work has been partially supported by the US Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. The authors are indebted for the use of 248Cm to the Office of Basic Energy Sciences, Department of Energy, through the transplutonium element production facilities at the Oak Ridge National Laboratory. NR 36 TC 16 Z9 16 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD SEP 3 PY 2013 VL 88 IS 3 AR 034302 DI 10.1103/PhysRevC.88.034302 PG 5 WC Physics, Nuclear SC Physics GA 211GE UT WOS:000323893200003 ER PT J AU Sharapov, EI Morris, CL Makela, M Saunders, A Adamek, ER Bagdasarova, Y Broussard, LJ Cude-Woods, CB Fellers, DE Geltenbort, P Hasan, SI Hickerson, KP Hogan, G Holley, AT Liu, CY Mendenhall, MP Ortiz, J Pattie, RW Phillips, DG Ramsey, J Salvat, DJ Seestrom, SJ Shaw, E Sjue, SKL Sondheim, WE VornDick, B Wang, Z Womack, TL Young, AR Zeck, BA AF Sharapov, E. I. Morris, C. L. Makela, M. Saunders, A. Adamek, Evan R. Bagdasarova, Y. Broussard, L. J. Cude-Woods, C. B. Fellers, Deion E. Geltenbort, Peter Hasan, S. I. Hickerson, K. P. Hogan, G. Holley, A. T. Liu, Chen-Yu Mendenhall, M. P. Ortiz, J. Pattie, R. W., Jr. Phillips, D. G., II Ramsey, J. Salvat, D. J. Seestrom, S. J. Shaw, E. Sjue, S. K. L. Sondheim, W. E. VornDick, B. Wang, Z. Womack, T. L. Young, A. R. Zeck, B. A. TI Measurements of ultracold neutron upscattering and absorption in polyethylene and vanadium SO PHYSICAL REVIEW C LA English DT Article ID SURFACE AB The study of neutron cross sections for elements used as efficient "absorbers" of ultracold neutrons (UCN) is crucial for many precision experiments in nuclear and particle physics, cosmology and gravity. In this context, "absorption" includes both the capture and upscattering of neutrons to the energies above the UCN energy region. The available data, especially for hydrogen, do not agree between themselves or with the theory. In this report we describe measurements performed at the Los Alamos National Laboratory UCN facility of the UCN upscattering cross sections for vanadium and for hydrogen in CH2 using simultaneous measurements of the radiative capture cross sections for these elements. We measured sigma(up) = 1972 +/- 130 b for hydrogen in CH2, which is below theoretical expectations, and sigma(up) = 25 +/- 9 b for vanadium, in agreement with the expectation for the neutron heating by thermal excitations in solids. C1 [Sharapov, E. I.] Joint Inst Nucl Res, Dubna 141980, Russia. [Morris, C. L.; Makela, M.; Saunders, A.; Bagdasarova, Y.; Broussard, L. J.; Fellers, Deion E.; Hogan, G.; Ortiz, J.; Ramsey, J.; Seestrom, S. J.; Shaw, E.; Sjue, S. K. L.; Sondheim, W. E.; Wang, Z.; Womack, T. L.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Adamek, Evan R.; Cude-Woods, C. B.; Holley, A. T.; Liu, Chen-Yu; Salvat, D. J.] Indiana Univ, Dept Phys, Indiana, PA USA. [Geltenbort, Peter] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France. [Hasan, S. I.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. [Hickerson, K. P.; Mendenhall, M. P.] CALTECH, Kellogg Radiat Lab, Pasadena, CA 91125 USA. [Pattie, R. W., Jr.; Phillips, D. G., II; VornDick, B.; Young, A. R.; Zeck, B. A.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. RP Morris, CL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. EM morris@lanl.gov OI Broussard, Leah/0000-0001-9182-2808; Makela, Mark/0000-0003-0592-3683; Morris, Christopher/0000-0003-2141-0255 FU US Department of Energy [DE-AC52-06NA25396]; DOE Office of Science Graduate Fellowship Program (DOE SCGF); ORISE-ORAU [DE-AC05-06OR23100] FX This work was performed under the auspices of the US Department of Energy under Contract No. DE-AC52-06NA25396. D.J.S. is supported by the DOE Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under contract no. DE-AC05-06OR23100. NR 16 TC 3 Z9 3 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD SEP 3 PY 2013 VL 88 IS 3 AR UNSP 037601 DI 10.1103/PhysRevC.88.037601 PG 4 WC Physics, Nuclear SC Physics GA 211GE UT WOS:000323893200008 ER PT J AU Bousso, R Hall, L AF Bousso, Raphael Hall, Lawrence TI Why comparable? A multiverse explanation of the dark matter-baryon coincidence SO PHYSICAL REVIEW D LA English DT Article ID MASS; PARTICLES; MODEL AB The densities of dark and baryonic matter are comparable: zeta rho(D)/rho(B) similar to O(1). This is surprising because they are controlled by different combinations of low-energy physics parameters. Here we consider the probability distribution over zeta in the landscape. We argue that the Why Comparable problem can be solved without detailed anthropic assumptions, and independently of the nature of dark matter. Overproduction of dark matter suppresses the probability like (1 + zeta)(-1), if the causal patch is used to regulate infinities. This suppression can counteract a prior distribution favoring large zeta, selecting zeta similar to O(1). This effect not only explains the Why Comparable coincidence but also renders otherwise implausible models of dark matter viable. For the special case of axion dark matter, Wilczek and independently Freivogel have already noted that a (1 + zeta)(-1) suppression prevents overproduction of a GUT-scale QCD axion. If the dark matter is the LSP, the effect can explain the moderate fine-tuning of the weak scale in simple supersymmetric models. C1 [Bousso, Raphael] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Ctr Theoret Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Bousso, R (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. FU Berkeley Center for Theoretical Physics; National Science Foundation [1002399, 0855653, 0756174]; fqxi Grant [RFP3-1004]; fqxi Grant "Multiverse Predictions for the LHC"; New Frontiers in Astronomy and Cosmology; U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Roni Harnik and Yasunori Nomura for discussions. This work was supported by the Berkeley Center for Theoretical Physics, by the National Science Foundation (Grants No. 1002399, No. 0855653, and No. 0756174), by fqxi Grant No. RFP3-1004, by fqxi Grant "Multiverse Predictions for the LHC," by "New Frontiers in Astronomy and Cosmology," and by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 40 TC 12 Z9 12 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD SEP 3 PY 2013 VL 88 IS 6 AR 063503 DI 10.1103/PhysRevD.88.063503 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 211GM UT WOS:000323894000007 ER PT J AU del Campo, A AF del Campo, Adolfo TI Shortcuts to Adiabaticity by Counterdiabatic Driving SO PHYSICAL REVIEW LETTERS LA English DT Article ID DYNAMICS; STATES; TRAPS AB The evolution of a system induced by counterdiabatic driving mimics the adiabatic dynamics without the requirement of slow driving. Engineering it involves diagonalizing the instantaneous Hamiltonian of the system and results in the need of auxiliary nonlocal interactions for matter waves. Here, experimentally realizable driving protocols are found for a large class of single-particle, many-body, and nonlinear systems without demanding the spectral properties as an input. The method is applied to the fast decompression of Bose-Einstein condensates in different trapping potentials. C1 [del Campo, Adolfo] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [del Campo, Adolfo] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP del Campo, A (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI del Campo, Adolfo/B-8439-2009 OI del Campo, Adolfo/0000-0003-2219-2851 FU U.S. Department of Energy through the LANL/LDRD Program; LANL J. Robert Oppenheimer fellowship FX The author would like to thank E. Passemar, D. Roy, and N. Sinitsyn for insightful discussions. This work is supported by the U.S. Department of Energy through the LANL/LDRD Program and LANL J. Robert Oppenheimer fellowship support. NR 42 TC 78 Z9 78 U1 1 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 3 PY 2013 VL 111 IS 10 AR 100502 DI 10.1103/PhysRevLett.111.100502 PG 5 WC Physics, Multidisciplinary SC Physics GA 211HW UT WOS:000323898300006 PM 25166641 ER PT J AU Jin, WC Yeh, PC Zaki, N Zhang, DT Sadowski, JT Al-Mahboob, A van der Zande, AM Chenet, DA Dadap, JI Herman, IP Sutter, P Hone, J Osgood, RM AF Jin, Wencan Yeh, Po-Chun Zaki, Nader Zhang, Datong Sadowski, Jerzy T. Al-Mahboob, Abdullah van der Zande, Arend M. Chenet, Daniel A. Dadap, Jerry I. Herman, Irving P. Sutter, Peter Hone, James Osgood, Richard M., Jr. TI Direct Measurement of the Thickness-Dependent Electronic Band Structure of MoS2 Using Angle-Resolved Photoemission Spectroscopy SO PHYSICAL REVIEW LETTERS LA English DT Article ID SINGLE-LAYER MOS2; TRANSITION-METAL DICHALCOGENIDES; MONOLAYER MOS2; MICROSCOPY; GRAPHENE AB We report on the evolution of the thickness-dependent electronic band structure of the two-dimensional layered-dichalcogenide molybdenum disulfide (MoS2). Micrometer-scale angle-resolved photoemission spectroscopy of mechanically exfoliated and chemical-vapor-deposition-grown crystals provides direct evidence for the shifting of the valence band maximum from (Gamma) over bar to (K) over bar, for the case of MoS2 having more than one layer, to the case of single-layer MoS2, as predicted by density functional theory. This evolution of the electronic structure from bulk to few-layer to monolayer MoS2 had earlier been predicted to arise from quantum confinement. Furthermore, one of the consequences of this progression in the electronic structure is the dramatic increase in the hole effective mass, in going from bulk to monolayer MoS2 at its Brillouin zone center, which is known as the cause for the decreased carrier mobility of the monolayer form compared to that of bulk MoS2. C1 [Jin, Wencan; Zhang, Datong; Dadap, Jerry I.; Herman, Irving P.; Osgood, Richard M., Jr.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Yeh, Po-Chun; Zaki, Nader; Osgood, Richard M., Jr.] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA. [Sadowski, Jerzy T.; Al-Mahboob, Abdullah; Sutter, Peter] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [van der Zande, Arend M.] Columbia Univ, Energy Frontier Res Ctr, New York, NY 10027 USA. [van der Zande, Arend M.; Chenet, Daniel A.; Hone, James] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA. RP Jin, WC (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. EM osgood@columbia.edu RI Hone, James/E-1879-2011; van der Zande, Arend/C-1989-2016; OI Hone, James/0000-0002-8084-3301; van der Zande, Arend/0000-0001-5104-9646; Sadowski, Jerzy/0000-0002-4365-7796 FU U.S. Department of Energy [DE-FG 02-04-ER-46157]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Center for Redefining Photovoltaic Efficiency through Molecular-Scale Control; U.S. Department of Energy ( DOE), Office of Science, Office of Basic Energy Sciences [DE-SC0001085] FX We acknowledge very useful discussions with Chris A. Marianetti and Philip Kim. This work was financially supported by the U.S. Department of Energy under Contract No. DE-FG 02-04-ER-46157. Research carried out in part at the Center for Functional Nanomaterials and National Synchrotron Light Source, Brookhaven National Laboratory, which are supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. D.Z., A.M.Z., D. C., I. P. H., and J.H. were supported as part of the Center for Redefining Photovoltaic Efficiency through Molecular-Scale Control, an Energy Frontier Research Center funded by the U.S. Department of Energy ( DOE), Office of Science, Office of Basic Energy Sciences under Award No. DE-SC0001085. NR 31 TC 134 Z9 134 U1 19 U2 249 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 3 PY 2013 VL 111 IS 10 AR 106801 DI 10.1103/PhysRevLett.111.106801 PG 5 WC Physics, Multidisciplinary SC Physics GA 211HW UT WOS:000323898300016 PM 25166690 ER PT J AU Lees, JP Poireau, V Tisserand, V Grauges, E Palano, A Eigen, G Stugu, B Brown, DN Kerth, LT Kolomensky, YG Lee, MJ Lynch, G Koch, H Schroeder, T Hearty, C Mattison, TS McKenna, JA So, RY Khan, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Yushkov, AN Kirkby, D Lankford, AJ Mandelkern, M Dey, B Gary, JW Long, O Vitug, GM Campagnari, C Sevilla, MF Hong, TM Kovalskyi, D Richman, JD West, CA Eisner, AM Lockman, WS Martinez, AJ Schumm, BA Seiden, A Chao, DS Cheng, CH Echenard, B Flood, KT Hitlin, DG Ongmongkolkul, P Porter, FC Andreassen, R Huard, Z Meadows, BT Sokoloff, MD Sun, L Bloom, PC Ford, WT Gaz, A Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Spaan, B Schubert, KR Schwierz, R Bernard, D Verderi, M Playfer, S Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Fioravanti, E Garzia, I Luppi, E Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Martellotti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Bhuyan, B Prasad, V Morii, M Adametz, A Uwer, U Lacker, HM Dauncey, PD Mallik, U Chen, C Cochran, J Meyer, WT Prell, S Rubin, AE Gritsan, AV Arnaud, N Davier, M Derkach, D Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Roudeau, P Stocchi, A Wormser, G Lange, DJ Wright, DM Coleman, JP Fry, JR Gabathuler, E Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Cowan, G Bougher, J Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Griessinger, K Hafner, A Prencipe, E Barlow, RJ Lafferty, GD Behn, E Cenci, R Hamilton, B Jawahery, A Roberts, DA Cowan, R Dujmic, D Sciolla, G Cheaib, R Patel, PM Robertson, SH Biassoni, P Neri, N Palombo, F Cremaldi, L Godang, R Sonnek, P Summers, DJ Nguyen, X Simard, M Taras, P De Nardo, G Monorchio, D Onorato, G Sciacca, C Martinelli, M Raven, G Jessop, CP LoSecco, JM Honscheid, K Kass, R Brau, J Frey, R Sinev, NB Strom, D Torrence, E Feltresi, E Margoni, M Morandin, M Posocco, M Rotondo, M Simi, G Simonetto, F Stroili, R Akar, S Ben-Haim, E Bomben, M Bonneaud, GR Briand, H Calderini, G Chauveau, J Leruste, P Marchiori, G Ocariz, J Sitt, S Biasini, M Manoni, E Pacetti, S Rossi, A Angelini, C Batignani, G Bettarini, S Carpinelli, M Casarosa, G Cervelli, A Forti, F Giorgi, MA Lusiani, A Oberhof, B Paoloni, E Perez, A Rizzo, G Walsh, JJ Pegna, DL Olsen, J Smith, AJS Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Piredda, G Buenger, C Gruenberg, O Hartmann, T Leddig, T Voss, C Waldi, R Adye, T Olaiya, EO Wilson, FF Emery, S de Monchenault, GH Vasseur, G Yeche, C Anulli, F Aston, D Bard, DJ Benitez, JF Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Ebert, M Field, RC Fulsom, BG Gabareen, AM Graham, MT Hast, C Innes, WR Kim, P Kocian, ML Leith, DWGS Lewis, P Lindemann, D Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Muller, DR Neal, H Nelson, S Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Snyder, A Su, D Sullivan, MK Va'vra, J Wagner, AP Wang, WF Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Ziegler, V Park, W Purohit, MV White, RM Wilson, JR Randle-Conde, A Sekula, SJ Bellis, M Burchat, PR Miyashita, TS Puccio, EMT Alam, MS Ernst, JA Gorodeisky, R Guttman, N Peimer, DR Soffer, A Spanier, SM Ritchie, JL Ruland, AM Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F De Mori, F Filippi, A Gamba, D Zambito, S Lanceri, L Vitale, L Martinez-Vidal, F Oyanguren, A Villanueva-Perez, P Ahmed, H Albert, J Banerjee, S Bernlochner, FU Choi, HHF King, GJ Kowalewski, R Lewczuk, MJ Lueck, T Nugent, IM Roney, JM Sobie, RJ Tasneem, N Gershon, TJ Harrison, PF Latham, TE Band, HR Dasu, S Pan, Y Prepost, R Wu, SL AF Lees, J. P. Poireau, V. Tisserand, V. Grauges, E. Palano, A. Eigen, G. Stugu, B. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lee, M. J. Lynch, G. Koch, H. Schroeder, T. Hearty, C. Mattison, T. S. McKenna, J. A. So, R. Y. Khan, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Kravchenko, E. A. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Yushkov, A. N. Kirkby, D. Lankford, A. J. Mandelkern, M. Dey, B. Gary, J. W. Long, O. Vitug, G. M. Campagnari, C. Sevilla, M. Franco Hong, T. M. Kovalskyi, D. Richman, J. D. West, C. A. Eisner, A. M. Lockman, W. S. Martinez, A. J. Schumm, B. A. Seiden, A. Chao, D. S. Cheng, C. H. Echenard, B. Flood, K. T. Hitlin, D. G. Ongmongkolkul, P. Porter, F. C. Andreassen, R. Huard, Z. Meadows, B. T. Sokoloff, M. D. Sun, L. Bloom, P. C. Ford, W. T. Gaz, A. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Spaan, B. Schubert, K. R. Schwierz, R. Bernard, D. Verderi, M. Playfer, S. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Fioravanti, E. Garzia, I. Luppi, E. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Martellotti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Bhuyan, B. Prasad, V. Morii, M. Adametz, A. Uwer, U. Lacker, H. M. Dauncey, P. D. Mallik, U. Chen, C. Cochran, J. Meyer, W. T. Prell, S. Rubin, A. E. Gritsan, A. V. Arnaud, N. Davier, M. Derkach, D. Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Roudeau, P. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Coleman, J. P. Fry, J. R. Gabathuler, E. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Cowan, G. Bougher, J. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Griessinger, K. Hafner, A. Prencipe, E. Barlow, R. J. Lafferty, G. D. Behn, E. Cenci, R. Hamilton, B. Jawahery, A. Roberts, D. A. Cowan, R. Dujmic, D. Sciolla, G. Cheaib, R. Patel, P. M. Robertson, S. H. Biassoni, P. Neri, N. Palombo, F. Cremaldi, L. Godang, R. Sonnek, P. Summers, D. J. Nguyen, X. Simard, M. Taras, P. De Nardo, G. Monorchio, D. Onorato, G. Sciacca, C. Martinelli, M. Raven, G. Jessop, C. P. LoSecco, J. M. Honscheid, K. Kass, R. Brau, J. Frey, R. Sinev, N. B. Strom, D. Torrence, E. Feltresi, E. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simi, G. Simonetto, F. Stroili, R. Akar, S. Ben-Haim, E. Bomben, M. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Leruste, Ph. Marchiori, G. Ocariz, J. Sitt, S. Biasini, M. Manoni, E. Pacetti, S. Rossi, A. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Oberhof, B. Paoloni, E. Perez, A. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Olsen, J. Smith, A. J. S. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Piredda, G. Buenger, C. Gruenberg, O. Hartmann, T. Leddig, T. Voss, C. Waldi, R. Adye, T. Olaiya, E. O. Wilson, F. F. Emery, S. de Monchenault, G. Hamel Vasseur, G. Yeche, Ch. Anulli, F. Aston, D. Bard, D. J. Benitez, J. F. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Ebert, M. Field, R. C. Fulsom, B. G. Gabareen, A. M. Graham, M. T. Hast, C. Innes, W. R. Kim, P. Kocian, M. L. Leith, D. W. G. S. Lewis, P. Lindemann, D. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Muller, D. R. Neal, H. Nelson, S. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Snyder, A. Su, D. Sullivan, M. K. Va'vra, J. Wagner, A. P. Wang, W. F. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Ziegler, V. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Randle-Conde, A. Sekula, S. J. Bellis, M. Burchat, P. R. Miyashita, T. S. Puccio, E. M. T. Alam, M. S. Ernst, J. A. Gorodeisky, R. Guttman, N. Peimer, D. R. Soffer, A. Spanier, S. M. Ritchie, J. L. Ruland, A. M. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. De Mori, F. Filippi, A. Gamba, D. Zambito, S. Lanceri, L. Vitale, L. Martinez-Vidal, F. Oyanguren, A. Villanueva-Perez, P. Ahmed, H. Albert, J. Banerjee, Sw. Bernlochner, F. U. Choi, H. H. F. King, G. J. Kowalewski, R. Lewczuk, M. J. Lueck, T. Nugent, I. M. Roney, J. M. Sobie, R. J. Tasneem, N. Gershon, T. J. Harrison, P. F. Latham, T. E. Band, H. R. Dasu, S. Pan, Y. Prepost, R. Wu, S. L. CA BaBar Collaboration TI Search for CP Violation in B-0-(B-0)over bar Mixing Using Partial Reconstruction of B-0 -> D*(-)Xl(+)nu(l) and a Kaon Tag SO PHYSICAL REVIEW LETTERS LA English DT Article ID BABAR DETECTOR AB We present results of a search for CP violation in B-0-(B) over bar (0) mixing with the BABAR detector. We select a sample of B0 -> D*-Xl(+)nu decays with a partial reconstruction method and use kaon tagging to assess the flavor of the other B meson in the event. We determine the CP violating asymmetryA(CP) [N((BB0)-B-0) - N((B-0) over bar (B-0) over bar)]/[N((B-0) over bar (B-0) over bar) + N((BB0)-B-0)] = (0.06 +/- 0.17 +/- 0.38-0.32)%, corresponding to Delta(CP) = 1- vertical bar q/p vertical bar = (0.29 +/- 0.84+1.88-1.61) X 10(-3). C1 [Lees, J. P.; Poireau, V.; Tisserand, V.] Univ Savoie, CNRS IN2P3, LAPP, F-74941 Annecy Le Vieux, France. [Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Palano, A.] INFN, Sez Bari, I-70126 Bari, Italy. [Palano, A.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lee, M. J.; Lynch, G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lee, M. J.; Lynch, G.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.] Budker Inst Nucl Phys SB RAS, Novosibirsk 630090, Russia. [Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Blinov, V. E.; Onuchin, A. P.] Novosibirsk State Tech Univ, Novosibirsk 630092, Russia. [Kirkby, D.; Lankford, A. J.; Mandelkern, M.] Univ Calif Irvine, Irvine, CA 92697 USA. [Dey, B.; Gary, J. W.; Long, O.; Vitug, G. M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Campagnari, C.; Sevilla, M. Franco; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Lockman, W. S.; Martinez, A. J.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Huard, Z.; Meadows, B. T.; Sokoloff, M. D.; Sun, L.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Spaan, B.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Playfer, S.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Piemontese, L.; Santoro, V.] INFN, Sez Ferrara, I-44122 Ferrara, Italy. [Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Nazl Frascati Lab, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.] INFN, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.; Prasad, V.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Meyer, W. T.; Prell, S.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gritsan, A. V.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Stocchi, A.; Wormser, G.] CNRS, Inst Natl Phys Nucl & Phys Particules, Accelerateur Lineaire Lab, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.] Univ London, London E1 4NS, England. [Cowan, G.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Bougher, J.; Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Prencipe, E.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Barlow, R. J.; Lafferty, G. D.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Behn, E.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.] Univ Maryland, College Pk, MD 20742 USA. [Cowan, R.; Dujmic, D.; Sciolla, G.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Cheaib, R.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Neri, N.; Palombo, F.] INFN, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Sonnek, P.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] INFN, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Martinelli, M.; Raven, G.] NIKHEF H, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Honscheid, K.; Kass, R.] Ohio State Univ, Columbus, OH 43210 USA. [Brau, J.; Frey, R.; Sinev, N. B.; Strom, D.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Feltresi, E.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simi, G.; Simonetto, F.; Stroili, R.] INFN, Sez Padova, I-35131 Padua, Italy. [Feltresi, E.; Margoni, M.; Simi, G.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, IN2P3 CNRS, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.; Angelini, C.] INFN, Sez Perugia, I-06123 Perugia, Italy. [Biasini, M.; Pacetti, S.; Angelini, C.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Adametz, A.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.] INFN, Sez Pisa, I-56127 Pisa, Italy. [Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Oberhof, B.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Olsen, J.; Smith, A. J. S.] Princeton Univ, Princeton, NJ 08544 USA. [Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Piredda, G.] INFN, Sez Roma, I-00185 Rome, Italy. [Faccini, R.; Ferroni, F.; Gaspero, M.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Buenger, C.; Gruenberg, O.; Hartmann, T.; Leddig, T.; Voss, C.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch.] CEA, Irfu, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Anulli, F.; Aston, D.; Bard, D. J.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Hast, C.; Innes, W. R.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Lindemann, D.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wagner, A. P.; Wang, W. F.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Randle-Conde, A.; Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Miyashita, T. S.; Puccio, E. M. T.; Ernst, J. A.] Stanford Univ, Stanford, CA 94305 USA. [Alam, M. S.] SUNY Albany, Albany, NY 12222 USA. [Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Ritchie, J. L.; Ruland, A. M.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.; Zambito, S.] INFN, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Zambito, S.] Univ Torino, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Lanceri, L.; Vitale, L.] INFN, Sez Trieste, I-34127 Trieste, Italy. [Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Martinez-Vidal, F.; Oyanguren, A.; Villanueva-Perez, P.] Univ Valencia CSIC, IFIC, E-46071 Valencia, Spain. [Ahmed, H.; Albert, J.; Banerjee, Sw.; Bernlochner, F. U.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lueck, T.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Latham, T. E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Peruzzi, I. M.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Lees, JP (reprint author), Univ Savoie, CNRS IN2P3, LAPP, F-74941 Annecy Le Vieux, France. RI Patrignani, Claudia/C-5223-2009; Kolomensky, Yury/I-3510-2015; Monge, Maria Roberta/G-9127-2012; Forti, Francesco/H-3035-2011; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; White, Ryan/E-2979-2015; Kravchenko, Evgeniy/F-5457-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Di Lodovico, Francesca/L-9109-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016 OI Patrignani, Claudia/0000-0002-5882-1747; Kolomensky, Yury/0000-0001-8496-9975; Monge, Maria Roberta/0000-0003-1633-3195; Forti, Francesco/0000-0001-6535-7965; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Di Lodovico, Francesca/0000-0003-3952-2175; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636 FU DOE (U.S.); NSF (U.S.); NSERC (Canada); IHEP (China); CEA; CNRS-IN2P3 (France); BMBF; DFG (Germany); INFN (Italy); FOM (Netherlands); NFR (Norway); MIST (Russia); MEC (Spain); PPARC (United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (U.S.), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and PPARC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation. NR 14 TC 18 Z9 18 U1 0 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 3 PY 2013 VL 111 IS 10 AR UNSP 101802 DI 10.1103/PhysRevLett.111.101802 PG 7 WC Physics, Multidisciplinary SC Physics GA 211HW UT WOS:000323898300010 PM 25166652 ER PT J AU Sakai, S Blanc, S Civelli, M Gallais, Y Cazayous, M Measson, MA Wen, JS Xu, ZJ Gu, GD Sangiovanni, G Motome, Y Held, K Sacuto, A Georges, A Imada, M AF Sakai, S. Blanc, S. Civelli, M. Gallais, Y. Cazayous, M. Measson, M. -A. Wen, J. S. Xu, Z. J. Gu, G. D. Sangiovanni, G. Motome, Y. Held, K. Sacuto, A. Georges, A. Imada, M. TI Raman-Scattering Measurements and Theory of the Energy-Momentum Spectrum for Underdoped Bi2Sr2CaCuO8+delta Superconductors: Evidence of an s-Wave Structure for the Pseudogap SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH-T-C; CUPRATE SUPERCONDUCTORS; FERMI-SURFACE; STATE; PHASE; GAP; BI2SR2CACU2O8+DELTA; SYMMETRY; LIQUID AB We reveal the full energy-momentum structure of the pseudogap of underdoped high-T-c cuprate superconductors. Our combined theoretical and experimental analysis explains the spectral-weight suppression observed in the B-2g Raman response at finite energies in terms of a pseudogap appearing in the single-electron excitation spectra above the Fermi level in the nodal direction of momentum space. This result suggests an s-wave pseudogap (which never closes in the energy-momentum space), distinct from the d-wave superconducting gap. Recent tunneling and photoemission experiments on underdoped cuprates also find a natural explanation within the s-wave pseudogap scenario. C1 [Sakai, S.; Georges, A.] Ecole Polytech, Ctr Phys Theor, CNRS, F-91128 Palaiseau, France. [Sakai, S.; Motome, Y.; Imada, M.] Univ Tokyo, Dept Appl Phys, Tokyo 1138656, Japan. [Sakai, S.; Georges, A.; Imada, M.] JST CREST, Bunkyo Ku, Tokyo 1138656, Japan. [Blanc, S.; Gallais, Y.; Cazayous, M.; Measson, M. -A.; Sacuto, A.] Univ Paris 07, Lab Mat & Phenomnes Quant, UMR CNRS 7162, F-75205 Paris 13, France. [Civelli, M.] Univ Paris 11, Phys Solides Lab, CNRS, UMR 8502, F-91405 Orsay, France. [Wen, J. S.; Xu, Z. J.; Gu, G. D.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Sangiovanni, G.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Sangiovanni, G.; Held, K.] Vienna Univ Technol, Inst Solid State Phys, A-1040 Vienna, Austria. [Georges, A.] Coll France, F-75005 Paris, France. [Georges, A.] Univ Geneva, DPMC, CH-1211 Geneva, Switzerland. RP Sakai, S (reprint author), Ecole Polytech, Ctr Phys Theor, CNRS, F-91128 Palaiseau, France. RI Wen, Jinsheng/F-4209-2010; Georges, Antoine/H-4855-2012; Sangiovanni, Giorgio/L-5893-2013; Gallais, Yann/E-5240-2011; xu, zhijun/A-3264-2013; Measson, Marie-aude/E-6388-2015; Held, Karsten/O-4178-2015; Sacuto, Alain/L-2620-2016 OI Wen, Jinsheng/0000-0001-5864-1466; Georges, Antoine/0000-0001-9479-9682; Sangiovanni, Giorgio/0000-0003-2218-2901; Gallais, Yann/0000-0002-0589-1522; xu, zhijun/0000-0001-7486-2015; Measson, Marie-aude/0000-0002-6495-7376; Held, Karsten/0000-0001-5984-8549; Sacuto, Alain/0000-0002-8351-6154 FU MEXT, Japan [22340090]; Strategic Programs for Innovative Research (SPIRE), MEXT; Computational Materials Science Initiative (CMSI), Japan; Austrian Science Fund (FWF) through SFB ViCoM [F4103-N13]; FWF [M1136]; l'Agence Nationale de la Recherche [BLAN07-1-183876]; DOE [DE-AC02-98CH10886] FX We acknowledge valuable comments by A. Tremblay. M. Ci. acknowledges discussions with V. Brouet, A. Cano, B. G. Kotliar, I. Paul, and A. Santander-Syro. The work was supported by a Grant-in-Aid for Scientific Research (Grant No. 22340090) from MEXT, Japan. A part of the research has been funded by the Strategic Programs for Innovative Research (SPIRE), MEXT, and the Computational Materials Science Initiative (CMSI), Japan. K. H. is supported by the Austrian Science Fund (FWF) through SFB ViCoM F4103-N13, and G. S. by the FWF under "Lise-Meitner'' Grant No. M1136. S. B., Y. G., M. Ca., M.-A. M., and A. S. acknowledge support from l'Agence Nationale de la Recherche through Grant No. BLAN07-1-183876, "GAPSUPRA." The work in BNL is supported by the DOE under Contract No. DE-AC02-98CH10886. The calculations were performed at the Vienna Scientific Cluster and at the Supercomputer Center, ISSP, University of Tokyo. NR 52 TC 34 Z9 34 U1 3 U2 43 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 3 PY 2013 VL 111 IS 10 AR 107001 DI 10.1103/PhysRevLett.111.107001 PG 5 WC Physics, Multidisciplinary SC Physics GA 211HW UT WOS:000323898300017 PM 25166695 ER PT J AU Takamura, Y Folven, E Shu, JBR Lukes, KR Li, BZ Scholl, A Young, AT Retterer, ST Tybell, T Grepstad, JK AF Takamura, Yayoi Folven, Erik Shu, Jonathan B. R. Lukes, Karl R. Li, Binzhi Scholl, Andreas Young, Anthony T. Retterer, Scott T. Tybell, Thomas Grepstad, Jostein K. TI Spin-Flop Coupling and Exchange Bias in Embedded Complex Oxide Micromagnets SO PHYSICAL REVIEW LETTERS LA English DT Article ID THIN-FILMS; LENGTH SCALES; NANOSTRUCTURES; STATES AB The magnetic domains of embedded micromagnets with 2 mu m X 2 mu m dimensions defined in epitaxial La0.7Sr0.3MnO3 (LSMO) thin films and LaFeO3/LSMO bilayers were investigated using soft x-ray magnetic microscopy. Square micromagnets aligned with their edges parallel to the easy axes of LSMO provide an ideal experimental geometry for probing the influence of interface exchange coupling on the magnetic domain patterns. The observation of unique domain patterns not reported for ferromagnetic metal microstructures, namely divergent antiferromagnetic vortex domains and "Z"-type domains, suggests the simultaneous presence of spin-flop coupling and local exchange bias in this system. C1 [Takamura, Yayoi; Shu, Jonathan B. R.; Lukes, Karl R.; Li, Binzhi] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Folven, Erik; Tybell, Thomas; Grepstad, Jostein K.] Norwegian Univ Sci & Technol, Dept Elect & Telecommun, NO-7491 Trondheim, Norway. [Scholl, Andreas; Young, Anthony T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Retterer, Scott T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Takamura, Y (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. EM ytakamura@ucdavis.edu RI Tybell, Thomas/B-8297-2013; Folven, Erik/D-5218-2013; Retterer, Scott/A-5256-2011; Scholl, Andreas/K-4876-2012 OI Tybell, Thomas/0000-0003-0787-8476; Folven, Erik/0000-0003-4036-0505; Retterer, Scott/0000-0001-8534-1979; FU Oak Ridge National Laboratory; Office of Basic Energy Sciences, U.S. Department of Energy (DOE); Office of Science, Office of Basic Energy Sciences, of the U.S. DOE [DE-AC02-05CH11231]; Research Council of Norway [190086/S10]; National Science Foundation [DMR 0747896] FX Part of this work was carried out at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy (DOE). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. DOE under Contract No. DE-AC02-05CH11231. Funding for these experiments was obtained from the Research Council of Norway under Contract No. 190086/S10 and the National Science Foundation (DMR 0747896). NR 37 TC 8 Z9 8 U1 4 U2 97 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 3 PY 2013 VL 111 IS 10 AR 107201 DI 10.1103/PhysRevLett.111.107201 PG 5 WC Physics, Multidisciplinary SC Physics GA 211HW UT WOS:000323898300018 PM 25166703 ER PT J AU Payne, CM Resch, MG Chen, LQ Crowley, MF Himmel, ME Taylor, LE Sandgren, M Stahlberg, J Stals, I Tan, ZP Beckham, GT AF Payne, Christina M. Resch, Michael G. Chen, Liqun Crowley, Michael F. Himmel, Michael E. Taylor, Larry E., II Sandgren, Mats Stahlberg, Jerry Stals, Ingeborg Tan, Zhongping Beckham, Gregg T. TI Glycosylated linkers in multimodular lignocellulose-degrading enzymes dynamically bind to cellulose SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE biofuels; cellulase; post-translational modification; carbohydrate recognition ID REESEI CELLOBIOHYDROLASE-I; TRICHODERMA-REESEI; CRYSTALLINE CELLULOSE; BIOMASS RECALCITRANCE; SERRATIA-MARCESCENS; MOLECULAR-DYNAMICS; DISORDERED PROTEIN; X-RAY; DEGRADATION; MODULES AB Plant cell-wall polysaccharides represent a vast source of food in nature. To depolymerize polysaccharides to soluble sugars, many organisms use multifunctional enzyme mixtures consisting of glycoside hydrolases, lytic polysaccharide mono-oxygenases, polysaccharide lyases, and carbohydrate esterases, as well as accessory, redox-active enzymes for lignin depolymerization. Many of these enzymes that degrade lignocellulose are multimodular with carbohydrate-binding modules (CBMs) and catalytic domains connected by flexible, glycosylated linkers. These linkers have long been thought to simply serve as a tether between structured domains or to act in an inchworm-like fashion during catalytic action. To examine linker function, we performed molecular dynamics (MD) simulations of the Trichoderma reesei Family 6 and Family 7 cellobiohydrolases (TrCel6A and TrCel7A, respectively) bound to cellulose. During these simulations, the glycosylated linkers bind directly to cellulose, suggesting a previously unknown role in enzyme action. The prediction from the MD simulations was examined experimentally by measuring the binding affinity of the Cel7A CBM and the natively glycosylated Cel7A CBM-linker. On crystalline cellulose, the glycosylated linker enhances the binding affinity over the CBM alone by an order of magnitude. The MD simulations before and after binding of the linker also suggest that the bound linker may affect enzyme action due to significant damping in the enzyme fluctuations. Together, these results suggest that glycosylated linkers in carbohydrate-active enzymes, which are intrinsically disordered proteins in solution, aid in dynamic binding during the enzymatic deconstruction of plant cell walls. C1 [Payne, Christina M.; Resch, Michael G.; Crowley, Michael F.; Himmel, Michael E.; Taylor, Larry E., II] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. [Beckham, Gregg T.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Payne, Christina M.] Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40506 USA. [Chen, Liqun; Tan, Zhongping] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80303 USA. [Chen, Liqun; Tan, Zhongping] Univ Colorado, BioFrontiers Inst, Boulder, CO 80303 USA. [Sandgren, Mats; Stahlberg, Jerry] Swedish Univ Agr Sci, Dept Mol Biol, SE-75007 Uppsala, Sweden. [Stals, Ingeborg] Univ Coll Ghent, Fac Appl Biosci Engn, B-9000 Ghent, Belgium. [Stals, Ingeborg] Univ Ghent, Dept Biochem & Mol Biol, B-9000 Ghent, Belgium. [Beckham, Gregg T.] Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA. RP Stals, I (reprint author), Univ Coll Ghent, Fac Appl Biosci Engn, B-9000 Ghent, Belgium. EM ingeborg.stals@hogent.be; zhongping.tan@colorado.edu; gregg.beckham@nrel.gov RI crowley, michael/A-4852-2013; Stahlberg, Jerry/D-4163-2013; Payne, Christina/C-7338-2011 OI crowley, michael/0000-0001-5163-9398; Stahlberg, Jerry/0000-0003-4059-8580; Payne, Christina/0000-0001-5264-0964 FU BioEnergy Technologies Office; University of Colorado Boulder; University College Ghent; National Science Foundation through Extreme Science and Engineering Discovery Environment resources on the National Institute for Computational Science Kraken and Athena clusters [TG-MCB090159]; National Renewable Energy Laboratory Computational Sciences Center; US Department of Energy (DOE) Energy Efficiency and Renewable Energy [DE-AC36-08GO28308]; ORNL Center for Structural Molecular Biology [ERKP291]; US DOE Office of Science, Office of Biological and Environmental Research FX We thank the Proteomics and Metabolomics Facility at Colorado State University for analyzing the glycosylated CBM-linker, colleagues at DuPont Industrial Biosciences for helpful discussions, Steve Decker for a critical reading of the manuscript, and L. Zhong and J. F. Matthews for providing a preliminary model of TrCel7A. C. M. P., M. G. R., M. E. H., L. E. T., M. F. C., and G. T. B. thank the BioEnergy Technologies Office for funding this work. L. C. and Z.T. thank the University of Colorado Boulder for funding. I. S. acknowledges the Research Fund of the University College Ghent. M. S. and J. S. acknowledge the Faculty for Natural Resources and Agriculture at the Swedish University of Agricultural Sciences through the research program MicroDrivE. Computational time for this research was supported in part by the National Science Foundation through Extreme Science and Engineering Discovery Environment resources on the National Institute for Computational Science Kraken and Athena clusters, under Grant TG-MCB090159 and by the National Renewable Energy Laboratory Computational Sciences Center supported by US Department of Energy (DOE) Energy Efficiency and Renewable Energy under Contract DE-AC36-08GO28308. The Biofuels Science Focus Area (FWP ERKP752) at Oak Ridge National Laboratory (ORNL) and the ORNL Center for Structural Molecular Biology (Project ERKP291), funded by the US DOE Office of Science, Office of Biological and Environmental Research are acknowledged for preparing the bacterial cellulose used in this study. NR 56 TC 55 Z9 55 U1 6 U2 120 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 3 PY 2013 VL 110 IS 36 BP 14646 EP 14651 DI 10.1073/pnas.1309106110 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 211DY UT WOS:000323886200042 PM 23959893 ER PT J AU Zhang, KW Halitschke, R Yin, CX Liu, CJ Gan, SS AF Zhang, Kewei Halitschke, Rayko Yin, Changxi Liu, Chang-Jun Gan, Su-Sheng TI Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE aging; benzoic acid; disease resistance; NahG; senescence-associated gene ID ACQUIRED-RESISTANCE; GENE-EXPRESSION; SENESCENCE; TOBACCO; BIOSYNTHESIS; THALIANA; TRANSCRIPTOME; HYDROXYLASE; PATHOGENS; OXYGENASE AB The plant hormone salicylic acid (SA) plays critical roles in plant defense, stress responses, and senescence. Although SA biosynthesis is well understood, the pathways by which SA is catabolized remain elusive. Here we report the identification and characterization of an SA 3-hydroxylase (S3H) involved in SA catabolism during leaf senescence. S3H is associated with senescence and is inducible by SA and is thus a key part of a negative feedback regulation system of SA levels during senescence. The enzyme converts SA (with a Km of 58.29 mu M) to both 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,5-DHBA in vitro but only 2,3-DHBA in vivo. The s3h knockout mutants fail to produce 2,3-DHBA sugar conjugates, accumulate very high levels of SA and its sugar conjugates, and exhibit a precocious senescence phenotype. Conversely, the gain-of-function lines contain high levels of 2,3-DHBA sugar conjugates and extremely low levels of SA and its sugar conjugates and display a significantly extended leaf longevity. This research reveals an elegant SA catabolic mechanism by which plants regulate SA levels by converting it to 2,3-DHBA to prevent SA over-accumulation. The research also provides strong molecular genetic evidence for an important role of SA in regulating the onset and rate of leaf senescence. C1 [Zhang, Kewei; Yin, Changxi; Gan, Su-Sheng] Cornell Univ, Dept Hort, Ithaca, NY 14853 USA. [Halitschke, Rayko] Cornell Univ, Dept Ecol & Evolutionary Biol, Ithaca, NY 14853 USA. [Gan, Su-Sheng] Cornell Univ, Dept Plant Breeding & Genet, Ithaca, NY 14853 USA. [Zhang, Kewei; Liu, Chang-Jun] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Gan, SS (reprint author), Cornell Univ, Dept Hort, Ithaca, NY 14853 USA. EM SG288@cornell.edu FU Department of Energy (DOE) [DE-FG02-02ER15341]; National Science Foundation (NSF) [MCB-0445596]; DOE [DEAC0298CH10886 (BO-147)]; NSF [MCB-1051675] FX We thank Dr. Richard Amasino (University of Wisconsin-Madison) and William Gan (Cornell University) for critical readings of the manuscript and Dr. Daniel Klessig (Boyce Thompson Institute) for useful discussion. Arabidopsis Biological Resource Center (Columbus, Ohio) is thanked for sending us the T-DNA insertion mutant seed and the BAC F7L13 DNA. This research was supported by Department of Energy (DOE) Grant DE-FG02-02ER15341 and National Science Foundation (NSF) Grant MCB-0445596 (to S.-S.G.) and DOE Grant DEAC0298CH10886 (BO-147) and NSF Grant MCB-1051675 (to C.-J.L.). NR 35 TC 39 Z9 43 U1 1 U2 65 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 3 PY 2013 VL 110 IS 36 BP 14807 EP 14812 DI 10.1073/pnas.1302702110 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 211DY UT WOS:000323886200069 PM 23959884 ER PT J AU Perelson, AS Ribeiro, RM AF Perelson, Alan S. Ribeiro, Ruy M. TI Modeling the within-host dynamics of HIV infection SO BMC BIOLOGY LA English DT Review ID IMMUNODEFICIENCY-VIRUS-INFECTION; ACTIVE ANTIRETROVIRAL THERAPY; CD8(+) T-CELLS; FOLLICULAR DENDRITIC CELLS; IN-VIVO; VIRAL DYNAMICS; DRUG-RESISTANCE; REVERSE-TRANSCRIPTASE; TYPE-1 INFECTION; COMBINATION THERAPY AB The new field of viral dynamics, based on within-host modeling of viral infections, began with models of human immunodeficiency virus (HIV), but now includes many viral infections. Here we review developments in HIV modeling, emphasizing quantitative findings about HIV biology uncovered by studying acute infection, the response to drug therapy and the rate of generation of HIV variants that escape immune responses. We show how modeling has revealed many dynamical features of HIV infection and how it may provide insight into the ultimate cure for this infection. C1 [Perelson, Alan S.; Ribeiro, Ruy M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Perelson, AS (reprint author), Los Alamos Natl Lab, MS K710, Los Alamos, NM 87545 USA. EM asp@lanl.gov OI Ribeiro, Ruy/0000-0002-3988-8241 FU US Department of Energy [DE-AC52-06NA25396]; NIH [P20-GM103452, OD011095, AI028433]; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery [UM1-AI100645-01]; EU [PCOFUND-GA-2009-246542]; FCT Portugal FX Portions of this work were performed under the auspices of the US Department of Energy under contract DE-AC52-06NA25396 and supported by NIH grants P20-GM103452, OD011095, AI028433, and the Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery grant number UM1-AI100645-01. RMR received partial funding from the EU 7th Framework Program under grant no. PCOFUND-GA-2009-246542 and from FCT Portugal and part of his work was done while visiting Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal. NR 122 TC 50 Z9 50 U1 4 U2 45 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1741-7007 J9 BMC BIOL JI BMC Biol. PD SEP 3 PY 2013 VL 11 AR 96 DI 10.1186/1741-7007-11-96 PG 10 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 210MC UT WOS:000323836600001 PM 24020860 ER PT J AU Campanell, M Wang, HY AF Campanell, Michael Wang, Hongyue TI Influence of emitted electrons transiting between surfaces on plasma-surface interaction SO APPLIED PHYSICS LETTERS LA English DT Article ID SECONDARY ELECTRONS; HALL THRUSTER; EMISSION; SHEATH; SPACE; SIMULATION; DISCHARGE; COLLECTOR; CATHODE AB Emitted electrons are accelerated back into the plasma by the sheath. If their mean free path is large, they can propagate directly to another surface without suffering collisions. We analyze the effects of "transit" on plasma-surface interaction. When transit occurs, surfaces exchanging electrons are intricately coupled. All surfaces float more negatively than they would if the emission collisionally remixed with the bulk plasma. Asymmetries of the system drive a net "transit current" between the surfaces, which influences their potential difference. The larger the initial energy spread of the emitted electrons, the larger the potential difference. (C) 2013 AIP Publishing LLC. C1 [Campanell, Michael] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Wang, Hongyue] Beijing Univ Aeronaut & Astronaut, Beijing 100083, Peoples R China. RP Campanell, M (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU U.S. Department of Energy [DE-AC02-09CH11466] FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-09CH11466. NR 25 TC 1 Z9 1 U1 2 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 2 PY 2013 VL 103 IS 10 AR 104104 DI 10.1063/1.4820352 PG 4 WC Physics, Applied SC Physics GA 217VG UT WOS:000324389700071 ER PT J AU Cao, W Singh, R Zhang, CH Han, JG Tonouchi, M Zhang, WL AF Cao, Wei Singh, Ranjan Zhang, Caihong Han, Jiaguang Tonouchi, Masayoshi Zhang, Weili TI Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators SO APPLIED PHYSICS LETTERS LA English DT Article ID ELECTROMAGNETICALLY-INDUCED TRANSPARENCY; TERAHERTZ METAMATERIALS; FANO RESONANCES; CLASSICAL ANALOG AB Structured plasmonic metamaterial devices offer the design flexibility to be size scaled for operation across the electromagnetic spectrum and are extremely attractive for generating electromagnetically induced transparency and slow-light behaviors via coupling of bright and dark subwavelength resonators. Here, we experimentally demonstrate a thermally active superconductor-metal coupled resonator based hybrid terahertz metamaterial on a sapphire substrate that shows tunable transparency and slow light behavior as the metamaterial chip is cooled below the high-temperature superconducting phase transition temperature. This hybrid metamaterial opens up the avenues for designing micro-sized active circuitry with switching, modulation, and "slowing down terahertz light" capabilities. (C) 2013 AIP Publishing LLC. C1 [Cao, Wei; Zhang, Weili] Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA. [Singh, Ranjan] Los Alamos Natl Lab, AOT HPE, Los Alamos, NM 87545 USA. [Zhang, Caihong; Tonouchi, Masayoshi] Osaka Univ, Inst Laser Engn, Suita, Osaka 5650871, Japan. [Han, Jiaguang; Zhang, Weili] Tianjin Univ, Ctr Terahertz Waves, Tianjin 300072, Peoples R China. [Han, Jiaguang; Zhang, Weili] Tianjin Univ, Coll Precis Instrument & Optoelect Engn, Tianjin 300072, Peoples R China. [Han, Jiaguang; Zhang, Weili] Minist Educ, Key Lab Optoelect Informat & Technol, Tianjin 300072, Peoples R China. RP Singh, R (reprint author), Los Alamos Natl Lab, AOT HPE, POB 1663, Los Alamos, NM 87545 USA. EM ranjan.ranjansingh@gmail.com; jiaghan@tju.edu.cn; weili.zhang@okstate.edu RI Singh, Ranjan/B-4091-2010; Zhang, Weili/C-5416-2011; Tonouchi, Masayoshi/I-2402-2015 OI Singh, Ranjan/0000-0001-8068-7428; Zhang, Weili/0000-0002-8591-0200; Tonouchi, Masayoshi/0000-0002-9284-3501 FU U.S. National Science Foundation [ECCS-1232081]; National Science Foundation of China [61138001, 61028011, 61007034] FX This work was supported by the U.S. National Science Foundation (Grand No. ECCS-1232081) and the National Science Foundation of China (Grant Nos. 61138001, 61028011, and 61007034). NR 51 TC 55 Z9 55 U1 9 U2 105 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 2 PY 2013 VL 103 IS 10 AR 101106 DI 10.1063/1.4819389 PG 5 WC Physics, Applied SC Physics GA 217VG UT WOS:000324389700006 ER PT J AU Das, S Appenzeller, J AF Das, Saptarshi Appenzeller, Joerg TI WSe2 field effect transistors with enhanced ambipolar characteristics SO APPLIED PHYSICS LETTERS LA English DT Article ID THIN-FILM TRANSISTORS; MOS2 TRANSISTORS; MULTILAYER MOS2; NANOTUBE TRANSISTORS; ELECTRONIC-STRUCTURE; PERFORMANCE; CONTACTS; INTERFACES; SURFACES; STATES AB One of the most relevant features that a semiconducting channel material can offer when used in a field-effect transistor (FET) layout is its capability to enable both electron transport in the conduction band and hole transport in the valence band. In this way, complementary metal-oxide-semiconductor type applications become feasible once similar electron and hole drive current densities are achieved, and the threshold voltages are properly adjusted. In this article, we demonstrate pronounced ambipolar device characteristics of multilayer WSe2 FETs using different contact electrodes. Our study reveals that nickel electrodes facilitate electron injection while palladium electrodes are more efficient for hole injection. We also show, as an interesting demonstration, that by using nickel as the source contact electrode and palladium as the drain contact electrode, ambipolar device characteristics with similar on-state performance for both the electron and the hole branch can be achieved in WSe2 FETs. Finally, we discuss a unique technique based on the asymmetry in the ambipolar device characteristics to extract the Schottky barrier heights for such metal to WSe2 contacts. (C) 2013 AIP Publishing LLC. C1 [Das, Saptarshi; Appenzeller, Joerg] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA. [Das, Saptarshi; Appenzeller, Joerg] Purdue Univ, Dept ECE, W Lafayette, IN 47907 USA. [Das, Saptarshi] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA. RP Das, S (reprint author), Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA. FU STARnet, a Semiconductor Research Corporation program; MARCO; DARPA FX This work was in part supported by STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA. NR 30 TC 83 Z9 84 U1 21 U2 127 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 2 PY 2013 VL 103 IS 10 AR 103501 DI 10.1063/1.4820408 PG 5 WC Physics, Applied SC Physics GA 217VG UT WOS:000324389700055 ER PT J AU Hayton, DJ Khudchenko, A Pavelyev, DG Hovenier, JN Baryshev, A Gao, JR Kao, TY Hu, Q Reno, JL Vaks, V AF Hayton, D. J. Khudchenko, A. Pavelyev, D. G. Hovenier, J. N. Baryshev, A. Gao, J. R. Kao, T. Y. Hu, Q. Reno, J. L. Vaks, V. TI Phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser using a room-temperature superlattice harmonic mixer (vol 103, 051115, 2013) SO APPLIED PHYSICS LETTERS LA English DT Correction C1 [Hayton, D. J.; Khudchenko, A.; Baryshev, A.; Gao, J. R.] Univ Groningen, SRON Netherlands Inst Space Res, NL-9474 AD Groningen, Netherlands. [Pavelyev, D. G.] Lobachevskii State Univ Nizhny Novgorod, Nizhnii Novgorod 603950, Russia. [Hovenier, J. N.; Gao, J. R.] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands. [Kao, T. Y.; Hu, Q.] MIT, Dept Elect Engn & Comp Sci, Elect Res Lab, Cambridge, MA 02139 USA. [Reno, J. L.] Sandia Natl Labs, CINT, Albuquerque, NM 87185 USA. [Vaks, V.] Russian Acad Sci, Inst Phys Microstruct, Nizhnii Novgorod 603950, Russia. RP Hayton, DJ (reprint author), Univ Groningen, SRON Netherlands Inst Space Res, NL-9474 AD Groningen, Netherlands. EM d.j.hayton@sron.nl; j.r.gao@tudelft.nl RI Khudchenko, Andrey/K-3327-2015 OI Khudchenko, Andrey/0000-0002-8070-917X NR 1 TC 0 Z9 0 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 2 PY 2013 VL 103 IS 10 AR 109903 DI 10.1063/1.4819755 PG 1 WC Physics, Applied SC Physics GA 217VG UT WOS:000324389700078 ER PT J AU Narangammana, LK Liu, X Nie, YF Rueckert, FJ Budnick, JI Hines, WA Gu, G Wells, BO AF Narangammana, L. K. Liu, X. Nie, Y. F. Rueckert, F. J. Budnick, J. I. Hines, W. A. Gu, G. Wells, B. O. TI Low temperature crystal structure and large lattice discontinuity at T-c in superconducting FeTeOx films SO APPLIED PHYSICS LETTERS LA English DT Article AB We report a high resolution x-ray diffraction study of the crystal structure of superconducting FeTeOx films. The crystal symmetry of FeTeOx matches the parent FeTe, unlike most iron-based superconductors. However, at the superconducting transition there is a large change in the c-axis lattice parameter. Such a discontinuity in the thermal expansion is known in normal-to-superconducting phase transitions, but here the effect is far larger than for other iron-based superconductors. Following the typical analysis of such a discontinuity in thermal expansion using the Ehrenfest-relation leads to a prediction of a large enhancement of T-c in strained FeTeOx films. (C) 2013 AIP Publishing LLC. C1 [Narangammana, L. K.; Nie, Y. F.; Rueckert, F. J.; Budnick, J. I.; Hines, W. A.; Wells, B. O.] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Liu, X.] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Liu, X.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Liu, X.; Gu, G.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Nie, YF (reprint author), Cornell Univ, Dept Phys, Lab Atom & Solid State Phys, Ithaca, NY 14853 USA. RI Nie, Yuefeng/A-1595-2013; Nie, Yuefeng/L-8071-2013 OI Nie, Yuefeng/0000-0002-3449-5393; Nie, Yuefeng/0000-0002-3449-5393 FU U.S. DOE [DE-FG02-00ER45801]; office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-98CH10886] FX We thank J. Hill, H. E. Mohottala, and Z. H. Zhu for their helpful discussions. This work was supported by the U.S. DOE under Contract No. DE-FG02-00ER45801. Use of the National Synchrotron Light Source, Brookhaven National Laboratory was supported by the office of Science, Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC02-98CH10886. NR 30 TC 1 Z9 1 U1 3 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 2 PY 2013 VL 103 IS 10 AR 102604 DI 10.1063/1.4820479 PG 4 WC Physics, Applied SC Physics GA 217VG UT WOS:000324389700042 ER PT J AU Prestgard, MC Siegel, G Ma, Q Tiwari, A AF Prestgard, M. C. Siegel, G. Ma, Q. Tiwari, A. TI Magnetic characteristics of phase-separated CeO2:Co thin films SO APPLIED PHYSICS LETTERS LA English DT Article ID CO-DOPED CEO2; ROOM-TEMPERATURE; SPINTRONICS; SEMICONDUCTORS; FERROMAGNETISM; BEHAVIOR; GAN AB Herewith, we are reporting the magnetic properties of phase-separated Co-doped CeO2 films (with a Ce:Co atomic-ratio of 0.97:0.03) grown on single-crystal SrTiO3 (001) substrates. A comparison of the magnetic characteristics of these films with those of homogenously doped CeO2:Co films of the same composition illustrates the significant differences in their magnetic behavior. These behavioral characteristics provide a model for determining if the magnetic behavior observed in this, as well as in other diluted magnetic dielectric systems, is due to homogeneous doping, a mixture of doping and transition metal cluster formation, or exists purely as a result of transition metal clustering. (C) 2013 AIP Publishing LLC. C1 [Prestgard, M. C.; Siegel, G.; Tiwari, A.] Univ Utah, Dept Mat Sci & Engn, Nanostruct Mat Res Lab, Salt Lake City, UT 84112 USA. [Ma, Q.] Argonne Natl Lab, Adv Photon Source, Northwestern Synchrotron Res Ctr, DND CAT, Argonne, IL 60439 USA. RP Tiwari, A (reprint author), Univ Utah, Dept Mat Sci & Engn, Nanostruct Mat Res Lab, Salt Lake City, UT 84112 USA. EM tiwari@eng.utah.edu FU NSF [1121252, DMR-0746486, CMMI-1234338]; E. I. DuPont de Nemours Co.; Dow Chemical Company; State of Illinois; DOE's Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Financial support from NSF through Award No. 1121252 (CEMRI), Award No. DMR-0746486 (CAREER), and Award No. CMMI-1234338 is thankfully acknowledged. Research at DND-CAT was supported by E. I. DuPont de Nemours & Co., The Dow Chemical Company, and the State of Illinois. Use of the APS facilities was supported by the DOE's Office of Basic Energy Sciences, under the Contract No. DE-AC02-06CH11357. NR 28 TC 4 Z9 4 U1 1 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 2 PY 2013 VL 103 IS 10 AR 102409 DI 10.1063/1.4820145 PG 4 WC Physics, Applied SC Physics GA 217VG UT WOS:000324389700036 ER PT J AU Tschauner, O Kiefer, B Tetard, F Tait, K Bourguille, J Zerr, A Dera, P McDowell, A Knight, J Clark, S AF Tschauner, Oliver Kiefer, Boris Tetard, Florent Tait, Kimberly Bourguille, Judith Zerr, Andreas Dera, Przemyslaw McDowell, Alastair Knight, Jason Clark, Simon TI Elastic moduli and hardness of highly incompressible platinum perpnictide PtAs2 SO APPLIED PHYSICS LETTERS LA English DT Article ID AUGMENTED-WAVE METHOD; HIGH-PRESSURE; ELECTRONIC-STRUCTURE; PHASE-TRANSITIONS; STATE; PREDICTION; TOUGHNESS; CONTACTS; FRACTURE; NITRIDE AB PtAs2 appears to be the least compressible known arsenide with a bulk modulus of 220(5) GPa and a shear modulus of between 64 and 77 GPa. PtAs2 has a hardness of 11(1) GPa, which is remarkably high for an arsenide. These elastic and mechanical properties in combination with the known chemical inertness and the small indirect band gap add interest to the use and occurrence of PtAs2 at Pt-GaAs contacts in transistors. We note the modest fracture toughness of 1.1-1.6 MPa m(1/2) of PtAs2. (C) 2013 AIP Publishing LLC. C1 [Tschauner, Oliver] Univ Nevada, Dept Geosci, High Pressure Sci & Engn Ctr, Las Vegas, NV 89154 USA. [Kiefer, Boris] New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA. [Tetard, Florent; Bourguille, Judith; Zerr, Andreas] LSPM CNRS, F-93430 Villetaneuse, France. [Tait, Kimberly] Univ Toronto, Dept Earth Sci, Toronto, ON M5S 3B1, Canada. [Dera, Przemyslaw] Univ Chicago, Argonne Natl Lab, Argonne, IL 60439 USA. [McDowell, Alastair; Knight, Jason; Clark, Simon] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Tschauner, O (reprint author), Univ Nevada, Dept Geosci, High Pressure Sci & Engn Ctr, Las Vegas, NV 89154 USA. RI Tetard, Florent/B-9004-2014; OI Tetard, Florent/0000-0001-6095-8892; Tetard, Florent/0000-0003-3938-215X; Zerr, Andreas/0000-0002-4744-3074 FU NNSA through DOE [DE-NA0001982]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This research was supported by NNSA through DOE Cooperative Agreement DE-NA0001982. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 41 TC 1 Z9 1 U1 5 U2 25 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 2 PY 2013 VL 103 IS 10 AR 101901 DI 10.1063/1.4819143 PG 5 WC Physics, Applied SC Physics GA 217VG UT WOS:000324389700012 ER PT J AU Varley, JB Lordi, V AF Varley, J. B. Lordi, V. TI Electrical properties of point defects in CdS and ZnS SO APPLIED PHYSICS LETTERS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; CHALCOPYRITE SOLAR-CELLS; II-VI COMPOUNDS; WAVE BASIS-SET; BAND-GAP; EFFICIENCY; SEMICONDUCTORS AB We investigate native point defects in CdS and ZnS, which are conventional n-type buffer layers used in thin-film solar cells. Using hybrid functional calculations, we characterize the electrical behavior of these defects and also consider common impurities such as O, H, and their complexes. We find cation vacancies are the dominant compensating acceptors and recombination centers, and their effects are more dramatic in ZnS than in CdS. We also determine the band alignment for conventional Cu(In,Ga)Se-2-based solar cells, giving insight into why CdS outperforms ZnS and why Zn oxysulfides are promising due to their improved conduction band offsets. (C) 2013 AIP Publishing LLC. C1 [Varley, J. B.; Lordi, V.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Varley, JB (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. OI Lordi, Vincenzo/0000-0003-2415-4656 FU U.S. Department of Energy at Lawrence Livermore National Laboratory [DE-AC52-07A27344]; Department of Energy office of Energy Efficiency & Renewable Energy (EERE) through the SunShot Bridging Research Interactions through collaborative Development Grants in Energy (BRIDGE) program FX This work was performed under the auspices of the U.S. Department of Energy at Lawrence Livermore National Laboratory under Contract No. DE-AC52-07A27344 and funded by the Department of Energy office of Energy Efficiency & Renewable Energy (EERE) through the SunShot Bridging Research Interactions through collaborative Development Grants in Energy (BRIDGE) program. NR 28 TC 15 Z9 15 U1 9 U2 48 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 2 PY 2013 VL 103 IS 10 AR 102103 DI 10.1063/1.4819492 PG 4 WC Physics, Applied SC Physics GA 217VG UT WOS:000324389700025 ER PT J AU Barry, BM Stein, BW Larsen, CA Wirtz, MN Geiger, WE Waterman, R Kemp, RA AF Barry, Brian M. Stein, Benjamin W. Larsen, Christopher A. Wirtz, Melissa N. Geiger, William E. Waterman, Rory Kemp, Richard A. TI Metal Complexes (M = Zn, Sn, and Pb) of 2-Phosphinobenzenethiolates: Insights into Ligand Folding and Hemilability SO INORGANIC CHEMISTRY LA English DT Article ID CHELATED DITHIOLATE LIGANDS; WEAKLY COORDINATING ANIONS; ELECTRONIC-STRUCTURE; CRYSTAL-STRUCTURE; PHOSPHINOTHIOL LIGANDS; MOLECULAR-STRUCTURES; LANTHANIDE(III)/ACTINIDE(III) DIFFERENTIATION; ARENEPHOSPHINOTHIOL LIGANDS; DONOR LIGANDS; CHEMISTRY AB The divalent metal complexes M-II{(SC6H4-2-PR2)-kappa S-2,P}(2) (3-7, and 9-11) (M= Zn, Sn, or Pb; R = Pr-i, Bu-t, or. Ph); the Sn(W) complexes :Sn{(SC6H4-2-PR2)-kappa(2)-S,P}Ph2Cl (12 and 13) (R = Pr-i and Bu-t), and the ionic Sn(IV) complexes [Sn{(SC6H4-2-PR2)-kappa(2)-S,P}Ph-2[BPh4] (14 and 15) (R = Pr-i and Bu-t) have been prepared and characterized by multinuclear NMR spectroscopy and single. crystal X.-ray diffraction when suitable crystals were afforded The Sn(II) and Pb(II) complexes with R = Ph, Pr-i, or Bu-t (5, 6, 9, and 10) demonstrated ligand "folding" hinging on the P,S vector-a behavior driven by the repulsions of the metal/phosphorus and:metal/sulfur lone Pairs and increased M-S sigma bonding strength. This phenomenon Was examined by density functional theory (DFT) calculations for the compounds in both folded and unfolded states. The Sn(IV) compound 13 (R = Bu-t) crystallized with the phosphine in an axial position of the pseudotrigonal bipyramidal complex and also exhibited hemilability in the Sn P dative bond, while compound 12 (R = Pr-i), interestingly, crystallized with phosphine in an equatorial position and did not show hemilability. Finally, the crystal structure of 15 (R = Bu-t) revealed the presence of an uncommon, 4-coordinate, stable Sn(IV) cation. C1 [Barry, Brian M.; Stein, Benjamin W.; Larsen, Christopher A.; Wirtz, Melissa N.; Kemp, Richard A.] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. [Geiger, William E.; Waterman, Rory] Univ Vermont, Dept Chem, Burlington, VT 05405 USA. [Kemp, Richard A.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. RP Kemp, RA (reprint author), Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. EM rakemp@unm.edu RI Waterman, Rory/A-4596-2008 OI Waterman, Rory/0000-0001-8761-8759 FU National Science Foundation [CHE09-11110, CHE12-13529]; Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories [LDRD 151300]; National Science Foundation CRIF:MU award [CHE04-43580]; NSF [CHE08-40523, CHE09-46690]; United States Department of Energy's National Nuclear Security Administration [AC04-94AL85000] FX This work was financially supported by the National Science Foundation (Grants CHE09-11110 and CHE12-13529) and in part by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories (LDRD 151300). The Bruker X-ray diffractometer was purchased via a National Science Foundation CRIF:MU award to the University of New Mexico (CHE04-43580), and the NMR spectrometers were upgraded via grants from the NSF (CHE08-40523 and CHE09-46690). Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 80 TC 6 Z9 6 U1 5 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD SEP 2 PY 2013 VL 52 IS 17 BP 9875 EP 9884 DI 10.1021/ic400990n PG 10 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 240WS UT WOS:000326129000022 PM 23937328 ER PT J AU Calta, NP Kanatzidis, MG AF Calta, Nicholas P. Kanatzidis, Mercouri G. TI Quaternary Aluminum Silicides Grown in Al Flux: RE5Mn4Al23,Six (RE = Ho, Er, Yb) and Er44Mn55(AlSi)237 SO INORGANIC CHEMISTRY LA English DT Article ID QUANTUM CRITICAL-POINT; INTERMETALLIC COMPOUNDS; HOMOLOGOUS SERIES; EXPLORATORY SYNTHESIS; PHYSICAL-PROPERTIES; LIQUID ALUMINUM; MOLTEN ALUMINUM; MAGNETIC ORDER; CRYSTAL; PHASE AB Four novel intennetallic silicides, RE5Mn4Al23-xSix (x = 7.9(9),,RE Ho,Er, Yb) and Er44Mn55(AlSi237, have been prepared by reaction in aluminum flux. Three.RE5Mn4Al23,Six compounds crystallize in the tetragonal space group P4/nniirtr with the relatively rare.ddsMgsFe(4)Al(18-x)Si(x) structure type Refinement of single crystal X-ray diffraction data yielded unit : cell parameters of a = 11.3834(9)-114171(10) A and c = 4.0297(2)-4.0575(4) A with volumes ranging from 522.41(5) to. 528.90(8) A3. Structure refinements on single crystal diffraction data show that Er(44)Mri(55)(AlS0237 adopts a new cubic structure . type in the space group Pm3n with a very large unit cell edge of a =21.815(3) A. This new structure is best understood when viewed as two sets of nested polyhedra centered on a main group atom and a manganese atom. These polyhedral clusters describe the majority of the atomic positions in the structure and form a perovskite-type network. We also report the electrical. and magnetic properties of the title compounds. All compounds except the Ho analogue behave as normal paramagnetic metals. without any observed magnetic transitions above 5 K and exhibit antiferromagnetic correlations deduced from the value of their Curie constants. Ho5Mn4Al23_xSix exhibit's a ferromagnetic transition at 20 K and an additional metamagnetic transition at 10K, " suggesting independent ordering temperatures for two distinct magnetic sublattices. C1 [Calta, Nicholas P.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM m-kanatzidis@northwestern.edu FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-06CH11357]; Northwestern University's International Institute for Nanotechnology; State of Illinois Department of Commerce and Economic Opportunity (DCEO) Award [10-203031] FX Research at Argonne is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division (Argonne contract no. DE-AC02-06CH11357). We gratefully acknowledge the assistance of Prof. Danna Freedman and her research group, as well as support from Northwestern University's International Institute for Nanotechnology and the State of Illinois Department of Commerce and Economic Opportunity (DCEO) Award #10-203031, which facilitated some of the magnetic measurements. We also thank Dr. Lei Fang for some experimental help. NR 44 TC 2 Z9 2 U1 0 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD SEP 2 PY 2013 VL 52 IS 17 BP 9931 EP 9940 DI 10.1021/ic401659y PG 10 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 240WS UT WOS:000326129000028 PM 23931551 ER PT J AU Leu, BM Zgierski, MZ Bischoff, C Li, M Hu, MY Zhao, JY Martin, SW Alp, EE Scheidt, WR AF Leu, Bogdan M. Zgierski, Marek Z. Bischoff, Christian Li, Ming Hu, Michael Y. Zhao, Jiyong Martin, Steve W. Alp, Esen Ercan Scheidt, W. Robert TI Quantitative Vibrational Dynamics of the Metal Site in a Tin Porphyrin: An IR, NRVS, and DFT Study SO INORGANIC CHEMISTRY LA English DT Article ID NUCLEAR RESONANT SCATTERING; SYNCHROTRON-RADIATION; INFRARED SPECTRA; NICKEL OCTAETHYLPORPHYRIN; PROTOPORPHYRIN-IX; ISOTOPE SHIFTS; RAMAN-SPECTRA; FORCE-FIELD; SPECTROSCOPY; COMPLEXES AB We used a newer, synchrotron-based, spectro scopic technique.(nuclear resonance vibrational spectroscopy,. :NRVS) in combination with a more traditional one (infrared 'absorption, IR) to obtain a. complete, 'quantitative pictine. of the metal center vibrational dynamics in a:six-cdoichnated 'tin :porphyrin. From the NRVS Sn-119 site selectivity and the.'Sensitivity of the IR signal to Sn-112/Sn-119 isotope substitution, we identified the frequency of the antisynimetric stretching of the axial bonds (290 cm(-1)) and all the other vibrations involving Sn. Experimentally authenticated density functional theory (DFT) calculations aid the data interpretation by providing : detailed normal Mode descriptions for each observed vibration. These results may represent a starting point toward the characterization of the local vibrational dynamics of the metallic site in tin porphyrins and compounds with related structures.; The quantitative complementariness between IR, NRVS, and DFT is emphasized. C1 [Leu, Bogdan M.; Hu, Michael Y.; Zhao, Jiyong; Alp, Esen Ercan] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Zgierski, Marek Z.] Natl Res Council Canada, Ottawa, ON K1A 0R6, Canada. [Bischoff, Christian; Martin, Steve W.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Li, Ming; Scheidt, W. Robert] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. RP Leu, BM (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM leu@aps.anl.gov FU NIH [GM38401]; U.S. DOE [DE-ACO2-06CH11357] FX WRS acknowledges generous support from the NIH (GM38401). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-ACO2-06CH11357. NR 56 TC 4 Z9 4 U1 7 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD SEP 2 PY 2013 VL 52 IS 17 BP 9948 EP 9953 DI 10.1021/ic401152b PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 240WS UT WOS:000326129000030 PM 23962374 ER PT J AU Wiedner, ES Roberts, JAS Dougherty, WG Kassel, WS DuBois, DL Bullock, RM AF Wiedner, Eric S. Roberts, John A. S. Dougherty, William G. Kassel, W. Scott DuBois, Daniel L. Bullock, R. Morris TI Synthesis and Electrochemical Studies of Cobalt(III) Monohydride Complexes Containing Pendant Amines SO INORGANIC CHEMISTRY LA English DT Article ID ELECTROCATALYTIC HYDROGEN EVOLUTION; BOND-DISSOCIATION ENERGIES; HYDRIDE DONOR ABILITIES; METAL-HYDRIDES; H-2 PRODUCTION; POLYHYDRIDE COMPLEXES; COBALOXIME CATALYSTS; ELECTRODE-POTENTIALS; FUNCTIONAL MODELS; WATER REDUCTION AB Two new tetraphosphine ligandsirc-PPhz2NPh2 ' (1";5-dipheny1-3,7-bis((diphenylphosphino)alkyl)-1,5-diaza: 3,7-diphosphacyclooctane; alkyl = (CH2)(2), n = 2 (L-2);. (CH2)(3), n = 3 (L-3)), have been synthesized. Coordination of these ligands to cobalt affords the complexes [Coll(L2)'(CH3CN)](2)* and [Coll(L-3)(CH3CN)](2+), which are reduced by KC8 to afford [Col(L2)(CH3CN)Y and [Col(L3). :(CH3CN)r. Protonation. of the Co' complexes affords [HCOIII(L2)(CH3CN)]2+ and [HCo111.(13)(CH3CN)P+. The " cyclic voltarnmetry of [HCollI(L2)(CH3CN)]2+,. analyzed using digital simulation, is consistent with an ErCrE,. reduction mechanism involving reversible acetonitrile dissociation from [HColl(L2)(CH3CN)Y. and resulting in formation of HCol(L2). ReductiOti:.of FICel..also results in cleavage of the H CO bond, from HColl or HCol, leading to formation of the Co' complex [COI(L2)(CH3CN)]''. Under voltarnmetric conditions, the,redUced. cobalt hydride reacts with a protic solvent impurity to generate Hi in a monometallic process involving two electrons per.cobalt. In contrast, under bulk electrolysis conditions, H-2 formation requires only one reducing equivalent per [HCoul(L2)(CH3CN)r:, indicating a bimetallic route wherein two cobalt hydride complexes react to form 2 equiv of "3"::[Col(L2)(CH3CN)r and 1 equiv of H2. These results indicate that both HCo11 and HCol can be formed under electrocatalytic conditions and should be considered as potential catalytic intermediates. C1 [Wiedner, Eric S.; Roberts, John A. S.; DuBois, Daniel L.; Bullock, R. Morris] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. [Dougherty, William G.; Kassel, W. Scott] Villanova Univ, Dept Chem, Villanova, PA 19085 USA. RP Wiedner, ES (reprint author), Pacific NW Natl Lab, Div Phys Sci, POB 999,K2-57, Richland, WA 99352 USA. EM eric.wiedner@pnnl.gov; morris.bullock@pnnl.gov RI Bullock, R. Morris/L-6802-2016; OI Bullock, R. Morris/0000-0001-6306-4851; Wiedner, Eric/0000-0002-7202-9676 FU Center for Molecular Electrocatalysis; Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory FX We thank the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, for support of the initial parts of this study. Current work is supported by the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy. NR 81 TC 27 Z9 27 U1 2 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD SEP 2 PY 2013 VL 52 IS 17 BP 9975 EP 9988 DI 10.1021/ic401232g PG 14 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 240WS UT WOS:000326129000033 PM 23945020 ER PT J AU Gulo, F Samal, SL Corbett, JD AF Gulo, Fakhili Samal, Saroj L. Corbett, John D. TI Substantial Cd-Cd Bonding in Ca6PtCd11: A Condensed Intermetallic Phase Built of Pentagonal Cd, and Rectangular Cd4/2Pt Pyramids SO INORGANIC CHEMISTRY LA English DT Article ID CRYSTAL-STRUCTURE; GOLD SUBSTITUTION; AU; CA; NETWORKS; SYSTEMS; SR; BA; CHEMISTRY; TUNNELS AB The novel intennetallic Ca(6)PtCc(11) is orthorhombic, Pnma, Z = 4,.with a = 18.799(2) A, b = 5.986(1) angstrom, c = 15.585(3) angstrom. The heavily condensed network contains three types of Parallel cadmium chains: apically strongly interbon'ded Cd-7 pentagonal bipyramids, linear Cd arrays, and rectangular Cd4/2Pt pyramids. All of the atoms have 11-13 neighbors. Calculations by means of the linear muffin-tin orbitals method in the atomic spheres approximation indicate that some Cd Cd interactions correspond to notably high Hamilton populations (1.07 eV per average bond) whereas the Ca-Ca covalent interactions (integrated crystal orbital Hamiltonian population) are particularly small (0.17 eV/bond). (Pt-Cd single bond metallic diameters,, and unusually uniform (A = 0.14 A). The Cd atoms.make major contributions to the stability of the phase via substantial Ss and Sp bonding, which include back donation of Cd Ss, Sp and Pt 5d into Ca 3d states in the principal bonding modes for Ca Cd and Ca Pt. Bonding Ca Ca, Ca Cd, and Cd Cd states remain above EF, and some relative oxidation of Ca in this structure seems probable. Ca6PtCd11 joins a.small group of other phases in which Cd clustering and Cd Cd bonding are important. C1 [Corbett, John D.] Iowa State Univ, Ames Lab, DOE, Ames, IA 50010 USA. Iowa State Univ, Dept Chem, Ames, IA 50010 USA. RP Corbett, JD (reprint author), Iowa State Univ, Ames Lab, DOE, Ames, IA 50010 USA. EM jdc@ameslab.gov RI Gulo, Fakhili/L-7215-2013 OI Gulo, Fakhili/0000-0003-4371-0208 FU Office of the Basic Energy Sciences, Materials Sciences Division, U.S. Department of Energy (DOE); DOE by Iowa State University [DE-ACO2-07CH11358] FX F.G. acknowledges the support of the Fulbright Scholar Program. Qjsheng Lin helped guide our searches for quasicrystalline analogues, and Gordie Miller provided useful theoretical insights and suggestions. The research was supported by the 4. Ames Laboratory is operated for DOE by Iowa State University under contract No. DE-ACO2-07CH11358. NR 47 TC 3 Z9 3 U1 0 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD SEP 2 PY 2013 VL 52 IS 17 BP 10112 EP 10118 DI 10.1021/ic401455c PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 240WS UT WOS:000326129000048 PM 23957660 ER PT J AU Sun, EI Leyn, SA Kazanov, MD Saier, MH Novichkov, PS Rodionov, DA AF Sun, Eric I. Leyn, Semen A. Kazanov, Marat D. Saier, Milton H., Jr. Novichkov, Pavel S. Rodionov, Dmitry A. TI Comparative genomics of metabolic capacities of regulons controlled by cis-regulatory RNA motifs in bacteria SO BMC GENOMICS LA English DT Article DE RNA regulatory motif; Riboswitch; Regulon; Gene function; Comparative genomics; Bacteria ID CANDIDATE STRUCTURED RNAS; MICROBIAL COMMUNITIES; RIBOSWITCH REGULATION; GENE-EXPRESSION; TRANSPORT GENES; PROKARYOTES; BIOSYNTHESIS; IDENTIFICATION; MECHANISMS; RECONSTRUCTION AB Background: In silico comparative genomics approaches have been efficiently used for functional prediction and reconstruction of metabolic and regulatory networks. Riboswitches are metabolite-sensing structures often found in bacterial mRNA leaders controlling gene expression on transcriptional or translational levels. An increasing number of riboswitches and other cis-regulatory RNAs have been recently classified into numerous RNA families in the Rfam database. High conservation of these RNA motifs provides a unique advantage for their genomic identification and comparative analysis. Results: A comparative genomics approach implemented in the RegPredict tool was used for reconstruction and functional annotation of regulons controlled by RNAs from 43 Rfam families in diverse taxonomic groups of Bacteria. The inferred regulons include similar to 5200 cis-regulatory RNAs and more than 12000 target genes in 255 microbial genomes. All predicted RNA-regulated genes were classified into specific and overall functional categories. Analysis of taxonomic distribution of these categories allowed us to establish major functional preferences for each analyzed cis-regulatory RNA motif family. Overall, most RNA motif regulons showed predictable functional content in accordance with their experimentally established effector ligands. Our results suggest that some RNA motifs ( including thiamin pyrophosphate and cobalamin riboswitches that control the cofactor metabolism) are widespread and likely originated from the last common ancestor of all bacteria. However, many more analyzed RNA motifs are restricted to a narrow taxonomic group of bacteria and likely represent more recent evolutionary innovations. Conclusions: The reconstructed regulatory networks for major known RNA motifs substantially expand the existing knowledge of transcriptional regulation in bacteria. The inferred regulons can be used for genetic experiments, functional annotations of genes, metabolic reconstruction and evolutionary analysis. The obtained genome-wide collection of reference RNA motif regulons is available in the RegPrecise database (http://regprecise.lbl.gov/). C1 [Sun, Eric I.; Saier, Milton H., Jr.] Univ Calif San Diego, Div Biol Sci, Dept Mol Biol, La Jolla, CA 92093 USA. [Leyn, Semen A.; Rodionov, Dmitry A.] Sanford Burnham Med Res Inst, La Jolla, CA 92037 USA. [Leyn, Semen A.; Kazanov, Marat D.; Rodionov, Dmitry A.] Russian Acad Sci, AA Kharkevich Inst Informat Transmiss Problems, Moscow 127994, Russia. [Novichkov, Pavel S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94710 USA. RP Rodionov, DA (reprint author), Sanford Burnham Med Res Inst, La Jolla, CA 92037 USA. EM rodionov@burnham.org RI Kazanov, Marat/D-6381-2013; OI Kazanov, Marat/0000-0002-2314-5507; Rodionov, Dmitry/0000-0002-0939-390X FU Genomic Science Program (GSP), Office of Biological and Environmental Research (OBER), U.S. Department of Energy (DOE) [DE-SC0004999]; Sanford-Burnham Medical Research Institute (SBMRI); ENIGMA Science Focus Area (SFA) at LBNL [DE-AC02-05CH11231]; GSP Foundational Science Focus Area (FSFA) of the Pacific Northwest National Laboratory (PNNL); National Institute of General Medical Sciences [R01GM077402]; Ministry of Education and Science of Russian Federation [8135, 8049]; Russian Foundation for Basic Research [12-04-33003, 12-04-32098]; Lawrence Berkeley National Laboratory (LBNL) FX This research was supported by the Genomic Science Program (GSP), Office of Biological and Environmental Research (OBER), U.S. Department of Energy (DOE) under contract DE-SC0004999 with Sanford-Burnham Medical Research Institute (SBMRI) and Lawrence Berkeley National Laboratory (LBNL), the ENIGMA Science Focus Area (SFA) at LBNL (contract DE-AC02-05CH11231), and by the GSP Foundational Science Focus Area (FSFA) of the Pacific Northwest National Laboratory (PNNL). EIS and MHS were supported by the National Institute of General Medical Sciences (R01GM077402). MDK was supported by the Ministry of Education and Science of Russian Federation, projects #8135 and #8049. Additional funding was provided by the Russian Foundation for Basic Research (grants 12-04-33003 and 12-04-32098). NR 47 TC 16 Z9 16 U1 3 U2 24 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD SEP 2 PY 2013 VL 14 AR 597 DI 10.1186/1471-2164-14-597 PG 18 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 211UN UT WOS:000323936900001 PM 24060102 ER PT J AU Kawano, T Talou, P Stetcu, I Chadwick, MB AF Kawano, T. Talou, P. Stetcu, I. Chadwick, M. B. TI Statistical and evaporation models for the neutron emission energy spectrum in the center-of-mass system from fission fragments SO NUCLEAR PHYSICS A LA English DT Article DE Prompt fission neutron spectrum; Hauser-Feshbach model; U-235; CGM code ID MONTE-CARLO-SIMULATION; NUCLEAR-REACTIONS; CROSS-SECTIONS; MULTIMODAL ANALYSIS; PARAMETER; FORMULA; CF-252 AB The neutron emission energy spectra in the CMS (center-of-mass) frame from two compound nuclei produced by fission are studied. The neutron spectra calculated with the Hauser-Feshbach statistical model are compared with the evaporation theory, and the definition of the temperature is revisited. Using the Monte Carlo technique we average the CMS neutron spectra from many fission fragments to construct the representative CMS spectrum from both the light and heavy fragments. The CMS spectra for each fission fragment pair are also converted into the laboratory frame to calculate the total prompt fission neutron spectrum that can be observed experimentally. This is compared to measured laboratory data for thermal neutron induced fission on U-235. We show that the Hauser-Feshbach calculation gives a different spectrum shape than the Madland-Nix model calculation. (c) 2013 Elsevier B.V. All rights reserved. C1 [Kawano, T.; Talou, P.; Stetcu, I.; Chadwick, M. B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kawano, T (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM kawano@lanl.gov FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX We are grateful to T. Ohsawa, M. Jandel, J. Randrup, and R. Vogt for useful discussions. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 49 TC 3 Z9 3 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD SEP 2 PY 2013 VL 913 BP 51 EP 70 DI 10.1016/j.nuclphysa.2013.05.020 PG 20 WC Physics, Nuclear SC Physics GA 197KA UT WOS:000322848900003 ER PT J AU Uhrenholt, H Aberg, S Dobrowolski, A Dossing, T Ichikawa, T Moller, P AF Uhrenholt, H. Aberg, S. Dobrowolski, A. Dossing, Th Ichikawa, T. Moeller, P. TI Combinatorial nuclear level-density model SO NUCLEAR PHYSICS A LA English DT Article DE Level-density; Folded-Yukawa; Micro-canonical ID ASTROPHYSICAL REACTION-RATES; DEFORMED-NUCLEI; PARITY DEPENDENCE; STATISTICAL-MODEL; STRENGTH FUNCTION; DEFORMATION; PARTICLE; SPECTRA; CHAOS AB A microscopic nuclear level-density model is presented. The model is a completely combinatorial (micro-canonical) model based on the folded-Yukawa single-particle potential and includes explicit treatment of pairing, rotational and vibrational states. The microscopic character of all states enables extraction of level-distribution functions with respect to pairing gaps, parity and angular momentum. The results of the model are compared to available experimental data: level spacings at neutron separation energy, data on total level-density functions from the Oslo method, cumulative level densities from low-lying discrete states, and data on parity ratios. Spherical and deformed nuclei follow basically different coupling schemes, and we focus on deformed nuclei. (c) 2013 Elsevier B.V. All rights reserved. C1 [Uhrenholt, H.; Aberg, S.] Lund Univ, S-22100 Lund, Sweden. [Dobrowolski, A.] UMCS Lublin, Inst Fizyki, PL-20031 Lublin, Poland. [Dossing, Th] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Ichikawa, T.] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. [Moeller, P.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Aberg, S (reprint author), Lund Univ, POB 118, S-22100 Lund, Sweden. EM sven.aberg@matfys.lth.se OI Moller, Peter/0000-0002-5848-3565 FU Swedish National Research Council (VR); National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; [DE-FG02-06ER41407] FX H.U. is grateful for the hospitality of the Los Alamos National Laboratory during several visits. S.A. and H.U. thank the Swedish National Research Council (VR) for support. This work was supported by travel grants for P.M. to JUSTIPEN (Japan-U.S. Theory Institute for Physics with Exotic Nuclei) under grant number DE-FG02-06ER41407 (U. Tennessee). This work was partially carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 58 TC 6 Z9 6 U1 0 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD SEP 2 PY 2013 VL 913 BP 127 EP 156 DI 10.1016/j.nuclphysa.2013.06.002 PG 30 WC Physics, Nuclear SC Physics GA 197KA UT WOS:000322848900007 ER PT J AU Paull, RE Carroll, A Chen, NJ AF Paull, Robert E. Carroll, Andrew Chen, Nancy Jung TI Lotus Cell Walls and the Genes Involved in its Synthesis and Modification SO TROPICAL PLANT BIOLOGY LA English DT Article DE Cell walls; Transferases; Hydrolases; Tannins; Lignin; Ethylene ID CARBOHYDRATE-ACTIVE ENZYMES; POLYPHENOL OXIDASE; LAND PLANTS; ARABIDOPSIS-THALIANA; LIGNIN BIOSYNTHESIS; NELUMBO-NUCIFERA; SACRED LOTUS; FAMILY; EXPRESSION; EVOLUTION AB The lotus genome (Nelumbo nucifera (Gaertn.)) lacks the paleo-triplication found in other eudicots and has evolved remarkably slowly with fewer nucleotide mutations. It is thought to have greater retention of duplicated genes than other angiosperms. We evaluated the potential genes involved in cell wall synthesis and its modification, and ethylene synthesis and response. In many cell wall transferases and hydrolases families, lotus had fewer members in most families when compared to Arabidopsis. Lotus had similar or fewer members in each family as found in poplar, grape and papaya. The exceptions were in the sialyl and beta-glucuronsyl transferases where similar number were found as in the core eudicots. Lotus had similar numbers of polygalacturonase and pectin methyl esterases as found in Arabidopsis but fewer in all other hydrolases families. For starch degradation, lotus had only two alpha amylases predicted genes versus eight to ten in other eudicots, with similar numbers of beta amylase genes predicted. Lotus also had less than half the number of genes predicted for the enzymes involved in lignin and tannin synthesis compared to Arabidopsis. The stress plant growth regulator ethylene's synthesis, reception and response predicted genes were fewer in lotus than other eudicots. Only two ethylene receptor genes were predicted in lotus with five reported for Arabidopsis and six for tomato. Our analysis does not supports the conclusion that this species has greater retention of duplicated genes though our data does support the conclusion that lotus split occurred at the base of the eudicots. C1 [Paull, Robert E.; Chen, Nancy Jung] Univ Hawaii Manoa, Honolulu, HI 96822 USA. [Carroll, Andrew] Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Emeryville, CA 94608 USA. RP Paull, RE (reprint author), Univ Hawaii Manoa, Honolulu, HI 96822 USA. EM paull@hawaii.edu; awcarroll@lbl.gov; Jungc@hawaii.edu NR 54 TC 0 Z9 1 U1 2 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1935-9756 EI 1935-9764 J9 TROP PLANT BIOL JI Trop. Plant Biol. PD SEP PY 2013 VL 6 IS 2-3 BP 152 EP 160 DI 10.1007/s12042-013-9129-x PG 9 WC Plant Sciences SC Plant Sciences GA AK1UR UT WOS:000338203100008 ER PT J AU Chaudhri, VK Cheng, BH Overholtzer, A Roschelle, J Spaulding, A Clark, P Greaves, M Gunning, D AF Chaudhri, Vinay K. Cheng, Britte Haugan Overholtzer, Adam Roschelle, Jeremy Spaulding, Aaron Clark, Peter Greaves, Mark Gunning, Dave TI Invite Biology: A Textbook that Answers Questions SO AI MAGAZINE LA English DT Article ID KNOWLEDGE; COMPREHENSION; COHESION AB Inquire Biology is a prototype of a new kind of intelligent textbook one that answers students' questions, engages their interest, and improves their understanding. Inquire Biology provides unique capabilities through a knowledge representation that captures conceptual knowledge from the textbook and uses inference procedures to answer students' questions. Students ask questions by typing free-form natural language queries or by selecting passages of tat. The System then attempts to answer the question and also generates suggested questions related to the query or selection. The questions supported by the system were chosen to be educationally useful, for example: what is the structure of X? compare X and Y? how does X relate to Y? In user studies, students found this question-answering capability to be extremely useful while reading and while doing problem solving. In an initial controlled experiment, community college students using the Inquire Biology prototype outperformed students using either a hard copy or conventional ebook version of the same biology textbook. While additional research is needed to fully develop Inquire Biology, the initial prototype clearly demonstrates the promise of applying knowledge representation and question-answering technology to electronic textbooks. C1 [Cheng, Britte Haugan] SRI Int, Ctr Technol Learning, Menlo Pk, CA USA. [Overholtzer, Adam] SRI Int, Menlo Pk, CA USA. [Spaulding, Aaron] SRIs Artificial Intelligence Ctr, Menlo Pk, CA USA. [Clark, Peter; Greaves, Mark; Gunning, Dave] Vulcan Inc, Seattle, WA USA. [Greaves, Mark] Pacific NW Natl Lab, Richland, WA 99352 USA. [Gunning, Dave] Palo Alto Res Ctr, Palo Alto, CA USA. RP Chaudhri, VK (reprint author), SRI Int, Ctr Artificial Intelligence, Menlo Pk, CA 94025 USA. FU Vulcan Inc. FX This work has been funded by Vulcan Inc. The authors wish to thank the members of the Inquire Biology development team: Eva Banik, Roger Corman, Nikhil Dinesh, Debbie Frazier, Stijn Heymans, Sue Hinojoza, Eric Kow, David Margolies, Ethan Stone, William Webb, Michael Wessel, and Neil Yorke-Smith. NR 41 TC 3 Z9 3 U1 1 U2 6 PU AMER ASSOC ARTIFICIAL INTELL PI MENLO PK PA 445 BURGESS DRIVE, MENLO PK, CA 94025-3496 USA SN 0738-4602 J9 AI MAG JI AI Mag. PD FAL PY 2013 VL 34 IS 3 BP 55 EP 72 PG 18 WC Computer Science, Artificial Intelligence SC Computer Science GA AI5FX UT WOS:000336891900005 ER PT J AU Beyerlein, IJ Wang, J Zhang, R AF Beyerlein, Irene J. Wang, Jian Zhang, Ruifeng TI Interface-dependent nucleation in nanostructured layered composites SO APL MATERIALS LA English DT Article ID SIMULATIONS; DEFORMATION; NANOLAYER AB Nanocomposite properties are to a large extent governed by interface-associated mechanisms. Via atomic-scale modeling of bi-phase interfaces, we reveal a strong correlation between interface structure and the nucleation of dislocations. We show that the number and types of dislocations that are emitted depend sensitively on a few key structural features of the interface. Based on these insights, a model is developed that connects nucleation propensity with interface structure. This finding implies that tuning interface structure is a conceivable approach for strengthening nanocomposites, one that is distinct from the common strategy of shrinking nanostructure dimensions. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Beyerlein, Irene J.; Zhang, Ruifeng] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Wang, Jian] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Beyerlein, IJ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM Irene@lanl.gov RI Beyerlein, Irene/A-4676-2011; Wang, Jian/F-2669-2012 OI Wang, Jian/0000-0001-5130-300X FU Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [2008LANL1026]; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX The authors gratefully acknowledge support provided by the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. 2008LANL1026. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. NR 25 TC 19 Z9 19 U1 0 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD SEP PY 2013 VL 1 IS 3 AR 032112 DI 10.1063/1.4820424 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA AC1RP UT WOS:000332274000014 ER PT J AU Disa, AS Kumah, DP Ngai, JH Specht, ED Arena, DA Walker, FJ Ahn, CH AF Disa, A. S. Kumah, D. P. Ngai, J. H. Specht, E. D. Arena, D. A. Walker, F. J. Ahn, C. H. TI Phase diagram of compressively strained nickelate thin films SO APL MATERIALS LA English DT Article ID METAL-INSULATOR-TRANSITION; FIELD-EFFECT TRANSISTOR; RNIO3 R; PRESSURE-DEPENDENCE; MOTT TRANSITION; RARE-EARTH; PEROVSKITES; NDNIO3; PRNIO3; EU AB The complex phase diagrams of strongly correlated oxides arise from the coupling between physical and electronic structure. This can lead to a renormalization of the phase boundaries when considering thin films rather than bulk crystals due to reduced dimensionality and epitaxial strain. The well-established bulk RNiO3 phase diagram shows a systematic dependence between the metal-insulator transition and the perovskite A-site rare-earth ion, R. Here, we explore the equivalent phase diagram for nickelate thin films under compressive epitaxial strain. We determine the metal-insulator phase diagram for the solid solution of Nd1-yLayNiO3 thin films within the range 0 <= y <= 1. We find qualitative similarity between the films and their bulk analogs, but with an overall renormalization in the metal-insulator transition to lower temperature. A combination of x-ray diffraction measurements and soft x-ray absorption spectroscopy indicates that the renormalization is due to increased Ni-O bond hybridization for coherently strained thin films. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Disa, A. S.; Kumah, D. P.; Ngai, J. H.; Walker, F. J.; Ahn, C. H.] Yale Univ, Dept Appl Phys, Ctr Res Interface Struct & Phenomena, New Haven, CT 06511 USA. [Ahn, C. H.] Yale Univ, Dept Mech Engn & Mat Sci, New Haven, CT 06511 USA. [Specht, E. D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37830 USA. [Arena, D. A.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Disa, AS (reprint author), Yale Univ, Dept Appl Phys, Ctr Res Interface Struct & Phenomena, New Haven, CT 06511 USA. EM ankit.disa@yale.edu RI Kumah, Divine/A-7031-2011; Specht, Eliot/A-5654-2009; OI Kumah, Divine/0000-0003-0715-1285; Specht, Eliot/0000-0002-3191-2163; Walker, Frederick/0000-0002-8094-249X FU DARPA [W911NF-10-1-0206]; NSF MRSEC [DMR 1119826]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357, DE-AC02-98CH10886] FX This work was supported by DARPA Grant No. W911NF-10-1-0206 and NSF MRSEC DMR 1119826 (CRISP). Use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 25 TC 14 Z9 14 U1 3 U2 46 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD SEP PY 2013 VL 1 IS 3 AR 032110 DI 10.1063/1.4820431 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA AC1RP UT WOS:000332274000012 ER PT J AU Hunter, A Beyerlein, IJ AF Hunter, A. Beyerlein, I. J. TI Unprecedented grain size effect on stacking fault width SO APL MATERIALS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; PLASTIC-DEFORMATION MECHANISMS; NANOCRYSTALLINE METALS; DISLOCATION DYNAMICS; MEDIATED PLASTICITY; FCC CRYSTALS; CUBIC METALS; THIN-FILMS; CRACK-TIP; NUCLEATION AB Using an atomistic-phase field dislocation dynamics model, we isolate and investigate grain size and stress effects on the stacking fault width created by partial dislocation emission from a boundary. We show that the nucleation stress for a Shockley partial is governed by size of the boundary defect and insensitive to grain size. We reveal a grain size regime in which the maximum value the stacking fault width attains increases with grain size. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Hunter, A.] Los Alamos Natl Lab, Computat Div X, Los Alamos, NM 87545 USA. [Beyerlein, I. J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Hunter, A (reprint author), Los Alamos Natl Lab, Computat Div X, POB 1663, Los Alamos, NM 87545 USA. EM ahunter@lanl.gov RI Beyerlein, Irene/A-4676-2011; OI Hunter, Abigail/0000-0002-0443-4020 FU Los Alamos National Laboratory Directed Research and Development (LDRD) [20130745ECR]; Los Alamos National LDRD [DR20110029] FX A.H. would like to acknowledge support from the Los Alamos National Laboratory Directed Research and Development (LDRD) Project 20130745ECR. I.J.B. gratefully acknowledges support from the Los Alamos National LDRD Project DR20110029. The authors gratefully acknowledge valuable discussions with Dr. Timothy C. Germann. NR 53 TC 16 Z9 16 U1 5 U2 25 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD SEP PY 2013 VL 1 IS 3 AR 032109 DI 10.1063/1.4820427 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA AC1RP UT WOS:000332274000011 ER PT J AU Schubert, S Ruiz-Oses, M Ben-Zvi, I Kamps, T Liang, X Muller, E Muller, K Padmore, H Rao, T Tong, X Vecchione, T Smedley, J AF Schubert, S. Ruiz-Oses, M. Ben-Zvi, I. Kamps, T. Liang, X. Muller, E. Mueller, K. Padmore, H. Rao, T. Tong, X. Vecchione, T. Smedley, J. TI Bi-alkali antimonide photocathodes for high brightness accelerators SO APL MATERIALS LA English DT Article ID RAY PHOTOELECTRON-SPECTROSCOPY; PHOTO-CATHODES; PHOTOEMITTERS; OXYGEN; CS AB Alkali-antimonide photocathodes were grown on Si(100) and studied by means of XPS and UHV-AFM to validate the growth procedure and morphology of this material. The elements were evaporated sequentially at elevated substrate temperatures (first Sb, second K, third Cs). The generated intermediate K-Sb compound itself is a photocathode and the composition of K2.4Sb is close to the favored K3Sb stoichiometry. After cesium deposition, the surface layer is cesium enriched. The determined rms roughness of 25 nm results in a roughness domination of the emittance in the photoinjector already above 3 MV/m. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Schubert, S.; Kamps, T.] Helmholtz Zentrum Berlin, D-12489 Berlin, Germany. [Schubert, S.; Muller, E.; Rao, T.; Smedley, J.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Ruiz-Oses, M.; Ben-Zvi, I.; Liang, X.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Mueller, K.; Tong, X.] BNL, Ctr Funct Nanomat, Upton, NY 11973 USA. [Padmore, H.; Vecchione, T.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Smedley, J (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM smedley@bnl.gov RI Muller, Kathrin/H-1902-2011 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; U.S. Department of Energy (DOE) [KC-04-01-010, DE-FG02-12ER41837]; Bundesministerium fuer Bildung und Forschung (BMBF); Land Berlin, Germany FX Research carried out in whole at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Funding was received from the U.S. Department of Energy (DOE) under Grant Nos. KC-04-01-010 and DE-FG02-12ER41837 and the Bundesministerium fuer Bildung und Forschung (BMBF) and the Land Berlin, Germany. NR 21 TC 17 Z9 17 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD SEP PY 2013 VL 1 IS 3 AR 032119 DI 10.1063/1.4821625 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA AC1RP UT WOS:000332274000021 ER PT J AU Maalouf, J Cogswell, ME Gunn, JP Curtis, CJ Rhodes, D Hoy, K Pehrsson, P Nickle, M Merritt, R AF Maalouf, Joyce Cogswell, Mary E. Gunn, Janelle P. Curtis, Christine J. Rhodes, Donna Hoy, Kathy Pehrsson, Pamela Nickle, Melissa Merritt, Robert TI Monitoring the Sodium Content of Restaurant Foods: Public Health Challenges and Opportunities SO AMERICAN JOURNAL OF PUBLIC HEALTH LA English DT Review ID TAKE-AWAY FOODS; AUSTRALIAN FOODS; NUTRITIONAL PROFILE; MINERAL-CONTENT; PROXIMATE; MEALS; BAHRAIN; ENERGY; CHAINS; MENU AB We reviewed methods of studies assessing restaurant foods' sodium content and nutrition databases. We systematically searched the 1964-2012 literature and manually examined references in selected articles and studies. Twenty-six (5.2%) of the 499 articles we found met the inclusion criteria and were abstracted. Five were conducted nationally. Sodium content determination methods included laboratory analysis (n = 15), point-of-purchase nutrition information or restaurants' Web sites (n = 8), and menu analysis with a nutrient database (n = 3). There is no comprehensive data system that provides all information needed to monitor changes in sodium or other nutrients among restaurant foods. Combining information from different sources and methods may help inform a comprehensive system to monitor sodium content reduction efforts in the US food supply and to develop future strategies. C1 [Maalouf, Joyce; Cogswell, Mary E.; Gunn, Janelle P.; Merritt, Robert] Ctr Dis Control & Prevent CDC, Div Heart Dis & Stroke Prevent, Natl Ctr Chron Dis Prevent & Hlth Promot, Atlanta, GA USA. [Maalouf, Joyce] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Curtis, Christine J.] New York City Dept Hlth & Mental Hyg, Nutr Strategy Program, New York, NY USA. [Rhodes, Donna; Hoy, Kathy] ARS, USDA, Beltsville Human Nutr Res Ctr, Food Surveys Res Grp, Beltsville, MD USA. [Pehrsson, Pamela; Nickle, Melissa] ARS, USDA, Beltsville Human Nutr Res Ctr, Nutrient Data Lab, Beltsville, MD USA. RP Maalouf, J (reprint author), Ctr Dis Control & Prevent, Epidemiol & Surveillance Branch, Div Heart Dis & Stroke Prevent, Natl Ctr Chron Dis Prevent & Hlth Promot, 4770 Buford Hwy NE,Mailstop F72, Atlanta, GA 30341 USA. EM vjh6@cdc.gov FU Oak Ridge Institute for Science and Education Research Participation Programs at the Centers for Disease Control and Prevention (CDC) FX J. Maalouf was supported by the Oak Ridge Institute for Science and Education Research Participation Programs at the Centers for Disease Control and Prevention (CDC). NR 54 TC 1 Z9 2 U1 0 U2 5 PU AMER PUBLIC HEALTH ASSOC INC PI WASHINGTON PA 800 I STREET, NW, WASHINGTON, DC 20001-3710 USA SN 0090-0036 EI 1541-0048 J9 AM J PUBLIC HEALTH JI Am. J. Public Health PD SEP PY 2013 VL 103 IS 9 BP E21 EP E30 DI 10.2105/AJPH.2013.301442 PG 10 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA AA3NB UT WOS:000330998200010 PM 23865701 ER PT J AU He, YX Luo, T Wang, JH Wang, B Xiong, W Li, FR AF He, Yongxiu Luo, Tao Wang, Jianhui Wang, Bing Xiong, Wei Li, F. R. TI Analysis of Reasonable Energy Price Ratios in China SO JOURNAL OF ENERGY ENGINEERING LA English DT Article DE Energy; Price ratios; Input/output relationship; Economic standards; International standards ID POLICY AB As a result of China's rapid economic growth, energy demand has increased significantly in recent years. Consequently, energy pricing has become increasingly prominent. This paper defines reasonable energy price ratios and establishes models to analyze them from the aspects of input/output standards, economic standards, and international standards according to the structure of the energy prices. Furthermore, based on the socioeconomic conditions in China, prices of coal, natural gas, and electric power are selected as examples for analyzing the price ratios of regulated and nonregulated energy prices under three evaluation criteria. Finally, reasonable energy price ratios in China are determined through a comprehensive analysis. The paper concludes that these ratios are significant for developing countries undergoing energy market oriented reforms such as China. (C) 2013 American Society of Civil Engineers. C1 [He, Yongxiu] North China Elect Power Univ, Sch Econ & Management, Beijing 102206, Peoples R China. [Luo, Tao] Guizhou Power Grid Co, Guiyang Power Supply Bur, Guiyang 550001, Peoples R China. [Wang, Jianhui] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Wang, Jianhui] Shanghai Univ Elect Power, Sch Econ & Management, Shanghai, Peoples R China. [Wang, Bing; Xiong, Wei] North China Elect Power Univ, Sch Econ & Management, Beijing 102206, Peoples R China. [Li, F. R.] Univ Bath, Dept Elect & Elect Engn, Bath BA2 7AY, Avon, England. RP He, YX (reprint author), North China Elect Power Univ, Sch Econ & Management, Bei Nong Lu 2, Beijing 102206, Peoples R China. EM heyongxiu@ncepu.edu.cn; luotao9902@126.com; jianhui.wang@anl.gov; bingw1130@126.com; xw471559631@sina.com; eesfl@bath.ac.uk FU National Natural Science Foundation of China [71273089]; Beijing Natural Science Foundation of China [9122022]; U.S. Department of Energy [DE-AC02-06CH11357] FX The work described in this paper was supported by the National Natural Science Foundation of China (Grant No. 71273089) and Beijing Natural Science Foundation of China (Grant No. 9122022). Argonne National Laboratory's work was supported under U.S. Department of Energy contract DE-AC02-06CH11357. NR 24 TC 1 Z9 1 U1 1 U2 8 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9402 EI 1943-7897 J9 J ENERG ENG JI J. Energy Eng.-ASCE PD SEP PY 2013 VL 139 IS 3 BP 214 EP 222 DI 10.1061/(ASCE)EY.1943-7897.0000111 PG 9 WC Energy & Fuels; Engineering, Civil SC Energy & Fuels; Engineering GA 301EW UT WOS:000330516600008 ER PT J AU Long, X Ma, YR Cho, KR Li, DS De Yoreo, JJ Qi, LM AF Long, Xia Ma, Yurong Cho, Kang Rae Li, Dongsheng De Yoreo, James J. Qi, Limin TI Oriented Calcite Micropillars and Prisms Formed through Aggregation and Recrystallization of Poly(Acrylic Acid) Stabilized Nanoparticles SO CRYSTAL GROWTH & DESIGN LA English DT Article ID URCHIN LARVAL SPICULE; SINGLE-CRYSTALS; CARBONATE MORPHOLOGY; AMORPHOUS PRECURSOR; PHASE; BIOMINERALIZATION; GROWTH; SYSTEMS; CRYSTALLIZATION; MINERALIZATION AB Though calcium carbonate crystals with various morphologies have been successfully fabricated via bioinspired methods, the mechanism underlying crystallization of one-dimensional (1D) calcite microstructures along defined crystallographic axes is poorly understood. In this paper, we first show that by combining the effects of poly(acrylic acid) (PAA) and calcite substrates we can direct the formation of calcite through an intermediate complex of PAA and Ca2(+). into oriented calcite micropillars with {104} faceted coaligned platelike subunits. Moreover, in situ AFM studies under different conditions than those used in bulk experiments also lead to formation of ID calcite microstructures. With a slight change in conditions, arrays of oriented calcite prisms with triangular cross sections are formed on calcite substrates. Though distinct in morphology, these pillars and prisms form in a similar way via anisotropic nanoparticle aggregation, growth, fusion, and reorganization. The results may provide new insights into mechanisms of biomineralization. C1 [Long, Xia; Ma, Yurong; Qi, Limin] Peking Univ, Coll Chem, State Key Lab Struct Chem Unstable & Stable Speci, BNLMS, Beijing 100871, Peoples R China. [Cho, Kang Rae; Li, Dongsheng; De Yoreo, James J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Ma, YR (reprint author), Peking Univ, Coll Chem, State Key Lab Struct Chem Unstable & Stable Speci, BNLMS, Beijing 100871, Peoples R China. EM yurong.ma@pku.edu.cn; jjdeyoreo@lbl.gov; liminqi@pku.edu.cn RI Qi, Limin/A-4203-2009; LONG, XIA/L-1517-2015; Foundry, Molecular/G-9968-2014 OI Qi, Limin/0000-0003-4959-6928; FU National Natural Science Foundation of China [51272298, 21173010, 21073005, 51121091]; China Scholarship Council; Division of Chemical Sciences, Geosciences, and Biosciences of the US Department of Energy; Molecular Foundry, Lawrence Berkeley National Laboratory, an Office of Science, Office of Basic Energy Sciences, Scientific User Facility [DE-AC02-05CH11231] FX Financial support from the National Natural Science Foundation of China (Grants 51272298, 21173010, 21073005, and 51121091), China Scholarship Council are gratefully acknowledged. The AFM studies were supported by the Division of Chemical Sciences, Geosciences, and Biosciences of the US Department of Energy and performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, an Office of Science, Office of Basic Energy Sciences, Scientific User Facility under Contract DE-AC02-05CH11231. NR 62 TC 8 Z9 8 U1 5 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD SEP PY 2013 VL 13 IS 9 BP 3856 EP 3863 DI 10.1021/cg4010399 PG 8 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 295DC UT WOS:000330095800004 ER PT J AU Eaton, SJ Beis, SH Bunting, BG Fitzpatrick, SW van Walsum, GP Pendse, HP Wheeler, MC AF Eaton, Scott J. Beis, Sedat H. Bunting, Bruce G. Fitzpatrick, Stephen W. van Walsum, G. Peter Pendse, Hemant P. Wheeler, M. Clayton TI Characterization and Combustion of Crude Thermal Deoxygenation Oils Derived From Hydrolyzed Woody Biomass SO ENERGY & FUELS LA English DT Article ID LEVULINIC ACID; CETANE NUMBER; FUELS; IMPROVEMENT; CONVERSION; CATALYSTS; PRODUCTS AB Thermal Deoxygenation (TDO) is a reaction converting calcium-neutralized, biomass-derived acids to crude hydrocarbons at 450 degrees C in an inert atmosphere at ambient pressure. In this work, TDO is applied to hydrolyzate produced by the Biofine process to determine the effects of impurities on TDO oil yield and composition. The oils were characterized for fuel and material properties according to ASTM methods. The oils were found to have low total acid number (<1.4) and a consistent. boiling point distribution according to high temperature simulated distillation (ASTM 7169) of between 75 degrees and 585 degrees C. Combustion and emission characteristics of TDO crude oil as a 50/50 vol. % blend with ultralow sulfur diesel were consistent with fuels of low cetane number. This is attributed to the low hydrogen content of the oils (9.4 wt %) and high aromaticity. C1 [Eaton, Scott J.; van Walsum, G. Peter; Pendse, Hemant P.; Wheeler, M. Clayton] Univ Maine, Dept Chem & Biol Engn, Orono, ME 04469 USA. [Beis, Sedat H.; van Walsum, G. Peter; Pendse, Hemant P.; Wheeler, M. Clayton] Univ Maine, Forest Bioprod Res Inst, Orono, ME 04469 USA. [Eaton, Scott J.] SeaChange Grp LLC, Cape Elizabeth, ME 04107 USA. [Bunting, Bruce G.] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Knoxville, TN 37932 USA. [Fitzpatrick, Stephen W.] Biofine Technol LLC, Framingham, MA 01701 USA. RP Wheeler, MC (reprint author), Univ Maine, Dept Chem & Biol Engn, Orono, ME 04469 USA. EM cwheeler@umche.maine.edu RI Wheeler, M Clayton/C-9649-2012 OI Wheeler, M Clayton/0000-0003-1113-1324 FU U.S. Department of Energy, Office of Science Experimental Program to Stimulate Competitive Research Grant [DE-FG02-07ER46373]; U.S. Department of Energy Office of Biomass [DE-FG02-08ER64635]; U.S. Logistics Research and Development Program at the Headquarters of the Defense Logistics Agency, Fort Belvoir, VA [SP4701-11-C-0010] FX The authors gratefully acknowledge Adriaan van Heiningen and Paige Case for their valuable advice and support. This work was funded in part by the U.S. Department of Energy, Office of Science Experimental Program to Stimulate Competitive Research Grant No. DE-FG02-07ER46373, the U.S. Department of Energy Office of Biomass Grant No. DE-FG02-08ER64635, and the U.S. Logistics Research and Development Program at the Headquarters of the Defense Logistics Agency, Fort Belvoir, VA on project SP4701-11-C-0010. NR 21 TC 4 Z9 4 U1 0 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD SEP PY 2013 VL 27 IS 9 BP 5246 EP 5252 DI 10.1021/ef4007033 PG 7 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 295ES UT WOS:000330100000023 ER PT J AU van Dam, HJJ Vishnu, A de Jong, WA AF van Dam, Hubertus J. J. Vishnu, Abhinav de Jong, Wibe A. TI A Case for Soft Error Detection and Correction in Computational Chemistry SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID RESILIENCE AB High performance computing platforms are expected to deliver 1018 floating operations per second by the year 2022 through the deployment of millions of cores. Even if every core is highly reliable the sheer number of them will mean that the mean time between failures will become so short that most application runs will suffer at least one fault. In particular soft errors caused by intermittent incorrect behavior of the hardware are a concern as they lead to silent data corruption. In this paper we investigate the impact of soft errors on optimization algorithms using Hartree-Fock as a particular example. Optimization algorithms iteratively reduce the error in the initial guess to reach the intended solution. Therefore they may intuitively appear to be resilient to soft errors. Our results show that this is true for soft errors of small magnitudes but not for large errors. We suggest error detection and correction mechanisms for different classes of data structures. The results obtained with these mechanisms indicate that we can correct more than 95% of the soft errors at moderate increases in the computational cost. C1 [van Dam, Hubertus J. J.; Vishnu, Abhinav; de Jong, Wibe A.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP van Dam, HJJ (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA. EM hubertus.vandam@pnnl.gov; abhinav.vishnu@pnnl.gov; wadejong@lbl.gov RI DE JONG, WIBE/A-5443-2008; OI DE JONG, WIBE/0000-0002-7114-8315; van Dam, Hubertus Johannes Jacobus/0000-0002-0876-3294 FU eXtreme Scale Computing Initiative at Pacific Northwest National Laboratory; U.S. Department of Energy by Battelle [DE-AC05-76RL01830] FX This work was supported by the eXtreme Scale Computing Initiative at Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle. This work was done in part using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, operated for the U.S. Department of Energy by Battelle under contract DE-AC05-76RL01830. NR 17 TC 5 Z9 5 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD SEP PY 2013 VL 9 IS 9 BP 3995 EP 4005 DI 10.1021/ct400489c PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 295DM UT WOS:000330096800016 PM 26592395 ER PT J AU Lange, AW Voth, GA AF Lange, Adrian W. Voth, Gregory A. TI Multi-state Approach to Chemical Reactivity in Fragment Based Quantum Chemistry Calculations SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID MOLECULAR-ORBITAL METHOD; MANY-BODY EXPANSION; WATER CLUSTERS; LARGE SYSTEMS; ACCURATE CALCULATIONS; TRANSPORT AB We introduce a multistate framework for Fragment Molecular Orbital (FMO) quantum mechanical calculations and implement it in the context of protonated water clusters. The purpose of the framework is to address issues of nonuniqueness and dynamic fragmentation in FMO as well as other related fragment methods. We demonstrate that our new approach, Fragment Molecular Orbital Multistate Reactive Molecular Dynamics (FMO-MS-RMD), can improve energetic accuracy and yield stable molecular dynamics for small protonated water clusters undergoing proton transfer reactions. C1 [Lange, Adrian W.] Argonne Natl Lab, Leadership Comp Facil, Argonne, IL 60439 USA. [Voth, Gregory A.] Univ Chicago, James Franck Inst, Dept Chem, Inst Biophys Dynam, Chicago, IL 60637 USA. [Voth, Gregory A.] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. RP Voth, GA (reprint author), Univ Chicago, James Franck Inst, Dept Chem, Inst Biophys Dynam, Chicago, IL 60637 USA. EM gavoth@uchicago.edu FU National Science Foundation (NSF) [CHE-1214087]; Air Force Office of Scientific Research (AFOSR) [FA9550-13-1-0094]; Office of. Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy [DE-AC02-06CH11357]; Office of Science of the U.S. Department of Energy [DE-AC02-06CH11357] FX This research was supported by the National Science Foundation (NSF, Grant No. CHE-1214087), the Air Force Office of Scientific Research (AFOSR, Grant No. FA9550-13-1-0094), and by the Office of. Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357. This work was completed in part with resources provided by the University of Chicago Research Computing Center. AWL is an Argonne Leadership Computing Facility Early Science Project postdoctoral fellow. NR 23 TC 10 Z9 10 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD SEP PY 2013 VL 9 IS 9 BP 4018 EP 4025 DI 10.1021/ct400516x PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 295DM UT WOS:000330096800018 PM 26592397 ER PT J AU Atwood, D Soni, A AF Atwood, David Soni, Amarjit TI Searching for the origin of CP violation in Cabibbo-suppressed D-meson decays SO PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS LA English DT Article ID B-DECAYS; ISOSPIN ANALYSIS; ASYMMETRIES; PHYSICS AB The recent evidence of relatively large direct CP violation in D-0 decay at LHCb suggests that CP studies in the D system may become an important new avenue for understanding CP just as studies in the B system have proven to be. The current level of CP violation could be consistent with the Standard Model or, perhaps, contain evidence of new physics. A clean Standard Model prediction of the CP violation in these decays would, of course, be important in understanding these results but hadronic uncertainties make such a prediction difficult. In this paper, we make several suggestions to try to seek the role of new physics. We propose that the hadronic enhancement needed to attribute the observed CP violation in D to two pseudoscalar modes may not operate for inclusive final states, where it is likely that we will see asymmetries at the quark level expectation provided the source is the Standard Model. A simple way to implement this is to search for CP asymmetries in final states containing K and (K) over bar but where the sum of their energies is less than the energy of the parent D. This is meant to ensure that the event belongs to an inclusive and not an exclusive sample. We also propose that CP asymmetries may be enhanced in modes where the tree is color suppressed. In particular, the final state rho(0)rho(0) is of special interest because it consists of charged pions only and, in addition, it can have C-even P-odd triple product correlations; similarly, D-s -> rho K-0(+) and rho K-0*(+) also appear interesting. We also emphasize the use of CPT constraints leading to interesting correlations. We then consider how isospin symmetry can provide observables that are sensitive to certain classes of new physics and are small in the Standard Model. In particular, we discuss using isospin analysis in the decays D -> pi pi, rho pi, and rho rho as well as in D-s -> K*pi. We also consider how such analysis may eventually be supplemented by information about the weak phases in D-0 decay. In order to obtain this information experimentally, we consider various methods for preparing an initial state that is a quantum mechanical mixture of D-0 and (D) over bar (0). This may be done through the use of natural D-0/(D) over bar (0) oscillations; observing D-0 mesons that arise from B-d or B-s mesons, which themselves are oscillating, or from quantum correlations in D-0 pairs that arise from either psi '' decay or B-meson decay. Observing CP violation in the magnitudes of decay amplitudes should be within the capability of experiments in the near future; however, obtaining the weak phases through the methods we discuss will likely require future generations of machines due to the large statistics that are likely to be needed. C1 [Atwood, David] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Soni, Amarjit] Brookhaven Natl Lab, Theory Grp, Upton, NY 11973 USA. RP Atwood, D (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM atwood@iastate.edu FU US DOE [DE-AC02-98CH10886, DE-FG02-94ER40817] FX The work of A.S. was supported in part by the US DOE contract #DE-AC02-98CH10886 (BNL). The work of D.A. was supported in part by the US DOE contract #DE-FG02-94ER40817 (ISU). NR 56 TC 4 Z9 4 U1 0 U2 0 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 2050-3911 J9 PROG THEOR EXP PHYS JI Prog. Theor. Exp. Phys. PD SEP PY 2013 IS 9 AR 093B05 DI 10.1093/ptep/ptt065 PG 25 WC Physics, Multidisciplinary; Physics, Particles & Fields SC Physics GA 296UN UT WOS:000330211000007 ER PT J AU Assary, RS Atesin, AC Li, Z Curtiss, LA Marks, TJ AF Assary, Rajeev S. Atesin, Abdurrahman C. Li, Zhi Curtiss, Larry A. Marks, Tobin J. TI Reaction Pathways and Energetics of Etheric C-O Bond Cleavage Catalyzed by Lanthanide Triflates SO ACS CATALYSIS LA English DT Article DE biomass conversion; computational ether C-O hydrogenolysis; ionic liquids; lanthanide triflate catalysts; density functional theory; activation energy; kinetic isotopic effect ID ATOMIC LAYER DEPOSITION; TRANSPORTATION FUELS; FURFURYL ALCOHOL; LEVULINIC ACID; IONIC LIQUIDS; CONVERSION; BIOMASS; CHEMICALS; CELLULOSE; BIOFUELS AB Efficient and selective cleavage of etheric C-O bonds is crucial for converting biomass into platform chemicals and liquid transportation fuels. In this contribution, computational methods at the DFT B3LYP level of theory are employed to understand the efficacy of lanthanide triflate catalysts (Ln(OTf)(3), Ln = La, Ce, Sm, Gd, Yb, and Lu) in cleaving etheric C-O bonds. In agreement with experiment, the calculations indicate that the reaction pathway for C-O cleavage occurs via a C-H -> O-H proton transfer in concert with weakening of the C-O bond of the coordinated ether substrate to ultimately yield a coordinated alkenol. The activation energy for this process falls as the lanthanide ionic radius decreases, reflecting enhanced metal ion electrophilicity. Details of the reaction mechanism for Yb(OTf)(3)-catalyzed ring opening are explored in depth, and for 1-methyl-d(3)-butyl phenyl ether, the computed primary kinetic isotope effect of 2.4 is in excellent agreement with experiment (2.7), confirming that etheric ring-opening pathway involves proton transfer from the methyl group alpha to the etheric oxygen atom, which is activated by the electrophilic lanthanide ion. Calculations of the catalytic pathway using eight different ether substrates indicate that the more rapid cleavage of acyclic versus cyclic ethers is largely due to entropic effects, with the former C-O bond scission processes increasing the degrees of freedom/particles as the transition state is approached. C1 [Assary, Rajeev S.; Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Curtiss, Larry A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Atesin, Abdurrahman C.; Li, Zhi; Marks, Tobin J.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Assary, RS (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM assary@anl.gov; curtiss@anl.gov; t-marks@northwestern.edu RI Surendran Assary, Rajeev/E-6833-2012; Li, Zhi/D-8662-2011 OI Surendran Assary, Rajeev/0000-0002-9571-3307; Li, Zhi/0000-0003-2770-6364 FU U.S. Department of Energy [DE-AC0206CH11357]; Institute of Atom Efficient Chemical Transformation (IACT), an Energy Frontier Research Center; U.S. Department of Energy, Office of Sciences, and Office of Basic Energy Sciences; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF [CHE-1213235] FX This work was supported by the U.S. Department of Energy under contract DE-AC0206CH11357. This material is based upon work supported as part of the Institute of Atom Efficient Chemical Transformation (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Sciences, and Office of Basic Energy Sciences. We gratefully acknowledge the computing resources provided on "Fusion", a 320-node computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This research also used resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We also acknowledge grants of computer time from EMSL, a national scientific user facility located at the Pacific Northwest National Laboratory. Z.L. was supported under NSF grant CHE-1213235 on basic f-element chemistry, which also provided necessary equipment. NR 37 TC 17 Z9 17 U1 7 U2 75 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD SEP PY 2013 VL 3 IS 9 BP 1908 EP 1914 DI 10.1021/cs400483q PG 7 WC Chemistry, Physical SC Chemistry GA 294BG UT WOS:000330016800001 ER PT J AU Lemonidou, AA Vagia, EC Lercher, JA AF Lemonidou, Angeliki A. Vagia, Ekaterini C. Lercher, Johannes A. TI Acetic Acid Reforming over Rh Supported on La2O3/CeO2-ZrO2: Catalytic Performance and Reaction Pathway Analysis SO ACS CATALYSIS LA English DT Article DE hydrogen production; steam reforming; acetic acid; La2O3/CeO2-ZrO2; supported Rh ID NOBLE-METAL CATALYSTS; BIOMASS PYROLYSIS LIQUIDS; BIO-OIL FRACTION; HYDROGEN-PRODUCTION; PARTIAL OXIDATION; NICKEL-CATALYSTS; THERMODYNAMIC ANALYSIS; SUSTAINABLE HYDROGEN; REACTION-KINETICS; MODEL COMPOUNDS AB Reforming of acetic acid was investigated on Rh supported on CeO2-ZrO2 modified with 3 wt % La. The active catalyst converted acetic acid to H-2-rich gas and hardly formed coke. The low rate of coke formation is concluded to be related to the presence of redox-active oxygen limiting the concentration of coke precursors. Temperature-programmed O-18(2)) isotope exchange measurements showed that the La2O3 and Rh enhanced the mobility of lattice oxygen compared with that of the parent CeO2-ZrO2. Ketonization and decarboxylation of acetic acid are the dominating reactions over the latter up to 600 degrees C, whereas above 600 degrees C, steam reforming and water gas shift also contribute. Over 0.5 wt % Rh on La2O3/CeO2-ZrO2, reforming and water gas shift reactions dominate, even below 300 degrees C, producing mostly H-2 and CO2. Using isotope labeling, it is shown that acetic acid adsorbs dissociatively on Rh, forming acetates, which sequentially decarboxylate and form surface methyl groups. The latter are in turn converted to CO, CO2, and H-2. C1 [Lemonidou, Angeliki A.; Vagia, Ekaterini C.] Aristotle Univ Thessaloniki, Dept Chem Engn, GR-54124 Thessaloniki, Greece. [Lercher, Johannes A.] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Lercher, Johannes A.] Tech Univ Munich, Dept Chem, D-85748 Garching, Germany. [Lercher, Johannes A.] Tech Univ Munich, Catalysis Res Ctr, D-85748 Garching, Germany. RP Lemonidou, AA (reprint author), Aristotle Univ Thessaloniki, Dept Chem Engn, Univ Campus, GR-54124 Thessaloniki, Greece. EM alemonidou@cheng.auth.gr FU PENED programme; E.U.-European Social Fund; Greek Ministry of Development-GSRT FX Angeliki Lemonidou and Ekaterini Vagia acknowledge funding in part from the PENED programme that is cofinanced by E.U.-European Social Fund (75%) and the Greek Ministry of Development-GSRT (25%). NR 62 TC 14 Z9 14 U1 6 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD SEP PY 2013 VL 3 IS 9 BP 1919 EP 1928 DI 10.1021/cs4003063 PG 10 WC Chemistry, Physical SC Chemistry GA 294BG UT WOS:000330016800003 ER PT J AU Koenigsmann, C Wong, SS AF Koenigsmann, Christopher Wong, Stanislaus S. TI Tailoring Chemical Composition To Achieve Enhanced Methanol Oxidation Reaction and Methanol-Tolerant Oxygen Reduction Reaction Performance in Palladium-Based Nanowire Systems SO ACS CATALYSIS LA English DT Article DE direct methanol fuel cell; formic acid oxidation; one-dimensional morphology; noble metal nanostructure; electrocatalysis ID FORMIC-ACID ELECTROOXIDATION; DENSITY-FUNCTIONAL THEORY; FUEL-CELLS; ELECTROCATALYTIC PERFORMANCE; NANOPARTICLES; ALLOY; NANOTUBES; CATALYSTS; ULTRATHIN; SURFACE AB In this article, we address two key challenges in the development of electrocatalysts for direct methanol fuel cells by rationally tailoring the morphology and chemical composition of Pd-based nanowires (NWs) for enhanced performance. First, we have examined the morphology and composition-dependent performance of Pt1-xPdx NWs toward the methanol oxidation reaction (MOR). Elemental Pt NWs were found to possess a significant morphology-dependent enhancement of nearly 3-fold in terms of peak MOR-specific activity over that of commercial Pt NP/C. In addition, tailoring the chemical composition in Pt(1-x)Pdx NWs can lead to measurable increases in MOR kinetics, which can be attributed to improved oxidation of formic acid and, potentially, increased selectivity for a direct, CO-free pathway. Second, we have explored the stability of ORR performance in the presence of measurable concentrations of methanol as a function of chemical composition in Pt(1-x)Pdx NWs and Pt-free Pd9Au NWs. In the context of the Pt1-xPdx NWs, a distinctive volcano-type dependence has been noted with respect to chemical composition, and on the basis of the MOR activities and methanol tolerant ORR behavior, Pt7Pd3 NWs have been highlighted as an optimal catalyst architecture. We have also analyzed the methanol tolerance in Pd9Au NWs, which represents a highly active, durable Pt-free alternative to traditional Pt-based nanostructured catalysts. Herein, we have demonstrated that Pd9Au NWs (0.42 mA/cm(2)) with no effective Pt content can outperform Pt-based nanostructures, such as Pt NWs (0.32 rnA/cm(2)) and nanoparticulate Pt NP/C (0.24 mA/cm(2)) in the presence of 4 mM methanol/0.1 M HClO4. C1 [Koenigsmann, Christopher; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Wong, Stanislaus S.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Wong, SS (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM stanislaus.wong@stonybrook.edu FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; U.S. Department of Energy [DE-ACO2-98CH10886] FX Research (including support for C.K. and S.S.W. and electrochemical experiments) was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. We also thank R. R. Adzic and M. B. Vukmirovic for use of their facilities and assistance with electrochemical measurements at Brookhaven National Laboratory, which is supported by the U.S. Department of Energy under Contract No. DE-ACO2-98CH10886. NR 61 TC 26 Z9 26 U1 7 U2 83 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD SEP PY 2013 VL 3 IS 9 BP 2031 EP 2040 DI 10.1021/cs400380t PG 10 WC Chemistry, Physical SC Chemistry GA 294BG UT WOS:000330016800015 ER PT J AU Gao, F Walter, ED Washton, NM Szanyi, J Peden, CHF AF Gao, Feng Walter, Eric D. Washton, Nancy M. Szanyi, Janos Peden, Charles H. F. TI Synthesis and Evaluation of Cu-SAPO-34 Catalysts for Ammonia Selective Catalytic Reduction. 1. Aqueous Solution Ion Exchange SO ACS CATALYSIS LA English DT Article DE selective catalytic reduction; chabazite; SAPO-34; Cu-SAPO-34; diesel engine; emission control; NOx ID MOLECULAR-SIEVES; ZEOLITE CATALYSTS; NOX REDUCTION; ACTIVE-SITES; SAPO-34; CU-SSZ-13; NH3; STABILITY; TEMPLATE; SCR AB SAPO-34 molecular sieves are synthesized using various structure directing agents (SDAs). Cu-SAPO-34 catalysts are prepared via aqueous solution ion exchange (IE). Catalysts are characterized with surface area/pore volume measurements, temperature programmed reduction (TPR), electron paramagnetic resonance (EPR), and nuclear magnetic resonance (NMR) spectroscopies. Catalytic properties are examined using standard ammonia selective catalytic reduction (NH3-SCR) and ammonia oxidation reactions. During solution IE, different SAPO-34 samples undergo different extent of structural damage via irreversible hydrolysis. Si content within the samples (i.e., Al-O-Si bond density) and framework stress are key factors that affect irreversible hydrolysis. Even using very dilute Cu acetate solutions, it is not possible to generate Cu-SAPO-34 samples with only isolated Cu2+ ions. Small amounts of CuOx species always coexist with isolated Cu2+ ions. Highly active and selective Cu-SAPO-34 catalysts for NH3-SCR are readily generated using this synthesis protocol, even for SAPO-34 samples that degrade substantially during solution IE. High-temperature aging is found to improve the catalytic performance. This is likely due to reduction of intracrystalline mass-transfer limitations via formation of additional porosity in the highly defective SAPO-34 particles formed after 1E. C1 [Gao, Feng] Pacific NW Natl Lab, Inst Integrated Catalysis & Chem, Richland, WA 99352 USA. Pacific NW Natl Lab, Div Mat Sci, Richland, WA 99352 USA. RP Gao, F (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis & Chem, POB 999, Richland, WA 99352 USA. EM feng.gao@pnnl.gov; chuck.peden@pnnl.gov RI Walter, Eric/P-9329-2016; OI Peden, Charles/0000-0001-6754-9928 FU U.S. Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office; U.S. DOE by Battelle Memorial Institute [DE-ACO5-76RL01830] FX The authors gratefully acknowledge the U.S. Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office, for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the U.S. DOE by Battelle Memorial Institute under contract number DE-ACO5-76RL01830. Discussions with Drs. A. Yeierets, K. Kamasamudram, J. H. Li, and J. Y. Luo from Cummins, Inc. and H. Y. Chen and H. Hess from Johnson-Matthey are greatly appreciated. NR 52 TC 47 Z9 47 U1 16 U2 115 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD SEP PY 2013 VL 3 IS 9 BP 2083 EP 2093 DI 10.1021/cs4004672 PG 11 WC Chemistry, Physical SC Chemistry GA 294BG UT WOS:000330016800022 ER PT J AU Kwak, JH Kovarik, L Szanyi, J AF Kwak, Ja Hun Kovarik, Libor Szanyi, Janos TI Heterogeneous Catalysis on Atomically Dispersed Supported Metals: CO2 Reduction on Multifunctional Pd Catalysts SO ACS CATALYSIS LA English DT Article DE CO2 reduction; product selectivity; bifunctionality; atomic metal dispersion; supported Pd catalysts ID CARBON NANOTUBES; METHANATION; HYDROGENATION; HYDROCARBONS; GAMMA-AL2O3; OXIDATION; MECHANISM; KINETICS; CU/SIO2; SILVER AB Because of their heterogeneous nature, supported metal catalysts always contain metal centers in a rather broad dispersion range, and the presence of even atomically dispersed metals has been reported on oxide supports. The role of the atomically dispersed metal centers in the overall catalytic performances of these supported metal catalysts, however, has not been addressed to date. In this study, temperature programmed reaction and scanning transmission electron microscopy experiments were applied to show the fundamentally different reactivity patterns exhibited by Pd metal in atomically dispersed and traditional 3D clusters in the demanding reaction of CO2 reduction. The requirement for two different catalyst functionalities in the reduction of CO2 with hydrogen on Pd/Al2O3 and Pd/MWCNT catalysts was also substantiated. The results obtained clearly show that the oxide support material, even when it is considered inert like Al2O3, can function as a critical, active component of complex catalyst systems. C1 [Kwak, Ja Hun; Szanyi, Janos] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Kovarik, Libor] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Kwak, JH (reprint author), UNIST, Sch Nanobiosci & Chem Engn, Ulsan 689798, South Korea. EM Kwak@pnnl.gov; janos.szanyi@pnnl.gov RI Kwak, Ja Hun/J-4894-2014; Kovarik, Libor/L-7139-2016; OI Kovarik, Libor/0000-0002-2418-6925 FU Laboratory Directed Research and Development (LDRD) project; Chemical Imaging Initiative at the Pacific Northwest National Laboratory (PNNL) FX The catalyst preparation and catalytic measurements were supported by a Laboratory Directed Research and Development (LDRD) project, while the TEM work was supported by the Chemical Imaging Initiative at the Pacific Northwest National Laboratory (PNNL). PNNL is operated for the U.S. Department of Energy by Battelle Memorial Institute. NR 36 TC 43 Z9 44 U1 23 U2 165 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD SEP PY 2013 VL 3 IS 9 BP 2094 EP 2100 DI 10.1021/cs4001392 PG 7 WC Chemistry, Physical SC Chemistry GA 294BG UT WOS:000330016800023 ER PT J AU Milovanovic, P Zimmermann, EA Hahn, M Djonic, D Puschel, K Djuric, M Amling, M Busse, B AF Milovanovic, Petar Zimmermann, Elizabeth A. Hahn, Michael Djonic, Danijela Pueschel, Klaus Djuric, Marija Amling, Michael Busse, Bjoern TI Osteocytic Canalicular Networks: Morphological Implications for Altered Mechanosensitivity SO ACS NANO LA English DT Article DE biological materials; mechanical properties; hierarchical structures; multiscale; lacuno-canalicular networks ID HUMAN CORTICAL BONE; STRAIN AMPLIFICATION; PERICELLULAR MATRIX; LACUNAR DENSITY; TISSUE STRAIN; FLUID-FLOW; AGE; MINERALIZATION; OSTEOPOROSIS; WOMEN AB Osteocytes are ramified bone cells distributed throughout the bone matrix within a network of micrometer-scale cavities (lacunae) and numerous nanometer-thick tunnels (canaliculi). The integrity of the canalicular network might influence bone quality and reflect its mechanosensory potential. In this study, we applied an acid etching technique to embedded bone specimens that allows 3D observation of the canalicular network across a 2D plane to quantitatively assess the canalicular connections in cortical bone specimens from young and aged individuals. Our results showed a nearly 30% reduction in the number of canaliculi per osteocyte lacuna in aged individuals (N.Ot.Ca/Ot.Lc: 15.92 +/- 1.5 in aged vs 22.10 +/- 2.82 in young; p < 0.001); moreover, canalicular number was found to be inversely related to the osteonal tissue age represented by Ca/P ratio (p < 0.001). We frequently observed the phenomenon that canaliculi of osteocytes located near the osteon's periphery did not end at the osteon's cement line boundary but penetrated through the cement line and spread into the surrounding bone matrix, thus establishing an "external rooting" or "connection", which might have significant relevance to bone quality. Our findings showed that not only does the aging process diminish the canalicular network within osteons, but it also significantly reduces the probability of external osteonal rooting and connections with the surrounding bone tissue. Deterioration in the canalicular network with age reduces the connectivity between osteocytes and between osteons/interstitial tissue, which affects the supply of nutrients to osteocytes, degrades their mechanosensitivity, and contributes to increased bone fragility in the elderly. C1 [Milovanovic, Petar; Zimmermann, Elizabeth A.; Hahn, Michael; Amling, Michael; Busse, Bjoern] Univ Med Ctr Hamburg Eppendorf, Dept Osteol & Biomech, D-22529 Hamburg, Germany. [Milovanovic, Petar; Djonic, Danijela; Djuric, Marija] Univ Belgrade, Sch Med, Inst Anat, Lab Anthropol, Belgrade 11000, Serbia. [Zimmermann, Elizabeth A.; Busse, Bjoern] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Pueschel, Klaus] Univ Med Ctr Hamburg Eppendorf, Dept Forens Med, D-22529 Hamburg, Germany. RP Busse, B (reprint author), Univ Med Ctr Hamburg Eppendorf, Dept Osteol & Biomech, Lottestr 59, D-22529 Hamburg, Germany. EM b.busse@uke.uni-hamburg.de RI Zimmermann, Elizabeth/A-4010-2015; Busse, Bjorn/O-8462-2016; OI Busse, Bjorn/0000-0002-3099-8073; Zimmermann, Elizabeth/0000-0001-9927-3372 FU DAAD (Deutscher Akademischer Austauschdienst, German Academic Exchange Service) [A/11/83161]; Ministry of Science and Education of the Republic of Serbia [III 45005]; South-Eastern-European Cooperation of the University Medical Center Hamburg-Eppendorf; Federal Ministry of Education and Research [01EC1006F/01EC1005D]; DFG-Emmy Noether Program (Deutsche Forschungsgemeinschaft, German Research Foundation) [BU 2562/2-1] FX The study was supported by the DAAD (Deutscher Akademischer Austauschdienst, German Academic Exchange Service; A/11/83161), the Ministry of Science and Education of the Republic of Serbia (III 45005), the South-Eastern-European Cooperation of the University Medical Center Hamburg-Eppendorf, the Federal Ministry of Education and Research (01EC1006F/01EC1005D) and the DFG-Emmy Noether Program (Deutsche Forschungsgemeinschaft, German Research Foundation; BU 2562/2-1). The authors thank C. Riedel for technical assistance with the electron microscopy. The authors would also like to acknowledge the support of R. O. Ritchie and A. Tomsia at Lawrence Berkeley National Lab. NR 43 TC 25 Z9 25 U1 1 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD SEP PY 2013 VL 7 IS 9 BP 7542 EP 7551 DI 10.1021/nn401360u PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 294BH UT WOS:000330016900013 PM 23909715 ER PT J AU Gamalski, AD Perea, DE Yoo, J Li, N Olszta, MJ Colby, R Schreiber, DK Ducati, C Picraux, ST Hofmann, S AF Gamalski, Andrew D. Perea, Daniel E. Yoo, Jinkyoung Li, Nan Olszta, Matthew J. Colby, Robert Schreiber, Daniel K. Ducati, Caterina Picraux, S. Tom Hofmann, Stephan TI Catalyst Composition and Impurity-Dependent Kinetics of Nanowire Heteroepitaxy SO ACS NANO LA English DT Article DE nanowire; Ge-Si heteroepitaxy; nucleation barrier; environmental transmission electron microscopy; AuGa catalyst alloy; dopants ID SI/SIGE SUPERLATTICE NANOWIRES; HETEROSTRUCTURE NANOWIRES; SILICON NANOWIRES; GROWTH; HETEROJUNCTIONS; MORPHOLOGY; SI; ABRUPTNESS; INTERFACE; DIODES AB The mechanisms and kinetics of axial Ge-Si nanowire heteroepitaxial growth based on the tailoring of the Au catalyst composition via Ga alloying are studied by environmental transmission electron microscopy combined with systematic ex situ ND calibrations. The morphology of the Ge Si heterojunction, in particular, the extent of a local, asymmetric Increase in nanowire diameter, is found to depend on the Ga composition of the catalyst, on the TMGa precursor exposure temperature, and on the presence of dopants. To rationalize the findings, a general nucleation-based model for nanowire heteroepitaxy is established which is anticipated to be relevant to a wide range of material systems and device-enabling heterostructures. C1 [Gamalski, Andrew D.; Hofmann, Stephan] Univ Cambridge, Dept Engn, Cambridge CB3 0FA, England. [Perea, Daniel E.; Colby, Robert] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Yoo, Jinkyoung; Li, Nan; Picraux, S. Tom] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Olszta, Matthew J.; Schreiber, Daniel K.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Ducati, Caterina] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. RP Perea, DE (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, POB 999, Richland, WA 99352 USA. EM daniel.perea@pnnl.gov; sh315@cam.ac.uk RI Hofmann, Stephan/D-3906-2012; Perea, Daniel/A-5345-2010; Li, Nan /F-8459-2010; OI Hofmann, Stephan/0000-0001-6375-1459; Li, Nan /0000-0002-8248-9027; Ducati, Caterina/0000-0003-3366-6442 FU ERC [279342]; Marshall Aid Commemoration Commission; National Science Foundation; Royal Society; Department of Energy's (DOE) Office of Biological and Environmental Research [DE-AC05-76RL01830]; National Nuclear Security Administration of the U.S. DOE [DE-AC52-06NA25396] FX S.H. acknowledges funding from ERC grant InsituNANO (No. 279342). A.D.G. acknowledges funding from the Marshall Aid Commemoration Commission and the National Science Foundation. C.D. acknowledges funding from the Royal Society. A portion of the research was also performed using EMSL, a national scientific user facility sponsored by the Department of Energy's (DOE) Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. DOE under Contract DE-AC05-76RL01830. We gratefully acknowledge the use of facilities within the LeRoy Eyring Center for Solid State Science at Arizona State University. This work was performed in part at CINT, a U.S. DOE, Office of Science User Facility. The research was funded in part by the Laboratory Directed Research and Development Program at LANL, an affirmative action equal opportunity employer operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. DOE under Contract DE-AC52-06NA25396. NR 35 TC 7 Z9 7 U1 0 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD SEP PY 2013 VL 7 IS 9 BP 7689 EP 7697 DI 10.1021/nn402208p PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 294BH UT WOS:000330016900029 PM 23915202 ER PT J AU Staude, I Miroshnichenko, AE Decker, M Fofang, NT Liu, S Gonzales, E Dominguez, J Luk, TS Neshev, DN Brener, I Kivshar, Y AF Staude, Isabelle Miroshnichenko, Andrey E. Decker, Manuel Fofang, Nche T. Liu, Sheng Gonzales, Edward Dominguez, Jason Luk, Ting Shan Neshev, Dragomir N. Brener, Igal Kivshar, Yuri TI Tailoring Directional Scattering through Magnetic and Electric Resonances in Subwavelength Silicon Nanodisks SO ACS NANO LA English DT Article DE magnetic resonance; all-dielectric nanoantennas; nanodisks; directional scattering; resonant scattering ID FANO RESONANCE; PLASMONIC NANOCAVITIES; OPTICAL NANOANTENNAS; METAMATERIALS; NANOPARTICLES; LIGHT; PARTICLES; EMISSION; ANTENNA AB Interference of optically induced electric and magnetic modes in high-index all-dielectric nanoparticles offers unique opportunities for tailoring directional scattering and engineering the flow of light. In this article we demonstrate theoretically and experimentally that the interference of electric and magnetic optically induced modes in individual subwavelength silicon nano-disks can lead to the suppression of resonant bacicscattering and to enhanced resonant forward scattering of light. To this end we spectrally tune the nanodisk's fundamental electric and magnetic resonances with respect to each other by a variation of the nanodisk aspect ratio. This ability to tune two modes of different character within the same nanoparticle provides direct control over their interference, and, In consequence, allows for engineering the particle's resonant and off-resonant scattering patterns. Most importantly, measured and numerically calculated transmittance spectra reveal that backward scattering can be suppressed and forward scattering can be enhanced at resonance for the particular case of overlapping electric and magnetic resonances. Our experimental results are in good agreement with calculations based on the discrete dipole approach as well as finite-integral frequency-domain simulations. Furthermore, we show useful applications of silicon nanodisks with tailored resonances as optical nanoantennas with strong unidirectional emission from a dipole source. C1 [Staude, Isabelle; Miroshnichenko, Andrey E.; Decker, Manuel; Neshev, Dragomir N.; Kivshar, Yuri] Australian Natl Univ, Res Sch Phys & Engn, Nonlinear Phys Ctr, Canberra, ACT 0200, Australia. [Staude, Isabelle; Fofang, Nche T.; Liu, Sheng; Gonzales, Edward; Dominguez, Jason; Luk, Ting Shan; Brener, Igal] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Staude, I (reprint author), Australian Natl Univ, Res Sch Phys & Engn, Nonlinear Phys Ctr, GPO Box 4, Canberra, ACT 0200, Australia. EM ips124@physics.anu.edu.au RI Liu, Sheng/P-6029-2014; Staude, Isabelle/N-4270-2015; Neshev, Dragomir/A-3759-2008; Miroshnichenko, Andrey/C-2170-2016; OI Liu, Sheng/0000-0003-0967-4514; Neshev, Dragomir/0000-0002-4508-8646; Miroshnichenko, Andrey/0000-0001-9607-6621; Decker, Manuel/0000-0002-9125-0851 FU Australian Research Council FX This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors also acknowledge support from the Australian Research Council. We thank W. Liu, A. Evlyukhin, and A. Kuznetsov for the useful discussions. NR 46 TC 222 Z9 223 U1 18 U2 101 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD SEP PY 2013 VL 7 IS 9 BP 7824 EP 7832 DI 10.1021/nn402736f PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 294BH UT WOS:000330016900042 PM 23952969 ER PT J AU Rahman, A Sanyal, MK AF Rahman, Atikur Sanyal, Milan K. TI Correlated Charge Carrier-like Photoresponse of Polymer Nanowires SO ACS NANO LA English DT Article DE photoresponse; polymer nanowire; correlated electrons ID SOLAR-CELLS; ULTRAVIOLET DETECTORS; CONJUGATED POLYMERS; MAGNETIC-FIELD; PHOTODETECTORS; GAIN; PHOTOCONDUCTIVITY; CONVERSION; EXCITONS; ENERGY AB Size confinement at nanometer length scales gives rise to many new and tunable properties of organic materials that are absent in their bulk state. Here we report, the appearance of large photoconduction property of a conducting polymer when it forms nanowires. The photoresponse and the external photoconductive gain were found to be >10(5) % and >200%, respectively, even at low bias (<1 V) voltage. These nanowires show a resistance switching transition at low temperature above a threshold bias, and below this transition, the resistance changes by more than 3 orders of magnitude under illumination of light. The photoresponse increases superlinearly and the resistance switching threshold voltage decreases with increasing illumination intensity. These properties are absent in the bulk polymer, and the observed photoresponse is not bolometric or excitonic in nature, nor it can be explained by free carrier generation or Schottky barrier modulation, rather it is consistent with the photoexcitation of correlated charge carriers. C1 [Rahman, Atikur; Sanyal, Milan K.] Saha Inst Nucl Phys, Surface Phys Div, Kolkata 700064, India. RP Rahman, A (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM arahman@bnl.gov; milank.sanyal@saha.ac.in RI sanyal, milan/J-2527-2015; OI sanyal, milan/0000-0002-3847-8793; Rahman, Atikur/0000-0002-1275-7129 NR 32 TC 4 Z9 4 U1 6 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD SEP PY 2013 VL 7 IS 9 BP 7894 EP 7900 DI 10.1021/nn402917h PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 294BH UT WOS:000330016900049 PM 23952915 ER PT J AU Clark, KW Zhang, XG Vlassiouk, IV He, GW Feenstra, RM Li, AP AF Clark, Kendal W. Zhang, X. -G. Vlassiouk, Ivan V. He, Guowei Feenstra, Randall M. Li, An-Ping TI Spatially Resolved Mapping of Electrical Conductivity across Individual Domain (Grain) Boundaries in Graphene SO ACS NANO LA English DT Article DE graphene; electronic transport; grain boundary; defect; scanning tunneling microscopy; potentiometry ID CHEMICAL-VAPOR-DEPOSITION; SCANNING TUNNELING POTENTIOMETRY; ELECTRONIC TRANSPORT; POLYCRYSTALLINE GRAPHENE; EPITAXIAL GRAPHENE; SPECTROSCOPY; CONDUCTANCE; SUBSTRATE; DISORDER; GROWTH AB All large-scale graphene films contain extended topological defects dividing graphene into domains or grains. Here, we spatially map electronic transport near specific domain and grain boundaries in both epitaxial graphene grown on SiC and CVD graphene on Cu subsequently transferred to a SiO2 substrate, with one-to-one correspondence to boundary structures. Boundaries coinciding with the substrate step on SiC exhibit a significant potential barrier for electron transport of epitaxial graphene due to the reduced charge transfer from the substrate near the step edge. Moreover, monolayer-bilayer boundaries exhibit a high resistance that can change depending on the height of substrate step coinciding at the boundary. In CVD graphene, the resistance of a grain boundary changes with the width of the disordered transition region between adjacent grains. A quantitative modeling of boundary resistance reveals the increased electron Fermi wave vector within the boundary region, possibly due to boundary induced charge density variation. Understanding how resistance change with domain (grain) boundary structure in graphene is a crucial first step for controlled engineering of defects in large-scale graphene films. C1 [Clark, Kendal W.; Zhang, X. -G.; Li, An-Ping] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Vlassiouk, Ivan V.] Oak Ridge Natl Lab, Measurement Sci & Syst Engn Div, Oak Ridge, TN 37831 USA. [He, Guowei; Feenstra, Randall M.] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. RP Li, AP (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM apli@ornl.gov RI Li, An-Ping/B-3191-2012; Feenstra, Randall/P-2530-2014; Vlassiouk, Ivan/F-9587-2010; OI Li, An-Ping/0000-0003-4400-7493; Feenstra, Randall/0000-0001-7120-5685; Vlassiouk, Ivan/0000-0002-5494-0386; He, Guowei/0000-0001-8653-2793 FU Office of Basic Energy Sciences, U.S. Department of Energy; National Science Foundation FX This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. The support (G.H. and R.M.F.) from the National Science Foundation is also acknowledged. We thank G. Gu for discussions and S. Jesse for assistance with data processing of this work. NR 47 TC 44 Z9 44 U1 7 U2 87 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD SEP PY 2013 VL 7 IS 9 BP 7956 EP 7966 DI 10.1021/nn403056k PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 294BH UT WOS:000330016900055 PM 23952068 ER PT J AU Ciesielski, PN Matthews, JF Tucker, MP Beckham, GT Crowley, MF Himmel, ME Donohoe, BS AF Ciesielski, Peter N. Matthews, James F. Tucker, Melvin P. Beckham, Gregg T. Crowley, Michael F. Himmel, Michael E. Donohoe, Bryon S. TI 3D Electron Tomography of Pretreated Biomass Informs Atomic Modeling of Cellulose Microfibrils SO ACS NANO LA English DT Article DE transmission electron tomography; biomass nanostructure; cellulose microfibril; atomic modeling; biofuels; thermochemical pretreatment ID PLANT-CELL WALLS; LIGNOCELLULOSIC BIOMASS; ENZYMATIC-HYDROLYSIS; FIBER; SIMULATION; POLYMERIZATION; DIGESTIBILITY; RECALCITRANCE; ARCHITECTURE; NANOSCALE AB Fundamental insights into the macromolecular architecture of plant cell walls will elucidate new structure-property relationships and facilitate optimization of catalytic processes that produce fuels and chemicals from biomass. Here we introduce computational methodology to extract nanoscale geometry of cellulose microfibrils within thermochemically treated biomass directly from electron tomographic data sets. We quantitatively compare the cell wall nanostructure in corn stover following two leading pretreatment strategies: dilute acid with iron sulfate co-catalyst and ammonia fiber expansion (AFEX). Computational analysis of the tomographic data is used to extract mathematical descriptions for longitudinal axes of cellulose microfibrils from which we calculate their nanoscale curvature. These nanostructural measurements are used to inform the construction of atomistic models that exhibit features of cellulose within real, process-relevant biomass. By computational evaluation of these atomic models, we propose relationships between the crystal structure of cellulose 1 beta and the nanoscale geometry of cellulose microfibrils. C1 [Ciesielski, Peter N.; Matthews, James F.; Crowley, Michael F.; Himmel, Michael E.; Donohoe, Bryon S.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. [Tucker, Melvin P.; Beckham, Gregg T.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Ciesielski, PN (reprint author), Natl Renewable Energy Lab, Biosci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM peter.ciesielski@nrel.gov; bryon.donohoe@nrel.gov FU Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0000997] FX This work was supported by the Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0000997. We would like to thank Xiaowen Chen for assistance preparing the DA/FE pretreated samples and Shishir Chundawat and Leonardo da Costa Sousa from MSU's Biomass Conversion Research Laboratory for providing the AFEX pretreated materials. NR 48 TC 22 Z9 22 U1 2 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD SEP PY 2013 VL 7 IS 9 BP 8011 EP 8019 DI 10.1021/nn4031542 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 294BH UT WOS:000330016900061 PM 23988022 ER PT J AU Arruda, TM Kumar, A Jesse, S Veith, GM Tselev, A Baddorf, AP Balke, N Kalinin, SV AF Arruda, Thomas M. Kumar, Amit Jesse, Stephen Veith, Gabriel M. Tselev, Alexander Baddorf, Arthur P. Balke, Nina Kalinin, Sergei V. TI Toward Quantitative Electrochemical Measurements on the Nanoscale by Scanning Probe Microscopy: Environmental and Current Spreading Effects SO ACS NANO LA English DT Article DE scanning probe microscopy; solid state electrolyte; counter electrode effects; Li ion battery; nanoscale electrochemistry ID ATOMIC-FORCE MICROSCOPY; SILICON SURFACES; LITHIUM; OXIDATION; FILMS AB The application of electric bias across tip surface junctions in scanning probe microscopy can readily induce surface and bulk electrochemical processes that can be further detected though changes in surface topography, Faradaic or conductive currents, or electromechanical strain responses. However, the basic factors controlling tip-induced electrochemical processes, including the relationship between applied tip bias and the thermodynamics of local processes, remains largely unexplored. Using the model Li-ion reduction reaction on the surface in Li-ion conducting glass ceramic, we explore the factors controlling Li-metal formation and find surprisingly strong effects of atmosphere and back electrode composition on the process. We find that reaction processes are highly dependent on the nature of the counter electrode and environmental conditions. Using a nondepleting Li counter electrode, Li particles could grow significantly larger and faster than a depleting counter electrode. Significant Li ion depletion leads to the inability for further Li reduction. Time studies suggest that Li diffusion replenishes the vacant sites after similar to 12 h. These studies suggest the feasibility of SPM-based quantitative electrochemical studies under proper environmental controls, extending the concepts of ultramicroelectrodes to the single-digit nanometer scale. C1 [Arruda, Thomas M.; Kumar, Amit; Jesse, Stephen; Tselev, Alexander; Baddorf, Arthur P.; Balke, Nina; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Veith, Gabriel M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM Sergei2@ornl.gov RI Kumar, Amit/C-9662-2012; Tselev, Alexander/L-8579-2015; Balke, Nina/Q-2505-2015; Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016; Baddorf, Arthur/I-1308-2016 OI Kumar, Amit/0000-0002-1194-5531; Tselev, Alexander/0000-0002-0098-6696; Balke, Nina/0000-0001-5865-5892; Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483; Baddorf, Arthur/0000-0001-7023-2382 FU Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The authors gratefully acknowledge Roger De Souza (RTW Aachen) for thought-provoking discussions that led to this work and Nick Lavrick (CNMS) for eminently useful references on the role of ionic dynamics on surface conductance on dielectrics. NR 22 TC 5 Z9 5 U1 2 U2 56 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD SEP PY 2013 VL 7 IS 9 BP 8175 EP 8182 DI 10.1021/nn4034772 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 294BH UT WOS:000330016900079 PM 23968334 ER PT J AU Shin, N Chi, MF Filler, MA AF Shin, Naechul Chi, Miaofang Filler, Michael A. TI Sidewall Morphology-Dependent Formation of Multiple Twins in Si Nanowires SO ACS NANO LA English DT Article DE silicon; nanowire; defects; twin; surface; facet ID III-V NANOWIRES; SILICON NANOWIRES; TWINNING SUPERLATTICES; PHOSPHIDE NANOWIRES; DEFECT FORMATION; GROWTH AB Precise placement of twin boundaries and stacking faults promises new opportunities to fundamentally manipulate the optical, electrical, and thermal properties of semiconductor nanowires. Here we report on the appearance of consecutive twin boundaries in Si nanowires and show that sidewall morphology governs their spacing. Detailed electron microscopy analysis reveals that thin {111} sidewall facets, which elongate following the first twin boundary (TB1), are responsible for deforming the triple-phase line and favoring the formation of the second twin boundary (TB2). While multiple, geometrically correlated defect planes are known in group III-V nanowires, our findings show that this behavior is also possible in group IV materials. C1 [Shin, Naechul; Filler, Michael A.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Chi, Miaofang] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Filler, MA (reprint author), Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. EM michael.filler@chbe.gatech.edu RI Chi, Miaofang/Q-2489-2015 OI Chi, Miaofang/0000-0003-0764-1567 FU National Science Foundation (CBET) [1133563]; ORNL's Shared Research Equipment (ShaRE) User Program; Office of Basic Energy Sciences, the U.S. Department of Energy FX The authors acknowledge funding from the National Science Foundation (CBET# 1133563) and greatly appreciate insightful comments from Karren More. Research supported by ORNL's Shared Research Equipment (ShaRE) User Program, which is sponsored by the Office of Basic Energy Sciences, the U.S. Department of Energy. NR 28 TC 4 Z9 4 U1 2 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD SEP PY 2013 VL 7 IS 9 BP 8206 EP 8213 DI 10.1021/nn4036798 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 294BH UT WOS:000330016900083 PM 23944902 ER PT J AU Zhang, YJ Ziegler, D Salmeron, M AF Zhang, Yingjie Ziegler, Dominik Salmeron, Miquel TI Charge Trapping States at the SiO2-Oligothiophene Monolayer Interface in Field Effect Transistors Studied by Kelvin Probe Force Microscopy SO ACS NANO LA English DT Article DE charge trapping; oligothiophene monolayer; field effect transistor; Kelvin probe force microscopy; density of states ID THIN-FILM TRANSISTORS; TRANSPORT; BEHAVIOR; PERFORMANCE; CELLS AB Using Kelvin probe force microscopy (KPFM) we studied the local charge trapping states at the SiO2-oligothiophene Interface in a field effect transistor (FET), where SiO2 is the gate dielectric. KPFM reveals surface potential inhomogeneities within the oligothiophene monolayer, which correlate with its structure. A large peak of trap states with energies in the oligothiophene's band gap due to hydroxyl groups is present at the oxide surface. We show that these states are successfully eliminated by preadsorption of a layer of (3-aminopropyl)triethoxysilane (APTES). Time-resolved surface potential transient measurements further show that the charge carrier injection in the nonpassivated FET contains two exponential transients, due to the charge trapping on the oxide surface and in the bulk oxide, while the APTES-passivated FET has only a single-exponential transient due to the bulk oxide. The results demonstrate that APTES is a good SiO2 surface passivation layer to reduce trap states while maintaining a hydrophilic surface, pointing out the importance of dielectric surface passivation to bridge the gap between soft materials and electronic devices. C1 [Zhang, Yingjie; Salmeron, Miquel] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zhang, Yingjie] Univ Calif Berkeley, Appl Sci & Technol Grad Program, Berkeley, CA 94720 USA. [Ziegler, Dominik] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA USA. [Salmeron, Miquel] Univ Calif Berkeley, Mat Sci & Engn Dept, Berkeley, CA 94720 USA. RP Salmeron, M (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM MBSalmeron@lbl.gov RI Foundry, Molecular/G-9968-2014 FU Berkeley Lab's program on "Self-Assembly of Organic/Inorganic Nanocomposite Materials"; Office of Science, Office of Basic Energy Sciences (BES), Materials Sciences and Engineering (MSE) Division of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; Office of Science of the U.S. Department of Energy FX We thank Andrew Pun and Dr. Yi Liu for help with APTES deposition and discussions on surface trap states passivation. We also thank Prof. Jaime Colchero for helping to set up the KPFM. This work was supported by Berkeley Lab's program on "Self-Assembly of Organic/Inorganic Nanocomposite Materials", funded by the Office of Science, Office of Basic Energy Sciences (BES), Materials Sciences and Engineering (MSE) Division of the U.S. Department of Energy (DOE), under Contract No. DE-AC02-05CH11231. It used resources of the Molecular Foundry, which are supported by the Office of Science of the U.S. Department of Energy. NR 36 TC 15 Z9 15 U1 5 U2 63 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD SEP PY 2013 VL 7 IS 9 BP 8258 EP 8265 DI 10.1021/nn403750h PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 294BH UT WOS:000330016900089 PM 23987138 ER PT J AU Kim, Y Kelly, SJ Morozovska, A Rahani, EK Strelcov, E Eliseev, E Jesse, S Biegalski, MD Balke, N Benedek, N Strukov, D Aarts, J Hwang, I Oh, S Choi, JS Choi, T Park, BH Shenoy, VB Maksymovych, P Kalinin, SV AF Kim, Yunseok Kelly, Simon J. Morozovska, Anna Rahani, Ehsan Kabiri Strelcov, Evgheni Eliseev, Eugene Jesse, Stephen Biegalski, Michael D. Balke, Nina Benedek, Nicole Strukov, Dmitri Aarts, J. Hwang, Inrok Oh, Sungtaek Choi, Jin Sik Choi, Taekjib Park, Bae Ho Shenoy, Vivek B. Maksymovych, Peter Kalinin, Sergei V. TI Mechanical Control of Electroresistive Switching SO NANO LETTERS LA English DT Article DE Piezochemical effect; pressure; mechanical force; metal-insulator transition; AFM ID PROBE FORCE MICROSCOPY; LATTICE-PARAMETER; OXIDE INTERFACES; NIO; EXCHANGE; TRIBOELECTRICITY; SEMICONDUCTORS; POLARIZATION; TRANSITIONS; MANGANITES AB Hysteretic metal-insulator transitions (MIT) mediated by ionic dynamics or ferroic phase transitions underpin emergent applications for nonvolatile memories and logic devices. The vast majority of applications and studies have explored the MIT coupled to the electric field or temperarture. Here, we argue that MIT coupled to ionic dynamics should be controlled by mechanical stimuli, the behavior we refer to as the piezochemical effect. We verify this effect experimentally and demonstrate that it allows both studying materials physics and enabling novel data storage technologies with mechanical writing and current-based readout. C1 [Kim, Yunseok; Kelly, Simon J.; Strelcov, Evgheni; Jesse, Stephen; Biegalski, Michael D.; Balke, Nina; Maksymovych, Peter; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Kim, Yunseok] Sungkyunkwan Univ, Sch Adv Mat Sci & Engn, Suwon 440746, South Korea. [Kelly, Simon J.; Aarts, J.] Leiden Univ, Leiden Inst Phys, NL-2333 CA Leiden, Netherlands. [Morozovska, Anna] Natl Acad Sci Ukraine, Inst Phys, UA-03028 Kiev, Ukraine. [Rahani, Ehsan Kabiri] Brown Univ, Sch Engn, Providence, RI 02906 USA. [Eliseev, Eugene] Natl Acad Sci Ukraine, Inst Problems Mat Sci, UA-03142 Kiev, Ukraine. [Benedek, Nicole] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA. [Strukov, Dmitri] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA. [Hwang, Inrok; Oh, Sungtaek; Choi, Jin Sik; Park, Bae Ho] Konkuk Univ, Dept Phys, Div Quantum Phases & Devices, Seoul 143701, South Korea. [Choi, Taekjib] Sejong Univ, Hybrid Mat Res Ctr, Seoul 143747, South Korea. [Choi, Taekjib] Sejong Univ, Dept Nanotechnol & Adv Mat Engn, Seoul 143747, South Korea. [Shenoy, Vivek B.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. RP Kim, Y (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM yunseokkim@skku.edu; sergei2@ornl.gov RI Strelcov, Evgheni/H-1654-2013; Choi, Taekjib/H-8791-2012; Balke, Nina/Q-2505-2015; Kalinin, Sergei/I-9096-2012; Maksymovych, Petro/C-3922-2016; Jesse, Stephen/D-3975-2016 OI Choi, Taekjib/0000-0001-6912-3322; Balke, Nina/0000-0001-5865-5892; Kalinin, Sergei/0000-0001-5354-6152; Maksymovych, Petro/0000-0003-0822-8459; Jesse, Stephen/0000-0002-1168-8483 FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; National Research Foundation of Korea (NRF); Korea government (MSIP) [2013R1A3A2042120]; Basic Science Research Program through the NRF; Korea MEST [2011-0025607]; Dutch Ministry of Economic Affairs; Army Research Office [W911NF-11-1-0171] FX Research was supported (S.V.K., Y.K., P.M.). by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. A portion of this research was conducted as user project at the Center for Nanophase Materials Sciences (support for S.J., M.D.B., N.B.), which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. This work was also supported by (I.H., S.O., J.S.C., B.H.P.) the National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIP) (No. 2013R1A3A2042120), (T.C.) Basic Science Research Program through the NRF funded by the Korea MEST (Grant No. 2011-0025607), and (S.J.K., J.A.) NanoNed, a national nanotechnology program coordinated by the Dutch Ministry of Economic Affairs. V.B.S. gratefully acknowledges the support of the Army Research Office through Contract W911NF-11-1-0171. NR 61 TC 20 Z9 20 U1 7 U2 73 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2013 VL 13 IS 9 BP 4068 EP 4074 DI 10.1021/nl401411r PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 296BA UT WOS:000330158900016 PM 23981113 ER PT J AU Lei, Y Lu, J Luo, XY Wu, TP Du, P Zhang, XY Ren, Y Wen, JG Miller, DJ Miller, JT Sun, YK Elam, JW Amine, K AF Lei, Yu Lu, Jun Luo, Xiangyi Wu, Tianpin Du, Peng Zhang, Xiaoyi Ren, Yang Wen, Jianguo Miller, Dean J. Miller, Jeffrey T. Sun, Yang-Kook Elam, Jeffrey W. Amine, Khalil TI Synthesis of Porous Carbon Supported Palladium Nanoparticle Catalysts by Atomic Layer Deposition: Application for Rechargeable Lithium-O-2 Battery SO NANO LETTERS LA English DT Article DE Li-O-2 battery; atomic layer deposition; palladium nanoparticles; oxygen reduction reaction; oxygen evolution reaction ID LI-AIR BATTERIES; LI-O-2 BATTERIES; OXYGEN BATTERY; ELECTROLYTES; ELECTROCHEMISTRY; ELECTRODES; DISCHARGE; CHEMISTRY; NANOPORES; PLATINUM AB In this study, atomic layer deposition (ALD) was used to deposit nanostructured palladium on porous carbon as the cathode material for Li-O-2 cells. Scanning transmission electron microscopy showed discrete crystalline nanoparticles decorating the surface of the porous carbon support, where the size could be controlled in the range of 2-8 nm and depended on the number of Pd ALD cycles performed. X-ray absorption spectroscopy at the Pd K-edge revealed that the carbon supported Pd existed in a mixed phase of metallic palladium and palladium oxide. The conformality of ALD allowed us to uniformly disperse the Pd catalyst onto the carbon support while preserving the initial porous structure. As a result, the charging and discharging performance of the oxygen cathode in a Li-O-2 cell was improved. Our results suggest that ALD is a promising technique for tailoring the surface composition and structure of nanoporous supports in energy storage devices. C1 [Lei, Yu; Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Lu, Jun; Luo, Xiangyi; Du, Peng; Miller, Jeffrey T.; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Wu, Tianpin; Zhang, Xiaoyi; Ren, Yang] Argonne Natl Lab, Adv Photon Sources, Xray Sci Div, Argonne, IL 60439 USA. [Luo, Xiangyi] Univ Utah, Dept Met Engn, Salt Lake City, UT 84112 USA. [Wen, Jianguo; Miller, Dean J.] Argonne Natl Lab, Electron Microscopy Ctr, Argonne, IL 60439 USA. [Sun, Yang-Kook] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea. [Amine, Khalil] King Abdulaziz Univ, Dept Chem, Fac Sci, Jeddah 80203, Saudi Arabia. RP Elam, JW (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jelam@anl.gov; amine@anl.gov RI Amine, Khalil/K-9344-2013; Du, Peng/F-8336-2013; Luo, Xiangyi/N-4709-2014; Luo, Xiangyi/K-6058-2015; OI Luo, Xiangyi/0000-0002-4817-1461; Luo, Xiangyi/0000-0002-4817-1461; Lei, Yu/0000-0002-4161-5568 FU U.S. Department of Energy; FreedomCAR; Vehicle Technologies Office; Institute for Atom-efficient Chemical Transformations (IACT); Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Center for Electrical Energy; Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE); Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP); Korean government, Ministry of Knowledge and Economy [20114010203150]; National Research Foundation of Korea (NRF); Korea government (MEST) [2009-0092780]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-ACO2-06CH11357]; Department of Energy [DE-ACO206CH11357]; MRCAT FX Research at Argonne National Laboratory was funded by U.S. Department of Energy, FreedomCAR and Vehicle Technologies Office. Y.L. was supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. J.W.E. was supported by the Center for Electrical Energy Storage: Tailored Interfaces, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. J.L. was supported by the Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Award under the EERE Vehicles Technology Program. This work was also supported by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government, Ministry of Knowledge and Economy (No. 20114010203150), and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2009-0092780). Use of the Advanced Photon Source and research carried out in the Electron Microscopy Center at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-ACO2-06CH11357. MRCAT operations are supported by the Department of Energy under Contract No. DE-ACO206CH11357 and the MRCAT member institutions. NR 57 TC 78 Z9 78 U1 31 U2 249 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2013 VL 13 IS 9 BP 4182 EP 4189 DI 10.1021/nl401833p PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 296BA UT WOS:000330158900035 PM 23927754 ER PT J AU Riley, JR Padalkar, S Li, QM Lu, P Koleske, DD Wierer, JJ Wang, GT Lauhon, LJ AF Riley, James R. Padalkar, Sonal Li, Qiming Lu, Ping Koleske, Daniel D. Wierer, Jonathan J. Wang, George T. Lauhon, Lincoln J. TI Three-Dimensional Mapping of Quantum Wells in a GaN/InGaN Core-Shell Nanowire Light-Emitting Diode Array SO NANO LETTERS LA English DT Article DE LED; atom probe tomography; semiconductor; nanowire; GaN; quantum well ID ATOM-PROBE TOMOGRAPHY; MG-DOPED GAN; LASER-DIODES; EVAPORATION BEHAVIOR; SPECIMEN PREPARATION; PYRAMIDAL DEFECTS; HETEROSTRUCTURES; MICROSCOPY; LAYERS; FILMS AB Correlated atom probe tomography, cross-sectional scanning transmission electron microscopy, and cathodoluminescence spectroscopy are used to analyze InGaN/GaN multiquantum wells (QWs) in nanowire array light-emitting diodes (LEDs). Tomographic analysis of the In distribution, interface morphology, and dopant clustering reveals material quality comparable to that of planar LED QWs. The position-dependent CL emission wavelength of the nonpolar side-facet QWs and semipolar top QWs is correlated with In composition. C1 [Riley, James R.; Padalkar, Sonal; Lauhon, Lincoln J.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Li, Qiming; Lu, Ping; Koleske, Daniel D.; Wierer, Jonathan J.; Wang, George T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Lauhon, LJ (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM lauhon@northwestern.edu RI Lauhon, Lincoln/B-7526-2009; Lauhon, Lincoln/H-2976-2015; Wierer, Jonathan/G-1594-2013 OI Lauhon, Lincoln/0000-0001-6046-3304; Wierer, Jonathan/0000-0001-6971-4835 FU Energy Frontier Research Center on Solid State Lighting Science; U.S. DOE Office of Basic Energy Sciences; National Defensive Science and Engineering Graduate Fellowship program; NSF-MRI [DMR-0420532]; ONR-DURIP [N00014-0400798, N00014-0610539, N00014-0910781]; Initiative for Sustainability and Energy at Northwestern (ISEN); National Science Foundation's MRSEC program [DMR-1121262]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Research was supported by the Energy Frontier Research Center on Solid State Lighting Science, which is funded by the U.S. DOE Office of Basic Energy Sciences. J.R.R acknowledges partial support by the National Defensive Science and Engineering Graduate Fellowship program. Atom-probe tomography was performed at the Northwestern University Center for Atom-Probe Tomography (NUCAPT) whose local-electrode atom-probe (LEAP) tomograph was purchased and upgraded with funding from NSF-MRI (DMR-0420532) and ONR-DURIP (N00014-0400798, N00014-0610539, N00014-0910781) grants. Instrumentation at NUCAPT was supported by the Initiative for Sustainability and Energy at Northwestern (ISEN). NUCAPT is a Shared Facility at the Materials Research Center of Northwestern University, supported by the National Science Foundation's MRSEC program (DMR-1121262). Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 70 TC 49 Z9 49 U1 3 U2 122 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2013 VL 13 IS 9 BP 4317 EP 4325 DI 10.1021/nl4021045 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 296BA UT WOS:000330158900056 PM 23919559 ER PT J AU Shi, FF Baker, LR Hervier, A Somorjai, GA Komvopoulos, K AF Shi, Feifei Baker, L. Robert Hervier, Antoine Somorjai, Gabor A. Komvopoulos, Kyriakos TI Tuning the Electronic Structure of Titanium Oxide Support to Enhance the Electrochemical Activity of Platinum Nanoparticles SO NANO LETTERS LA English DT Article DE Electronic structure; electrochemical activity; platinum nanoparticles; strong metal support interaction; titanium oxide ID HIGH-SURFACE-AREA; PARTICLE-SIZE; METHANOL ELECTROOXIDATION; OXYGEN REDUCTION; FUEL-CELLS; ELECTROCATALYSTS; STABILITY; CATALYST; TIO2; NANOTUBES AB Two times higher activity and three times higher stability in methanol oxidation reaction, a 0.12 V negative shift of the CO oxidation peak potential, and a 0.07 V positive shift of the oxygen reaction potential compared to Pt nanoparticles on pristine TiO2 support were achieved by tuning the electronic structure of the titanium oxide support of Pt nanoparticle catalysts. This was accomplished by adding oxygen vacancies or doping with fluorine. Experimental trends are interpreted in the context of an electronic structure model, showing an improvement in electrochemical activity when the Fermi level of the support material in Pt/TiOx systems is close to the Pt Fermi level and the redox potential of the reaction. The present approach provides guidance for the selection of the support material of Pt/TiOx systems and may be applied to other metal-oxide support materials, thus having direct implications in the design and optimization of fuel cell catalyst supports. C1 [Shi, Feifei; Komvopoulos, Kyriakos] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Baker, L. Robert; Hervier, Antoine; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Shi, Feifei; Baker, L. Robert; Hervier, Antoine; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu; kyriakos@me.berkeley.edu RI Foundry, Molecular/G-9968-2014 FU UCB-KAUST Academic Excellence Alliance (AEA) Program FX The authors thank Dr. Philip N. Ross, Jr., for helpful discussions on elertocatalysis, Zhongwei Zhu for assistance in XPS spectra acquisition, and Yimin Li and Hailiang Wang for fruitful discussions. TiOx film deposition was carried out at the Marvell Nano Lab, University of California, Berkeley (UCB). SEM and XPS studies were carried out at the Molecular Foundry, Lawrence Berkeley National Laboratory. This research was supported by the UCB-KAUST Academic Excellence Alliance (AEA) Program. NR 35 TC 28 Z9 28 U1 8 U2 98 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2013 VL 13 IS 9 BP 4469 EP 4474 DI 10.1021/nl402392u PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 296BA UT WOS:000330158900080 PM 23924204 ER PT J AU Wang, ZG Gu, M Zhou, YG Zu, XT Connell, JG Xiao, J Perea, D Lauhon, LJ Bang, J Zhang, SB Wang, CM Gao, F AF Wang, Zhiguo Gu, Meng Zhou, Yungang Zu, Xiaotao Connell, Justin G. Xiao, Jie Perea, Daniel Lauhon, Lincoln J. Bang, Junhyeok Zhang, Shengbai Wang, Chongmin Gao, Fei TI Electron-Rich Driven Electrochemical Solid-State Amorphization in Li-Si Alloys SO NANO LETTERS LA English DT Article DE Li-Si alloys; electrochemical solid-state amorphization; ab initio molecular dynamics simulations; in situ TEM; electron rich ID LITHIUM-ION BATTERIES; AB-INITIO; STRUCTURAL EVOLUTION; SILICON ELECTRODES; LITHIATION; MICROSCOPY; NANOWIRES; 1ST-PRINCIPLES; INSERTION; BEHAVIOR AB The physical and chemical behaviors of materials used in energy storage devices, such as lithium-ion batteries (LIBs), are mainly controlled by an electrochemical process, which normally involves insertion/extraction of ions into/from a host lattice with a concurrent flow of electrons to compensate charge balance. The fundamental physics and chemistry governing the behavior of materials in response to the ions insertion/extraction is not known. Herein, a combination of in situ lithiation experiments and large-scale ab initio molecular dynamics simulations are performed to explore the mechanisms of the electrochemically driven solid-state amorphization in Li-Si systems. We find that local electron-rich condition governs the electrochemically driven solid-state amorphization of Li-Si alloys. This discovery provides the fundamental explanation of why lithium insertion in semiconductor and insulators leads to amorphization, whereas in metals, it leads to a crystalline alloy. The present work correlates electrochemically driven reactions with ion insertion, electron transfer, lattice stability, and phase equilibrium. C1 [Wang, Zhiguo; Zu, Xiaotao] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Wang, Zhiguo; Gu, Meng; Zhou, Yungang; Xiao, Jie; Perea, Daniel; Wang, Chongmin; Gao, Fei] Pacific NW Natl Lab, Richland, WA 99352 USA. [Connell, Justin G.; Lauhon, Lincoln J.] Northwestern Univ, Evanston, IL 60208 USA. [Bang, Junhyeok; Zhang, Shengbai] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. RP Wang, ZG (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM zgwang@uestc.edu.cn; chongmin.wang@pnnl.gov; fei.gao@pnnl.gov RI Perea, Daniel/A-5345-2010; Wang, Zhiguo/B-7132-2009; Lauhon, Lincoln/B-7526-2009; Lauhon, Lincoln/H-2976-2015; Gu, Meng/B-8258-2013 OI Lauhon, Lincoln/0000-0001-6046-3304; FU DOE's Office of Biological and Environmental Research; DOE [DE-AC05-76RLO1830, DE-SC0002623]; Los Alamos National Laboratory [DE-AC52-06NA25396]; Northwestern University [NSF DMR-1006069]; NSF [DMR-1006069] FX The work described in this paper is part of the Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL). It was conducted under the Laboratory Directed Research and Development Program at PNNL, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy (DOE). The work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for DOE under Contract DE-AC05-76RLO1830. Nanowires grown for this study were synthesized at the Center for Integrated Nanotechnologies, a DOE, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (Contract DE-AC52-06NA25396), and Northwestern University (NSF DMR-1006069). Work at Northwestern University was supported by NSF DMR-1006069. J.B. and S.Z. were supported by DOE under Grant No. DE-SC0002623. NR 38 TC 18 Z9 18 U1 9 U2 78 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2013 VL 13 IS 9 BP 4511 EP 4516 DI 10.1021/nl402429a PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 296BA UT WOS:000330158900086 PM 23944904 ER PT J AU Chen, Q Smith, JM Park, J Kim, K Ho, D Rasool, HI Zettl, A Alivisatos, AP AF Chen, Qian Smith, Jessica M. Park, Jungwon Kim, Kwanpyo Ho, Davy Rasool, Haider I. Zettl, Alex Alivisatos, A. Paul TI 3D Motion of DNA-Au Nanoconjugates in Graphene Liquid Cell Electron Microscopy SO NANO LETTERS LA English DT Article DE 3D motion; graphene liquid cell TEM; DNA nanotechnology ID IN-SITU; LIVE CELLS; AQUEOUS-SOLUTION; PLASMON RULERS; GROWTH; RESOLUTION; MEMBRANES; DYNAMICS; WET AB Liquid-phase transmission electron microscopy (TEM) can probe and visualize dynamic events with structural or functional details at the nanoscale in a liquid medium. Earlier efforts have focused on the growth and transformation kinetics of hard material systems, relying on their stability under electron beam. Our recently developed graphene liquid cell technique pushed the spatial resolution of such imaging to the atomic scale but still focused on growth trajectories of metallic nanocrystals. Here, we adopt this technique to imaging three-dimensional (3D) dynamics of soft materials instead, double strand (dsDNA) connecting Au nanocrystals as one example, at nanometer resolution. We demonstrate first that a graphene liquid cell can seal an aqueous sample solution of a lower vapor pressure than previously investigated well against the high vacuum in TEM. Then, from quantitative analysis of real time nanocrystal trajectories, we show that the status and configuration of dsDNA dictate the motions of linked nanocrystals throughout the imaging time of minutes. This sustained connecting ability of dsDNA enables this unprecedented continuous imaging of its dynamics via TEM. Furthermore, the inert graphene surface minimizes sample substrate interaction and allows the whole nanostructure to rotate freely in the liquid environment; we thus develop and implement the reconstruction of 3D configuration and motions of the nanostructure from the series of 2D projected TEM images captured while it rotates. In addition to further proving the nanoconjugate structural stability, this reconstruction demonstrates 3D dynamic imaging by TEM beyond its conventional use in seeing a flattened and dry sample. Altogether, we foresee the new and exciting use of graphene liquid cell TEM in imaging 3D biomolecular transformations or interaction dynamics at nanometer resolution. C1 [Chen, Qian; Smith, Jessica M.; Park, Jungwon; Ho, Davy; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Chen, Qian] Univ Calif Berkeley, Miller Inst Basic Res Sci, Berkeley, CA 94720 USA. [Kim, Kwanpyo; Rasool, Haider I.; Zettl, Alex] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Chen, Qian; Smith, Jessica M.; Park, Jungwon; Kim, Kwanpyo; Rasool, Haider I.; Zettl, Alex; Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM apalivisatos@lbl.gov RI Kim, Kwanpyo/D-9121-2011; Chen, Qian/E-9624-2014; Alivisatos , Paul /N-8863-2015; Park, Jungwon/O-1153-2016; Zettl, Alex/O-4925-2016 OI Kim, Kwanpyo/0000-0001-8497-2330; Alivisatos , Paul /0000-0001-6895-9048; Park, Jungwon/0000-0003-2927-4331; Zettl, Alex/0000-0001-6330-136X FU Defense Threat Reduction Agency (DTRA) [HDTRA1-13-1-0035]; National Science Foundation within the Center of Integrated Nano-mechanical Systems [EEC-0832819]; Miller Institute for Basic Research in Science at UC Berkeley; Agilent Technologies Applications and Core Technology University Research Grant FX We thank Peter Ercius at National Center for Electron Microscopy and David Chandler at UC Berkeley for useful discussions. This research was supported in part by the Defense Threat Reduction Agency (DTRA) under award HDTRA1-13-1-0035, which provided for in situ TEM experiments, as well as DNA-Au nanoparticle sample preparation; by the National Science Foundation within the Center of Integrated Nano-mechanical Systems, under Grant EEC-0832819, which provided for early development of graphene lamination methods. Q.C. was supported by a Miller fellowship from Miller Institute for Basic Research in Science at UC Berkeley. J.S. was supported by Agilent Technologies Applications and Core Technology University Research Grant. NR 33 TC 50 Z9 50 U1 14 U2 133 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2013 VL 13 IS 9 BP 4556 EP 4561 DI 10.1021/nl402694n PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 296BA UT WOS:000330158900094 PM 23944844 ER PT J AU El Ouaamari, A Zhou, JY Dirice, E Liew, C Kim, JS Smith, R Qian, WJ Kulkarni, R AF El Ouaamari, A. Zhou, J-Y Dirice, E. Liew, C. Kim, J-S Smith, R. Qian, W-J Kulkarni, R. TI Mechanisms underlying compensatory islet response to insulin resistance SO DIABETOLOGIA LA English DT Meeting Abstract CT 49th Annual Meeting of the European-Association-for-the-Study-of-Diabetes (EASD) CY SEP 23-27, 2013 CL Barcelona, SPAIN SP European Assoc Study Diabet C1 [El Ouaamari, A.; Dirice, E.; Liew, C.; Kulkarni, R.] Joslin Diabet Ctr, Boston, MA 02215 USA. [Zhou, J-Y; Kim, J-S; Smith, R.; Qian, W-J] Pacific NW Natl Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0012-186X EI 1432-0428 J9 DIABETOLOGIA JI Diabetologia PD SEP PY 2013 VL 56 SU 1 MA 541 BP S223 EP S223 PG 1 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA 282TQ UT WOS:000329196901199 ER PT J AU Beiersdorfer, P Lepson, JK Diaz, F Ishikawa, Y Trabert, E AF Beiersdorfer, P. Lepson, J. K. Diaz, F. Ishikawa, Y. Traebert, E. TI Measurement and calculation of L-shell transitions in M-shell iron ions SO PHYSICA SCRIPTA LA English DT Article; Proceedings Paper CT 16th International Conference on the Physics of Highly Charged Ions (HCI) CY SEP 02-07, 2012 CL Ruprecht Karls Univ, Heidelberg, GERMANY SP CAEN, Oerlikon Leybold Vacuum, RoentDek Handels, Struck Innovat Syst HO Ruprecht Karls Univ ID X-RAY; FE XVI; LABORATORY MEASUREMENTS; WAVELENGTHS; ANGSTROM; SPECTRA; LINES; TRAP AB We have made high-resolution measurements of the iron L-shell emission near 15 angstrom using the EBIT-I electron beam ion trap at Livermore that exhibit L-shell transitions from autoionizing levels in Fe13+, Fe14+ and Fe15+ ions. The observed L-shell iron spectra were modeled using the flexible atomic code augmented with transition energies produced by calculations based on the relativistic multi-reference Moller-Plesset (MRMP) perturbation theory, allowing us to identify multiple M-shell iron lines. Our measured values for the Fe XV emission lines are in excellent agreement with a recent measurement using the BESSY-II synchrotron but the present measurements have somewhat higher accuracy. Our MRMP calculations are compared to earlier calculations using the many-body perturbation theory approach, and we find good agreement for some but not all transitions. C1 [Beiersdorfer, P.; Diaz, F.; Ishikawa, Y.] Univ Puerto Rico, Dept Chem, San Juan, PR 00931 USA. [Beiersdorfer, P.; Diaz, F.; Ishikawa, Y.] Univ Puerto Rico, Chem Phys Program, San Juan, PR 00931 USA. [Beiersdorfer, P.; Traebert, E.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. [Lepson, J. K.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Beiersdorfer, P (reprint author), Univ Puerto Rico, Dept Chem, San Juan, PR 00931 USA. EM beiersdorfer@llnl.gov NR 18 TC 5 Z9 5 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 EI 1402-4896 J9 PHYS SCRIPTA JI Phys. Scr. PD SEP PY 2013 VL T156 AR 014007 DI 10.1088/0031-8949/2013/T156/014007 PG 3 WC Physics, Multidisciplinary SC Physics GA 280IP UT WOS:000329022300008 ER PT J AU Brandau, C Kozhuharov, C Muller, A Bernhardt, D Banas, D Bosch, F Currell, FJ Dimopoulou, C Gumberidze, A Hagmann, S Hillenbrand, PM Heil, M Lestinsky, M Litvinov, YA Martin, R Nolden, F Reuschl, R Sanjari, S Schippers, S Schneider, D Shubina, D Simon, H Spillmann, U Stachura, Z Steck, M Stohlker, T Weber, G Wiedeking, M Winckler, N Winters, DFA AF Brandau, C. Kozhuharov, C. Mueller, A. Bernhardt, D. Banas, D. Bosch, F. Currell, F. J. Dimopoulou, C. Gumberidze, A. Hagmann, S. Hillenbrand, P-M Heil, M. Lestinsky, M. Litvinov, Yu A. Maertin, R. Nolden, F. Reuschl, R. Sanjari, S. Schippers, S. Schneider, D. Shubina, D. Simon, H. Spillmann, U. Stachura, Z. Steck, M. Stoehlker, Th Weber, G. Wiedeking, M. Winckler, N. Winters, D. F. A. TI Probing nuclear properties by resonant atomic collisions between electrons and ions SO PHYSICA SCRIPTA LA English DT Article; Proceedings Paper CT 16th International Conference on the Physics of Highly Charged Ions (HCI) CY SEP 02-07, 2012 CL Ruprecht Karls Univ, Heidelberg, GERMANY SP CAEN, Oerlikon Leybold Vacuum, RoentDek Handels, Struck Innovat Syst HO Ruprecht Karls Univ ID TRANSITION; ENERGY; TH-229 AB The utilization of the resonant atomic electron-ion collision process of dielectronic recombination (DR) as a tool to probe nuclear properties via isotope shifts and hyperfine effects is discussed. Based on DR, this resonance reaction spectroscopy at electron coolers of heavy-ion storage rings denotes a versatile approach to access nuclear parameters such as charge radius, spin, magnetic moment or lifetimes of long-lived excited nuclear states (isomers). The high sensitivity of DR allows for experiments with artificially synthesized rare isotopes and isomers. Recent experimental progress in the preparation of such exotic species at the ESR storage ring in Darmstadt is presented. The DR technique is exemplified for the case of Pa-234(88+) (Z = 91). C1 [Brandau, C.; Gumberidze, A.; Reuschl, R.] GSI Helmholtzzentrum Schwerionenforsch, EMMI, D-64291 Darmstadt, Germany. [Brandau, C.; Gumberidze, A.; Reuschl, R.] GSI Helmholtzzentrum Schwerionenforsch, Div Res, D-64291 Darmstadt, Germany. [Brandau, C.; Kozhuharov, C.; Bosch, F.; Dimopoulou, C.; Gumberidze, A.; Hagmann, S.; Hillenbrand, P-M; Heil, M.; Lestinsky, M.; Litvinov, Yu A.; Maertin, R.; Nolden, F.; Reuschl, R.; Sanjari, S.; Shubina, D.; Simon, H.; Spillmann, U.; Steck, M.; Stoehlker, Th; Weber, G.; Winckler, N.; Winters, D. F. A.] GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany. [Mueller, A.; Bernhardt, D.; Hillenbrand, P-M; Schippers, S.] Univ Giessen, IAMP, D-35392 Giessen, Germany. [Banas, D.] Jan Kochanowski Univ Humanities & Sci, PL-25406 Kielce, Poland. [Currell, F. J.] Queens Univ Belfast, Dept Phys, Belfast BT7 1NN, Antrim, North Ireland. [Litvinov, Yu A.; Shubina, D.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Maertin, R.; Stoehlker, Th; Weber, G.] Helmholtz Inst Jena, D-07743 Jena, Germany. [Schneider, D.; Wiedeking, M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Stachura, Z.] Inst Fizyki Jadrowej, PL-31342 Krakow, Poland. RP Brandau, C (reprint author), GSI Helmholtzzentrum Schwerionenforsch, EMMI, D-64291 Darmstadt, Germany. EM c.brandau@gsi.de RI Muller, Alfred/A-3548-2009; Banas, Dariusz/F-5025-2011; Schippers, Stefan/A-7786-2008 OI Muller, Alfred/0000-0002-0030-6929; Banas, Dariusz/0000-0003-1566-5446; Schippers, Stefan/0000-0002-6166-7138 NR 20 TC 12 Z9 12 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 EI 1402-4896 J9 PHYS SCRIPTA JI Phys. Scr. PD SEP PY 2013 VL T156 AR 014050 DI 10.1088/0031-8949/2013/T156/014050 PG 4 WC Physics, Multidisciplinary SC Physics GA 280IP UT WOS:000329022300051 ER PT J AU Brown, GV Beilmann, C Bernitt, S Clementson, J Eberle, S Epp, SW Graf, A Hell, N Kelley, RL Kilbourne, CA Kubicek, K Leutenegger, MA Mackel, V Porter, FS Rudolph, JK Simon, MC Steinbrugge, R Trabert, E Ullrich, J Lopez-Urrutia, JRC Beiersdorfer, P AF Brown, G. V. Beilmann, C. Bernitt, S. Clementson, J. Eberle, S. Epp, S. W. Graf, A. Hell, N. Kelley, R. L. Kilbourne, C. A. Kubicek, K. Leutenegger, M. A. Maeckel, V. Porter, F. S. Rudolph, J. K. Simon, M. C. Steinbruegge, R. Traebert, E. Ullrich, J. Lopez-Urrutia, J. R. Crespo Beiersdorfer, P. TI Studies of highly charged iron ions using electron beam ion traps for interpreting astrophysical spectra SO PHYSICA SCRIPTA LA English DT Article; Proceedings Paper CT 16th International Conference on the Physics of Highly Charged Ions (HCI) CY SEP 02-07, 2012 CL Ruprecht Karls Univ, Heidelberg, GERMANY SP CAEN, Oerlikon Leybold Vacuum, RoentDek Handels, Struck Innovat Syst HO Ruprecht Karls Univ ID FE XVI; SPECTROMETER; EMISSION; SPECTROSCOPY; EXCHANGE; EBIT AB For over a decade, the x-ray astrophysics community has enjoyed a fruitful epoch of discovery largely as a result of the successful launch and operation of the high resolution, high sensitivity spectrometers on board the Chandra, XMM-Newton and Suzaku x-ray observatories. With the launch of the x-ray calorimeter spectrometer on the Astro-H x-ray observatory in 2014, the diagnostic power of high resolution spectroscopy will be extended to some of the hottest, largest and most exotic objects in our Universe. The diagnostic utility of these spectrometers is directly coupled to, and often limited by, our understanding of the x-ray production mechanisms associated with the highly charged ions present in the astrophysical source. To provide reliable benchmarks of theoretical calculations and to address specific problems facing the x-ray astrophysics community, electron beam ion traps have been used in laboratory astrophysics experiments to study the x-ray signatures of highly charged ions. A brief overview of the EBIT-I electron beam ion trap operated at Lawrence Livermore National Laboratory and the Max-Planck-Institut fur Kernphysik's FLASH-EBIT operated at third and fourth generation advanced light sources, including a discussion of some of the results are presented. C1 [Brown, G. V.; Clementson, J.; Graf, A.; Traebert, E.; Beiersdorfer, P.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. [Beilmann, C.; Bernitt, S.; Eberle, S.; Kubicek, K.; Maeckel, V.; Rudolph, J. K.; Steinbruegge, R.; Ullrich, J.; Lopez-Urrutia, J. R. Crespo] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Epp, S. W.] Ctr Free Electron Laser Sci, Max Planck Adv Study Grp, D-22607 Hamburg, Germany. [Hell, N.] Univ Erlangen Nurnberg, Dr Karl Remeis Sternwarte Bamberg & Erlangen Ctr, D-96049 Bamberg, Germany. [Kelley, R. L.; Kilbourne, C. A.; Leutenegger, M. A.; Porter, F. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Leutenegger, M. A.] Univ Maryland, Dept Phys, Baltimore, MD 21250 USA. [Rudolph, J. K.] Univ Giessen, Inst Atom & Mol Phys, D-35392 Giessen, Germany. [Simon, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. RP Brown, GV (reprint author), Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. EM brown86@llnl.gov RI Porter, Frederick/D-3501-2012; Crespo Lopez-Urrutia, Jose R./F-7069-2011; Simon, Martin/I-5384-2012; OI Porter, Frederick/0000-0002-6374-1119; Crespo Lopez-Urrutia, Jose R./0000-0002-2937-8037; Hell, Natalie/0000-0003-3057-1536; Epp, Sascha/0000-0001-6366-9113 NR 27 TC 1 Z9 1 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 EI 1402-4896 J9 PHYS SCRIPTA JI Phys. Scr. PD SEP PY 2013 VL T156 AR 014001 DI 10.1088/0031-8949/2013/T156/014001 PG 3 WC Physics, Multidisciplinary SC Physics GA 280IP UT WOS:000329022300002 ER PT J AU Hagmann, S Stohlker, T Litvinov, Y Kozhuharov, C Hillenbrand, PM Spillmann, U Shabaev, V Stiebing, K Lestinsky, M Surzhykov, A Voitkiv, A Franzke, B Fischer, D Schneider, D Jakubassa, D Artiomov, A DeFilippo, E Ma, X Dorner, R Rothard, H AF Hagmann, S. Stoehlker, Th Litvinov, Yu Kozhuharov, C. Hillenbrand, P-M Spillmann, U. Shabaev, V. Stiebing, K. Lestinsky, M. Surzhykov, A. Voitkiv, A. Franzke, B. Fischer, D. Schneider, D. Jakubassa, D. Artiomov, A. DeFilippo, E. Ma, X. Doerner, R. Rothard, H. TI Few-body quantum dynamics of high-Z ions studied at the future relativistic high-energy storage ring SO PHYSICA SCRIPTA LA English DT Article; Proceedings Paper CT 16th International Conference on the Physics of Highly Charged Ions (HCI) CY SEP 02-07, 2012 CL Ruprecht Karls Univ, Heidelberg, GERMANY SP CAEN, Oerlikon Leybold Vacuum, RoentDek Handels, Struck Innovat Syst HO Ruprecht Karls Univ ID COLLISIONS AB At the FAIR facility for antiprotons and ion research, the high-energy storage ring will provide highly charged heavy ions with Z all the way to Z = 92 for beam energies ranging from 200 A MeV up to energies of approximately 5 A GeV. This opens up a wealth of opportunities for in-ring atomic physics experiments on few-body quantum dynamics ranging from, for example, the correlated dynamics of various e(+)-e(-) pair creation processes to quasi-photoionization of inner shells of the highest-Z ions. C1 [Hagmann, S.; Stiebing, K.; Doerner, R.] Goethe Univ Frankfurt, Inst Kernphys, Frankfurt, Germany. [Hagmann, S.; Stoehlker, Th; Litvinov, Yu; Kozhuharov, C.; Hillenbrand, P-M; Spillmann, U.; Shabaev, V.; Lestinsky, M.; Franzke, B.] GSI Helmholtzzentrum, Darmstadt, Germany. [Stoehlker, Th] Univ Jena, Inst Phys, Jena, Germany. [Stoehlker, Th] Helmholtz Inst, Jena, Germany. [Hillenbrand, P-M] Univ Giessen, Inst Atom & Mol Phys, Giessen, Germany. [Shabaev, V.] St Petersburg State Univ, Dept Phys, St Petersburg 199034, Russia. [Surzhykov, A.; Fischer, D.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Voitkiv, A.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Schneider, D.] Extreme Matter Inst EMMI, Darmstadt, Germany. [Schneider, D.] LLNL, Livermore, CA USA. [Jakubassa, D.] Math Inst LMU Munchen, Munich, Germany. [Artiomov, A.] JINR, Veksler & Baldin Lab, Dubna, Russia. [DeFilippo, E.] INFN LNS Sez Catania, Catania, Italy. [Ma, X.] Inst Modern Phys, Lanzhou, Peoples R China. [Rothard, H.] CIRIL GANIL, Caen, France. RP Hagmann, S (reprint author), Goethe Univ Frankfurt, Inst Kernphys, Frankfurt, Germany. EM s.hagmann@gsi.de RI Doerner, Reinhard/A-5340-2008; Fischer, Daniel/I-5573-2014; Shabaev, Vladimir/J-7400-2013 OI Doerner, Reinhard/0000-0002-3728-4268; Shabaev, Vladimir/0000-0002-2769-6891 NR 11 TC 0 Z9 0 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 EI 1402-4896 J9 PHYS SCRIPTA JI Phys. Scr. PD SEP PY 2013 VL T156 DI 10.1088/0031-8949/2013/T156/014086 PG 4 WC Physics, Multidisciplinary SC Physics GA 280IP UT WOS:000329022300087 ER PT J AU Hell, N Miskovicova, I Brown, GV Wilms, J Clementson, J Hanke, M Beiersdorfer, P Liedahl, D Pottschmidt, K Porter, FS Kilbourne, CA Kelley, RL Nowak, MA Schulz, NS AF Hell, Natalie Miskovicova, I. Brown, G. V. Wilms, J. Clementson, J. Hanke, M. Beiersdorfer, P. Liedahl, D. Pottschmidt, K. Porter, F. S. Kilbourne, C. A. Kelley, R. L. Nowak, M. A. Schulz, N. S. TI Low charge states of Si and S in Cygnus X-1 SO PHYSICA SCRIPTA LA English DT Article; Proceedings Paper CT 16th International Conference on the Physics of Highly Charged Ions (HCI) CY SEP 02-07, 2012 CL Ruprecht Karls Univ, Heidelberg, GERMANY SP CAEN, Oerlikon Leybold Vacuum, RoentDek Handels, Struck Innovat Syst HO Ruprecht Karls Univ ID RAY; CHANDRA; WIND AB Strong, relatively short, absorption dips have been observed in the x-ray light curves measured from the high mass x-ray binary system Cygnus X-1. With increasing strength of the dips, which are believed to be caused by 'clumps' of cold material present in the stellar wind of Cyg X-1's companion star, K-shell absorption lines in L-shell ions of Si and S develop. To determine the bulk motion of the clumps via the Doppler shifts of these lines with high accuracy, we measured their reference energies using the Lawrence Livermore National Laboratory electron beam ion trap EBIT-I and EBIT Calorimeter Spectrometer. Our findings-shifts consistent with zero velocity of the absorber throughout all ionization states at orbital phase zero-provide evidence for an onion-like ion structure of the clumps. C1 [Hell, Natalie; Miskovicova, I.; Wilms, J.; Hanke, M.] Univ Erlangen Nurnberg, Dr Karl Remeis Sternwarte & Erlangen Ctr Astropar, D-96049 Bamberg, Germany. [Hell, Natalie; Brown, G. V.; Clementson, J.; Beiersdorfer, P.; Liedahl, D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Pottschmidt, K.; Porter, F. S.; Kilbourne, C. A.; Kelley, R. L.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Pottschmidt, K.] Univ Maryland Baltimore Cty, CRESST, Baltimore, MD 21250 USA. [Nowak, M. A.; Schulz, N. S.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. RP Hell, N (reprint author), Univ Erlangen Nurnberg, Dr Karl Remeis Sternwarte & Erlangen Ctr Astropar, Sternwartstr 7, D-96049 Bamberg, Germany. EM natalie.hell@sternwarte.uni-erlangen.de RI Wilms, Joern/C-8116-2013; Porter, Frederick/D-3501-2012; OI Wilms, Joern/0000-0003-2065-5410; Porter, Frederick/0000-0002-6374-1119; Hell, Natalie/0000-0003-3057-1536 NR 12 TC 6 Z9 6 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 EI 1402-4896 J9 PHYS SCRIPTA JI Phys. Scr. PD SEP PY 2013 VL T156 AR 014008 DI 10.1088/0031-8949/2013/T156/014008 PG 3 WC Physics, Multidisciplinary SC Physics GA 280IP UT WOS:000329022300009 ER PT J AU Hillenbrand, PM Hagmann, S Stohlker, T Litvinov, Y Kozhuharov, C Spillmann, U Shabaev, V Stiebing, K Lestinsky, M Surzhykov, A Voitkiv, A Franzke, B Fischer, D Brandau, C Schippers, S Mueller, A Schneider, D Jakubassa, D Artiomov, A DeFilippo, E Ma, X Dorner, R Rothard, H AF Hillenbrand, P. M. Hagmann, S. Stoehlker, Th Litvinov, Yu Kozhuharov, C. Spillmann, U. Shabaev, V. Stiebing, K. Lestinsky, M. Surzhykov, A. Voitkiv, A. Franzke, B. Fischer, D. Brandau, C. Schippers, S. Mueller, A. Schneider, D. Jakubassa, D. Artiomov, A. DeFilippo, E. Ma, X. Doerner, R. Rothard, H. TI Future experiments using forward electron spectroscopy to study the quantum dynamics of high-Z ions at the ESR/CRYRING storage rings SO PHYSICA SCRIPTA LA English DT Article; Proceedings Paper CT 16th International Conference on the Physics of Highly Charged Ions (HCI) CY SEP 02-07, 2012 CL Ruprecht Karls Univ, Heidelberg, GERMANY SP CAEN, Oerlikon Leybold Vacuum, RoentDek Handels, Struck Innovat Syst HO Ruprecht Karls Univ ID COPLANAR ASYMMETRIC GEOMETRY; IONIZATION AB At the FAIR facility for antiproton and ion research, the new ESR + CRYRING combination of storage rings CRYRING@ESR opens up a wealth of opportunities for in-ring atomic physics experiments on few-body quantum dynamics. The low-energy storage ring CRYRING will serve in its new location at FAIR/ESR for experiments with decelerated antiprotons and highly charged ions. We will discuss selected new experiments in the field of quantum dynamics of high-Z ions, for example for adiabatic superheavy quasi-molecules transiently formed with bare and H-like projectiles. Such experiments will be for the first time possible at the future CRYRING at ESR. C1 [Hillenbrand, P. M.; Hagmann, S.; Stoehlker, Th; Litvinov, Yu; Kozhuharov, C.; Spillmann, U.; Shabaev, V.; Franzke, B.; Doerner, R.] GSI Helmholtzzentrum, Darmstadt, Germany. [Hillenbrand, P. M.; Schippers, S.; Mueller, A.] Univ Giessen, Inst Atom & Mol Phys, D-35390 Giessen, Germany. [Hagmann, S.; Stiebing, K.; Lestinsky, M.] Goethe Univ Frankfurt, Inst Kernphys, Frankfurt, Germany. [Stoehlker, Th] Univ Jena, Inst Phys, Jena, Germany. [Stoehlker, Th] Helmholtz Inst, Jena, Germany. [Shabaev, V.] St Petersburg State Univ, Deparment Phys, St Petersburg 199034, Russia. [Surzhykov, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Fischer, D.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Brandau, C.] Extreme Matter Inst EMMI, Darmstadt, Germany. [Schneider, D.] LLNL, Livermore, CA USA. [Jakubassa, D.] Math Inst LMU Munchen, Munich, Germany. [Artiomov, A.] JINR, Veksler & Baldin Lab, Dubna, Russia. [DeFilippo, E.] INFN LNS Sez Catania, Catania, Italy. [Ma, X.] Inst Modern Phys, Lanzhou, Peoples R China. [Rothard, H.] CIRIL GANIL, Caen, France. RP Hillenbrand, PM (reprint author), GSI Helmholtzzentrum, Darmstadt, Germany. EM s.hagmann@gsi.de RI Doerner, Reinhard/A-5340-2008; Muller, Alfred/A-3548-2009; Fischer, Daniel/I-5573-2014; Shabaev, Vladimir/J-7400-2013; Schippers, Stefan/A-7786-2008 OI Doerner, Reinhard/0000-0002-3728-4268; Muller, Alfred/0000-0002-0030-6929; Shabaev, Vladimir/0000-0002-2769-6891; Schippers, Stefan/0000-0002-6166-7138 NR 28 TC 0 Z9 0 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 EI 1402-4896 J9 PHYS SCRIPTA JI Phys. Scr. PD SEP PY 2013 VL T156 DI 10.1088/0031-8949/2013/T156/014087 PG 5 WC Physics, Multidisciplinary SC Physics GA 280IP UT WOS:000329022300088 ER PT J AU Lepson, JK Beiersdorfer, P Bitter, M Roquemore, AL Kaita, R AF Lepson, J. K. Beiersdorfer, P. Bitter, M. Roquemore, A. L. Kaita, R. TI Emission lines of iron in the 150-250 angstrom region on National Spherical Torus Experiment SO PHYSICA SCRIPTA LA English DT Article; Proceedings Paper CT 16th International Conference on the Physics of Highly Charged Ions (HCI) CY SEP 02-07, 2012 CL Ruprecht Karls Univ, Heidelberg, GERMANY SP CAEN, Oerlikon Leybold Vacuum, RoentDek Handels, Struck Innovat Syst HO Ruprecht Karls Univ ID EXTREME-ULTRAVIOLET REGION; ATOMIC DATABASE; FE-VII; CHIANTI AB We measured iron emission from the National Spherical Tokamak Experiment. We focused our attention on several band pass regions of the Solar Dynamics Observatory's Atmospheric Imaging Assembly. We found that all significant iron emission in the 171, 193 and 211 angstrom band pass regions are accounted for by the CHIANTI atomic database, although some strong emission lines of carbon are present that may complicate interpretation of solar data if not taken into account. C1 [Lepson, J. K.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Beiersdorfer, P.] Univ Puerto Rico, Dept Chem, San Juan, PR 00931 USA. [Beiersdorfer, P.] Univ Puerto Rico, Chem Phys Program, San Juan, PR 00931 USA. [Bitter, M.; Roquemore, A. L.; Kaita, R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Beiersdorfer, P.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. RP Lepson, JK (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM lepson@ssl.berkeley.edu NR 14 TC 0 Z9 0 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 EI 1402-4896 J9 PHYS SCRIPTA JI Phys. Scr. PD SEP PY 2013 VL T156 DI 10.1088/0031-8949/2013/T156/014075 PG 3 WC Physics, Multidisciplinary SC Physics GA 280IP UT WOS:000329022300076 ER PT J AU Leutenegger, MA Betancourt-Martinez, GL Beiersdorfer, P Brown, GV Kelley, RL Kilbourne, CA Porter, FS AF Leutenegger, Maurice A. Betancourt-Martinez, Gabriele L. Beiersdorfer, Peter Brown, Gregory V. Kelley, Richard L. Kilbourne, Caroline A. Porter, F. Scott TI Charge exchange measurements with an x-ray calorimeter at an electron beam ion trap SO PHYSICA SCRIPTA LA English DT Article; Proceedings Paper CT 16th International Conference on the Physics of Highly Charged Ions (HCI) CY SEP 02-07, 2012 CL Ruprecht Karls Univ, Heidelberg, GERMANY SP CAEN, Oerlikon Leybold Vacuum, RoentDek Handels, Struck Innovat Syst HO Ruprecht Karls Univ ID EXCITED-STATES; TOKAMAK; POPULATION; PLASMAS AB We present K-shell x-ray spectra of highly ionized Mg acquired with the EBIT calorimeter spectrometer at a resolution of 4.5 eV in charge exchange recombination experiments using the LLNL EBIT-I electron beam ion trap. We measured the Doppler width of Mg11+ Ly alpha in the same experiments using a high resolution crystal spectrometer, giving an estimate of the ion temperature. We find hardness ratios for Mg11+ ranging from 0.6 to 1.6, depending on the neutral gas target. In most of the experiments, the ion temperature was similar to 10-15 eV amu(-1), indicating that the variations in hardness ratio are intrinsic to the choice of neutral target gas, and are not simply a consequence of variations in the collision velocity resulting from evaporative cooling of the trapped ions. The spectral variations show that high resolution x-ray spectroscopy is highly diagnostic of charge exchange reactions, but requires well-developed theory to interpret. C1 [Leutenegger, Maurice A.; Betancourt-Martinez, Gabriele L.; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, F. Scott] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Leutenegger, Maurice A.] CRESST, Baltimore, MD 21250 USA. [Leutenegger, Maurice A.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Betancourt-Martinez, Gabriele L.] CRESST, College Pk, MD 20742 USA. [Betancourt-Martinez, Gabriele L.] Univ Maryland, College Pk, MD 20742 USA. [Beiersdorfer, Peter; Brown, Gregory V.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Leutenegger, MA (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM maurice.a.leutenegger@nasa.gov RI Porter, Frederick/D-3501-2012 OI Porter, Frederick/0000-0002-6374-1119 NR 19 TC 2 Z9 2 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 EI 1402-4896 J9 PHYS SCRIPTA JI Phys. Scr. PD SEP PY 2013 VL T156 AR 014006 DI 10.1088/0031-8949/2013/T156/014006 PG 4 WC Physics, Multidisciplinary SC Physics GA 280IP UT WOS:000329022300007 ER PT J AU Trabert, E Beiersdorfer, P AF Traebert, Elmar Beiersdorfer, Peter TI Measurement and modeling of the n=2-3 emission of O VIII near 102 angstrom SO PHYSICA SCRIPTA LA English DT Article; Proceedings Paper CT 16th International Conference on the Physics of Highly Charged Ions (HCI) CY SEP 02-07, 2012 CL Ruprecht Karls Univ, Heidelberg, GERMANY SP CAEN, Oerlikon Leybold Vacuum, RoentDek Handels, Struck Innovat Syst HO Ruprecht Karls Univ ID BEAM ION-TRAP; ELECTRON-BEAM; X-RAY; EXTREME-ULTRAVIOLET; HIGH-RESOLUTION; LINE RATIOS; FE-XVIII; SPECTROSCOPY; XIX AB In observations of Capella, the x-ray ultraviolet (XUV) emission compared to the extreme ultraviolet (EUV) emission significantly exceeds expectation from collisional-radiative spectral modeling. This discrepancy is presently undergoing experimental verification at an electron beam ion trap. An important step of the procedure is the relative efficiency calibration of spectroscopic detection equipment for EUV and XUV observations, for which we use the branching ratio of 1s-3p and 2s-3p transitions in the H-like spectrum O VIII. We present high-resolution measurements and associated modeling of the O VIII emission near 102 angstrom, which consists not only of the two 2s-3p transitions, but also of two 2p-3s and three 2p-3d transitions. C1 [Traebert, Elmar; Beiersdorfer, Peter] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. [Traebert, Elmar] Ruhr Univ Bochum, Astron Inst, Fak Phys & Astron, D-44780 Bochum, Germany. RP Trabert, E (reprint author), Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. EM traebert@astro.rub.de NR 12 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 EI 1402-4896 J9 PHYS SCRIPTA JI Phys. Scr. PD SEP PY 2013 VL T156 AR 014003 DI 10.1088/0031-8949/2013/T156/014003 PG 4 WC Physics, Multidisciplinary SC Physics GA 280IP UT WOS:000329022300004 ER PT J AU Klein-Marcuschamer, D AF Klein-Marcuschamer, Daniel TI A Matter of Detail: Assessing the True Potential of Microalgal Biofuels SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Editorial Material C1 [Klein-Marcuschamer, Daniel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Klein-Marcuschamer, Daniel] Joint BioEnergy Inst, Deconstruct Div, Emeryville, CA 94608 USA. [Klein-Marcuschamer, Daniel] Univ Queensland, Australian Inst Bioengn & Nanotechnol, St Lucia, Qld, Australia. RP Klein-Marcuschamer, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, 1 Cyclotron Rd MS 978-4121, Berkeley, CA 94720 USA. OI Chisti, Yusuf/0000-0002-0826-7012 NR 10 TC 17 Z9 18 U1 1 U2 19 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0006-3592 EI 1097-0290 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD SEP PY 2013 VL 110 IS 9 BP 2317 EP 2318 PG 2 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 283WK UT WOS:000329277500001 PM 23733523 ER PT J AU Kassianov, E Flynn, C Koontz, A Sivaraman, C Barnard, J AF Kassianov, Evgueni Flynn, Connor Koontz, Annette Sivaraman, Chitra Barnard, James TI Failure and Redemption of Multifilter Rotating Shadowband Radiometer (MFRSR)/Normal Incidence Multifilter Radiometer (NIMFR) Cloud Screening: Contrasting Algorithm Performance at Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) and Southern Great Plains (SGP) Sites SO ATMOSPHERE LA English DT Article DE Multifilter Rotating Shadowband Radiometer (MFRSR); Normal Incidence Multifilter Radiometer (NIMFR); aerosol optical depth and Angstrom exponent; ground-based multi-spectral measurements; cloud-screening algorithms; direct-beam sun transmittance; Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) sites ID ALL-SKY IMAGES; MEASUREMENT PROGRAM; PHOTOMETER DATA; AEROSOL; AERONET; SIMULATIONS AB Well-known cloud-screening algorithms, which are designed to remove cloud-contaminated aerosol optical depths (AOD) from Multifilter Rotating Shadowband Radiometer (MFRSR) and Normal Incidence Multifilter Radiometer (NIMFR) measurements, have exhibited excellent performance at many middle-to-low latitude sites around world. However, they may occasionally fail under challenging observational conditions, such as when the sun is low (near the horizon) and when optically thin clouds with small spatial inhomogeneity occur. Such conditions have been observed quite frequently at the high-latitude Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) sites. A slightly modified cloud-screening version of the standard algorithm is proposed here with a focus on the ARM-supported MFRSR and NIMFR data. The modified version uses approximately the same techniques as the standard algorithm, but it additionally examines the magnitude of the slant-path line of sight transmittance and eliminates points when the observed magnitude is below a specified threshold. Substantial improvement of the multi-year (1999-2012) aerosol product (AOD and its Angstrom exponent) is shown for the NSA sites when the modified version is applied. Moreover, this version reproduces the AOD product at the ARM Southern Great Plains (SGP) site, which was originally generated by the standard cloud-screening algorithms. The proposed minor modification is easy to implement and its application to existing and future cloud-screening algorithms can be particularly beneficial for challenging observational conditions. C1 [Kassianov, Evgueni; Flynn, Connor; Koontz, Annette; Sivaraman, Chitra; Barnard, James] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Kassianov, E (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM evgueni.kassianov@pnnl.gov; connor.flynn@pnnl.gov; annette.koontz@pnnl.gov; chitra.sivaraman@pnnl.gov; james.barnard@pnnl.gov FU Office of Biological and Environmental Research (OBER) of the US Department of Energy (DOE) as part of the Atmospheric Radiation Measurement (ARM) Program; DOE [DE-A06-76RLO 1830]; Office of Biological and Environmental Research (OBER) of the US Department of Energy (DOE) as part of the Atmospheric System Research (ASR) Program FX This work has been supported by the Office of Biological and Environmental Research (OBER) of the US Department of Energy (DOE) as part of the Atmospheric Radiation Measurement (ARM) and Atmospheric System Research (ASR) Programs. The Pacific Northwest National Laboratory (PNNL) is operated by Battelle for the DOE under contract DE-A06-76RLO 1830. We thank five anonymous reviewers for the constructive comments, which improved the paper. NR 30 TC 1 Z9 1 U1 2 U2 9 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2073-4433 J9 ATMOSPHERE-BASEL JI Atmosphere PD SEP PY 2013 VL 4 IS 3 BP 299 EP 314 DI 10.3390/atmos4030299 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 274TM UT WOS:000328629100004 ER PT J AU Retallack, GJ Krull, ES Thackray, GD Parkinson, D AF Retallack, Gregory J. Krull, Evelyn S. Thackray, Glenn D. Parkinson, Dula TI Problematic urn-shaped fossils from a Paleoproterozoic (2.2 Ga) paleosol in South Africa SO PRECAMBRIAN RESEARCH LA English DT Article DE Paleosol; Lichen; South Africa; Paleoproterozoic; Hekpoort Basalt ID PRECAMBRIAN ATMOSPHERIC COMPOSITION; METAL BIOACCUMULATION; SOIL FORMATION; TRANSVAAL SUPERGROUP; WITWATERSRAND BASIN; WESTERN-AUSTRALIA; TERRESTRIAL BIOTA; GRIQUALAND WEST; EARLY EVOLUTION; PILBARA CRATON AB Small (0.3-1.8 mm long), locally abundant, urn-shaped fossils within surface horizons of a paleosol in the 2.2 Ga Hekpoort Formation near Waterval Onder, South Africa, are here described and named Diskagma buttonii Retallack gen. et sp. nov. The fossils are from fresh rock of a deep highway cutting, and have been metamorphosed to upper greenschist fades like their matrix. Despite metamorphic alteration, total organic carbon of the samples was 0.04% and its isotopic composition (delta C-13) was -25.6 +/- 0.08 parts per thousand (two standard deviations) versus Vienna Pee Dee belemnite standard. Organic outlines of the fossils are also accentuated by recystallized berthierine and opaque oxides. The fossils are locally clumped within surface swales of a Vertisol paleosol, identified from characteristic penecontemporaneous deformation (clastic dikes between swales of mukkara structure) and from pronounced geochemical differentiation (phosphorus and copper strain-corrected mass-depletion characteristic of an oxidized biologically active soil). This paleosol's chemical composition is evidence of temperate humid climate (mean annual temperature 11.3 +/- 4.4 degrees C, and mean annual precipitation 1489 +/- 182 mm). Associated paleosols indicate atmospheric CO2 of 6640 (+12,880/-4293) ppm (0.6%) and 0.9-5% atmospheric O-2. The best preserved examples of Diskagrna are shaped like an urn with a flared rim, and closed below the flare. Observation of hundreds of specimens in thin section reveals substantial variation in growth (elongation) and decay (shredding and deflation). They had a hollow ellipsoidal interior that is unusually devoid of opaque debris, unlike the matrix. Diskagma is superficially comparable with lichens such as Cladonia (Ascomycota) and Geosiphon (Glomeromycota). Definitive reproductive structures remain unknown. They predate the oldest other likely fossil eukaryotes (1.9 Ga) and fungi (1.5 Ga), and current molecular clock estimates for eukaryotes (1.6 Ga) and fungi (1.1 Ga). Lichenized actinobacteria are plausible prokaryotic alternatives permitted by molecular clocks. Although biological affinities of Diskagma are uncertain, these fossils reveal the general appearance of Paleoproterozoic life on land. (C) 2013 Elsevier B.V. All rights reserved. C1 [Retallack, Gregory J.] Univ Oregon, Dept Geol Sci, Eugene, OR 97403 USA. [Krull, Evelyn S.] CSIRO Land & Water, Glen Osmond, SA 5064, Australia. [Thackray, Glenn D.] Idaho State Univ, Dept Geosci, Pocatello, ID 83209 USA. [Parkinson, Dula] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Retallack, GJ (reprint author), Univ Oregon, Dept Geol Sci, Eugene, OR 97403 USA. EM gregr@uoregon.edu RI Parkinson, Dilworth/A-2974-2015 OI Parkinson, Dilworth/0000-0002-1817-0716 NR 136 TC 12 Z9 13 U1 4 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-9268 EI 1872-7433 J9 PRECAMBRIAN RES JI Precambrian Res. PD SEP PY 2013 VL 235 BP 71 EP 87 DI 10.1016/j.precamres.2013.05.015 PG 17 WC Geosciences, Multidisciplinary SC Geology GA 273GD UT WOS:000328522400005 ER PT J AU Wang, D Kang, S Nichols, J Post, W Liu, S Zhao, Z AF Wang, D. Kang, S. Nichols, J. Post, W. Liu, S. Zhao, Z. TI A computational framework for spatially explicit agroecosystem modeling: Application to regional simulation SO JOURNAL OF COMPUTATIONAL SCIENCE LA English DT Article DE Environmental software system design; Spatially explicit simulation; Agroecosystem; High performance computing; Data management ID COUPLING TOOLKIT; SYSTEM; SUSTAINABILITY AB Site-based agroecosystem model has been applied at regional and state level to enable comprehensive analyses of environmental sustainability of food and biofuel production. However, spatially explicit ecosystem simulations over large landscape present computational challenges. This paper presents a framework to support spatially explicit agroecosystem modeling and data analysis over large landscape, which includes four major phases of agroecosystem simulation: simulation data preparation, site-based simulation on high performance computers, data management and data analysis. Then, a case study on a regional intensive modeling area (RIMA) was presented as an application to demonstrate the system implementation and capability. (C) 2012 Elsevier B.V. All rights reserved. C1 [Wang, D.; Kang, S.; Nichols, J.; Post, W.] Oak Ridge Natl Lab, Div Environm Sci, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. [Liu, S.; Zhao, Z.] Univ Tennessee, Dept Geog, Knoxville, TN 37996 USA. RP Wang, D (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Climate Change Sci Inst, POB 2008, Oak Ridge, TN 37831 USA. EM wangd@ornl.gov FU Great Lake Bioenergy Research Center (GLBRC); Office of Science of the U.S. Department of Energy (DOE); UT-Battelle LLC for the Department of Energy [DE-AC05-00OR22725] FX The research was funded by the Great Lake Bioenergy Research Center (GLBRC) as well as the Office of Science of the U.S. Department of Energy (DOE). Oak Ridge National Laboratory is managed by UT-Battelle LLC for the Department of Energy under contract DE-AC05-00OR22725. We also would like to acknowledge Terry Copeland Pfeiffer for her assistance with manuscript editing. NR 28 TC 1 Z9 1 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1877-7503 J9 J COMPUT SCI-NETH JI J. Comput. Sci. PD SEP PY 2013 VL 4 IS 5 SI SI BP 386 EP 392 DI 10.1016/j.jocs.2012.08.018 PG 7 WC Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 270CS UT WOS:000328297100010 ER PT J AU Deodeshmukh, VP Srivastava, SK Bai, J AF Deodeshmukh, V. P. Srivastava, S. K. Bai, J. TI Early-stage oxidation behavior of Co-rich high-temperature alloys SO MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION LA English DT Article ID OXIDE SCALES C1 [Deodeshmukh, V. P.; Srivastava, S. K.] Haynes Int Inc, Res & Technol, Kokomo, IN 46904 USA. [Bai, J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Deodeshmukh, VP (reprint author), Haynes Int Inc, Res & Technol, 1020 W Pk Ave, Kokomo, IN 46904 USA. EM vdeodeshmukh@haynesintl.com FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, and Vehicle Technologies Program, through the Oak Ridge National Laboratory's High Temperature Materials Laboratory user program FX Research at the X14A beamline was partially sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, and Vehicle Technologies Program, through the Oak Ridge National Laboratory's High Temperature Materials Laboratory user program. NR 8 TC 2 Z9 2 U1 0 U2 5 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0947-5117 EI 1521-4176 J9 MATER CORROS JI Mater. Corros. PD SEP PY 2013 VL 64 IS 9 BP 772 EP 776 PG 5 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 264HQ UT WOS:000327868000003 ER PT J AU Berezovets', VV Denys, RV Zavalii, IY Paul-Boncour, V Pecharsky, V AF Berezovets', V. V. Denys, R. V. Zavalii, I. Yu Paul-Boncour, V. Pecharsky, V. TI Characteristic Features of the Sorption-Desorption of Hydrogen by Mg-M-Ni (M = Al, Mn, Ti) Ternary Alloys SO MATERIALS SCIENCE LA English DT Article DE hydrogen; magnesium compounds; magnesium alloys; hydrides ID HYDRIDE; SYSTEM; MG2FEH6; STORAGE AB By the method of high-energy milling in a ball mill, we obtain new alloys of Mg-M-Ni (M = Al, Mn, Ti) ternary systems. The properties of hydrogen sorption of the Mg3AlNi2 compound (Ti2Ni-type structure) are investigated and compared with the properties of Mg3MNi2 (M = Mn, Ti) isostructural compounds. The sorption-desorption of hydrogen by Mg(88)M4Ni(8) (M = Al, Mn, Ti) alloys is studied. The catalytic influence of Mg3MNi2 ternary phases on the hydrogenation of magnesium is established. C1 [Berezovets', V. V.; Denys, R. V.; Zavalii, I. Yu] Ukrainian Natl Acad Sci, Karpenko Physicomech Inst, Lvov, Ukraine. [Paul-Boncour, V.] CNRS, Inst Chim & Mat Paris Est, Thiais, France. [Pecharsky, V.] Iowa State Univ, Ames Lab, Ames, IA USA. RP Zavalii, IY (reprint author), Ukrainian Natl Acad Sci, Karpenko Physicomech Inst, Lvov, Ukraine. EM zavaliy@ipm.lviv.ua FU CRDF Foundation [UKC2-2970-LV-09]; Ukrainian National Academy of Sciences "Hydrogen in Alternative Power Engineering and Novel Technologies" [23-11]; U.S. Department of Energy [DE-AC02-07CH11358]; Iowa State University FX The present work was supported by the CRDF Foundation (Grant No. UKC2-2970-LV-09) and Special-Purpose Program of the Ukrainian National Academy of Sciences "Hydrogen in Alternative Power Engineering and Novel Technologies" (Grant No. 23-11). The work in the Ames Laboratory is performed with support of the U.S. Department of Energy under Contract No. DE-AC02-07CH11358 with Iowa State University. NR 20 TC 1 Z9 1 U1 9 U2 29 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1068-820X EI 1573-885X J9 MATER SCI+ JI Mater. Sci. PD SEP PY 2013 VL 49 IS 2 BP 159 EP 169 DI 10.1007/s11003-013-9595-1 PG 11 WC Materials Science, Multidisciplinary SC Materials Science GA 268YU UT WOS:000328207600003 ER PT J AU Pan, HL Lu, X Yu, XQ Hu, YS Li, H Yang, XQ Chen, LQ AF Pan, Huilin Lu, Xia Yu, Xiqian Hu, Yong-Sheng Li, Hong Yang, Xiao-Qing Chen, Liquan TI Sodium Storage and Transport Properties in Layered Na2Ti3O7 for Room-Temperature Sodium-Ion Batteries SO ADVANCED ENERGY MATERIALS LA English DT Article DE sodium-ion batteries; Na2Ti3O7; NaFSI; sodium storage and transport ID AB-INITIO; ELECTRODE MATERIALS; RECHARGEABLE BATTERIES; SOLID-ELECTROLYTE; ANODE MATERIAL; HIGH-CAPACITY; LITHIUM; NA; ENERGY; PERFORMANCE AB Layered sodium titanium oxide, Na2Ti3O7, is synthesized by a solid-state reaction method as a potential anode for sodium-ion batteries. Through optimization of the electrolyte and binder, the microsized Na2Ti3O7 electrode delivers a reversible capacity of 188 mA h g(-1) in 1 M NaFSI/PC electrolyte at a current rate of 0.1C in a voltage range of 0.0-3.0 V, with sodium alginate as binder. The average Na storage voltage plateau is found at ca. 0.3 V vs. Na+/Na, in good agreement with a first-principles prediction of 0.35 V. The Na storage properties in Na2Ti3O7 are investigated from thermodynamic and kinetic aspects. By reducing particle size, the nanosized Na2Ti3O7 exhibits much higher capacity, but still with unsatisfied cyclic properties. The solid-state interphase layer on Na2Ti3O7 electrode is analyzed. A zero-current overpotential related to thermodynamic factors is observed for both nano- and microsized Na2Ti3O7. The electronic structure, Na+ ion transport and conductivity are investigated by the combination of first-principles calculation and electrochemical characterizations. On the basis of the vacancy-hopping mechanism, a quasi-3D energy favorable trajectory is proposed for Na2Ti3O7. The Na+ ions diffuse between the TiO6 octahedron layers with pretty low activation energy of 0.186 eV. C1 [Pan, Huilin; Lu, Xia; Hu, Yong-Sheng; Li, Hong; Chen, Liquan] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing Key Lab New Energy Mat & Devices,Key Lab, Beijing 100190, Peoples R China. [Yu, Xiqian; Yang, Xiao-Qing] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Hu, YS (reprint author), Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing Key Lab New Energy Mat & Devices,Key Lab, Beijing 100190, Peoples R China. EM yshu@aphy.iphy.ac.cn RI Lu, Xia/A-7848-2012; Li, Hong/C-4643-2008; Hu, Yong-Sheng/H-1177-2011; Yu, Xiqian/B-5574-2014; Pan, Huilin/J-9298-2016 OI Lu, Xia/0000-0003-3504-9069; Li, Hong/0000-0002-8659-086X; Hu, Yong-Sheng/0000-0002-8430-6474; Yu, Xiqian/0000-0001-8513-518X; FU NSFC [51222210, 11234013]; "863" Project [2009AA033101]; "973" Projects [2009CB220104]; CAS project [KJCX2-YW-W26]; Chinese Academy of Sciences; US-DOE [DEAC02-98CH10886] FX We thank Y. Sun for providing the fullprof facilitate. This work was supported by funding from the NSFC (51222210, 11234013), "863" Project (2009AA033101), "973" Projects (2009CB220104), CAS project (KJCX2-YW-W26), One Hundred Talent Project of the Chinese Academy of Sciences, and US-DOE (DEAC02-98CH10886). The authors are grateful for the technical support of Dr Jianming Bai for the XRD studies at the X14A beamline of NSLS (BNL). NR 64 TC 152 Z9 153 U1 47 U2 384 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1614-6832 EI 1614-6840 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD SEP PY 2013 VL 3 IS 9 BP 1186 EP 1194 DI 10.1002/aenm.201300139 PG 9 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA 263PT UT WOS:000327821200013 ER PT J AU Wei, XL Nie, ZM Luo, QT Li, B Chen, BW Simmons, K Sprenkle, V Wang, W AF Wei, Xiaoliang Nie, Zimin Luo, Qingtao Li, Bin Chen, Baowei Simmons, Kevin Sprenkle, Vincent Wang, Wei TI Nanoporous Polytetrafl uoroethylene/Silica Composite Separator as a High-Performance All-Vanadium Redox Flow Battery Membrane SO ADVANCED ENERGY MATERIALS LA English DT Article DE all-vanadium redox flow batteries; membrane; nanoporous separator; polytetrafluoroethylene; silica particles ID RESEARCH-AND-DEVELOPMENT; ENERGY-STORAGE; PROGRESS; STABILITY AB A novel low-cost nanoporous polytetrafluoroethylene (PTFE)/silica composite separator has been prepared and evaluated for its use in an all-vanadium redox flow battery (VRB). The separator consists of silica particles enmeshed in a PTFE fibril matrix. It possesses unique nanoporous structures with an average pore size of 38 nm and a porosity of 48%. These pores function as the ion transport channels during redox flow battery operation. This separator provides excellent electrochemical performance in the mixed-acid VRB system. The VRB using this separator delivers impressive energy efficiency, rate capability, and temperature tolerance. In additon, the flow cell using the novel separator also demonstrates an exceptional capacity retention capability over extended cycling, thus offering excellent stability for long-term operation. The characteristics of low cost, excellent electrochemical performance and proven chemical stability afford the PTFE/silica nanoporous separator great potential as a substitute for the Nafion membrane used in VRB applications. C1 [Wei, Xiaoliang; Nie, Zimin; Luo, Qingtao; Li, Bin; Chen, Baowei; Simmons, Kevin; Sprenkle, Vincent; Wang, Wei] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wang, W (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM wei.wang@pnnl.gov RI Wang, Wei/F-4196-2010 OI Wang, Wei/0000-0002-5453-4695 FU U.S. Department of Energy's (DOE's) Office of Electricity Delivery and Energy Reliability [57558]; DOE [DE-AC05-76RL01830] FX The authors would like to acknowledge financial support from the U.S. Department of Energy's (DOE's) Office of Electricity Delivery and Energy Reliability (OE) (under Contract No. 57558). We also are grateful for useful discussions with Dr. Imre Gyuk of the DOE-OE Grid Storage Program. PNNL is a multi-program national laboratory operated by Battelle for DOE under Contract DE-AC05-76RL01830. NR 32 TC 48 Z9 48 U1 19 U2 92 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1614-6832 EI 1614-6840 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD SEP PY 2013 VL 3 IS 9 BP 1215 EP 1220 DI 10.1002/aenm.201201112 PG 6 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA 263PT UT WOS:000327821200017 ER PT J AU Pustelny, S Kimball, DFJ Pankow, C Ledbetter, MP Wlodarczyk, P Wcislo, P Pospelov, M Smith, JR Read, J Gawlik, W Budker, D AF Pustelny, Szymon Kimball, Derek F. Jackson Pankow, Chris Ledbetter, Micah P. Wlodarczyk, Przemyslaw Wcislo, Piotr Pospelov, Maxim Smith, Joshua R. Read, Jocelyn Gawlik, Wojciech Budker, Dmitry TI The Global Network of Optical Magnetometers for Exotic physics (GNOME): A novel scheme to search for physics beyond the Standard Model SO ANNALEN DER PHYSIK LA English DT Article ID INVISIBLE AXION; ATOMIC MAGNETOMETER; PARTICLE PHYSICS; LIMITS AB A novel experimental scheme enabling the investigation of transient exotic spin couplings is discussed. The scheme is based on synchronous measurements of optical-magnetometer signals from several devices operating in magnetically shielded environments in distant locations ( 100 km). Although signatures of such exotic couplings may be present in the signal from a single magnetometer, it would be challenging to distinguish them from noise. By analyzing the correlation between signals from multiple, geographically separated magnetometers, it is not only possible to identify the exotic transient but also to investigate its nature. The ability of the network to probe presently unconstrained physics beyond the Standard Model is examined by considering the spin coupling to stable topological defects (e.g., domain walls) of axion-like fields. In the spirit of this research, a brief (approximate to 2 hours) demonstration experiment involving two magnetometers located in Krakow and Berkeley (approximate to 9000 km separation) is presented and discussion of the data-analysis approaches that may allow identification of transient signals is provided. The prospects of the network are outlined in the last part of the paper. C1 [Pustelny, Szymon; Wcislo, Piotr; Gawlik, Wojciech] Jagiellonian Univ, Inst Phys, PL-30059 Krakow, Poland. [Pustelny, Szymon; Ledbetter, Micah P.; Budker, Dmitry] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kimball, Derek F. Jackson] Calif State UniversityEast Bay, Dept Phys, Hayward, CA 94542 USA. [Pankow, Chris] Univ Wisconsin, Dept Phys, Ctr Gravitat Cosmol & Astrophys, Milwaukee, WI 53211 USA. [Wlodarczyk, Przemyslaw] AGH Univ Sci & Technol, Dept Elect, PL-30059 Krakow, Poland. [Wcislo, Piotr] Nicholas Copernicus Univ, Inst Phys, Fac Phys Astron & Informat, PL-87100 Torun, Poland. [Pospelov, Maxim] Univ Victoria, Dept Phys & Astron, Victoria, BC V8P 1A1, Canada. [Pospelov, Maxim] Perimeter Inst Theoret Phys, Waterloo, ON N2J 2W9, Canada. [Smith, Joshua R.; Read, Jocelyn] Calif State Univ Fullerton, Dept Phys, Gravitat Wave Phys & Astron Ctr, Fullerton, CA 92831 USA. [Budker, Dmitry] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Pustelny, S (reprint author), Jagiellonian Univ, Inst Phys, Reymonta 4, PL-30059 Krakow, Poland. EM pustelny@uj.edu.pl RI Wcislo, Piotr/C-9562-2015; Budker, Dmitry/F-7580-2016 OI Wcislo, Piotr/0000-0001-7909-4473; Budker, Dmitry/0000-0002-7356-4814 FU Miller Institute for Basic Research in Science; National Science Foundation [PHY-0969666, PHY-1068875, PHY-0970074, PHY-0970147]; "Team" Program of the Foundation for the Polish Science FX The authors are thankful to S. Bale, J. Clarke, S. Rajendran, M. Romalis, A. Sushkov, and M. Zolotorev for useful discussions. S.P. is a scholar of the Polish Ministry of Science and Higher Education within the Mobility Plus Program. D.B. acknowledges the support by the Miller Institute for Basic Research in Science. This work has been supported in part by the National Science Foundation under grants: PHY-0969666, PHY-1068875, PHY-0970074, PHY-0970147, and the "Team" Program of the Foundation for the Polish Science. NR 63 TC 17 Z9 17 U1 3 U2 17 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0003-3804 EI 1521-3889 J9 ANN PHYS-BERLIN JI Ann. Phys.-Berlin PD SEP PY 2013 VL 525 IS 8-9 SI SI BP 659 EP 670 DI 10.1002/andp.201300061 PG 12 WC Physics, Multidisciplinary SC Physics GA 263PB UT WOS:000327819400016 ER PT J AU Ahrenkiel, RK AF Ahrenkiel, Richard K. TI Resonant coupling for contactless measurement of carrier lifetime (vol 31, 04D113, 2013) SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Correction C1 Natl Renewable Energy Lab, Measurement & Characterizat Ctr, Golden, CO 80401 USA. RP Ahrenkiel, RK (reprint author), Natl Renewable Energy Lab, Measurement & Characterizat Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. NR 2 TC 0 Z9 0 U1 1 U2 1 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD SEP PY 2013 VL 31 IS 5 AR 053401 DI 10.1116/1.4819876 PG 1 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 261ZE UT WOS:000327702800031 ER PT J AU Chin, ML Periasamy, P O'Regan, TP Amani, M Tan, C O'Hayre, RP Berry, JJ Osgood, RM Parilla, PA Ginley, DS Dubey, M AF Chin, Matthew L. Periasamy, Prakash O'Regan, Terrance P. Amani, Matin Tan, Cheng O'Hayre, Ryan P. Berry, Joseph J. Osgood, Richard M., III Parilla, Philip A. Ginley, David S. Dubey, Madan TI Planar metal-insulator-metal diodes based on the Nb/Nb2O5/X material system SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID ELECTRODES; FILM; RADIATION; ELEMENTS AB The authors report the performance of various planar metal-insulator-metal (MIM) tunneling diodes, which are being investigated for use in rectenna devices for energy harvesting applications. Six cathode materials (M-2): Nb, Ag, Cu, Ni, Au, and Pt are studied in conjunction with Nb as the anode (M-1) and Nb2O5 (I) as the dielectric. The cathode materials selections were based on results from a prior rapid-screening study that employed a bent-wire metal cathode point-contact method. Planar devices, to enable analysis using standard MIM diode models, were fabricated with the resultant current density-voltage data obtained at both room temperature and 77K. The tunnel barrier heights and dielectric properties for these systems were extracted from the modeling results. Nb/Nb2O5/Pt MIM diodes showed the best performance with an asymmetry ratio greater than 7700, a nonlinearity value of 4.7, and a responsivity of 16.9, all at 0.5V and 300 K. These results confirm prior rapid-screening efforts and further validate the Nb/Nb2O5/Pt system in particular as a promising MIM architecture due to the low barrier height of the junction. (C) 2013 American Vacuum Society. C1 [Chin, Matthew L.; O'Regan, Terrance P.; Amani, Matin; Tan, Cheng; Dubey, Madan] US Army Res Lab, Sensors & Electron Devices Directorate, Adelphi, MD 20783 USA. [Periasamy, Prakash; O'Hayre, Ryan P.] Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA. [Berry, Joseph J.; Parilla, Philip A.; Ginley, David S.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Osgood, Richard M., III] US Army Natick Soldier Res Dev & Engn Ctr, Natick, MA 01760 USA. RP Chin, ML (reprint author), US Army Res Lab, Sensors & Electron Devices Directorate, 2800 Powder Mill Rd, Adelphi, MD 20783 USA. EM matthew.l.chin2.civ@mail.mil FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory, as part of the Laboratory Directed Research and Development Program; Centre for Revolutionary Solar Photoconversion (CRSP); Army Research Office [W911NF-12-1-0474] FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory, as part of the Laboratory Directed Research and Development Program and was also supported by funding from the Centre for Revolutionary Solar Photoconversion (CRSP). Part of this work is supported by funding from Army Research Office under Contract No. W911NF-12-1-0474. The authors thank Harvey Guthrey and Brian Gorman at CSM for their help in obtaining TEM images. NR 26 TC 3 Z9 3 U1 3 U2 13 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD SEP PY 2013 VL 31 IS 5 AR 051204 DI 10.1116/1.4818313 PG 8 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 261ZE UT WOS:000327702800012 ER PT J AU Hwang, YH Liu, L Velez, C Ren, F Gila, BP Hays, D Pearton, SJ Lambers, E Kravchenko, II Lo, CF Johnson, JW AF Hwang, Ya-Hsi Liu, Lu Velez, Camilo Ren, Fan Gila, Brent P. Hays, David Pearton, Stephen J. Lambers, Eric Kravchenko, Ivan I. Lo, Chien-Fong Johnson, Jerry W. TI GaN metal-insulator-semiconductor high-electron-mobility transistor with plasma enhanced atomic layer deposited AlN as gate dielectric and passivation SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID FIELD-EFFECT TRANSISTORS; ALGAN/GAN HEMTS; THIN-FILM; AL2O3; OXIDE AB AlGaN/GaN based metal-insulator-semiconductor high-electron-mobility transistors (HEMTs) using a plasma enhanced atomic layer deposited 10 nm AlN as the gate insulator and passivation layer were demonstrated. A refractive index of 1.92 for the deposited AlN was measured using an ellipsometer, which was slightly lower than that of bulk AlN. The deviation of the refractive index from the ideal value was caused by AlN surface oxidation, and this was confirmed by X-ray photoelectron spectroscopy and Auger depth profiling analyses. The HEMT drain current was modulated with gate voltages ranging from -3 to +4V. The HEMT exhibited an on-off ratio of 3.3 x 10(8) due to the low gate leakage current and a maximum saturation drain current of 600 mA/mm. Beside reducing the gate leakage current, the effectiveness of the HEMT passivation was confirmed by gate pulse measurements, which showed only a 7% decrease of the drain current. (C) 2013 American Vacuum Society. C1 [Hwang, Ya-Hsi; Liu, Lu; Velez, Camilo; Ren, Fan] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. [Gila, Brent P.; Hays, David; Pearton, Stephen J.; Lambers, Eric] Univ Florida, Gainesville, FL 32611 USA. [Kravchenko, Ivan I.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. [Lo, Chien-Fong; Johnson, Jerry W.] IQE, Taunton, MA 02780 USA. RP Hwang, YH (reprint author), Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. EM fren@che.ufl.edu RI Kravchenko, Ivan/K-3022-2015 OI Kravchenko, Ivan/0000-0003-4999-5822 FU AFOSR MURI; Office of Basic Energy Sciences, U.S. Department of Energy FX This work was supported by an AFOSR MURI monitored by Jim Hwang. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. NR 28 TC 2 Z9 2 U1 2 U2 18 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD SEP PY 2013 VL 31 IS 5 AR 052201 DI 10.1116/1.4816477 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 261ZE UT WOS:000327702800027 ER PT J AU Sheng, JJ Leonhardt, D Han, SM Johnston, SW Cederberg, JG Carroll, MS AF Sheng, Josephine J. Leonhardt, Darin Han, Sang M. Johnston, Steven W. Cederberg, Jeffrey G. Carroll, Malcolm S. TI Empirical correlation for minority carrier lifetime to defect density profile in germanium on silicon grown by nanoscale interfacial engineering SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID THREADING-DISLOCATION DENSITIES; MOLECULAR-BEAM EPITAXY; CHEMICAL-VAPOR-DEPOSITION; HIGH-QUALITY GE; LATERAL OVERGROWTH; SI; GAAS; HETEROEPITAXY; INTEGRATION; SI(100) AB High-quality Ge-on-Si heterostructures have been explored for many applications, including near infrared photodetectors and integration with III-V films for multijunction photovoltaics. However, the lattice mismatch between Ge and Si often leads to a high density of defects. Introducing annealing steps prior to and after full Ge island coalescence is found to reduce the defect density. The defect density in Ge is also found to decrease with increasing dopant density in Si substrates, likely due to the defect pinning near the Ge-Si interface by dopants. The authors establish an empirical correlation between the minority carrier lifetime (tau(G)) and the defect density in the Ge film (rho(D)) as a function of distance from the Ge-Si interface: tau(Ge) = C/rho(D), where C is a proportionality constant and a fitting parameter which is determined to be 0.17 and 0.22 s/cm(2) for Ge films grown on low-doped, high-resistivity Si substrates and high-doped, low-resistivity Si substrates, respectively. The effective minority carrier lifetime measured as a function of Ge film thickness is then related to the recombination velocity on Ge film surface, average minority carrier lifetime within Ge film, and recombination velocity at the Ge-Si interface. Using this relation, the authors estimate the Ge-Si interface recombination velocity for Ge films grown on low-doped, high-resistivity and high-doped, low-resistivity Si substrates to be 220 and 100 cm/s, respectively. (C) 2013 American Vacuum Society. C1 [Sheng, Josephine J.; Leonhardt, Darin; Han, Sang M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Johnston, Steven W.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Cederberg, Jeffrey G.; Carroll, Malcolm S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Sheng, JJ (reprint author), Univ New Mexico, Albuquerque, NM 87131 USA. EM meister@unm.edu FU National Science Foundation [DMR-0907112, CMMI1068970] FX This work was supported by the National Science Foundation under Awards DMR-0907112 and CMMI1068970. NR 59 TC 4 Z9 4 U1 1 U2 9 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD SEP PY 2013 VL 31 IS 5 AR 051201 DI 10.1116/1.4816488 PG 8 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 261ZE UT WOS:000327702800009 ER PT J AU Crease, RP AF Crease, Robert P. TI Critical Point Dramatizing science SO PHYSICS WORLD LA English DT Editorial Material C1 [Crease, Robert P.] SUNY Stony Brook, Dept Philosophy, Stony Brook, NY USA. [Crease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY USA. EM robert.crease@stonybrook.edu NR 0 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD SEP PY 2013 VL 26 IS 9 BP 19 EP 19 PG 1 WC Physics, Multidisciplinary SC Physics GA 266ZQ UT WOS:000328063800018 ER PT J AU Hooper, D AF Hooper, Dan TI Revisiting XENON100's constraints (and signals?) for low-mass dark matter SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE dark matter experiments; dark matter theory ID 730 KG DAYS; SEARCH AB Although observations made with the CoGeNT and CDMS experiments have been interpreted as possible signals of low-mass (similar to 7-10 GeV) dark matter particles, constraints from the XENON100 collaboration appear to be incompatible with this hypothesis, at least at face value. In this paper, we revisit XENON100's constraint on dark matter in this mass range, and consider how various uncertainties and assumptions made might alter this conclusion. We also note that while XENON100's two nuclear recoil candidates each exhibit very low ratios of ionization-to-scintillation signals, making them difficult to attribute to known electronic or neutron backgrounds, they are consistent with originating from dark matter particles in the mass range favored by CoGeNT and CDMS. We argue that with lower, but not implausible, values for the relative scintillation efficiency of liquid xenon (L-eff), and the suppression of the scintillation signal in liquid xenon at XENON100's electric field (S-nr), these two events could consistently arise from dark matter particles with a mass and cross section in the range favored by CoGeNT and CDMS. If this interpretation is correct, we predict that the LUX experiment, with a significantly higher light yield than XENON100, should observe dark matter induced events at an observable rate of similar to 3-24 per month. C1 [Hooper, Dan] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. RP Hooper, D (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. EM dhooper@fnal.gov FU US Department of Energy FX We would like to thank Matthew Szydagis, Eric Dahl, Nicole Fields, Lauren Hsu, Rafael Lang, Dan McKinsey, Peter Sorensen, Andrew Sonnenschein, and Juan Collar for helpful discussions. We would also like to thank the XENON100, CoGeNT and CDMS collaborations for providing many of the parameter regions and data points shown in the figures throughout this paper. This work has been supported by the US Department of Energy. NR 66 TC 10 Z9 10 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD SEP PY 2013 IS 9 AR 035 DI 10.1088/1475-7516/2013/09/035 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 250BU UT WOS:000326826000035 ER PT J AU Irsic, V Slosar, A Bailey, S Eisenstein, DJ Font-Ribera, A Le Goff, JM Lundgren, B McDonald, P O'Connell, R Palanque-Delabrouille, N Petitjean, P Rich, J Rossi, G Schneider, DP Sheldon, ES Yeche, C AF Irsic, Vid Slosar, Anze Bailey, Stephen Eisenstein, Daniel J. Font-Ribera, Andreu Le Goff, Jean-Marc Lundgren, Britt McDonald, Patrick O'Connell, Ross Palanque-Delabrouille, Nathalie Petitjean, Patrick Rich, Jim Rossi, Graziano Schneider, Donald P. Sheldon, Erin S. Yeche, Christophe TI Detection of Ly beta auto-correlations and Ly alpha-Ly beta cross-correlations in BOSS Data Release 9 SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE Lyman alpha forest; intergalactic media; dark energy experiments; cosmic web ID DIGITAL SKY SURVEY; OSCILLATION SPECTROSCOPIC SURVEY; POWER SPECTRUM; SDSS-III; TRANSMITTED FLUX; TARGET SELECTION; FOREST; CONSTRAINTS; TELESCOPE; QUASARS AB The Lyman-beta forest refers to a region in the spectra of distant quasars that lies between the rest-frame Lyman-beta and Lyman-gamma emissions. The forest in this region is dominated by a combination of absorption due to resonant Ly alpha and Ly beta scattering. When considering the 1D Ly beta forest in addition to the 1D Lya forest, the full statistical description of the data requires four 1D power spectra: Lya and Ly beta auto-power spectra and the Ly alpha-Ly beta real and imaginary cross-power spectra. We describe how these can be measured using an optimal quadratic estimator that naturally disentangles Ly alpha and Ly beta contributions. Using a sample of approximately 60,000 quasar sight-lines from the BOSS Data Release 9, we make the measurement of the one-dimensional power spectrum of fluctuations due to the Ly beta resonant scattering. While we have not corrected our measurements for resolution damping of the power and other systematic effects carefully enough to use them for cosmological constraints, we can robustly conclude the following: i) Ly beta power spectrum and Ly alpha-Ly beta cross spectra are detected with high statistical significance; ii) the cross-correlation coefficient is approximate to 1 on large scales; iii) the Ly beta measurements are contaminated by the associated OVI absorption, which is analogous to the SiIII contamination of the Ly alpha forest. Measurements of the Ly beta forest will allow extension of the usable path-length for the Ly alpha measurements while allowing a better understanding of the physics of intergalactic medium and thus more robust cosmological constraints. C1 [Irsic, Vid] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. [Slosar, Anze; Sheldon, Erin S.] Brookhaven Natl Lab, Upton, NY 11375 USA. [Bailey, Stephen; Font-Ribera, Andreu; McDonald, Patrick] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Eisenstein, Daniel J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Font-Ribera, Andreu] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland. [Le Goff, Jean-Marc; Palanque-Delabrouille, Nathalie; Rich, Jim; Rossi, Graziano; Yeche, Christophe] CEA, Ctr Saclay, IRFU, F-91191 Gif Sur Yvette, France. [Lundgren, Britt] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [O'Connell, Ross] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Petitjean, Patrick] Univ Paris 06, F-75014 Paris, France. [Petitjean, Patrick] Inst Astrophys Paris, CNRS, UMP7095, F-75014 Paris, France. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Schneider, Donald P.] Penn State Univ, Inst Gravitat & Cosmos, Davey Lab 525, University Pk, PA 16802 USA. RP Irsic, V (reprint author), Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia. EM vid.irsic@fmf.uni-lj.si; anze@bnl.gov; stephenbailey@lbl.gov; deisenstein@cfa.harvard.edu; font@physik.uzh.ch; jmlegoff@cea.fr; lundgren@astro.wisc.ed; pvmcdonald@lbl.gov; rcoconne@andrew.cmu.edu; nathalie.palanque-delabrouille@cea.fr; ppetitje@iap.fr; james.rich@cea.fr; graziano.rossi@cea.fr; dps7@psu.edu; esheldon@bnl.gov; christophe.yeche@cea.fr OI Irsic, Vid/0000-0002-5445-461X FU Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science FX Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http : //www.sdps3.org/. NR 43 TC 3 Z9 3 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD SEP PY 2013 IS 9 AR 016 DI 10.1088/1475-7516/2013/09/016 PG 22 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 250BU UT WOS:000326826000016 ER PT J AU Alexander, FJ AF Alexander, Francis J. TI Machine Learning GUEST EDITOR'S INTRODUCTION SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Editorial Material C1 [Alexander, Francis J.] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. [Alexander, Francis J.] Los Alamos Natl Lab, Informat Sci & Technol Inst, Los Alamos, NM 87545 USA. RP Alexander, FJ (reprint author), Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. EM fja@lanl.gov NR 9 TC 4 Z9 4 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 EI 1558-366X J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD SEP-OCT PY 2013 VL 15 IS 5 BP 9 EP 11 PG 3 WC Computer Science, Interdisciplinary Applications SC Computer Science GA 251AU UT WOS:000326901000002 ER PT J AU Porter, R Theiler, J Hush, D AF Porter, Reid Theiler, James Hush, Don TI Interactive Machine Learning in Data Exploitation SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Article ID CLASSIFICATION AB The goal of interactive machine learning is to help scientists and engineers exploit more specialized data from within their deployed environment in less time, with greater accuracy and fewer costs. A basic introduction to the main components is provided here, untangling the many ideas that must be combined to produce practical interactive learning systems. C1 [Porter, Reid; Theiler, James] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Porter, R (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM rporter@lanl.gov; jtheller@lanl.gov; dhush@lanl.gov NR 18 TC 4 Z9 4 U1 0 U2 4 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 EI 1558-366X J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD SEP-OCT PY 2013 VL 15 IS 5 BP 12 EP 20 PG 9 WC Computer Science, Interdisciplinary Applications SC Computer Science GA 251AU UT WOS:000326901000003 ER PT J AU Pappas, MJ Congdon, JD Brecke, BJ Freedberg, S AF Pappas, Michael J. Congdon, Justin D. Brecke, Bruce J. Freedberg, Steven TI ORIENTATION OF FRESHWATER HATCHLING BLANDING'S (EMYDOIDEA BLANDINGII) AND SNAPPING TURTLES (CHELYDRA SERPENTINA) DISPERSING FROM EXPERIMENTAL NESTS IN AGRICULTURAL FIELDS SO HERPETOLOGICAL CONSERVATION AND BIOLOGY LA English DT Article DE Chelydra serpentina; compass; crop fields; dispersal from nests; Emydoidea blandingii; hatchling freshwater turtles; orientation ID SUN-COMPASS ORIENTATION; CHRYSEMYS-PICTA; GLYPTEMYS-INSCULPTA; BREEDING AMPHIBIANS; TERRAPENE-CAROLINA; CHELONIA-MYDAS; BEHAVIOR; CONSERVATION; POPULATIONS; MOVEMENTS AB Tilled crop fields and natural nesting areas of many freshwater turtles have common characteristics that attract nesting females, but as some crops mature, their canopies block access to natural environmental cues used by hatchlings during orientation and dispersal from nests. we examined orientation of 417 naive and 232 experienced hatchling Blanding's turtles (Emydoidea blandingii) and snapping turtles (Chelydra serpentina) during dispersal from experimental nests in three 60-m square arenas located in soybean and corn fields or by tracking re-located experienced hatchlings in a corn field at weaver dunes, Minnesota, USA. for both species, orientation patterns of nave hatchlings in crop fields were primarily random (indicating no environmental cues were available) and secondarily bimodal in both directions of crop row alignment (a dispersal pattern consistent with following paths of least resistance). in contrast to nave individuals, dispersal patterns of natural-experienced hatchling Blanding's turtles were non-random, not in the direction of crop row alignment, and in the directions they had been moving prior to being released in crop fields. hatchling Blanding's and snapping turtles with 45-150 minutes dispersal experience at different times of day in a prairie arena were able to disperse directionally when re-released in a corn plot, a result that supports rapid development of a compass for maintaining headings when targets are not visible. morning-and afternoon-experienced hatchling Blanding's turtles dispersed in different directions in a corn plot and in a different direction or pattern (random versus directional) from their previous dispersal in the prairie arena. the results of our study indicate that mature crop canopies that block access to natural environmental cues used for dispersal from nests pose more substantial orientation problems for naive hatchlings than for experienced hatchlings that are able to use a compass to maintain dispersal headings when environmental cues are not available. C1 [Pappas, Michael J.] Michaels Restaurant, Rochester, MN 55904 USA. [Congdon, Justin D.] Savannah River Ecol Lab, Aiken, SC 29802 USA. [Congdon, Justin D.] Bar Boot Ranch, Douglas, AZ 85608 USA. [Freedberg, Steven] St Olaf Coll, Dept Biol, Northfield, MN 55057 USA. RP Congdon, JD (reprint author), Savannah River Ecol Lab, Aiken, SC 29802 USA. EM michael@michaelsfinedining.com; congdon@vtc.net; dipsochelys_013@yahoo.com; freedber@stolaf.edu FU Office of Biological and Environmental Research, U.S. Department of Energy [DE-FC09-96SR18546] FX We thank the following people for helping with the research reported in this paper: (1) landowners Ray and Evie Brueske, Bill and Pat Edelbach, Eugene Lamey, and Lester "Junior" Schmoker who allowed us access to their crop fields; (2) Joshua Capps, Nancy Dickson, Richard van Loben Sels, Carolina Pappas, and St. Olaf's College students (Allison Christiaansen, Allison Johnson, and Chee Lee) for help with monitoring the arenas; (3) Larry Gates, Larry Gusa, Allison, Alyssa and Michael Pappas II, and John Schmoker for help with collection and incubation of eggs; and (4) Janet Hostetter for photographing some of the field work. The study was conducted under permits from Richard Baker, Jaime Edwards, Nick Gulden, Gary Nelson, and Don Ramsden of the Minnesota Department of Natural Resources (#13808, and #15422), Mary Stefanski of the U.S. Fish and Wildlife Service (permit #08007), and from Meredith Cornett and Rich Biske of The Nature Conservancy (permit #2007-17R). Improvements of earlier drafts of the manuscript are the results of comments from Nancy Dickson, Janet Hostetter, and on the submitted draft by John Iverson. Research and manuscript preparation were aided by the Office of Biological and Environmental Research, U.S. Department of Energy through Financial Assistant Award No. DE-FC09-96SR18546 to the University of Georgia Research Foundation and by the Savannah River Ecology Laboratory. NR 34 TC 3 Z9 3 U1 3 U2 21 PU HERPETOLOGICAL CONSERVATION & BIOLOGY PI CORVALLIS PA C/O R BRUCE BURY, USGS FOREST & RANGELAND, CORVALLIS, OR 00000 USA SN 2151-0733 EI 1931-7603 J9 HERPETOL CONSERV BIO JI Herpetol. Conserv. Biol. PD SEP PY 2013 VL 8 IS 2 BP 385 EP 399 PG 15 WC Zoology SC Zoology GA 257AH UT WOS:000327354800011 ER PT J AU Adloff, C Blaising, JJ Chefdeville, M Drancourt, C Gaglione, R Geffroy, N Karyotakis, Y Koletsou, I Prast, J Vouters, G Francis, K Repond, J Schlereth, J Smith, J Xia, L Baldolemar, E Li, J Park, ST Sosebee, M White, AP Yu, J Eigen, G Mikami, Y Watson, NK Mavromanolakis, G Thomson, MA Ward, DR Yan, W Benchekroun, D Hoummada, A Khoulaki, Y Apostolakis, J Dannheim, D Dotti, A Folger, G Ivantchenko, V Klempt, W van der Kraaij, E Lucaci-Timoce, AI Ribon, A Schlatter, D Uzhinskiy, V Carloganu, C Gay, P Manen, S Royer, L Tytgat, M Zaganidis, N Blazey, GC Dyshkant, A Lima, JGR Zutshi, V Hostachy, JY Morin, L Cornett, U David, D Falley, G Gadow, K Gottlicher, P Gunter, C Hartbrich, O Hermberg, B Karstensen, S Krivan, F Kruger, K Lu, S Morozov, S Morgunov, V Reinecke, M Sefkow, F Smirnov, P Terwort, M Feege, N Garutti, E Laurien, S Marchesini, I Matysek, M Ramilli, M Briggl, K Eckert, P Harion, T Schultz-Coulon, HC Shen, W Stamen, R Bilki, B Norbeck, E Onel, Y Wilson, GW Kawagoe, K Sudo, Y Yoshioka, T Dauncey, PD Magnan, AM Bartsch, V Wing, M Salvatore, F Gil, EC Mannai, S Baulieu, G Calabria, P Caponetto, L Combaret, C Della Negra, R Grenier, G Han, R Ianigro, JC Kieffer, R Laktineh, I Lumb, N Mathez, H Mirabito, L Petrukhin, A Steen, A Tromeur, W Donckt, MV Zoccarato, Y Alamillo, EC Fouz, MC Puerta-Pelayo, J Corriveau, F Bobchenko, B Chadeeva, M Danilov, M Epifantsev, A Markin, O Mizuk, R Novikov, E Popov, V Rusinov, V Tarkovsky, E Kirikova, N Kozlov, V Smirnov, P Soloviev, Y Buzhan, P Ilyin, A Kantserov, V Kaplin, V Karakash, A Popova, E Tikhomirov, V Kiesling, C Seidel, K Simon, F Soldner, C Szalay, M Tesar, M Weuste, L Amjad, MS Bonis, J Callier, S di Lorenzo, SC Cornebise, P Doublet, P Dulucq, F Fleury, J Frisson, T van der Kolk, N Li, H Martin-Chassard, G Richard, F de la Taille, C Poschl, R Raux, L Rouene, J Seguin-Moreau, N Anduze, M Balagura, V Boudry, V Brient, JC Cornat, R Frotin, M Gastaldi, F Guliyev, E Haddad, Y Magniette, F Musat, G Ruan, M Tran, TH Videau, H Bulanek, B Zacek, J Cvach, J Gallus, P Havranek, M Janata, M Kvasnicka, J Lednicky, D Marcisovsky, M Polak, I Popule, J Tomasek, L Tomasek, M Ruzicka, P Sicho, P Smolik, J Vrba, V Zalesak, J Belhorma, B Ghazlane, H Kotera, K Takeshita, T Uozumi, S Jeans, D Gotze, M Sauer, J Weber, S Zeitnitz, C AF Adloff, C. Blaising, J. -J. Chefdeville, M. Drancourt, C. Gaglione, R. Geffroy, N. Karyotakis, Y. Koletsou, I. Prast, J. Vouters, G. Francis, K. Repond, J. Schlereth, J. Smith, J. Xia, L. Baldolemar, E. Li, J. Park, S. T. Sosebee, M. White, A. P. Yu, J. Eigen, G. Mikami, Y. Watson, N. K. Mavromanolakis, G. Thomson, M. A. Ward, D. R. Yan, W. Benchekroun, D. Hoummada, A. Khoulaki, Y. Apostolakis, J. Dannheim, D. Dotti, A. Folger, G. Ivantchenko, V. Klempt, W. van der Kraaij, E. Lucaci-Timoce, A. -I. Ribon, A. Schlatter, D. Uzhinskiy, V. Carloganu, C. Gay, P. Manen, S. Royer, L. Tytgat, M. Zaganidis, N. Blazey, G. C. Dyshkant, A. Lima, J. G. R. Zutshi, V. Hostachy, J. -Y. Morin, L. Cornett, U. David, D. Falley, G. Gadow, K. Goettlicher, P. Guenter, C. Hartbrich, O. Hermberg, B. Karstensen, S. Krivan, F. Krueger, K. Lu, S. Morozov, S. Morgunov, V. Reinecke, M. Sefkow, F. Smirnov, P. Terwort, M. Feege, N. Garutti, E. Laurien, S. Marchesini, I. Matysek, M. Ramilli, M. Briggl, K. Eckert, P. Harion, T. Schultz-Coulon, H. -Ch. Shen, W. Stamen, R. Bilki, B. Norbeck, E. Onel, Y. Wilson, G. W. Kawagoe, K. Sudo, Y. Yoshioka, T. Dauncey, P. D. Magnan, A. -M. Bartsch, V. Wing, M. Salvatore, F. Gil, E. Cortina Mannai, S. Baulieu, G. Calabria, P. Caponetto, L. Combaret, C. Della Negra, R. Grenier, G. Han, R. Ianigro, J-C. Kieffer, R. Laktineh, I. Lumb, N. Mathez, H. Mirabito, L. Petrukhin, A. Steen, A. Tromeur, W. Vander Donckt, M. Zoccarato, Y. Calvo Alamillo, E. Fouz, M. -C. Puerta-Pelayo, J. Corriveau, F. Bobchenko, B. Chadeeva, M. Danilov, M. Epifantsev, A. Markin, O. Mizuk, R. Novikov, E. Popov, V. Rusinov, V. Tarkovsky, E. Kirikova, N. Kozlov, V. Smirnov, P. Soloviev, Y. Buzhan, P. Ilyin, A. Kantserov, V. Kaplin, V. Karakash, A. Popova, E. Tikhomirov, V. Kiesling, C. Seidel, K. Simon, F. Soldner, C. Szalay, M. Tesar, M. Weuste, L. Amjad, M. S. Bonis, J. Callier, S. di Lorenzo, S. Conforti Cornebise, P. Doublet, Ph. Dulucq, F. Fleury, J. Frisson, T. van der Kolk, N. Li, H. Martin-Chassard, G. Richard, F. de la Taille, Ch. Poeschl, R. Raux, L. Rouene, J. Seguin-Moreau, N. Anduze, M. Balagura, V. Boudry, V. Brient, J-C. Cornat, R. Frotin, M. Gastaldi, F. Guliyev, E. Haddad, Y. Magniette, F. Musat, G. Ruan, M. Tran, T. H. Videau, H. Bulanek, B. Zacek, J. Cvach, J. Gallus, P. Havranek, M. Janata, M. Kvasnicka, J. Lednicky, D. Marcisovsky, M. Polak, I. Popule, J. Tomasek, L. Tomasek, M. Ruzicka, P. Sicho, P. Smolik, J. Vrba, V. Zalesak, J. Belhorma, B. Ghazlane, H. Kotera, K. Takeshita, T. Uozumi, S. Jeans, D. Goetze, M. Sauer, J. Weber, S. Zeitnitz, C. CA CALICE Collaboration TI Track segments in hadronic showers in a highly granular scintillator-steel hadron calorimeter SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Calorimeters; Calorimeter methods; Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc); Analysis and statistical methods AB We investigate the three dimensional substructure of hadronic showers in the CAL-ICE scintillator-steel hadronic calorimeter. The high granularity of the detector is used to find track segments of minimum ionising particles within hadronic showers, providing sensitivity to the spatial structure and the details of secondary particle production in hadronic cascades. The multiplicity, length and angular distribution of identified track segments are compared to GEANT4 simulations with several different shower models. Track segments also provide the possibility for in-situ calibration of highly granular calorimeters. C1 [Adloff, C.; Blaising, J. -J.; Chefdeville, M.; Drancourt, C.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Koletsou, I.; Prast, J.; Vouters, G.] Univ Savoie, CNRS, IN2P3, Lab Annecy le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. [Francis, K.; Repond, J.; Schlereth, J.; Smith, J.; Xia, L.; Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.] Univ Texas Arlington, Dept Phys, SH108, Arlington, TX 76019 USA. [Eigen, G.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Mikami, Y.; Watson, N. K.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Mavromanolakis, G.; Thomson, M. A.; Ward, D. R.; Yan, W.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Benchekroun, D.; Hoummada, A.; Khoulaki, Y.] Univ Hassan II Ain Chock, Fac Sci, Casablanca, Morocco. [Mavromanolakis, G.; Apostolakis, J.; Dannheim, D.; Dotti, A.; Folger, G.; Ivantchenko, V.; Klempt, W.; van der Kraaij, E.; Lucaci-Timoce, A. -I.; Ribon, A.; Schlatter, D.; Uzhinskiy, V.] CERN, CH-1211 Geneva 23, Switzerland. [Carloganu, C.; Gay, P.; Manen, S.; Royer, L.] Univ Clermont Ferrand, Univ Blaise Pascal, CNRS IN2P3, LPC, F-63000 Clermont Ferrand, France. [Tytgat, M.; Zaganidis, N.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Blazey, G. C.; Dyshkant, A.; Lima, J. G. R.; Zutshi, V.] No Illinois Univ, Dept Phys, NICADD, De Kalb, IL 60115 USA. [Hostachy, J. -Y.; Morin, L.] Univ Grenoble 1, CNRS IN2P3, Inst Polytech Grenoble, Lab Phys Subatom & Cosmol, F-38026 Grenoble, France. [Cornett, U.; David, D.; Falley, G.; Gadow, K.; Goettlicher, P.; Guenter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krueger, K.; Lu, S.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Marchesini, I.] DESY, D-22603 Hamburg, Germany. [Feege, N.; Garutti, E.; Laurien, S.; Marchesini, I.; Matysek, M.; Ramilli, M.] Univ Hamburg, Dept Phys, Inst Expt Phys, D-22761 Hamburg, Germany. [Briggl, K.; Eckert, P.; Harion, T.; Schultz-Coulon, H. -Ch.; Shen, W.; Stamen, R.] Heidelberg Univ, Fak Phys & Astron, D-69120 Heidelberg, Germany. [Bilki, B.; Norbeck, E.; Onel, Y.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Wilson, G. W.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Kawagoe, K.; Sudo, Y.; Yoshioka, T.] Kyushu Univ, Dept Phys, Fukuoka 8128581, Japan. [Dauncey, P. D.; Magnan, A. -M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Dept Phys, London SW7 2AZ, England. [Bartsch, V.; Wing, M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Salvatore, F.] Royal Holloway Univ London, Dept Phys, Egham TW20 0EX, Surrey, England. [Gil, E. Cortina; Mannai, S.] Catholic Univ Louvain, Ctr Cosmol Particle Phys & Cosmol CP3, B-1320 Louvain, Belgium. [Baulieu, G.; Calabria, P.; Caponetto, L.; Combaret, C.; Della Negra, R.; Grenier, G.; Han, R.; Ianigro, J-C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Vander Donckt, M.; Zoccarato, Y.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Calvo Alamillo, E.; Fouz, M. -C.; Puerta-Pelayo, J.] Ctr Invest Energet Medioambientales & Tecnol, CIEMAT, Madrid, Spain. [Corriveau, F.] Inst Particle Phys Canada, Montreal, PQ H3A 2T8, Canada. [Corriveau, F.] Dept Phys, Montreal, PQ H3A 2T8, Canada. [Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.] Inst Theoret & Expt Phys, RU-117218 Moscow, Russia. [Smirnov, P.; Kirikova, N.; Kozlov, V.; Soloviev, Y.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 117924, Russia. [Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Tikhomirov, V.] Moscow Phys Engn Inst, MEPhI, Dept Phys, Moscow 115409, Russia. [Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Amjad, M. S.; Bonis, J.; Callier, S.; di Lorenzo, S. Conforti; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Fleury, J.; Frisson, T.; van der Kolk, N.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch.; Poeschl, R.; Raux, L.; Rouene, J.; Seguin-Moreau, N.] Univ Paris 11, CNRS IN2P3, Ctr Sci Orsay, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Anduze, M.; Balagura, V.; Boudry, V.; Brient, J-C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Guliyev, E.; Haddad, Y.; Magniette, F.; Musat, G.; Ruan, M.; Tran, T. H.; Videau, H.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Bulanek, B.; Zacek, J.] Charles Univ Prague, Inst Particle & Nucl Phys, CZ-18000 Prague 8, Czech Republic. [Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.] Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. [Belhorma, B.; Ghazlane, H.] Ctr Natl Energie Sci & Tech Nucl, Rabat, Morocco. [Kotera, K.; Takeshita, T.; Uozumi, S.] Shinshu Univ, Dept Phys, Matsumoto, Nagano 390861, Japan. [Jeans, D.] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Goetze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys 8, D-42097 Wuppertal, Germany. [Smith, J.] Univ Texas Arlington, Arlington, TX USA. [Yan, W.] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [van der Kraaij, E.] Univ Bergen, N-5020 Bergen, Norway. [Bartsch, V.; Salvatore, F.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Danilov, M.; Mizuk, R.] Moscow Inst Phys & Technol, Moscow, Russia. [Li, H.] LPSC Grenoble, Grenoble, France. RP Simon, F (reprint author), Max Planck Inst Phys & Astrophys, Fohringer Ring 6, D-80805 Munich, Germany. EM fsimon@mpp.mpg.de RI U-ID, Kyushu/C-5291-2016; Danilov, Mikhail/C-5380-2014; Mizuk, Roman/B-3751-2014; Chadeeva, Marina/C-8789-2016; van der Kolk, Naomi/M-9423-2016; Tomasek, Lukas/G-6370-2014; Kvasnicka, Jiri/G-6425-2014; Soloviev, Yury/M-8788-2015; Kirikova, Nataliia/N-1710-2015; Tikhomirov, Vladimir/M-6194-2015; Smirnov, Petr/N-9652-2015; Cvach, Jaroslav/G-6269-2014; Smolik, Jan/H-1479-2014; Marcisovsky, Michal/H-1533-2014; Zalesak, Jaroslav/G-5691-2014; Calvo Alamillo, Enrique/L-1203-2014; Kozlov, Valentin/M-8000-2015 OI Danilov, Mikhail/0000-0001-9227-5164; Chadeeva, Marina/0000-0003-1814-1218; van der Kolk, Naomi/0000-0002-8670-0408; Thomson, Mark/0000-0002-2654-9005; Blazey, Gerald/0000-0002-7435-5758; Bilki, Burak/0000-0001-9515-3306; Watson, Nigel/0000-0002-8142-4678; Tomasek, Lukas/0000-0002-5224-1936; Soloviev, Yury/0000-0003-1136-2827; Tikhomirov, Vladimir/0000-0002-9634-0581; Zalesak, Jaroslav/0000-0002-4519-4705; Calvo Alamillo, Enrique/0000-0002-1100-2963; FU Bundesministerium fur Bildung und Forschung, Germany; DFG cluster of excellence 'Origin and Structure of the Universe' of Germany; Helmholtz-Nachwuchsgruppen [VH-NG-206]; BMBF [05HS6VH1]; Alexander von Humboldt Foundation [RUS1066839]; Helmholtz Foundation, SC Rosatom [HRJRG-002]; RFBR, SC Rosatom [HRJRG-002]; Russian Ministry of Education and Science [8174, 8411, 13662012.2, P220]; MICINN, Spain; CPAN, Spain; CRI(MST) of MOST/KOSEF in Korea; US Department of Energy; US National Science Foundation; Ministry of Education, Youth and Sports of the Czech Republic [AV0 Z3407391, AV0 Z10100502, LC527, LA09042]; Grant Agency of the Czech Republic [202/05/0653]; National Sciences and Engineering Research Council of Canada; Science and Technology Facilities Council, U.K. FX We gratefully acknowledge the DESY and CERN managements for their support and hospitality, and their accelerator staff for the reliable and efficient beam operation. We would like to thank the HEP group of the University of Tsukuba for the loan of drift chambers for the DESY test beam. The authors would like to thank the RIMST (Zelenograd) group for their help and sensors manufacturing. This work was supported by the Bundesministerium fur Bildung und Forschung, Germany; by the the DFG cluster of excellence 'Origin and Structure of the Universe' of Germany; by the Helmholtz-Nachwuchsgruppen grant VH-NG-206; by the BMBF, grant no. 05HS6VH1; by the Alexander von Humboldt Foundation (Research Award IV, RUS1066839 GSA); by joint Helmholtz Foundation and RFBR grant HRJRG-002, SC Rosatom; by the Russian Ministry of Education and Science via grants 8174, 8411, 1366.2012.2, P220; by MICINN and CPAN, Spain; by CRI(MST) of MOST/KOSEF in Korea; by the US Department of Energy and the US National Science Foundation; by the Ministry of Education, Youth and Sports of the Czech Republic under the projects AV0 Z3407391, AV0 Z10100502, LC527 and LA09042 and by the Grant Agency of the Czech Republic under the project 202/05/0653; by the National Sciences and Engineering Research Council of Canada; and by the Science and Technology Facilities Council, U.K.. NR 18 TC 5 Z9 5 U1 0 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD SEP PY 2013 VL 8 AR P09001 DI 10.1088/1748-0221/8/09/P09001 PG 26 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 248FL UT WOS:000326680200015 ER PT J AU Alvarez, V Borges, FIG Carcel, S Castel, J Cebrian, S Cervera, A Conde, CAN Dafni, T Dias, THVT Diaz, J Egorov, M Esteve, R Evtoukhovitch, P Fernandes, LMP Ferrario, P Ferreira, AL Freitas, EDC Gehman, VM Gil, A Goldschmidt, A Gomez, H Gomez-Cadenas, JJ Gonzalez-Diaz, D Gutierrez, RM Hauptman, J Morata, JAH Herrera, DC Iguaz, FJ Irastorza, IG Jinete, MA Labarga, L Laing, A Liubarsky, I Lopes, JAM Lorca, D Losada, M Luzon, G Mari, A Martin-Albo, J Martinez, A Martinez, G Miller, T Moiseenko, A Monrabal, F Monserrate, M Monteiro, CMB Mora, FJ Moutinho, LM Vidal, JM da Luz, HN Navarro, G Nebot-Guinot, M Nygren, D Oliveira, CAB Palma, R Perez, J Aparicio, JLP Renner, J Ripoll, L Rodriguez, A Rodriguez, J Santos, FP dos Santos, JMF Segui, L Serra, L Shuman, D Simon, A Sofka, C Sorel, M Toledo, JF Tomas, A Torrent, J Tsamalaidze, Z Veloso, JFCA Villar, JA Webb, R White, JT Yahlali, N AF Alvarez, V. Borges, F. I. G. Carcel, S. Castel, J. Cebrian, S. Cervera, A. Conde, C. A. N. Dafni, T. Dias, T. H. V. T. Diaz, J. Egorov, M. Esteve, R. Evtoukhovitch, P. Fernandes, L. M. P. Ferrario, P. Ferreira, A. L. Freitas, E. D. C. Gehman, V. M. Gil, A. Goldschmidt, A. Gomez, H. Gomez-Cadenas, J. J. Gonzalez-Diaz, D. Gutierrez, R. M. Hauptman, J. Hernando Morata, J. A. Herrera, D. C. Iguaz, F. J. Irastorza, I. G. Jinete, M. A. Labarga, L. Laing, A. Liubarsky, I. Lopes, J. A. M. Lorca, D. Losada, M. Luzon, G. Mari, A. Martin-Albo, J. Martinez, A. Martinez, G. Miller, T. Moiseenko, A. Monrabal, F. Monserrate, M. Monteiro, C. M. B. Mora, F. J. Moutinho, L. M. Munoz Vidal, J. Natal da Luz, H. Navarro, G. Nebot-Guinot, M. Nygren, D. Oliveira, C. A. B. Palma, R. Perez, J. Perez Aparicio, J. L. Renner, J. Ripoll, L. Rodriguez, A. Rodriguez, J. Santos, F. P. dos Santos, J. M. F. Segui, L. Serra, L. Shuman, D. Simon, A. Sofka, C. Sorel, M. Toledo, J. F. Tomas, A. Torrent, J. Tsamalaidze, Z. Veloso, J. F. C. A. Villar, J. A. Webb, R. White, J. T. Yahlali, N. CA NEXT Collaboration TI Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Pattern recognition, cluster finding, calibration and fitting methods; Double-beta decay detectors; Particle tracking detectors (Gaseous detectors); Time projection chambers AB NEXT-DEMO is a high-pressure xenon gas TPC which acts as a technological test-bed and demonstrator for the NEXT-100 neutrinoless double beta decay experiment. In its current configuration the apparatus fully implements the NEXT-100 design concept. This is an asymmetric TPC, with an energy plane made of photomultipliers and a tracking plane made of silicon photomultipliers (SiPM) coated with TPB. The detector in this new configuration has been used to reconstruct the characteristic signature of electrons in dense gas, demonstrating the ability to identify the MIP and "blob" regions. Moreover, the SiPM tracking plane allows for the definition of a large fiducial region in which an excellent energy resolution of 1.82% FWHM at 511 keV has been measured (a value which extrapolates to 0.83% at the xenon Q(beta beta)). C1 [Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Munoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain. [Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Munoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] Univ Valencia, Valencia 46980, Spain. [Borges, F. I. G.; Conde, C. A. N.; Dias, T. H. V. T.; Fernandes, L. M. P.; Freitas, E. D. C.; Lopes, J. A. M.; Monteiro, C. M. B.; Natal da Luz, H.; Santos, F. P.; dos Santos, J. M. F.] Univ Coimbra, Dept Fis, P-3004516 Coimbra, Portugal. [Castel, J.; Cebrian, S.; Dafni, T.; Gomez, H.; Gonzalez-Diaz, D.; Herrera, D. C.; Iguaz, F. J.; Irastorza, I. G.; Luzon, G.; Rodriguez, A.; Segui, L.; Tomas, A.; Villar, J. A.] Univ Zaragoza, Lab Fis Nucl & Astroparticulas, E-50009 Zaragoza, Spain. [Egorov, M.; Gehman, V. M.; Goldschmidt, A.; Miller, T.; Nygren, D.; Oliveira, C. A. B.; Renner, J.; Shuman, D.; Toledo, J. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Esteve, R.; Mari, A.; Mora, F. J.] Univ Politecn Valencia, I3M, Valencia 46022, Spain. [Evtoukhovitch, P.; Moiseenko, A.; Tsamalaidze, Z.] Joint Inst Nucl Res, Dubna 141980, Russia. [Ferreira, A. L.; Moutinho, L. M.; Veloso, J. F. C. A.] Univ Aveiro, I3N, P-3810193 Aveiro, Portugal. [Gutierrez, R. M.; Jinete, M. A.; Losada, M.; Navarro, G.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Hernando Morata, J. A.; Martinez, G.] Univ Santiago de Compostela, IGFAE, Santiago De Compostela 15782, Spain. [Labarga, L.; Perez, J.] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain. [Palma, R.; Perez Aparicio, J. L.] Univ Politecn Valencia, Dept Mecan Medios Continuos & Teor Estruct, E-46071 Valencia, Spain. [Ripoll, L.; Torrent, J.] Univ Girona, Escola Politecn Super, Girona 17071, Spain. [Sofka, C.; Webb, R.; White, J. T.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. RP Laing, A (reprint author), CSIC, Inst Fis Corpuscular IFIC, Calle Catedratico Jose Beltran 2, Valencia 46980, Spain. EM andrew.laing@ific.uv.es; francesc.monrabal@ific.uv.es RI Hernando Morata, Jose Angel/L-7642-2014; Dafni, Theopisti /J-9646-2012; Diaz, Jose/B-3454-2012; AMADE Research Group, AMADE/B-6537-2014; Balanzat, Josep Costa/C-1017-2014; matias-lopes, jose/H-6074-2012; Villar, Jose Angel/K-6630-2014; Gonzalez Diaz, Diego/K-7265-2014; veloso, joao/J-4478-2013; Irastorza, Igor/B-2085-2012; Gomez Cadenas, Juan Jose/L-2003-2014; Gil Ortiz, Alejandro/M-1671-2014; YAHLALI, NADIA/L-1880-2014; Monrabal, Francesc/A-5880-2015; Ripoll, Lluis/A-8413-2015; dos Santos, Joaquim/B-3058-2015; Perez-Aparicio, Jose/H-7053-2015; Natal da Luz, Hugo/F-6460-2013; Fernandes, Luis/E-2372-2011; Moutinho, Luis/J-6021-2013; Iguaz Gutierrez, Francisco Jose/F-4117-2016; OI Hernando Morata, Jose Angel/0000-0002-8683-5142; Dafni, Theopisti /0000-0002-8921-910X; Diaz, Jose/0000-0002-7239-223X; AMADE Research Group, AMADE/0000-0002-5778-3291; matias-lopes, jose/0000-0002-6366-2963; Villar, Jose Angel/0000-0003-0228-7589; Gonzalez Diaz, Diego/0000-0002-6809-5996; Irastorza, Igor/0000-0003-1163-1687; Gomez Cadenas, Juan Jose/0000-0002-8224-7714; Sorel, Michel/0000-0003-2141-9508; Toledo Alarcon, Jose Francisco/0000-0002-9782-4510; Freitas, Elisabete/0000-0001-8235-3229; Santos, Filomena/0000-0002-0214-4185; Martin-Albo, Justo/0000-0002-7318-1469; Veloso, Joao/0000-0002-7107-7203; Luzon Marco, Gloria/0000-0002-5352-1884; Munoz Vidal, Javier/0000-0002-9649-2251; Borges Soares, Filipa/0000-0001-5790-173X; Ferreira, Antonio /0000-0002-8696-3590; dos Santos, Joaquim Marques Ferreira/0000-0002-8841-6523; Conde, Carlos/0000-0002-1387-2161; Monteiro, Cristina Maria Bernardes/0000-0002-1912-2804; Palma, Roberto/0000-0002-4047-381X; Gil Ortiz, Alejandro/0000-0002-0852-412X; YAHLALI, NADIA/0000-0003-2184-0132; Monrabal, Francesc/0000-0002-4047-5620; Ripoll, Lluis/0000-0001-8194-5396; Perez-Aparicio, Jose/0000-0003-2884-6991; Natal da Luz, Hugo/0000-0003-1177-870X; Fernandes, Luis/0000-0002-7061-8768; Moutinho, Luis/0000-0001-9074-4449; Iguaz Gutierrez, Francisco Jose/0000-0001-6327-9369; Dias, Teresa/0000-0001-5101-4902 FU Ministerio de Economia y Competitividad of Spain [2010 CSD2008-0037, FPA2009-13697-C04-04, FIS2012-37947-C04]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; Portuguese FCT; FEDER through the program COMPETE [PTDC/FIS/103860/2008, PTDC/FIS/112272/2009]; US DOE NNSA Stewardship Science Graduate Fellowship [DE-FC52-08NA28752] FX This work was supported by the following agencies and institutions: the Ministerio de Economia y Competitividad of Spain under grants CONSOLIDER-Ingenio 2010 CSD2008-0037 (CUP), FPA2009-13697-C04-04 and FIS2012-37947-C04; the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231; and the Portuguese FCT and FEDER through the program COMPETE, projects PTDC/FIS/103860/2008 and PTDC/FIS/112272/2009. J. Renner (LBNL) acknowledges the support of a US DOE NNSA Stewardship Science Graduate Fellowship under contract no. DE-FC52-08NA28752. NR 14 TC 18 Z9 18 U1 1 U2 25 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD SEP PY 2013 VL 8 AR P09011 DI 10.1088/1748-0221/8/09/P09011 PG 20 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 248FL UT WOS:000326680200025 ER PT J AU Gehman, VM AF Gehman, V. M. TI WLS R&D for the detection of noble gas scintillation at LBL: seeing the light from neutrinos, to dark matter, to double beta decay SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Photon detectors for UV, visible and IR photons (gas); Double-beta decay detectors; Neutrino detectors; Dark Matter detectors (WIMPs, axions, etc.) ID LIQUID-HELIUM; MICROBOONE; NEUTRONS AB Radiation detectors with noble gasses as the active medium are becoming increasingly common in experimental programs searching for physics beyond the standard model. Nearly all of these experiments rely to some degree on collecting scintillation light from noble gasses. The VUV wavelengths associated with noble gas scintillation mean that most of these experiments use a fluorescent material to shift the direct scintillation light into the visible or near UV band. We present an overview of the R&D program at LBL related to noble gas detectors for neutrino physics, double beta decay, and dark matter. This program ranges from precise measurements of the fluorescence behavior of wavelength shifting films, to the prototyping of large are VUV sensitive light guides for multi-kiloton detectors. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. RP Gehman, VM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM vmgehman@lbl.gov FU Office of Science, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 27 TC 3 Z9 3 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD SEP PY 2013 VL 8 AR C09007 DI 10.1088/1748-0221/8/09/C09007 PG 8 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 248FL UT WOS:000326680200007 ER PT J AU Huang, HX Ruan, XC Ren, J Fan, CJ Chen, YN Lv, YL Wang, ZH Zhou, ZY Hou, L Xin, B Yu, CJ Zhang, JW Zhang, YH Bai, JZ Zhuang, HL He, W Liu, JL Worcester, E Themann, H Ling, JJ Cherwinka, J Webber, DM AF Huang, H. X. Ruan, X. C. Ren, J. Fan, C. J. Chen, Y. N. Lv, Y. L. Wang, Z. H. Zhou, Z. Y. Hou, L. Xin, B. Yu, C. J. Zhang, J. W. Zhang, Y. H. Bai, J. Z. Zhuang, H. L. He, W. Liu, J. L. Worcester, E. Themann, H. Ling, J. J. Cherwinka, J. Webber, D. M. TI Manual calibration system for Daya Bay Reactor Neutrino Experiment SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Detector alignment and calibration methods (lasers, sources, particle-beams); Large detector systems for particle and astroparticle physics ID LIQUID SCINTILLATOR AB The Daya Bay Reactor Neutrino Experiment has measured the last unknown neutrino mixing angle, theta(13), to be non-zero at the 7.7 sigma level. This is the most precise measurement to theta(13) to date [1, 2]. To further enhance the understanding of the response of the antineutrino detectors (ADs), a detailed calibration of an AD with the Manual Calibration System (MCS) was undertaken during the summer 2012 shutdown. The MCS is capable of placing a radioactive source with a positional accuracy of 25 mm in R direction, 12 mm in Z axis and 0.5 degrees Phi in F direction. A detailed description of the MCS is presented followed by a summary of its performance in the AD calibration run. C1 [Huang, H. X.; Ruan, X. C.; Ren, J.; Fan, C. J.; Chen, Y. N.; Lv, Y. L.; Wang, Z. H.; Zhou, Z. Y.; Hou, L.; Xin, B.] China Inst Atom Energy, Dept Phys, Beijing, Peoples R China. [Yu, C. J.; Zhang, J. W.; Zhang, Y. H.; Bai, J. Z.; Zhuang, H. L.; He, W.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Liu, J. L.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Worcester, E.; Themann, H.; Ling, J. J.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Cherwinka, J.; Webber, D. M.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. RP Huang, HX (reprint author), China Inst Atom Energy, Dept Phys, POB 275 46, Beijing, Peoples R China. EM huanghx@ciae.ac.cn RI Ling, Jiajie/I-9173-2014; Liu, Jianglai/P-2587-2015 OI Ling, Jiajie/0000-0003-2982-0670; Liu, Jianglai/0000-0002-4563-3157 FU National Natural Science Foundation [10890094]; Ministry of Science and Technology of China [2013CB834306] FX This work was supported by the National Natural Science Foundation under the grant No. 10890094 and the Ministry of Science and Technology of China under the grant No. 2013CB834306. The authors would like to thank Ralph Brown from BNL, Xiao Tang, Yuanguang Xia, Xiaoyan Ma, Linshu Wang, Jingyu Fu from IHEP, and many other technicians for their help during the MCS design, test and installation. NR 13 TC 7 Z9 7 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD SEP PY 2013 VL 8 AR P09013 DI 10.1088/1748-0221/8/09/P09013 PG 19 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 248FL UT WOS:000326680200027 ER PT J AU Malace, SP Sawatzky, BD Gao, H AF Malace, S. P. Sawatzky, B. D. Gao, H. TI Studies of single-photoelectron response and of performance in magnetic field of a H8500C-03 photomultiplier tube SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Cherenkov detectors; Photon detectors for UV, visible and IR photons (vacuum) (photomultipliers, HPDs, others); Spectrometers; Cherenkov and transition radiation AB We studied the single-photoelectron detection capabilities of a multianode photomultiplier tube H8500C-03 and its performance in high magnetic field. Our results show that the device can readily resolve signals at the single photoelectron level making it suitable for photon detection in both threshold and ring imaging Cherenkov detectors. We also found that a large longitudinal magnetic field, up to 300 Gauss, induces a change in the relative output of at most 55% for an edge pixel, and of at most 15% for a central pixel. The H8500C-03 signal loss in transverse magnetic fields it is significantly more pronounced than for the longitudinal case. Our studies of single photoelectron reduction in magnetic fields point to the field induced misfocusing of the photoelectron extracted from the photocathode as primary cause of signal loss. With appropriate shielding this PMT could function in high magnetic field environments. C1 [Malace, S. P.; Gao, H.] Duke Univ, Durham, NC 27708 USA. [Malace, S. P.; Sawatzky, B. D.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Malace, SP (reprint author), Duke Univ, Durham, NC 27708 USA. EM simona@jlab.org FU DOE [DE-AC05-06OR23177]; U.S. Department of Energy [DE-FG02-03ER41231]; U.S. Department of Energy FX The collaboration wishes to acknowledge the Detector Group at Jefferson Lab: Drew Weisenberger, Jack Mckisson, and Carl Zorn for their help with the PMT readout. We would also like to thank the Hamamatsu representative Ardavan Ghassemi for useful discussions. This work was supported by the U.S. Department of Energy. Jefferson Science Associates operates the Thomas Jefferson National Accelerator Facility under DOE contract No. DE-AC05-06OR23177. This work was also supported by the U.S. Department of Energy under Contract No. DE-FG02-03ER41231. NR 2 TC 2 Z9 2 U1 2 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD SEP PY 2013 VL 8 AR P09004 DI 10.1088/1748-0221/8/09/P09004 PG 39 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 248FL UT WOS:000326680200018 ER PT J AU Pahlka, RB AF Pahlka, R. B. TI Status of the solid xenon project at Fermilab SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators); Cryogenic detectors; Calorimeter methods; Liquid detectors AB The solid (crystalline) phase of xenon possesses many of the same advantages of liquid xenon as a particle detector material including good transparency and ionization drift, self-shielding, low intrinsic background, and high scintillation light yield. Many of the properties of solid xenon have been measured previously employing small volumes and thin films. However, few systematic studies have been successfully produced using large volumes of solid xenon. Two major R&D issues must be addressed to make a solid xenon particle detector; the demonstration of the scalability of solid xenon and the capability to readout solid xenon signals. Both issues are being addressed with a dedicated cryogenic system at Fermilab. The first phase of this project entailed growing approximately a kilogram of transparent solid phase xenon and was successfully completed in 2010 at Fermilab. The second phase of this project is underway where the signals from scintillation light and electron drift in solid xenon will be measured. These measurements are expected to be completed this year. In this talk, we will discuss the recent progress of solid xenon detector R&D performed at Fermilab. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Pahlka, RB (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM pahlka@fnal.gov FU U.S. Department of Energy FX This work was supported by the U.S. Department of Energy. We are grateful to the Fermilab technical staff for providing assistance with system construction and cryogenics. NR 3 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD SEP PY 2013 VL 8 AR C09013 DI 10.1088/1748-0221/8/09/C09013 PG 6 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 248FL UT WOS:000326680200013 ER PT J AU Rielage, K AF Rielage, K. CA CAPTAIN Collaboration TI Photon detection in the Cryogenic Apparatus for Precision Tests of Argon Interactions with Neutrinos (CAPTAIN) SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Neutrino detectors; Particle tracking detectors; Large detector systems for particle; astroparticle physics; Time projection chambers AB The Cryogenic Apparatus for Precision Tests of Argon Interactions with Neutrinos (CAPTAIN) is being built at Los Alamos National Laboratory. A hexagonal time projection chamber (TPC) with a 1 m drift length will be constructed inside a cryostat containing 7,700L of liquid argon. CAPTAIN will be used to test interactions using beams of neutrons and neutrinos. It will serve as a test bed for various options for the Long Baseline Neutrino Experiment (LBNE) including in the photon detection system. The current photon detection system will be described and future options discussed. The system is composed of sixteen R8520-500 Hamamatsu photomultiplier tubes with a wavelength shifting coating on acrylic in front of the PMT. Various wavelength shifting coatings can be examined with the current default of tetraphenyl butadiene. C1 [Rielage, K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Rielage, K (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM rielagek@lanl.gov OI Rielage, Keith/0000-0002-7392-7152 FU Los Alamos National Laboratory's Laboratory Directed Research and Development program; Department of Energy's Office of Science High Energy Physics program FX This work is supported by the Los Alamos National Laboratory's Laboratory Directed Research and Development program and the Department of Energy's Office of Science High Energy Physics program. NR 4 TC 1 Z9 1 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD SEP PY 2013 VL 8 AR C09002 DI 10.1088/1748-0221/8/09/C09002 PG 5 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 248FL UT WOS:000326680200002 ER PT J AU Liao, HC Ho, CC Chang, CY Jao, MH Darling, SB Su, WF AF Liao, Hsueh-Chung Ho, Chun-Chih Chang, Chun-Yu Jao, Meng-Huan Darling, Seth B. Su, Wei-Fang TI Additives for morphology control in high-efficiency organic solar cells SO MATERIALS TODAY LA English DT Review ID OPEN-CIRCUIT VOLTAGE; POWER CONVERSION EFFICIENCY; CONJUGATED SIDE-CHAIN; LOW-BANDGAP POLYMER; PROCESSING ADDITIVES; SOLVENT ADDITIVES; PHASE-SEPARATION; INTERPENETRATING NETWORK; PHOTOVOLTAIC POLYMERS; EXCITON DISSOCIATION AB Bulk heterojunction (BHJ) photovoltaics represent one of the most promising technologies in low-cost, high-throughput, environmentally friendly energy conversion. Morphological control is one pillar of the recent remarkable progress in power conversion efficiency. This review focuses on morphological control by processing with solvent additives, which has been extensively adopted and exhibits promising compatibility with large-scale processing. Recent investigations including material selection, morphological variations at various length scales, and interpretations of the interaction among additives and BHJ materials will be discussed. Insights into the role of solvent additives represent an important resource for further improvement in materials and processing designs. C1 [Liao, Hsueh-Chung; Ho, Chun-Chih; Chang, Chun-Yu; Jao, Meng-Huan; Su, Wei-Fang] Natl Taiwan Univ, Dept Mat Sci & Engn, Taipei 10617, Taiwan. [Darling, Seth B.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Darling, Seth B.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. RP Darling, SB (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM darling@anl.gov; suwf@ntu.edu.tw RI Su, Wei-Fang/C-2646-2009 FU National Science of Council of Taiwan [101-3113-E-002-010]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility [DE-AC02-06CH11357] FX Financial support obtained from the National Science of Council of Taiwan (101-3113-E-002-010) is highly appreciated. This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract no. DE-AC02-06CH11357. NR 103 TC 173 Z9 173 U1 18 U2 160 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1369-7021 EI 1873-4103 J9 MATER TODAY JI Mater. Today PD SEP PY 2013 VL 16 IS 9 BP 326 EP 336 DI 10.1016/j.mattod.2013.08.013 PG 11 WC Materials Science, Multidisciplinary SC Materials Science GA 252KB UT WOS:000327002500017 ER PT J AU Guarnieri, MT AF Guarnieri, Michael T. TI Comparative proteomics lends insight into genotype-specific pathogenicity SO PROTEOMICS LA English DT Editorial Material DE Algae; Comparative proteomics; Pathogenesis; Plant proteomics ID PROTOTHECA-ZOPFII; OSTREOCOCCUS-TAURI; STARVATION; VIRULENCE; MASTITIS; PLANTS; ALGAE; LONG AB Comparative proteomic analyses have emerged as a powerful tool for the identification of unique biomarkers and mechanisms of pathogenesis. In this issue of Proteomics, Murugaiyan et al. utilize difference gel electrophoresis (DIGE) to examine differential protein expression between nonpathogenic and pathogenic genotypes of Prototheca zopfii, a causative agent in bovine enteritis and mastitis. Their findings provide insights into molecular mechanisms of infection and evolutionary adaptation of pathogenic genotypes, demonstrating the power of comparative proteomic analyses. C1 Natl Bioenergy Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Guarnieri, MT (reprint author), Natl Bioenergy Ctr, Natl Renewable Energy Lab, 15013 Denver West Pkwy,MS 3323, Golden, CO 80401 USA. EM Michael.Guarnieri@nrel.gov NR 28 TC 1 Z9 1 U1 0 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1615-9853 EI 1615-9861 J9 PROTEOMICS JI Proteomics PD SEP PY 2013 VL 13 IS 17 BP 2544 EP 2545 DI 10.1002/pmic.201300322 PG 2 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 252MK UT WOS:000327009000004 PM 23925996 ER PT J AU Iacovides, DC Johnson, AB Wang, N Boddapati, S Korkola, J Gray, JW AF Iacovides, D. C. Johnson, A. B. Wang, N. Boddapati, S. Korkola, J. Gray, J. W. TI Identification and quantification of AKT isoforms and phosphoforms in breast cancer using a novel, ultrasensitive nanofluidic immunoassay SO EUROPEAN JOURNAL OF CANCER LA English DT Meeting Abstract CT European Cancer Congress 2013 - 17th ECCO / 38th ESMO / 32nd ESTRO CY SEP 27-OCT 01, 2013 CL Amsterdam, NETHERLANDS SP European Conf Clin Oncol, European Soc Therapeut Radiol & Oncol, European Soc Med Oncol, European Soc Surg Oncol, European Assoc Canc Res, European Oncol Nursing Soc, European Soc Paediat Oncol C1 [Iacovides, D. C.; Johnson, A. B.] Lawrence Berkeley Natl Lab, San Francisco, CA USA. [Wang, N.; Boddapati, S.; Korkola, J.; Gray, J. W.] Oregon Hlth & Sci Univ, Dept Biomed Engn, Portland, OR 97201 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0959-8049 EI 1879-0852 J9 EUR J CANCER JI Eur. J. Cancer PD SEP PY 2013 VL 49 SU 2 MA 645 BP S138 EP S138 PG 1 WC Oncology SC Oncology GA 250HY UT WOS:000326843600488 ER PT J AU Zhang, R Zhang, JX Zhang, YC Sun, JY Yan, GH AF Zhang, Rui Zhang, Jinxue Zhang, Yanchao Sun, Jinyuan Yan, Guanhua TI Privacy-Preserving Profile Matching for Proximity-Based Mobile Social Networking SO IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS LA English DT Article DE Proximity-based mobile social networking; profile matching; privacy AB Proximity-based mobile social networking (PMSN) refers to the social interaction among physically proximate mobile users. The first step toward effective PMSN is for mobile users to choose whom to interact with. Profile matching refers to two users comparing their personal profiles and is promising for user selection in PMSN. It, however, conflicts with users' growing privacy concerns about disclosing their personal profiles to complete strangers. This paper tackles this open challenge by designing novel fine-grained private matching protocols. Our protocols enable two users to perform profile matching without disclosing any information about their profiles beyond the comparison result. In contrast to existing coarse-grained private matching schemes for PMSN, our protocols allow finer differentiation between PMSN users and can support a wide range of matching metrics at different privacy levels. The performance of our protocols is thoroughly analyzed and evaluated via real smartphone experiments. C1 [Zhang, Rui] Univ Hawaii, Dept Elect Engn, Honolulu, HI 96822 USA. [Zhang, Jinxue; Zhang, Yanchao] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA. [Sun, Jinyuan] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Yan, Guanhua] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Zhang, R (reprint author), Univ Hawaii, Dept Elect Engn, Honolulu, HI 96822 USA. EM ruizhang@asu.edu; jxzhang@asu.edu; yczhang@asu.edu; jysun@eecs.utk.edu; ghyan@lanl.gov FU US National Science Foundation [CNS-1117462, CNS-0844972] FX This work was supported in part by the US National Science Foundation under grants CNS-1117462 and CNS-0844972 (CAREER). The preliminary version of this paper appeared in IEEE INFOCOM' 12 [1]. NR 32 TC 20 Z9 24 U1 2 U2 16 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0733-8716 EI 1558-0008 J9 IEEE J SEL AREA COMM JI IEEE J. Sel. Areas Commun. PD SEP PY 2013 VL 31 IS 9 SU S BP 656 EP 668 DI 10.1109/JSAC.2013.SUP.0513057 PN 1 PG 13 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 242SR UT WOS:000326262800058 ER PT J AU Burlaka, L Kutsenko, L Talianker, M Fuks, D Kiv, A Brown, I AF Burlaka, Lubov Kutsenko, Larisa Talianker, Michael Fuks, David Kiv, Arik Brown, Ian TI Observation of epsilon '-Ag-17 Mg-54 phase induced by plasma immersion ion implantation SO RADIATION EFFECTS AND DEFECTS IN SOLIDS LA English DT Article DE ion implantation; transmission electron microscopy; DFT theory ID AG AB This paper provides a confirmation of the effectiveness of the recently suggested ab initio approach to the theoretical prediction of phase transformations which may be induced in metallic alloys by metal plasma immersion and ion implantation processing. The approach is based on an assumption that at certain concentrations of the implanted species, the relaxation of the exited electronic state of the implanted structure should be accompanied by the rearrangement of atoms leading to the formation of a new phase. Recently, on the basis of density functional theory calculations of the energetic characteristics of the electronic subsystems of the implanted Mg-Ag system, it was predicted that concentrations of the implanted Ag ions within the range from approximate to 18 to 23 at% Ag, favor transition to the phase epsilon-Ag17Mg54. Our transmission electron microscopy observations and electron diffraction analysis of the Mg-based alloy subjected to the implantation of Ag ions at dose of approximate to 5x10(15)ion/cm(2) confirmed that the formation of the epsilon-Ag17Mg54 phase indeed takes place. C1 [Burlaka, Lubov; Kutsenko, Larisa; Talianker, Michael; Fuks, David; Kiv, Arik] Ben Gurion Univ Negev, Dept Mat Engn, IL-84105 Beer Sheva, Israel. [Brown, Ian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Kiv, A (reprint author), Ben Gurion Univ Negev, Dept Mat Engn, POB 653, IL-84105 Beer Sheva, Israel. EM kiv@bgu.ac.il NR 11 TC 0 Z9 0 U1 1 U2 5 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1042-0150 EI 1029-4953 J9 RADIAT EFF DEFECT S JI Radiat. Eff. Defects Solids PD SEP 1 PY 2013 VL 168 IS 9 BP 631 EP 635 DI 10.1080/10420150.2013.781176 PG 5 WC Nuclear Science & Technology; Physics, Fluids & Plasmas; Physics, Condensed Matter SC Nuclear Science & Technology; Physics GA 233XI UT WOS:000325602400001 ER PT J AU Correa, MA Escobar, VM Trigueiro-Neto, O Bohn, F Sossmeier, KD Bezerra, CG Chesman, C Pearson, J Hoffmann, A AF Correa, Marcio Assolin Escobar, Vivian Montardo Trigueiro-Neto, Osvaldo Bohn, Felipe Sossmeier, Kelly Daiane Bezerra, Claudionor Gomes Chesman, Carlos Pearson, John Hoffmann, Axel TI Magnetization Dynamics Through Magnetoimpedance Effect in Isotropic Co2FeAl/Au/Co2FeAl Full-Heusler Alloy Trilayer Films SO APPLIED PHYSICS EXPRESS LA English DT Article ID FERROMAGNETIC-RESONANCE; GIANT MAGNETOIMPEDANCE AB We investigate the magnetization dynamics in low damping parameter alpha systems by measuring the magnetoimpedance effect over a wide range of frequencies, from 0.1 to 3.0 GHz, in Co2FeAl/Au/Co2FeAl full-Heusler alloy trilayer films grown by magnetron sputtering on glass and MgO substrates. We show that the film produced on the glass substrate presents high magnetoimpedance performance, while that grown on the MgO substrate has low magnetoimpedance performance. Since both films are polycrystalline and have isotropic in-plane magnetic properties, we interpret the magnetoimpedance results in terms of the low damping parameter alpha and strain effects in the films. Thus, we verified that our films present good magnetoimpedance performance and showed that high performance can be achieved even in films with isotropic in-plane magnetic properties, since they present low damping parameter alpha. (c) 2013 The Japan Society of Applied Physics C1 [Correa, Marcio Assolin; Escobar, Vivian Montardo; Trigueiro-Neto, Osvaldo; Bohn, Felipe; Bezerra, Claudionor Gomes; Chesman, Carlos] Univ Fed Rio Grande do Norte, Dept Fis, BR-59078900 Natal, RN, Brazil. [Bohn, Felipe] Univ Fed Rio Grande do Norte, Escola Ciencias & Tecnol, BR-59078900 Natal, RN, Brazil. [Sossmeier, Kelly Daiane] Univ Fed Integracao Latinoamer, Inst Latinoamer Ciencias Vida & Nat, BR-85867970 Foz Do Iguacu, PR, Brazil. [Bezerra, Claudionor Gomes] Trinity Coll Dublin, Sch Phys, Dublin 2, Ireland. [Chesman, Carlos; Pearson, John; Hoffmann, Axel] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Correa, MA (reprint author), Univ Fed Rio Grande do Norte, Dept Fis, BR-59078900 Natal, RN, Brazil. RI Bohn, Felipe/F-9233-2011; Correa, Marcio/E-1510-2013; Bezerra, Claudionor/O-2696-2014; Hoffmann, Axel/A-8152-2009 OI Correa, Marcio/0000-0002-8904-4151; Bezerra, Claudionor/0000-0001-9660-2142; Hoffmann, Axel/0000-0002-1808-2767 FU CNPq [310761/2011-5, 555620/2010-7]; CAPES [10144-12-9]; FAPERN [013/2009, 064/2011, Pronem 03/2012]; INCT of Space Studies; U.S. Department of Energy, Office of Science, Basic Energy Science [DE-AC02-06CH11357] FX MAC and FB would like to thank Antonio Azevedo, Sergio Machado Rezende, and Obed Alves for fruitful discussions and experimental contributions. The research is partially supported by the Brazilian agencies CNPq (Grant Nos. 310761/2011-5 and 555620/2010-7), CAPES (Grant No. 10144-12-9), FAPERN (Grant PPP Nos. 013/2009, 064/2011, and Pronem 03/2012), and INCT of Space Studies. Our work at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Basic Energy Science under Contract No. DE-AC02-06CH11357. NR 24 TC 3 Z9 3 U1 0 U2 31 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1882-0778 EI 1882-0786 J9 APPL PHYS EXPRESS JI Appl. Phys. Express PD SEP PY 2013 VL 6 IS 9 AR 093001 DI 10.7567/APEX.6.093001 PG 4 WC Physics, Applied SC Physics GA 219GK UT WOS:000324494100023 ER PT J AU Feng, Q Blythe, HJ Fox, AM Qin, XF Xu, XH Heald, SM Gehring, GA AF Feng, Qi Blythe, Harry J. Fox, A. Mark Qin, Xiu-Fang Xu, Xiao-Hong Heald, Steve M. Gehring, Gillian A. TI Grain boundary ferromagnetism in vanadium-doped In2O3 thin films SO EPL LA English DT Article ID TEMPERATURE FERROMAGNETISM; MAGNETIC OXIDES; SPINTRONICS AB Room temperature ferromagnetism was observed in In2O3 thin films doped with 5 at.% V, prepared by pulsed-laser deposition at substrate temperatures ranging from 300 to 600 degrees C. X-ray absorption fine-structure measurement indicated that V was substitutionally dissolved in the In2O3 host lattice, thus excluding the existence of secondary phases of V compounds. Magnetic measurements based on SQUID magnetometry and magnetic circular dichroism confirm that the magnetism is at grain boundaries and also in the grains. The overall magnetization originates from the competing effects between grains and grain boundaries. Copyright (C) EPLA, 2013 C1 [Feng, Qi; Blythe, Harry J.; Fox, A. Mark; Gehring, Gillian A.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Qin, Xiu-Fang; Xu, Xiao-Hong] Shanxi Normal Univ, Sch Chem & Mat Sci, Linfen 041004, Peoples R China. [Heald, Steve M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Feng, Q (reprint author), Chinese Acad Sci, Inst Semicond, SKLSM, POB 912, Beijing 100083, Peoples R China. EM fengqi1985@gmail.com; g.gehring@sheffield.ac.uk RI Fox, Mark/F-1096-2010 OI Fox, Mark/0000-0002-9025-2441 FU U.S. DOE under [DE-AC02-06CH11357]; NSFC [51025101] FX Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was also supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. The work is also financially supported by NSFC (51025101). NR 35 TC 0 Z9 0 U1 2 U2 14 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD SEP PY 2013 VL 103 IS 6 AR 67007 DI 10.1209/0295-5075/103/67007 PG 6 WC Physics, Multidisciplinary SC Physics GA 242XV UT WOS:000326280200027 ER PT J AU Tai, YY Zhu, JX Graf, MJ Ting, CS AF Tai, Yuan-Yen Zhu, Jian-Xin Graf, Matthias J. Ting, C. S. TI Calculated phase diagram of doped BaFe2As2 superconductor in a C-4-symmetry breaking model SO EPL LA English DT Article ID SYMMETRY; KFE2AS2; WAVE AB We develop a minimal multiorbital tight-binding model with realistic hopping parameters. The model breaks the symmetry of the tetragonal point group by lowering it from C4 to D2d, which accurately describes the Fermi surface evolution of the electron-doped BaFe2-xCoxAs2 and hole-doped Ba1-yKyFe2As2 compounds. An investigation of the phase diagram with a mean-field t-U-V Bogoliubov-de Gennes Hamiltonian results in agreement with the experimentally observed electron-and hole-doped phase diagram with only one set of t, U and V parameters. Additionally, the self-consistently calculated superconducting order parameter exhibits s(+/-)-wave pairing symmetry with a small d-wave pairing admixture in the entire doping range, which is the subtle result of the weakly broken symmetry and competing interactions in the multiorbital mean-field Hamiltonian. Copyright (C) EPLA, 2013 C1 [Tai, Yuan-Yen; Ting, C. S.] Univ Houston, Dept Phys, Houston, TX 77004 USA. [Zhu, Jian-Xin; Graf, Matthias J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Zhu, Jian-Xin] Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Tai, YY (reprint author), Univ Houston, Dept Phys, Houston, TX 77004 USA. FU Robert A. Welch Foundation [E-1146]; U.S. DOE [DE-AC52-06NA25396]; Center for Integrated Nanotechnologies, a U. S. DOE Office of Basic Energy Sciences user facility FX We thank A. V. BALATSKY, T. DAS, and W. LI for many helpful discussions. This work was supported in part by the Robert A. Welch Foundation under Grant No. E-1146 (Y-YT and CST) and through the UC Laboratory Fees Research program at LANL under the U.S. DOE Contract No. DE-AC52-06NA25396 (Y-YT, J-XZ and MJG). This work was in part supported by the Center for Integrated Nanotechnologies, a U. S. DOE Office of Basic Energy Sciences user facility. Y-YT thanks LANL for its hospitality during his visit. NR 42 TC 10 Z9 10 U1 0 U2 8 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD SEP PY 2013 VL 103 IS 6 AR 67001 DI 10.1209/0295-5075/103/67001 PG 6 WC Physics, Multidisciplinary SC Physics GA 242XV UT WOS:000326280200021 ER PT J AU West, N Kirby, E Bierman, P Slingerland, R Ma, L Rood, D Brantley, S AF West, Nicole Kirby, Eric Bierman, Paul Slingerland, Rudy Ma, Lin Rood, Dylan Brantley, Susan TI Regolith production and transport at the Susquehanna Shale Hills Critical Zone Observatory, Part 2: Insights from meteoric Be-10 SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE LA English DT Review DE meteoric 10Be; critical zone; regolith flux ID CHEMICAL-WEATHERING RATES; EASTERN-UNITED-STATES; SEDIMENT TRANSPORT; COSMOGENIC NUCLIDES; SOIL PRODUCTION; LANDSCAPE EVOLUTION; PHYSICAL EROSION; SERIES ISOTOPES; RIVER; TOPOGRAPHY AB Regolith-mantled hillslopes are ubiquitous features of most temperate landscapes, and their morphology reflects the climatically, biologically, and tectonically mediated interplay between regolith production and downslope transport. Despite intensive research, few studies have quantified both of these mass fluxes in the same field site. Here we present an analysis of 87 meteoric Be-10 measurements from regolith and bedrock within the Susquehanna Shale Hills Critical Zone Observatory (SSHO), in central Pennsylvania. Meteoric Be-10 concentrations in bulk regolith samples (n=73) decrease with regolith depth. Comparison of hillslope meteoric Be-10 inventories with analyses of rock chip samples (n=14) from a 24m bedrock core confirms that >80% of the total inventory is retained in the regolith. The systematic downslope increase of meteoric Be-10 inventories observed at SSHO is consistent with Be-10 accumulation in slowly creeping regolith (similar to 0.2cmyr(-1)). Regolith flux inferred from meteoric Be-10 varies linearly with topographic gradient (determined from high-resolution light detection and ranging-based topography) along the upper portions of hillslopes at SSHO. However, regolith flux appears to depend on the product of gradient and regolith depth where regolith is thick, near the base of hillslopes. Meteoric Be-10 inventories at the north and south ridgetops indicate minimum regolith residence times of 10.53.7 and 9.12.9 ky, respectively, similar to residence times inferred from U-series isotopes in Ma et al. (2013). The combination of our results with U-series-derived regolith production rates implies that regolith production and erosion rates are similar to within a factor of two on SSHO hillcrests. C1 [West, Nicole; Kirby, Eric; Slingerland, Rudy; Brantley, Susan] Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA. [West, Nicole; Kirby, Eric; Slingerland, Rudy; Brantley, Susan] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA. [Bierman, Paul] Univ Vermont, Dept Geol, Burlington, VT USA. [Ma, Lin] Univ Texas El Paso, Dept Geol Sci, El Paso, TX 79968 USA. [Rood, Dylan] Lawrence Livermore Natl Lab, Earth Res Inst, Livermore, CA USA. RP West, N (reprint author), Penn State Univ, Earth & Environm Syst Inst, 542 Deike Bldg, University Pk, PA 16802 USA. EM nxw157@psu.edu FU National Science Foundation [EAR 07-25019]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NASA Earth and Space Science Fellowship Program FX We would like to thank the anonymous Associate Editor and reviewers, whose suggestions led to improvements in this manuscript. We thank L. Jin and members of the Brantley group for the help in sample collecting and data interpretation. Members of the Cosmogenic Isotope Laboratory at University of Vermont, particularly Luke Reusser, Charles Trodick, and Lee Corbett, provided valuable assistance with meteoric 10Be extractions. N.W. also thanks Jeremy Wimpey for participation in sample collection and sample location surveys. Financial support for this work was provided by the National Science Foundation, grant EAR 07-25019 for the Susquehanna/Shale Hills Critical Zone Observatory to C. Duffy. AMS work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NW also acknowledges support from the NASA Earth and Space Science Fellowship Program. NR 106 TC 29 Z9 29 U1 5 U2 40 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9003 EI 2169-9011 J9 J GEOPHYS RES-EARTH JI J. Geophys. Res.-Earth Surf. PD SEP PY 2013 VL 118 IS 3 BP 1877 EP 1896 DI 10.1002/jgrf.20121 PG 20 WC Geosciences, Multidisciplinary SC Geology GA 238VC UT WOS:000325978500048 ER PT J AU Anjos, DM McDonough, JK Perre, E Brown, GM Overbury, SH Gogotsi, Y Presser, V AF Anjos, Daniela M. McDonough, John K. Perre, Emilie Brown, Gilbert M. Overbury, Steven H. Gogotsi, Yury Presser, Volker TI Pseudocapacitance and performance stability of quinone-coated carbon onions SO NANO ENERGY LA English DT Article DE Carbon onions; Electrochemical energy storage; Pseudocapacitor; Quinones; Capacitance ID ELECTROCHEMICAL ENERGY-STORAGE; DOUBLE-LAYER CAPACITORS; SUPERCAPACITOR ELECTRODES; AQUEOUS ELECTROCHEMISTRY; DETONATION NANODIAMOND; NEUTRON-SCATTERING; RAMAN-SPECTROSCOPY; MESOPOROUS CARBON; DIAMOND; SURFACE AB Onion-like carbon, also known as carbon onions, is a highly conductive material enabling supercapacitor electrodes with a very high power density. However, the moderate specific capacitance (circa 30 F/g) is insufficient for many energy storage applications. In our study, we show how decoration of carbon onions with quinones provides a facile method to increase the energy density up to one order of magnitude, namely, from 0.5 Wh/kg to 4.5 Wh/kg, while retaining a high power density and long lifetime. We present data for carbon onions modified with three different kinds of quinones: 1,4-naphthoquinone, 9,10-phenanthrenequinone, and 4,5-pyrenedione. Quinone-decorated carbon onion electrodes are investigated considering the actual quinone loading and the resulting electrochemical performance is probed in 1 M H2SO4 as the electrolyte using cyclic voltammetry and galvanostatic charge/discharge. The maximum capacitance, 264 F/g, is found for carbon onions modified with 4,5-pyrenedione, which also shows the smallest fade in specific capacitance, namely 3%, over 10,000 charge and discharge cycles at a high current density of 1.3 A/g. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Anjos, Daniela M.; Brown, Gilbert M.; Overbury, Steven H.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [McDonough, John K.; Gogotsi, Yury] Drexel Univ, AJ Drexel Nanotechnol Inst, Philadelphia, PA 19104 USA. [McDonough, John K.; Gogotsi, Yury] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Perre, Emilie; Presser, Volker] INM Leibniz Inst New Mat, Energy Mat Grp, D-66123 Saarbrucken, Germany. [Perre, Emilie; Presser, Volker] Univ Saarland, D-66123 Saarbrucken, Germany. RP Presser, V (reprint author), INM Leibniz Inst New Mat, Energy Mat Grp, D-66123 Saarbrucken, Germany. EM overburysh@ornl.gov; gogotsi@drexel.edu; volker.presser@inm-gmbh.de RI Presser, Volker/F-1975-2010; Gogotsi, Yury/B-2167-2008; Overbury, Steven/C-5108-2016 OI Presser, Volker/0000-0003-2181-0590; Gogotsi, Yury/0000-0001-9423-4032; Overbury, Steven/0000-0002-5137-3961 FU Fluid Interface Reactions, Structures and Transport (FIRST) Center; Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy; German Federal Ministry for Research and Education (BMBF) [03EK3013] FX This work was supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy. VP and EP acknowledge funding from the German Federal Ministry for Research and Education (BMBF) in support of the nanoEES3D project (award number 03EK3013) as part of the strategic funding initiative energy storage framework. VP thanks Dr. Atchison for helpful discussions and Prof. Arzt for his continuing support (both at INM). The authors also thank Dr. Ganesh (Oak Ridge National Laboratories) for providing the raw data for the OLC model shown in Figure 1B and Dr. Niu (formerly at Drexel, now at MIT) for his assistance with TEM and Dr. Alliger (ORNL) for synthesizing the pyrene quinone. Mr. Karos (INM) is thanked for his kind assistance with XRD measurements. NR 60 TC 49 Z9 49 U1 15 U2 114 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 J9 NANO ENERGY JI Nano Energy PD SEP PY 2013 VL 2 IS 5 BP 702 EP 712 DI 10.1016/j.nanoen.2013.08.003 PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 240YS UT WOS:000326134200014 ER PT J AU Sun, YG AF Sun, Yugang TI Lithium ion conducting membranes for lithium-air batteries SO NANO ENERGY LA English DT Review DE lithium ion conducting membranes; lithium-air batteries; solid state lithium ion; electrolyte ID LI-AIR; SECONDARY BATTERIES; SOLID ELECTROLYTES; CRYSTAL-STRUCTURE; THIO-LISICON; ELECTRICAL-CONDUCTIVITY; SUPERIONIC CONDUCTIVITY; HETEROGENEOUS SOLIDS; POLYMER ELECTROLYTES; AQUEOUS-ELECTROLYTE AB Materials design and synthesis is critical for reliable fabrication of stable and high-performance lithium-air batteries that are competitive with other energy delivery systems. Intensive research activities have focused on the development of efficient cathode catalysts and stable electrolytes in the past several years and many review articles are already available. This review aims on lithium ion conducting membranes that are barely studied although they are essentially indispensible for building batteries composed of aqueous electrolytes and batteries composed of non-aqueous electrolytes for long-term operation. In a typical lithium-air battery cell, a lithium ion conducting membrane is sandwiched between the lithium metal anode and the air cathode to prevent the lithium metal anode from reacting with poison species (e.g., water, oxygen, etc.) diffused from cathode to anode, leading to a significant increase in lifetime of the battery. A number of solid materials including polymer/polymer-ceramic composites, non-oxide inorganic compounds, perovskite-type oxides, garnet-type oxides, gamma-Li3PO4 oxides, NASICON-type oxides, and single-crystalline silicon that exhibit good lithium-ion conductivity are comprehensively summarized and discussed in this review. Although only a few of NASICON-type oxides and single-crystalline silicon have been evaluated as the lithium ion conducting membranes in lithium-air battery cells, all of the solid materials summarized in this review and their possible derivative composites are also promising to be developed as lithium ion conducting membranes for lithium-air batteries. This review is also expected to be an advocate for research in lithium ion conducting membranes. (C) 2013 Elsevier Ltd. All rights reserved. C1 Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Sun, YG (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ygsun@anl.gov RI Sun, Yugang /A-3683-2010 OI Sun, Yugang /0000-0001-6351-6977 FU Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facilit [DE-AC02-06CH11357] FX This work was performed at the Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract no. DE-AC02-06CH11357. NR 108 TC 35 Z9 36 U1 45 U2 485 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 J9 NANO ENERGY JI Nano Energy PD SEP PY 2013 VL 2 IS 5 BP 801 EP 816 DI 10.1016/j.nanoen.2013.02.003 PG 16 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 240YS UT WOS:000326134200027 ER PT J AU Xia, T Zhang, W Li, WJ Oyler, NA Liu, G Chen, XB AF Xia, Ting Zhang, Wei Li, Wenjing Oyler, Nathan A. Liu, Gao Chen, Xiaobo TI Hydrogenated surface disorder enhances lithium ion battery performance SO NANO ENERGY LA English DT Article DE Titanium dioxide nanocrystals; Hydrogenation; Surface disorder; Crystalline core; Lithium ion battery ID TIO2 NANOTUBE ARRAYS; ANATASE TIO2; TITANIUM-DIOXIDE; PHOTOCATALYTIC ACTIVITY; ELECTRONIC-STRUCTURE; INTERCALATION; NANOMATERIALS; ABSORPTION; INSERTION; LI AB TiO2, well known for its photocatalytic properties, has also been studied as a safer anode material for lithium ion batteries compared to graphite. However, improvements are needed to address the limited lithium ion diffusion within the host and the structural distortion during lithium insertion/extraction. Here, we demonstrate that a thin layer of hydrogenated surface disorder on the crystalline TiO2 electrode induces better electrochemical energy storage performance, better charge/discharge rate performance, larger capacity and longer stability. The reasons for these improvements are explored in terms of the facilitation of lithium ion transport within the disordered layer and the alleviation of structural distortion during the lithium insertion/extraction process, and the faster ion exchange rates in the hydrogenated disordered layer. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Xia, Ting; Li, Wenjing; Oyler, Nathan A.; Chen, Xiaobo] Univ Missouri, Dept Chem, Kansas City, MO 64110 USA. [Zhang, Wei; Liu, Gao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Energy Technol Dept, Berkeley, CA 94720 USA. RP Liu, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Energy Technol Dept, Berkeley, CA 94720 USA. EM GLiu@lbl.gov; Chenxiaobo@umkc.edu FU College of Arts and Sciences, University of Missouri-Kansas City; University of Missouri Research Board; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy; United State Department of Energy [DE-AC03-765F00098] FX X.C. thanks Samuel S. Mao at Lawrence Berkeley National Laboratory for helping on the hydrogenation of the TiO2 nanocrystals. X.C. thanks the support from College of Arts and Sciences, University of Missouri-Kansas City, the University of Missouri Research Board, and the generous gift from Dow Kokam. TEM work was performed at the National Center for Electron Microscopy, which is supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy. G. L. thanks the fund by the Assistant Secretary for Energy Efficiency, Office of Vehicle Technologies of the United State Department of Energy under Contract no. DE-AC03-765F00098. NR 45 TC 40 Z9 40 U1 5 U2 59 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 J9 NANO ENERGY JI Nano Energy PD SEP PY 2013 VL 2 IS 5 BP 826 EP 835 DI 10.1016/j.nanoen.2013.02.005 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 240YS UT WOS:000326134200029 ER PT J AU McGrail, BP Thallapally, PK Blanchard, J Nune, SK Jenks, JJ Dang, LX AF McGrail, B. P. Thallapally, P. K. Blanchard, J. Nune, S. K. Jenks, J. J. Dang, L. X. TI Metal-organic heat carrier nanofluids SO NANO ENERGY LA English DT Article DE Nanofluid; MOF; ORC; Geothermal; Energy efficiency ID PRUSSIAN BLUE ANALOGS; THERMAL-CONDUCTIVITY; NANOPARTICLES; FRAMEWORK; ENHANCEMENT; ADSORPTION; ROUTE; NANOCRYSTALS; POLYMERS; CAPTURE AB Nanofluids, dispersions of metal or oxide nanoparticles in a base working fluid, are being intensively studied due to improvements they offer in thermal properties of the working fluid. However, these benefits have been erratically demonstrated and proven impacts on thermal conductivity are modest and well described from long-established effective medium theory. In this paper, we describe a new class of metal-organic heat carrier (MOHC) nanofluid that offers potential for a larger performance boost in thermal vapor-liquid compression cycles. MOHCs are nanophase porous coordination solids designed to reversibly uptake the working fluid molecules in which the MOHCs are suspended. Additional heat can be extracted in a heat exchanger or solar collector from the endothermic enthalpy of desorption, which is then released as the nanofluid transits through a power generating device such as a turboexpander. Calculations for an R123 MOHC nanofluid indicated potential for up to 15% increase in power output. Capillary tube experiments show that liquid-vapor transitions occur without nanoparticle deposition on the tube walls provided entrance Reynolds number exceeds approximately 100. (C) 2013 Elsevier Ltd. All rights reserved. C1 [McGrail, B. P.; Thallapally, P. K.; Blanchard, J.; Nune, S. K.; Jenks, J. J.; Dang, L. X.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP McGrail, BP (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, 902 Battelle Blvd, Richland, WA 99352 USA. EM pete.mcgrail@pnnl.gov RI thallapally, praveen/I-5026-2014 OI thallapally, praveen/0000-0001-7814-4467 FU U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy Geothermal Technologies Program under Funding Opportunity Announcement [DE-PS36-09G099017]; Battelle Memorial Institute [DE-AC05-76RL01830] FX This work was supported by the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy Geothermal Technologies Program under Funding Opportunity Announcement DE-PS36-09G099017. The authors gratefully acknowledge the support and encouragement Mr. Greg Stillman at the U.S. DOE. The Pacific Northwest National Laboratory is operated for the U.S. DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. NR 58 TC 7 Z9 7 U1 6 U2 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 J9 NANO ENERGY JI Nano Energy PD SEP PY 2013 VL 2 IS 5 BP 845 EP 855 DI 10.1016/j.nanoen.2013.02.007 PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 240YS UT WOS:000326134200031 ER PT J AU Ulum, S Holmes, N Barr, M Kilcoyne, ALD Bin Gong, B Zhou, XJ Belcher, W Dastoor, P AF Ulum, Syahrul Holmes, Natalie Barr, Matthew Kilcoyne, A. L. David Bin Gong, Bill Zhou, Xiaojing Belcher, Warwick Dastoor, Paul TI The role of miscibility in polymer:fullerene nanoparticulate organic photovoltaic devices SO NANO ENERGY LA English DT Article DE Morphology; OPV; Nanoparticle; Solar Paint ID POLYMER SOLAR-CELLS; PHASE-SEPARATION; BLENDS; WATER AB Polymer:fullerene blends are an attractive materials system for organic photovoltaic applications and conventionally are processed into thin films via chlorinated solvent based routes. Recently, the fabrication of OPV devices from water-dispersed nanoparticulate materials (solar paint) has attracted increasing interest since it offers the potential of morphological control coupled with device processing in the absence of an organic solvent. However, to date there have been no studies of the effect of different acceptors in the nanoparticle structure. In this letter, we report the performance of nanoparticulate organic photovoltaic (NPOPV) devices fabricated from poly(3-hexylthiophene) (P3HT):indene-C-60-bisadduct (ICBA) blends. These devices exhibit power conversion efficiencies of 2.5%, which is the highest so far reported for NPOPV cells. Using a combination of scanning transmission X-ray microscopy and thermodynamic modelling we show that the improved performance is driven by the enhanced miscibility of ICBA in P3HT, which results in a more efficient intermixed structure in the annealed devices. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Ulum, Syahrul; Holmes, Natalie; Barr, Matthew; Zhou, Xiaojing; Belcher, Warwick; Dastoor, Paul] Univ Newcastle, Ctr Organ Elect, Callaghan, NSW 2308, Australia. [Kilcoyne, A. L. David] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Bin Gong, Bill] Univ New S Wales, Mark Wainwright Analyt Ctr, Sydney, NSW 2052, Australia. RP Dastoor, P (reprint author), Univ Newcastle, Ctr Organ Elect, Callaghan, NSW 2308, Australia. EM Paul.Dastoor@newcastle.edu.au RI Kilcoyne, David/I-1465-2013 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Australian Solar Institute; Indonesian Directorate General of Higher Education (DIKTI); Commonwealth of Australia FX The University of Newcastle is gratefully acknowledged for a PhD scholarship (MB). The TEM images were collected using the Electron Microscope and X-Ray Unit at the University of Newcastle. The Australian Solar Institute is acknowledged for a PhD scholarship (NH). The Indonesian Directorate General of Higher Education (DIKTI) is acknowledged for PhD scholarship funding (SU). We acknowledge financial support from the Commonwealth of Australia through the Access to Major Research Facilities Program. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 21 TC 27 Z9 27 U1 4 U2 47 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 J9 NANO ENERGY JI Nano Energy PD SEP PY 2013 VL 2 IS 5 BP 897 EP 905 DI 10.1016/j.nanoen.2013.03.009 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 240YS UT WOS:000326134200037 ER PT J AU Shen, SH Kronawitter, CX Jiang, JG Guo, PH Guo, LJ Mao, SS AF Shen, Shaohua Kronawitter, Coleman X. Jiang, Jiangang Guo, Penghui Guo, Liejin Mao, Samuel S. TI A ZnO/ZnO:Cr isostructural nanojunction electrode for photoelectrochemical water splitting SO NANO ENERGY LA English DT Article DE ZnO nanorods; Water splitting; Photoanodes; Nanojunction; Cr doping ID NANOROD ARRAYS; PHOTOCATALYTIC PROPERTIES; OXIDE SEMICONDUCTORS; HYDROGEN GENERATION; THIN-FILMS; ZNO; CR; SPECTROSCOPY; PHOTOANODES; PERFORMANCE AB The fabrication and photoelectrochemical characterization of a ZnO/ZnO:Cr isostructural nanojunction electrode is presented. When compared to its constituent components the isostructural nanojunction showed superior performance for water splitting under simulated solar light and visible light (lambda> 510 nm) illumination. In the engineered structure, the presence of intra-bandgap states associated with Cr impurities increases optical absorption, and the nanorod morphology provides a direct pathway for transport of photo-excited electrons to the back contact. The overall photoelectrochemical performance of the ZnO/ZnO:Cr engineered structure is relatively low, however the concept may prove to be applicable to more optimized structures or material systems. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Shen, Shaohua; Jiang, Jiangang; Guo, Penghui; Guo, Liejin] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Int Res Ctr Renewable Energy, Xian 710049, Shaanxi, Peoples R China. [Shen, Shaohua; Kronawitter, Coleman X.; Mao, Samuel S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Mech Engn, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Shen, SH (reprint author), Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Int Res Ctr Renewable Energy, Xianning West Rd 28, Xian 710049, Shaanxi, Peoples R China. EM shshen_xjtu@mail.xjtu.edu.cn; ssmao@lbl.gov RI Shen, Shaohua/E-9507-2011 FU National Natural Science Foundation of China [51102194, 51121092]; Doctoral Program of the Ministry of Education [20110201120040]; Natural Science Foundation of Shaanxi Province [2011JQ7017]; National Basic Research Program of China [2009CB220000]; Fundamental Research Funds for the Central Universities; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; NSF/CMMI [1036076] FX The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (No. 51102194, No. 51121092), the Doctoral Program of the Ministry of Education (No. 20110201120040), the Natural Science Foundation of Shaanxi Province (No. 2011JQ7017) and the National Basic Research Program of China (No. 2009CB220000). One of the authors (S. Shen) was supported by the "Fundamental Research Funds for the Central Universities". This research has also been partially supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy and NSF/CMMI under grant #1036076. NR 39 TC 13 Z9 13 U1 3 U2 45 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 J9 NANO ENERGY JI Nano Energy PD SEP PY 2013 VL 2 IS 5 BP 958 EP 965 DI 10.1016/j.nanoen.2013.03.017 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 240YS UT WOS:000326134200044 ER PT J AU Dow, K Berkhout, F Preston, BL AF Dow, Kirstin Berkhout, Frans Preston, Benjamin L. TI Limits to adaptation to climate change: a risk approach SO CURRENT OPINION IN ENVIRONMENTAL SUSTAINABILITY LA English DT Review ID SOCIAL AMPLIFICATION; FRAMEWORK; UNCERTAINTY; DIMENSIONS; PERCEPTION; GOVERNANCE; IMPACTS AB As attention to adaptation to climate change increases, there is a growing call for adaptation approaches that focus on risk management. There is also greater recognition that the rate and magnitude of climate variability and change may exceed the limits to adaptation of socio-ecological systems. We offer an actor-centered, risk-based definition for adaptation limits in social systems. Specifically, we frame adaptation limits as the point at which an actor's objectives cannot be secured from intolerable risks through adaptive actions. These limits are significant because exceeding a limit will either result in intolerable losses on the affected actor or system, or precipitate a discontinuous (or transformational) change of behavior by actors. Such discontinuities in behavior have implications for the distribution of risks, with potentially significant governance consequences. We further argue that some adaptation limits are dynamic through time. We conclude with recommendations for further research into adaptation limits and challenges to risk governance. C1 [Dow, Kirstin] Univ S Carolina, Dept Geog, Columbia, SC 29208 USA. [Berkhout, Frans] Kings Coll London, Dept Geog, London WC2R 2LS, England. [Preston, Benjamin L.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. RP Dow, K (reprint author), Univ S Carolina, Dept Geog, 709 Bull St,Callcott Bldg, Columbia, SC 29208 USA. EM Kdow@sc.edu RI Berkhout, Frans/N-4196-2013; Preston, Benjamin/B-9001-2012 OI Berkhout, Frans/0000-0001-8668-0470; Preston, Benjamin/0000-0002-7966-2386 FU European Commission FX We would like to acknowledge valuable discussions with Mozaharul Alam, Habiba Gitay, Richard Klein, Guy Midgley, Rebecca Shaw, James Thurlow, and other generous colleagues from IPCC AR5 Working Group 2 who took time to listen and comment on this approach. Frans Berkhout would also like to acknowledge support of the European Commission-funded RESPONSES project in conducting this research. The shortcomings remain our responsibility. NR 42 TC 15 Z9 15 U1 3 U2 42 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1877-3435 EI 1877-3443 J9 CURR OPIN ENV SUST JI Curr. Opin. Environ. Sustain. PD SEP PY 2013 VL 5 IS 3-4 BP 384 EP 391 DI 10.1016/j.cosust.2013.07.005 PG 8 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Environmental Sciences SC Science & Technology - Other Topics; Environmental Sciences & Ecology GA 235SR UT WOS:000325741500016 ER PT J AU Alexandrov, BS Bishop, AR Zahariev, N Kostadinov, I AF Alexandrov, B. S. Bishop, A. R. Zahariev, N. Kostadinov, I. TI Dispersed stable states spectrum of the wave equation with space-time periodic potential SO EPL LA English DT Article ID SPONTANEOUS EMISSION; FIELDS AB We study the stable states of the wave equation with d-spatial and 1-time dimensions and with space-time periodic potential. The dispersed stable states spectrum of such (d + 1)periodic wave equation is due to the incommensurability of the speed of light and the ratio of space and time periods. A Bloch-Floquet analysis leads to a (d + 1)-cube as a reduced Brillouin zone, but because of the speed incommensurability the stable states in this cube may form a spectrum of sets with a reduced dimensionality. For electromagnetic waves in photonic crystals the medium may amplify some waves with lengths fitting the crystal lattice. The energy from the external field can be pumped to the waves via the dipole moment oscillations. Copyright (C) EPLA, 2013 C1 [Alexandrov, B. S.; Bishop, A. R.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Zahariev, N.; Kostadinov, I.] Ohio State Univ, Columbus, OH 43210 USA. RP Alexandrov, BS (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. OI Alexandrov, Boian/0000-0001-8636-4603 FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX Research at Los Alamos National Laboratory was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 27 TC 0 Z9 0 U1 0 U2 4 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD SEP PY 2013 VL 103 IS 5 AR 50001 DI 10.1209/0295-5075/103/50001 PG 5 WC Physics, Multidisciplinary SC Physics GA 240JS UT WOS:000326092600001 ER PT J AU Arsenijevic, S Petrovic, C Forro, L Akrap, A AF Arsenijevic, Stevan Petrovic, Cedomir Forro, Laszlo Akrap, Ana TI Manifestation of the spin textures in the thermopower of MnSi SO EPL LA English DT Article ID PHASE-TRANSITIONS; LIQUID; METAL AB To identify possible spin texture contributions to thermoelectric transport, we present a detailed temperature and pressure dependence of thermopower S in MnSi, as well as a lowtemperature study of S in a magnetic field. We find that S/T reconstructs the (p, T) phase diagram of MnSi encompassing the Fermi liquid, partially ordered, and non-Fermi-liquid phases. Our results indicate that the latter two phases have essentially the same nature. In the partially ordered phase, S(T) is strongly enhanced, which may be understood as a spiral-fluctuation-driven phase. A low-temperature upturn in S/T pertaining to the partial-order phase persists up to the highest pressure, 24 kbar. Contrarily, a small suppression of S(T) is observed in the ordered skyrmion lattice A phase. Copyright (C) EPLA, 2013 C1 [Arsenijevic, Stevan; Forro, Laszlo] Ecole Polytech Fed Lausanne, Inst Phys Matiere Complexe, CH-1015 Lausanne, Switzerland. [Petrovic, Cedomir] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Akrap, Ana] Univ Geneva, CH-1211 Geneva 4, Switzerland. RP Arsenijevic, S (reprint author), Ecole Polytech Fed Lausanne, Inst Phys Matiere Complexe, CH-1015 Lausanne, Switzerland. RI Akrap, Ana/G-1409-2013; Petrovic, Cedomir/A-8789-2009 OI Akrap, Ana/0000-0003-4493-5273; Petrovic, Cedomir/0000-0001-6063-1881 FU Swiss NSF; NCCR MaNEP; U.S. Department of Energy by Brookhaven Science Associates [DE-Ac02-98CH10886]; "Boursieres d'Excellence" of the University of Geneva FX We would like to thank A. Rosch, F. KRUGER, D. VAN DER MAREL and K. BEHNIA for useful discussions, and N. Miller for helpful comments. This research was supported by the Swiss NSF and its NCCR MaNEP. Part of this work was carried out at BNL, operated for the U.S. Department of Energy by Brookhaven Science Associates DE-Ac02-98CH10886 (CP). AA acknowledges funding from "Boursieres d'Excellence" of the University of Geneva. NR 26 TC 1 Z9 1 U1 1 U2 15 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD SEP PY 2013 VL 103 IS 5 AR 57015 DI 10.1209/0295-5075/103/57015 PG 5 WC Physics, Multidisciplinary SC Physics GA 240JS UT WOS:000326092600033 ER PT J AU Saxena, S Bedoya, ID Shah, N Phadke, A AF Saxena, Samveg Dario Bedoya, Ivan Shah, Nihar Phadke, Amol TI Understanding Loss Mechanisms and Identifying Areas of Improvement for HCCI Engines Using Detailed Exergy Analysis SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article ID COMBUSTION AB This paper presents a detailed exergy analysis of homogeneous charge compression ignition (HCCI) engines, including a crank-angle resolved breakdown of mixture exergy and exergy destruction. Exergy analysis is applied to a multizone HCCI simulation including detailed chemical kinetics. The HCCI simulation is validated against engine experiments for ethanol-fueled operation. The exergy analysis quantifies the relative importance of different loss mechanisms within HCCI engines over a range of engine operating conditions. Specifically, four loss mechanisms are studied for their relative impact on exergy losses, including (1) the irreversible combustion process (16.4%-21.5%), (2) physical exergy lost to exhaust gases (12.0%-18.7%), (3) heat losses (3.9%-17.1%), and (4) chemical exergy lost to incomplete combustion (4.7%-37.8%). The trends in each loss mechanism are studied in relation to changes in intake pressure, equivalence ratio, and engine speed as these parameters are directly used to vary engine power output. This exergy analysis methodology is proposed as a tool to inform research and design processes, particularly by identifying the relative importance of each loss mechanism in determining engine operating efficiency. C1 [Saxena, Samveg; Shah, Nihar; Phadke, Amol] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Dario Bedoya, Ivan] Univ Antioquia, Medellin, Colombia. RP Saxena, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,90-2138, Berkeley, CA 94720 USA. EM samveg@berkeley.edu; ibedoyac@udea.edu.co; nkshah@lbl.gov; aaphadke@lbl.gov FU Office of Science, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This study is part of a research effort at Lawrence Berkeley National Laboratory that is using exergy analysis as a research portfolio analysis tool to quantify and compare the efficiency gains that can be achieved by guiding the strategic direction of research and development funding in various technology areas. This work was supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors thank our readers for choosing this article. We welcome any feedback or questions of the topics discussed in this article, or discussion of emerging engine or vehicle powertrain technologies. In particular, we welcome discussions on potential research collaborations to develop exergy analysis for emerging engine and vehicle powertrain technologies. NR 24 TC 1 Z9 1 U1 0 U2 3 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 EI 1528-8919 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD SEP PY 2013 VL 135 IS 9 AR 091505 DI 10.1115/1.4024589 PG 10 WC Engineering, Mechanical SC Engineering GA 241IC UT WOS:000326158900010 ER PT J AU Roach, LD Charles, CD Field, DB Guilderson, TP AF Roach, Lydia D. Charles, Christopher D. Field, David B. Guilderson, Thomas P. TI Foraminiferal radiocarbon record of northeast Pacific decadal subsurface variability SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article DE North Pacific; decadal variability; benthic foraminifera; Santa Barbara Basin; radiocarbon ID SANTA-BARBARA BASIN; CALIFORNIA CURRENT SYSTEM; SURFACE OCEAN RADIOCARBON; EASTERN TROPICAL PACIFIC; SOUTHERN CALIFORNIA; INTERMEDIATE WATER; CLIMATE-CHANGE; EL-NINO; CONTINENTAL-MARGIN; CARBON OXIDATION AB The decadal dynamics of the subsurface North Pacific Ocean are largely inaccessible beyond sparse instrumental observations spanning the last 20 years. Here we present a approximate to 200 year long record of benthic foraminiferal radiocarbon (C-14), extracted at biennial resolution from the annually laminated sediments at the Santa Barbara Basin (SBB) depocenter (approximate to 600 m). The close match between core top benthic foraminiferal C-14 values and the C-14 of seawater dissolved inorganic carbon (DIC) suggests that benthic foraminifera faithfully capture the bottom water radiocarbon concentrations, as opposed to that of the deeper (>0.5 cm) sediment porewater zone. The full time series of benthic foraminiferal C-14 displays significant variability on decadal timescales, with excursions on the order of 40. These excursions are overprinted by a unidirectional trend over the late 20th century that likely reflects the sedimentary incorporation of bomb radiocarbon (via remineralized particulate organic carbon). We isolate this trend by means of a one-dimensional oxidation model, which considers the possible contribution of remineralized particles to the total ambient carbon pool. This oxidation model also considers the possible influence of carbon with a variety of sources (ages). Though variable oxidation of preaged carbon could exert a strong influence on benthic foraminiferal radiocarbon variability, the totality of evidence points to the vertical density structure along the Southern California Margin (SCM) as the primary driver of the SBB benthic foraminiferal C-14 record. For example, intervals characterized by significantly lower C-14 values correspond to periods of enhanced upwelling and subsurface equatorward flow along the SCM. C1 [Roach, Lydia D.; Charles, Christopher D.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Field, David B.] Hawaii Pacific Univ, Dept Marine Sci, Honolulu, HI USA. [Guilderson, Thomas P.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Guilderson, Thomas P.] Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95064 USA. RP Charles, CD (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. EM ccharles@ucsd.edu FU Petroleum Research Fund grant; University of California Ship Funds grant; U.S. Department of Energy [W-7405-Eng-48, DE-AC52-07NA27344] FX This work was supported by a Petroleum Research Fund grant (to C. D. C.) and by a University of California Ship Funds grant (to L. D. R.). We thank Dan Cayan, Ellen Druffel, Manu Di Lorenzo, and Jeff Severinghaus for valuable discussion. We appreciate the thoughtful comments of three anonymous reviewers, who helped improve the manuscript substantially. A portion of this work was performed under the auspices of the U.S. Department of Energy, under contract W-7405-Eng-48 and DE-AC52-07NA27344. NR 88 TC 1 Z9 1 U1 4 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD SEP PY 2013 VL 118 IS 9 BP 4317 EP 4333 DI 10.1002/jgrc.20274 PG 17 WC Oceanography SC Oceanography GA 242HQ UT WOS:000326230200022 ER PT J AU English, TS Phinney, LM Hopkins, PE Serrano, JR AF English, Timothy S. Phinney, Leslie M. Hopkins, Patrick E. Serrano, Justin R. TI Mean Free Path Effects on the Experimentally Measured Thermal Conductivity of Single-Crystal Silicon Microbridges SO JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME LA English DT Review DE phonon mean free path; short pulsed laser heating; phonon spectroscopy; thermal conductivity ID PHONON-BOUNDARY SCATTERING; LOW-TEMPERATURES; METAL-FILMS; TRANSPORT; SI; DEVICES; LAYERS; THERMOREFLECTANCE; THERMOMETRY; MODEL AB Accurate thermal conductivity values are essential for the successful modeling, design, and thermal management of microelectromechanical systems (MEMS) and devices. However, the experimental technique best suited to measure the thermal conductivity of these systems, as well as the thermal conductivity itself, varies with the device materials, fabrication processes, geometry, and operating conditions. In this study, the thermal conductivities of boron doped single-crystal silicon microbridges fabricated using silicon-on-insulator (SOI) wafers are measured over the temperature range from 80 to 350K. The microbridges are 4.6mm long, 125 mu m tall, and either 50 or 85 mu m wide. Measurements on the 85 mu m wide microbridges are made using both steady-state electrical resistance thermometry (SSERT) and optical time-domain thermoreflectance (TDTR). A thermal conductivity of 77 Wm(-1) K-1 is measured for both microbridge widths at room temperature, where the results of both experimental techniques agree. However, increasing discrepancies between the thermal conductivities measured by each technique are found with decreasing temperatures below 300K. The reduction in thermal conductivity measured by TDTR is primarily attributed to a ballistic thermal resistance contributed by phonons with mean free paths larger than the TDTR pump beam diameter. Boltzmann transport equation (BTE) modeling under the relaxation time approximation (RTA) is used to investigate the discrepancies and emphasizes the role of different interaction volumes in explaining the underprediction of TDTR measurements. C1 [English, Timothy S.; Phinney, Leslie M.; Serrano, Justin R.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. [English, Timothy S.] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. [Hopkins, Patrick E.] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA. RP English, TS (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. EM tsengli@sandia.gov; lmphinn@sandia.gov; phopkins@virginia.edu; jrserra@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; United States Government FX The authors thank Edward Piekos for insights and discussion, Sandia National Laboratories SOI MEMS personnel for test structure fabrication, and Katie Francis for test structure design and layout. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges, that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 54 TC 6 Z9 6 U1 1 U2 28 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0022-1481 EI 1528-8943 J9 J HEAT TRANS-T ASME JI J. Heat Transf.-Trans. ASME PD SEP PY 2013 VL 135 IS 9 SI SI AR 091103 DI 10.1115/1.4024357 PG 7 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 241LZ UT WOS:000326169800005 ER PT J AU Fourspring, K Ninkov, Z Fodness, BC Robberto, M Heap, S Kim, AG AF Fourspring, Kenneth Ninkov, Zoran Fodness, Bryan C. Robberto, Massimo Heap, Sally Kim, Alex G. TI Proton radiation testing of digital micromirror devices for space applications SO OPTICAL ENGINEERING LA English DT Article DE digital micromirror devices; microelectrical mechanical systems; proton irradiation ID MULTIOBJECT SPECTROMETER; MEMS; RELIABILITY; PERFORMANCE AB Scientists are interested in using digital micromirror devices (DMD) as slit-masks in multiobject spectrometers on future space missions. A favored orbit is at the second Lagrangian point (L2). A requirement for mission planning is to determine how long such microelectrical mechanical systems devices would remain operational given the L2 radiation environment, which is primarily composed of solar protons and cosmic rays. To this end, we initiated DMD proton testing. Three DMDs were irradiated with high-energy protons (35 to 50 MeV) at the Lawrence Berkeley National Laboratory 88 in. Cyclotron. Assuming a typical space-craft shielding of 100 mils of aluminum, our tests imply that DMDs remain fully operable in a five-year mission at L2 with a margin of safety of 4.5. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Fourspring, Kenneth; Ninkov, Zoran; Fodness, Bryan C.] Rochester Inst Technol, Rochester, NY 14623 USA. [Robberto, Massimo] Space Telescope Sci Inst, Baltimore, MD 21212 USA. [Heap, Sally] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kim, Alex G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Fourspring, K (reprint author), Rochester Inst Technol, 54 Lomb Mem Dr, Rochester, NY 14623 USA. EM kdf5036@rit.edu OI Robberto, Massimo/0000-0002-9573-3199 NR 24 TC 3 Z9 3 U1 0 U2 3 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 EI 1560-2303 J9 OPT ENG JI Opt. Eng. PD SEP PY 2013 VL 52 IS 9 AR 091807 DI 10.1117/1.OE.52.9.091807 PG 11 WC Optics SC Optics GA 241EP UT WOS:000326149500032 ER PT J AU Martinez-Galarce, D Soufli, R Windt, DL Bruner, M Gullikson, E Khatri, S Spiller, E Robinson, JC Baker, S Prast, E AF Martinez-Galarce, Dennis Soufli, Regina Windt, David L. Bruner, Marilyn Gullikson, Eric Khatri, Shayna Spiller, Eberhard Robinson, Jeff C. Baker, Sherry Prast, Evan TI Multisegmented, multilayer-coated mirrors for the Solar Ultraviolet Imager SO OPTICAL ENGINEERING LA English DT Article DE Solar Ultraviolet Imager; extreme ultraviolet solar physics; extreme ultraviolet optics; multilayer-coated optics; power spectral density of extreme ultraviolet optics; extreme ultraviolet scattering; surface microroughness; extreme ultraviolet reflectivity ID TELESCOPE; PERFORMANCE; IRRADIANCE; MISSION; REGION; CORONA AB The Solar Ultraviolet Imager (SUVI) is one of the several instruments that will fly on board the next generation of Geostationary Operational Environmental Satellites R-U platforms, as part of the National Oceanic and Atmospheric Administration's space weather monitoring fleet. SUVI is a generalized Cassegrain telescope that employs multilayer-coated optics that operate in six extreme ultraviolet (EUV) narrow bandpasses centered at 93.9, 131.2, 171.1, 195.1, 284.2 and 303.8 angstrom . The innovation of the design is that SUVI is the first EUV solar telescope that has six different wavelength channels accommodated on each mirror. And despite having six segmented multilayer-coatings, shadowing (due to the mask) is minimized allowing SUVI to exceed its effective area specifications. Once operational, SUVI will record full-disk, spectroheliograms every few minutes, where this data will be used to better understand the effects of solar produced EUV radiation on Earth and the near-Earth environment. The material presented discusses general aspects of the SUVI optical design, mirror fabrication, super polishing, and metrology carried out to verify optical surface quality and in-band, EUV reflectivity performance of the multilayer coatings. The power spectral density and EUV measurements are shown to exceed performance requirements and are critical for the overall calibration and monitoring of SUVI's throughput and imaging performance, once operational. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Martinez-Galarce, Dennis] Galapagos Sci & Engn Grp, San Francisco, CA 94105 USA. [Soufli, Regina; Spiller, Eberhard; Robinson, Jeff C.; Baker, Sherry] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Windt, David L.] Reflect Xray Opt, New York, NY 10027 USA. [Bruner, Marilyn] Bermar Sci & Technol, Palo Alto, CA 94306 USA. [Gullikson, Eric] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Khatri, Shayna] L3 Commun IOS Tinsley, Richmond, CA 94806 USA. [Prast, Evan] Res Electroopt, Boulder, CO 80301 USA. RP Martinez-Galarce, D (reprint author), Galapagos Sci & Engn Grp, 355 1st St,Suite 407, San Francisco, CA 94105 USA. EM dsmartinezg@yahoo.com FU SUVI program, under NASA contract [NNG07HW20C]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; University of California Lawrence Berkeley National Laboratory [DE-AC03-76F00098]; Director, Office of Science; Office of Basic Energy Sciences; U.S. Department of Energy [DE-AC0205CH11231] FX We wish to thank the National Oceanic and Atmospheric Administration's and the National Aeronautic and Space Adminstration's support for the SUVI program, under NASA contract NNG07HW20C. This work was also, in part, performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and by the University of California Lawrence Berkeley National Laboratory under Contract No. DE-AC03-76F00098. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC0205CH11231. NR 29 TC 10 Z9 10 U1 0 U2 11 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 EI 1560-2303 J9 OPT ENG JI Opt. Eng. PD SEP PY 2013 VL 52 IS 9 AR 095102 DI 10.1117/1.OE.52.9.095102 PG 15 WC Optics SC Optics GA 241EP UT WOS:000326149500050 ER PT J AU Pershyn, YP Gullikson, EM Kondratenko, VV Mamon, VV Reutskaya, SA Voronov, DL Zubarev, EN Artyukov, IA Vinogradov, AV AF Pershyn, Yuriy P. Gullikson, Eric M. Kondratenko, Valeriy V. Mamon, Valentine V. Reutskaya, Svetlana A. Voronov, Dmitriy L. Zubarev, Evgeniy N. Artyukov, Igor A. Vinogradov, Alexander Vladimirovich TI Effect of working gas pressure on interlayer mixing in magnetron-deposited Mo/Si multilayers SO OPTICAL ENGINEERING LA English DT Article DE x-ray multilayer mirrors; interfaces; composition; Ar pressure influence; silicides ID EXTREME-ULTRAVIOLET LITHOGRAPHY; SOFT-X-RAY; MOLYBDENUM-SILICON MULTILAYERS; PHASE-SHIFT MASKS; BEAM-SPLITTERS; INTERFACE GROWTH; OPTICS; MO; OPTIMIZATION; TRANSITION AB By methods of cross-sectional transmission electron microscopy and small-angle x-ray scattering (lambda = 0.154 nm) the influence of Ar gas pressure (1 to 4 mTorr) on the growth of amorphous interfaces in Mo/Si multilayers (MLs) deposited by DC magnetron sputtering is studied. The significant reduction in the ML period, which is evident as a volumetric contraction, is observed in MLs deposited at Ar pressure where the mean-free path for the sputtered atoms is comparable with the magnetron-substrate distance. Some reduction in the thickness of the amorphous interlayers with Ar pressure increase is found, where the composition of the interlayers is enriched with molybdenum. The interface modification resulted in an increase in EUV reflectance of the Mo/Si MLs. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Pershyn, Yuriy P.; Kondratenko, Valeriy V.; Mamon, Valentine V.; Reutskaya, Svetlana A.; Zubarev, Evgeniy N.] Natl Tech Univ, Kharkiv Polytech Inst, Met & Semicond Phys Dept, UA-61002 Kharkov, Ukraine. [Gullikson, Eric M.; Voronov, Dmitriy L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Artyukov, Igor A.; Vinogradov, Alexander Vladimirovich] PN Lebedev Phys Inst, Moscow 117942, Russia. RP Pershyn, YP (reprint author), Natl Tech Univ, Kharkiv Polytech Inst, Met & Semicond Phys Dept, Frunze St 21, UA-61002 Kharkov, Ukraine. EM persh@kpi.kharkov.ua RI Artyukov, Igor/B-3105-2009; Vinogradov, Alexander/M-5331-2015 OI Artyukov, Igor/0000-0001-7915-697X; FU US Department of Energy [DE-AC02-05CH11231] FX Y. P. P. is acknowledged to ISKCON for improving the realization with regard to the place of this work. This work was supported by the US Department of Energy under contract number DE-AC02-05CH11231. NR 75 TC 1 Z9 1 U1 3 U2 21 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 EI 1560-2303 J9 OPT ENG JI Opt. Eng. PD SEP PY 2013 VL 52 IS 9 AR 095104 DI 10.1117/1.OE.52.9.095104 PG 10 WC Optics SC Optics GA 241EP UT WOS:000326149500052 ER PT J AU Fan, JL Yan, CS Zhang, XB Xu, CC AF Fan, Jilian Yan, Chengshi Zhang, Xuebin Xu, Changcheng TI Dual Role for Phospholipid: Diacylglycerol Acyltransferase: Enhancing Fatty Acid Synthesis and Diverting Fatty Acids from Membrane Lipids to Triacylglycerol in Arabidopsis Leaves SO PLANT CELL LA English DT Article ID YEAST SACCHAROMYCES-CEREVISIAE; GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE; PLANT TRANSFORMATION; ESCHERICHIA-COLI; CARRIER PROTEIN; OIL CONTENT; BIOSYNTHESIS; ACCUMULATION; METABOLISM; THALIANA AB There is growing interest in engineering green biomass to expand the production of plant oils as feed and biofuels. Here, we show that PHOSPHOLIPID: DIACYLGLYCEROL ACYLTRANSFERASE1 (PDAT1) is a critical enzyme involved in triacylglycerol (TAG) synthesis in leaves. Overexpression of PDAT1 increases leaf TAG accumulation, leading to oil droplet overexpansion through fusion. Ectopic expression of oleosin promotes the clustering of small oil droplets. Coexpression of PDAT1 with oleosin boosts leaf TAG content by up to 6.4% of the dry weight without affecting membrane lipid composition and plant growth. PDAT1 overexpression stimulates fatty acid synthesis (FAS) and increases fatty acid flux toward the prokaryotic glycerolipid pathway. In the trigalactosyldiacylglycerol1-1 mutant, which is defective in eukaryotic thylakoid lipid synthesis, the combined overexpression of PDAT1 with oleosin increases leaf TAG content to 8.6% of the dry weight and total leaf lipid by fourfold. In the plastidic glycerol-3-phosphate acyltransferase1 mutant, which is defective in the prokaryotic glycerolipid pathway, PDAT1 overexpression enhances TAG content at the expense of thylakoid membrane lipids, leading to defects in chloroplast division and thylakoid biogenesis. Collectively, these results reveal a dual role for PDAT1 in enhancing fatty acid and TAG synthesis in leaves and suggest that increasing FAS is the key to engineering high levels of TAG accumulation in green biomass. C1 [Fan, Jilian; Yan, Chengshi; Zhang, Xuebin; Xu, Changcheng] Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. RP Xu, CC (reprint author), Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. EM cxu@bnl.gov RI Yan, Chengshi/O-5639-2014; zhang, xuebin/K-3361-2015 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy [DEAC0298CH10886 (BO-163)]; Office of Basic Energy Sciences, U.S. Department of Energy [DEAC02-98CH10886] FX We thank John Ohlrogge for providing pdat1-2 mutant seeds. We also thank John Shanklin, John Ohlrogge, and Jitao Zou for critical reading of the article. This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy through Grant DEAC0298CH10886 (BO-163) to C.X. Use of the transmission electron microscope and confocal microscope at the Center of Functional Nanomaterials was supported by the Office of Basic Energy Sciences, U.S. Department of Energy, under Contract DEAC02-98CH10886. NR 75 TC 40 Z9 42 U1 6 U2 42 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 1040-4651 EI 1532-298X J9 PLANT CELL JI Plant Cell PD SEP PY 2013 VL 25 IS 9 BP 3506 EP 3518 DI 10.1105/tpc.113.117358 PG 13 WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology GA 242ZY UT WOS:000326287100027 PM 24076979 ER PT J AU Lo, WC Sposito, G AF Lo, Wei-Cheng Sposito, Garrison TI Acoustic waves in unsaturated soils SO WATER RESOURCES RESEARCH LA English DT Article DE unsaturated soils; poroelasticity; acoustic waves ID 2 IMMISCIBLE FLUIDS; ELASTIC POROUS-MEDIA; HYDRAULIC CONDUCTIVITY; MOISTURE-CONTENT; PROPAGATION; POROELASTICITY; EQUATIONS; SOUND AB Seminal papers by Brutsaert (1964) and Brutsaert and Luthin (1964) provided the first rigorous theoretical framework for examining the poroelastic behavior of unsaturated soils, including an important application linking acoustic wave propagation to soil hydraulic properties. Theoretical developments during the 50 years that followed have led Lo et al., (2005) to a comprehensive model of these phenomena, but the relationship of its elasticity parameters to standard poroelasticity parameters measured in hydrogeology has not been established. In the present study, we develop this relationship for three key parameters, the Gassman modulus, Skempton coefficient, and Biot-Willis coefficient by generalizing them to an unsaturated porous medium. We demonstrate the remarkable result that well-known and widely applied relationships among these parameters for a porous medium saturated by a single fluid are also valid under very general conditions for unsaturated soils. We show further that measurement of the Biot-Willis coefficient along with three of the six elasticity coefficients in the model of Lo et al. (2005) is sufficient to characterize poroelastic behavior. The elasticity coefficients in the model of Lo et al. (2005) are sensitive to the dependence of capillary pressure on water saturation and its viscous-drag coefficients are functions of relative permeability, implying that hysteresis in the water retention curve and hydraulic conductivity function should affect acoustic wave behavior in unsaturated soils. To quantify these as-yet unknown effects, we performed numerical simulations for Dune sand at two representative wave excitation frequencies. Our results show that the acoustic wave investigated by Brutsaert and Luthin (1964) propagates at essentially the same speed during imbibition and drainage, but is attenuated more during drainage than imbibition. Overall, effects on acoustic wave behavior caused by hysteresis become more significant as the excitation frequency increases. C1 [Lo, Wei-Cheng] Natl Cheng Kung Univ, Dept Hydraul & Ocean Engn, Tainan 70101, Taiwan. [Sposito, Garrison] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Sposito, Garrison] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Lo, WC (reprint author), Natl Cheng Kung Univ, Dept Hydraul & Ocean Engn, Tainan 70101, Taiwan. EM lowc@mail.ncku.edu.tw FU National Science Council, Taiwan [NSC100-2628-E-006-033] FX Gratitude is expressed for financial support to the National Science Council, Taiwan, under contract NSC100-2628-E-006-033. Thanks also to Ernest Majer, Lawrence Berkeley National Laboratory, for introducing the authors to the intriguing problem of modeling poroelastic behavior. Finally, many thanks to Wilfried Brutsaert for years of friendship and an approach to hydrologic modeling that is both beautiful and true. NR 35 TC 6 Z9 6 U1 2 U2 21 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD SEP PY 2013 VL 49 IS 9 BP 5674 EP 5684 DI 10.1002/wrcr.20423 PG 11 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 238ZO UT WOS:000325991100039 ER PT J AU Chen, X Ng, BM Sun, Y Tong, CH AF Chen, X. Ng, B. M. Sun, Y. Tong, C. H. TI A computational method for simulating subsurface flow and reactive transport in heterogeneous porous media embedded with flexible uncertainty quantification SO WATER RESOURCES RESEARCH LA English DT Article DE uncertainty quantification; polynomial chaos; heterogeneous media; reactive transport; stochastic finite element ID WATER EQUATIONS MODEL; POLYNOMIAL CHAOS; DECOMPOSITION; VARIABLES; SYSTEMS AB In Chen et al. (2013), the fundamental concepts of the modular UQ methodology have been introduced for general multiphysics applications in which each physics module can be independently embedded with its internal UQ method (intrusive or nonintrusive) without losing the global uncertainty propagation property. In the current paper, we extend the modular UQ methodology to subsurface flow and reactive transport applications, which are characterized by high dimensionality in the stochastic space due to spatially random velocity field in randomly heterogeneous porous media. Specifically, we develop a scheme to reduce the dimension of the stochastic space. This is achieved via a doubly nested dimension reduction by applying Karhunen-Loeve expansion to the logarithmic hydraulic conductivity field, followed by Proper Orthogonal Decomposition to the velocity field. This scheme enables the modular UQ framework to handle spatially random models efficiently while maintaining solution accuracy. When compared against sampling-based nonintrusive UQ methods, the modular UQ method demonstrates a similar accuracy at a fraction of computational cost on designed numerical experiments. C1 [Chen, X.; Tong, C. H.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA. [Ng, B. M.] Lawrence Livermore Natl Lab, Computat Engn Div, Livermore, CA 94550 USA. [Sun, Y.] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94550 USA. RP Chen, X (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, 7000 East Ave, Livermore, CA 94550 USA. EM chen73@llnl.gov RI Chen, Xiao/K-3070-2014; Sun, Yunwei/C-9751-2010 FU U. S. Department of Energy Office of Advanced Scientific Computing Research Applied Mathematics Program and performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This research was funded by U. S. Department of Energy Office of Advanced Scientific Computing Research Applied Mathematics Program and performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 43 TC 2 Z9 2 U1 0 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD SEP PY 2013 VL 49 IS 9 BP 5740 EP 5755 DI 10.1002/wrcr.20454 PG 16 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 238ZO UT WOS:000325991100044 ER PT J AU Chaudhuri, A Rajaram, H Viswanathan, H AF Chaudhuri, A. Rajaram, H. Viswanathan, H. TI Early-stage hypogene karstification in a mountain hydrologic system: A coupled thermohydrochemical model incorporating buoyant convection SO WATER RESOURCES RESEARCH LA English DT Article DE hypogene karst; calcite; dissolution kinetics; coupled process; buoyant convection ID CO2-WATER SYSTEMS; THERMAL SPRINGS; POROUS-MEDIA; DISSOLUTION; FRACTURES; LIMESTONE; KINETICS; CAVES; FLOW; INSTABILITIES AB The early stage of hypogene karstification is investigated using a coupled thermohydrochemical model of a mountain hydrologic system, in which water enters along a water table and descends to significant depth (approximate to 1 km) before ascending through a central high-permeability fracture. The model incorporates reactive alteration driven by dissolution/precipitation of limestone in a carbonic acid system, due to both temperature- and pressure-dependent solubility, and kinetics. Simulations were carried out for homogeneous and heterogeneous initial fracture aperture fields, using the FEHM (Finite Element Heat and Mass Transfer) code. Initially, retrograde solubility is the dominant mechanism of fracture aperture growth. As the fracture transmissivity increases, a critical Rayleigh number value is exceeded at some stage. Buoyant convection is then initiated and controls the evolution of the system thereafter. For an initially homogeneous fracture aperture field, deep well-organized buoyant convection rolls form. For initially heterogeneous aperture fields, preferential flow suppresses large buoyant convection rolls, although a large number of smaller rolls form. Even after the onset of buoyant convection, dissolution in the fracture is sustained along upward flow paths by retrograde solubility and by additional mixing corrosion effects closer to the surface. Aperture growth patterns in the fracture are very different from those observed in simulations of epigenic karst systems, and retain imprints of both buoyant convection and preferential flow. Both retrograde solubility and buoyant convection contribute to these differences. The paper demonstrates the potential value of coupled models as tools for understanding the evolution and behavior of hypogene karst systems. C1 [Chaudhuri, A.] Indian Inst Technol, Dept Appl Mech, Madras 600036, Tamil Nadu, India. [Rajaram, H.] Univ Colorado, Dept Civil Environm & Architectural Engn, Boulder, CO 80309 USA. [Viswanathan, H.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Rajaram, H (reprint author), Univ Colorado, Engn Ctr ECOT 441, Engn Ctr Off Tower 441,428 UCB, Boulder, CO 80309 USA. EM hari@colorado.edu FU Institute of Physics and Planetary Physics at Los Alamos National Laboratory [IGPP Geo 1714] FX We gratefully acknowledge financial support from the Institute of Physics and Planetary Physics at Los Alamos National Laboratory (grant IGPP Geo 1714). We are grateful to Derek Ford, Daniel Doctor, Associate Editor Daniel F. Garcia, and an anonymous reviewer for their comments and suggestions. NR 54 TC 12 Z9 12 U1 3 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD SEP PY 2013 VL 49 IS 9 BP 5880 EP 5899 DI 10.1002/wrcr.20427 PG 20 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 238ZO UT WOS:000325991100054 ER PT J AU Lu, D Ye, M Meyer, PD Curtis, GP Shi, XQ Niu, XF Yabusaki, SB AF Lu, Dan Ye, Ming Meyer, Philip D. Curtis, Gary P. Shi, Xiaoqing Niu, Xu-Feng Yabusaki, Steve B. TI Effects of error covariance structure on estimation of model averaging weights and predictive performance SO WATER RESOURCES RESEARCH LA English DT Article DE model structure error; time series analysis; serial correlation; measurement error; surface complexation model; logscore ID UNSATURATED FRACTURED TUFF; SENSITIVITY-ANALYSIS; UNCERTAINTY; IDENTIFICATION; FLOW; PROBABILITIES; CALIBRATION; PARAMETERS; TRANSPORT; INFERENCE AB [1] When conducting model averaging for assessing groundwater conceptual model uncertainty, the averaging weights are often evaluated using model selection criteria such as AIC, AICc, BIC, and KIC (Akaike Information Criterion, Corrected Akaike Information Criterion, Bayesian Information Criterion, and Kashyap Information Criterion, respectively). However, this method often leads to an unrealistic situation in which the best model receives overwhelmingly large averaging weight (close to 100%), which cannot be justified by available data and knowledge. It was found in this study that this problem was caused by using the covariance matrix, C-epsilon, of measurement errors for estimating the negative log likelihood function common to all the model selection criteria. This problem can be resolved by using the covariance matrix, Cek, of total errors (including model errors and measurement errors) to account for the correlation between the total errors. An iterative two-stage method was developed in the context of maximum likelihood inverse modeling to iteratively infer the unknown Cek from the residuals during model calibration. The inferred Cek was then used in the evaluation of model selection criteria and model averaging weights. While this method was limited to serial data using time series techniques in this study, it can be extended to spatial data using geostatistical techniques. The method was first evaluated in a synthetic study and then applied to an experimental study, in which alternative surface complexation models were developed to simulate column experiments of uranium reactive transport. It was found that the total errors of the alternative models were temporally correlated due to the model errors. The iterative two-stage method using Cek resolved the problem that the best model receives 100% model averaging weight, and the resulting model averaging weights were supported by the calibration results and physical understanding of the alternative models. Using Cek obtained from the iterative two-stage method also improved predictive performance of the individual models and model averaging in both synthetic and experimental studies. C1 [Lu, Dan; Ye, Ming; Shi, Xiaoqing] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA. [Meyer, Philip D.; Yabusaki, Steve B.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Curtis, Gary P.] US Geol Survey, Menlo Pk, CA 94025 USA. [Shi, Xiaoqing] Nanjing Univ, Sch Earth Sci & Engn, Nanjing 210008, Jiangsu, Peoples R China. [Niu, Xu-Feng] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA. RP Ye, M (reprint author), Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA. EM mye@fsu.edu RI Ye, Ming/A-5964-2008; Shi, Xiaoqing/G-4439-2010; OI Shi, Xiaoqing/0000-0002-5074-8856; Meyer, Philip/0000-0002-8714-4693 FU NSF-EAR [0911074]; DOE-SBR [DE-SC0002687] FX This work was supported in part by NSF-EAR grant 0911074 and DOE-SBR grant DE-SC0002687. We thank Matthias Kohler for providing the experimental data and concentration error estimates for the laboratory column study. We also thank Claire Tiedeman and the anonymous reviewers for their comments. NR 89 TC 14 Z9 14 U1 5 U2 34 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD SEP PY 2013 VL 49 IS 9 BP 6029 EP 6047 DI 10.1002/wrcr.20441 PG 19 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 238ZO UT WOS:000325991100064 ER PT J AU Kie, JG Johnson, BK Noyes, JH Williams, CL Dick, BL Rhodes, OE Stussy, RJ Bowyer, RT AF Kie, John G. Johnson, Bruce K. Noyes, James H. Williams, Christen L. Dick, Brian L. Rhodes, Olin E. Stussy, Rosemary J. Bowyer, R. Terry TI Reproduction in North American elk Cervus elaphus: paternity of calves sired by males of mixed age classes SO WILDLIFE BIOLOGY LA English DT Article DE cattle grazing; Cervus elaphus; conception date; North American elk; paternity; reproduction ID MOOSE ALCES-ALCES; ADULT SEX-RATIO; ALASKAN MOOSE; MULE DEER; CONCEPTION DATES; PREGNANCY RATES; MATING SUCCESS; BULL ELK; PARTURITION; POPULATIONS AB Our objective was to examine effects of groups of mixed numbers and ages of male North American elk Cervus elaphus on the reproductive performance of females. We conducted research at the Starkey Experimental Forest and Range in northeastern Oregon, USA, during 1993-2000. Each spring in late March, we released 40 female elk, eight yearling (9-month old) male elk and 2-8 branch-antlered elk (i.e. >= 2 years of age during rut the following autumn) into a 622-ha fenced pasture. Elk were gathered during autumn and early winter, and were brought to winter feeding grounds where blood samples were drawn to determine pregnancy status. The following spring, females were released into an 80-ha pasture prior to parturition. We searched for and captured newborn calves and obtained ear-punch samples for genetic analysis. We used 18 microsatellite loci to establish paternity of each calf. We varied the ratio of mature males (i.e. >= 3 years old) to female ratio from 0.03 to 0.21. As expected, mature males (older and heavier) were more successful in siring calves than were younger males. Within age classes, however, body mass in spring did not accurately predict mating success in autumn. Reproductive rates were not affected by season of grazing by cattle, yearling male to female ratio or mature male to female ratio. Sire age had no effect on mean dates of calf births or on calf weights. Neither sire age nor season of grazing by cattle had significant effects on calf weights; however, mean date of birth was significantly earlier when cattle grazing occurred during the previous autumn than when cattle grazed during the preceding spring. Furthermore, the number of calves sired by yearling males was greater when cattle grazing occurred during autumn, than when grazing occurred during spring. In the years with disruptive cattle grazing during rut, females mated not only with yearling males, in general, but often with those who were lighter in body mass during the previous spring than others in the same cohort. The extent to which those yearling males are untested in combat with older, dominant herd bulls may have genetic consequences leading to differences in fitness and subsequent reductions in calf survival. C1 [Kie, John G.; Bowyer, R. Terry] Idaho State Univ, Dept Biol Sci, Pocatello, ID 83209 USA. [Kie, John G.; Dick, Brian L.] US Forest Serv, Pacific NW Res Stn, La Grande, OR 97850 USA. [Johnson, Bruce K.] Oregon Dept Fish & Wildlife, La Grande, OR 97850 USA. [Noyes, James H.] Oregon Dept Fish & Wildlife, Corvallis, OR 97330 USA. [Williams, Christen L.] Purdue Univ, W Lafayette, IN 47907 USA. [Rhodes, Olin E.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Stussy, Rosemary J.] Oregon Dept Fish & Wildlife, Central Point, OR 97502 USA. RP Kie, JG (reprint author), Idaho State Univ, Dept Biol Sci, 921 South 8th Ave,Stop 8007, Pocatello, ID 83209 USA. EM kiejohn@isu.edu; bruce.k.johnson@state.or.us; jaines.h.noyes@state.or.us; bldick@fs.fed.us; rhodes@srel.edu; rosemary.j.stussy@state.or.us; bowyterr@isu.edu FU Federal Aid in Wildlife Restoration [W-87-R]; Oregon Department of Fish and Wildlife; United States Forest Service FX our study was supported by Federal Aid in Wildlife Restoration (W-87-R), the Oregon Department of Fish and Wildlife and the United States Forest Service. We appreciate the efforts of project personnel C.D. Borum, P.K. Coe, S.L. Findholt, T. Heater, R.O. Kennedy, P.B. Kennington, L. Naylor, J.C. Nothwang and A. Stokes. Previous drafts of this manuscript were reviewed by J.G. Cook, R.W. DeYoung and S.L. Findholt, who provided many valuable suggestions. NR 50 TC 3 Z9 3 U1 1 U2 26 PU WILDLIFE BIOLOGY PI RONDE PA C/O JAN BERTELSEN, GRENAAVEJ 14, KALO, DK-8410 RONDE, DENMARK SN 0909-6396 J9 WILDLIFE BIOL JI Wildlife Biol. PD SEP PY 2013 VL 19 IS 3 BP 302 EP 310 DI 10.2981/12-051 PG 9 WC Ecology; Zoology SC Environmental Sciences & Ecology; Zoology GA 239EI UT WOS:000326005000007 ER PT J AU Hastbacka, M Rutberg, M Bouza, A AF Hastbacka, Mildred Rutberg, Michael Bouza, Antonio TI IT and Building Loads SO ASHRAE JOURNAL LA English DT Article AB The total electricity consumption of information technology (IT) equipment in the U.S. has been estimated to be roughly 100 billion kWh annually (1 quad of primary energy).(1) In commercial buildings, computers alone are estimated to account for more than 0.6 quads of primary energy consumption.(2) As devices related to IT operations continue to proliferate, they are projected to continue accounting for a large share of direct energy consumption in commercial buildings, as well as contributing strongly to commercial building cooling load. C1 [Hastbacka, Mildred; Rutberg, Michael] TIAX LLC, Mech Syst Grp, Lexington, MA USA. [Bouza, Antonio] US DOE, Washington, DC 20585 USA. RP Hastbacka, M (reprint author), TIAX LLC, Mech Syst Grp, Lexington, MA USA. NR 13 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 EI 1943-6637 J9 ASHRAE J JI ASHRAE J. PD SEP PY 2013 VL 55 IS 9 BP 84 EP 87 PG 4 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 240XV UT WOS:000326131900024 ER PT J AU Brady, PV Altman, SJ McGrath, LK Krumhansl, JL Anderson, HL AF Brady, Patrick V. Altman, Susan J. McGrath, Lucas K. Krumhansl, James L. Anderson, Howard L. TI pH modification for silica control SO DESALINATION AND WATER TREATMENT LA English DT Article DE Silica; Scale formation; Nanofiltration ID WATER AB Lowering solution pH slows the polymerization of silica and formation of silica scale. In batch systems, lowering the pH of approximately 200ppm silica solutions prevents scale formation for over 300h. Silica scale forms most quickly near pH 8. Solutions with pH 3.6-3.7 can maintain silica levels of 1,000-3,000ppm for roughly 90h. Bench-scale membrane testing showed that silica scale formation lag times of approximately 72h were achievable after lowering the pH to 4.5-4.7, which might allow flushing of silica-laden solutions through, for example, flow reversal, before scale formation occurs during water treatment. C1 [Brady, Patrick V.; Altman, Susan J.; McGrath, Lucas K.; Krumhansl, James L.; Anderson, Howard L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Brady, PV (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM pvbrady@sandia.gov FU US Department of Energy's National Energy Technology Laboratory (DOE/NETL); US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; NETL FX We greatly appreciate the efforts of the Editor, Miriam Balaban, and the reviewers. This study was funded by the US Department of Energy's National Energy Technology Laboratory (DOE/NETL). The NETL sponsors for this project were Isaac "Andy" Aurelio and Andrea McNemar, Project Managers, and Jared Ciferno, Technology Manager for the Existing Plants, Emissions and Capture Program. The authors also acknowledge the contributions of DOE/NETL colleague Lynn Brickett. This NETL management team provided guidance and technical oversight for this study. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 14 TC 0 Z9 0 U1 2 U2 14 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1944-3994 EI 1944-3986 J9 DESALIN WATER TREAT JI Desalin. Water Treat. PD SEP 1 PY 2013 VL 51 IS 31-33 BP 5901 EP 5908 DI 10.1080/19443994.2013.766905 PG 8 WC Engineering, Chemical; Water Resources SC Engineering; Water Resources GA 238DQ UT WOS:000325921700001 ER PT J AU Merzari, E Pointer, WD Fischer, P AF Merzari, E. Pointer, W. D. Fischer, P. TI Numerical Simulation and Proper Orthogonal Decomposition of the Flow in a Counter-Flow T-Junction SO JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article ID DUCT AB Large eddy simulations (LES) of the turbulent mixing in a T-junction have been carried out with the spectral element code Nek5000 at two inlet velocity ratios. Numerical results have been compared with an available experiment. Proper orthogonal decomposition (POD) has then been used to identify the most energetic modes of turbulence for both the velocity and temperature fields. Since POD was also performed on the experiment particle image velocimetry (PIV) data, a further means of verification and validation was available. The structure of the numerical POD modes and the time histories of the projection of each mode on the velocity field offer additional insight into the physics of turbulence in T-junctions. In particular, in the case of identical inlet velocities (T-junction velocity ratio equal to 1.0) the dynamics appears to be richer than might be expected and additional diagonal modes are present. C1 [Merzari, E.; Pointer, W. D.; Fischer, P.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Merzari, E (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM emerzari@anl.gov FU U.S. Department of Energy Office of Nuclear Energy; U.S. Department of Energy [DE-AC02-06CH11357] FX This work was completed under the auspices of the U.S. Department of Energy Office of Nuclear Energy as part of the Generation IV Energy Systems program. The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonne") under Contract No. DE-AC02-06CH11357 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 18 TC 5 Z9 5 U1 3 U2 14 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0098-2202 EI 1528-901X J9 J FLUID ENG-T ASME JI J. Fluids Eng.-Trans. ASME PD SEP PY 2013 VL 135 IS 9 AR 091304 DI 10.1115/1.4024059 PG 13 WC Engineering, Mechanical SC Engineering GA 240OB UT WOS:000326105300011 ER PT J AU Wu, RL Silks, LA Olivault-Shiflett, M Williams, RF Ortiz, EG Stotter, P Kimball, DB Martinez, RA AF Wu, Ruilian Silks, L. A. Pete' Olivault-Shiflett, Morgane Williams, Robert F. Ortiz, Erick G. Stotter, Philip Kimball, David B. Martinez, Rodolfo A. TI A general route for C-13-labeled fluorenols and phenanthrenols via palladium-catalyzed cross-coupling and one-carbon homologation SO JOURNAL OF LABELLED COMPOUNDS & RADIOPHARMACEUTICALS LA English DT Article DE polyaromatic hydrocarbons; palladium-catalyzed cross-coupling; one-carbon homologation; mass spectral standards; uniformly C-13-labeled benzene and Friedel-Crafts reactions ID MASS-SPECTROMETRY METHOD; RESOLUTION; CYCLIZATION; ADDUCTS; REAGENT AB A series of C-13-labeled polyaromatic hydrocarbons (PAHs), fluorenols and phenanthrenols were synthesized from commercially available C-13-labeled starting material giving rise to M+6 isotopomers. This was accomplished using key palladium-catalyzed cross-coupling and one-carbon homologation strategies. The conditions for these reactions were optimized, and the new chemical routes are efficient in the number of chemical steps, can be scaled to afford gram quantities and occur in good yields based on the C-13 label. These labeled compounds as precursors for more complex PAHs and are useful as internal standards in mass spectrometry and NMR spectroscopy studies for monitoring environmental contamination and biological exposure to PAHs and their metabolites. C1 [Wu, Ruilian; Silks, L. A. Pete'; Olivault-Shiflett, Morgane; Williams, Robert F.; Ortiz, Erick G.; Stotter, Philip; Kimball, David B.] Los Alamos Natl Lab, Bioenergy & Biome Sci Grp, Biophys Chem Team, Los Alamos, NM 87545 USA. [Martinez, Rodolfo A.] New Mexico Highland Univ, Dept Chem, Las Vegas, NM 87701 USA. RP Silks, LA (reprint author), Los Alamos Natl Lab, Bioenergy & Biome Sci Grp, POB 1663, Los Alamos, NM 87545 USA. EM pete-silks@lanl.gov; rudy@nmhu.edu FU CDC [R-2589-03-0]; Los Alamos National Laboratory LDRD program [Silks: 20060317 ER: X9DN] FX We gratefully acknowledge the support of this work by the CDC (R-2589-03-0) and the Los Alamos National Laboratory LDRD program (Silks: 20060317 ER: X9DN, Understanding the Process of Intercalation Using Stable Isotope Labeled Polyaromatic Hydrocarbons (PAHs) and Oligomeric DNA; the Quantitation of Weak Bonding in DNA). NR 17 TC 1 Z9 1 U1 1 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0362-4803 EI 1099-1344 J9 J LABELLED COMPD RAD JI J. Label. Compd. Radiopharm. PD SEP PY 2013 VL 56 IS 11 BP 581 EP 586 DI 10.1002/jlcr.3066 PG 6 WC Biochemical Research Methods; Chemistry, Medicinal; Chemistry, Analytical SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Chemistry GA 238ZC UT WOS:000325989900006 PM 24285190 ER PT J AU Hall, PB Brandt, WN Petitjean, P Paris, I Ak, NF Shen, Y Gibson, RR Aubourg, E Anderson, SF Schneider, DP Bizyaev, D Brinkmann, J Malanushenko, E Malanushenko, V Myers, AD Oravetz, DJ Ross, NP Shelden, A Simmons, AE Streblyanska, A Weaver, BA York, DG AF Hall, P. B. Brandt, W. N. Petitjean, P. Paris, I. Ak, N. Filiz Shen, Yue Gibson, R. R. Aubourg, E. Anderson, S. F. Schneider, D. P. Bizyaev, D. Brinkmann, J. Malanushenko, E. Malanushenko, V. Myers, A. D. Oravetz, D. J. Ross, N. P. Shelden, A. Simmons, A. E. Streblyanska, A. Weaver, B. A. York, D. G. TI Broad absorption line quasars with redshifted troughs: high-velocity infall or rotationally dominated outflows? SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: nuclei; quasars: absorption lines; quasars: general ID DIGITAL-SKY-SURVEY; OSCILLATION SPECTROSCOPIC SURVEY; ACTIVE GALACTIC NUCLEUS; ROTATING ACCRETION FLOWS; MASSIVE BLACK-HOLES; DRIVEN DISK WINDS; 7TH DATA RELEASE; 9TH DATA RELEASE; SURVEY 1ST DATA; SDSS-III AB We report the discovery in the Sloan Digital Sky Survey (SDSS) and the SDSS-III Baryon Oscillation Spectroscopic Survey of 17 broad absorption line (BAL) quasars with high-ionization troughs that include absorption redshifted relative to the quasar rest frame. The redshifted troughs extend to velocities up to v similar or equal to 12 000 km s(-1) and the trough widths exceed 3000 km s(-1) in all but one case. Approximately 1 in 1000 BAL quasars with blueshifted CIV absorption also has redshifted C IV absorption; objects with CIV absorption present only at redshifted velocities are roughly four times rarer. In more than half of our objects, redshifted absorption is seen in CII or Al III as well as CIV, making low-ionization absorption at least 10 times more common among BAL quasars with redshifted troughs than among standard BAL quasars. However, the CIV absorption equivalent widths in our objects are on average smaller than those of standard BAL quasars with low-ionization absorption. We consider several possible ways of generating redshifted absorption. The two most likely possibilities may be at work simultaneously, in the same objects or in different ones. Rotationally dominated outflows seen against a quasar's extended continuum source can produce redshifted and blueshifted absorption, but variability consistent with this scenario is seen in only one of the four objects with multiple spectra. The infall of relatively dense and low-ionization gas to radii as small as 400 Schwarzschild radii can in principle explain the observed range of trough profiles, but current models do not easily explain the origin and survival of such gas. Whatever the origin(s) of the absorbing gas in these objects, it must be located at small radii to explain its large redshifted velocities, and thus offers a novel probe of the inner regions of quasars. C1 [Hall, P. B.] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada. [Brandt, W. N.; Ak, N. Filiz; Schneider, D. P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Brandt, W. N.; Ak, N. Filiz; Schneider, D. P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Petitjean, P.; Paris, I.] Univ Paris 06, Inst Astrophys Paris, F-75014 Paris, France. [Ak, N. Filiz] Erciyes Univ, Dept Astron & Space Sci, Fac Sci, TR-38039 Kayseri, Turkey. [Shen, Yue] Carnegie Observ, Pasadena, CA 91101 USA. [Gibson, R. R.; Anderson, S. F.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Aubourg, E.] Univ Paris 07, APC, F-75205 Paris, France. [Bizyaev, D.; Brinkmann, J.; Malanushenko, E.; Malanushenko, V.; Oravetz, D. J.; Shelden, A.; Simmons, A. E.] Apache Point Observ, Sunspot, NM 88349 USA. [Myers, A. D.] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. [Ross, N. P.] Lawrence Berkeley Natl Lab, Berkeley, CA 92420 USA. [Streblyanska, A.] Inst Astrofis Canarias, E-38200 Tenerife, Spain. [Weaver, B. A.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [York, D. G.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [York, D. G.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. RP Hall, PB (reprint author), York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada. EM phall@yorku.ca RI Filiz Ak, Nurten/C-9686-2015; Brandt, William/N-2844-2015 OI Filiz Ak, Nurten/0000-0003-3016-5490; Brandt, William/0000-0002-0167-2453 FU NSERC; Aspen Center for Physics (NSF) [1066293]; NSF [AST-1108604]; Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy Office of Science; University of Arizona; Brookhaven National Laboratory; University of Cambridge; Carnegie Mellon University; University of Florida; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University FX We thank D. Proga, M. Bautista, D. Edmonds and N. Murray for discussions, and the referee for a careful review. PBH thanks NSERC for its research support, the Institute of Astronomy at the University of Cambridge for hosting his sabbatical and the Aspen Center for Physics (NSF Grant no. 1066293) for its hospitality. WNB and NFA are supported by NSF grant AST-1108604. This research has made extensive use of NASA's Astrophysics Data System Bibliographic Services and of the Atomic Line List at http://www.pa.uky.edu/similar to peter/atomic/.; Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation and the US Department of Energy Office of Science. The SDSS-III website is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington and Yale University. NR 142 TC 12 Z9 12 U1 2 U2 13 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP PY 2013 VL 434 IS 1 BP 222 EP 256 DI 10.1093/mnras/stt1012 PG 35 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 207XA UT WOS:000323636800017 ER PT J AU Davies, LJM Maraston, C Thomas, D Capozzi, D Wechsler, RH Busha, MT Banerji, M Ostrovski, F Papovich, C Santiago, BX Nichol, R Maia, MAG da Costa, LN AF Davies, L. J. M. Maraston, C. Thomas, D. Capozzi, D. Wechsler, R. H. Busha, M. T. Banerji, M. Ostrovski, F. Papovich, C. Santiago, B. X. Nichol, R. Maia, M. A. G. da Costa, L. N. TI Detecting massive galaxies at high redshift using the Dark Energy Survey SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; galaxies: high-redshift ID LYMAN-BREAK GALAXIES; STAR-FORMING GALAXIES; DIGITAL SKY SURVEY; ULTRAVIOLET LUMINOSITY DENSITY; ORIGINS DEEP SURVEY; YALE-CHILE MUSYC; TO 5 LBGS; STELLAR MASS; SUBMILLIMETER GALAXIES; PHOTOMETRIC REDSHIFTS AB The Dark Energy Survey (DES) will be unprecedented in its ability to probe exceptionally large cosmic volumes to relatively faint optical limits. Primarily designed for the study of comparatively low-redshift (z < 2) galaxies with the aim of constraining dark energy, an intriguing byproduct of the survey will be the identification of massive (> 10(12.0) M-circle dot) galaxies at z greater than or similar to 4. This will greatly improve our understanding of how galaxies form and evolve. By both passively evolving the low-redshift mass function and extrapolating the observed high-redshift mass function, we find that such galaxies should be rare but nonetheless present at early times, with predicted number densities of similar to 0.02 deg(-2). The unique combination of depth and coverage that DES provides will allow the identification of such galaxies should they exist - potentially identifying hundreds of such sources. We then model possible high-redshift galaxies and determine their detectability using the DES filter sets and depths. We model sources with a broad range stellar properties and find that for these galaxies to be detected they must be either sufficiently young, high mass and/or relatively dust free (E(B - V) < 0.45) - with these parameters jointly affecting each galaxy's detectability. We also propose colour-colour selection criteria for the identification of both pristine and dusty sources and find that, although contamination fractions will be high, the most reliable candidate massive high-redshift galaxies are likely to be identifiable in the DES data through prioritisation of colour-selected sources. C1 [Davies, L. J. M.; Maraston, C.; Thomas, D.; Capozzi, D.; Nichol, R.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Davies, L. J. M.] Univ Bristol, Dept Phys, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Wechsler, R. H.] Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Wechsler, R. H.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Wechsler, R. H.] SLAC Natl Accelerator Lab, Dept Particle Phys & Astrophys, Stanford, CA 94305 USA. [Busha, M. T.] Univ Zurich, Inst Theoret Phys, CH-8001 Zurich, Switzerland. [Busha, M. T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Banerji, M.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Banerji, M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Ostrovski, F.; Maia, M. A. G.; da Costa, L. N.] Observ Nacl, BR-20921400 Rio De Janeiro, RJ, Brazil. [Ostrovski, F.; Santiago, B. X.; Maia, M. A. G.; da Costa, L. N.] Lab Nacl E Astron, BR-20921400 Rio De Janeiro, RJ, Brazil. [Papovich, C.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Papovich, C.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Santiago, B. X.] Univ Fed Rio Grande do Sul, Inst Fis, BR-15051 Porto Alegre, RS, Brazil. RP Davies, LJM (reprint author), Univ Portsmouth, Inst Cosmol & Gravitat, Dennis Sciama Bldg,Burnaby Rd, Portsmouth PO1 3FX, Hants, England. EM luke.davies@bristol.ac.uk OI Banerji, Manda/0000-0002-0639-5141 NR 101 TC 3 Z9 3 U1 0 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP PY 2013 VL 434 IS 1 BP 296 EP 312 DI 10.1093/mnras/stt1018 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 207XA UT WOS:000323636800020 ER PT J AU Ade, PAR Aghanim, N Alves, MIR Arnaud, M Ashdown, M Atrio-Barandela, F Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartlett, JG Battaner, E Bedini, L Benabed, K Benoit, A Bernard, JP Bersanelli, M Bonaldi, A Bond, JR Borrill, J Bouchet, FR Boulanger, F Burigana, C Butler, RC Cabella, P Cardoso, JF Chen, X Chiang, LY Christensen, PR Clements, DL Colombi, S Colombo, LPL Coulais, A Cuttaia, F Davies, RD Davis, RJ de Bernardis, P de Gasperis, G de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dobler, G Dole, H Donzelli, S Dore, O Douspis, M Dupac, X Ensslin, TA Finelli, F Forni, O Frailis, M Franceschi, E Galeotta, S Ganga, K Genova-Santos, RT Ghosh, T Giard, M Giardino, G Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Hansen, FK Harrison, D Hernandez-Monteagudo, C Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huffenberger, KM Jaffe, TR Jaffe, AH Juvela, M Keihanen, E Keskitalo, R Kisner, TS Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lawrence, CR Leach, S Leonardi, R Lilje, PB Linden-Vornle, M Lubin, PM Macias-Perez, JF Maffei, B Maino, D Mandolesi, N Maris, M Marshall, DJ Martin, PG Martinez-Gonzalez, E Masi, S Massardi, M Matarrese, S Mazzotta, P Melchiorri, A Mennella, A Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Osborne, S Oxborrow, CA Pajot, F Paladini, R Paoletti, D Peel, M Perotto, L Perrotta, F Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Popa, L Poutanen, T Pratt, GW Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Reinecke, M Renault, C Ricciardi, S Ristorcelli, I Rocha, G Rosset, C Rubino-Martin, JA Rusholme, B Salerno, E Sandri, M Savini, G Scott, D Spencer, L Stolyarov, V Sudiwala, R Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Tibbs, CT Toffolatti, L Tomasi, M Tristram, M Valenziano, L Van Tent, B Varis, J Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD Ysard, N Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Alves, M. I. R. Arnaud, M. Ashdown, M. Atrio-Barandela, F. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Battaner, E. Bedini, L. Benabed, K. Benoit, A. Bernard, J. -P. Bersanelli, M. Bonaldi, A. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Burigana, C. Butler, R. C. Cabella, P. Cardoso, J. -F. Chen, X. Chiang, L. -Y Christensen, P. R. Clements, D. L. Colombi, S. Colombo, L. P. L. Coulais, A. Cuttaia, F. Davies, R. D. Davis, R. J. de Bernardis, P. de Gasperis, G. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dobler, G. Dole, H. Donzelli, S. Dore, O. Douspis, M. Dupac, X. Ensslin, T. A. Finelli, F. Forni, O. Frailis, M. Franceschi, E. Galeotta, S. Ganga, K. Genova-Santos, R. T. Ghosh, T. Giard, M. Giardino, G. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. Hernandez-Monteagudo, C. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huffenberger, K. M. Jaffe, T. R. Jaffe, A. H. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lawrence, C. R. Leach, S. Leonardi, R. Lilje, P. B. Linden-Vornle, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maino, D. Mandolesi, N. Maris, M. Marshall, D. J. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Massardi, M. Matarrese, S. Mazzotta, P. Melchiorri, A. Mennella, A. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Osborne, S. Oxborrow, C. A. Pajot, F. Paladini, R. Paoletti, D. Peel, M. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Popa, L. Poutanen, T. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Reach, W. T. Rebolo, R. Reinecke, M. Renault, C. Ricciardi, S. Ristorcelli, I. Rocha, G. Rosset, C. Rubino-Martin, J. A. Rusholme, B. Salerno, E. Sandri, M. Savini, G. Scott, D. Spencer, L. Stolyarov, V. Sudiwala, R. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Tibbs, C. T. Toffolatti, L. Tomasi, M. Tristram, M. Valenziano, L. Van Tent, B. Varis, J. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. Ysard, N. Yvon, D. Zacchei, A. Zonca, A. TI Planck intermediate results. XII: Diffuse Galactic components in the Gould Belt system SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE Galaxy: general; radio continuum: ISM; radiation mechanisms: general ID MICROWAVE-ANISOTROPY-PROBE; SPINNING DUST EMISSION; CENTIMETER-WAVE CONTINUUM; H-ALPHA; INFRARED-EMISSION; WMAP OBSERVATIONS; ANOMALOUS DUST; FOREGROUND EMISSION; TENTATIVE DETECTION; POLARIZATION DATA AB We perform an analysis of the diffuse low-frequency Galactic components in the southern part of the Gould Belt system (130 degrees <= l <= 230 degrees and -50 degrees <= b <= -10 degrees). Strong ultra-violet flux coming from the Gould Belt super-association is responsible for bright diffuse foregrounds that we observe from our position inside the system and that can help us improve our knowledge of the Galactic emission. Free-free emission and anomalous microwave emission (AME) are the dominant components at low frequencies (nu < 40 GHz), while synchrotron emission is very smooth and faint. We separated diffuse free-free emission and AME from synchrotron emission and thermal dust emission by using Planck data, complemented by ancillary data, using the correlated component analysis (CCA) component-separation method and we compared our results with the results of cross-correlation of foreground templates with the frequency maps. We estimated the electron temperature T-e from Ha and free-free emission using two methods (temperature-temperature plot and cross-correlation) and obtained T-e ranging from 3100 to 5200 K for an effective fraction of absorbing dust along the line of sight of 30% (f(d) = 0.3). We estimated the frequency spectrum of the diffuse AME and recovered a peak frequency (in flux density units) of 25.5 +/- 1.5 GHz. We verified the reliability of this result with realistic simulations that include biases in the spectral model for the AME and in the free-free template. By combining physical models for vibrational and rotational dust emission and adding the constraints from the thermal dust spectrum from Planck and IRAS, we are able to present a good description of the AME frequency spectrum for plausible values of the local density and radiation field. C1 [Bartlett, J. G.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Piat, M.; Rosset, C.] Univ Paris Diderot, APC, CNRS, IN2P3,CEA,Irfu,Observ Paris, F-75205 Paris 13, France. [Lahteenmaki, A.; Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Kunz, M.] African Inst Math Sci, Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, Rome, Italy. [Ashdown, M.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 OHE, England. [Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Bedini, L.; Salerno, E.] CNR, ISTI, Area Ric, Pisa, Italy. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Dore, O.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Comp Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid, Spain. [Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, DTU Space, Natl Space Inst, DK-2800 Lyngby, Kgs, Denmark. [Kunz, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands. [Keskitalo, R.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.; Ysard, N.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Matarrese, S.] Univ Padua, Dipartimento Fis Astron G Galilei, I-35131 Padua, Italy. [Burigana, C.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis Sci Terra, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Balbi, A.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Cabella, P.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, Tenerife 38206, Spain. [Dupac, X.; Leonardi, R.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Giardino, G.; Tauber, J. A.] European Space Agcy, ESTEC, NL-2201 AZ Noordwijk, Netherlands. [Kurki-Suonio, H.; Lahteenmaki, A.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [de Zotti, G.] Osserv Astron Padova, INAF, Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Zacchei, A.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Massardi, M.] Ist Radioastron, INAF, I-40129 Bologna, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] IASF Bologna, INAF, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Tomasi, M.] IASF Milano, INAF, Milan, Italy. [Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Melchiorri, A.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Mitra, S.] IUCAA, Pune 411007, Maharashtra, India. [Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.] Imperial Coll London, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Chen, X.; Paladini, R.; Rusholme, B.; Tibbs, C. T.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Dole, H.] Inst Univ France, F-75005 Paris, France. [Aghanim, N.; Alves, M. I. R.; Aumont, J.; Boulanger, F.; Dole, H.; Douspis, M.; Ghosh, T.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Chiang, L. -Y] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Harrison, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Genova-Santos, R. T.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Diego, J. M.; Gonzalez-Nuevo, J.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Bartlett, J. G.; Colombo, L. P. L.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Pietrobon, D.; Rocha, G.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Noviello, F.; Peel, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Harrison, D.; Lasenby, A.; Stolyarov, V.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Dobler, G.] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Coulais, A.; Lamarre, J. -M.] CNRS, LERMA, Observ Paris, Paris, France. [Arnaud, M.; Marshall, D. J.; Pratt, G. W.] Univ Paris Diderot, CNRS, CEA Saclay, CEA DSM,Lab AIM,IRFU Serv Astrophys, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Macias-Perez, J. F.; Perotto, L.; Renault, C.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,Lab Phys Subat & Cosm, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France. [Van Tent, B.] CNRS, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Varis, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; de Zotti, G.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Zelenchukskiy Region 369167, Karachai Cherke, Russia. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Benabed, K.; Bouchet, F. R.; Colombi, S.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UPMC, UMR 7095, F-75014 Paris, France. [Banday, A. J.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Bonaldi, A (reprint author), Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. EM anna.bonaldi@manchester.ac.uk RI Butler, Reginald/N-4647-2015; Ghosh, Tuhin/E-6899-2016; Tomasi, Maurizio/I-1234-2016; Novikov, Igor/N-5098-2015; Colombo, Loris/J-2415-2016; Nati, Federico/I-4469-2016; popa, lucia/B-4718-2012; Piacentini, Francesco/E-7234-2010; Atrio-Barandela, Fernando/A-7379-2017; Stolyarov, Vladislav/C-5656-2017; Mazzotta, Pasquale/B-1225-2016; Salerno, Emanuele/A-2137-2010; Bouchet, Francois/B-5202-2014; Lahteenmaki, Anne/L-5987-2013; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; Gruppuso, Alessandro/N-5592-2015; Novikov, Dmitry/P-1807-2015; Kurki-Suonio, Hannu/B-8502-2016; OI Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; Juvela, Mika/0000-0002-5809-4834; Galeotta, Samuele/0000-0002-3748-5115; Finelli, Fabio/0000-0002-6694-3269; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Butler, Reginald/0000-0003-4366-5996; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Matarrese, Sabino/0000-0002-2573-1243; TERENZI, LUCA/0000-0001-9915-6379; Reach, William/0000-0001-8362-4094; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Nati, Federico/0000-0002-8307-5088; Piacentini, Francesco/0000-0002-5444-9327; Atrio-Barandela, Fernando/0000-0002-2130-2513; Stolyarov, Vladislav/0000-0001-8151-828X; Mazzotta, Pasquale/0000-0002-5411-1748; WANDELT, Benjamin/0000-0002-5854-8269; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; De Zotti, Gianfranco/0000-0003-2868-2595; Salerno, Emanuele/0000-0002-3433-3634; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; Peel, Mike/0000-0003-3412-2586 FU ESA Member States; NASA; ESA; CNES; CNRS/INSU-IN2P3-INP (France); ASI; CNR; INAF (Italy); DoE (USA); STFC; UKSA (UK); CSIC; MICINN; JA; RES (Spain); Tekes; AoF; CSC (Finland); DLR; MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland);; RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal) FX Based on observations obtained with Planck (http://www.esa.int/Planck), an ESA science mission with instruments and contributions directly funded by ESA Member States, NASA, and Canada. The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, JA and RES (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and the development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). A description of the Planck Collaboration and a list of its members, including the technical or scientific activities in which they have been involved, can be found at http://www.sciops.esa.int/index.php?project=planck&page=Planck_Collabora tion. We acknowledge the use of the HEALPix (Gorski et al. 2005) package and of the LAMBDA website http://lambda.gsfc.nasa.gov. NR 94 TC 8 Z9 8 U1 1 U2 25 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP PY 2013 VL 557 AR A53 DI 10.1051/0004-6361/201321160 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 228TC UT WOS:000325211900040 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Atrio-Barandela, F Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Barrena, R Bartlett, JG Battaner, E Benabed, K Bernard, JP Bersanelli, M Bikmaev, I Bock, JJ Bohringer, H Bonaldi, A Bond, JR Borrill, J Bouchet, FR Bourdin, H Burenin, R Burigana, C Butler, RC Cabella, P Chamballu, A Chary, RR Chiang, LY Chon, G Christensen, PR Clements, DL Colafrancesco, S Colombi, S Colombo, LPL Comis, B Coulais, A Crill, BP Cuttaia, F Da Silva, A Dahle, H Davis, RJ de Bernardis, P de Gasperis, G de Rosa, A de Zotti, G Delabrouille, J Democles, J Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Dupac, X Efstathiou, G Ensslin, TA Finelli, F Flores-Cacho, I Forni, O Frailis, M Franceschi, E Frommert, M Galeotta, S Ganga, K Genova-Santos, RT Giard, M Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Hansen, FK Harrison, D Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Jaffe, TR Jaffe, AH Jones, WC Juvela, M Keihanen, E Keskitalo, R Khamitov, I Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Laheenmaki, A Lamarre, JM Lasenby, A Lawrence, CR Le Jeune, M Leonardi, R Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Luzzi, G Macias-Perez, JF MacTavish, CJ Maffei, B Maino, D Mandolesi, N Maris, M Marleau, F Marshall, DJ Martinez-Gonzalez, E Masi, S Massardi, M Matarrese, S Mazzotta, P Mei, S Melchiorri, A Melin, JB Mendes, L Mennella, A Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Osborne, S Oxborrow, CA Pajot, F Paoletti, D Perotto, L Perrotta, F Piacentini, F Piat, M Pierpaoli, E Piffaretti, R Plaszczynski, S Pointecouteau, E Polenta, G Popa, L Poutanen, T Pratt, GW Prunet, S Puget, JL Rachen, JP Rebolo, R Reinecke, M Remazeilles, M Renault, C Ricciardi, S Ristorcelli, I Rocha, G Roman, M Rosset, C Rossetti, M Rubino-Martin, JA Rusholme, B Sandri, M Savini, G Scott, D Spencer, L Starck, JL Stolyarov, V Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Valenziano, L Van Tent, B Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD Wang, W Welikala, N Weller, J White, SDM White, M Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Atrio-Barandela, F. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Barrena, R. Bartlett, J. G. Battaner, E. Benabed, K. Bernard, J. -P. Bersanelli, M. Bikmaev, I. Bock, J. J. Boehringer, H. Bonaldi, A. Bond, J. R. Borrill, J. Bouchet, F. R. Bourdin, H. Burenin, R. Burigana, C. Butler, R. C. Cabella, P. Chamballu, A. Chary, R. -R. Chiang, L. -Y Chon, G. Christensen, P. R. Clements, D. L. Colafrancesco, S. Colombi, S. Colombo, L. P. L. Comis, B. Coulais, A. Crill, B. P. Cuttaia, F. Da Silva, A. Dahle, H. Davis, R. J. de Bernardis, P. de Gasperis, G. de Rosa, A. de Zotti, G. Delabrouille, J. Democles, J. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Finelli, F. Flores-Cacho, I. Forni, O. Frailis, M. Franceschi, E. Frommert, M. Galeotta, S. Ganga, K. Genova-Santos, R. T. Giard, M. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, T. R. Jaffe, A. H. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Khamitov, I. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Laheenmaki, A. Lamarre, J. -M. Lasenby, A. Lawrence, C. R. Le Jeune, M. Leonardi, R. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Luzzi, G. Macias-Perez, J. F. MacTavish, C. J. Maffei, B. Maino, D. Mandolesi, N. Maris, M. Marleau, F. Marshall, D. J. Martinez-Gonzalez, E. Masi, S. Massardi, M. Matarrese, S. Mazzotta, P. Mei, S. Melchiorri, A. Melin, J. -B. Mendes, L. Mennella, A. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Osborne, S. Oxborrow, C. A. Pajot, F. Paoletti, D. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Pierpaoli, E. Piffaretti, R. Plaszczynski, S. Pointecouteau, E. Polenta, G. Popa, L. Poutanen, T. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Ricciardi, S. Ristorcelli, I. Rocha, G. Roman, M. Rosset, C. Rossetti, M. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Savini, G. Scott, D. Spencer, L. Starck, J. -L. Stolyarov, V. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Valenziano, L. Van Tent, B. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. Wang, W. Welikala, N. Weller, J. White, S. D. M. White, M. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XI. The gas content of dark matter halos: the Sunyaev-Zeldovich-stellar mass relation for locally brightest galaxies SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; cosmic background radiation; large-scale structure of Universe; galaxies: clusters: general ID ACTIVE GALACTIC NUCLEI; SOUTH-POLE TELESCOPE; DIGITAL SKY SURVEY; PRE-LAUNCH STATUS; BLACK-HOLES; INTRACLUSTER MEDIUM; SCALING RELATIONS; COOLING FLOWS; AGN FEEDBACK; CLUSTERS AB We present the scaling relation between Sunyaev-Zeldovich (SZ) signal and stellar mass for almost 260,000 locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey (SDSS). These are predominantly the central galaxies of their dark matter halos. We calibrate the stellar-to-halo mass conversion using realistic mock catalogues based on the Millennium Simulation. Applying a multi-frequency matched filter to the Planck data for each LBG, and averaging the results in bins of stellar mass, we measure the mean SZ signal down to M-* similar to 2 x 10(11) M-circle dot, with a clear indication of signal at even lower stellar mass. We derive the scaling relation between SZ signal and halo mass by assigning halo properties from our mock catalogues to the real LBGs and simulating the Planck observation process. This relation shows no evidence for deviation from a power law over a halo mass range extending from rich clusters down to M-500 similar to 2 x 10(13) M-circle dot, and there is a clear indication of signal down to M-500 similar to 4 x 10(12) M-circle dot. Planck's SZ detections in such low-mass halos imply that about a quarter of all baryons have now been seen in the form of hot halo gas, and that this gas must be less concentrated than the dark matter in such halos in order to remain consistent with X-ray observations. At the high-mass end, the measured SZ signal is 20 % lower than found from observations of X-ray clusters, a difference consistent with the magnitude of Malmquist bias effects that were previously estimated for the X-ray sample. C1 [Bartlett, J. G.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Le Jeune, M.; Piat, M.; Remazeilles, M.; Roman, M.; Rosset, C.] Univ Paris Diderot, Observ Paris, Sorbonne Paris Cite, APC,CNRS,IN2P3,CEA lrfu, F-75205 Paris 13, France. [Laheenmaki, A.; Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Bikmaev, I.] Acad Sci Tatarstan, Kazan 420111, Russia. [Kunz, M.] African Inst Math Sci, Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, Rome, Italy. [Ashdown, M.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Kneissl, R.] ALMA Santiago Cent Off, Santiago 0355, Chile. [Bond, J. R.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Flores-Cacho, I.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse, France. [Bock, J. J.; Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Mei, S.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Da Silva, A.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid, Spain. [Chamballu, A.; Melin, J. -B.; Piffaretti, R.; Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Frommert, M.; Kunz, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva, Switzerland. [Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Bikmaev, I.; Khamitov, I.] Kazan Fed Univ, Dept Astron & Geodesy, Kazan 420008, Russia. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands. [Keskitalo, R.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Matarrese, S.] Univ Padua, Dipartimento Fis Astron G Galilei, I-35131 Padua, Italy. [Burigana, C.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Balbi, A.; Bourdin, H.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Cabella, P.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, Tenerife, Spain. [Kneissl, R.] European So Observ, ESO Vitacura, Santiago 19, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, Planck Sci Off, Madrid, Spain. [Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Mei, S.] Observ Paris, GEPI, Sect Meudon, F-92195 Meudon, France. [Kurki-Suonio, H.; Laheenmaki, A.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [de Zotti, G.] Osserv Astron Padova, INAF, Padua, Italy. [Colafrancesco, S.; Polenta, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Zacchei, A.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Massardi, M.] CNR, Ist Radioastron, INAF, I-40129 Bologna, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] IASF Bologna, INAF, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] IASF Milano, INAF, Milan, Italy. [Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Melchiorri, A.] Univ Roma Sapienza, INFN, Sez Roma 1, I-00185 Rome, Italy. [Mitra, S.] IUCAA, Pune 411007, Maharashtra, India. [Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Chary, R. -R.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Dole, H.] Inst Univ France, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Chamballu, A.; Dole, H.; Douspis, M.; Kunz, M.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.; Welikala, N.] Univ Paris Sud 11, CNRS, Inst Astrophys Spatiale, UMR 8617, Orsay, France. [Benabed, K.; Bouchet, F. R.; Colombi, S.; Hivon, E.; Moneti, A.; Prunet, S.; Ricciardi, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Marleau, F.] Univ Innsbruck, Inst Astro & Particle Phys, A-6020 Innsbruck, Austria. [Chiang, L. -Y] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Efstathiou, G.; Harrison, D.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Dahle, H.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Barrena, R.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Bartlett, J. G.; Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Rocha, G.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Bonaldi, A.; Davis, R. J.; Maffei, B.; Noviello, F.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Harrison, D.; Lasenby, A.; MacTavish, C. J.; Stolyarov, V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Luzzi, G.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Chamballu, A.; Democles, J.; Marshall, D. J.; Piffaretti, R.; Pratt, G. W.; Starck, J. -L.] CEA Saclay, Univ Paris Diderot, CNRS, CEA,DSM,IRFU,Serv Astrophys,Lab AIM, F-91191 Gif Sur Yvette, France. [Comis, B.; Hurier, G.; Macias-Perez, J. F.; Perotto, L.; Renault, C.] Univ Joseph Fourier Grenoble I, Inst Natl Polytech Grenoble, CNRS IN2P3, Lab Phys Subatom & Cosmol, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris Sud 11, Phys Theor Lab, F-91405 Orsay, France. [Van Tent, B.] CNRS, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.; Wang, W.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Boehringer, H.; Chon, G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, Wales. [Burenin, R.; Sunyaev, R.] Space Res Inst IKI, Moscow, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Nizhnii Arkhyz 369167, Zelenchukskiy, Russia. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Khamitov, I.] TUBITAK Natl Observ, TR-07058 Antalya, Turkey. [Benabed, K.; Bouchet, F. R.; Colombi, S.; Hivon, E.; Prunet, S.; Ricciardi, S.; Wandelt, B. D.] Univ Paris 06, UMR 7095, F-75014 Paris, France. [Mei, S.] Univ Denis Diderot Paris 7, F-75205 Paris 13, France. [Banday, A. J.; Flores-Cacho, I.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse, France. [Weller, J.] Univ Munich, Univ Observ, D-81679 Munich, Germany. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fisica Teor & Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Rubino-Martin, JA (reprint author), Inst Astrofis Canarias, C-Via Lactea S-N, Tenerife, Spain. EM jalberto@iac.es RI Remazeilles, Mathieu/N-1793-2015; Novikov, Dmitry/P-1807-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Novikov, Igor/N-5098-2015; Colombo, Loris/J-2415-2016; Nati, Federico/I-4469-2016; popa, lucia/B-4718-2012; Piacentini, Francesco/E-7234-2010; Atrio-Barandela, Fernando/A-7379-2017; Stolyarov, Vladislav/C-5656-2017; Mazzotta, Pasquale/B-1225-2016; Lopez-Caniego, Marcos/M-4695-2013; Da Silva, Antonio/A-2693-2010; Bouchet, Francois/B-5202-2014; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; White, Martin/I-3880-2015; Gruppuso, Alessandro/N-5592-2015; Butler, Reginald/N-4647-2015; OI Valenziano, Luca/0000-0002-1170-0104; Galeotta, Samuele/0000-0002-3748-5115; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Frailis, Marco/0000-0002-7400-2135; Weller, Jochen/0000-0002-8282-2010; Lopez-Caniego, Marcos/0000-0003-1016-9283; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Matarrese, Sabino/0000-0002-2573-1243; Scott, Douglas/0000-0002-6878-9840; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Remazeilles, Mathieu/0000-0001-9126-6266; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Nati, Federico/0000-0002-8307-5088; Piacentini, Francesco/0000-0002-5444-9327; Atrio-Barandela, Fernando/0000-0002-2130-2513; Stolyarov, Vladislav/0000-0001-8151-828X; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; De Zotti, Gianfranco/0000-0003-2868-2595; Da Silva, Antonio/0000-0002-6385-1609; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; White, Martin/0000-0001-9912-5070; Gruppuso, Alessandro/0000-0001-9272-5292; Butler, Reginald/0000-0003-4366-5996; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; Villa, Fabrizio/0000-0003-1798-861X; TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794; Hurier, Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733 FU CNES; CNRS; ASI; NASA; Danish Natural Research Council; ESA; CNRS/INSU-IN2P3-INP (France); INAF (Italy); DoE (USA); STFC; UKSA (UK); CSIC; MICINN; JA; RES (Spain); Tekes; AoF; CSC (Finland); DLR; MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); PRACE (EU) FX The authors from the consortia funded principally by CNES, CNRS, ASI, NASA, and Danish Natural Research Council acknowledge the use of the pipeline-running infrastructures Magique3 at Institut d'Astrophysique de Paris (France), CPAC at Cambridge (UK), and USPDC at IPAC (USA). The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, JA and RES (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). A description of the Planck Collaboration and a list of its members, including the technical or scientific activities in which they have been involved, can be found at http://www.sciops.esa.int/index.php?project=planck. We acknowledge the use of the HEALPix package (Gorski et al. 2005). NR 81 TC 23 Z9 23 U1 1 U2 26 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP PY 2013 VL 557 AR A52 DI 10.1051/0004-6361/201220941 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 228TC UT WOS:000325211900027 ER PT J AU Schmelling, M Hashim, NO Grupen, C Luitz, S Maciuc, F Mailov, A Muller, AS Sander, HG Schmeling, S Tcaciuc, R Wachsmuth, H Ziegler, T Zuber, K AF Schmelling, M. Hashim, N. O. Grupen, C. Luitz, S. Maciuc, F. Mailov, A. Mueller, A. -S. Sander, H. -G. Schmeling, S. Tcaciuc, R. Wachsmuth, H. Ziegler, T. Zuber, K. CA CosmoALEPH Collaboration TI Spectrum and charge ratio of vertical cosmic ray muons up to momenta of 2.5 TeV/c SO ASTROPARTICLE PHYSICS LA English DT Article DE Cosmic ray muons; Momentum spectrum; Charge ratio; Chemical composition of primary cosmic rays; ALEPH; Underground measurement ID HADRONIC-INTERACTIONS; SIMULATION; ENERGIES; MODEL; CASCADES AB The ALEPH detector at LEP has been used to measure the momentum spectrum and charge ratio of vertical cosmic ray muons underground. The sea-level cosmic ray muon spectrum for momenta up to 2.5 TeV/c has been obtained by correcting for the overburden of 320 m water equivalent (mwe). The results are compared with Monte Carlo models for air shower development in the atmosphere. From the analysis of the spectrum the total flux and the spectral index of the cosmic ray primaries is inferred. The charge ratio suggests a dominantly light composition of cosmic ray primaries with energies in the energy range between 10(3) and 10(5) GeV. (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved. C1 [Schmelling, M.; Maciuc, F.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Hashim, N. O.] Kenyatta Univ, Dept Phys, Nairobi, Kenya. [Grupen, C.; Tcaciuc, R.] Univ Siegen, Dept Phys, Fac Sci & Technol, D-57068 Siegen, Germany. [Luitz, S.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Mailov, A.] IDRAK Technol Transfer, Baku, Azerbaijan. [Mueller, A. -S.] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany. [Sander, H. -G.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Schmeling, S.; Wachsmuth, H.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Ziegler, T.] SIX Telekurs Ltd, Zurich, Switzerland. [Zuber, K.] Tech Univ Dresden, Inst Kern & Teilchenphys, Dresden, Germany. RP Schmelling, M (reprint author), Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. EM Michael.Schmelling@mpi-hd.mpg.de RI MACIUC, Florin/B-9903-2016 OI MACIUC, Florin/0000-0001-6651-9436 FU Deutsche Forschungsgemeinschaft [DFG/Gr/1796/1-3] FX The authors gratefully acknowledge the help of the ALEPH collaboration, and in particular Markus Frank, Beat Jost, Alois Putzer and Bertram Rensch in doing the measurements. The analysis of the CosmoALEPH experiment has been supported by the Deutsche Forschungsgemeinschaft under Grant DFG/Gr/1796/1-3. NR 26 TC 0 Z9 0 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD SEP PY 2013 VL 49 BP 1 EP 5 DI 10.1016/j.astropartphys.2013.07.008 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 239EZ UT WOS:000326006700001 ER PT J AU Alexander, T Alton, D Arisaka, K Back, HO Beltrame, P Benziger, J Bonfini, G Brigatti, A Brodsky, J Cadonati, L Calaprice, F Candela, A Cao, H Cavalcante, P Chavarria, A Chepurnov, A Cline, D Cocco, AG Condon, C D'Angelo, D Davini, S De Haas, E Derbin, A Di Pietro, G Dratchnev, I Durben, D Empl, A Etenko, A Fan, A Fiorillo, G Fomenko, K Gabriele, F Galbiati, C Gazzana, S Ghag, C Ghiano, C Goretti, A Grandi, L Gromov, M Guan, M Guo, C Guray, G Hungerford, EV Ianni, A Ianni, A Kayunov, A Keeter, K Kendziora, C Kidner, S Kobychev, V Koh, G Korablev, D Korga, G Shields, E Li, P Loer, B Lombardi, P Love, C Ludhova, L Lukyanchenko, L Lund, A Lung, K Ma, Y Machulin, I Maricic, J Martoff, CJ Meng, Y Meroni, E Meyers, PD Mohayai, T Montanari, D Montuschi, M Mosteiro, P Mount, B Muratova, V Nelson, A Nemtzow, A Nurakhov, N Orsini, M Ortica, F Pallavicini, M Pantic, E Parmeggiano, S Parsells, R Pelliccia, N Perasso, L Perfetto, F Pinsky, L Pocar, A Pordes, S Ranucci, G Razeto, A Romani, A Rossi, N Saggese, P Saldanha, R Salvo, C Sands, W Seigar, M Semenov, D Skorokhvatov, M Smirnov, O Sotnikov, A Sukhotin, S Suvorov, Y Tartaglia, R Tatarowicz, J Testera, G Teymourian, A Thompson, J Unzhakov, E Vogelaar, RB Wang, H Westerdale, S Wojcik, M Wright, A Xu, J Yang, C Zavatarelli, S Zehfus, M Zhong, W Zuzel, G AF Alexander, T. Alton, D. Arisaka, K. Back, H. O. Beltrame, P. Benziger, J. Bonfini, G. Brigatti, A. Brodsky, J. Cadonati, L. Calaprice, F. Candela, A. Cao, H. Cavalcante, P. Chavarria, A. Chepurnov, A. Cline, D. Cocco, A. G. Condon, C. D'Angelo, D. Davini, S. De Haas, E. Derbin, A. Di Pietro, G. Dratchnev, I. Durben, D. Empl, A. Etenko, A. Fan, A. Fiorillo, G. Fomenko, K. Gabriele, F. Galbiati, C. Gazzana, S. Ghag, C. Ghiano, C. Goretti, A. Grandi, L. Gromov, M. Guan, M. Guo, C. Guray, G. Hungerford, E. V. Ianni, Al. Ianni, An. Kayunov, A. Keeter, K. Kendziora, C. Kidner, S. Kobychev, V. Koh, G. Korablev, D. Korga, G. Shields, E. Li, P. Loer, B. Lombardi, P. Love, C. Ludhova, L. Lukyanchenko, L. Lund, A. Lung, K. Ma, Y. Machulin, I. Maricic, J. Martoff, C. J. Meng, Y. Meroni, E. Meyers, P. D. Mohayai, T. Montanari, D. Montuschi, M. Mosteiro, P. Mount, B. Muratova, V. Nelson, A. Nemtzow, A. Nurakhov, N. Orsini, M. Ortica, F. Pallavicini, M. Pantic, E. Parmeggiano, S. Parsells, R. Pelliccia, N. Perasso, L. Perfetto, F. Pinsky, L. Pocar, A. Pordes, S. Ranucci, G. Razeto, A. Romani, A. Rossi, N. Saggese, P. Saldanha, R. Salvo, C. Sands, W. Seigar, M. Semenov, D. Skorokhvatov, M. Smirnov, O. Sotnikov, A. Sukhotin, S. Suvorov, Y. Tartaglia, R. Tatarowicz, J. Testera, G. Teymourian, A. Thompson, J. Unzhakov, E. Vogelaar, R. B. Wang, H. Westerdale, S. Wojcik, M. Wright, A. Xu, J. Yang, C. Zavatarelli, S. Zehfus, M. Zhong, W. Zuzel, G. TI Light yield in DarkSide-10: A prototype two-phase argon TPC for dark matter searches SO ASTROPARTICLE PHYSICS LA English DT Article DE Dark matter; Argon; Time projection chamber; Light yield; Photoelectron yield ID LIQUID ARGON; DEPENDENCE; PARTICLES; XENON AB As part of the DarkSide program of direct dark matter searches using two-phase argon TPCs, a prototype detector with an active volume containing 10 kg of liquid argon, DarkSide-10, was built and operated underground in the Gran Sasso National Laboratory in Italy. A critically important parameter for such devices is the scintillation light yield, as photon statistics limits the rejection of electron-recoil backgrounds by pulse shape discrimination. We have measured the light yield of DarkSide-10 using the readily-identifiable full-absorption peaks from gamma ray sources combined with single-photoelectron calibrations using low-occupancy laser pulses. For gamma lines of energies in the range 122-1275 keV, we get light yields averaging 8.887 +/- 0.003(stat)+/- 0.444(sys) p.e./keV(ee). With additional purification, the light yield measured at 511 key increased to 9.142 +/- 0.006(stat) p.e./keV(ee). Published by Elsevier B.V. C1 [Alton, D.] Augustana Coll, Dept Phys & Astron, Sioux Falls, SD 57197 USA. [Durben, D.; Keeter, K.; Mount, B.; Thompson, J.; Zehfus, M.] Black Hills State Univ, Sch Nat Sci, Spearfish, SD 57799 USA. [Maricic, J.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Alexander, T.; Kendziora, C.; Loer, B.; Montanari, D.; Pordes, S.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Guan, M.; Guo, C.; Li, P.; Ma, Y.; Yang, C.; Zhong, W.] Inst High Energy Phys, Beijing 100049, Peoples R China. [Kobychev, V.] Natl Acad Sci Ukraine, Inst Nucl Res, UA-03680 Kiev, Ukraine. [Zuzel, G.] Jagiellonian Univ, Smoluchowski Inst Phys, PL-30059 Krakow, Poland. [Korablev, D.; Smirnov, O.; Sotnikov, A.] Joint Inst Nucl Res, Dubna 141980, Russia. [Bonfini, G.; Candela, A.; Cavalcante, P.; Fomenko, K.; Gazzana, S.; Ghiano, C.; Ianni, Al.; Montuschi, M.; Orsini, M.; Razeto, A.; Rossi, N.; Saggese, P.; Saldanha, R.; Tartaglia, R.] Lab Nazl Gran Sasso, I-67010 Assergi, AQ, Italy. [Chepurnov, A.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia. [Etenko, A.; Machulin, I.; Nurakhov, N.; Skorokhvatov, M.; Sukhotin, S.] Natl Res Ctr Kurchatov Inst, Moscow 123182, Russia. [Benziger, J.; Gromov, M.; Lukyanchenko, L.] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA. [Back, H. O.; Brodsky, J.; Calaprice, F.; Cao, H.; Chavarria, A.; Condon, C.; De Haas, E.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Guray, G.; Ianni, An.; Koh, G.; Shields, E.; Meyers, P. D.; Mohayai, T.; Mosteiro, P.; Nelson, A.; Parsells, R.; Rossi, N.; Sands, W.; Westerdale, S.; Wright, A.; Xu, J.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Derbin, A.; Dratchnev, I.; Kayunov, A.; Muratova, V.; Semenov, D.; Unzhakov, E.] St Petersburg Nucl Phys Inst, Gatchina 188350, Russia. [Love, C.; Martoff, C. J.; Tatarowicz, J.] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. [Grandi, L.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ghag, C.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Pallavicini, M.; Perasso, L.; Salvo, C.; Testera, G.; Zavatarelli, S.] Univ Genoa, Dept Phys, I-16146 Genoa, Italy. [Pallavicini, M.; Perasso, L.; Salvo, C.; Testera, G.; Zavatarelli, S.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Brigatti, A.; D'Angelo, D.; Di Pietro, G.; Lombardi, P.; Ludhova, L.; Meroni, E.; Parmeggiano, S.; Ranucci, G.] Univ Milan, Dept Phys, I-20133 Milan, Italy. [Brigatti, A.; D'Angelo, D.; Di Pietro, G.; Lombardi, P.; Ludhova, L.; Meroni, E.; Parmeggiano, S.; Ranucci, G.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Cocco, A. G.; Fiorillo, G.; Perfetto, F.] Univ Naples Federico II, Dept Phys, I-80126 Naples, Italy. [Cocco, A. G.; Fiorillo, G.; Perfetto, F.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Ortica, F.; Pelliccia, N.; Romani, A.] Univ Perugia, Dept Chem, I-06123 Perugia, Italy. [Ortica, F.; Pelliccia, N.; Romani, A.] Ist Nazl Fis Nucl, I-06123 Perugia, Italy. [Seigar, M.] Univ Arkansas, Dept Phys & Astron, Little Rock, AR 72204 USA. [Arisaka, K.; Beltrame, P.; Cline, D.; Fan, A.; Meng, Y.; Pantic, E.; Suvorov, Y.; Teymourian, A.; Wang, H.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Davini, S.; Empl, A.; Hungerford, E. V.; Korga, G.; Pinsky, L.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Cadonati, L.; Lund, A.; Nemtzow, A.; Pocar, A.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Kidner, S.; Vogelaar, R. B.] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA. RP Grandi, L (reprint author), Univ Chicago, Kavli Inst Cosmol Phys, 5620 South Ellis Ave,LASR 210, Chicago, IL 60637 USA. EM lgrandi@uchicago.edu RI Ortica, Fausto/C-1001-2013; Razeto, Alessandro/J-3320-2015; Pallavicini, Marco/G-5500-2012; Ranucci, Gioacchino/O-2200-2015; Machulin, Igor/R-9711-2016; Skorokhvatov, Mikhail/R-9735-2016; Fiorillo, Giuliana/A-2248-2012; Romani, Aldo/G-8103-2012; DAngelo, Davide/K-9164-2013; Kobychev, Vladislav/B-3322-2008; Galbiati, Cristiano/I-7487-2012; OI Ortica, Fausto/0000-0001-8276-452X; Razeto, Alessandro/0000-0002-0578-097X; Pallavicini, Marco/0000-0001-7309-3023; Ranucci, Gioacchino/0000-0002-3591-8191; Fiorillo, Giuliana/0000-0002-6916-6776; Romani, Aldo/0000-0002-7338-0097; DAngelo, Davide/0000-0001-9857-8107; Kobychev, Vladislav/0000-0003-0030-7451; Galbiati, Cristiano/0000-0002-2409-502X; Derbin, Alexander/0000-0002-4351-2255; Zhong, Weili/0000-0002-4566-5490; Brodsky, Jason/0000-0002-7498-6461; Xu, Jingke/0000-0001-8084-5609; Drachnev, Ilia/0000-0002-4064-8093; Unzhakov, Evgeniy/0000-0003-2952-6412; Westerdale, Shawn/0000-0001-8824-6205; Ludhova, Livia/0000-0002-3875-0590; Rossi, Nicola/0000-0002-7046-528X FU NSF (US) [PHY-0919363, PHY-1004072]; DOE (US) [DE-FG02-91ER40671, DE-AC02-07CH11359]; Istituto Nazionale di Fisica Nucleare (Italy) FX We acknowledge support from the NSF (US, Grants PHY-0919363, PHY-1004072, and associated collaborative Grants), DOE (US, Contract Nos. DE-FG02-91ER40671 and DE-AC02-07CH11359), and the Istituto Nazionale di Fisica Nucleare (Italy). NR 26 TC 18 Z9 18 U1 1 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD SEP PY 2013 VL 49 BP 44 EP 51 DI 10.1016/j.astropartphys.2013.08.004 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 239EZ UT WOS:000326006700005 ER PT J AU Aramaki, T Chan, SK Craig, WW Fabris, L Gahbauer, F Hailey, CJ Koglin, JE Madden, N Mori, K Yu, HT Ziock, KP AF Aramaki, T. Chan, S. K. Craig, W. W. Fabris, L. Gahbauer, F. Hailey, C. J. Koglin, J. E. Madden, N. Mori, K. Yu, H. T. Ziock, K. P. TI A measurement of atomic X-ray yields in exotic atoms and implications for an antideuteron-based dark matter search SO ASTROPARTICLE PHYSICS LA English DT Article DE Dark matter; Antiparticle; Antideuteron; Exotic atom; GAPS ID OPTICAL-MODEL ANALYSIS; CASCADE; ELEMENTS AB The General AntiParticle Spectrometer (GAPS) is a novel approach for the indirect dark matter search that exploits cosmic antideuterons. GAPS utilizes a distinctive detection method using atomic X-rays and charged particles from the exotic atom as well as the timing, stopping range and dE/dX energy deposit of the incoming particle, which provides excellent antideuteron identification. In anticipation of a future balloon experiment, an accelerator test was conducted in 2004 and 2005 at KEK, Japan, in order to prove the concept and to precisely measure the X-ray yields of antiprotonic exotic atoms formed with different target materials [1]. The X-ray yields of the exotic atoms with Al and S targets were obtained as 75%, which are higher than were previously assumed in [2]. A simple, but comprehensive cascade model has been developed not only to evaluate the measurement results but also to predict the X-ray yields of the exotic atoms formed with any materials in the GAPS instrument. The cascade model is extendable to any kind of exotic atom (any negatively charged cascading particles with any target materials), and it was compared and validated with other experimental data and cascade models for muonic and antiprotonic exotic atoms. The X-ray yields of the antideuteronic exotic atoms are predicted with a simple cascade model and the sensitivity for the GAPS antideuteron search was estimated for the proposed long duration balloon program [3], which suggests that GAPS has a strong potential to detect antideuterons as a dark matter signature. A GAPS prototype flight (pGAPS) was launched successfully from the JAXA/ISAS balloon facility in Hokkaido, Japan in summer 2012 [4,5] and a proposed GAPS science flight is to fly from Antarctica in the austral summer of 2017-2018. (C) 2013 Elsevier B.V. All rights reserved. C1 [Aramaki, T.; Chan, S. K.; Gahbauer, F.; Hailey, C. J.; Koglin, J. E.; Mori, K.; Yu, H. T.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Craig, W. W.; Fabris, L.; Madden, N.; Ziock, K. P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Aramaki, T (reprint author), Columbia Univ, Columbia Astrophys Lab, 538 W 120th St, New York, NY 10027 USA. EM tsuguo@astro.columbia.edu RI Gahbauer, Florian/J-9542-2014; Fabris, Lorenzo/E-4653-2013 OI Gahbauer, Florian/0000-0002-7126-2513; Fabris, Lorenzo/0000-0001-5605-5615 FU NASA SRT grant [NAG5-5393] FX We would like to thank J. Collins and the electronics shop staff at LLNL for the development and construction of the GAPS electronics, and T. Decker, R. Hill and G. Tajiri for mechanical engineering support. We would also like to thank T Koike for the helpful discussion on the cascade model. We gratefully acknowledge the support of M. Ieiri and the KEK staff, and J. Jou before and during the accelerator experiments. This work was supported in part by a NASA SR&T grant, NAG5-5393. NR 29 TC 3 Z9 3 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD SEP PY 2013 VL 49 BP 52 EP 62 DI 10.1016/j.astropartphys.2013.08.003 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 239EZ UT WOS:000326006700006 ER PT J AU Musselwhite, N Alayoglu, S Melaet, G Pushkarev, VV Lindeman, AE An, K Somorjai, GA AF Musselwhite, Nathan Alayoglu, Selim Melaet, Gerome Pushkarev, Vladimir V. Lindeman, Avery E. An, Kwangjin Somorjai, Gabor A. TI Isomerization of n-Hexane Catalyzed by Supported Monodisperse PtRh Bimetallic Nanoparticles SO CATALYSIS LETTERS LA English DT Article DE Reforming; Heterogeneous catalysis; Hexane isomerization; PtRh bimetallic; Ensemble effect; Size effect AB Composition and size of PtxRh1-x bimetallic nanoparticles were varied in order to study the effects in the catalytic reforming of n-hexane. Hexane isomerization, an analogue to the important industrial process of hydrocarbon reforming is a reaction in which we aim to investigate the molecular level details of catalysis. It is known, that in hydrocarbon isomerization, Pt atoms act to isomerize the reactants, while small amounts of "promoter metal" atoms (such as Rh, Ir, Re and Sn) provide C-C and C-H bond breaking activity. Herein, we report on the effect of composition and size in model bimetallic PtxRh1-x nanoparticle catalysts utilized in n-hexane reforming. Both nanoparticle composition and size were shown to influence catalytic turnover frequency and product selectivity. It was found, through ambient pressure X-ray photoelectron spectroscopy, that the surface of these nanoparticles is both dynamic, and Rh rich under relevant reaction conditions. The findings suggest that an ensemble effect exists, in which the highest isomer production occurs when Rh atoms are surrounded by Pt atoms on the metal surface. C1 [Musselwhite, Nathan; Alayoglu, Selim; Melaet, Gerome; Lindeman, Avery E.; An, Kwangjin; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Musselwhite, Nathan; Alayoglu, Selim; Melaet, Gerome; Pushkarev, Vladimir V.; Lindeman, Avery E.; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu RI Melaet, Gerome/N-4879-2015; Foundry, Molecular/G-9968-2014 OI Melaet, Gerome/0000-0003-1414-1683; FU Chevron Energy Technology Company; Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geological and Biosciences of the US DOE [DE-AC02-05CH11231]; National Center for Electron Microscopy, Lawrence Berkeley Lab; U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, Division of Material Sciences and Engineering, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work is funded by The Chevron Energy Technology Company. We acknowledge support from the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geological and Biosciences of the US DOE under contract DE-AC02-05CH11231. The authors acknowledge support of the National Center for Electron Microscopy, Lawrence Berkeley Lab, which is supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Work at the Molecular Foundry was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Material Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 8 TC 8 Z9 8 U1 4 U2 43 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X EI 1572-879X J9 CATAL LETT JI Catal. Lett. PD SEP PY 2013 VL 143 IS 9 BP 907 EP 911 DI 10.1007/s10562-013-1068-5 PG 5 WC Chemistry, Physical SC Chemistry GA 235BD UT WOS:000325688500007 ER PT J AU Bauer, JC Mullins, DR Oyola, Y Overbury, SH Dai, S AF Bauer, J. Chris Mullins, David R. Oyola, Yatsandra Overbury, Steven H. Dai, Sheng TI Structure Activity Relationships of Silica Supported AuCu and AuCuPd Alloy Catalysts for the Oxidation of CO SO CATALYSIS LETTERS LA English DT Article DE Heterogeneous catalysis; EXAFS; XRD; Nanoparticles; CO oxidation ID RAY-ABSORPTION SPECTROSCOPY; GOLD-COPPER NANOPARTICLES; OXYGEN REDUCTION REACTION; LOW-TEMPERATURE OXIDATION; SOLVENT-FREE OXIDATION; NANOCRYSTALS; CLUSTERS; SITES; ADSORPTION; KINETICS AB Supported AuCu and AuCuPd catalysts were synthesized through the diffusion of Pd and Cu into Au nanoparticle seeds. When supported on SiO2, the AuCuPd nanoparticles were found to be the most active for the oxidation of CO after being exposed to reductive pretreatment conditions as opposed to oxidative pretreatment conditions. In contrast, AuCu/SiO2 was found to be more active for CO oxidation after the alloy phase was segregated into a Au-CuOx heterostructure. In situ XRD and EXAFS were used to monitor the structural changes of AuCu and AuCuPd catalysts as they were subjected to different pretreatment conditions. C1 [Bauer, J. Chris; Mullins, David R.; Oyola, Yatsandra; Overbury, Steven H.; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Overbury, Steven H.; Dai, Sheng] Ctr Nanophase Mat Sci, Oak Ridge, TN USA. [Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Bauer, JC (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM chris.bauer@evonik.com RI Overbury, Steven/C-5108-2016; Dai, Sheng/K-8411-2015 OI Overbury, Steven/0000-0002-5137-3961; Dai, Sheng/0000-0002-8046-3931 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725]; Oak Ridge National Laboratory; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Synchrotron Catalysis Consortium [DE-FG02-05ER15688]; Scientific User Facilities Division, U.S. Department of Energy FX The research was sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC05-00OR22725 with Oak Ridge National Laboratory managed and operated by UT-Battelle, LLC. EXAFS experiments were conducted at the National Synchrotron Light Source, Brookhaven National Laboratory, supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886 with additional support through the Synchrotron Catalysis Consortium under grant DE-FG02-05ER15688. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, U.S. Department of Energy. NR 40 TC 8 Z9 8 U1 4 U2 86 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X EI 1572-879X J9 CATAL LETT JI Catal. Lett. PD SEP PY 2013 VL 143 IS 9 BP 926 EP 935 DI 10.1007/s10562-013-1075-6 PG 10 WC Chemistry, Physical SC Chemistry GA 235BD UT WOS:000325688500010 ER PT J AU Giani, A Bitar, E Garcia, M McQueen, M Khargonekar, P Poolla, K AF Giani, Annarita Bitar, Eilyan Garcia, Manuel McQueen, Miles Khargonekar, Pramod Poolla, Kameshwar TI Smart Grid Data Integrity Attacks SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Cybersecurity; integrity attacks; observability; smart grid; synchro-phasors ID BAD DATA DETECTION; STATE ESTIMATION; IDENTIFICATION; OBSERVABILITY; ALGORITHMS; PLACEMENT; SECURITY AB Real power injections at loads and generators, and real power flows on selected lines in a transmission network are monitored and transmitted over a SCADA network to the system operator. These are used in state estimation algorithms to make dispatch, re-balance and other energy management system [EMS] decisions. Coordinated cyber attacks on power meter readings can be designed to be undetectable by any bad data detection algorithm. These unobservable attacks present a serious threat to grid operations. Of particular interest are sparse attacks that involve the compromise of a modest number of meter readings. An efficient algorithm to find all unobservable attacks [under standard DC load flow approximations] involving the compromise of exactly two power injection meters and an arbitrary number of power meters on lines is presented. This requires O(n(2)m) flops for a power system with buses and line meters. If all lines are metered, there exist canonical forms that characterize all 3, 4, and 5-sparse unobservable attacks. These can be quickly detected with O(n(2)) flops using standard graph algorithms. Known-secure phasor measurement units [PMUs] can be used as countermeasures against a given collection of cyber attacks. Finding the minimum number of necessary PMUs is NP-hard. It is shown that p + 1 PMUs at carefully chosen buses are sufficient to neutralize a collection of cyber attacks. C1 [Giani, Annarita] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Bitar, Eilyan] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14850 USA. [Garcia, Manuel] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [McQueen, Miles] Idaho Natl Lab, Idaho Falls, ID 83401 USA. [Khargonekar, Pramod] Univ Florida, Dept Elect Engn, Gainesville, FL 32611 USA. [Poolla, Kameshwar] Univ Calif Berkeley, Dept Elect & Comp Engn, Berkeley, CA 94720 USA. RP Giani, A (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. OI Khargonekar, Pramod/0000-0001-6634-6950 FU EPRI; CERTS [09-206]; PSERC [S-52]; NSF [EECS-1129061/9001, CPS-1239178, CNS-1239274/9467/9178]; Republic of Singapores National Research Foundation; Florida Energy Systems Consortium; University of Florida; Robert Bosch LLC through Bosch Energy Research Network funding program; U.S. Department of Energy through INL/LANL/LDRD/CNLS FX This work was supported in part by EPRI and CERTS under sub-award 09-206; PSERC S-52, in part by the NSF under Grants EECS-1129061/9001, CPS-1239178, and CNS-1239274/9467/9178, in part by the Republic of Singapores National Research Foundation through a grant to the Berkeley Education Alliance for Research in Singapore for the SinBerBEST Program, in part by the Florida Energy Systems Consortium, the Eckis Professor endowment at the University of Florida, in part by Robert Bosch LLC through its Bosch Energy Research Network funding program, and in part by the U.S. Department of Energy through the INL/LANL/LDRD/CNLS Programs. NR 35 TC 37 Z9 39 U1 1 U2 33 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD SEP PY 2013 VL 4 IS 3 BP 1244 EP 1253 DI 10.1109/TSG.2013.2245155 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA 232IX UT WOS:000325488200003 ER PT J AU Chen, C Wang, JH Heo, Y Kishore, S AF Chen, Chen Wang, Jianhui Heo, Yeonsook Kishore, Shalinee TI MPC-Based Appliance Scheduling for Residential Building Energy Management Controller SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Building; energy management controller; MPC; optimization ID MODELS; ARIMA AB This paper proposes an appliance scheduling scheme for residential building energy management controllers, by taking advantage of the time-varying retail pricing enabled by the two-way communication infrastructure of the smart grid. Finite-horizon scheduling optimization problems are formulated to exploit operational flexibilities of thermal and non-thermal appliances using a model predictive control (MPC) method which incorporates both forecasts and newly updated information. For thermal appliance scheduling, the thermal mass of the building, which serves as thermal storage, is integrated into the optimization problem by modeling the thermodynamics of rooms in a building as constraints. Within the comfort range modeled by the predicted mean vote (PMV) index, thermal appliances are scheduled smartly together with thermal mass storage to hedge against high prices and make use of low-price time periods. For non-thermal appliance scheduling, in which delay and/or power consumption flexibilities are available, operation dependence of inter-appliance and intra-appliance is modeled to further exploit the price variation. Simulation results show that customers have notable energy cost savings on their electricity bills with time-varying pricing. The impact of customers' preferences of appliances usage on energy cost savings is also evaluated. C1 [Chen, Chen; Kishore, Shalinee] Lehigh Univ, Dept Elect & Comp Engn, Bethlehem, PA 18015 USA. [Wang, Jianhui; Heo, Yeonsook] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. RP Chen, C (reprint author), Lehigh Univ, Dept Elect & Comp Engn, Bethlehem, PA 18015 USA. EM cchen@lehigh.edu; jianhui.wang@anl.gov; yheo@anl.gov; skishore@lehigh.edu FU [DE-AC02-06CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (Argonne). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. NR 24 TC 46 Z9 48 U1 5 U2 22 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD SEP PY 2013 VL 4 IS 3 BP 1401 EP 1410 DI 10.1109/TSG.2013.2265239 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA 232IX UT WOS:000325488200020 ER PT J AU Bulaevskii, LN Lin, SZ AF Bulaevskii, L. N. Lin, S. -Z. TI Polaron-like vortices, dissociation transition, and self-induced pinning in magnetic superconductors SO JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS LA English DT Article ID MANGANESE ALLOYS; VORTEX LATTICE; SPIN-GLASSES; ERNI2B2C; STATE; COEXISTENCE; CHAIN; BOROCARBIDES; ANISOTROPY; COMPOUND AB Vortices in magnetic superconductors polarize spins nonuniformly and repolarize them when moving. At a low spin relaxation rate and at low bias currents, vortices carrying magnetic polarization clouds become polaron-like and their velocities are determined by the effective drag coefficient that is significantly bigger than the Bardeen-Stephen (BS) one. As the current increases, vortices release polarization clouds and the velocity as well as the voltage in the I-V characteristics jump to values corresponding to the BS drag coefficient at a critical current J (c) . The nonuniform components of the magnetic field and magnetization drop as the velocity increases, resulting in weaker polarization and a discontinuous dynamic dissociation depinning transition. Experimentally, the jump shows up as a depinning transition and the corresponding current at the jump is the depinning current. As the current decreases, on the way back, vortices are retrapped by polarization clouds at the current J (r) < J (c) . As a result, the polaronic effect suppresses dissipation and enhances the critical current. Borocarbides (RE)Ni2B2C with a short penetration length and highly polarizable rare earth spins seem to be optimal systems for a detailed study of vortex polaron formation by measuring I-V characteristics. We also propose to use a superconductor-magnet multilayer structure to study polaronic mechanism of pinning with the goal to achieve high critical currents. The magnetic layers should have large magnetic susceptibility to enhance the coupling between vortices and magnetization in magnetic layers while the relaxation of the magnetization should be slow. For Nb and a proper magnet multilayer structure, we estimate the critical current density J (c) similar to 10(9) A/m(2) at the magnetic field B a parts per thousand 1 T. C1 [Bulaevskii, L. N.; Lin, S. -Z.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Bulaevskii, LN (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM lnb@lanl.gov RI Lin, Shi-Zeng/B-2906-2008 OI Lin, Shi-Zeng/0000-0002-4368-5244 FU Los Alamos Laboratory Directed Research and Development Program [20110138ER] FX The authors thank P. Canfield, C. D. Batista, V. Kogan, V. Vinokur, D. Smith, A. Saxena, L. Civale, and B. Maiorov for the helpful discussions. This publication was made possible by funding from the Los Alamos Laboratory Directed Research and Development Program, project number 20110138ER. NR 47 TC 0 Z9 0 U1 2 U2 7 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7761 EI 1090-6509 J9 J EXP THEOR PHYS+ JI J. Exp. Theor. Phys. PD SEP PY 2013 VL 117 IS 3 BP 407 EP 417 DI 10.1134/S1063776113110071 PG 11 WC Physics, Multidisciplinary SC Physics GA 235HZ UT WOS:000325709500004 ER PT J AU Koshelev, AE Dodgson, MJW AF Koshelev, A. E. Dodgson, M. J. W. TI Josephson vortex lattice in layered superconductors SO JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS LA English DT Article ID PARALLEL MAGNETIC-FIELDS; HIGH-TC SUPERCONDUCTORS; O COMPOUND SYSTEM; SINGLE-CRYSTALS; ANISOTROPIC SUPERCONDUCTORS; FLUX LATTICES; TRANSITION; VORTICES; PHASE; OSCILLATIONS AB Many superconducting materials are composed of weakly coupled conducting layers. Such a layered structure has a very strong influence on the properties of vortex matter in a magnetic field. This review focuses on the properties of the Josephson vortex lattice generated by the magnetic field applied in the direction of the layers. The theoretical description is based on the Lawrence-Doniach model in the London limit, which takes only the phase degree of freedom of the superconducting order parameter into account. In spite of its simplicity, this model leads to an amazingly rich set of phenomena. We review in detail the structure of an isolated vortex line and various properties of the vortex lattice, in both dilute and dense limits. In particular, we extensively discuss the influence of the layered structure and thermal fluctuations on the selection of lattice configurations at different magnetic fields. C1 [Koshelev, A. E.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Dodgson, M. J. W.] Cavendish Lab, Condensed Matter Theory Grp, Cambridge CB3 OHE, England. Univ Neuchatel, Inst Phys, CH-2000 Neuchatel, Switzerland. UCL, Dept Phys & Astron, London WC1E 6BT, England. RP Koshelev, AE (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM koshelev@anl.gov RI Koshelev, Alexei/K-3971-2013 OI Koshelev, Alexei/0000-0002-1167-5906 FU UChicago Argonne, LLC, operator of Argonne National Laboratory, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX A. E. K. would like to thank L. N. Bulaevskii, M. Tachiki, and X. Hu for many useful discussions of theoretical issues and Yu. I. Latyshev, I. Kakeya, T. Hatano, S. Bending, V. K. Vlasko-Vlasov, A. Tonomura, and A. A. Zhukov for the discussions of relevant experimental data. A. E. K. is supported by UChicago Argonne, LLC, operator of Argonne National Laboratory, a U.S. Department of Energy Office of Science laboratory, operated under contract No. DE-AC02-06CH11357. NR 82 TC 4 Z9 4 U1 0 U2 14 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7761 EI 1090-6509 J9 J EXP THEOR PHYS+ JI J. Exp. Theor. Phys. PD SEP PY 2013 VL 117 IS 3 BP 449 EP 479 DI 10.1134/S1063776113110125 PG 31 WC Physics, Multidisciplinary SC Physics GA 235HZ UT WOS:000325709500007 ER PT J AU Matveev, KA AF Matveev, K. A. TI Equilibration of a one-dimensional quantum liquid SO JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS LA English DT Article ID MANY-FERMION SYSTEM; LUTTINGER-LIQUID; ELECTRON-GAS; QUANTIZED CONDUCTANCE; POINT CONTACTS; MODEL; TRANSPORT; 1D AB We review some of the recent results on equilibration of one-dimensional quantum liquids. The low-energy properties of these systems are described by the Luttinger liquid theory, in which the excitations are bosonic quasiparticles. At low temperatures, the relaxation of the gas of excitations toward full equilibrium is exponentially slow. In electronic Luttinger liquids, these relaxation processes involve backscattering of electrons and give rise to interesting corrections to the transport properties of one-dimensional conductors. We focus on the phenomenological theory of the equilibration of a quantum liquid and obtain an expression for the relaxation rate in terms of the excitation spectrum. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Matveev, KA (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM matveev@anl.gov FU UChicago Argonne, LLC [DE-AC02-06CH11357] FX The author is grateful to A. V. Andreev and A. Furusaki for discussions and to RIKEN for kind hospitality. This work was supported by UChicago Argonne, LLC, under contract No. DE-AC02-06CH11357. NR 45 TC 5 Z9 5 U1 0 U2 3 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7761 EI 1090-6509 J9 J EXP THEOR PHYS+ JI J. Exp. Theor. Phys. PD SEP PY 2013 VL 117 IS 3 BP 508 EP 516 DI 10.1134/S1063776113110137 PG 9 WC Physics, Multidisciplinary SC Physics GA 235HZ UT WOS:000325709500011 ER PT J AU Birn, J Nakamura, R Hesse, M AF Birn, J. Nakamura, R. Hesse, M. TI On the propagation of blobs in the magnetotail: MHD simulations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE blobs; entropy enhancement; magnetotail dynamics ID BURSTY BULK FLOWS; CENTRAL PLASMA SHEET; AURORAL STREAMERS; MAGNETIC RECONNECTION; THERMAL CATASTROPHE; FLUX TUBES; SUBSTORMS; TAIL; INTENSIFICATIONS; INSTABILITY AB Using three-dimensional magnetohydrodynamic (MHD) simulations of the magnetotail, we investigate the fate of entropy-enhanced localized magnetic flux tubes (blobs). Such flux tubes may be the result of a slippage process that also generates entropy-depleted flux tubes (bubbles) or of a rapid localized energy increase, for instance, from wave absorption. We confirm the expectation that the entropy enhancement leads to a tailward motion and that the speed and distance traveled into the tail increase with the entropy enhancement, even though the blobs tend to break up into pieces. The vorticity on the outside of the blobs twists the magnetic field and generates field-aligned currents predominantly of region-2 sense (earthward on the dusk side and tailward on the dawn side), which might provide a possibility for remote identification from the ground. The breakup, however, leads to more turbulent flow patterns, associated with opposite vorticity and the generation of region-1 sense field-aligned currents of lower intensity but approximately equal integrated magnitude. C1 [Birn, J.] Space Sci Inst, Boulder, CO 80301 USA. [Birn, J.] Los Alamos Natl Lab, Los Alamos, NM USA. [Nakamura, R.] Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria. [Hesse, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Birn, J (reprint author), Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA. EM jbirn@lanl.gov RI Nakamura, Rumi/I-7712-2013; feggans, john/F-5370-2012; NASA MMS, Science Team/J-5393-2013 OI Nakamura, Rumi/0000-0002-2620-9211; NASA MMS, Science Team/0000-0002-9504-5214 FU US Department of Energy Los Alamos; NSF at Los Alamos; NASA at Los Alamos FX This work was performed mainly at Los Alamos under the auspices of the US Department of Energy, supported by NSF's GEM and NASA's MMS/SMART Theory and Modeling and SR&T Programs. We thank both referees for stimulating "minor" comments and questions. NR 39 TC 4 Z9 4 U1 0 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD SEP PY 2013 VL 118 IS 9 BP 5497 EP 5505 DI 10.1002/jgra.50521 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 232HN UT WOS:000325483800010 ER PT J AU Yu, YQ Ridley, AJ AF Yu, Yiqun Ridley, Aaron J. TI Exploring the influence of ionospheric O+ outflow on magnetospheric dynamics: The effect of outflow intensity SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE ionospheric outflow; Kelvin Helmholtz instability; magnetospheric dynamics; solar wind-magnetosphere coupling ID KELVIN-HELMHOLTZ VORTICES; SOLAR-WIND; ART.; MAGNETOPAUSE; DEPENDENCE; TRANSPORT; SHEET; MODEL; IONS; CODE AB The ionospheric O+ outflow varies dramatically during geomagnetic activities, but the influence of its initial characteristics on the magnetospheric dynamics has not been well established. To expand a previous study on the impact of ionospheric heavy ions outflow originating from different source regions on the magnetotail dynamics and dayside reconnection rate, this study conducts two idealized numerical experiments with different O+ outflow densities to examine the consequent change in the magnetosphere system, especially on the solar wind-magnetosphere coupling efficiency. Results indicate that a larger O+ outflow is capable of triggering the Kelvin-Helmholtz instability (KHI) on the magnetopause flanks. The subsequent surface waves enhance the solar wind-magnetosphere coupling efficiency by transmitting more solar wind energy into the magnetosphere-ionosphere system, increasing the cross polar cap potential index. This index is initially reduced after the ionospheric mass loading owing to the direct depression in the dayside reconnection rate as commonly reported from earlier literature. The above KHI is generated under steady state solar wind conditions, suggesting that besides the commonly recognized cause, the elevated solar wind speed, ionospheric heavy ions outflow is another potential factor in disturbing the boundary by enhancing the mass density near the magnetopause and thus lowering the threshold for generating KHI. During storms, the increased ionospheric mass source causes an increased probability of KHI, which allows more solar wind plasma into the magnetosphere. This implies there is a possibility of even further nonlinear coupling between the magnetosphere and solar wind. C1 [Yu, Yiqun] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ridley, Aaron J.] Univ Michigan, Ctr Space Environm Modeling, Ann Arbor, MI 48109 USA. RP Yu, YQ (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM yiqun@lanl.gov RI Yu, Yiqun/E-2710-2012; Ridley, Aaron/F-3943-2011 OI Yu, Yiqun/0000-0002-1013-6505; Ridley, Aaron/0000-0001-6933-8534 FU NSF at UM [ATM0639336, ANT0838828]; DoD [FA95550-07-1-0434]; U. S. Department of Energy through the Los Alamos National Laboratory/Laboratory Directed Research and Development (LDRD) program at LANL FX The work at UM was supported by NSF ATM0639336, ANT0838828, and DoD FA95550-07-1-0434, and the work at LANL was supported by the U. S. Department of Energy through the Los Alamos National Laboratory/Laboratory Directed Research and Development (LDRD) program. NR 44 TC 8 Z9 8 U1 2 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD SEP PY 2013 VL 118 IS 9 BP 5522 EP 5531 DI 10.1002/jgra.50528 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 232HN UT WOS:000325483800012 ER PT J AU Borovsky, JE Denton, MH Denton, RE Jordanova, VK Krall, J AF Borovsky, Joseph E. Denton, Michael H. Denton, Richard E. Jordanova, Vania K. Krall, Jonathan TI Estimating the effects of ionospheric plasma on solar wind/magnetosphere coupling via mass loading of dayside reconnection: Ion-plasma-sheet oxygen, plasmaspheric drainage plumes, and the plasma cloak SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE reconnection; plasmasphere; plasma sheet; cloak; solar-wind; magnetosphere coupling ID COORDINATED MODELING CENTER; GEOSYNCHRONOUS ORBIT; MAGNETIC RECONNECTION; RING CURRENT; GEOMAGNETIC STORMS; LATITUDE IONOSPHERE; AURORAL IONOSPHERE; OUTER PLASMASPHERE; THERMAL PLASMA; DRIVEN STORMS AB Estimates are calculated for the storm time reduction of solar wind/magnetosphere coupling by the mass density (m) of the magnetospheric plasma. Based on the application of the Cassak-Shay reconnection-rate formula at the dayside magnetopause, a numerical factor M is developed to quantify the effect of (m) on the dayside reconnection rate. It is argued that the mass loading of dayside reconnection by (m) also makes reconnection more susceptible to shutoff by magnetosheath velocity shear: a formula is developed to estimate the shortening of the dayside reconnection X-line by (m). Surveys of plasmaspheric drainage plumes at geosynchronous orbit during high-speed-stream-driven storms and coronal mass ejection (CME)-driven storms are presented: in the surveys the CME-driven storms are separated into sheath-driven portions and magnetic-cloud-driven portions. The storm time mass density of the warm plasma cloak (ionospheric outflows into the electron plasma sheet) is obtained from Alfven-wave analysis at geosynchronous orbit. A methodology is developed to extrapolate geosynchronous-orbit plasma measurements to the dayside magnetopause. For each of the three plasmas, estimates of the fractional reduction of the total dayside reconnection rate vary, with typical values of tens of percent; i.e., solar wind/magnetosphere coupling is reduced by tens of percent during storms by oxygen in the ion plasma sheet, by the plasmaspheric drainage plume, and by the plasma cloak. Dependence of the reduction on the F-10.7 solar radio flux is anticipated. Via these ionospheric-origin plasmas, the magnetosphere can exert some control over solar wind/magnetosphere coupling. Pathways to gain a fuller understanding of the physics of the solar wind-driven magnetosphere-ionosphere system are discussed. C1 [Borovsky, Joseph E.; Denton, Michael H.] Space Sci Inst, Boulder, CO 80301 USA. [Borovsky, Joseph E.] Univ Michigan, AOSS, Ann Arbor, MI 48109 USA. [Borovsky, Joseph E.; Denton, Michael H.] Univ Lancaster, Dept Phys, Lancaster, England. [Denton, Richard E.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Jordanova, Vania K.] Los Alamos Natl Lab, Los Alamos, NM USA. [Krall, Jonathan] Naval Res Lab, Washington, DC USA. RP Borovsky, JE (reprint author), Space Sci Inst, Boulder, CO 80301 USA. EM jborovsky@spacescience.org OI Denton, Michael/0000-0002-1748-3710; Jordanova, Vania/0000-0003-0475-8743 FU Space Science Institute by the NSF GEM Program; NASA CCMSM-24 Program; University of Michigan by the NASA Geospace SRT Program; NASA LWS TRT program; NASA Heliophysics Theory Program [NNX11AO59G] FX The authors wish to thank Joachim Birn, Paul Cassak, Benoit Lavraud, John Lyon, Antonius Otto, Lutz Rastatter, and Michelle Thomsen for their help and to thank Kazue Takahashi for the codevelopment of the GOES density data set. Global-MHD simulations were performed at the CCMC. This work was supported at Space Science Institute by the NSF GEM Program and the NASA CCMSM-24 Program and supported at the University of Michigan by the NASA Geospace SR&T Program. Work at Dartmouth College, Los Alamos National Laboratory, and Naval Research Laboratory was supported by the NASA LWS TR&T program. Work at Dartmouth College was also supported by the NASA Heliophysics Theory Program NNX11AO59G. NR 100 TC 18 Z9 18 U1 1 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD SEP PY 2013 VL 118 IS 9 BP 5695 EP 5719 DI 10.1002/jgra.50527 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 232HN UT WOS:000325483800026 ER PT J AU Nakamura, TKM Daughton, W Karimabadi, H Eriksson, S AF Nakamura, T. K. M. Daughton, W. Karimabadi, H. Eriksson, S. TI Three-dimensional dynamics of vortex-induced reconnection and comparison with THEMIS observations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE Kelvin-Helmholtz; magnetic reconnection; flux rope; kinetic simulation; three-dimensionality; THEMIS ID KELVIN-HELMHOLTZ INSTABILITY; LATITUDE BOUNDARY-LAYER; FLUX-TRANSFER EVENTS; MAGNETIC RECONNECTION; GEOTAIL OBSERVATIONS; MAGNETOSPHERIC BOUNDARY; COLLISIONLESS PLASMAS; MAGNETOTAIL BOUNDARY; MAGNETOPAUSE; SIMULATIONS AB The entry of solar wind into the magnetosphere is strongly influenced by kinetic-scale boundary layers where the rapid variation in the magnetic field and/or velocity can drive transport. In current layers with strong Alfvenic velocity shear, the generation of vortices from the Kelvin-Helmholtz instability can drive magnetic reconnection even in broader current sheets by locally compressing these layers as the vortices develop. Previous two-dimensional (2-D) fully kinetic simulations of this vortex-induced reconnection process have demonstrated the copious formation of magnetic islands in regions of strongly compressed current between the vortices. Here we describe the first three-dimensional (3-D) fully kinetic simulations of this process and demonstrate that the compressed current sheets give rise to magnetic flux ropes over a range of oblique angles and along the entire extent of the compressed current layer around the periphery of the vortex. These flux ropes propagate with the shear flow and eventually merge with the vortex. Over longer time scales, this basic scenario is repeated as the vortices drive new compressed current sheets. In the final stage, the vortices undergo a merging process that drives new compressed current sheets and flux ropes. Based on these simulations, a simple model is proposed that predicts the size of these flux ropes relative to their parent vortex. Both the relative sizes as well as the structure of the profiles across the vortex are in reasonable agreement with Time History of Events and Macroscale Interactions (THEMIS) observations at the Earth's low-latitude magnetopause. C1 [Nakamura, T. K. M.; Daughton, W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Karimabadi, H.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Karimabadi, H.] SciberQuest Inc, Del Mar, CA USA. [Eriksson, S.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. RP Nakamura, TKM (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM takuma@lanl.gov RI Daughton, William/L-9661-2013; OI Eriksson, Stefan/0000-0002-5619-1577 FU DOE through the LDRD program at LANL; DOE through the LDRD program at UCSD [DE-SC0004662]; NASA through the Heliophysics Theory and Geospace Science Programs; DOE [DE-AC05-00OR22725]; NASA at the University of Colorado at Boulder [NNX10AQ45G] FX We thank Dan Winske for fruitful discussions and valuable comments. We are grateful for the support from DOE through the LDRD program at LANL, and DE-SC0004662 grant at UCSD, and from NASA through the Heliophysics Theory and Geospace Science Programs. Simulations were performed on Jaguar at the National Center for Computational Sciences at ORNL, which is supported by DOE under contract DE-AC05-00OR22725 and with resources from the LANL institutional computing program. Some of the visualization and analysis were performed on Nautilus and Longhorn systems using ParaView and visualization software developed by the NICS RDAV group. We especially thank B. Loring for his help with visualization. Work by S. E. was supported by NASA grant NNX10AQ45G at the University of Colorado at Boulder. NR 54 TC 23 Z9 24 U1 2 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD SEP PY 2013 VL 118 IS 9 BP 5742 EP 5757 DI 10.1002/jgra.50547 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 232HN UT WOS:000325483800029 ER PT J AU Thomsen, MF Wilson, RJ Tokar, RL Reisenfeld, DB Jackman, CM AF Thomsen, M. F. Wilson, R. J. Tokar, R. L. Reisenfeld, D. B. Jackman, C. M. TI Cassini/CAPS observations of duskside tail dynamics at Saturn SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE Saturn; magnetosphere ID PLASMA SHEET BOUNDARY; JOVIAN MAGNETOSPHERE; ION; JUPITERS; FLOWS AB Plasma properties of Saturn's premidnight tail region are surveyed using Cassini/Cassini Plasma Spectrometer (CAPS) ion observations from 2010. Only low-latitude (|lat|<6 degrees) intervals in which the CAPS viewing was roughly symmetric inward and outward around the corotation direction are used. Our numerical moments algorithm returns nonzero ion density for 70% (999) of the intervals selected. Of these, 642 had detectable water-group ion densities, and the remainder were dominantly, if not entirely, light ions. The derived plasma parameters are similar to those found in an earlier study for the postmidnight tail region, except that we find little evidence for the systematic outflows identified in that study, and we do find numerous significant inflow events. One such inflow is identified as a dipolarization event, the first reported plasma properties of such a structure at Saturn. A second, long-lasting event may be evidence for the existence at times of a quasi-steady reconnection region in the premidnight tail. The large majority of the plasma flows are found to be within 20 degrees of the corotation direction, though with flow speeds significantly lower than full corotation. While the inflow events represent plausible evidence for internally driven mass loss in the premidnight region, the absence of significant outflow events suggests that in the region surveyed here, tail reconnection has not yet proceeded to involve lobe field lines, so the disconnected plasma continues its general motion in the corotation direction. C1 [Thomsen, M. F.; Tokar, R. L.] Planetary Sci Inst, Tucson, AZ USA. [Thomsen, M. F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Wilson, R. J.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Reisenfeld, D. B.] Univ Montana, Missoula, MT 59812 USA. [Jackman, C. M.] UCL, Dept Phys & Astron, London, England. [Jackman, C. M.] UCL Birkbeck, Ctr Planetary Sci, London, England. RP Thomsen, MF (reprint author), Los Alamos Natl Lab, MS D466, Los Alamos, NM 87545 USA. EM mthomsen@lanl.gov RI Wilson, Rob/C-2689-2009; Reisenfeld, Daniel/F-7614-2015; OI Wilson, Rob/0000-0001-9276-2368; Jackman, Caitriona/0000-0003-0635-7361 FU NASA Cassini program through JPL [1243218]; Southwest Research Institute; Royal Astronomical Society FX MFT and RLT appreciate the support they have received as guest scientists at Los Alamos National Laboratory. We are also grateful to Dot Delapp for producing the CAPS moments and viewing survey tools used in this study. Cassini MAG data used in Figures 9 and 10 were provided by the Planetary Data System (pds.nasa.gov). This work was supported by the NASA Cassini program through JPL contract 1243218 with Southwest Research Institute. The Cassini project is managed by the Jet Propulsion Laboratory for NASA. CMJ was supported by a Royal Astronomical Society Fellowship. NR 41 TC 22 Z9 22 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD SEP PY 2013 VL 118 IS 9 BP 5767 EP 5781 DI 10.1002/jgra.50552 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 232HN UT WOS:000325483800031 ER PT J AU Colestock, PL Close, S AF Colestock, P. L. Close, S. TI Reply to comment by I. Katz on "Electromagnetic pulses generated by meteoroid impacts on spacecraft" SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Editorial Material DE meteoroid; electromagnetic pulse ID COLLISIONLESS PLASMA; TAYLOR INSTABILITY; EXPANSION; VACUUM C1 [Colestock, P. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Close, S.] Stanford Univ, Dept Aeronaut & Astron, Stanford, CA 94305 USA. RP Colestock, PL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM colestock@lanl.gov NR 8 TC 0 Z9 0 U1 1 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD SEP PY 2013 VL 118 IS 9 BP 5806 EP 5806 DI 10.1002/jgra.50535 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 232HN UT WOS:000325483800036 ER PT J AU Blair, MW Muenchausen, RE Bennett, BL Smith, NA Warner, MG AF Blair, Michael W. Muenchausen, Ross E. Bennett, Bryan L. Smith, Nickolaus A. Warner, Marvin G. TI Correlated spin systems in undoped CdSe quantum dots SO JOURNAL OF NANOPARTICLE RESEARCH LA English DT Article DE EPR spectroscopy; Quantum dots; Electronic structure; Impurities ID DETECTED MAGNETIC-RESONANCE; ELECTRON-PARAMAGNETIC-RESONANCE; FLIP RAMAN-SCATTERING; SEMICONDUCTOR NANOCRYSTALS; LATTICE OSCILLATORS; SINGLE-ELECTRON; RELAXATION; YBRH2SI2; EXCHANGE; METALS AB The electronic properties of quantum dots have been studied extensively, and recent studies have explored various dopants that can alter electronic properties in quantum dots. Yet, we have found that impurities on the surface of nanometer-scale CdSe materials can also affect electronic properties. Specifically, nitrogen-based impurities on the surface of nanometer-scale CdSe materials (from similar to 4 to 15 nm) interact with the CdSe conduction electrons to yield an anti-ferromagnetic EPR signal at a high resonance field (g similar to 0.56) that has an inverse Dysonian line-shape. However, bulk CdSe particles do not show the same types of EPR signals. This paper will discuss these observations, explain the underlying phenomena, and discuss implications for future research. C1 [Blair, Michael W.; Muenchausen, Ross E.; Bennett, Bryan L.; Smith, Nickolaus A.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87544 USA. [Warner, Marvin G.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Blair, MW (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, POB 1663,MS E549, Los Alamos, NM 87544 USA. EM mblair@lanl.gov FU Basic Energy Sciences of the Office of science under FWP [06SCP1000] FX The Los Alamos authors would like to acknowledge funding from Basic Energy Sciences of the Office of science under FWP 06SCP1000. NR 56 TC 2 Z9 2 U1 0 U2 9 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1388-0764 EI 1572-896X J9 J NANOPART RES JI J. Nanopart. Res. PD SEP PY 2013 VL 15 IS 9 AR 1953 DI 10.1007/s11051-013-1953-2 PG 11 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 217PA UT WOS:000324370200077 ER PT J AU Mhin, S Cozzan, C Nittala, K Wanninkhof, P Ihlefeld, JF Brennecka, GL Jones, JL AF Mhin, Sungwook Cozzan, Clayton Nittala, Krishna Wanninkhof, Patrick Ihlefeld, Jon F. Brennecka, Geoff L. Jones, Jacob L. TI Effect of Switching Atmospheric Conditions during Crystallization on the Phase Evolution of Solution-Derived Lead Zirconate Titanate Thin Films SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID TIME TEXTURE TRANSITION; FLUORITE AB The crystallization behavior of solution-derived lead zirconate titanate (PZT) thin films in different atmospheric environments was studied using in situ X-ray diffraction. The stability of the transient intermetallic Pt3Pb phase and perovskite PZT is dependent on oxygen partial pressure during crystallization. Based on the relationship between oxygen partial pressure and the resultant phase stability of intermediate phases, a new route to produce PZT thin films was developed. The new route involves switching atmospheres during crystallization and is shown to mitigate the formation of the transient intermetallic Pt3Pb phase and to promote the perovskite PZT phase. The route evidences a new and significant variable controlling film synthesis and film microstructure. C1 [Mhin, Sungwook; Cozzan, Clayton; Nittala, Krishna; Wanninkhof, Patrick; Jones, Jacob L.] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. [Ihlefeld, Jon F.; Brennecka, Geoff L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Jones, JL (reprint author), Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. EM Jacob_Jones@ncsu.edu RI Ihlefeld, Jon/B-3117-2009; Brennecka, Geoff/J-9367-2012; OI Brennecka, Geoff/0000-0002-4476-7655; Cozzan, Clayton/0000-0003-3409-0377 FU NSF [DMR-1207293]; U.S. Department of the Army [W911NF-09-1-0435]; UF-Science for Life undergraduate award; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work is supported by NSF under DMR-1207293, the U.S. Department of the Army under W911NF-09-1-0435, and a UF-Science for Life undergraduate award. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 15 TC 6 Z9 6 U1 0 U2 16 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD SEP PY 2013 VL 96 IS 9 BP 2706 EP 2709 DI 10.1111/jace.12522 PG 4 WC Materials Science, Ceramics SC Materials Science GA 238GM UT WOS:000325932000006 ER PT J AU Gharagozloo, PE Kanouff, MP AF Gharagozloo, Patricia E. Kanouff, Michael P. TI Ionic Diffusion Oxidation Model of Uranium SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID PROTECTIVE OXIDE-FILMS; OXYGEN DIFFUSION; CHEMICAL DIFFUSION; ELECTRON-AFFINITY; DIOXIDE; KINETICS; UO2; METALS; TEMPERATURES; ADSORPTION AB A theory-driven model is formulated for the low-temperature oxidation of uranium exposed to oxygen. The model is based on diffusion of oxygen ions through the oxide film driven by the electrostatic potential generated between the metal and adsorbed oxygen ions. The model fits published experimental data well for temperatures between 20 degrees C and 200 degrees C and for oxide film thicknesses less than 300nm. The derived reaction rate coefficients for parabolic and inverse logarithmic growth regimes correspond well to the available published values and outperform the existing empirically derived forms. These reaction rate coefficients can be applied to the oxidation of any metal that is driven by the generated electrostatic potential. C1 [Gharagozloo, Patricia E.; Kanouff, Michael P.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Gharagozloo, PE (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM peghara@sandia.gov FU Advanced Simulation and Computing; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank co-workers Bernice E. Mills, Andrew D. Shugard, and Scott C. James for their feedback throughout the course of this work. The authors acknowledge the financial support from Advanced Simulation and Computing. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 59 TC 2 Z9 2 U1 2 U2 10 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD SEP PY 2013 VL 96 IS 9 BP 2943 EP 2949 DI 10.1111/jace.12496 PG 7 WC Materials Science, Ceramics SC Materials Science GA 238GM UT WOS:000325932000043 ER PT J AU Rodriguez, MA Garino, TJ Rademacher, DX Zhang, XY Nenoff, TM AF Rodriguez, Mark A. Garino, Terry J. Rademacher, David X. Zhang, Xiaoyi Nenoff, Tina M. TI The Synthesis of Ba- and Fe- Substituted CsAlSi2O6 Pollucites SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID HYDROTHERMAL SYNTHESIS; PHASE-TRANSITION; IMMOBILIZATION; STORAGE; NUCLEAR; CS AB Barium-substituted CsAlSi2O6 pollucites, CsxBa(1-x)/2AlSi2O6, and barium- and iron-substituted pollucites, CsxBa(1-x)/2AlxFe1-xSi2O6 and CsxBa1-xAlxFe1-xSi2O6 were synthesized with 1x0.7 using a hydrothermal synthesis procedure. Rietveld analysis of X-ray diffraction data confirmed the substitution of Ba for Cs and Fe for Al, respectively. The crystallographic analysis also describes the effects of three different types of pollucite substitutions on the pollucite unit cell: Ba2+ for Cs1+ cation results in little effect on cell dimensions, intermediate concentrations of Ba2+ and Fe3+ substitution result in net minor expansion due to Fe3+ addition, and large Ba and Fe substitutions result in overall framework contraction. Elemental analysis combined with microscopy further supports the phase purity of these new phases. These materials can be used to study the stability of CsAlSi2O6 as a durable ceramic waste form, which could accommodate with time Cs and its decay product, Ba. Furthermore, success in iron substitution for aluminum into the pollucite lattice predicts that redox charge compensation for Cs cation decay is possible. C1 [Rodriguez, Mark A.; Garino, Terry J.; Rademacher, David X.; Nenoff, Tina M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Zhang, Xiaoyi] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Nenoff, TM (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM tmnenof@sandia.gov FU DOE/NE-FCRD-Separations and Waste Forms Campaign; United States Department of Energy's National Nuclear Safety Administration [DE-AC04-94AL85000]; US DOE [DE-AC02-06CH11357] FX Funding provided by DOE/NE-FCRD-Separations and Waste Forms Campaign. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy's National Nuclear Safety Administration under Contract DE-AC04-94AL85000. Work done at Argonne and use of the Advanced Photon Source, an Office of Science User Facility operated for the US DOE/Office of Science by Argonne National Laboratory, was supported by the US DOE, Contract No. DE-AC02-06CH11357. NR 24 TC 6 Z9 6 U1 3 U2 15 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD SEP PY 2013 VL 96 IS 9 BP 2966 EP 2972 DI 10.1111/jace.12396 PG 7 WC Materials Science, Ceramics SC Materials Science GA 238GM UT WOS:000325932000046 ER PT J AU Shen, X Puzyrev, YS Pantelides, ST AF Shen, Xiao Puzyrev, Yevgeniy S. Pantelides, Sokrates T. TI Vacancy breathing by grain boundaries-a mechanism of memristive switching in polycrystalline oxides SO MRS COMMUNICATIONS LA English DT Article ID SYSTEMS AB It is widely believed that switching to the conductive state in memristive materials is triggered by the external field that drives defect dynamics. In polycrystalline materials, grain boundaries are further believed to cause switching by enabling faster defect motion. Here, we report a first-principle study of oxygen vacancy dynamics at a grain boundary (GB) in polycrystalline ZnO and show that switching to the conductive state is triggered by a recombination-enhanced motion of vacancies perpendicular to the GB. We call this mechanism the "breathing" trigger of memristive switching. C1 [Shen, Xiao; Puzyrev, Yevgeniy S.; Pantelides, Sokrates T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Pantelides, Sokrates T.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Pantelides, Sokrates T.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA. RP Shen, X (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. EM xiao.shen@vanderbilt.edu FU National Science Foundation [DMR-1207241]; McMinn Endowment at Vanderbilt University; NSF XSEDE [DMR130072] FX This work was supported by National Science Foundation grant DMR-1207241 and the McMinn Endowment at Vanderbilt University. Computational support was provided by the NSF XSEDE under Grant # DMR130072. NR 30 TC 4 Z9 4 U1 0 U2 17 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 2159-6859 EI 2159-6867 J9 MRS COMMUN JI MRS Commun. PD SEP PY 2013 VL 3 IS 3 BP 167 EP 170 DI 10.1557/mrc.2013.32 PG 4 WC Materials Science, Multidisciplinary SC Materials Science GA 227FF UT WOS:000325095100010 ER PT J AU Chen, XS Park, HR Pelton, M Piao, XJ Lindquist, NC Im, H Kim, YJ Ahn, JS Ahn, KJ Park, N Kim, DS Oh, SH AF Chen, Xiaoshu Park, Hyeong-Ryeol Pelton, Matthew Piao, Xianji Lindquist, Nathan C. Im, Hyungsoon Kim, Yun Jung Ahn, Jae Sung Ahn, Kwang Jun Park, Namkyoo Kim, Dai-Sik Oh, Sang-Hyun TI Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves SO NATURE COMMUNICATIONS LA English DT Article ID ENHANCED RAMAN-SPECTROSCOPY; OPTICAL-TRANSMISSION; PLASMONIC NANOGAP; FIELD ENHANCEMENT; LIGHT; GUIDES; DEPOSITION; APERTURES; QUANTUM; FILMS AB Squeezing light through nanometre-wide gaps in metals can lead to extreme field enhancements, nonlocal electromagnetic effects and light-induced electron tunnelling. This intriguing regime, however, has not been readily accessible to experimentalists because of the lack of reliable technology to fabricate uniform nanogaps with atomic-scale resolution and high throughput. Here we introduce a new patterning technology based on atomic layer deposition and simple adhesive-tape-based planarization. Using this method, we create vertically oriented gaps in opaque metal films along the entire contour of a millimetre-sized pattern, with gap widths as narrow as 9.9 angstrom, and pack 150,000 such devices on a 4-inch wafer. Electromagnetic waves pass exclusively through the nanogaps, enabling background-free transmission measurements. We observe resonant transmission of near-infrared waves through 1.1-nm-wide gaps (lambda/1,295) and measure an effective refractive index of 17.8. We also observe resonant transmission of millimetre waves through 1.1-nm-wide gaps (lambda/4,000,000) and infer an unprecedented field enhancement factor of 25,000. C1 [Chen, Xiaoshu; Lindquist, Nathan C.; Im, Hyungsoon; Oh, Sang-Hyun] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA. [Park, Hyeong-Ryeol; Ahn, Jae Sung; Ahn, Kwang Jun; Kim, Dai-Sik] Seoul Natl Univ, Ctr Subwavelength Opt, Seoul 151747, South Korea. [Park, Hyeong-Ryeol; Ahn, Jae Sung; Ahn, Kwang Jun; Kim, Dai-Sik] Seoul Natl Univ, Dept Phys & Astron, Seoul 151747, South Korea. [Pelton, Matthew] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Piao, Xianji; Kim, Yun Jung; Park, Namkyoo] Seoul Natl Univ, Photon Syst Lab, Sch EECS, Seoul 151744, South Korea. RP Kim, DS (reprint author), Seoul Natl Univ, Ctr Subwavelength Opt, Seoul 151747, South Korea. EM dsk@phya.snu.ac.kr; sang@umn.edu RI Im, Hyungsoon/A-3178-2009; Pelton, Matthew/H-7482-2013; OI Im, Hyungsoon/0000-0002-0626-1346; Pelton, Matthew/0000-0002-6370-8765; Park, Namkyoo/0000-0003-0197-7633 FU US Department of Defense (DARPA Young Faculty Award) [N66001-11-1-4152]; National Research Foundation of Korea [SRC 2008-0062255, GRL K20815000003, 2010-0029648, 20110019170]; National Science Foundation (NSF) through the National Nanotechnology Infrastructure Network program; NSF through the Materials Research Science and Engineering Center; Office of Naval Research Young Investigator Award [N00014-11-1-0645]; NSF CAREER Award [DBI 1054191]; Minnesota Partnership Award for Biotechnology; University of Minnesota Thesis Research Grant; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the US Department of Defense (DARPA Young Faculty Award N66001-11-1-4152; X. S. C., N.C.L., H. I. and S.H.O.) and the National Research Foundation of Korea (SRC 2008-0062255, GRL K20815000003, 2010-0029648, 20110019170; H.-R. P., J.S.A., K.J.A., D.-S.K. and GRL K20815000003; X. P., Y.J.K. and N.P.). Device fabrication was performed at the University of Minnesota Nanofabrication Center, which receives support from the National Science Foundation (NSF) through the National Nanotechnology Infrastructure Network program, and the Characterization Facility, which has received capital equipment funding from the NSF through the Materials Research Science and Engineering Center. S.-H.O. also acknowledges support from the Office of Naval Research Young Investigator Award (N00014-11-1-0645), the NSF CAREER Award (DBI 1054191) and the Minnesota Partnership Award for Biotechnology. H. I. acknowledges support from the University of Minnesota Thesis Research Grant. Use of the Center for Nanoscale Materials was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We thank Reuven Gordon and Sukmo Koo for their helpful comments and David Gosztola for his valuable assistance. NR 38 TC 79 Z9 80 U1 9 U2 100 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2013 VL 4 AR 2361 DI 10.1038/ncomms3361 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 232YP UT WOS:000325531000001 PM 23999053 ER PT J AU Hsieh, YC Zhang, Y Su, D Volkov, V Si, R Wu, LJ Zhu, YM An, W Liu, P He, P Ye, SY Adzic, RR Wang, JX AF Hsieh, Yu-Chi Zhang, Yu Su, Dong Volkov, Vyacheslav Si, Rui Wu, Lijun Zhu, Yimei An, Wei Liu, Ping He, Ping Ye, Siyu Adzic, Radoslav R. Wang, Jia X. TI Ordered bilayer ruthenium-platinum core-shell nanoparticles as carbon monoxide-tolerant fuel cell catalysts SO NATURE COMMUNICATIONS LA English DT Article ID AUGMENTED-WAVE METHOD; OXYGEN REDUCTION; PREFERENTIAL OXIDATION; HYDROGEN OXIDATION; RU NANOPARTICLES; PT-ALLOY; SURFACES; STRAIN; ELECTROCATALYSTS; PERFORMANCE AB Fabricating subnanometre-thick core-shell nanocatalysts is effective for obtaining high surface area of an active metal with tunable properties. The key to fully realize the potential of this approach is a reliable synthesis method to produce atomically ordered core-shell nanoparticles. Here we report new insights on eliminating lattice defects in core-shell syntheses and opportunities opened for achieving superior catalytic performance. Ordered structural transition from ruthenium hcp to platinum fcc stacking sequence at the core-shell interface is achieved via a green synthesis method, and is verified by X-ray diffraction and electron microscopic techniques coupled with density functional theory calculations. The single crystalline Ru cores with well-defined Pt bilayer shells resolve the dilemma in using a dissolution-prone metal, such as ruthenium, for alleviating the deactivating effect of carbon monoxide, opening the door for commercialization of low-temperature fuel cells that can use inexpensive reformates (H-2 with CO impurity) as the fuel. C1 [Hsieh, Yu-Chi; Zhang, Yu; Si, Rui; An, Wei; Liu, Ping; Adzic, Radoslav R.; Wang, Jia X.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Su, Dong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Volkov, Vyacheslav; Wu, Lijun; Zhu, Yimei] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [He, Ping; Ye, Siyu] Ballard Power Syst, Burnaby, BC V5J 5J8, Canada. RP Wang, JX (reprint author), Brookhaven Natl Lab, Dept Chem, Bldg 555, Upton, NY 11973 USA. EM jia@bnl.gov RI Wang, Jia/B-6346-2011; An, Wei/E-9270-2010; Su, Dong/A-8233-2013; OI An, Wei/0000-0002-0760-1357; Su, Dong/0000-0002-1921-6683; Hsieh, Yu-Chi/0000-0003-0823-6571; Zhang, Yu/0000-0002-0814-2965 FU Brookhaven National Laboratory (BNL) [DE-AC02-98CH10886]; US Department of Energy (DOE); DOE's Chemical Sciences, Geosciences and Biosciences Division; BNL's Technology Maturation Fund [10-09]; National Science Council of Taiwan [NSC-100-2917-I-009-009]; National Chiao Tung University [NSC-100-2917-I-009-009] FX This research was performed at Brookhaven National Laboratory (BNL) under contract DE-AC02-98CH10886 with the US Department of Energy (DOE). The catalyst development was funded by the DOE's Chemical Sciences, Geosciences and Biosciences Division and the BNL's Technology Maturation Fund (#10-09). The electron microscopic studies were carried out at the Center for Functional Nanomaterials (CFN) and Condensed Mater Physics and Materials Science Department. The X-ray diffractions were measured at the X7B beamline at the National Synchrotron Light Source. The DFT calculations utilized the computing facilities at the CFN. Y.-C.H. is grateful to National Science Council of Taiwan and National Chiao Tung University for the Study Abroad Scholarship (NSC-100-2917-I-009-009). NR 54 TC 55 Z9 55 U1 25 U2 221 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2013 VL 4 AR 2466 DI 10.1038/ncomms3466 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 232ZO UT WOS:000325533900013 PM 24045405 ER PT J AU Intravaia, F Koev, S Jung, IW Talin, AA Davids, PS Decca, RS Aksyuk, VA Dalvit, DAR Lopez, D AF Intravaia, Francesco Koev, Stephan Jung, Il Woong Talin, A. Alec Davids, Paul S. Decca, Ricardo S. Aksyuk, Vladimir A. Dalvit, Diego A. R. Lopez, Daniel TI Strong Casimir force reduction through metallic surface nanostructuring SO NATURE COMMUNICATIONS LA English DT Article ID MU-M; RANGE; SOLIDS AB The Casimir force between bodies in vacuum can be understood as arising from their interaction with an infinite number of fluctuating electromagnetic quantum vacuum modes, resulting in a complex dependence on the shape and material of the interacting objects. Becoming dominant at small separations, the force has a significant role in nanomechanics and object manipulation at the nanoscale, leading to a considerable interest in identifying structures where the Casimir interaction behaves significantly different from the well-known attractive force between parallel plates. Here we experimentally demonstrate that by nanostructuring one of the interacting metal surfaces at scales below the plasma wavelength, an unexpected regime in the Casimir force can be observed. Replacing a flat surface with a deep metallic lamellar grating with sub-100 nm features strongly suppresses the Casimir force and for large inter-surfaces separations reduces it beyond what would be expected by any existing theoretical prediction. C1 [Intravaia, Francesco; Dalvit, Diego A. R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Koev, Stephan; Talin, A. Alec; Aksyuk, Vladimir A.] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA. [Koev, Stephan] Univ Maryland, Maryland Nanoctr, College Pk, MD 20742 USA. [Jung, Il Woong; Lopez, Daniel] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Davids, Paul S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Decca, Ricardo S.] Indiana Univ Purdue Univ, Dept Phys, Indianapolis, IN 46202 USA. RP Lopez, D (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dlopez@anl.gov RI Intravaia, Francesco/E-6500-2010; OI Intravaia, Francesco/0000-0001-7993-4698; Aksyuk, Vladimir/0000-0002-9653-4722 FU DARPA/MTO Casimir Effect Enhancement program under DOE/NNSA [DE-AC52-06NA25396, DOE-DARPA MIPR 09-Y557]; IUPUI Nanoscale Imaging Center, Integrated Nanosystems Development Institute, Indiana University Collaborative Research Grants; Indiana University Center for Space Symmetries; Center for Nanoscale Materials, a US Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility [DE-AC02-06CH11357] FX We are grateful to R. Behunin, H.B. Chan, J.-J. Greffet, R. Guerout, S. Johnson, S. de Man, P. Milonni, J. Pendry, F. da Rosa and T. Kenny for discussions. The full description of the procedures used in this paper requires the identification of certain commercial products and their suppliers. The inclusion of such information should in no way be construed as indicating that such products or suppliers are endorsed by NIST or are recommended by NIST or that they are necessarily the best materials, instruments, software or suppliers for the purposes described. This work was partially supported by the DARPA/MTO Casimir Effect Enhancement program under DOE/NNSA Contract No. DE-AC52-06NA25396 and DOE-DARPA MIPR 09-Y557. R.S.D. acknowledges support from the IUPUI Nanoscale Imaging Center, Integrated Nanosystems Development Institute, Indiana University Collaborative Research Grants and the Indiana University Center for Space Symmetries. This work was performed, in part, at the Center for Nanoscale Materials, a US Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract No. DE-AC02-06CH11357. NR 38 TC 38 Z9 38 U1 2 U2 31 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2013 VL 4 AR 2515 DI 10.1038/ncomms3515 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 233AE UT WOS:000325535500001 PM 24071657 ER PT J AU Jacques, SDM Di Michiel, M Kimber, SAJ Yang, XH Cernik, RJ Beale, AM Billinge, SJL AF Jacques, Simon D. M. Di Michiel, Marco Kimber, Simon A. J. Yang, Xiaohao Cernik, Robert J. Beale, Andrew M. Billinge, Simon J. L. TI Pair distribution function computed tomography SO NATURE COMMUNICATIONS LA English DT Article ID ACTIVE PHASE EVOLUTION; MAGNETIC-RESONANCE; CATALYST BODIES; RAY; NANOPARTICLES; TIME; NANOSCIENCE; SYNCHROTRON; HYDROGENATION; SPECTROSCOPY AB An emerging theme of modern composites and devices is the coupling of nanostructural properties of materials with their targeted arrangement at the microscale. Of the imaging techniques developed that provide insight into such designer materials and devices, those based on diffraction are particularly useful. However, to date, these have been heavily restrictive, providing information only on materials that exhibit high crystallographic ordering. Here we describe a method that uses a combination of X-ray atomic pair distribution function analysis and computed tomography to overcome this limitation. It allows the structure of nanocrystalline and amorphous materials to be identified, quantified and mapped. We demonstrate the method with a phantom object and subsequently apply it to resolving, in situ, the physicochemical states of a heterogeneous catalyst system. The method may have potential impact across a range of disciplines from materials science, biomaterials, geology, environmental science, palaeontology and cultural heritage to health. C1 [Jacques, Simon D. M.; Cernik, Robert J.] Univ Manchester, Sch Mat, Manchester M13 9PL, Lancs, England. [Jacques, Simon D. M.; Beale, Andrew M.] Rutherford Appleton Lab, Res Complex Harwell, Didcot OX11 0QX, Oxon, England. [Di Michiel, Marco; Kimber, Simon A. J.] European Synchrotron Radiat Facil, F-38000 Grenoble, France. [Yang, Xiaohao; Billinge, Simon J. L.] Columbia Univ, New York, NY 10027 USA. [Beale, Andrew M.] UCL, Dept Chem, London WC1H 0AJ, England. [Beale, Andrew M.] Univ Utrecht, Debye Inst Nanomat Sci, NL-3584 CG Utrecht, Netherlands. [Billinge, Simon J. L.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Beale, AM (reprint author), Rutherford Appleton Lab, Res Complex Harwell, Didcot OX11 0QX, Oxon, England. EM Andrew.Beale@ucl.ac.uk RI Jacques, Simon/C-6960-2009; Institute (DINS), Debye/G-7730-2014; OI Jacques, Simon/0000-0002-7275-5272; Kimber, Simon/0000-0003-0489-1851; Beale, Andrew/0000-0002-0923-1433 FU Engineering and Physical Sciences Research Council (EPSRC) [EP/H046577/1, EP/K007467/1]; Office of Science, US Department of Energy (OS-DOE) [DE-AC02-98CH10886]; ESRF FX We acknowledge the ESRF for the award of in-house experimental time. S.D.M.J. and A.M.B. are supported by the Engineering and Physical Sciences Research Council (EPSRC) Grants EP/H046577/1 and EP/K007467/1, respectively. Work in the S.J.L.B. group was supported by the Office of Science, US Department of Energy (OS-DOE), under Contract No. DE-AC02-98CH10886. NR 56 TC 31 Z9 31 U1 3 U2 70 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2013 VL 4 AR 2536 DI 10.1038/ncomms3536 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 233AV UT WOS:000325537400001 PM 24077398 ER PT J AU Li, WZ Kovarik, L Mei, DH Liu, J Wang, Y Peden, CHF AF Li, Wei-Zhen Kovarik, Libor Mei, Donghai Liu, Jun Wang, Yong Peden, Charles H. F. TI Stable platinum nanoparticles on specific MgAl2O4 spinel facets at high temperatures in oxidizing atmospheres SO NATURE COMMUNICATIONS LA English DT Article ID SPACE GAUSSIAN PSEUDOPOTENTIALS; N-BUTANE DEHYDROGENATION; SELECTIVE OXIDATION; SURFACE-ENERGY; CATALYSTS; BEHAVIOR; METHANOL; ALUMINA; OXIDE; DEACTIVATION AB The development of thermally stable, nanometer-sized precious metal-based catalysts remains a daunting challenge. Such materials, especially those based on the use of costly platinum metal, are essential and, to date, non-replaceable for a large number of industrially important catalytic processes. Here we report a well-defined cuboctahedral MgAl2O4 spinel support material that is capable of stabilizing platinum particles in the range of 1-3 nm on its relatively abundant {111} facets during extremely severe aging at 800 degrees C in air for 1 week. The aged catalysts retain platinum dispersions of 15.9% with catalytic activities for methanol oxidation being similar to 80% of that of fresh ones, whereas a conventional Pt/gamma-Al2O3 catalyst is severely sintered and nearly inactive. We reveal the origin of the markedly superior ability of spinel {111} facets, resulting from strong interactions between spinel surface oxygens and epitaxial platinum {111} facets, inspiring the rational design of anti-sintering supported platinum group catalysts. C1 [Li, Wei-Zhen; Kovarik, Libor; Mei, Donghai; Liu, Jun; Wang, Yong; Peden, Charles H. F.] Inst Integrated Catalysis, Pacific Northwest Natl Lab, Richland, WA 99352 USA. [Wang, Yong] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. RP Peden, CHF (reprint author), Inst Integrated Catalysis, Pacific Northwest Natl Lab, POB 999, Richland, WA 99352 USA. EM chuck.peden@pnnl.gov RI Mei, Donghai/A-2115-2012; Li, Wei-Zhen/G-2602-2013; Li, Wei-Zhen/A-9715-2015; Mei, Donghai/D-3251-2011; Kovarik, Libor/L-7139-2016; OI Mei, Donghai/0000-0002-0286-4182; Li, Wei-Zhen/0000-0002-2298-1423; Kovarik, Libor/0000-0002-2418-6925; Peden, Charles/0000-0001-6754-9928 FU US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences; DOE Office of Biological and Environmental Research FX This work was supported by US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences. The research was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE Office of Biological and Environmental Research, and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for DOE by Battelle. Dr Mark Bowden (PNNL/EMSL) for analysis of the XRD data. NR 46 TC 31 Z9 31 U1 15 U2 148 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2013 VL 4 AR 2481 DI 10.1038/ncomms3481 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 232ZO UT WOS:000325533900028 PM 24064958 ER PT J AU Miura, M Maiorov, B Kato, T Shimode, T Wada, K Adachi, S Tanabe, K AF Miura, Masashi Maiorov, Boris Kato, Takeharu Shimode, Takashi Wada, Keisuke Adachi, Seiji Tanabe, Keiichi TI Strongly enhanced flux pinning in one-step deposition of BaFe2(As0.66P0.33)(2) superconductor films with uniformly dispersed BaZrO3 nanoparticles SO NATURE COMMUNICATIONS LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; YBA2CU3O7; MECHANISM; DEFECTS; WIRES AB The high upper critical field and low anisotropy of the iron-based superconductor BaFe2As2 make it promising for its use in the construction of superconducting magnets. However, its critical current density in high magnetic fields needs to be improved. Here we demonstrate a simple, one-step and industrially scalable means of achieving just this. We show that introducing controlled amounts of uniformly dispersed BaZrO3 nanoparticles into carrier-doped BaFe2As2 significantly improves its superconducting performance without degrading its structural or superconducting properties. Our BaFe2(As0.66P0.33)(2) films also exhibit an increase in both the irreversibility line and critical current density at all magnetic-field orientations. These films exhibit nearly isotropic critical current densities in excess of 1.5 MA cm(-2) at 15 K and 1 T-seven times higher than previously reported for BaFe2As2 films. The vortex-pinning force in these films reaches similar to 59 GN m(-3) at 5 K and 3-9 T, substantially higher than that of the conventional Nb3Sn wire. C1 [Miura, Masashi; Shimode, Takashi; Wada, Keisuke; Adachi, Seiji; Tanabe, Keiichi] Int Superconduct Technol Ctr, Superconduct Res Lab, Koto Ku, Tokyo 1350062, Japan. [Miura, Masashi] Seikei Univ, Grad Sch Sci & Technol, Musashino, Tokyo 1808633, Japan. [Maiorov, Boris] Los Alamos Natl Lab, Div Mat Phys & Applicat, Los Alamos, NM 87545 USA. [Kato, Takeharu] Japan Fine Ceram Ctr, Mat R&D Lab, Atuta Ku, Nagoya, Aichi 4568587, Japan. RP Miura, M (reprint author), Int Superconduct Technol Ctr, Superconduct Res Lab, Koto Ku, 10-13,Shinonome 1 Chome, Tokyo 1350062, Japan. EM masashi-m@st.seikei.ac.jp OI Maiorov, Boris/0000-0003-1885-0436 FU Japan Society for the Promotion of Science, Japan, through the 'Funding Program for World-Leading Innovative R&D on Science and Technology Program'; TEPCO Memorial Foundation, Japan; US DOE, Office of Basic Energy Sciences, Materials Sciences and Engineering Division FX This work was supported by the Japan Society for the Promotion of Science, Japan, through the 'Funding Program for World-Leading Innovative R&D on Science and Technology Program'. M.M. is supported by the TEPCO Memorial Foundation, Japan. The work at Los Alamos National Laboratory was supported by the US DOE, Office of Basic Energy Sciences, Materials Sciences and Engineering Division (B.M.). We would like to thank Akira Takemori and Yasuo Oshikubo for photolithography preparation. M.M. would like to thank Jeffrey O. Willis for helpful discussions and critical reading of the manuscript. NR 38 TC 35 Z9 35 U1 1 U2 34 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2013 VL 4 AR 2499 DI 10.1038/ncomms3499 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 232ZY UT WOS:000325534900001 PM 24051678 ER PT J AU Truncik, CJS Huttema, WA Turner, PJ Ozcan, S Murphy, NC Carriere, PR Thewalt, E Morse, KJ Koenig, AJ Sarrao, JL Broun, DM AF Truncik, C. J. S. Huttema, W. A. Turner, P. J. Oezcan, S. Murphy, N. C. Carriere, P. R. Thewalt, E. Morse, K. J. Koenig, A. J. Sarrao, J. L. Broun, D. M. TI Nodal quasiparticle dynamics in the heavy fermion superconductor CeCoIn5 revealed by precision microwave spectroscopy SO NATURE COMMUNICATIONS LA English DT Article ID CAVITY PERTURBATION TECHNIQUE; MAGNETIC PENETRATION DEPTH; D-WAVE SUPERCONDUCTORS; QUANTUM CRITICAL-POINT; COHERENCE PEAK; SCATTERING; CONDUCTIVITY; METALS; DEPENDENCE; STATES AB CeCoIn5 is a heavy fermion superconductor with strong similarities to the high-T-c cuprates, including quasi-two-dimensionality, proximity to antiferromagnetism and probable d-wave pairing arising from a non-Fermi-liquid normal state. Experiments allowing detailed comparisons of their electronic properties are of particular interest, but in most cases are difficult to realize, due to their very different transition temperatures. Here we use low-temperature microwave spectroscopy to study the charge dynamics of the CeCoIn5 superconducting state. The similarities to cuprates, in particular to ultra-clean YBa2Cu3Oy, are striking: the frequency and temperature dependence of the quasiparticle conductivity are instantly recognizable, a consequence of rapid suppression of quasiparticle scattering below T-c; and penetration-depth data, when properly treated, reveal a clean, linear temperature dependence of the quasiparticle contribution to superfluid density. The measurements also expose key differences, including prominent multiband effects and a temperature-dependent renormalization of the quasiparticle mass. C1 [Truncik, C. J. S.; Huttema, W. A.; Turner, P. J.; Murphy, N. C.; Carriere, P. R.; Thewalt, E.; Morse, K. J.; Koenig, A. J.; Broun, D. M.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Oezcan, S.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Sarrao, J. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Broun, DM (reprint author), Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. EM dbroun@sfu.ca FU Natural Science and Engineering Research Council of Canada; Canadian Foundation for Innovation; Division of Materials Science and Engineering of the U.S. Department of Energy Office of Basic Energy Sciences FX We thank M. Dressel, S.R. Julian and M. Scheffler for discussions and correspondence. Research support for the experiments was provided by the Natural Science and Engineering Research Council of Canada and the Canadian Foundation for Innovation. Research support for sample preparation was provided by the Division of Materials Science and Engineering of the U.S. Department of Energy Office of Basic Energy Sciences. NR 60 TC 15 Z9 15 U1 3 U2 18 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2013 VL 4 AR 2477 DI 10.1038/ncomms3477 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 232ZO UT WOS:000325533900024 PM 24051545 ER PT J AU Zhan, C Lu, J Kropf, AJ Wu, TP Jansen, AN Sun, YK Qiu, XP Amine, K AF Zhan, Chun Lu, Jun Kropf, A. Jeremy Wu, Tianpin Jansen, Andrew N. Sun, Yang-Kook Qiu, Xinping Amine, Khalil TI Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganate-carbon systems SO NATURE COMMUNICATIONS LA English DT Article ID LI-ION BATTERIES; TEMPERATURE CYCLING STABILITY; ELEVATED-TEMPERATURE; CATHODE MATERIALS; GRAPHITE ANODES; LIMN2O4 CATHODE; ELECTROLYTE; CELLS; PERFORMANCE; IMPEDANCE AB Dissolution and migration of manganese from cathode lead to severe capacity fading of lithium manganate-carbon cells. Overcoming this major problem requires a better understanding of the mechanisms of manganese dissolution, migration and deposition. Here we apply a variety of advanced analytical methods to study lithium manganate cathodes that are cycled with different anodes. We show that the oxidation state of manganese deposited on the anodes is +2, which differs from the results reported earlier. Our results also indicate that a metathesis reaction between Mn(II) and some species on the solid-electrolyte interphase takes place during the deposition of Mn(II) on the anodes, rather than a reduction reaction that leads to the formation of metallic Mn, as speculated in earlier studies. The concentration of Mn deposited on the anode gradually increases with cycles; this trend is well correlated with the anodes rising impedance and capacity fading of the cell. C1 [Zhan, Chun; Qiu, Xinping] Tsinghua Univ, Dept Chem, Key Lab Organ Optoelect & Mol Engn, Beijing 100084, Peoples R China. [Zhan, Chun; Lu, Jun; Kropf, A. Jeremy; Jansen, Andrew N.; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Wu, Tianpin] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Sun, Yang-Kook] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea. RP Qiu, XP (reprint author), Tsinghua Univ, Dept Chem, Key Lab Organ Optoelect & Mol Engn, Beijing 100084, Peoples R China. EM qiuxp@mail.tsinghua.edu.cn; amine@anl.gov RI Amine, Khalil/K-9344-2013; BM, MRCAT/G-7576-2011; ID, MRCAT/G-7586-2011; Jansen, Andrew/Q-5912-2016 OI Jansen, Andrew/0000-0003-3244-7790 FU Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Award under the EERE Vehicles Technology Program; DOE [DE-AC05-06OR23100]; Center for Electrical Energy Storage, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Applied Battery Research for Transportation (ABR) Program from the U. S. DOE-EERE Office of Vehicle Technologies; U.S. DOE [DE-AC02-06CH11357]; 973 Program of China [2009CB220105]; Beijing Natural Science Foundation [2120001]; National Natural Science Foundation of China [21273129]; Bosch (China) Ltd.; Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant; Korean government, Ministry of Trade, Industry and Energy [20124010203310]; National Research Foundation of Korea (NRF); Korea government (MEST) [2009-0092780] FX L. was supported by the Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Award under the EERE Vehicles Technology Program administered by the Oak Ridge Institute for Science and Education (ORISE) for the DOE managed by Oak Ridge Associated Universities (ORAU) under DOE contract number DE-AC05-06OR23100. K. A. and A. J. K. (X-ray absorption studies) were supported by the Center for Electrical Energy Storage, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. A. N. J. was supported by the Applied Battery Research for Transportation (ABR) Program from the U. S. DOE-EERE Office of Vehicle Technologies. Use of the Advanced Photon Source, an Office of Science User Facility operated for DOE, Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. MRCAT operations are supported by the DOE and the MRCAT member institutions. Financial support from the 973 Program (2009CB220105) of China, Beijing Natural Science Foundation (2120001), National Natural Science Foundation of China (21273129) and Bosch (China) Ltd. is gratefully acknowledged. This work was also supported by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government, Ministry of Trade, Industry and Energy (No. 20124010203310) and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2009-0092780). NR 41 TC 62 Z9 62 U1 21 U2 221 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2013 VL 4 AR 2437 DI 10.1038/ncomms3437 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 232ZM UT WOS:000325533700034 PM 24077265 ER PT J AU Zhang, LJ Luo, JW Saraiva, A Koiller, B Zunger, A AF Zhang, Lijun Luo, Jun-Wei Saraiva, Andre Koiller, Belita Zunger, Alex TI Genetic design of enhanced valley splitting towards a spin qubit in silicon SO NATURE COMMUNICATIONS LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; SI QUANTUM-WELLS; STRAINED SI; HETEROSTRUCTURES; GE; ENERGY; SUPERLATTICES; DEVICES; LAYERS AB The long spin coherence time and microelectronics compatibility of Si makes it an attractive material for realizing solid-state qubits. Unfortunately, the orbital (valley) degeneracy of the conduction band of bulk Si makes it difficult to isolate individual two-level spin-1/2 states, limiting their development. This degeneracy is lifted within Si quantum wells clad between Ge-Si alloy barrier layers, but the magnitude of the valley splittings achieved so far is small-of the order of 1 meV or less-degrading the fidelity of information stored within such a qubit. Here we combine an atomistic pseudopotential theory with a genetic search algorithm to optimize the structure of layered-Ge/Si-clad Si quantum wells to improve this splitting. We identify an optimal sequence of multiple Ge/Si barrier layers that more effectively isolates the electron ground state of a Si quantum well and increases the valley splitting by an order of magnitude, to similar to 9 meV. C1 [Zhang, Lijun; Zunger, Alex] Univ Colorado, Boulder, CO 80309 USA. [Zhang, Lijun; Luo, Jun-Wei] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Saraiva, Andre; Koiller, Belita] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil. RP Zhang, LJ (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM lijun.zhang@colorado.edu; bk@if.ufrj.br; alex.zunger@colorado.edu RI Zhang, Lijun/F-7710-2011; LUO, JUNWEI/B-6545-2013 FU Office of Science, Basic Energy Science, MSE division [DE-FG02-13ER46959]; Center for Inverse Design, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-AC36-08GO28308]; FAPERJ; CNPq; CAPES FX We thank M.A. Eriksson for stimulating discussion, M. d'Avezac for valuable help on calculations and F. Tsui for helpful discussion on epitaxial growth of Si-Ge layered structures. Work of L.Z. and A.Z. was supported by Office of Science, Basic Energy Science, MSE division under grant DE-FG02-13ER46959 to CU Boulder. Work of L.Z. and J.W. on adapting the genetic algorithm approach was supported as part of the Center for Inverse Design, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award no. DE-AC36-08GO28308. The work of A.S. and B.K. work is part of the Brazilian National Institute for Science and Technology on Quantum Information. A.S. and B.K. acknowledge partial support from FAPERJ, CNPq and CAPES. NR 45 TC 10 Z9 11 U1 2 U2 37 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2013 VL 4 AR 2396 DI 10.1038/ncomms3396 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 232ZF UT WOS:000325532800005 PM 24013452 ER PT J AU Beresh, SJ Henfling, JF Spillers, RW Pruett, BOM AF Beresh, Steven J. Henfling, John F. Spillers, Russell W. Pruett, Brian O. M. TI Very-large-scale coherent structures in the wall pressure field beneath a supersonic turbulent boundary layer SO PHYSICS OF FLUIDS LA English DT Article ID HIGH-REYNOLDS-NUMBER; FLUCTUATIONS; RESOLUTION; FEATURES; MOTIONS; FLOW AB Data have been acquired from a spanwise array of fluctuating wall pressure sensors beneath a wind tunnel wall boundary layer at Mach 2, then invoking Taylor's hypothesis allows the temporal signals to be converted into a spatial map of the wall pressure field. Different frequency ranges of pressure fluctuations may be accessed by bandpass filtering the signals. In all frequency ranges, this reveals signatures of coherent structures where negative pressure events are interspersed amongst positive events, with some degree of alternation in the streamwise direction. Within lower frequency ranges, streaks of instantaneously correlated pressure fluctuations elongated in the streamwise direction exhibit a spanwise meander and show apparent merging of pressure events. Coherent length scales based on single-sensor correlations are artificially shortened by neglecting this meander and merging, but are captured correctly using the sensor array. These measurements are consistent with similar observations by other researchers in the velocity field above the wall, and explain the presence of the flat portion of the wall pressure spectrum at frequencies well below those associated with the boundary layer thickness. However, the pressure data lack the common spanwise alternation of positive and negative events found in velocity data, and conversely demonstrate a weak positive correlation in the spanwise direction at low frequencies. (C) 2013 AIP Publishing LLC. C1 [Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.; Pruett, Brian O. M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Beresh, SJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM sjberes@sandia.gov FU Sandia National Laboratories; (U.S.) Department of Energy (DOE); (U.S.) Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work is supported by Sandia National Laboratories and the (U.S.) Department of Energy (DOE). Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the (U.S.) Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 37 TC 0 Z9 0 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD SEP PY 2013 VL 25 IS 9 AR 095104 DI 10.1063/1.4820818 PG 19 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 231EU UT WOS:000325397800057 ER PT J AU Dahms, RN Oefelein, JC AF Dahms, Rainer N. Oefelein, Joseph C. TI On the transition between two-phase and single-phase interface dynamics in multicomponent fluids at supercritical pressures SO PHYSICS OF FLUIDS LA English DT Article ID UNDERSTANDING IGNITION PROCESSES; FLAME FRONT PROPAGATION; LINEAR GRADIENT THEORY; LARGE-EDDY SIMULATION; BINARY-MIXTURES; SURFACE-TENSION; CRYOGENIC PROPELLANTS; CORRESPONDING STATES; TRANSPORT-PROPERTIES; BURNING DROPLET AB A theory that explains the operating pressures where liquid injection processes transition from exhibiting classical two-phase spray atomization phenomena to single-phase diffusion-dominated mixing is presented. Imaging from a variety of experiments have long shown that under certain conditions, typically when the pressure of the working fluid exceeds the thermodynamic critical pressure of the liquid phase, the presence of discrete two-phase flow processes become diminished. Instead, the classical gas-liquid interface is replaced by diffusion-dominated mixing. When and how this transition occurs, however, is not well understood. Modern theory still lacks a physically based model to quantify this transition and the precise mechanisms that lead to it. In this paper, we derive a new model that explains how the transition occurs in multicomponent fluids and present a detailed analysis to quantify it. The model applies a detailed property evaluation scheme based on a modified 32-term Benedict-Webb-Rubin equation of state that accounts for the relevant real-fluid thermodynamic and transport properties of the multicomponent system. This framework is combined with Linear Gradient Theory, which describes the detailed molecular structure of the vapor-liquid interface region. Our analysis reveals that the two-phase interface breaks down not necessarily due to vanishing surface tension forces, but due to thickened interfaces at high subcritical temperatures coupled with an inherent reduction of the mean free molecular path. At a certain point, the combination of reduced surface tension, the thicker interface, and reduced mean free molecular path enter the continuum length scale regime. When this occurs, inter-molecular forces approach that of the multicomponent continuum where transport processes dominate across the interfacial region. This leads to a continuous phase transition from compressed liquid to supercritical mixture states. Based on this theory, a regime diagram for liquid injection is developed that quantifies the conditions under which classical sprays transition to dense-fluid jets. It is shown that the chamber pressure required to support diffusion-dominated mixing dynamics depends on the composition and temperature of the injected liquid and ambient gas. To illustrate the method and analysis, we use conditions typical of diesel engine injection. We also present a companion set of high-speed images to provide experimental validation of the presented theory. The basic theory is quite general and applies to a wide range of modern propulsion and power systems such as liquid rockets, gas turbines, and reciprocating engines. Interestingly, the regime diagram associated with diesel engine injection suggests that classical spray phenomena at typical injection conditions do not occur. (C) 2013 AIP Publishing LLC. C1 [Dahms, Rainer N.; Oefelein, Joseph C.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Dahms, RN (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. EM Rndahms@sandia.gov FU (U.S.) Department of Energy (DOE); Office of Science (SC); Basic Energy Sciences (BES) program; Office of Energy Efficiency and Renewable Energy (EERE) [KC0301020]; Vehicle Technologies (VT) program [VT0401000]; SC-BES program; EERE-VT program; (U.S.) Department of Energy (DOE) [DE-AC04-94-AL85000] FX Support for this research was provided jointly by the (U.S.) Department of Energy (DOE); Office of Science (SC), Basic Energy Sciences (BES) program; and the Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies (VT) program, under Grant Nos. KC0301020 and VT0401000, respectively. Fundamental development of the real-fluid model and foundational property evaluation schemes for multicomponent hydrocarbon mixtures was supported by the SC-BES program. Application of these tools to advanced engine combustion research and development of multiphase regime diagrams using Gradient Theory was supported by the EERE-VT program. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the (U.S.) Department of Energy (DOE) under Contract No. DE-AC04-94-AL85000. NR 71 TC 21 Z9 23 U1 4 U2 48 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD SEP PY 2013 VL 25 IS 9 AR 092103 DI 10.1063/1.4820346 PG 24 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 231EU UT WOS:000325397800026 ER PT J AU Myint, PC Firoozabadi, A AF Myint, Philip C. Firoozabadi, Abbas TI Onset of convection with fluid compressibility and interface movement SO PHYSICS OF FLUIDS LA English DT Article ID BUOYANCY-DRIVEN CONVECTION; LONG-TERM STORAGE; POROUS-MEDIA; CARBON-DIOXIDE; BOUNDARY-CONDITIONS; GEOLOGICAL STORAGE; CO2 SEQUESTRATION; SALINE AQUIFERS; DENSITY; FLOW AB The density increase from carbon dioxide (CO2) dissolution in water or hydrocarbons creates buoyancy-driven instabilities that may lead to the onset of convection. The convection is important for both CO2 sequestration in deep saline aquifers and CO2 improved oil recovery from hydrocarbon reservoirs. We perform linear stability analyses to study the effect of fluid compressibility and interface movement on the onset of buoyancy-driven convection in porous media. Compressibility relates to a non-zero divergence of the velocity field. The interface between the CO2 phase and the aqueous or hydrocarbon phase moves with time as a result of the volume change that occurs upon CO2 dissolution. Previous stability analyses have neglected these two aspects by assuming that the aqueous or hydrocarbon phase is incompressible and that the interface remains fixed in position. The stability analyses are used to compute two key quantities: (1) the critical time and (2) the critical wavenumber. Our results indicate that compressibility has a negligible effect on the critical time and the critical wavenumber in CO2-water mixtures. We use thermodynamics to derive an expression which shows that the two opposing physical processes which contribute to the divergence are comparable in magnitude and largely cancel each other. This result explains why compressibility does not significantly affect the onset, and it also demonstrates the link between compressibility and the volume change that causes movement of the interface. Compared to when the interface is fixed in position, a moving interface in CO2-water mixtures may reduce the critical time by up to around 10%, which can be significant in low permeability formations. The decrease in the critical time due to interface movement may be much more pronounced in hydrocarbons than in water. This could have important implications for CO2 improved oil recovery. (C) 2013 AIP Publishing LLC. C1 [Myint, Philip C.; Firoozabadi, Abbas] Yale Univ, Dept Chem & Environm Engn, New Haven, CT 06511 USA. [Myint, Philip C.] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94550 USA. [Firoozabadi, Abbas] Reservoir Engn Res Inst, Palo Alto, CA 94301 USA. RP Myint, PC (reprint author), Yale Univ, Dept Chem & Environm Engn, 9 Hillhouse Ave, New Haven, CT 06511 USA. EM philip.myint@yale.edu; abbas.firoozabadi@yale.edu OI Myint, Philip/0000-0003-4383-5350 FU Reservoir Engineering Research Institute FX Financial support for this work has been provided by the member companies of the Reservoir Engineering Research Institute. NR 47 TC 10 Z9 10 U1 2 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD SEP PY 2013 VL 25 IS 9 AR 094105 DI 10.1063/1.4821743 PG 16 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 231EU UT WOS:000325397800052 ER PT J AU Atanasiu, CV Zakharov, LE AF Atanasiu, C. V. Zakharov, L. E. TI Response of a partial wall to an external perturbation of rotating plasma SO PHYSICS OF PLASMAS LA English DT Article ID EDDY CURRENTS; RESISTIVE WALL; FEEDBACK STABILIZATION; TOKAMAK; MODES; STABILITY; GEOMETRY AB In this paper, we present the response of a 3D thin multiply connected wall to an external kink mode perturbation in axisymmetric tokamak configurations. To calculate the contribution of the plasma perturbed magnetic field in the vacuum region, we have made use of the concept of surface currents [following C. V. Atanasiu, A. H. Boozer, L. E. Zakharov, and A. A. Subbotin, Phys. Plasmas 6, 2781 (1999)]. The wall response is expressed in terms of a stream function of the wall surface currents, which are obtained by solving a diffusion type equation, taking into account the contribution of the wall currents themselves iteratively. The use of stream function makes the approach applicable for both well-studied earlier Resistive Wall Modes and for Wall Touching Kink Modes, which were discovered recently as a key phenomenon in disruptions [L. E. Zakharov, S. A. Galkin, and S. N. Gerasimov, Phys. Plasmas 19, 055703 (2012)]. New analytical expressions, suitable for numerical calculations of toroidal harmonics of the vacuum magnetic fields from the surface currents on axisymmetric shells, are derived. (C) 2013 AIP Publishing LLC. C1 [Atanasiu, C. V.] Assoc EURATOM MEdC, Natl Inst Laser Plasma & Radiat Phys, Magurele 077125, Romania. [Zakharov, L. E.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Atanasiu, CV (reprint author), Assoc EURATOM MEdC, Natl Inst Laser Plasma & Radiat Phys, Magurele 077125, Romania. EM cva@ipp.mpg.de; zakharov@pppl.gov FU Association EURATOM-MEdC [BS-1]; US DoE [DE-AC02-09-CH11466] FX Part of this work was conducted during a research stay by C. V. A. to the Max-Planck Institute for Plasmaphysics in Garching, Germany. The hospitality of that Institute is greatly appreciated. This work was partially supported by the Contract BS-1 of the Association EURATOM-MEdC (C. V. A.), and partially by US DoE Contract No. DE-AC02-09-CH11466 (C. V. A. and L.E.Z.). NR 44 TC 6 Z9 6 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2013 VL 20 IS 9 AR 092506 DI 10.1063/1.4821124 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 231FE UT WOS:000325399400044 ER PT J AU Ebrahimi, F Hooper, EB Sovinec, CR Raman, R AF Ebrahimi, F. Hooper, E. B. Sovinec, C. R. Raman, R. TI Magnetic reconnection process in transient coaxial helicity injection SO PHYSICS OF PLASMAS LA English DT Article ID PLASMA AB The physics of magnetic reconnection and fast flux closure in transient coaxial helicity injection experiments in NSTX is examined using resistive MHD simulations. These simulations have been performed using the NIMROD code with fixed boundary flux (including NSTX poloidal coil currents) in the NSTX experimental geometry. Simulations show that an X point is formed in the injector region, followed by formation of closed flux surfaces within 0.5 ms after the driven injector voltage and injector current begin to rapidly decrease. As the injector voltage is turned off, the field lines tend to untwist in the toroidal direction and magnetic field compression exerts a radial J x B force and generates a bi-directional radial E-toroidal x B-poloidal pinch flow to bring oppositely directed field lines closer together to reconnect. At sufficiently low magnetic diffusivity (high Lundquist number), and with a sufficiently narrow injector flux footprint width, the oppositely directed field lines have sufficient time to reconnect (before dissipating), leading to the formation of closed flux surfaces. The reconnection process is shown to have transient Sweet-Parker characteristics. (C) 2013 AIP Publishing LLC. C1 [Ebrahimi, F.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Hooper, E. B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Sovinec, C. R.] Univ Wisconsin, Madison, WI 53706 USA. [Raman, R.] Univ Washington, Seattle, WA 98195 USA. RP Ebrahimi, F (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. EM ebrahimi@princeton.edu OI Ebrahimi, Fatima/0000-0003-3109-5367 FU DOE at PU [DOE-FG02-12ER55115]; CMSO, PSI Center [DE-FC02-05ER54813, LLNL DE-AC52-07NA27344, DE-FG02-99ER54519] FX We would like to thank A. Bhattacharjee, J. Menard, S. Kaye, and R. Kulsrud for their helpful comments. This work is supported by DOE at PU DOE-FG02-12ER55115 and CMSO, PSI Center DE-FC02-05ER54813, LLNL DE-AC52-07NA27344, and DE-FG02-99ER54519. NR 15 TC 12 Z9 12 U1 3 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2013 VL 20 IS 9 AR 090702 DI 10.1063/1.4821974 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 231FE UT WOS:000325399400002 ER PT J AU Farmer, WA Ryutov, DD AF Farmer, W. A. Ryutov, D. D. TI Axisymmetric curvature-driven instability in a model divertor geometry SO PHYSICS OF PLASMAS LA English DT Article ID STABILITY; ENERGY; PLASMA AB A model problem is presented which qualitatively describes a pressure-driven instability which can occur near the null-point in the divertor region of a tokamak where the poloidal field becomes small. The model problem is described by a horizontal slot with a vertical magnetic field which plays the role of the poloidal field. Line-tying boundary conditions are applied at the planes defining the slot. A toroidal field lying parallel to the planes is assumed to be very strong, thereby constraining the possible structure of the perturbations. Axisymmetric perturbations which leave the toroidal field unperturbed are analyzed. Ideal magnetohydrodynamics is used, and the instability threshold is determined by the energy principle. Because of the boundary conditions, the Euler equation is, in general, non-separable except at marginal stability. This problem may be useful in understanding the source of heat transport into the private flux region in a snowflake divertor which possesses a large region of small poloidal field, and for code benchmarking as it yields simple analytic results in an interesting geometry. (C) 2013 AIP Publishing LLC. C1 [Farmer, W. A.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Farmer, W. A.; Ryutov, D. D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Farmer, WA (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 21 TC 5 Z9 5 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2013 VL 20 IS 9 AR 092117 DI 10.1063/1.4821983 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 231FE UT WOS:000325399400019 ER PT J AU Ferron, JR Holcomb, CT Luce, TC Park, JM Politzer, PA Turco, F Heidbrink, WW Doyle, EJ Hanson, JM Hyatt, AW In, Y La Haye, RJ Lanctot, MJ Okabayashi, M Petrie, TW Petty, CC Zeng, L AF Ferron, J. R. Holcomb, C. T. Luce, T. C. Park, J. M. Politzer, P. A. Turco, F. Heidbrink, W. W. Doyle, E. J. Hanson, J. M. Hyatt, A. W. In, Y. La Haye, R. J. Lanctot, M. J. Okabayashi, M. Petrie, T. W. Petty, C. C. Zeng, L. TI Progress toward fully noninductive discharge operation in DIII-D using off-axis neutral beam injection SO PHYSICS OF PLASMAS LA English DT Article ID ADVANCED TOKAMAK; HIGH-BETA; MHD STABILITY; OPTIMIZATION; CONFINEMENT; TRANSPORT; EQUILIBRIA; PLASMAS; PROFILE; SHEAR AB The initial experiments on off-axis neutral beam injection into high noninductive current fraction (f(NI)), high normalized pressure (beta(N)) discharges in DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] have demonstrated changes in the plasma profiles that increase the limits to plasma pressure from ideal low-n instabilities. The current profile is broadened and the minimum value of the safety factor (q(min)) can be maintained above 2 where the profile of the thermal component of the plasma pressure is found to be broader. The off-axis neutral beam injection results in a broadening of the fast-ion pressure profile. Confinement of the thermal component of the plasma is consistent with the IPB98(y,2) scaling, but global confinement with q(min) > 2 is below the ITER-89P scaling, apparently as a result of enhanced transport of fast ions. A 0-D model is used to examine the parameter space for f(NI) = 1 operation and project the requirements for high performance steady-state discharges. Fully noninductive solutions are found with 4 < beta(N) < 5 and bootstrap current fraction near 0.5 for a weak shear safety factor profile. A 1-D model is used to show that a f(NI) = 1 discharge at the top of this range of beta(N) that is predicted stable to n = 1, 2, and 3 ideal MHD instabilities is accessible through further broadening of the current and pressure profiles with off-axis neutral beam injection and electron cyclotron current drive. (C) 2013 AIP Publishing LLC. C1 [Ferron, J. R.; Luce, T. C.; Politzer, P. A.; Hyatt, A. W.; La Haye, R. J.; Lanctot, M. J.; Petrie, T. W.; Petty, C. C.] Gen Atom Co, San Diego, CA 92186 USA. [Holcomb, C. T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Park, J. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Turco, F.; Hanson, J. M.] Columbia Univ, New York, NY 10027 USA. [Heidbrink, W. W.] Univ Calif Irvine, Irvine, CA 92697 USA. [Doyle, E. J.; Zeng, L.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [In, Y.] FAR TECH Inc, San Diego, CA 92121 USA. [Okabayashi, M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Ferron, JR (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM ferron@fusion.gat.com RI Lanctot, Matthew J/O-4979-2016 OI Lanctot, Matthew J/0000-0002-7396-3372 FU US Department of Energy [DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC05-00OR22725, DE-FG02-04ER54761, SC-G903402, DE-FG02-08ER54984, DE-FG02-06ER84442, DE-AC02-09CH11466] FX This work was supported in part by the US Department of Energy under DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC05-00OR22725, DE-FG02-04ER54761, SC-G903402, DE-FG02-08ER54984, DE-FG02-06ER84442, and DE-AC02-09CH11466. NR 42 TC 10 Z9 10 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2013 VL 20 IS 9 AR 092504 DI 10.1063/1.4821072 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 231FE UT WOS:000325399400042 ER PT J AU Haines, BM Grinstein, FF Welser-Sherrill, L Fincke, JR Doss, FW AF Haines, Brian M. Grinstein, Fernando F. Welser-Sherrill, Leslie Fincke, James R. Doss, Forrest W. TI Simulation ensemble for a laser-driven shear experiment SO PHYSICS OF PLASMAS LA English DT Article ID TURBULENT FLOWS; TRANSITION; TAYLOR; VORTEX AB We perform an ensemble of simulations of a laser-driven shear experiment [L. Welser-Sherrill et al., "Two laser-driven mix experiments to study reshock and shear,"High Energy Density Phys. J. 9(3), 496-499 (2013)] in the strong-shock high energy-density regime to better understand material mixing driven by the Kelvin-Helmholtz instability. Each simulation uses a different realization of random initial interface perturbations based on data from targets used in experiments. Validation of the simulations is based on direct comparison of simulation and radiographic data. Simulations are also compared with published direct numerical simulation and the theory of homogeneous isotropic turbulence. Despite the fact that the flow is neither homogeneous, isotropic, nor fully turbulent, there are local regions in which the flow demonstrates characteristics of homogeneous isotropic turbulence. Our analysis shows characteristics consistent with those of incompressible isotropic turbulence. Our results show that turbulent features are present both near the shock front and in a separated region in the wake of the shock. These features develop and decay at different rates. Finally, we use the ensemble of three-dimensional simulations to test the performance of two-dimensional Reynolds-averaged Navier-Stokes simulations. In this context, we also test a presumed probability density function turbulent mixing model extensively used in combustion applications. (C) 2013 AIP Publishing LLC. C1 [Haines, Brian M.; Grinstein, Fernando F.; Welser-Sherrill, Leslie; Fincke, James R.; Doss, Forrest W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Haines, BM (reprint author), Los Alamos Natl Lab, MS T087, Los Alamos, NM 87545 USA. OI Haines, Brian/0000-0002-3889-7074 NR 31 TC 5 Z9 5 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2013 VL 20 IS 9 AR 092301 DI 10.1063/1.4820768 PG 15 WC Physics, Fluids & Plasmas SC Physics GA 231FE UT WOS:000325399400029 ER PT J AU Hooper, EB Sovinec, CR Raman, R Ebrahimi, F Menard, JE AF Hooper, E. B. Sovinec, C. R. Raman, R. Ebrahimi, F. Menard, J. E. TI Resistive magnetohydrodynamic simulations of helicity-injected startup plasmas in National Spherical Torus eXperiment SO PHYSICS OF PLASMAS LA English DT Article ID CURRENT DRIVE EXPERIMENTS AB The generation of helicity-injected startup plasmas in National Spherical Torus eXperiment (NSTX), including flux surface closure, is studied using resistive-magnetohydrodynamic simulations with plasma flows, currents, ohmic heating and anisotropic thermal conduction. An injection-voltage pulse shape is used that separates the injection and closure phases allowing elucidation of the physics. The formation of an X-point near the helicity-injection gap is triggered as the injector voltage drops to zero. Near the forming X-point, magnetic pressure due to toroidal field entrained in the E x B plasma flow from the helicity-injection gap drops, allowing resistive magnetic reconnection even though the total injected current is almost constant. Where appropriate, the simulations are compared with Transient Coaxial Helicity Injection experiments in the NSTX spherical tokamak, which have demonstrated the formation of a promising candidate for non-inductive startup plasmas [Raman et al., Phys. Rev. Lett. 90, 075005 (2003)]. (C) 2013 AIP Publishing LLC. C1 [Hooper, E. B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Sovinec, C. R.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Raman, R.] Univ Washington, Dept Aeronaut & Astronaut, Seattle, WA 98195 USA. [Ebrahimi, F.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Ebrahimi, F.; Menard, J. E.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Hooper, EB (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. OI Menard, Jonathan/0000-0003-1292-3286; Ebrahimi, Fatima/0000-0003-3109-5367 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; PSI Center (University of Wisconsin) [DE-FC02-05ER54813]; University of Washington [DE-FG02-99ER54519 AM08]; University of New Hampshire [DE-FG02-12ER55115]; Princeton Plasma Physics Laboratory [DE-AC02-09CH11466]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank W. H. Meyer for computational support at LLNL. S. M. Kaye's detailed comments on the manuscript greatly improved its clarity. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, by the PSI Center (University of Wisconsin) under Grant DE-FC02-05ER54813, by the University of Washington under Grant DE-FG02-99ER54519 AM08, by the University of New Hampshire under Grant DE-FG02-12ER55115 and by Princeton Plasma Physics Laboratory under Contract DE-AC02-09CH11466. Some simulations used resources of the National Energy Research Scientific Computing Center, which was supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 22 TC 6 Z9 6 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2013 VL 20 IS 9 AR 092510 DI 10.1063/1.4821977 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 231FE UT WOS:000325399400048 ER PT J AU Olson, RE Leeper, RJ AF Olson, R. E. Leeper, R. J. TI Alternative hot spot formation techniques using liquid deuterium-tritium layer inertial confinement fusion capsules SO PHYSICS OF PLASMAS LA English DT Article ID IGNITION AB The baseline DT ice layer inertial confinement fusion (ICF) ignition capsule design requires a hot spot convergence ratio of similar to 34 with a hot spot that is formed from DT mass originally residing in a very thin layer at the inner DT ice surface. In the present paper, we propose alternative ICF capsule designs in which the hot spot is formed mostly or entirely from mass originating within a spherical volume of DT vapor. Simulations of the implosion and hot spot formation in two DT liquid layer ICF capsule concepts-the DT wetted hydrocarbon (CH) foam concept and the "fast formed liquid" (FFL) concept-are described and compared to simulations of standard DT ice layer capsules. 1D simulations are used to compare the drive requirements, the optimal shock timing, the radial dependence of hot spot specific energy gain, and the hot spot convergence ratio in low vapor pressure (DT ice) and high vapor pressure (DT liquid) capsules. 2D simulations are used to compare the relative sensitivities to low-mode x-ray flux asymmetries in the DT ice and DT liquid capsules. It is found that the overall thermonuclear yields predicted for DT liquid layer capsules are less than yields predicted for DT ice layer capsules in simulations using comparable capsule size and absorbed energy. However, the wetted foam and FFL designs allow for flexibility in hot spot convergence ratio through the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density, with a potentially improved robustness to low-mode x-ray flux asymmetry. (C) 2013 AIP Publishing LLC. C1 [Olson, R. E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Leeper, R. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Olson, RE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU U. S. Department of Energy by LANL [DE-AC52-06NA25396]; U.S. Department of Energy [DE-AC04-94AL85000] FX We thank N. Meezan (LLNL) and J. Salmonson (LLNL) for supplying information related to the baseline Hydra simulation. We thank D. Montgomery (LANL) for suggesting that the FFL concept be applied to the melting of a pure DT ice layer. We thank S. Weber (LLNL) for advice on the setup of 2D multimode simulations. This work was performed under the auspices of the U. S. Department of Energy by LANL under contract DE-AC52-06NA25396. Sandia is a multiprogram laboratory operated by the Sandia Corporation, a Lockheed-Martin Company, for the U.S. Department of Energy under Contract DE-AC04-94AL85000. NR 20 TC 10 Z9 10 U1 0 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2013 VL 20 IS 9 AR 092705 DI 10.1063/1.4822342 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 231FE UT WOS:000325399400055 ER PT J AU Ryutov, DD Umansky, MV AF Ryutov, D. D. Umansky, M. V. TI Divertor with a third-order null of the poloidal field SO PHYSICS OF PLASMAS LA English DT Article AB A concept and preliminary feasibility analysis of a divertor with the third-order poloidal field null is presented. The third-order null is the point where not only the field itself but also its first and second spatial derivatives are zero. In this case, the separatrix near the null-point has eight branches, and the number of strike-points increases from 2 (as in the standard divertor) to six. It is shown that this magnetic configuration can be created by a proper adjustment of the currents in a set of three divertor coils. If the currents are somewhat different from the required values, the configuration becomes that of three closely spaced first-order nulls. Analytic approach, suitable for a quick orientation in the problem, is used. Potential advantages and disadvantages of this configuration are briefly discussed. (C) 2013 AIP Publishing LLC. C1 [Ryutov, D. D.; Umansky, M. V.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Ryutov, DD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. FU U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory, under Contract DE-AC52-07NA27344. NR 20 TC 5 Z9 5 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2013 VL 20 IS 9 AR 092509 DI 10.1063/1.4821603 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 231FE UT WOS:000325399400047 ER PT J AU Shin, YM Church, M AF Shin, Young-Min Church, Michael TI Integrated system modeling analysis of a cryogenic multi-cell deflecting-mode cavity resonator SO PHYSICS OF PLASMAS LA English DT Article AB A deflecting mode cavity is the integral element for six-dimensional phase-space beam control in bunch compressors and emittance transformers at high energy beam test facilities. RF performance of a high-Q device is, however, highly sensitive to operational conditions, in particular in a cryo-cooling environment. Using analytic calculations and RF simulations, we examined cavity parameters and deflecting characteristics of TM110,pi mode of a 5 cell resonator in a liquid nitrogen cryostat, which has long been used at the Fermilab A0 Photoinjector (A0PI). The sensitivity analysis indicated that the cavity could lose 30%-40% of deflecting force due to defective input power coupling accompanying non-uniform field distribution across the cells with 40 similar to 50 MeV electron beam and 70-80 kW klystron power. Vacuum-cryomodules of the 5 cell cavity are planned to be installed at the Fermilab Advanced Superconducting Test Accelerator facility. Comprehensive modeling analysis integrated with multi-physics simulation tools showed that RF loading of 1 ms can cause a similar to 5 K maximum temperature increase, corresponding to a similar to 4.3 mu m/ms deformation and a 1.32 MHz/K maximum frequency shift. The integrated system modeling analysis will improve design process of a high-Q cavity with more accurate prediction of cryogenic RF performance under a high power pulse operation. (C) 2013 AIP Publishing LLC. C1 [Shin, Young-Min] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Shin, Young-Min; Church, Michael] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Shin, YM (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. EM yshin@niu.edu FU Fermi Research Alliance, LLC under the U.S. Department of Energy FX The work was supported by the Fermi Research Alliance, LLC under the U.S. Department of Energy. NR 17 TC 0 Z9 0 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2013 VL 20 IS 9 AR 093101 DI 10.1063/1.4820773 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 231FE UT WOS:000325399400060 ER PT J AU Stoltzfus-Dueck, T Scott, BD Krommes, JA AF Stoltzfus-Dueck, T. Scott, B. D. Krommes, J. A. TI Nonadiabatic electron response in the Hasegawa-Wakatani equations (vol 20, 082314, 2013) SO PHYSICS OF PLASMAS LA English DT Correction C1 [Stoltzfus-Dueck, T.] EURATOM, Teilinst Greifswald, Max Planck Inst Plasmaphys, D-17491 Greifswald, Germany. [Scott, B. D.] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. [Krommes, J. A.] Princeton Univ, PPPL, Princeton, NJ 08543 USA. RP Stoltzfus-Dueck, T (reprint author), EURATOM, Teilinst Greifswald, Max Planck Inst Plasmaphys, Wendelsteinstr 1, D-17491 Greifswald, Germany. EM tstoltzf@ipp.mpg.de NR 1 TC 0 Z9 0 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2013 VL 20 IS 9 AR 099901 DI 10.1063/1.4821820 PG 1 WC Physics, Fluids & Plasmas SC Physics GA 231FE UT WOS:000325399400088 ER PT J AU Wang, G Peebles, WA Rhodes, TL Austin, ME Yan, Z McKee, GR La Haye, RJ Burrell, KH Doyle, EJ Hillesheim, JC Lanctot, MJ Nazikian, R Petty, CC Schmitz, L Smith, S Strait, EJ Van Zeeland, M Zeng, L AF Wang, G. Peebles, W. A. Rhodes, T. L. Austin, M. E. Yan, Z. McKee, G. R. La Haye, R. J. Burrell, K. H. Doyle, E. J. Hillesheim, J. C. Lanctot, M. J. Nazikian, R. Petty, C. C. Schmitz, L. Smith, S. Strait, E. J. Van Zeeland, M. Zeng, L. TI Multi-field characteristics and eigenmode spatial structure of geodesic acoustic modes in DIII-D L-mode plasmas SO PHYSICS OF PLASMAS LA English DT Article ID ZONAL FLOWS; D TOKAMAK; TOROIDAL PLASMAS; OSCILLATIONS; EXCITATION; UPGRADE AB The geodesic acoustic mode (GAM), a coherent form of the zonal flow, plays a critical role in turbulence regulation and cross-magnetic-field transport. In the DIII-D tokamak, unique information on multi-field characteristics and radial structure of eigenmode GAMs has been measured. Two simultaneous and distinct, radially overlapping eigenmode GAMs (i.e., constant frequency vs. radius) have been observed in the poloidal E X B flow in L-mode plasmas. As the plasma transitions from an L-mode to an Ohmic regime, one of these eigenmode GAMs becomes a continuum GAM (frequency responds to local parameters), while the second decays below the noise level. The eigenmode GAMs occupy a radial range of rho = 0.6-0.8 and 0.75-0.95, respectively. In addition, oscillations at the GAM frequency are observed for the first time in multiple plasma parameters, including n(e), T-e, and B-theta. The magnitude of T-e/T-e Te at the GAM frequency (the magnitude is similar to that of n(e)/n(e)) and measured n(e)-T-e cross-phase (similar to 140 degrees at the GAM frequency) together indicate that the GAM pressure perturbation is not determined solely by n(e). The magnetic GAM behavior, a feature only rarely reported, is significantly stronger (X 18) on the high-field side of the tokamak, suggesting an anti-ballooning nature. Finally, the GAM is also observed to directly modify intermediate-wavenumber n(e) levels (k rho(s) similar to 1.1). The simultaneous temperature, density, flow fluctuations, density-temperature cross-phase, and magnetic behavior present a new perspective on the underlying physics of the GAM. (C) 2013 AIP Publishing LLC. C1 [Wang, G.; Peebles, W. A.; Rhodes, T. L.; Doyle, E. J.; Hillesheim, J. C.; Schmitz, L.; Zeng, L.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Wang, G.; Peebles, W. A.; Rhodes, T. L.; Doyle, E. J.; Hillesheim, J. C.; Schmitz, L.; Zeng, L.] Univ Calif Los Angeles, PSTI, Los Angeles, CA 90095 USA. [Austin, M. E.] Univ Texas Austin, Austin, TX 78712 USA. [Yan, Z.; McKee, G. R.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [La Haye, R. J.; Burrell, K. H.; Lanctot, M. J.; Petty, C. C.; Smith, S.; Strait, E. J.; Van Zeeland, M.] Gen Atom Co, San Diego, CA 92186 USA. [Nazikian, R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Wang, G (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. RI Lanctot, Matthew J/O-4979-2016 OI Lanctot, Matthew J/0000-0002-7396-3372 FU U.S. Department of Energy [DE-FG02-08ER54984, DE-FG03-97ER54415, DE-FG02-89ER53296, DE-FG02-08ER54999, DE-FC02-04ER54698, DE-AC02-09CH11466] FX One of the authors (G. W.) would like to thank Dr. P. B. Snyder and Dr. S.J. Zweben for useful conversations. This work supported in part by the U. S. Department of Energy under DE-FG02-08ER54984, DE-FG03-97ER54415, DE-FG02-89ER53296, DE-FG02-08ER54999, DE-FC02-04ER54698, and DE-AC02-09CH11466. NR 57 TC 13 Z9 13 U1 2 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2013 VL 20 IS 9 AR 092501 DI 10.1063/1.4819501 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 231FE UT WOS:000325399400039 ER PT J AU Zheng, J Qin, H AF Zheng, Jian Qin, Hong TI On the singularity of the Vlasov-Poisson system SO PHYSICS OF PLASMAS LA English DT Article ID PLASMA-OSCILLATIONS AB The Vlasov-Poisson system can be viewed as the collisionless limit of the corresponding Fokker-Planck-Poisson system. It is reasonable to expect that the result of Landau damping can also be obtained from the Fokker-Planck-Poisson system when the collision frequency nu approaches zero. However, we show that the collisionless Vlasov-Poisson system is a singular limit of the collisional Fokker-Planck-Poisson system, and Landau's result can be recovered only as the nu approaches zero from the positive side. (C) 2013 AIP Publishing LLC. C1 [Zheng, Jian; Qin, Hong] Univ Sci & Technol China, CAS Key Lab Basic Plasma Phys, Hefei 230026, Anhui, Peoples R China. [Zheng, Jian; Qin, Hong] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Qin, Hong] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08550 USA. RP Zheng, J (reprint author), Univ Sci & Technol China, CAS Key Lab Basic Plasma Phys, Hefei 230026, Anhui, Peoples R China. FU Natural Science Foundation of China [11175179, 11075162]; ITER-China Program [2010GB107001, 2011GB106001]; Ministry of Education [IRT1190] FX The authors are grateful to the anonymous referee for the suggestion of the initial-value problem, and to Chang Liu and Yao Zhou for their discussions. This work was supported by the Natural Science Foundation of China (Grant Nos. 11175179 and 11075162), ITER-China Program (2010GB107001 and 2011GB106001), and Ministry of Education (Grant No. IRT1190). NR 12 TC 4 Z9 5 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2013 VL 20 IS 9 AR 092114 DI 10.1063/1.4821831 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 231FE UT WOS:000325399400016 ER PT J AU Pankratov, V Popov, AI Shirmane, L Kotlov, A Bizarri, GA Burger, A Bhattacharya, P Tupitsyn, E Rowe, E Buliga, VM Williams, RT AF Pankratov, V. Popov, A. I. Shirmane, L. Kotlov, A. Bizarri, G. A. Burger, A. Bhattacharya, P. Tupitsyn, E. Rowe, E. Buliga, V. M. Williams, R. T. TI Luminescence and ultraviolet excitation spectroscopy of SrI2 and SrI2:Eu2+ SO RADIATION MEASUREMENTS LA English DT Article; Proceedings Paper CT 8th International Conference on Luminescence Detectors and Transformers of Ionizing Radiation (LUMDETR) CY SEP 10-14, 2012 CL Martin Luther Univ Halle Wittenberg, Halle, GERMANY SP Ctr Innovat Competence SiLi Nano HO Martin Luther Univ Halle Wittenberg DE Strontium iodide; Excitation spectroscopy; Luminescence; Synchrotron radiation ID 2-PHOTON SPECTROSCOPY; SCINTILLATORS; CRYSTALS; SPECTRA AB We report measurements of luminescence and its ultraviolet excitation spectra in SrI2 and SrI2:Eu2+ at temperatures of 10 and 300 K. Attention is focused on determining the exciton energy and its temperature shift from features of the excitation spectra and limits placed by absorption spectroscopy on a 120 mu m thin crystal, on observation of a broadened Eu emission band attributed to trace Eu associated with oxygen in nominally undoped crystals, and on adding observations concerning the 3.4 eV band at low temperature attributed by Pustovarov et al. to the self-trapped exciton. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Pankratov, V.; Popov, A. I.; Shirmane, L.] Latvian State Univ, Inst Solid State Phys, LV-1063 Riga, Latvia. [Kotlov, A.] DESY, HASYLAB, D-22607 Hamburg, Germany. [Bizarri, G. A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Burger, A.; Bhattacharya, P.; Tupitsyn, E.; Rowe, E.; Buliga, V. M.] Fisk Univ, Dept Life & Phys Sci, Nashville, TN 37208 USA. [Williams, R. T.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA. [Pankratov, V.] Univ Oulu, Dept Phys, FIN-90014 Oulu, Finland. RP Pankratov, V (reprint author), Latvian State Univ, Inst Solid State Phys, 8 Kengaraga, LV-1063 Riga, Latvia. EM vpank@latnet.lv; williams@wfu.edu RI Popov, Anatoli /E-8828-2010; Kotlov, Aleksei/G-5182-2014; Pankratov, Vladimir/B-8013-2011; Dep Theor Physics, Computer Modeling/E-6336-2013 OI Popov, Anatoli /0000-0003-2795-9361; Pankratov, Vladimir/0000-0001-6233-8195; NR 21 TC 24 Z9 24 U1 3 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1350-4487 J9 RADIAT MEAS JI Radiat. Meas. PD SEP PY 2013 VL 56 SI SI BP 13 EP 17 DI 10.1016/j.radmeas.2013.02.022 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 234VC UT WOS:000325671400004 ER PT J AU Ehlers, G Stewart, JR Wildes, AR Deen, PP Andersen, KH AF Ehlers, G. Stewart, J. R. Wildes, A. R. Deen, P. P. Andersen, K. H. TI Generalization of the classical xyz-polarization analysis technique to out-of-plane and inelastic scattering SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID NEUTRON POLARIZATION; MAGNETIC SCATTERING; SLOW-NEUTRONS; MULTIDETECTOR; SPECTROMETER AB The technique of longitudinal ("xyz") polarization analysis has been used successfully for many years to study disordered magnetic materials in thermal and cold neutron diffraction experiments. The technique allows the simultaneous and unambiguous separation of the nuclear, magnetic, and nuclear spin-incoherent contributions to the scattering. The technical advances seen in recent years, such as the availability of polarized He-3 analyzer cells to cover a large detector solid angle, the ability to detect out-of-plane scattering in a multi-detector, and a significant increase of the usable beam divergence, call for a generalization of the method. A general treatment of the formalism for carrying out neutron polarization analysis will be given in this paper, which describes a possible method of usage at a future, modern diffractometer or inelastic spectrometer with large area multi-detector coverage. (C) 2013 AIP Publishing LLC. C1 [Ehlers, G.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Stewart, J. R.] Rutherford Appleton Lab, ISIS, Didcot OX11 0QX, Oxon, England. [Wildes, A. R.] Inst Laue Langevin, F-38042 Grenoble, France. [Deen, P. P.; Andersen, K. H.] European Spallat Source ESS AB, S-22100 Lund, Sweden. RP Ehlers, G (reprint author), Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. RI Stewart, Ross/C-4194-2008; Ehlers, Georg/B-5412-2008 OI Stewart, Ross/0000-0003-0053-0178; Ehlers, Georg/0000-0003-3513-508X FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX The authors thank the ILL for the use of the D7 spectrometer. G.E. acknowledges funding by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 25 TC 6 Z9 6 U1 1 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD SEP PY 2013 VL 84 IS 9 AR 093901 DI 10.1063/1.4819739 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 231FX UT WOS:000325402000027 PM 24089835 ER PT J AU Gotlieb, K Hussain, Z Bostwick, A Lanzara, A Jozwiak, C AF Gotlieb, K. Hussain, Z. Bostwick, A. Lanzara, A. Jozwiak, C. TI Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID TUNABLE TOPOLOGICAL INSULATOR; DEPENDENT ELECTRON DYNAMICS; 2-PHOTON PHOTOEMISSION; POLARIZATION; TEXTURE; PHASE; POLARIMETER; SCATTERING; TRANSPORT; FILTER AB A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-E-F spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements. (C) 2013 AIP Publishing LLC. C1 [Gotlieb, K.] Univ Calif Berkeley, Grad Grp Appl Sci & Technol, Berkeley, CA 94720 USA. [Hussain, Z.; Bostwick, A.; Jozwiak, C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Lanzara, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lanzara, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Gotlieb, K (reprint author), Univ Calif Berkeley, Grad Grp Appl Sci & Technol, Berkeley, CA 94720 USA. EM zhussain@lbl.gov; alanzara@lbl.gov; cmjozwiak@lbl.gov FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; Advanced Light Source, Lawrence Berkeley National Laboratory; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation (NSF) [DGE 1106400] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. The work was also supported by the Advanced Light Source, Lawrence Berkeley National Laboratory, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. One of the researchers (K.G.) was supported by a fellowship from the National Science Foundation (NSF) under Grant No. DGE 1106400. NR 85 TC 5 Z9 5 U1 3 U2 59 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD SEP PY 2013 VL 84 IS 9 AR 093904 DI 10.1063/1.4821247 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 231FX UT WOS:000325402000030 PM 24089838 ER PT J AU Graham, KS Joyce, JJ Durakiewicz, T AF Graham, Kevin S. Joyce, John J. Durakiewicz, Tomasz TI Integrated experimental setup for angle resolved photoemission spectroscopy of transuranic materials SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID PHOTOELECTRON-SPECTROSCOPY; ELECTRONIC-STRUCTURE; RESONANT PHOTOEMISSION; F-ELECTRONS; THIN-FILMS; DISPERSION; PU; LOCALIZATION; TRANSITION; PLUTONIUM AB We have developed the Angle Resolved Photoemission Spectroscopy (ARPES) system for transuranic materials. The ARPES transuranic system is an endstation upgrade to the Laser Plasma Light Source (LPLS) at Los Alamos National Laboratory. The LPLS is a tunable light source for photoemission with a photon energy range covering the vacuum ultraviolet (VUV) and soft x-ray regions (27-140 eV). The LPLS was designed and developed for transuranic materials. Transuranic photoemission is currently not permitted at the public synchrotrons worldwide in the VUV energy range due to sample encapsulation requirements. With the addition of the ARPES capability to the LPLS system there is an excellent opportunity to explore new details centered on the electronic structure of actinide and transuranic materials. (C) 2013 AIP Publishing LLC. C1 [Graham, Kevin S.; Joyce, John J.; Durakiewicz, Tomasz] Los Alamos Natl Lab, Mat Phys & Applicat Div, Condensed Matter & Magnet Sci Grp, Los Alamos, NM 87544 USA. RP Graham, KS (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, Condensed Matter & Magnet Sci Grp, POB 1663, Los Alamos, NM 87544 USA. EM tomasz@lanl.gov FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering FX This work was performed at Los Alamos National Laboratory under the auspices of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. NR 40 TC 2 Z9 2 U1 1 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD SEP PY 2013 VL 84 IS 9 AR 093902 DI 10.1063/1.4820480 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 231FX UT WOS:000325402000028 PM 24089836 ER PT J AU Jenei, Z Cynn, H Visbeck, K Evans, WJ AF Jenei, Zsolt Cynn, Hyunchae Visbeck, Ken Evans, William J. TI High-temperature experiments using a resistively heated high-pressure membrane diamond anvil cell SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID X-RAY-DIFFRACTION; RAMAN-SPECTROSCOPY; CARBON-DIOXIDE; MELTING CURVES; PHASE; GPA; CALIBRATION; SENSORS; SYSTEM; H-2 AB We describe a reliable high performance resistive heating method developed for the membrane diamond anvil cell. This method generates homogenous high temperatures at high pressure in the whole sample for extended operation period. It relies on two mini coil heaters made of Pt-Rh alloy wire mounted around the diamond anvils and gasket, while temperature is monitored by two K-type thermocouples mounted near the sample. The sample, diamonds, and tungsten-carbide seats are thermally insulated from the piston and cylinder keeping the cell temperature below 750 K while the sample temperature is 1200 K. The cell with the heaters is placed in a vacuum oven to prevent oxidation and unnecessary heat loss. This assembly allows complete remote operation, ideally suited for experiments at synchrotron facilities. Capabilities of the setup are demonstrated for in situ Raman and synchrotron x-ray diffraction measurements. We show experimental measurements from isothermal compression at 900 K and 580 K to 100 GPa and 185 GPa, respectively, and quasi-isobaric compression at 95 GPa over 1000 K. (C) 2013 AIP Publishing LLC. C1 [Jenei, Zsolt; Cynn, Hyunchae; Visbeck, Ken; Evans, William J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Jenei, Z (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RI Jenei, Zsolt/B-3475-2011 FU U.S. DOE/NNSA Science Campaign-2; Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; CIW; CDAC; UNLV; LLNL; DOE-NNSA; DOE-BES [DE-AC02-06CH11357]; National Science Foundation (NSF) FX We thank Professor Dr. Choong-Shik Yoo at Washington State University for insightful discussion on the heater development. We gratefully acknowledge support from U.S. DOE/NNSA Science Campaign-2 (Program Manager - Dr. Brad Wallin). This work was performed under the auspices of the Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. HPCAT is supported by CIW, CDAC, UNLV, and LLNL through funding from DOE-NNSA, DOE-BES, and National Science Foundation (NSF). APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357. NR 31 TC 7 Z9 7 U1 5 U2 37 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD SEP PY 2013 VL 84 IS 9 AR 095114 DI 10.1063/1.4821622 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 231FX UT WOS:000325402000065 PM 24089873 ER PT J AU Martin, JE AF Martin, James E. TI A resonant biaxial Helmholtz coil employing a fractal capacitor bank SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB The design and construction of a series resonant biaxial Helmholtz coil for the production of magnetic fields as large as 500 G in the range of 100-2500 Hz is described. Important aspects of ac coil design are discussed, including: minimizing power losses due to the expected Joule heating, self-induced eddy currents, and skin resistance; controlling the stray capacitance; maximizing field homogeneity; and keeping peak voltages at acceptable levels. The design and construction of a computer-controlled, optically isolated fractal capacitor bank is then treated, and various aspects of capacitor selection and characterization were discussed. The system performance is demonstrated, including stability and the possibility of field component dephasing with typical magnetic samples. (C) 2013 AIP Publishing LLC. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Martin, JE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Division of Materials Science, Office of Basic Energy Sciences, U.S. Department of Energy (DOE) FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. This work was supported by the Division of Materials Science, Office of Basic Energy Sciences, U.S. Department of Energy (DOE). The design of this device benefited from discussions with R. A. Anderson. L. Shapnek fabricated the capacitor banks, and designed the necessary safety interlocks to ensure their safe operation. NR 13 TC 6 Z9 6 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD SEP PY 2013 VL 84 IS 9 AR 094704 DI 10.1063/1.4821878 PG 11 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 231FX UT WOS:000325402000039 PM 24089847 ER PT J AU Tranter, RS Lynch, PT AF Tranter, R. S. Lynch, P. T. TI A miniature high repetition rate shock tube SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SCATTERING AB A miniature high repetition rate shock tube with excellent reproducibility has been constructed to facilitate high temperature, high pressure, gas phase experiments at facilities such as synchrotron light sources where space is limited and many experiments need to be averaged to obtain adequate signal levels. The shock tube is designed to generate reaction conditions of T > 600 K, P < 100 bars at a cycle rate of up to 4 Hz. The design of the apparatus is discussed in detail, and data are presented to demonstrate that well-formed shock waves with predictable characteristics are created, repeatably. Two synchrotron-based experiments using this apparatus are also briefly described here, demonstrating the potential of the shock tube for research at synchrotron light sources. (C) 2013 AIP Publishing LLC. C1 [Tranter, R. S.; Lynch, P. T.] Argonne Natl Lab, Dept Chem Sci & Engn, Argonne, IL 60439 USA. RP Tranter, RS (reprint author), Argonne Natl Lab, Dept Chem Sci & Engn, 9700 S Cass Ave, Argonne, IL 60439 USA. EM tranter@anl.gov FU Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy [DE-AC02-2006CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy [W-31-109-ENG-38] FX This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy, under Contract No. DE-AC02-2006CH11357 as part of the Argonne Sandia Consortium on High Pressure Combustion Chemistry.; The XAS experiments were conducted at the 7-BM beamline of the Advanced Photon Source at Argonne National Laboratory. We are grateful to Alan L. Kastengren for his expertise in XAS. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.; The VUV-TOF-MS studies were conducted at the Chemical Dynamics beamline (9.0.2) and Musahid Ahmed kindly made his TOF-MS endstation available to us. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.; The article has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 26 TC 7 Z9 7 U1 2 U2 32 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD SEP PY 2013 VL 84 IS 9 AR 094102 DI 10.1063/1.4820917 PG 11 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 231FX UT WOS:000325402000032 PM 24089840 ER PT J AU Frazer, NL Schaller, RD Ketterson, JB AF Frazer, N. Laszlo Schaller, Richard D. Ketterson, J. B. TI Unexpectedly slow two particle decay of ultra-dense excitons in cuprous oxide SO SOLID STATE COMMUNICATIONS LA English DT Article DE Copper(I) oxide; Polaritons; Auger; Femtosecond laser ID BOSE-EINSTEIN CONDENSATION; AUGER DECAY; MOLECULE FORMATION; CU2O; POLARITONS; SUPERFLUIDITY; TRANSPORT; PARAEXCITONS; ABSORPTION; TRANSITION AB For an ultra-dense exciton gas in cuprous oxide (Cu2O), exciton-exciton interactions are the dominant cause of exciton decay. This study demonstrates that the accepted Auger recombination model overestimates the exciton decay rate following intense two photon excitation. Two exciton decay is relevant to the search for collective quantum behavior of excitons in bulk systems. These results suggest the existence of a new high density regime of exciton behavior. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Frazer, N. Laszlo; Ketterson, J. B.] Northwestern Univ, Dept Phys, Evanston, IL 60208 USA. [Schaller, Richard D.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Schaller, Richard D.] Northwestern Univ, Dept Chem, Argonne, IL 60439 USA. RP Frazer, NL (reprint author), Northwestern Univ, Dept Phys, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM ssc@laszlofrazer.com; schaller@anl.gov; j-ketterson@northwestern.edu OI Frazer, Laszlo/0000-0003-3574-8003 FU MRSEC program of the National Science Foundation at the Materials Research Center of Northwestern University [DMR-0520513]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NSF IGERT [DGE-0801685]; Ryan Fellowship; Northwestern University International Institute for Nanotechnology FX We would like to thank Professor M. Grayson for helpful discussions. This work made use of the J.B. Cohen X-Ray Diffraction Facility and OMM Facility supported by the MRSEC program of the National Science Foundation (DMR-0520513) at the Materials Research Center of Northwestern University. Use of the Center for Nanoscale Materials was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract no. DE-AC02-06CH11357. Support was provided by NSF IGERT DGE-0801685. N.L.F. gratefully acknowledges the support from the Ryan Fellowship and the Northwestern University International Institute for Nanotechnology. NR 42 TC 2 Z9 2 U1 0 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 J9 SOLID STATE COMMUN JI Solid State Commun. PD SEP PY 2013 VL 170 BP 34 EP 38 DI 10.1016/j.ssc.2013.07.015 PG 5 WC Physics, Condensed Matter SC Physics GA 233UH UT WOS:000325594500008 ER PT J AU Goulay, F Schrader, PE Lopez-Yglesias, X Michelsen, HA AF Goulay, Fabien Schrader, Paul E. Lopez-Yglesias, Xerxes Michelsen, Hope A. TI A data set for validation of models of laser-induced incandescence from soot: temporal profiles of LII signal and particle temperature SO APPLIED PHYSICS B-LASERS AND OPTICS LA English DT Article ID POLYCYCLIC AROMATIC-HYDROCARBONS; TURBULENT-DIFFUSION FLAMES; VOLUME-FRACTION; INDUCED FLUORESCENCE; OPTICAL DIAGNOSTICS; GENERATED SOOT; ELEVATED-TEMPERATURES; NANOSECOND PULSES; REFRACTIVE-INDEX; LAMINAR AB We measured spectrally and temporally resolved laser-induced incandescence signals from flame-generated soot at laser fluences of 0.01-3.5 J/cm(2) and laser wavelengths of 532 and 1,064 nm. We recorded LII temporal profiles at 681.8 nm using a fast-gated detector and a spatially homogeneous and temporally smooth laser profile. Time-resolved emission spectra were used to identify and avoid spectral interferences and to infer soot temperatures. Soot temperatures reach a maximum of 4,415 +/- A 65 K at fluences a parts per thousand yen0.2 J/cm(2) at 532 nm and 4,424 +/- A 80 K at fluences a parts per thousand yen0.3 J/cm(2) at 1,064 nm. These temperatures are consistent with the sublimation temperature of C-2 of 4,456.59 K. At fluences above 0.5 J/cm(2) at 532 nm, the measured spectra yield an apparent higher temperature after the soot has fully vaporized but well within the laser pulse. This apparent temperature elevation at high fluence is explained by fluorescence interferences from molecules present in the flame. We also measured 3-color LII temporal profiles at detection wavelengths of 451.5, 681.8, and 854.8 nm. The temperatures inferred from these measurements agree well with those measured using spectrally resolved LII. The data discussed in this manuscript are archived as electronic supplementary material. C1 [Goulay, Fabien; Schrader, Paul E.; Lopez-Yglesias, Xerxes; Michelsen, Hope A.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Michelsen, HA (reprint author), Sandia Natl Labs, Combust Res Facil, MS 9055,POB 969, Livermore, CA 94551 USA. EM hamiche@sandia.gov FU Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the US Department of Energy; National Nuclear Security Administration [DE-AC04-94-AL85000] FX We thank Laszlo Nemes for his valuable comments on the manuscript. We also thank Daniel Strong for the rendition of the experimental setup shown in Fig. 1. This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the US Department of Energy. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under contract DE-AC04-94-AL85000. NR 79 TC 14 Z9 14 U1 2 U2 22 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0946-2171 EI 1432-0649 J9 APPL PHYS B-LASERS O JI Appl. Phys. B-Lasers Opt. PD SEP PY 2013 VL 112 IS 3 BP 287 EP 306 DI 10.1007/s00340-013-5504-4 PG 20 WC Optics; Physics, Applied SC Optics; Physics GA 227GJ UT WOS:000325099100002 ER PT J AU Bambha, RP Dansson, MA Schrader, PE Michelsen, HA AF Bambha, Ray P. Dansson, Mark A. Schrader, Paul E. Michelsen, Hope A. TI Effects of volatile coatings on the laser-induced incandescence of soot SO APPLIED PHYSICS B-LASERS AND OPTICS LA English DT Article ID ABSORPTION CROSS-SECTION; TURBULENT-DIFFUSION FLAMES; BLACK CARBON MEASUREMENTS; LOW-FLUENCE LII; LIGHT-SCATTERING; OPTICAL-PROPERTIES; MIXING STATE; WAVELENGTH DEPENDENCE; MOBILITY RELATIONSHIP; RADIATIVE ABSORPTION AB We have measured time-resolved laser-induced incandescence (LII) from combustion-generated mature soot extracted from a burner and (1) coated with oleic acid or (2) coated with oleic acid and then thermally denuded using a thermodenuder. The soot samples were size selected using a differential mobility analyzer and characterized with a scanning mobility particle sizer, centrifugal particle mass analyzer, and transmission electron microscope. The results demonstrate a strong influence of coatings on the magnitude and temporal evolution of the LII signal. For coated particles, higher laser fluences are required to reach signal levels comparable to those of uncoated particles. The peak LII curve is shifted to increasingly higher fluences with increasing coating thickness until this effect saturates at a coating thickness of similar to 75 % by mass. These effects are predominantly attributable to the additional energy needed to vaporize the coating while heating the particle. LII signals are higher and signal decay rates are significantly slower for thermally denuded particles relative to coated or uncoated particles, particularly at low and intermediate laser fluences. Our results suggest negligible coating enhancement in absorption cross-section for combustion-generated soot at the laser fluences used. Apparent enhancement in absorption with restructuring may be caused by less conductive cooling. C1 [Bambha, Ray P.; Dansson, Mark A.; Schrader, Paul E.; Michelsen, Hope A.] Sandia Natl Labs, Combust Res Facil, Livermore, CA USA. RP Michelsen, HA (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA USA. EM hamiche@sandia.gov FU Sandia Laboratory Directed Research and Development program; Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the US Department of Energy; National Nuclear Security Administration [DE-AC04-94-AL85000] FX We thank Daniel Strong for the renditions of the experimental setup shown in Fig. 1. We are very grateful to Chris Sorensen for his advice on analysis of the TEM images, Jeff Headrick for his assistance with the TEM image analysis, and Alexei Khalizov for his insightful comments about soot restructuring. This work was funded by the Sandia Laboratory Directed Research and Development program. The TEM analysis, the thermodenuder design, construction, and testing, and the CPMA were funded by the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the US Department of Energy. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under contract DE-AC04-94-AL85000. NR 101 TC 10 Z9 10 U1 3 U2 25 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0946-2171 EI 1432-0649 J9 APPL PHYS B-LASERS O JI Appl. Phys. B-Lasers Opt. PD SEP PY 2013 VL 112 IS 3 BP 343 EP 358 DI 10.1007/s00340-013-5463-9 PG 16 WC Optics; Physics, Applied SC Optics; Physics GA 227GJ UT WOS:000325099100006 ER PT J AU Dutton, SM Banks, D Brunswick, SL Fisk, WJ AF Dutton, Spencer M. Banks, David Brunswick, Samuel L. Fisk, William J. TI Health and economic implications of natural ventilation in California offices SO BUILDING AND ENVIRONMENT LA English DT Article DE Natural ventilation; Occupant health; Sick building syndrome; Exposure model; Occupant exposure; PM2.5 ozone exposure ID PARTICULATE AIR-POLLUTION; INDOOR AIR; OZONE; BUILDINGS; MORTALITY; SYMPTOMS; ASSOCIATION; PERFORMANCE; CHEMISTRY; SINGAPORE AB This study examines the human health implications of natural ventilation in California office buildings. We modeled work-time exposures using field data on indoor and outdoor ozone and particulate matter from four case studies in naturally ventilated offices and published data from mechanically ventilated offices. We also modeled the amount of time that windows would be open in the naturally ventilated office and used the results to estimate the difference in pollutant exposures for occupants of naturally ventilated versus mechanically ventilated, air-conditioned offices. Based on published concentration response equations, we estimated the incremental changes in health outcomes that resulted from the difference in exposures for occupants in the two types of offices. We also estimated the differences in sick building symptom rates based on symptom prevalence rates in naturally ventilated and air-conditioned offices. Finally, we developed first-order estimates of the health-related costs and benefits of retrofitting 10 percent of California's current office space to use natural ventilation. Findings included an increase in annual health-related costs from increased exposure to ozone and particulate matter of between $130 million and $207 million, and a reduction in sick building syndrome symptom costs, valued between $43 million and $11.5 million. Our estimates have a high degree of uncertainty and exclude potentially significant health-related costs and benefits of both naturally ventilated and air-conditioned buildings. Nonetheless, these estimates indicate that health-related costs of natural ventilation are significant and warrant further study. We also explore several mitigation options that could limit the health and economic impacts of natural ventilation. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Dutton, Spencer M.; Brunswick, Samuel L.; Fisk, William J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Banks, David] CPP Wind Engn, Ft Collins, CO USA. RP Dutton, SM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM smdutton@lbl.gov FU California Energy Commission; Public Interest Energy Research Program; Buildings End Use Energy Efficiency Program [500-10-025]; U.S. Department of Energy [DE-AC03-765F00098] FX This work was supported by the California Energy Commission, Public Interest Energy Research Program, Buildings End Use Energy Efficiency Program, Contract number 500-10-025, through the U.S. Department of Energy under contract DE-AC03-765F00098. The authors would like to thank Brad Meister of the California Energy Commission, George Loisos, Frederic Haldi, and finally Ed Arens and Hui Zhang from the University of California, Berkeley Center for the Built Environment. NR 45 TC 10 Z9 10 U1 3 U2 35 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-1323 J9 BUILD ENVIRON JI Build. Environ. PD SEP PY 2013 VL 67 BP 34 EP 45 DI 10.1016/j.buildenv.2013.05.002 PG 12 WC Construction & Building Technology; Engineering, Environmental; Engineering, Civil SC Construction & Building Technology; Engineering GA 222GN UT WOS:000324719300004 ER PT J AU Lorenzetti, DM Dols, WS Persily, AK Sohn, MD AF Lorenzetti, David M. Dols, W. Stuart Persily, Andrew K. Sohn, Michael D. TI A stiff, variable time step transport solver for CONTAM SO BUILDING AND ENVIRONMENT LA English DT Article DE Contaminant; Pollutant transport; Simulation; Buildings; CONTAM; CVODE AB We describe the implementation of a new transport solver for CONTAM, a whole-building airflow and contaminant transport model developed by the National Institute of Standards and Technology. Based on CVODE, a general-purpose code for ordinary differential equations, the new solver features variable time steps, high-order integration methods, and automatic error control. These techniques can make CONTAM more accurate when simulating fast transport mechanisms such as high air change rates, sorption, and chemical reactions. We present the relevant theory, then describe the modeling decisions needed to integrate CVODE into CONTAM. Testing with two realistic building models shows that CVODE can run faster than the legacy solvers. Published by Elsevier Ltd. C1 [Lorenzetti, David M.; Sohn, Michael D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Dols, W. Stuart; Persily, Andrew K.] NIST, Gaithersburg, MD 20899 USA. RP Lorenzetti, DM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 90-2002, Berkeley, CA 94720 USA. EM dmlorenzetti@lbl.gov; william.dols@nist.gov; andrew.persily@nist.gov; mdsohn@lbl.gov OI Lorenzetti, David/0000-0002-9971-1165 FU Defense Threat Reduction Agency; U.S. Department of Energy [DE-AC02-05CH11231]; Naval Surface Warfare Center Dahlgren; [MIPRs N0017810MP00069]; [N0017810MP00160] FX LBNL's research was funded in part by the Defense Threat Reduction Agency, and performed under U.S. Department of Energy contract no. DE-AC02-05CH11231. NIST was supported under MIPRs N0017810MP00069 and N0017810MP00160, both funded by the Naval Surface Warfare Center Dahlgren. NR 11 TC 5 Z9 5 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-1323 J9 BUILD ENVIRON JI Build. Environ. PD SEP PY 2013 VL 67 BP 260 EP 264 DI 10.1016/j.buildenv.2013.05.008 PG 5 WC Construction & Building Technology; Engineering, Environmental; Engineering, Civil SC Construction & Building Technology; Engineering GA 222GN UT WOS:000324719300027 ER PT J AU Hurrell, JW Holland, MM Gent, PR Ghan, S Kay, JE Kushner, PJ Lamarque, JF Large, WG Lawrence, D Lindsay, K Lipscomb, WH Long, MC Mahowald, N Marsh, DR Neale, RB Rasch, P Vavrus, S Vertenstein, M Bader, D Collins, WD Hack, JJ Kiehl, J Marshall, S AF Hurrell, James W. Holland, M. M. Gent, P. R. Ghan, S. Kay, Jennifer E. Kushner, P. J. Lamarque, J. -F. Large, W. G. Lawrence, D. Lindsay, K. Lipscomb, W. H. Long, M. C. Mahowald, N. Marsh, D. R. Neale, R. B. Rasch, P. Vavrus, S. Vertenstein, M. Bader, D. Collins, W. D. Hack, J. J. Kiehl, J. Marshall, S. TI The Community Earth System Model A Framework for Collaborative Research SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID GENERAL-CIRCULATION MODEL; CLOUD MICROPHYSICS SCHEME; ARCTIC SEA-ICE; ATMOSPHERE MODEL; PART I; THICKNESS DISTRIBUTION; SATELLITE MEASUREMENTS; CLIMATE SENSITIVITY; WOOD-HARVEST; VERSION 4 AB The Community Earth System Model (CESM) is a flexible and extensible community tool used to investigate a diverse set of Earth system interactions across multiple time and space scales. This global coupled model significantly extends its predecessor, the Community Climate System Model, by incorporating new Earth system simulation capabilities. These comprise the ability to simulate biogeochemical cycles, including those of carbon and nitrogen, a variety of atmospheric chemistry options, the Greenland Ice Sheet, and an atmosphere that extends to the lower thermosphere. These and other new model capabilities are enabling investigations into a wide range of pressing scientific questions, providing new foresight into possible future climates and increasing our collective knowledge about the behavior and interactions of the Earth system. Simulations with numerous configurations of the CESM have been provided to phase 5 of the Coupled Model Intercomparison Project (CMIP5) and are being analyzed by the broad community of scientists. Additionally, the model source code and associated documentation are freely available to the scientific community to use for Earth system studies, making it a true community tool. This article describes this Earth system model and its various possible configurations, and highlights a number of its scientific capabilities. C1 [Hurrell, James W.; Holland, M. M.; Gent, P. R.; Kay, Jennifer E.; Lamarque, J. -F.; Large, W. G.; Lawrence, D.; Lindsay, K.; Long, M. C.; Marsh, D. R.; Neale, R. B.; Vertenstein, M.; Kiehl, J.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Ghan, S.; Rasch, P.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Kushner, P. J.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Lipscomb, W. H.] Los Alamos Natl Lab, Los Alamos, NM USA. [Mahowald, N.] Cornell Univ, Ithaca, NY USA. [Vavrus, S.] Univ Wisconsin, Madison, WI USA. [Bader, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Collins, W. D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hack, J. J.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Marshall, S.] Univ Calgary, Calgary, AB, Canada. RP Hurrell, JW (reprint author), NCAR Earth Syst Lab, POB 3000, Boulder, CO 80307 USA. EM jhurrell@ucar.edu RI Lawrence, David/C-4026-2011; Collins, William/J-3147-2014; Marsh, Daniel/A-8406-2008; Lamarque, Jean-Francois/L-2313-2014; Mahowald, Natalie/D-8388-2013; Bader, David/H-6189-2011; Ghan, Steven/H-4301-2011; Long, Matthew/H-4632-2016; Kushner, Paul/H-6716-2016; Kay, Jennifer/C-6042-2012 OI Lawrence, David/0000-0002-2968-3023; Collins, William/0000-0002-4463-9848; Marsh, Daniel/0000-0001-6699-494X; Lamarque, Jean-Francois/0000-0002-4225-5074; Mahowald, Natalie/0000-0002-2873-997X; Bader, David/0000-0003-3210-339X; Ghan, Steven/0000-0001-8355-8699; Long, Matthew/0000-0003-1273-2957; Kushner, Paul/0000-0002-6404-4518; FU U.S. Department of Energy, Office of Science, Scientific Discovery through Advanced Computing (SciDAC) Program; Office of Science Earth System Modeling Program; Northwest National Laboratory is operated for the DOE by Battelle Memorial Institute [DEAC06-76RLO 1830]; National Science Foundation; Office of Science (BER) of the Department of Energy [DE-AC05-00OR22725]; Office of Science (BER) of the U.S. Department of Energy FX We thank the three referees of the original submission. Their constructive comments and suggestions improved the manuscript considerably. We also thank Dr. Jin-ho Yoon and Adam Phillips for their help in the preparation of several figures, Miren Vizcaino for providing output from CESM1(CISM) simulations, and William Sacks for software engineering support that made the CESM1(CISM) simulations possible. S. Ghan and P. Rasch were funded by the U.S. Department of Energy, Office of Science, Scientific Discovery through Advanced Computing (SciDAC) Program, and by the Office of Science Earth System Modeling Program. The Pacific Northwest National Laboratory is operated for the DOE by Battelle Memorial Institute under Contract DEAC06-76RLO 1830.; Computing resources were provided by the Climate Simulation Laboratory at NCAR's Computational and Information Systems Laboratory (CISL), sponsored by the National Science Foundation and other agencies, and the Oak Ridge Leadership Computing Facility, located in the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science (BER) of the Department of Energy under Contract DE-AC05-00OR22725. The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the U.S. Department of Energy. NR 94 TC 253 Z9 255 U1 18 U2 145 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD SEP PY 2013 VL 94 IS 9 BP 1339 EP 1360 DI 10.1175/BAMS-D-12-00121.1 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 227SQ UT WOS:000325135100007 ER PT J AU He, T Habib, S AF He, Temple Habib, Salman TI Chaos and noise SO CHAOS LA English DT Article ID KAC-ZWANZIG MODEL; HEAT BATH MODELS; DYNAMICAL-SYSTEMS; BROWNIAN-MOTION; MULTIPLICATIVE NOISE; INDUCE CHAOS AB Simple dynamical systems-with a small number of degrees of freedom-can behave in a complex manner due to the presence of chaos. Such systems are most often (idealized) limiting cases of more realistic situations. Isolating a small number of dynamical degrees of freedom in a realistically coupled system generically yields reduced equations with terms that can have a stochastic interpretation. In situations where both noise and chaos can potentially exist, it is not immediately obvious how Lyapunov exponents, key to characterizing chaos, should be properly defined. In this paper, we show how to do this in a class of well-defined noise-driven dynamical systems, derived from an underlying Hamiltonian model. (C) 2013 AIP Publishing LLC. C1 [He, Temple] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [He, Temple] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Habib, Salman] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Habib, Salman] Argonne Natl Lab, Div High Energy Phys, Lemont, IL 60439 USA. [Habib, Salman] Argonne Natl Lab, Math & Comp Sci Div, Lemont, IL 60439 USA. RP He, T (reprint author), Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. FU SULI award at Los Alamos National Laboratory FX The work of T.H. was supported in part by a SULI award at Los Alamos National Laboratory, and he acknowledges the many discussions he had with Hideo Mabuchi. S.H. acknowledges past discussions with Tanmoy Bhattacharya, Kurt Jacobs, Henry Kandrup, Elaine Mahon, Govindan Rangarajan, Robert Ryne, Kosuke Shizume, and Robert Zwanzig. NR 38 TC 5 Z9 5 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1054-1500 J9 CHAOS JI Chaos PD SEP PY 2013 VL 23 IS 3 AR 033123 DI 10.1063/1.4813864 PG 11 WC Mathematics, Applied; Physics, Mathematical SC Mathematics; Physics GA 228AW UT WOS:000325158300023 PM 24089959 ER PT J AU Thunga, M Larson, K Lio, W Weerasekera, T Akinc, M Kessler, MR AF Thunga, Mahendra Larson, Kelsey Lio, Wilber Weerasekera, Thilina Akinc, Mufit Kessler, Michael R. TI Low viscosity cyanate ester resin for the injection repair of hole-edge delaminations in bismaleimide/carbon fiber composites SO COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING LA English DT Article DE Polymer-matrix composites; Thermoset resin; Mechanical properties; Delamination; Composite repair ID DAMAGE AB The repair efficiency of bisphenol E cyanate ester (BECy) resin was investigated for the injection repair of high temperature polymer-matrix composites by ultrasonic C-scan mapping, fluorescent dye penetration, optical microscopy, hole plate shear (HPS), and post delamination compression tests. Bismaleimide/carbon fiber (BMI-cf) composites were chosen as a model substrate. A vacuum-based resin injection repair method was used for repairing the pre-damaged composite specimens. The effect of surface wettability on the repair efficiency of BECy on BMI-cf composite substrate was studied by temperature dependent contact angle measurements. C-scan, fluorescent dye penetration, and optical microscopy images of pristine, delaminated, and repaired specimens reveal efficient infiltration of resin in specimens repaired at elevated temperatures. The repair efficiency calculated from HPS and post delamination compression tests was observed to be 155% and 100%, respectively, illustrating the capability of BECy for repairing high temperature structural composites. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Kessler, Michael R.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Kessler, MR (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. EM mkessler@iastate.edu RI Kessler, Michael/C-3153-2008 OI Kessler, Michael/0000-0001-8436-3447 FU Strategic Environmental Research and Development Program (SERDP) [WP-1580] FX Authors gratefully acknowledge the financial support from "Strategic Environmental Research and Development Program (SERDP)," (Project Number WP-1580). Special thanks to Dr. Vinay Dayal (Department of Aerospace Engineering, Iowa State University) for helping with CAI tests and Dan Barnard (Center for Nondestructive Evaluation, Iowa State University) for guidance in C-Scan imaging and providing access to their laboratory facilities. NR 13 TC 4 Z9 5 U1 5 U2 43 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1359-835X J9 COMPOS PART A-APPL S JI Compos. Pt. A-Appl. Sci. Manuf. PD SEP PY 2013 VL 52 BP 31 EP 37 DI 10.1016/j.compositesa.2013.05.001 PG 7 WC Engineering, Manufacturing; Materials Science, Composites SC Engineering; Materials Science GA 225KP UT WOS:000324962100004 ER PT J AU Carney, LT Bohonak, AJ Edwards, MS Alberto, F AF Carney, Laura T. Bohonak, Andrew J. Edwards, Matthew S. Alberto, Filipe TI Genetic and experimental evidence for a mixed-age, mixed-origin bank of kelp microscopic stages in southern California SO ECOLOGY LA English DT Article DE kelp gametophyte bank; kelp genetic diversity; Macrocystis pyrifera; population recovery ID MACROCYSTIS-PYRIFERA PHAEOPHYCEAE; GIANT-KELP; COASTAL ENVIRONMENTS; SPORE DISPERSAL; RECRUITMENT; POPULATION; REPRODUCTION; FOREST; CONSEQUENCES; GAMETOPHYTES AB Laboratory studies have demonstrated that the microscopic stages of kelps can rapidly resume development from a delayed state. Like terrestrial seeds or aquatic resting eggs, banks of delayed kelp stages may supplement population recovery after periods of stress, playing an important role for kelp populations that experience adult sporophyte absences due to seasonal or interannual disturbances. We found that removing the microscopic stages from natural rock substratum could prevent the appearance of juvenile kelp sporophytes for three months and the establishment of a diverse kelp assemblage for over four months within a southern California kelp forest. Juveniles were observed within one month in plots where microscopic stages were left intact, which may confer an advantage for the resulting sporophytes as they attain larger sizes before later recruiting neighbors. Microsatellite diversity was high (expected heterozygosity H-E approximate to 0.9) for juveniles and adults within our sites. Using a microsatellite-based parentage analysis for the dominant kelp, Macrocystis pyrifera, we estimated that a portion of the new M. pyrifera sporophyte recruits had originated from their parents at least seven months after their parents had disappeared. Similar delay durations have been demonstrated in recent laboratory studies. Additionally, our results suggest that zoospore dispersal distances >50 m may be supported by including additional microsatellite loci in the analysis. We propose a mixed-age and, potentially, a mixed-origin bank of M. pyrifera gametophytes promotes maximal genetic diversity in recovering populations and reduces population genetic subdivision and self-fertilization rates for intact populations by promoting the survival of zoospores dispersed >10 m and during inhospitable environmental conditions. C1 [Carney, Laura T.; Bohonak, Andrew J.; Edwards, Matthew S.] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. [Carney, Laura T.] Sandia Natl Labs, Livermore, CA 94551 USA. [Alberto, Filipe] Univ Algarve, Ctr Marine Sci, P-8005139 Faro, Portugal. [Alberto, Filipe] Univ Wisconsin, Dept Biol Sci, Milwaukee, WI 53201 USA. RP Carney, LT (reprint author), San Diego State Univ, Dept Biol, 5500 Campanile Dr, San Diego, CA 92182 USA. EM lauratcarney@gmail.com OI Alberto, Filipe/0000-0003-0593-3240 FU Santa Barbara Coastal Long Term Ecological Research project; U.S. National Science Foundation (OCE) [0620276]; Portuguese Science Foundation FCT [MEGIKELP PTDC/MAR/65461/2006] FX This work would not have been possible without the help of the divers who assisted in the field, including S. Fejtek, L. Lewis, C. Dodge, R. Mothokakobo, H. Carson, R. Jenkinson, R. Borras, R. Carlton, and J. Coates. Invaluable guidance and assistance with genetic techniques was provided by N. Coelho, L. Gouveia, G. Silva, A. Mittleberg, and A. Steele. Guidance on parentage analyses was provided by M. Christie and T. Marshall. Expertise on latitude/longitude conversion was provided by B. Nosrat, and site maps were created by H. Johnson. We also thank T. Lane for his support of kelp ecology. The manuscript was improved based on comments by S. Williams, J. Stachowicz, and two anonymous reviewers. This research was supported by the Santa Barbara Coastal Long Term Ecological Research project funded by the U.S. National Science Foundation (OCE #0620276) and the Portuguese Science Foundation FCT, grant MEGIKELP PTDC/MAR/65461/2006. This is contribution No. 10 of the Coastal and Marine Institute Laboratory, San Diego State University. NR 51 TC 6 Z9 6 U1 4 U2 22 PU ECOLOGICAL SOC AMER PI WASHINGTON PA 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA SN 0012-9658 EI 1939-9170 J9 ECOLOGY JI Ecology PD SEP PY 2013 VL 94 IS 9 BP 1955 EP 1965 DI 10.1890/13-0250.1 PG 11 WC Ecology SC Environmental Sciences & Ecology GA 219TL UT WOS:000324532900009 PM 24279267 ER PT J AU Norberg, NS Lux, SF Kostecki, R AF Norberg, Nick S. Lux, Simon Franz Kostecki, Robert TI Interfacial side-reactions at a LiNi0.5Mn1.5O4 electrode in organic carbonate-based electrolytes SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Li-ion positive electrode; LiNi0.5Mn1.5O4; Interfacial reactions; Fluorescence ID LITHIUM-ION BATTERIES; CATHODE MATERIALS; RAMAN-SPECTRUM; SURFACE; SPINEL; BEHAVIOR; FILM; LINI1/2MN3/2O4; TEMPERATURE; PERFORMANCE AB Interfacial side-reactions at a LiNiO0.5Mn1.5O4 spinel electrode in LiPF6/organic carbonate-based electrolyte were investigated using FTIR and fluorescence spectroscopy. In situ measurements at a carbon- and binder-free LiNiO0.5Mn1.5O4 electrode showed formation of fluorescent species that coincides with the oxidation of NiII+ in a LiNiO0.5Mn1.5O4. The majority of these electrolyte oxidation products diffuse away into the electrolyte but fluorescence images of cycled a LiNiO0.5Mn1.5O4 composite electrodes also show fluorescent residues at the surface of the electrode. FTIR and Raman spectra of the surface layer indicate formation of metal-ion doped organic and inorganic compounds upon electrolyte oxidation at potentials above 42 V. (C) 2013 Elsevier BM. All rights reserved. C1 [Norberg, Nick S.; Lux, Simon Franz; Kostecki, Robert] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Kostecki, R (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM r_kostecki@lbl.gov FU Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy, under contract no. DE-AC02-05CH11231. We thank Dr. Chunjoong Kim and Dr. Jordi Cabana for providing samples of LiNi0.5Mn1.5O4 powder and composite electrodes and Dr. Jaroslaw Syzdek for his help obtaining SEM images. NR 27 TC 32 Z9 32 U1 5 U2 131 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD SEP PY 2013 VL 34 BP 29 EP 32 DI 10.1016/j.elecom.2013.04.007 PG 4 WC Electrochemistry SC Electrochemistry GA 225LH UT WOS:000324963900008 ER PT J AU Baggetto, L Keum, JK Browning, JF Veith, GM AF Baggetto, Loic Keum, Jong K. Browning, James F. Veith, Gabriel M. TI Germanium as negative electrode material for sodium-ion batteries SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Germanium (Ge) sputtered thin films; Sodium-ion (Na-ion) anode; 350 mA h g(-1) reversible storage capacity; Amorphous bulk structure (XRD); FEC electrolyte additive improves cycle life; Very high rate performance ID ANODES; STORAGE AB Germanium thin film electrodes show a reversible Na-ion reaction at potentials around 0.15/0.6 V. The reaction is accompanied with a reversible capacity close to 350 mAh g(-1), which matches the value expected for the formation of NaGe. The electrode capacity retention is stable over 15 cycles but subsequently declines. However, using fluoroethylene carbonate (FEC) electrolyte additive positively improves capacity retention and promotes the formation of a thinner SEI. Mechanical degradation due to repeated expansion/shrinkage coupled with SEI formation are the main sources of capacity decline. Preliminary XRD results do not reveal the formation of crystalline phases at full (dis)charge. The excellent charge rate up to 340 C highlights the high potential of nanosized germanium as Na-ion anode. (C) 2013 Elsevier B.V. All rights reserved. C1 [Baggetto, Loic; Veith, Gabriel M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Keum, Jong K.] Oak Ridge Natl Lab, Neutron Sci Directorate, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Browning, James F.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. RP Baggetto, L (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM baggettol@ornl.gov; veithgm@ornl.gov RI Keum, Jong/N-4412-2015; Baggetto, Loic/D-5542-2017; OI Keum, Jong/0000-0002-5529-1373; Baggetto, Loic/0000-0002-9029-2363; Browning, James/0000-0001-8379-259X FU U.S. Department of Energy (DOE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division; ORNL's Shared Research Equipment (ShaRE) User Program; ORNL by the Office of BES, U.S. DOE FX This work was supported by the U.S. Department of Energy (DOE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division. Microscopy supported by ORNL's Shared Research Equipment (ShaRE) User Program and XRD conducted at SNS and the Center for Nanophase Materials Sciences are both sponsored at ORNL by the Office of BES, U.S. DOE. NR 13 TC 67 Z9 67 U1 22 U2 231 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD SEP PY 2013 VL 34 BP 41 EP 44 DI 10.1016/j.elecom.2013.05.025 PG 4 WC Electrochemistry SC Electrochemistry GA 225LH UT WOS:000324963900011 ER PT J AU Shui, JL Wang, HH Liu, DJ AF Shui, Jiang-Lan Wang, Hsien-Hau Liu, Di-Jia TI Degradation and revival of Li-O-2 battery cathode SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Li-air battery; Electrolyte; Cathode; Passivation; Durability; Battery revival ID LITHIUM-OXYGEN BATTERIES; ETHER-BASED ELECTROLYTES; LI-AIR BATTERIES; PERFORMANCE; REDUCTION; GRAPHENE AB Current non-aqueous Li-O-2 cells usually could only operate for tens cycles, and electrolyte decomposition was always observed. Here it is demonstrated that, among all the cell elements, cathode is the first component to fail in our experiment. The passivation effect on the cathode was proven to be the reason for the loss of capacity in the cathode. However, the cathode was not permanently damaged in the failed cell and the capacity could be regenerated after the removal of the insulating layer. Thus, the cell's cycling was revived. This study presented a possibility of significantly elongating the lifespan of Li-O-2 cells. (C) 2013 Elsevier B.V. All rights reserved. C1 [Shui, Jiang-Lan; Liu, Di-Jia] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Wang, Hsien-Hau] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Shui, JL (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM shui@anl.gov; djliu@anl.gov FU Office of Science, U. S. Department of Energy [DE-AC02-06CH11357]; Grand Challenge program of Argonne National Laboratory FX This work is supported by Office of Science, U. S. Department of Energy under Contract DE-AC02-06CH11357. The financial support from the Grand Challenge program of Argonne National Laboratory is gratefully acknowledged. NR 27 TC 23 Z9 23 U1 3 U2 59 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD SEP PY 2013 VL 34 BP 45 EP 47 DI 10.1016/j.elecom.2013.05.020 PG 3 WC Electrochemistry SC Electrochemistry GA 225LH UT WOS:000324963900012 ER PT J AU Xue, Z Zhang, ZC Amine, K AF Xue, Zheng Zhang, Zhengcheng Amine, Khalil TI Cross-linkable urethane acrylate oligomers as binders for lithium-ion battery SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Binder; Cross-linked polymer; Acrylate oligomers; Lithium-ion batteries ID ELECTROCHEMICAL PROPERTIES; NEGATIVE ELECTRODES; CATHODE BINDER; GRAPHITE ANODE; CYCLE LIFE; POLYMERS; PERFORMANCE AB Cross-linked polymers generated from low molecular weight oligomers were investigated for the first time as electrode binders in lithium-ion batteries. With urethane acrylate-based binder precursors, electrode laminates of LiNi1/3Mn1/3Co1/3O2 (NMC) with good physical properties were prepared via a thermally initiated free-radical polymerization process. The cured NMC electrode was evaluated in both NMC/Li and NMC/MCMB cells and showed excellent cycling performance and C-rate capability. (C) 2013 Elsevier B.V. All rights reserved. C1 [Xue, Zheng; Zhang, Zhengcheng; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Zhang, ZC (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM zzhang@anl.gov FU U.S. Department of Energy, Vehicle Technologies Office; U.S. Department of Energy by UChicago Argonne, LLC [DE-AC02-06CH11357] FX This research is supported by U.S. Department of Energy, Vehicle Technologies Office. Argonne National Laboratory is operated for the U.S. Department of Energy by UChicago Argonne, LLC, under contract DE-AC02-06CH11357. NR 20 TC 5 Z9 5 U1 7 U2 62 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD SEP PY 2013 VL 34 BP 86 EP 89 DI 10.1016/j.elecom.2013.05.027 PG 4 WC Electrochemistry SC Electrochemistry GA 225LH UT WOS:000324963900022 ER PT J AU Xia, YK Chen, MJ Zhu, PF Lu, CC Fu, GB Zhou, XJ Chen, DZ Wang, HH Hang, B Wang, SL Zhou, ZM Sha, JH Wang, XR AF Xia, Yankai Chen, Minjian Zhu, Pengfei Lu, Chuncheng Fu, Guangbo Zhou, Xiaojin Chen, Daozhen Wang, Honghua Hang, Bo Wang, Shoulin Zhou, Zuomin Sha, Jiahao Wang, Xinru TI Urinary phytoestrogen levels related to idiopathic male infertility in Chinese men SO ENVIRONMENT INTERNATIONAL LA English DT Article DE Phytoestrogens; Exposure; Human urine; Male infertility; Semen quality ID HUMAN SEMEN QUALITY; POLYCYCLIC AROMATIC-HYDROCARBONS; DIETARY PHYTOESTROGENS; PESTICIDE EXPOSURE; BREAST-CANCER; FERTILE MEN; MALE RATS; METABOLITES; RISK; HEALTH AB Phytoestrogens (PEs) are naturally occurring chemical constituents of certain plants. The internal PE exposures, mainly from diet, vary among different populations and in different regions due to various eating habits. To investigate the potential relationship between urinary PE levels and idiopathic male infertility and semen quality in Chinese adult males, 608 idiopathic infertile men and 469 fertile controls were recruited by eligibility screening procedures. Individual exposure to PEs was measured using UPLC-MS/MS as spot urinary concentrations of 6 PEs (daidzein, DAI; equol, EQU; genistein, GEN; naringenin, NAR; coumestrol, COU; and secoisolariciresinol, SEC), which were adjusted with urinary creatinine (CR). Semen quality was assessed by sperm concentration, number per ejaculum and motility. We found that exposures to DAI, GEN and SEC were significantly associated with idiopathic male infertility (P-value for trend = 0.036; 0.002; and 0.0001, respectively), while these exposures had stronger association with infertile subjects with at least one abnormal semen parameter than those with all normal semen parameters. Exposures to DAI, GEN and SEC were also related to idiopathic male infertility with abnormal sperm concentration, number per ejaculum and motility (P-value for trend < 0.05), while these exposures had stronger association with the infertile men with abnormal sperm number per ejaculum. These findings provide the evidence that PE exposures are related to male reproductive function and raise a public health concern because that exposure to PEs is ubiquitous in China. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Xia, Yankai; Chen, Minjian; Zhu, Pengfei; Lu, Chuncheng; Fu, Guangbo; Wang, Shoulin; Zhou, Zuomin; Sha, Jiahao; Wang, Xinru] Nanjing Med Univ, State Key Lab Reprod Med, Inst Toxicol, Sch Publ Hlth, Nanjing 211166, Jiangsu, Peoples R China. [Xia, Yankai; Chen, Minjian; Zhu, Pengfei; Lu, Chuncheng; Fu, Guangbo; Wang, Shoulin; Wang, Xinru] Nanjing Med Univ, Sch Publ Hlth, Key Lab Modern Toxicol, Minist Educ, Nanjing 211166, Jiangsu, Peoples R China. [Zhu, Pengfei] Wuxi Ctr Dis Control & Prevent, Wuxi 214023, Peoples R China. [Fu, Guangbo] Nanjing Med Univ, Huaian Affiliated Hosp 1, Huaian 223300, Peoples R China. [Zhou, Xiaojin; Chen, Daozhen; Wang, Honghua] Nanjing Med Univ, Wuxi Maternal & Child Hlth Hosp, Wuxi 214002, Peoples R China. [Hang, Bo] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Xia, YK (reprint author), Nanjing Med Univ, State Key Lab Reprod Med, Inst Toxicol, 818 East Tianyuan Rd, Nanjing 211166, Jiangsu, Peoples R China. EM yankaixia@njmu.edu.cn; xrwang@njmu.edu.cn FU National Natural Science Foundation of China [81072328, 30930079]; National 973 Program [2009CB941703]; MOE [211063]; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) FX We thank Dr. Jianling Bai for statistical analysis, and Ms. Renzhen Zhao for PEs exposure analysis. This study was supported by grants from the National Natural Science Foundation of China, No. 81072328; National 973 Program, 2009CB941703; Key Project of National Natural Science Foundation of China, No. 30930079; Key Project of MOE, No. 211063; and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). NR 37 TC 16 Z9 16 U1 5 U2 29 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0160-4120 EI 1873-6750 J9 ENVIRON INT JI Environ. Int. PD SEP PY 2013 VL 59 BP 161 EP 167 DI 10.1016/j.envint.2013.06.009 PG 7 WC Environmental Sciences SC Environmental Sciences & Ecology GA 224PQ UT WOS:000324901000019 PM 23820060 ER PT J AU Elso, C Lu, XC Weisner, PA Thompson, HL Skinner, A Carver, E Stubbs, L AF Elso, Colleen Lu, Xiaochen Weisner, Patricia A. Thompson, Heather L. Skinner, Andrea Carver, Ethan Stubbs, Lisa TI A Reciprocal Translocation Dissects Roles of Pax6 Alternative Promoters and Upstream Regulatory Elements in the Development of Pancreas, Brain, and Eye SO GENESIS LA English DT Article DE Pax6 gene regulation; chromosome rearrangement; alternative transcript function; eye development; pancreas development ID NASAL DEVELOPMENT; GENETIC-ANALYSIS; ALLELIC SERIES; NERVOUS-SYSTEM; PAIRED DOMAIN; MOUSE MODEL; EXPRESSION; MICE; OVEREXPRESSION; ABNORMALITIES AB Pax6 encodes a transcription factor with key roles in the development of the pancreas, central nervous system, and eye. Gene expression is orchestrated by several alternative promoters and enhancer elements that are distributed over several hundred kilobases. Here, we describe a reciprocal translocation, called 1Gso, which disrupts the integrity of transcripts arising from the 5-most promoter, P0, and separates downstream promoters from enhancers active in pancreas and eye. Despite this fact, 1Gso animals exhibit none of the dominant Pax6 phenotypes, and the translocation complements recessive brain and craniofacial phenotypes. However, 1Gso fails to complement Pax6 recessive effects in lacrimal gland, conjunctiva, lens, and pancreas. The 1Gso animals also express a corneal phenotype that is related to but distinct from that expressed by Pax6 null mutants, and an abnormal density and organization of retinal ganglion cell axons; these phenotypes may be related to a modest upregulation of Pax6 expression from downstream promoters that we observed during development. Our investigation maps the activities of Pax6 alternative promoters including a novel one in developing tissues, confirms the phenotypic consequences of upstream enhancer disruption, and limits the likely effects of the P0 transcript null mutation to recessive abnormalities in the pancreas and specific structures of the eye. genesis 51:630-646. (c) 2013 Wiley Periodicals, Inc. C1 [Elso, Colleen; Thompson, Heather L.; Stubbs, Lisa] Lawrence Livermore Natl Lab, Genome Biol Div, Livermore, CA USA. [Lu, Xiaochen; Skinner, Andrea; Stubbs, Lisa] Univ Illinois, Dept Cell & Dev Biol, Urbana, IL 61801 USA. [Lu, Xiaochen; Weisner, Patricia A.; Stubbs, Lisa] Univ Illinois, Inst Genom Biol, Urbana, IL 61801 USA. [Weisner, Patricia A.; Stubbs, Lisa] Univ Illinois, Neurosci Program, Urbana, IL 61801 USA. [Carver, Ethan] Univ Tennessee, Dept Biol & Eenvironmental Sci, Chattanooga, TN USA. RP Stubbs, L (reprint author), Univ Illinois, Dept Cell & Dev Biol, Urbana, IL 61801 USA. EM ljstubbs@illinois.edu OI Stubbs, Lisa/0000-0002-9556-1972 NR 45 TC 7 Z9 7 U1 0 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1526-968X J9 GENESIS JI Genesis PD SEP PY 2013 VL 51 IS 9 BP 630 EP 646 DI 10.1002/dvg.22409 PG 17 WC Developmental Biology; Genetics & Heredity SC Developmental Biology; Genetics & Heredity GA 226DQ UT WOS:000325015100003 PM 23798316 ER PT J AU Korneev, V Glubokovskikh, S AF Korneev, Valeri Glubokovskikh, Stanislav TI Seismic velocity changes caused by an overburden stress SO GEOPHYSICS LA English DT Article ID ELASTIC-WAVES; NONLINEAR ELASTICITY; INDUCED ANISOTROPY; ROCKS; COEFFICIENTS; PROPAGATION; EXPLOSIONS; SCATTERING; SANDSTONE; PRESSURE AB An increase in seismic velocity with depth is a common rock property, one that can be encountered practically everywhere. Overburden pressure increases vertical stress, producing a nonlinear elastic response. Application of a conventional nonlinear theory to this problem leads to transverse isotropy, with explicit relationships between nonlinear constants and elastic anisotropy parameters. These relationships can be used in velocity "depth trend" removal and in computing offset-dependent corrections for stacking and migration. Assumptions about small static stress and the use of linearized solutions for its evaluation are invalid for overburden problems - more accurate approximations are required. Realistic tomography models should account for elastic anisotropy as a basic feature. Our theory gives an accurate fit to well and stacking velocity data for the Los Angeles Basin. Overburden stress is a likely cause of shear-wave generation by underground explosions. C1 [Korneev, Valeri] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Glubokovskikh, Stanislav] All Russian Res Inst Geosyst, Moscow, Russia. RP Korneev, V (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM vakorneev@lbl.gov; stas.glubokovskikh@gmail.com OI Glubokovskikh, Stanislav/0000-0001-8815-8918 FU BES office of the U.S. Department of Energy [DE-AC02-05CH11231]; ConocoPhillips FX This work was supported by the BES office of the U.S. Department of Energy, under contract No. DE-AC02-05CH11231, and partially supported by ConocoPhillips. Borehole data were kindly provided by John Shaw. Communication with Dave Aldridge was very stimulating. Authors also thank Ilia Tsvankin for helpful discussions. Comments of Ian Jones and an anonymous reviewer helped to improve the manuscript. NR 47 TC 4 Z9 4 U1 0 U2 8 PU SOC EXPLORATION GEOPHYSICISTS PI TULSA PA 8801 S YALE ST, TULSA, OK 74137 USA SN 0016-8033 J9 GEOPHYSICS JI Geophysics PD SEP-OCT PY 2013 VL 78 IS 5 BP WC25 EP WC31 DI 10.1190/GEO2012-0380.1 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 231EA UT WOS:000325395200059 ER PT J AU Wang, ZX Zhang, RF Chao, YJ Lam, PS AF Wang, Zhong-Xian Zhang, Ruei-Feng Chao, Yuh J. Lam, Poh-Sang TI EFFECT OF MECHANICAL PROPERTY MISMATCH ON FAILURE ASSESSMENT CURVE FOR WELDED JOINT WITH A SEMI-ELLIPTICAL CRACK SO INTERNATIONAL JOURNAL OF APPLIED MECHANICS LA English DT Article DE Semi-elliptical crack; mechanical property mismatch; elastic-plastic fracture; constraint effect; J-A(2) two-parameter fracture theory; failure assessment diagram (FAD); welded joint; FEA ID 3-POINT BEND SPECIMENS; TIP FIELDS; TRIAXIALITY PARAMETER; TRANSITION CURVE; LIMIT LOAD; FRACTURE; STRESS; CONSTRAINT; GROWTH; FAMILY AB Elastic-plastic finite element analysis was performed to study the welded joints with a semi-elliptical crack. This research includes the effects of crack depth, strength mismatch ratio, and weld width on the crack driving force J-integral and the constraint parameter A(2) at the crack tip. A two-parameter J-A(2) fracture criterion based on the present results of crack tip stress field in the welded joints was established. The corresponding failure assessment diagrams were investigated in detail, from which the reliability and safety margin of the welded structures were discussed. C1 [Wang, Zhong-Xian; Zhang, Ruei-Feng] Jiangsu Univ Zhenjiang, Fac Civil Engn & Mech, Zhenjiang 212013, Jiangsu, Peoples R China. [Chao, Yuh J.] Tianjin Univ, Coll Mat Sci & Engn, Tianjin 300072, Peoples R China. [Chao, Yuh J.] Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA. [Lam, Poh-Sang] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Wang, ZX (reprint author), Jiangsu Univ Zhenjiang, Fac Civil Engn & Mech, Zhenjiang 212013, Jiangsu, Peoples R China. EM wzx-5566@163.com; zrf_0353@163.com; chao@cec.sc.edu; ps.lam@srnl.doe.gov FU National Natural Science Foundation of China [51275338] FX The author (Y. J. Chao) would like to thank the National Natural Science Foundation of China for their financial support (51275338). NR 30 TC 2 Z9 2 U1 0 U2 6 PU IMPERIAL COLLEGE PRESS PI LONDON PA 57 SHELTON ST, COVENT GARDEN, LONDON WC2H 9HE, ENGLAND SN 1758-8251 J9 INT J APPL MECH JI Int. J. Appl. Mech. PD SEP PY 2013 VL 5 IS 3 AR UNSP 1350029 DI 10.1142/S1758825113500294 PG 18 WC Mechanics SC Mechanics GA 230LA UT WOS:000325339600006 ER PT J AU Moller, P Sierk, AJ AF Moeller, P. Sierk, A. J. TI 80 Years of the liquid drop-50 years of the macroscopic-microscopic model SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY LA English DT Article DE Nuclear mass; Fission barrier ID GROUND-STATE PROPERTIES; NUCLEAR-MASSES; FISSION-BARRIERS; HEAVIEST NUCLEI; DROPLET-MODEL; DEFORMATION ENERGIES; SUPERHEAVY NUCLEI; SURFACE-TENSION; HEAVY; FORMULA AB The liquid-drop model has its origins in the first mainstream model of the binding energy of nuclei, sometimes referred to as the semiempirical mass formula, which emerged in the mid 1930s. It is a beautiful example of a model that fulfills the criteria of what a theoretical model is and what an arbitrary parameterization of some data set is not: (1) it has a simple intuitive interpretation, (2) it was of enormous and immediate practical utility in interpreting nuclear experimental data such as radioactive decay and nuclear reactions, (3) it could predict binding energies of nuclei to which its parameters had not been adjusted, (4) it could be generalized to describe new, unanticipated phenomena such as fission, and (5) deviations of its predictions from experimental data yielded insight into nuclear structure and guided the development of more sophisticated models. Generalized liquid-drop models remain important because of the development of macroscopic-microscopic models which give important quantitative insight into ground-state structure and binding energies (nuclear masses) and many details of nuclear fission. We review these points and some associated historical milestones. (c) 2013 Elsevier B.V. All rights reserved. C1 [Moeller, P.; Sierk, A. J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Sierk, AJ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM t2ajs@lanl.gov OI Moller, Peter/0000-0002-5848-3565 FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX The authors wish to thank Denise Neudecker for a careful reading of the manuscript and for insightful comments. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 77 TC 3 Z9 3 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-3806 J9 INT J MASS SPECTROM JI Int. J. Mass Spectrom. PD SEP 1 PY 2013 VL 349 SI SI BP 19 EP 25 DI 10.1016/j.ijms.2013.04.008 PG 7 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 226NL UT WOS:000325043000004 ER PT J AU Clark, J Savard, G AF Clark, Jason Savard, Guy TI Precision masses for studies of the astrophysical r process SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY LA English DT Article DE Ion trap; Penning trap; Exotic isotope; Radioactive isotope; Nuclear masses; r-Process ID PENNING TRAP; HEAVY-IONS; ONLINE; NUCLEAR; FACILITY; SPECTROMETER; REFERENCES; NUCLIDES; ISOTOPES; JYFLTRAP AB Half of the elements heavier than iron (Z > 26) are thought to be created through the astrophysical r process, whereby nuclides are produced via a rapid series of nuclear reactions that are postulated to occur in high temperature and neutron density environments such as supernovae or merging neutron stars. The nucleosynthetic path that describes the sequence of reactions through the chart of nuclides strongly depends on the neutron-separation energies of the nuclei. Until recently, however, almost all of these neutron-rich nuclei were not within reach of accelerator facilities, and therefore simulations of the r process had to rely on mass models for input into the calculations. Now, with the advent of facilities such as CARIBU at Argonne National Laboratory, the masses of many nuclides along the r-process path can be determined precisely with Penning trap mass spectrometers coupled to these facilities. More than 70 nuclides have been measured with the Canadian Penning Trap mass spectrometer alone in the past year, which overlap and complement results from other Penning trap mass spectrometers, and first calculations with these new masses suggest the timescale of the r process through the tin isotopes is delayed much more strongly than mass models would suggest. (C) 2013 Published by Elsevier B.V. C1 [Clark, Jason; Savard, Guy] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Savard, Guy] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. RP Clark, J (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM jclark@phy.anl.gov FU United States Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX This work was supported by the United States Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. NR 39 TC 3 Z9 3 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-3806 J9 INT J MASS SPECTROM JI Int. J. Mass Spectrom. PD SEP 1 PY 2013 VL 349 SI SI BP 81 EP 86 DI 10.1016/j.ijms.2013.05.021 PG 6 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 226NL UT WOS:000325043000012 ER PT J AU Sinnis, G AF Sinnis, Gus CA Milagro Collaboration HAWC Collaboration TI TeV ASTROPHYSICS WITH THE MILAGRO AND HAWC OBSERVATORIES SO INTERNATIONAL JOURNAL OF MODERN PHYSICS D LA English DT Article; Proceedings Paper CT 3rd Galileo-Xuguangqi Meeting CY OCT 11-15, 2011 CL Beijing, PEOPLES R CHINA DE Gamma ray; cosmic ray; telescopes ID GAMMA-RAYS; SOURCE LIST; EMISSION; GALAXY; FERMI AB Ground-based gamma-ray astronomy has historically implemented two dramatically different techniques. One method employs Imaging Atmospheric Cherenkov Telescope(s) (IACT) that detect the Cherenkov light generated in the atmosphere by extensive air showers. The other method employs particle detectors that directly detect the particles that reach ground level - known as Extensive Air Shower (EAS) arrays. Until recently, the IACT method had been the only technique to yield solid detections of TeV gamma-ray sources. Utilizing water Chernkov technology, Milagro, was the first EAS array to discover new gamma-ray sources and demonstrated the power of and need for an all-sky high duty cycle instrument in the TeV energy regime. The transient nature of many TeV sources, the enormous number of potential sources, and the existence of TeV sources that encompass large angular areas all point to the need for an all-sky, high duty-factor instrument with even greater sensitivity than Milagro. The High Altitude Water Cherenkov (HAWC) Observatory will be over an order of magnitude more sensitive than Milagro. In this paper we will discuss the results from Milagro and the design of the HAWC instrument and its experimental sensitivity. C1 [Sinnis, Gus; Milagro Collaboration; HAWC Collaboration] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Sinnis, G (reprint author), Los Alamos Natl Lab, Div Phys, P-23 MS H803, Los Alamos, NM 87545 USA. EM gus@lanl.gov NR 11 TC 0 Z9 0 U1 0 U2 4 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-2718 J9 INT J MOD PHYS D JI Int. J. Mod. Phys. D PD SEP PY 2013 VL 22 IS 11 SI SI AR 1360010 DI 10.1142/S0218271813600109 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 225HH UT WOS:000324952600010 ER PT J AU Karagiannis, G Andrieu, C AF Karagiannis, Georgios Andrieu, Christophe TI Annealed Importance Sampling Reversible Jump MCMC Algorithms SO JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS LA English DT Article DE Bayesian model selection/determination; Gaussian mixture models; Poisson change point problem; Pseudo-marginal MCMC ID FREE-ENERGY DIFFERENCES; DISTRIBUTIONS AB We develop a methodology to efficiently implement the reversible jump Markov chain Monte Carlo (RJ-MCMC) algorithms of Green, applicable for example to model selection inference in a Bayesian framework, which builds on the "dragging fast variables" ideas of Neal. We call such algorithms annealed importance sampling reversible jump (aisRJ). The proposed procedures can be thought of as being exact approximations of idealized RJ algorithms which in a model selection problem would sample the model labels only, but cannot be implemented. Central to the methodology is the idea of bridging different models with fictitious intermediate models, whose role is to introduce smooth intermodel transitions and, as we shall see, improve performance. Efficiency of the resulting algorithms is demonstrated on two standard model selection problems and we show that despite the additional computational effort incurred, the approach can be highly competitive computationally. Supplementary materials for the article are available online. C1 [Karagiannis, Georgios] Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA. [Andrieu, Christophe] Univ Bristol, Dept Math, Univ Walk, Bristol BS8 1TW, Avon, England. RP Karagiannis, G (reprint author), Pacific NW Natl Lab, Computat Sci & Math Div, 902 Battelle Blvd,POB 999,MSIN K7-90, Richland, WA 99352 USA. EM Georgios.Karagiannis@pnnl.gov; C.Andrieu@bristol.ac.uk NR 17 TC 8 Z9 8 U1 0 U2 1 PU AMER STATISTICAL ASSOC PI ALEXANDRIA PA 732 N WASHINGTON ST, ALEXANDRIA, VA 22314-1943 USA SN 1061-8600 J9 J COMPUT GRAPH STAT JI J. Comput. Graph. Stat. PD SEP PY 2013 VL 22 IS 3 SI SI BP 623 EP 648 DI 10.1080/10618600.2013.805651 PG 26 WC Statistics & Probability SC Mathematics GA 231BK UT WOS:000325387800007 ER PT J AU Liu, D Khaykovich, B Gubarev, MV Robertson, JL Crow, L Ramsey, BD Moncton, DE AF Liu, Dazhi Khaykovich, Boris Gubarev, Mikhail V. Robertson, J. Lee Crow, Lowell Ramsey, Brian D. Moncton, David E. TI Demonstration of a novel focusing small-angle neutron scattering instrument equipped with axisymmetric mirrors SO NATURE COMMUNICATIONS LA English DT Article ID REFRACTIVE OPTICS; RESOLUTION; DIFFRACTOMETER; CALIBRATION; FLUX AB Small-angle neutron scattering (SANS) is the most significant neutron technique in terms of impact on science and engineering. However, the basic design of SANS facilities has not changed since the technique's inception about 40 years ago, as all SANS instruments, save a few, are still designed as pinhole cameras. Here we demonstrate a novel concept for a SANS instrument based on axisymmetric focusing mirrors. We build and test a small prototype, which shows a performance comparable to that of conventional large SANS facilities. By using a detector with 48-mu m pixels, we build the most compact SANS instrument in the world. This work, together with the recent demonstration that such mirrors could increase the signal rate at least 50-fold, for large samples, while improving resolution, paves the way to novel SANS instruments, thus affecting a broad community of scientists and engineers. C1 [Liu, Dazhi; Khaykovich, Boris; Moncton, David E.] MIT, Nucl Reactor Lab, Cambridge, MA 02139 USA. [Gubarev, Mikhail V.; Ramsey, Brian D.] NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Robertson, J. Lee; Crow, Lowell] Oak Ridge Natl Lab, Instrument & Source Design Div, Oak Ridge, TN 37831 USA. [Moncton, David E.] MIT, Dept Phys, Cambridge, MA 02139 USA. RP Khaykovich, B (reprint author), MIT, Nucl Reactor Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM bkh@mit.edu RI Liu, Dazhi/G-2675-2013; Khaykovich, Boris/A-7376-2012 OI Liu, Dazhi/0000-0002-7604-6940; Khaykovich, Boris/0000-0002-9490-2771 FU US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-09ER46556, DE-FG02-09ER46557]; Basic Energy Science (BES) Program, Office of Science, US Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC FX We acknowledge useful discussions with Dr. D.F.R. Mildner (NIST). Research has been supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Awards no. DE-FG02-09ER46556 and no. DE-FG02-09ER46557. The work at ORNL has been sponsored by the Basic Energy Science (BES) Program, Office of Science, US Department of Energy under contract number DE-AC05-00OR22725 with UT-Battelle, LLC. NR 24 TC 9 Z9 9 U1 0 U2 25 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2013 VL 4 AR 2556 DI 10.1038/ncomms3556 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 233BD UT WOS:000325538300001 PM 24077533 ER PT J AU Dawson, AL Cassell, CH Riehle-Colarusso, T Grosse, SD Tanner, JP Kirby, RS Watkins, SM Correia, JA Olney, RS AF Dawson, April L. Cassell, Cynthia H. Riehle-Colarusso, Tiffany Grosse, Scott D. Tanner, Jean Paul Kirby, Russell S. Watkins, Sharon M. Correia, Jane A. Olney, Richard S. TI Factors Associated With Late Detection of Critical Congenital Heart Disease in Newborns SO PEDIATRICS LA English DT Article DE congenital heart disease; neonatal screening ID PULSE OXIMETRY; BIRTH-DEFECTS; UNITED-STATES; FEASIBILITY; STRATEGIES; MORTALITY; PROGRAMS; GEORGIA AB OBJECTIVES: Critical congenital heart disease (CCHD) was recently added to the US Recommended Uniform Screening Panel for newborns. This study assessed whether maternal/household and infant characteristics were associated with late CCHD detection. METHODS: This was a statewide, population-based, retrospective, observational study of infants with CCHD born between 1998 and 2007 identified by using the Florida Birth Defects Registry. We examined 12 CCHD conditions that are primary and secondary targets of newborn CCHD screening using pulse oximetry. We used Poisson regression models to analyze associations between selected characteristics (eg, CCHD type, birth hospital nursery level [highest level available in the hospital]) and late CCHD detection (defined as diagnosis after the birth hospitalization). RESULTS: Of 3603 infants with CCHD and linked hospitalizations, CCHD was not detected during the birth hospitalization for 22.9% (n = 825) of infants. The likelihood of late detection varied by CCHD condition. Infants born in a birth hospital with a level I nursery only (adjusted prevalence ratio: 1.9 [95% confidence interval: 1.6-2.2]) or level II nursery (adjusted prevalence ratio: 1.5 [95% confidence interval: 1.3-1.7]) were significantly more likely to have late-detected CCHD compared with infants born in a birth hospital with a level III (highest) nursery. CONCLUSIONS: After controlling for the selected characteristics, hospital nursery level seems to have an independent association with late CCHD detection. Thus, perhaps universal newborn screening for CCHD could be particularly beneficial in level I and II nurseries and may reduce differences in the frequency of late diagnosis between birth hospital facilities. C1 [Dawson, April L.; Cassell, Cynthia H.; Riehle-Colarusso, Tiffany; Grosse, Scott D.; Olney, Richard S.] Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, Atlanta, GA USA. [Dawson, April L.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Tanner, Jean Paul; Kirby, Russell S.] Univ S Florida, Coll Publ Hlth, Dept Community & Family Hlth, Birth Defects Surveillance Program, Tampa, FL USA. [Watkins, Sharon M.; Correia, Jane A.] Florida Birth Defects Registry Bur Epidemiol, Dept Hlth, Div Dis Control & Hlth Protect, Tallahassee, FL USA. RP Dawson, AL (reprint author), CDC, NCBDDD, 1600 Clifton Rd,MS-E86, Atlanta, GA 30333 USA. EM isp3@cdc.gov FU March of Dimes Foundation [5-FY09-533] FX A research grant (5-FY09-533) from the March of Dimes Foundation supported various aspects of this project, including database development. This study was also supported by appointments to the Research Participation Program at the Centers for Disease Control and Prevention administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the US Department of Energy and the Centers for Disease Control and Prevention. Neither funder was involved in decisions regarding design, analysis, or interpretation of study results. NR 30 TC 16 Z9 16 U1 0 U2 5 PU AMER ACAD PEDIATRICS PI ELK GROVE VILLAGE PA 141 NORTH-WEST POINT BLVD,, ELK GROVE VILLAGE, IL 60007-1098 USA SN 0031-4005 J9 PEDIATRICS JI Pediatrics PD SEP PY 2013 VL 132 IS 3 BP E604 EP E611 DI 10.1542/peds.2013-1002 PG 8 WC Pediatrics SC Pediatrics GA 226ZX UT WOS:000325077800005 PM 23940249 ER PT J AU Barua, D Hlavacek, WS AF Barua, Dipak Hlavacek, William S. TI Modeling the Effect of APC Truncation on Destruction Complex Function in Colorectal Cancer Cells SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID ADENOMATOUS POLYPOSIS-COLI; BETA-CATENIN DEGRADATION; SYNTHASE KINASE 3-BETA; WNT SIGNALING PATHWAY; CRYSTAL-STRUCTURE; TUMOR-SUPPRESSOR; GSK-3-BETA-DEPENDENT PHOSPHORYLATION; NEGATIVE REGULATOR; STRUCTURAL BASIS; PLASMA-MEMBRANE AB In colorectal cancer cells, APC, a tumor suppressor protein, is commonly expressed in truncated form. Truncation of APC is believed to disrupt degradation of beta-catenin, which is regulated by a multiprotein complex called the destruction complex. The destruction complex comprises APC, Axin, beta-catenin, serine/ threonine kinases, and other proteins. The kinases CK1 alpha and GSK-3 beta, which are recruited by Axin, mediate phosphorylation of b-catenin, which initiates its ubiquitination and proteosomal degradation. The mechanism of regulation of beta-catenin degradation by the destruction complex and the role of truncation of APC in colorectal cancer are not entirely understood. Through formulation and analysis of a rule-based computational model, we investigated the regulation of beta-catenin phosphorylation and degradation by APC and the effect of APC truncation on function of the destruction complex. The model integrates available mechanistic knowledge about site-specific interactions and phosphorylation of destruction complex components and is consistent with an array of published data. We find that the phosphorylated truncated form of APC can outcompete Axin for binding to beta-catenin, provided that Axin is limiting, and thereby sequester beta-catenin away from Axin and the Axin-recruited kinases CK1 alpha and GSK-3 beta. Full-length APC also competes with Axin for binding to beta-catenin; however, full-length APC is able, through its SAMP repeats, which bind Axin and which are missing in truncated oncogenic forms of APC, to bring beta-catenin into indirect association with Axin and Axin-recruited kinases. Because our model indicates that the positive effects of truncated APC on beta-catenin levels depend on phosphorylation of APC, at the first 20-amino acid repeat, and because phosphorylation of this site is mediated by CK1E, we suggest that CK1E is a potential target for therapeutic intervention in colorectal cancer. Specific inhibition of CK1E is predicted to limit binding of beta-catenin to truncated APC and thereby to reverse the effect of APC truncation. C1 [Barua, Dipak; Hlavacek, William S.] Los Alamos Natl Lab, Div Theoret, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. [Barua, Dipak; Hlavacek, William S.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Hlavacek, William S.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [Hlavacek, William S.] Translat Genom Res Inst, Clin Translat Res Div, Phoenix, AZ USA. RP Barua, D (reprint author), Los Alamos Natl Lab, Div Theoret, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. EM wish@lanl.gov OI Hlavacek, William/0000-0003-4383-8711 FU NIH [R01GM076570, P50GM085273]; Center for Nonlinear Studies at Los Alamos National Laboratory; US Department of Energy [DE-AC52-06NA25396] FX This work was supported in part by NIH grants R01GM076570 and P50GM085273. DB acknowledges support from the Center for Nonlinear Studies at Los Alamos National Laboratory, which is operated for the US Department of Energy under contract DE-AC52-06NA25396. WSH acknowledges support from the Randy Pausch Scholars Program, which is sponsored by the TGen Foundation, Howard Young, and the Global Cure National Advisory Council. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 77 TC 5 Z9 5 U1 2 U2 9 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD SEP PY 2013 VL 9 IS 9 AR e1003217 DI 10.1371/journal.pcbi.1003217 PG 18 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 227AZ UT WOS:000325080900018 PM 24086117 ER PT J AU Weck, PF AF Weck, Philippe F. TI WORKER EXPOSURE FOR AT-REACTOR MANAGEMENT OF SPENT NUCLEAR FUEL SO RADIATION PROTECTION DOSIMETRY LA English DT Article AB The radiological impact on workers associated with spent nuclear fuel dry storage operations at reactor sites is discussed. The resulting doses to workers exposed to external radiation include the dose during dry storage system loading, unloading and handling activities, the dose associated with independent spent fuel storage installation (ISFSI) operations, maintenance and surveillance activities, and the dose associated with additional ISFSI construction. Comprehensive dose estimates are reported based on previous radiation surveys. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Weck, PF (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM pfweck@sandia.gov OI , Philippe/0000-0002-7610-2893 FU US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This research was funded by the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 22 TC 0 Z9 0 U1 0 U2 9 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0144-8420 J9 RADIAT PROT DOSIM JI Radiat. Prot. Dosim. PD SEP PY 2013 VL 156 IS 3 BP 386 EP 393 DI 10.1093/rpd/nct083 PG 8 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 228KJ UT WOS:000325184600020 PM 23564883 ER PT J AU Atamturktur, S Williams, B Egeberg, M Unal, C AF Atamturktur, Sez Williams, Brian Egeberg, Matthew Unal, Cetin TI Batch sequential design of optimal experiments for improved predictive maturity in physics-based modeling SO STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION LA English DT Article DE Modeling & simulation; Model calibration; Bayesian inference; Visco-plastic self consistent; Polycrystal plasticity; Uncertainty quantification; Optimal design of experiments ID COMPUTER-MODELS; METHODOLOGY; UNCERTAINTY; CALIBRATION; VALIDATION AB The focus of nuclear fuel design and maintenance has been shifting from a primarily empirical endeavor to that of highly advanced simulations characterized by experiment-based calibration, validation and uncertainty quantification. The experimental data available for calibration and validation, however, is limited by the availability of resources. This limitation poses difficulties especially if the model is to be executed to predict at different settings and/or regimes within a domain. To assure that the model exhibits predictive maturity throughout the domain of applicability, a sufficient number of experiments must be conducted to explore this domain. Given the limited resources, it is therefore crucial to design validation experiments to maximize the improvement in the predictive capability of the physics-based numerical models. This article contributes to the recent developments in the optimal design of validation experiments by evaluating the performance of several experiment selection criteria that specify the specific benefits desired from future experiments. Our focus is on the Batch Sequential Design methods, which for a given set of initial experiments and a selection criteria, iteratively select a batch of future experiments. The performance of various selection criteria in improving model predictiveness are compared considering not only the empirically identified model discrepancy, but also the coverage of the domain of applicability. The manuscript provides an extensive simulation-based study on a polycrystal plasticity material model, utilizing an established index that quantifies predictive maturity of numerical models. C1 [Atamturktur, Sez; Egeberg, Matthew] Clemson Univ, Glenn Dept Civil Engn, Clemson, SC 29634 USA. [Williams, Brian; Unal, Cetin] Los Alamos Natl Lab, Los Alamos, NM USA. RP Atamturktur, S (reprint author), Clemson Univ, Glenn Dept Civil Engn, Clemson, SC 29634 USA. EM sez@clemson.edu OI Williams, Brian/0000-0002-3465-4972 FU Verification and Uncertainty Quantification (VU) program element of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program at Los Alamos National Laboratory (LANL) [84093-RFP-10]; Department of Energy Office of Nuclear Energy's Nuclear Energy University Programs [00101999] FX This work is funded in part by the Verification and Uncertainty Quantification (VU) program element of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program at Los Alamos National Laboratory (LANL): subcontract Number 84093-RFP-10. This research is being performed in part using funding received from the Department of Energy Office of Nuclear Energy's Nuclear Energy University Programs (Contract Number: 00101999). The authors would like to thank Ricardo Lebensohn and Carlos Tome of Los Alamos National Laboratory for sharing the VPSC code. The technical support of Eddie Duffy of Clemson University in the use of the Palmetto Cluster is appreciated. Also, thanks to Murat Hamutcuoglu, a former post-doctoral fellow and RJ Cadotte, an undergraduate student of Clemson University for their assistance in the preparation of the manuscript. NR 47 TC 4 Z9 4 U1 0 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1615-147X EI 1615-1488 J9 STRUCT MULTIDISCIP O JI Struct. Multidiscip. Optim. PD SEP PY 2013 VL 48 IS 3 BP 549 EP 569 DI 10.1007/s00158-013-0915-8 PG 21 WC Computer Science, Interdisciplinary Applications; Engineering, Multidisciplinary; Mechanics SC Computer Science; Engineering; Mechanics GA 227AL UT WOS:000325079300007 ER PT J AU Aute, V Saleh, K Abdelaziz, O Azarm, S Radermacher, R AF Aute, V. Saleh, K. Abdelaziz, O. Azarm, S. Radermacher, R. TI Cross-validation based single response adaptive design of experiments for Kriging metamodeling of deterministic computer simulations SO STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION LA English DT Article DE Design optimization; Design of experiments; Kriging metamodeling; Heat exchanger design ID GLOBAL OPTIMIZATION; HEAT-EXCHANGERS; APPROXIMATION; CRITERIA AB A new approach for single response adaptive design of deterministic computer experiments is presented. The approach is called SFCVT, for Space-Filling Cross-Validation Tradeoff. SFCVT uses metamodeling to obtain an estimate of cross-validation errors, which are maximized subject to a constraint on space filling to determine sample points in the design space. The proposed method is compared, using a test suite of forty four numerical examples, with three DOE methods from the literature. The numerical test examples can be classified into symmetric and asymmetric functions. Symmetric examples refer to functions for which the extreme points are located symmetrically in the design space and asymmetric examples are those for which the extreme regions are not located in a symmetric fashion in the design space. Based upon the comparison results for the numerical examples, it is shown that SFCVT performs better than an existing adaptive and a non-adaptive DOE method for asymmetric multimodal functions with high nonlinearity near the boundary, and is comparable for symmetric multimodal functions and other test problems. The proposed approach is integrated with a multi-scale heat exchanger optimization tool to reduce the computational effort involved in the design of novel air-to-water heat exchangers. The resulting designs are shown to be significantly more compact than mainstream heat exchanger designs. C1 [Aute, V.; Saleh, K.; Azarm, S.; Radermacher, R.] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA. [Abdelaziz, O.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Aute, V (reprint author), Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA. EM vikrant@umd.edu; ksaleh@umd.edu; abdelazizoa@ornl.gov; azarm@umd.edu; raderm@umd.edu RI Abdelaziz, Omar/O-9542-2015; OI Abdelaziz, Omar/0000-0002-4418-0125; Radermacher, Reinhard/0000-0002-9406-1466 FU Office of Naval Research [N000140710468] FX The work presented in this paper was supported in part through a contract from the Office of Naval Research, contract number N000140710468. Such support does not constitute an endorsement by the funding agency of the opinions expressed in the paper. NR 48 TC 9 Z9 10 U1 1 U2 18 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1615-147X J9 STRUCT MULTIDISCIP O JI Struct. Multidiscip. Optim. PD SEP PY 2013 VL 48 IS 3 BP 581 EP 605 DI 10.1007/s00158-013-0918-5 PG 25 WC Computer Science, Interdisciplinary Applications; Engineering, Multidisciplinary; Mechanics SC Computer Science; Engineering; Mechanics GA 227AL UT WOS:000325079300009 ER PT J AU Karig, DK Jung, SY Srijanto, B Collier, CP Simpson, ML AF Karig, David K. Jung, Seung-Yong Srijanto, Bernadeta Collier, C. Patrick Simpson, Michael L. TI Probing Cell-Free Gene Expression Noise in Femtoliter Volumes SO ACS SYNTHETIC BIOLOGY LA English DT Article DE cell-free expression; confinement; noise; stochastic ID FREE PROTEIN-SYNTHESIS; ESCHERICHIA-COLI; MESSENGER-RNA; SINGLE-CELL; CIRCUITS; TRANSLATION; INITIATION; FREQUENCY; NETWORKS; CONSEQUENCES AB Cell-free systems offer a simplified and flexible context that enables important biological reactions while removing complicating factors such as fitness, division, and mutation that are associated with living cells, powever, cell-free expression in unconfined spaces is missing important elements of expression in living cells. In particular, t the small volume of living cells can give rise to significant stochastic effects, which are negligible in bulk cell-free reactions. Here, we confine cell-free gene expression reactions to cell-relevant 20 IL volumes (between the volumes of Escherichia coli and Saccharomyces cerevisiae), in polydimethylsiloxane (PDMS) containers. We demonstrate that expression efficiency varies Widely among different containers, likely due to non-Poisson distribution of expression machinery at the observed scale. Previously, this phenomenon has been observed only in liposomes. In addition, we analyze gene expression noise. This analysis is facilitated by our use of cell-free systems, which allow the mapping of the measured noise properties to intrinsic noise models. In contrast, previous live cell noise analysis efforts have been complicated by multiple noise sources. Noise analysis reveals signatures of translational bursting, while noise dynamics suggest that overall cell-free expression is limited by a diminishing translation rate. In addition to offering a unique approach to understanding noise in gene circuits, our work contributes to a deeper understanding of the biophysical properties of cell-free expression systems, thus aiding efforts to harness cell-free systems for synthetic biology applications. C1 [Karig, David K.; Srijanto, Bernadeta; Collier, C. Patrick; Simpson, Michael L.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Jung, Seung-Yong] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Simpson, Michael L.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Simpson, Michael L.] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37996 USA. RP Simpson, ML (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM simpsonml1@ornl.gov RI Simpson, Michael/A-8410-2011; Srijanto, Bernadeta/D-4213-2016; Collier, Charles/C-9206-2016; Karig, David/G-5703-2011 OI Simpson, Michael/0000-0002-3933-3457; Srijanto, Bernadeta/0000-0002-1188-1267; Collier, Charles/0000-0002-8198-793X; Karig, David/0000-0002-9508-6411 FU Center for Nanophase Materials Sciences; Scientific User Facilities Division, Office of Science, U.S. Department of Energy; U.S. Department of Energy [DE-AC05-00OR22725] FX We thank Dr. Roy Dar, Dr. Scott Retterer, Dr. Jennifer Morrell-Falvey, and Dr. Mitch Doktycz for helpful advice and conversations. We acknowledge support from the Center for Nanophase Materials Sciences that is sponsored by the Scientific User Facilities Division, Office of Science, U.S. Department of Energy. This research was performed at Oak Ridge National Laboratory (ORNL). ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 61 TC 10 Z9 10 U1 0 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-5063 J9 ACS SYNTH BIOL JI ACS Synth. Biol. PD SEP PY 2013 VL 2 IS 9 BP 497 EP 505 DI 10.1021/sb400028c PG 9 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 223WB UT WOS:000324842100003 PM 23688072 ER PT J AU Jiao, ZB Luan, JH Zhang, ZW Miller, MK Ma, WB Liu, CT AF Jiao, Z. B. Luan, J. H. Zhang, Z. W. Miller, M. K. Ma, W. B. Liu, C. T. TI Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels SO ACTA MATERIALIA LA English DT Article DE Cu-rich nanoprecipitate; Nanoscale precipitation; Grain-size refinement; Ultrahigh-strength steel; Alloy development ID HIGH-TEMPERATURE OXIDATION; FIM-ATOM PROBE; FE-CU; PHASE-TRANSFORMATION; SOLUTE COPPER; PCT COPPER; ALLOY; NUCLEATION; HEAT; IRON AB There is an increasing demand for ultrahigh-strength terrific steels strengthened by nanoprecipitates. Improvement of the precipitation strengthening response requires an understanding of the nanoscale precipitation mechanisms. In this study, the synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of ferritic steels were thoroughly investigated, and new steels with ultra-high strength and high ductility have been developed. Our results indicate that Ni effectively increases the number density of Cu-rich nanoprecipitates by more than an order of magnitude, leading to a substantial increase in yield strength. It appears that Ni decreases both the strain energy for nucleation and the interfacial energy between the nucleus and the matrix, thereby decreasing the critical energy for nucleation of Cu-rich nanoprecipitates. Cu and Ni are also found to be beneficial to grain-size refinement, resulting from lowering the austenite-to-ferrite transformation temperature, as determined from thermodynamic calculations. In addition, the strengthening mechanisms of Cu and Ni were quantitatively evaluated in terms of precipitation strengthening, grain refinement strengthening and solid-solution strengthening. The current findings shed light on the composition-microstructure-property relationships in nanoprecipitate-strengthened ferritic steels. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Jiao, Z. B.; Luan, J. H.; Liu, C. T.] City Univ Hong Kong, Ctr Adv Struct Mat, Dept Mech & Biomed Engn, Kowloon, Hong Kong, Peoples R China. [Zhang, Z. W.; Miller, M. K.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Ma, W. B.] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China. RP Liu, CT (reprint author), City Univ Hong Kong, Ctr Adv Struct Mat, Dept Mech & Biomed Engn, Kowloon, Hong Kong, Peoples R China. EM chainliu@cityu.edu.hk RI zhang, zhongwu/G-1875-2012 OI zhang, zhongwu/0000-0002-2874-2976 FU City University of Hong Kong [9380060]; Office of Basic Energy Sciences, US Department of Energy FX This research was supported by the internal funding from City University of Hong Kong (account CityU No. 9380060). Atom probe tomography research was performed under the Oak Ridge National Laboratory's Shared Research Equipment (ShaRE) User Program, which is sponsored by the Office of Basic Energy Sciences, US Department of Energy. The authors would like to thank Prof. G.Q. Liu from the University of Science and Technology Beijing for helpful assistance on the thermodynamic calculations. NR 51 TC 22 Z9 24 U1 15 U2 60 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD SEP PY 2013 VL 61 IS 16 BP 5996 EP 6005 DI 10.1016/j.actamat.2013.06.040 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 218RI UT WOS:000324449700008 ER PT J AU Shen, YF Wang, YD Liu, XP Sun, X Peng, RL Zhang, SY Zuo, L Liaw, PK AF Shen, Y. F. Wang, Y. D. Liu, X. P. Sun, X. Peng, R. Lin Zhang, S. Y. Zuo, L. Liaw, P. K. TI Deformation mechanisms of a 20Mn TWIP steel investigated by in situ neutron diffraction and TEM SO ACTA MATERIALIA LA English DT Article DE Twinning-induced plasticity steel; In situ neutron diffraction; Twinning; Martensite ID AUSTENITIC STAINLESS-STEELS; STACKING-FAULT ENERGY; X-RAY-DIFFRACTION; MN-C STEEL; TRIP/TWIP STEELS; MARTENSITIC NUCLEATION; PLASTIC-DEFORMATION; EPSILON-MARTENSITE; TRIP STEELS; BEHAVIOR AB The deformation mechanisms and associated microstructure changes during tensile loading of an annealed twinning-induced plasticity steel with chemical composition Fe-20Mn-3Si-3Al-0.045C (wt.%) were systematically investigated using in situ time-of-flight neutron diffraction in combination with post mortem transmission electron microscopy (TEM). The initial microstructure of the investigated alloy consists of equiaxed gamma grains with the initial alpha'-phase of similar to 7% in volume. In addition to dislocation slip, twinning and two types of martensitic transformations from the austenite to alpha'- and epsilon-martensites were observed as the main deformation modes during the tensile deformation. In situ neutron diffraction provides a powerful tool for establishing the deformation mode map for elucidating the role of different deformation modes in different strain regions. The critical stress is 520 MPa for the martensitic transformation from austenite to alpha'-martensite, whereas a higher stress (>600 MPa) is required for actuating the deformation twin and/or the martensitic transformation from austenite to epsilon-martensite. Both epsilon- and alpha'-martensites act as hard phases, whereas mechanical twinning contributes to both the strength and the ductility of the studied steel. TEM observations confirmed that the twinning process was facilitated by the parent grains oriented with < 1 1 1 > or < 1 1 0 > parallel to the loading direction. The nucleation and growth of twins are attributed to the pole and self-generation formation mechanisms, as well as the stair-rod cross-slip mechanism. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Shen, Y. F.; Wang, Y. D.; Liu, X. P.; Zuo, L.] Northeastern Univ, Key Lab Anisotropy & Texture Mat, Shenyang 110004, Peoples R China. [Liu, X. P.; Sun, X.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Peng, R. Lin] Linkoping Univ, Dept Management & Engn, S-58183 Linkoping, Sweden. [Zhang, S. Y.] CCLRC Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. [Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Shen, YF (reprint author), Northeastern Univ, Key Lab Anisotropy & Texture Mat, Shenyang 110004, Peoples R China. EM Shenyf@smm.neu.edu.cn RI wang, yandong/G-9404-2013 FU National Natural Science Foundation of China [51231002, 51001024, 50725102]; Fundamental Research Funds for the Central Universities [N100702001, N100302003]; National Science and Technology Support Project [2011BAE13B03]; Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) [20110042120003]; US National Science Foundation [CMMI-1100080, CMMI-0900271, DMR-0909037]; US Department of Energy (DOE); Office of Nuclear Energy's Nuclear Energy University Program [NEUP-00119262]; DOE's Office of Fossil Energy, National Energy Technology Laboratory [DE-FE-0008855]; DOE [DE-AC05-76RL01830]; DOE's Office of FreedomCAR and Vehicle Technologies under the Automotive Lightweighting Materials Program FX The present research is supported by the National Natural Science Foundation of China (Grant Nos. 51231002, 51001024 and 50725102), the Fundamental Research Funds for the Central Universities (Grant Nos. N100702001 and N100302003) and the National Science and Technology Support Project (2011BAE13B03). X.P. Liu would like to acknowledge the support from the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) (No. 20110042120003). P.K. Liaw very much appreciates the financial support of the US National Science Foundation (CMMI-1100080, CMMI-0900271 and DMR-0909037), the US Department of Energy (DOE), Office of Nuclear Energy's Nuclear Energy University Program (NEUP-00119262) and the DOE's Office of Fossil Energy, National Energy Technology Laboratory (DE-FE-0008855). Pacific Northwest National Laboratory is operated by the Battelle for the DOE under Contract No. DE-AC05-76RL01830. This work was partially funded by the DOE's Office of FreedomCAR and Vehicle Technologies under the Automotive Lightweighting Materials Program managed by Mr. William Joost. NR 54 TC 15 Z9 15 U1 4 U2 63 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD SEP PY 2013 VL 61 IS 16 BP 6093 EP 6106 DI 10.1016/j.actamat.2013.06.051 PG 14 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 218RI UT WOS:000324449700016 ER PT J AU Somerday, BP Sofronis, P Nibur, KA San Marchi, C Kirchheim, R AF Somerday, B. P. Sofronis, P. Nibur, K. A. San Marchi, C. Kirchheim, R. TI Elucidating the variables affecting accelerated fatigue crack growth of steels in hydrogen gas with low oxygen concentrations SO ACTA MATERIALIA LA English DT Article DE Hydrogen embrittlement; Fatigue; Steel; Hydrogen gas impurities ID STRAIN-RATE; PROPAGATION; FRACTURE; STRESS; MECHANISMS; THRESHOLD AB The objective of this study was to quantify the effects of mechanical and environmental variables on oxygen-modified accelerated fatigue crack growth of steels in hydrogen gas. Experimental results show that in hydrogen gas containing up to 1000 v.p.p.m. oxygen fatigue crack growth rates for X52 line pipe steel are initially coincident with those measured in air or inert gas, but these rates abruptly accelerate above a critical Delta K level that depends on the oxygen concentration. In addition to the bulk gas oxygen concentration, the onset of hydrogen-accelerated crack growth is affected by the load cycle frequency and load ratio R. Hydrogen-accelerated fatigue crack growth is actuated when threshold levels of both the inert environment crack growth rate and K-max, are exceeded. The inert environment crack growth rate dictates the creation of new crack tip surface area, which in turn determines the extent of crack tip oxygen coverage and associated hydrogen uptake, while K-max governs the activation of hydrogen-assisted fracture modes through its relationship to the crack tip stress field. The relationship between the inert environment crack growth rate and crack tip hydrogen uptake is established through the development of an analytical model, which is formulated based on the assumption that oxygen coverage can be quantified from the balance between the rates of new crack tip surface creation and diffusion-limited oxygen transport through the crack channel to this surface. Provided K-max exceeds the threshold value for stress-driven hydrogen embrittlement activation, this model shows that stimulation of hydrogen-accelerated crack growth depends on the interplay between the inert environment crack growth increment per cycle, load cycle frequency, R ratio and bulk gas oxygen concentration. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Somerday, B. P.; San Marchi, C.] Sandia Natl Labs, Livermore, CA 94550 USA. [Somerday, B. P.; Sofronis, P.; Kirchheim, R.] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, Nishi Ku, Fukuoka 8190395, Japan. [Sofronis, P.] Univ Illinois, Urbana, IL 61801 USA. [Nibur, K. A.] Hy Performance Mat Testing, Bend, OR 97701 USA. [Kirchheim, R.] Univ Gottingen, Inst Mat Phys, D-37073 Gottingen, Germany. [Kirchheim, R.] Max Planck Inst Iron Res GmbH, Dusseldorf, Germany. RP Somerday, BP (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM bpsomer@sandia.gov FU US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; US Department of Energy Fuel Cell Technologies Office through the Hydrogen Delivery sub-program element; US Department of Energy [GO15045]; International Institute for Carbon Neutral Energy Research; World Premier International Research Center Initiative, MEXT, Japan FX The assistance of Ken Lee in conducting the fatigue crack growth tests in hydrogen gas environments as well as Andy Gardea and Ryan Nishimoto in performing metallography and microscopy is gratefully acknowledged. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the US Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. The experimental work presented here was supported by the US Department of Energy Fuel Cell Technologies Office through the Hydrogen Delivery sub-program element. P.S. gratefully acknowledges support from the US Department of Energy through Grant GO15045. In addition, B.P.S., P.S., and R.K. acknowledge support from the International Institute for Carbon Neutral Energy Research, sponsored by the World Premier International Research Center Initiative, MEXT, Japan. NR 38 TC 21 Z9 21 U1 3 U2 31 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD SEP PY 2013 VL 61 IS 16 BP 6153 EP 6170 DI 10.1016/j.actamat.2013.07.001 PG 18 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 218RI UT WOS:000324449700021 ER PT J AU Guo, HC Shi, F Ma, ZF Zhou, ZW Zhou, YR AF Guo Hai-Chao Shi Fan Ma Zheng-Fei Zhou Zhi-Wen Zhou Yi-Ran TI Molecular simulations of adsorption and separation of natural gas on zeolitic imidazolate frameworks SO ACTA PHYSICA SINICA LA Chinese DT Article DE grand canonical Monte Carlo; natural gas separation; zeolitic imidazolate framework ID METAL-ORGANIC FRAMEWORKS; EFFECTIVE CORE POTENTIALS; CARBON-DIOXIDE CAPTURE; CANONICAL MONTE-CARLO; DYNAMICS SIMULATIONS; ORBITAL METHODS; METHANE; MIXTURE; ALKANES; HYDROCARBONS AB Grand canonical Monte Carlo simulations were employed to investigate the adsorption and separation of C2H6, CO2 and CH4 on two zeolitic imidazolate frameworks (ZIF-2 and ZIF-71). The adsorption isotherm and isosteric heat of pure gas, the separation performance of C2H6-CH4, CO2-CH4 and C2H6-CO2 binary mixtures and C2H6-CO2-CH4 ternary mixtures on two ZIFs were simulated and discussed. For single component gas adsorption at a low pressure, the adsorption amount depended on isosteric heat; at a high pressure, due to the limited pore volume, ZIFs preferably adsorbed smaller size gas molecules. For gas mixture separation, energetic effect dominated at low pressure, therefore, ZIFs selectively adsorbed gas component with strong interactions; packing effect usually played an important role at high pressures, consequently, smaller size component would be more entropically favorable. Results demonstrated that both ZIF-2 and ZIF-71 were of good separation performance for these three binary mixtures. For the ternary mixture separation, it was found that ZIF-2 cowld effectively separate C2H6 and CO2 from CH4 at 3000-4000 kPa and room temperature. C1 [Guo Hai-Chao; Ma Zheng-Fei] Nanjing Univ Technol, Coll Chem & Chem Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 210009, Jiangsu, Peoples R China. [Shi Fan] URS Corp, South Pk, PA USA. [Shi Fan] US DOE, Natl Energy Technol Lab, Pittsburgh, PA USA. [Zhou Zhi-Wen; Zhou Yi-Ran] Navi Hlth & Environm Technol, Pittsburgh, PA USA. RP Ma, ZF (reprint author), Nanjing Univ Technol, Coll Chem & Chem Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 210009, Jiangsu, Peoples R China. EM mazf@njut.edu.cn RI Guo, Haichao/A-5824-2013 NR 48 TC 1 Z9 1 U1 6 U2 39 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1000-3290 J9 ACTA PHYS SIN-CH ED JI Acta Phys. Sin. PD SEP PY 2013 VL 62 IS 17 AR 176802 DI 10.7498/aps.62.176802 PG 8 WC Physics, Multidisciplinary SC Physics GA 224HX UT WOS:000324875300057 ER PT J AU Natalizio, E Di Caro, G Sekercioglu, A Yanmaz, E AF Natalizio, Enrico Di Caro, Gianni Sekercioglu, Ahmet Yanmaz, Evsen TI A special issue of Ad Hoc Networks on "Theory, algorithms and applications of wireless networked robotics" SO AD HOC NETWORKS LA English DT Editorial Material C1 [Natalizio, Enrico] Univ Calabria, I-87030 Commenda Di Rende, Italy. [Di Caro, Gianni] Dalle Molle Inst Artificial Intelligence IDSIA, Lugano, Switzerland. [Yanmaz, Evsen] US DOE, CCS Div, Univ Calif Los Alamos Natl Lab, Washington, DC 20585 USA. [Yanmaz, Evsen] Univ Klagenfurt, Networked & Embedded Syst Inst, Mobile Syst Grp, Klagenfurt, Austria. RP Natalizio, E (reprint author), Georgia Tech, BWN Broadband Wireless Networking Lab, Atlanta, GA USA. OI Sekercioglu, Ahmet/0000-0001-9119-8400 NR 0 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1570-8705 J9 AD HOC NETW JI Ad Hoc Netw. PD SEP PY 2013 VL 11 IS 7 SI SI BP 1891 EP 1892 DI 10.1016/j.adhoc.2013.08.002 PG 2 WC Computer Science, Information Systems; Telecommunications SC Computer Science; Telecommunications GA 223WK UT WOS:000324843000001 ER PT J AU Bailey, DH Borwein, JM Crandall, RE Rose, MG AF Bailey, David H. Borwein, Jonathan M. Crandall, Richard E. Rose, Michael G. TI Expectations on fractal sets SO APPLIED MATHEMATICS AND COMPUTATION LA English DT Article DE Expectations; Fractals; Self-similarity; Numerical quadrature; Monte Carlo methods ID BOX INTEGRALS; MOMENTS; DISTRIBUTIONS AB Using fractal self-similarity and functional-expectation relations, the classical theory of box integrals - being expectations on unit hypercubes - is extended to a class of fractal "string-generated Cantor sets" (SCSs) embedded in unit hypercubes of arbitrary dimension. Motivated by laboratory studies on the distribution of brain synapses, these SCSs were designed for dimensional freedom - a suitable choice of generating string allows for fine-tuning the fractal dimension of the corresponding set. We also establish closed forms for certain statistical moments on SCSs, develop a precision algorithm for high embedding dimensions, and report various numerical results. The underlying numerical quadrature issues are in themselves quite challenging. (C) 2013 Elsevier Inc. All rights reserved. C1 [Bailey, David H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Borwein, Jonathan M.; Rose, Michael G.] Univ Newcastle, Ctr Comp Assisted Res Math & Its Applicat CARMA, Callaghan, NSW 2308, Australia. [Crandall, Richard E.] Reed Coll, Ctr Adv Computat, Portland, OR 97202 USA. RP Rose, MG (reprint author), Univ Newcastle, Ctr Comp Assisted Res Math & Its Applicat CARMA, Callaghan, NSW 2308, Australia. EM dhbailey@lbl.gov; jonathan.borwein@newcastle.edu.au; michael.rose@newcastle.edu.au FU Office of Computational and Technology Research, Division of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX Supported in part by the Director, Office of Computational and Technology Research, Division of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy, under Contract Number DE-AC02-05CH11231. NR 21 TC 3 Z9 3 U1 0 U2 7 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0096-3003 EI 1873-5649 J9 APPL MATH COMPUT JI Appl. Math. Comput. PD SEP 1 PY 2013 VL 220 BP 695 EP 721 DI 10.1016/j.amc.2013.06.078 PG 27 WC Mathematics, Applied SC Mathematics GA 220CP UT WOS:000324558600068 ER PT J AU Loots, GG AF Loots, Gabriela G. TI How genomics is changing our view of cancer SO BRIEFINGS IN FUNCTIONAL GENOMICS LA English DT Editorial Material C1 Lawrence Livermore Natl Lab, Biol & Biotechnol Div, Livermore, CA 94550 USA. RP Loots, GG (reprint author), Lawrence Livermore Natl Lab, Biol & Biotechnol Div, 7000 East Ave,L-452, Livermore, CA 94550 USA. NR 6 TC 0 Z9 0 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 2041-2649 J9 BRIEF FUNCT GENOMICS JI Brief. Funct. Genomics PD SEP PY 2013 VL 12 IS 5 SI SI BP 389 EP 390 DI 10.1093/bfgp/elt035 PG 2 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 223BE UT WOS:000324777500001 PM 24048221 ER PT J AU Hudson, BD Kulp, KS Loots, GG AF Hudson, Bryan D. Kulp, Kristen S. Loots, Gabriela G. TI Prostate cancer invasion and metastasis: insights from mining genomic data SO BRIEFINGS IN FUNCTIONAL GENOMICS LA English DT Article DE Prostate cancer; metastasis; bone metastasis; biomarkers; microarrays; RNA-seq ID CIRCULATING TUMOR-CELLS; CDNA MICROARRAY ANALYSIS; GENE-EXPRESSION ANALYSIS; LASER-CAPTURE MICRODISSECTION; BREAST-CANCER; BONE METASTASIS; MESSENGER-RNA; DIFFERENTIAL EXPRESSION; PLASMINOGEN-ACTIVATOR; BETA-CATENIN AB Prostate cancer (PCa) is the second most commonly diagnosed malignancy in men in the Western world and the second leading cause of cancer-related deaths among men worldwide. Although most cancers have the potential to metastasize under appropriate conditions, PCa favors the skeleton as a primary site of metastasis, suggesting that the bone microenvironment is conducive to its growth. PCa metastasis proceeds through a complex series of molecular events that include angiogenesis at the site of the original tumor, local migration within the primary site, intravasation into the blood stream, survival within the circulation, extravasation of the tumor cells to the target organ and colonization of those cells within the new site. In turn, each one of these steps involves a complicated chain of events that utilize multiple protein-protein interactions, protein signaling cascades and transcriptional changes. Despite the urgent need to improve current biomarkers for diagnosis, prognosis and drug resistance, advances have been slow. Global gene expression methods such as gene microarrays and RNA sequencing enable the study of thousands of genes simultaneously and allow scientists to examine molecular pathways of cancer pathogenesis. In this review, we summarize the current literature that explored high-throughput transcriptome analysis toward the advancement of biomarker discovery for PCa. Novel biomarkers are strongly needed to enable more accurate detection of PCa, improve prediction of tumor aggressiveness and facilitate the discovery of new therapeutic targets for tailored medicine. Promising molecular markers identified from gene expression profiling studies include HPN, CLU1, WT1, WNT5A, AURKA and SPARC. C1 [Hudson, Bryan D.] Lawrence Livermore Natl Lab, Biol & Biotechnol Div, Livermore, CA 94550 USA. [Kulp, Kristen S.; Loots, Gabriela G.] Lawrence Livermore Natl Lab, Biol & Biotechnol Div, Pharmacol & Toxicol Grp, Livermore, CA 94550 USA. RP Hudson, BD (reprint author), Lawrence Livermore Natl Lab, Biol & Biotechnol Div, 7000 East Ave,L-452, Livermore, CA 94550 USA. EM hudson27@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [De-AC52-07NA27344]; [LDRD13-ERD-042] FX The authors would like to thank Nick R. Hum for designing Figure 1. This work was done under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract De-AC52-07NA27344 and was supported by LDRD13-ERD-042. NR 165 TC 11 Z9 11 U1 1 U2 18 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 2041-2649 J9 BRIEF FUNCT GENOMICS JI Brief. Funct. Genomics PD SEP PY 2013 VL 12 IS 5 SI SI BP 397 EP 410 DI 10.1093/bfgp/elt021 PG 14 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 223BE UT WOS:000324777500003 PM 23878130 ER PT J AU van de Walle, A Tiwary, P de Jong, M Olmsted, DL Asta, M Dick, A Shin, D Wang, Y Chen, LQ Liu, ZK AF van de Walle, A. Tiwary, P. de Jong, M. Olmsted, D. L. Asta, M. Dick, A. Shin, D. Wang, Y. Chen, L-Q Liu, Z-K TI Efficient stochastic generation of special quasirandom structures SO CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY LA English DT Article DE Special quasirandom structures; Monte Carlo; Alloy theory; Ab initio methods; Disordered state; Solid solution ID ELECTRONIC-STRUCTURE; THERMODYNAMIC PROPERTIES; SOLID-SOLUTIONS; SYSTEMS; PHASE; FCC AB We present a new algorithm to generate Special Quasirandom Structures (SQS), i.e., best periodic supercell approximations to the true disordered state for a given number of atoms per supercell. The method is based on a Monte Carlo simulated annealing loop with an objective function that seeks to perfectly match the maximum number of correlation functions (as opposed to merely minimizing the distance between the SQS correlation and the disordered state correlations for a pre-specified set of correlations). The proposed method optimizes the shape of the supercell jointly with the occupation of the atomic sites, thus ensuring that the configurational space searched is exhaustive and not biased by a pre-specified supercell shape. The method has been implemented in the "mcsqs" code of the Alloy Theoretic Automated Toolkit (ATAT) in the most general framework of multicomponent multisublattice systems and in a way that minimizes the amount of input information the user needs to specify and that allows for efficient parallelization. (C) 2013 Elsevier Ltd. All rights reserved. C1 [van de Walle, A.; Tiwary, P.] Brown Univ, Providence, RI 02912 USA. [de Jong, M.; Olmsted, D. L.; Asta, M.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Shin, D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Wang, Y.; Chen, L-Q; Liu, Z-K] Penn State Univ, University Pk, PA 16802 USA. RP van de Walle, A (reprint author), Brown Univ, Providence, RI 02912 USA. EM avdw@alum.mit.edu RI van de Walle, Axel/L-5676-2013; Wang, Yi/D-1032-2013; Tiwary, Pratyush/G-6576-2011; Shin, Dongwon/C-6519-2008; Chen, LongQing/I-7536-2012; Liu, Zi-Kui/A-8196-2009 OI van de Walle, Axel/0000-0002-3415-1494; Shin, Dongwon/0000-0002-5797-3423; Chen, LongQing/0000-0003-3359-3781; Liu, Zi-Kui/0000-0003-3346-3696 FU US Office of Naval Research (ONR) [N00014-11-1-0886, N00014-12-1-0557] FX The authors acknowledge financial support from the US Office of Naval Research (ONR) under Grant nos. N00014-11-1-0886 and N00014-12-1-0557. This work made use of computational resources provided under the Extreme Science and Engineering Discovery Environment (XSEDE). NR 22 TC 81 Z9 81 U1 8 U2 94 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0364-5916 J9 CALPHAD JI Calphad-Comput. Coupling Ph. Diagrams Thermochem. PD SEP PY 2013 VL 42 BP 13 EP 18 DI 10.1016/j.calphad.2013.06.006 PG 6 WC Thermodynamics; Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Thermodynamics; Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 221OM UT WOS:000324668200003 ER PT J AU Chen, XJ Chen, MJ Xu, B Tang, R Han, XM Qin, YF Xu, B Hang, B Mao, ZL Huo, WW Xia, YK Xu, ZF Wang, XR AF Chen, Xiaojiao Chen, Minjian Xu, Bo Tang, Rong Han, Xiumei Qin, Yufeng Xu, Bin Hang, Bo Mao, Zhilei Huo, Weiwei Xia, Yankai Xu, Zhengfeng Wang, Xinru TI Parental phenols exposure and spontaneous abortion in Chinese population residing in the middle and lower reaches of the Yangtze River SO CHEMOSPHERE LA English DT Article DE Pentachlorophenol; 4-n-Octylphenol; Spontaneous abortion; Parental urinary exposure ID BISPHENOL-A BPA; PREGNANCY LOSS; RECURRENT MISCARRIAGE; MASS-SPECTROMETRY; OXIDATIVE STRESS; IN-VITRO; RATS; RISK; PENTACHLOROPHENOL; METAANALYSIS AB Widespread use of phenols has led to ubiquitous exposure to phenols. In experimental animals, phenols increased resorptions, reduced live litter size and fetal body weights. However, there are limited epidemiological evidences of the relationships between exposure to phenols and pregnancy outcomes. We evaluated the associations between parental urinary levels of various phenols and spontaneous abortion in a Chinese population residing in the middle and lower reaches of the Yangtze River. A case-control study was conducted that included 70 case couples with medically unexplained spontaneous abortion and 180 control couples who did not have a history of spontaneous abortion and had at least one living child. Both parental urinary phenols were measured by ultra-high performance liquid chromatography-tandem mass spectrometry including bisphenol A (BPA), benzophenone-3 (BP-3), 2,3,4-trichlorophenol (2,3,4-TCP), pentachlorophenol (PCP), 4-n-octylphenol (4-n-OP) and 4-n-nonylphenol (4-n-NP). Compared with the low exposure group, there was an increased risk of spontaneous abortion with high paternal urinary PCP concentration [odds ratio (OR) = 2.09, 95% Confidence Interval (Cl), 1.05-4.14], and maternal exposure to 4-n-OP and alkylphenol(s) also significantly increased the risk of spontaneous abortion (OR = 2.21, 95% Cl, 1.02-4.80; OR = 2.81, 95% Cl, 1.39-5.65, respectively). Our study firstly provides the evidence that paternal PCP exposure, maternal 4-n-OP and alkylphenol(s) exposure are associated with spontaneous abortion in humans. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Chen, Xiaojiao; Chen, Minjian; Xu, Bo; Tang, Rong; Han, Xiumei; Qin, Yufeng; Xu, Bin; Mao, Zhilei; Huo, Weiwei; Xia, Yankai; Wang, Xinru] Nanjing Med Univ, State Key Lab Reprod Med, Inst Toxicol, Nanjing 210029, Jiangsu, Peoples R China. [Chen, Xiaojiao; Chen, Minjian; Xu, Bo; Tang, Rong; Han, Xiumei; Qin, Yufeng; Xu, Bin; Mao, Zhilei; Huo, Weiwei; Xia, Yankai; Wang, Xinru] Nanjing Med Univ, Minist Educ, Key Lab Modern Toxicol, Sch Publ Hlth, Nanjing 210029, Jiangsu, Peoples R China. [Hang, Bo] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Canc & DNA Damage Responses, Berkeley, CA 94720 USA. [Xu, Zhengfeng] Nanjing Med Univ, Ctr Prenatal Diag, Nanjing Matern & Child Hlth Hosp, Nanjing 210029, Jiangsu, Peoples R China. RP Xia, YK (reprint author), Nanjing Med Univ, State Key Lab Reprod Med, Inst Toxicol, 818 East Tianyuan Rd, Nanjing 211166, Jiangsu, Peoples R China. EM yankaixia@njmu.edu.cn FU National 973 Program [2012CBA01306]; National Twelfth-Five Science and Technology Support Program of China [2012BAI31B07]; National Natural Science Foundation of China [81072328]; Key Project of MOE [211063]; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) FX We thank Ms. Rencheng Zhao for the chemical analysis. This study was supported by National 973 Program (2012CBA01306); National Twelfth-Five Science and Technology Support Program of China (No. 2012BAI31B07); National Natural Science Foundation of China (No. 81072328); The Key Project of MOE (No. 211063); Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). NR 45 TC 10 Z9 12 U1 2 U2 32 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 J9 CHEMOSPHERE JI Chemosphere PD SEP PY 2013 VL 93 IS 2 BP 217 EP 222 DI 10.1016/j.chemosphere.2013.04.067 PG 6 WC Environmental Sciences SC Environmental Sciences & Ecology GA 221OH UT WOS:000324667700003 PM 23714150 ER PT J AU Williams, JT Baccarelli, P Paulotto, S Jackson, DR AF Williams, Jeffrey T. Baccarelli, Paolo Paulotto, Simone Jackson, David R. TI 1-D Combline Leaky-Wave Antenna With the Open-Stopband Suppressed: Design Considerations and Comparisons With Measurements SO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION LA English DT Article DE Leaky-wave antennas; leaky waves; periodic structures ID RADIATION AB The design of a 1-D planar periodic combline leaky-wave antenna that avoids the open-stopband effects as the beam is scanned through broadside is discussed and verified experimentally. This antenna radiates from nearly resonant stubs, which ensures a small leakage constant and hence a high directivity, and shows a single beam scanning through its n = -1 space harmonic in the X-band frequency range. The open-stopband suppression is obtained by applying a recently proposed matching technique within the unit cell [1] that is experimentally validated here for the first time. Measurements are made of the phase and leakage constants, the S-parameters, and the realized gain patterns. Comparisons are made with numerical values obtained from specialized and commercial software and very good agreement is found in all cases. C1 [Williams, Jeffrey T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Baccarelli, Paolo] Univ Roma La Sapienza, Dept Informat Engn Elect & Telecommun, I-00184 Rome, Italy. [Paulotto, Simone] Maxtena Inc, Bethesda, MD 20814 USA. [Jackson, David R.] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77204 USA. RP Williams, JT (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jtwill@sandia.gov; baccarelli@diet.uniroma1.it; s.paulotto@gmail.com; djackson@uh.edu NR 21 TC 7 Z9 7 U1 0 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-926X J9 IEEE T ANTENN PROPAG JI IEEE Trans. Antennas Propag. PD SEP PY 2013 VL 61 IS 9 BP 4484 EP 4492 DI 10.1109/TAP.2013.2271234 PG 9 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 217SI UT WOS:000324380500009 ER PT J AU Anghel, M Milano, F Papachristodoulou, A AF Anghel, Marian Milano, Federico Papachristodoulou, Antonis TI Algorithmic Construction of Lyapunov Functions for Power System Stability Analysis SO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS LA English DT Article DE Lyapunov methods; nonlinear systems; power system transient stability; sum of squares; transient energy function ID TRANSFER-CONDUCTANCES; BCU METHOD; ENERGY FUNCTIONS; DEPENDENT LOADS; REGIONS; MODELS; DYNAMICS; SQUARES; FORM AB We present a methodology for the algorithmic construction of Lyapunov functions for the transient stability analysis of classical power system models. The proposed methodology uses recent advances in the theory of positive polynomials, semidefinite programming, and sum of squares decomposition, which have been powerful tools for the analysis of systems with polynomial vector fields. In order to apply these techniques to power grid systems described by trigonometric nonlinearities we use an algebraic reformulation technique to recast the system's dynamics into a set of polynomial differential algebraic equations. We demonstrate the application of these techniques to the transient stability analysis of power systems by estimating the region of attraction of the stable operating point. An algorithm to compute the local stability Lyapunov function is described together with an optimization algorithm designed to improve this estimate. C1 [Anghel, Marian] Los Alamos Natl Lab, CCS Div, Los Alamos, NM 87545 USA. [Milano, Federico] Univ Castilla La Mancha, Dept Elect Engn, E-13071 Ciudad Real, Spain. [Papachristodoulou, Antonis] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England. RP Anghel, M (reprint author), Los Alamos Natl Lab, CCS Div, POB 1663, Los Alamos, NM 87545 USA. EM manghel@lanl.gov; Federico.Mi-lano@uclm.es; antonis@eng.ox.ac.uk OI Milano, Federico/0000-0002-0049-9185 FU U.S. Department of Energy through the LANL/LDRD Program; Ministry of Science and Innovation of Spain, MICINN [ENE2009-07685, ENE2012-31326]; Engineering and Physical Sciences Research Council [EP/J012041/1, EP/I031944/1, EP/J010537/1, EP/H03062X/1] FX The work of M. Anghel was supported in part by the U.S. Department of Energy through the LANL/LDRD Program. The work of F. Milano was supported in part by the Ministry of Science and Innovation of Spain, MICINN Projects ENE2009-07685 and ENE2012-31326. The work of A. Papachristodoulou was supported in part by the Engineering and Physical Sciences Research Council projects EP/J012041/1, EP/I031944/1, EP/J010537/1, and EP/H03062X/1. This paper was recommended by Associate Editor X. Li. NR 50 TC 20 Z9 21 U1 0 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1549-8328 EI 1558-0806 J9 IEEE T CIRCUITS-I JI IEEE Trans. Circuits Syst. I-Regul. Pap. PD SEP PY 2013 VL 60 IS 9 BP 2533 EP 2546 DI 10.1109/TCSI.2013.2246233 PG 14 WC Engineering, Electrical & Electronic SC Engineering GA 216AS UT WOS:000324253800027 ER PT J AU Muljadi, E Singh, M Gevorgian, V AF Muljadi, Eduard Singh, Mohit Gevorgian, Vahan TI Doubly Fed Induction Generator in an Offshore Wind Power Plant Operated at Rated V/Hz SO IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS LA English DT Article DE Doubly fed asynchronous generator (DFAG); doubly fed induction generator (DFIG); frequency modulation; high-voltage alternating current (HVAC); high-voltage direct current (HVDC); induction generator; open-loop systems; renewable energy; stability; torque control; V/f; variable speed; volt per hertz; voltage control; wind turbine generator (WTG) ID V/F CONTROL METHOD; HIGH-PERFORMANCE; FARM AB This paper introduces the concept of constant volt/hertz operation of offshore wind power plants (WPPs). The deployment of offshore WPPs requires power transmission from the plant to the load center inland. Because this power transmission requires submarine cables, there is a need to use high-voltage direct current (HVDC) transmission, which is economical for distances greater than 50 km. In the concept presented here, the onshore substation was operated at 60 Hz synced with the grid, and the offshore substation was operated at variable frequency and voltage, allowing the WPP to be operated at constant volt/hertz. In this paper, a variable frequency at rated volt/hertz operation was applied to a Type 3 doubly fed induction generator (DFIG) wind turbine generator. The size of the power converter at the turbine can be significantly reduced from 30% of the rated power output in a conventional Type 3 turbine to 5% of the rated power. The DFIG allows each turbine to vary its operating speed with respect to the other turbines. Thus, small wind diversity within the WPP can be accommodated by the DFIG, and the collector system frequency can be controlled by HVDC to follow large variations in average wind speed. C1 [Muljadi, Eduard; Singh, Mohit; Gevorgian, Vahan] Natl Renewable Energy Lab, Natl Wind Technol Ctr, Golden, CO 80401 USA. RP Muljadi, E (reprint author), Natl Renewable Energy Lab, Natl Wind Technol Ctr, Golden, CO 80401 USA. EM muljadi@nrel.gov; mohit.singh@nrel.gov; vahan.gevorgian@nrel.gov FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX This work was supported by the U.S. Department of Energy under Contract DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 14 TC 8 Z9 8 U1 2 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-9994 J9 IEEE T IND APPL JI IEEE Trans. Ind. Appl. PD SEP-OCT PY 2013 VL 49 IS 5 DI 10.1109/TIA.2013.2261043 PG 9 WC Engineering, Multidisciplinary; Engineering, Electrical & Electronic SC Engineering GA 223TG UT WOS:000324832300030 ER PT J AU Hsu, YK Yu, CH Lin, HH Chen, YC Lin, YG AF Hsu, Yu-Kuei Yu, Chun-Hao Lin, Hung-Hsun Chen, Ying-Chu Lin, Yan-Gu TI Template synthesis of copper oxide nanowires for photoelectrochemical hydrogen generation SO JOURNAL OF ELECTROANALYTICAL CHEMISTRY LA English DT Article DE Copper oxide; Nanowires; Photoelectrochemistry; Template synthesis ID WATER; FABRICATION; PHOTOCATHODES; ELECTRODES AB The direct-grown p-type copper oxide nanowires on copper foil were fabricated via a facile and cost-effective template route for photoelectrochemical (PEC) hydrogen generation. The dense and curl-shaped copper oxide nanowires were carried out through thermal transformation of one-dimensional Cu(OH)(2). The effect of thermal treatment on structure and composition revealed the phase transformation to CuO and Cu2O within the nanowire matrix by examinations of XRD and XPS. Significantly, PEC characteristics illustrated that the high active photocathode of copper oxide nanowires can achieve the photocurrent of -1.3 mA cm(-2) at a potential of -0.4 V vs. Ag/AgCl, corresponding to the solar conversion efficiency of 1.3%. The photoresponse of this hybrid copper oxide nanowires widely extended in the near-infrared wavelength of 920 nm, which have great potential application for light-harvesting device. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved. C1 [Hsu, Yu-Kuei; Yu, Chun-Hao; Lin, Hung-Hsun] Natl Dong Hwa Univ, Dept Optoelect Engn, Hualien 97401, Taiwan. [Chen, Ying-Chu] Natl Taiwan Univ, Dept Chem Engn, Taipei 106, Taiwan. [Lin, Yan-Gu] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Hsu, YK (reprint author), Natl Dong Hwa Univ, Dept Optoelect Engn, Hualien 97401, Taiwan. EM ykhsu@mail.ndhu.edu.tw RI Hsu, Yu-Kuei/H-6591-2014 FU National Dong Hwa University; National Science Council of the Republic of China, Taiwan [NSC 101-2221-E-259-011] FX The authors would like to thank the National Dong Hwa University and the National Science Council of the Republic of China, Taiwan, for financially supporting this research under Contract No. NSC 101-2221-E-259-011. NR 20 TC 17 Z9 17 U1 11 U2 137 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 1572-6657 J9 J ELECTROANAL CHEM JI J. Electroanal. Chem. PD SEP 1 PY 2013 VL 704 BP 19 EP 23 DI 10.1016/j.jelechem.2013.06.008 PG 5 WC Chemistry, Analytical; Electrochemistry SC Chemistry; Electrochemistry GA 221KV UT WOS:000324658700003 ER PT J AU Pratt, HD Ingersoll, D Hudak, NS McKenzie, BB Anderson, TM AF Pratt, Harry D., III Ingersoll, David Hudak, Nicholas S. McKenzie, Bonnie B. Anderson, Travis M. TI Copper ionic liquids: Tunable ligand and anion chemistries to control electrochemistry and deposition morphology SO JOURNAL OF ELECTROANALYTICAL CHEMISTRY LA English DT Article DE Ionic liquids; Copper; Flow batteries; Electrodeposition; Dendrites ID RESEARCH-AND-DEVELOPMENT; ELECTRODEPOSITION; CATALYSIS; COMPLEXES; PROGRESS; CATIONS AB A multi-technique investigation was performed on three copper-based ionic liquids to elucidate the influence of coordinating ligands and charge-balancing anions on the electrochemical properties of the materials. Galvanostatic cycling of Cu(OHCH2CH2NH2)(6)(BF4)(2) (Cu1) in 1-butyl-3-methyl-imidazolium hexafluorophosphate gave partially reversible plating of copper that was consistent with cyclic voltammetry data (collected using an ionic liquid-based reference electrode verified with measurements of ferrocene, cobaltocene, and lithium). Scanning electron microscopy also showed pitting in the copper-coated surface of the electrode that was consistent with the stripping wave observed by cyclic voltammetry. Potentiostatic deposition in neat Cu1 showed significant dendrite formation. The substitution of the OHCH2CH2NH2 ligands of Cu1 with stronger coordinating NH(CH2CH2OH)(2) in Cu(NH(CH2CH2OH)(2))(6)(BF4)(2) (Cu2) resulted in the complete suppression of both copper stripping and dendrite formation. Substitution of the BF4- anions of Cu2 with CF3SO3- in Cu(NH(CH2CH2OH)(2))(6)(CF3SO3)(2) (Cu3) shifted the copper deposition 0.1 V more negative and produced slightly larger spherical particles (1.5 mu m versus 5 mu m). The results suggested that while the anion composition influenced particle size, and the metal-ligand bond strength helped control particle morphology, both factors affected the electrochemical properties including the plating and stripping of copper. (C) 2013 Elsevier B.V. All rights reserved. C1 [Pratt, Harry D., III; Ingersoll, David; Hudak, Nicholas S.; McKenzie, Bonnie B.; Anderson, Travis M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Anderson, TM (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM tmander@sandia.gov RI Hudak, Nicholas/D-3529-2011 FU U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability (Dr. Imre Gyuk, Energy Storage Program) for funding and Mark Rodriguez, James Griego, William R. Pratt and Mike Stoll for technical assistance. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 25 TC 9 Z9 9 U1 4 U2 57 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 1572-6657 EI 1873-2569 J9 J ELECTROANAL CHEM JI J. Electroanal. Chem. PD SEP 1 PY 2013 VL 704 BP 153 EP 158 DI 10.1016/j.jelechem.2013.07.006 PG 6 WC Chemistry, Analytical; Electrochemistry SC Chemistry; Electrochemistry GA 221KV UT WOS:000324658700022 ER PT J AU Yun, D Stan, M AF Yun, Di Stan, Marius TI Impact of high porosity on thermal transport in UO2 nuclear fuel SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID OXYGEN DIFFUSION; URANIUM-DIOXIDE; SOLID UO2; CONDUCTIVITY; HEAT; RECOMMENDATIONS; SIMULATIONS; EXPANSION; EVOLUTION; MODEL AB During the advance of the nuclear fission reaction, fission products accumulate and form pores (gas bubbles) that decrease the thermal conductivity of the nuclear fuel, potentially leading to overheating of the fuel element. To investigate this important phenomenon, a finite-element method is used to simulate the effect of 3-dimensional (3D) distributions of pores on the thermal transport in a nuclear fuel element consisting of uranium oxide (UO2) nuclear fuel pellet and Zircaloy cladding. Spherical pores ranging in size from 70 to 172 mu m are introduced to create up to 30 vol% total porosity. The simulations demonstrate that the centerline temperature increases with the total porosity and the increase is nonlinear. The results also show that the centerline temperature, at fixed total porosity, weakly depends on the pore size distribution. This method can provide useful information regarding the effect of high porosity levels that may occur in off-normal operation conditions. C1 [Yun, Di; Stan, Marius] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Stan, M (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mstan@anl.gov FU US Department of Energy, Office of Science [DE-AC02-06CH11357] FX This work was supported by the US Department of Energy, Office of Science under Contract No. DE-AC02-06CH11357. NR 30 TC 1 Z9 1 U1 3 U2 21 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD SEP PY 2013 VL 28 IS 17 BP 2308 EP 2315 DI 10.1557/jmr.2013.142 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA 217AN UT WOS:000324328900013 ER PT J AU Chen-Wiegart, YCK Wada, T Butakov, N Xiao, XH De Carlo, F Kato, H Wang, J Dunand, DC Maire, E AF Chen-Wiegart, Yu-chen Karen Wada, Takeshi Butakov, Nikita Xiao, Xianghui De Carlo, Francesco Kato, Hidemi Wang, Jun Dunand, David C. Maire, Eric TI 3D morphological evolution of porous titanium by x-ray micro- and nano-tomography SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID NANOPOROUS GOLD; DENDRITIC MICROSTRUCTURES AB The 3D morphological evolution of titanium foams as they undergo a two-step fabrication process is quantitatively characterized through x-ray micro- and nano-tomography. In the first process step, a Cu-Ti-Cr-Zr prealloy is immersed in liquid Mg, where Cu is alloyed with Mg while a skeleton of crystalline Ti-Cr-Zr is created. In the second step, the Mg-Cu phase is etched in acid, leaving a Ti-Cr-Zr foam with submicron struts. 3D images of these solidified Ti-Cr-Zr/Mg-Cu composites and leached Ti-Cr-Zr foams are acquired after 5, 10, and 30 min exposure to liquid Mg. As the Mg exposure time increases, the Ti-Cr-Zr ligaments grow in size. The tortuosity loosely follows the Bruggeman relation. The interfacial surface distribution of these Ti-foams is qualitatively similar to other nano-porous metal prepared by one-step dealloying. The characteristic length of the Mg-Cu phase and pores are also reported. C1 [Chen-Wiegart, Yu-chen Karen; Butakov, Nikita; Wang, Jun] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. [Wada, Takeshi; Kato, Hidemi] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Butakov, Nikita] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14261 USA. [Xiao, Xianghui; De Carlo, Francesco] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Dunand, David C.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Maire, Eric] Inst Natl Sci Appl, MATEIS Lab, F-69621 Lyon, France. RP Wang, J (reprint author), Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. EM junwang@bnl.gov RI eric, maire/B-4296-2012; Dunand, David/B-7515-2009; Wada, Takeshi/B-2431-2015; Kato, Hidemi/B-2492-2015; OI Dunand, David/0000-0001-5476-7379; , eric/0000-0003-1952-2602 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; U.S. DOE [DE-AC02-06CH11357] FX We thank Dr. Fernando Camino (BNL) for assisting the development of the sample preparation procedure using FIB/SEM. FIB-lift out sample preparation was carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Use of the National Synchrotron Light Source is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 38 TC 4 Z9 4 U1 3 U2 52 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 EI 2044-5326 J9 J MATER RES JI J. Mater. Res. PD SEP PY 2013 VL 28 IS 17 BP 2444 EP 2452 DI 10.1557/jmr.2013.151 PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA 217AN UT WOS:000324328900028 ER PT J AU Gardner, SN Thissen, JB McLoughlin, KS Slezak, T Jaing, CJ AF Gardner, Shea N. Thissen, James B. McLoughlin, Kevin S. Slezak, Tom Jaing, Crystal J. TI Optimizing SNP microarray probe design for high accuracy microbial genotyping SO JOURNAL OF MICROBIOLOGICAL METHODS LA English DT Article DE SNP microarrays; SNP detection; Microbial genotyping; Probe design optimization; Strain typing; Bacillus anthracis ID ARRAY; VERSATILE; SOFTWARE AB Microarrays to characterize single nucleotide polymorphisms (SNPs) provide a cost-effective and rapid method (under 24 h) to genotype microbes as an alternative to sequencing. We developed a pipeline for SNP discovery and microarray design that scales to 100's of microbial genomes. Here we tested various SNP probe design strategies against 8 sequenced isolates of Bacillus anthracis to compare sequence and microarray data. The best strategy allowed probe length to vary within 32-40 bp to equalize hybridization free energy. This strategy resulted in a call rate of 99.52% and concordance rate of 99.86% for finished genomes. Other probe design strategies averaged substantially lower call rates (94.65-96.41%) and slightly lower concordance rates (99.64-99.80%). These rates were lower for draft than finished genomes, consistent with higher incidence of sequencing errors and gaps. Highly accurate SNP calls were possible in complex soil and blood backgrounds down to 1000 copies, and moderately accurate SNP calls down to 100 spiked copies. The closest genome to the spiked strain was correctly identified at only 10 spiked copies. Discrepancies between sequence and array data did not alter the SNP-based phylogeny, regardless of the probe design strategy, indicating that SNP arrays can accurately place unsequenced isolates on a phylogeny. (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved. C1 [Gardner, Shea N.; Thissen, James B.; McLoughlin, Kevin S.; Slezak, Tom; Jaing, Crystal J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Gardner, SN (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM gardner26@LLNL.gov OI McLoughlin, Kevin/0000-0001-9651-4951; Thissen, James/0000-0002-4693-5886 FU Department of Homeland Security Bioforensics program [HSHQPM-10-X-00078/P00001]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors want to thank LLNL and Kris Montgomery for providing the B. anthracis genomic DNA samples. This work was supported by the Department of Homeland Security Bioforensics program through contract HSHQPM-10-X-00078/P00001 to Lawrence Livermore National Laboratory. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 22 TC 8 Z9 8 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-7012 J9 J MICROBIOL METH JI J. Microbiol. Methods PD SEP PY 2013 VL 94 IS 3 BP 303 EP 310 DI 10.1016/j.mimet.2013.07.006 PG 8 WC Biochemical Research Methods; Microbiology SC Biochemistry & Molecular Biology; Microbiology GA 221NB UT WOS:000324664500024 PM 23871857 ER PT J AU Baer, DR Engelhard, MH Johnson, GE Laskin, J Lai, JF Mueller, K Munusamy, P Thevuthasan, S Wang, HF Washton, N Elder, A Baisch, BL Karakoti, A Kuchibhatla, SVNT Moon, D AF Baer, Donald R. Engelhard, Mark H. Johnson, Grant E. Laskin, Julia Lai, Jinfeng Mueller, Karl Munusamy, Prabhakaran Thevuthasan, Suntharampillai Wang, Hongfei Washton, Nancy Elder, Alison Baisch, Brittany L. Karakoti, Ajay Kuchibhatla, Satyanarayana V. N. T. Moon, DaeWon TI Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Review ID SUM-FREQUENCY GENERATION; X-RAY PHOTOELECTRON; AUGER-ELECTRON-SPECTROSCOPY; METAL-OXIDE NANOPARTICLES; MASS-SELECTED IONS; GOLD NANOPARTICLES; CARBON NANOTUBES; XPS ANALYSIS; BIOMEDICAL APPLICATIONS; RESONANCE-ABSORPTION AB This review examines characterization challenges inherently associated with understanding nanomaterials and the roles surface and interface characterization methods can play in meeting some of the challenges. In parts of the research community, there is growing recognition that studies and published reports on the properties and behaviors of nanomaterials often have reported inadequate or incomplete characterization. As a consequence, the true value of the data in these reports is, at best, uncertain. With the increasing importance of nanomaterials in fundamental research and technological applications, it is desirable that researchers from the wide variety of disciplines involved recognize the nature of these often unexpected challenges associated with reproducible synthesis and characterization of nanomaterials, including the difficulties of maintaining desired materials properties during handling and processing due to their dynamic nature. It is equally valuable for researchers to understand how characterization approaches (surface and otherwise) can help to minimize synthesis surprises and to determine how (and how quickly) materials and properties change in different environments. Appropriate application of traditional surface sensitive analysis methods (including x-ray photoelectron and Auger electron spectroscopies, scanning probe microscopy, and secondary ion mass spectroscopy) can provide information that helps address several of the analysis needs. In many circumstances, extensions of traditional data analysis can provide considerably more information than normally obtained from the data collected. Less common or evolving methods with surface selectivity (e. g., some variations of nuclear magnetic resonance, sum frequency generation, and low and medium energy ion scattering) can provide information about surfaces or interfaces in working environments (operando or in situ) or information not provided by more traditional methods. Although these methods may require instrumentation or expertise not generally available, they can be particularly useful in addressing specific questions, and examples of their use in nanomaterial research are presented. (C) 2013 American Vacuum Society. C1 [Baer, Donald R.; Engelhard, Mark H.; Johnson, Grant E.; Laskin, Julia; Lai, Jinfeng; Mueller, Karl; Munusamy, Prabhakaran; Thevuthasan, Suntharampillai; Wang, Hongfei; Washton, Nancy] Pacific NW Natl Lab, EMSL, Richland, WA 99352 USA. [Elder, Alison; Baisch, Brittany L.] Univ Rochester, Dept Environm Med, Rochester, NY USA. [Karakoti, Ajay; Kuchibhatla, Satyanarayana V. N. T.] Battelle Sci & Technol India, Pune, Maharashtra, India. [Moon, DaeWon] Daegu Gyeongbuk Inst Sci & Technol, Daeju, South Korea. RP Baer, DR (reprint author), Pacific NW Natl Lab, EMSL, POB 999, Richland, WA 99352 USA. EM don.baer@pnnl.gov RI Wang, Hongfei/B-1263-2010; Baer, Donald/J-6191-2013; munusamy, prabhakaran/G-4598-2014; Mueller, Karl/A-3637-2010; Laskin, Julia/H-9974-2012; OI Wang, Hongfei/0000-0001-8238-1641; Baer, Donald/0000-0003-0875-5961; Laskin, Julia/0000-0002-4533-9644; Engelhard, Mark/0000-0002-5543-0812; Johnson, Grant/0000-0003-3352-4444 FU DOE-BER; DOE's offices of Basic Energy Science (BES); BER; NIEHS [U19 ES019544, P30 ES01247]; Linus Pauling Fellowship; PNNL's Laboratory Directed Research and Development Program; [T32 ES07026] FX This article has evolved from research programs, research conducted as part of the EMSL User Program (http://www.emsl.pnnl.gov/emslweb/), and interactions with colleagues from around the world. DRB in particular thanks Justin Teeguarden, Joel Pounds, and Brian Thrall and the other members of the NIEHS U19 consortium, as well as colleagues from ASTM Committee E42 on Surface Analysis and ISO Committees TC201 Surface Chemical Analysis and TC229 Nanotechnology. Portions of this work were performed using EMSL, a national scientific user facility sponsored by DOE-BER and located at PNNL. Aspects of the work have been supported by the DOE's offices of Basic Energy Science (BES) and BER and the NIEHS under Center grants U19 ES019544 and P30 ES01247, as well as a training grant (T32 ES07026). G.E.J. acknowledges support from the Linus Pauling Fellowship and PNNL's Laboratory Directed Research and Development Program. NR 177 TC 39 Z9 40 U1 9 U2 200 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 EI 1520-8559 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD SEP PY 2013 VL 31 IS 5 AR 050820 DI 10.1116/1.4818423 PG 34 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 217UZ UT WOS:000324388800020 PM 24482557 ER PT J AU Parsons, GN Elam, JW George, SM Haukka, S Jeon, H Kessels, WMM Leskela, M Poodt, P Ritala, M Rossnagel, SM AF Parsons, Gregory N. Elam, Jeffrey W. George, Steven M. Haukka, Suvi Jeon, Hyeongtag Kessels, W. M. M. (Erwin) Leskela, Markku Poodt, Paul Ritala, Mikko Rossnagel, Steven M. TI History of atomic layer deposition and its relationship with the American Vacuum Society SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Review ID SENSITIZED SOLAR-CELLS; INTERNATIONAL-SYMPOSIUM; SURFACE MODIFICATION; EPITAXY; AL2O3; GROWTH; TETRACHLORIDE; POLYMERS; PLASMA AB This article explores the history of atomic layer deposition (ALD) and its relationship with the American Vacuum Society (AVS). The authors describe the origin and history of ALD science in the 1960s and 1970s. They also report on how the science and technology of ALD progressed through the 1990s and 2000s and continues today. This article focuses on how ALD developed within the AVS and continues to evolve through interactions made possible by the AVS, in particular, the annual International AVS ALD Conference. This conference benefits students, academics, researchers, and industry practitioners alike who seek to understand the fundamentals of self-limiting, alternating binary surface reactions, and how they can be applied to form functional (and sometimes profitable) thin film materials. The flexible structure of the AVS allowed the AVS to quickly organize the ALD community and create a primary conference home. Many new research areas have grown out of the original concepts of "Atomic Layer Epitaxy" and "Molecular Layering," and some of them are described in this article. The people and research in the ALD field continue to evolve, and the AVS ALD Conference is a primary example of how the AVS can help a field expand and flourish. (C) 2013 American Vacuum Society. C1 [Parsons, Gregory N.] N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA. [Elam, Jeffrey W.] Argonne Natl Lab, Argonne, IL 60439 USA. [George, Steven M.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [George, Steven M.] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA. [Haukka, Suvi] ASM Microchem Ltd, FI-00560 Helsinki, Finland. [Jeon, Hyeongtag] Hanyang Univ, Div Mat Sci & Engn, Seoul 133791, South Korea. [Kessels, W. M. M. (Erwin)] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands. [Leskela, Markku; Ritala, Mikko] Univ Helsinki, Dept Chem, FI-00014 Helsinki, Finland. [Poodt, Paul] Holst Ctr TNO, NL-5600 HE Eindhoven, Netherlands. [Rossnagel, Steven M.] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA. RP Parsons, GN (reprint author), N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA. EM parsons@ncsu.edu RI Ritala, Mikko/N-7268-2013; George, Steven/O-2163-2013; Parsons, Gregory/O-9762-2014; Jeon, Hyeongtag/P-3193-2015; OI Ritala, Mikko/0000-0002-6210-2980; George, Steven/0000-0003-0253-9184; Parsons, Gregory/0000-0002-0048-5859; Jeon, Hyeongtag/0000-0003-2502-7413; Leskela, Markku/0000-0001-5830-2800 FU Center for Electrical Energy Storage: Tailored Interfaces, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center FX J.W.E. was supported by the Center for Electrical Energy Storage: Tailored Interfaces, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, and by the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. NR 50 TC 20 Z9 20 U1 4 U2 93 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD SEP PY 2013 VL 31 IS 5 AR 050818 DI 10.1116/1.4816548 PG 11 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 217UZ UT WOS:000324388800018 ER PT J AU Cao, GH Liu, N Peng, JC Li, X Shen, GJ Russell, AM AF Cao, G. H. Liu, N. Peng, J. C. Li, X. Shen, G. J. Russell, A. M. TI Transmission electron microscopy study of the microstructure of a Ti-Fe-Zr alloy SO MATERIALS CHARACTERIZATION LA English DT Article DE Ti-Fe-Zr alloy; Microstructure; Transmission electron microscopy (TEM) ID HIGH-STRENGTH; ULTRAFINE COMPOSITES; ENHANCED DUCTILITY; PLASTICITY AB A Ti-35Fe-30Zr (at.%) alloy was prepared by cold crucible levitation melting, and its microstructure was characterized. Electron microscope observations revealed a microstructure with a bi-modal phase size distribution. One phase was identified as a monoclinic TiFeZr compound with lattice parameters a = 0.895 nm, b = 0.502 nm, c = 0.969 nm, and alpha = 119.4 degrees in C2 (space group). A bcc beta-TiZr phase with lattice parameter a = 0.341 nm coexisted with the monoclinic phase. The mechanisms of phase formation are discussed. (C) 2013 Elsevier Inc. All rights reserved. C1 [Cao, G. H.; Liu, N.; Li, X.] Shanghai Univ, Dept Mat Engn, Shanghai 200072, Peoples R China. [Peng, J. C.] Shanghai Univ, Inst Mat, Shanghai 200072, Peoples R China. [Shen, G. J.] Southeast Univ, Anal & Testing Ctr, Nanjing 211189, Jiangsu, Peoples R China. [Russell, A. M.] US DOE, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA. [Russell, A. M.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Cao, GH (reprint author), Shanghai Univ, Dept Mat Engn, Shanghai 200072, Peoples R China. EM ghcao@shu.edu.cn OI Russell, Alan/0000-0001-5264-0104 FU Shanghai Committee of Science and Technology [11520701200, 10JC1405100]; Innovation Program of Shanghai Municipal Education Commission [13ZZ077]; National Natural Science Foundation of China (NSFC) [51271107]; Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning; US Department of Energy by Iowa State University [DE-AC02-07CH11358] FX This work was supported by the Shanghai Committee of Science and Technology under Grant Nos. 11520701200 and 10JC1405100, the Innovation Program of Shanghai Municipal Education Commission under Grant No. 13ZZ077, the National Natural Science Foundation of China (NSFC) under Grant 51271107, and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning. The Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 18 TC 3 Z9 3 U1 1 U2 25 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1044-5803 J9 MATER CHARACT JI Mater. Charact. PD SEP PY 2013 VL 83 BP 43 EP 48 DI 10.1016/j.matchar.2013.06.003 PG 6 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Materials Science, Characterization & Testing SC Materials Science; Metallurgy & Metallurgical Engineering GA 220RV UT WOS:000324605500005 ER PT J AU Rong, LB Perelson, AS AF Rong, Libin Perelson, Alan S. TI Mathematical analysis of multiscale models for hepatitis C virus dynamics under therapy with direct-acting antiviral agents SO MATHEMATICAL BIOSCIENCES LA English DT Article; Proceedings Paper CT 4th International Conference on BIOCOMP - Mathematical Modeling and Computational Topics in Biosciences Dedicated to the Memory of Luigi M. Ricciardi (1942-2011) CY JUN 04-08, 2012 CL Vietri sul Mare, ITALY DE Hepatitis C virus; Multiscale model; Age-structured model; Stability; Intracellular viral RNA; Antiviral therapy; Viral kinetics ID VIRAL KINETICS; PEGYLATED INTERFERON; PROTEASE INHIBITOR; NS5A INHIBITOR; HCV INFECTION; RIBAVIRIN; COMBINATION; IFN; RNA; REPLICATION AB Chronic hepatitis C virus (HCV) infection remains a world-wide public health problem. Therapy with interferon and ribavirin leads to viral elimination in less than 50% of treated patients. New treatment options aiming at a higher cure rate are focused on direct-acting antiviral agents (DAAs), which directly interfere with different steps in the HCV life cycle. In this paper, we describe and analyze a recently developed multiscale model that predicts HCV dynamics under therapy with DAAs. The model includes both intracellular viral RNA replication and extracellular viral infection. We calculate the steady states of the model and perform a detailed stability analysis. With certain assumptions we obtain analytical approximations of the viral load decline after treatment initiation. One approximation agrees well with the prediction of the model, and can conveniently be used to fit patient data and estimate parameter values. We also discuss other possible ways to incorporate intracellular viral dynamics into the multiscale model. (C) 2013 Elsevier Inc. All rights reserved. C1 [Rong, Libin] Oakland Univ, Dept Math & Stat, Rochester, MI 48309 USA. [Perelson, Alan S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Perelson, AS (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM asp@lanl.gov FU NHLBI NIH HHS [HL109334, R34 HL109334]; NIAID NIH HHS [AI028433, AI07881, R01 AI028433, R01 AI078881, R37 AI028433]; NIH HHS [OD011095, R01 OD011095] NR 45 TC 9 Z9 9 U1 0 U2 13 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0025-5564 J9 MATH BIOSCI JI Math. Biosci. PD SEP PY 2013 VL 245 IS 1 SI SI BP 22 EP 30 DI 10.1016/j.mbs.2013.04.012 PG 9 WC Biology; Mathematical & Computational Biology SC Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology GA 221OK UT WOS:000324668000004 PM 23684949 ER PT J AU Wu, WT Aubry, N Massoudi, M AF Wu, Wei-Tao Aubry, Nadine Massoudi, Mehrdad TI Flow of granular materials modeled as a non-linear fluid SO MECHANICS RESEARCH COMMUNICATIONS LA English DT Article DE Non-linear fluids; Reiner-Rivlin fluid; Inclined flow; Volume fraction; Granular materials ID INCLINED PLANE; GRAVITY FLOW; MECHANICS; CHUTES; LAW AB Recently, Massoudi (2011a) derived a generalized form of a constitutive relation related to Reiner's fluid model for wet sand, where not only the effects of volume fraction are incorporated in the theological properties of the fluid, but also the shear viscosity depends on the shear rate. In this paper, we use this model to study the fully developed flow of granular-like materials down an inclined plane. The governing equations are made dimensionless and numerical solutions are presented for the various dimensionless parameters. Published by Elsevier Ltd. C1 [Wu, Wei-Tao] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA. [Aubry, Nadine] Northeastern Univ, Dept Mech Engn, Boston, MA 02115 USA. [Massoudi, Mehrdad] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Massoudi, M (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM mehrdad.massoudi@netl.doe.gov NR 31 TC 0 Z9 0 U1 0 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0093-6413 J9 MECH RES COMMUN JI Mech. Res. Commun. PD SEP PY 2013 VL 52 BP 62 EP 68 DI 10.1016/j.mechrescom.2013.06.008 PG 7 WC Mechanics SC Mechanics GA 221OV UT WOS:000324669100010 ER PT J AU Zan, YL Boutchko, R Huang, Q Li, B Chen, KW Gullberg, GT AF Zan, Yunlong Boutchko, Rostyslav Huang, Qiu Li, Biao Chen, Kewei Gullberg, Grant T. TI Fast direct estimation of the blood input function and myocardial time activity curve from dynamic SPECT projections via reduction in spatial and temporal dimensions SO MEDICAL PHYSICS LA English DT Article DE dynamic SPECT; slow-rotation; reduction in spatial and temporal dimensions; B-spline; ML-EM ID EMISSION COMPUTED-TOMOGRAPHY; KINETIC-PARAMETERS; TC-99M-ECD SPECT; XE-133 GAS; PET; QUANTIFICATION; RECONSTRUCTION; TEBOROXIME; DSPECT; SYSTEM AB Purpose: Reconstruction of parametric images from dynamic single photon emission computed tomography (SPECT) data acquired with slow rotating cameras is a challenge because the estimation of the time-activity curves (TACs) may involve fitting data to an inconsistent underdetermined system of equations. This work presents a novel algorithm for the estimation of the blood input function and myocardial TAC with high accuracy and high efficiency directly from these projections. Methods: In the proposed dynamic reconstruction method, the information from the segmentation of functional regions from the static reconstructed image was used as a prior to construct a sparse matrix, through which the spatial distribution of the radioactive tracer was represented. Then the temporal distribution of the radioactive tracer was modeled by nonuniform B-spline basis functions which were determined according to a new selection rule. With reduction in both the spatial and temporal dimensions of the reconstructed image, the blood input function and myocardial TAC were estimated using the 4D maximum likelihood expectation maximization algorithm. The method was validated using data from both digital phantom simulations and an experimental rat study. Results: Compared with the conventional dynamic SPECT reconstruction method without the reduction in spatial dimensions, the proposed method provides more accurate TACs with less computation time in both phantom simulation studies and a rat experimental study. Conclusions: The proposed method is promising in both providing more accurate time-activity curves and reducing the computation time, which makes it practical for small animal studies using clinical systems with slow rotating cameras. (C) 2013 American Association of Physicists in Medicine. C1 [Zan, Yunlong; Huang, Qiu; Chen, Kewei] Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai 200030, Peoples R China. [Zan, Yunlong; Huang, Qiu; Li, Biao] Shanghai Jiao Tong Univ, Sch Med, Rui Jin Hosp, Shanghai 200030, Peoples R China. [Boutchko, Rostyslav; Gullberg, Grant T.] Lawrence Berkeley Natl Lab, Berkeley, CA 94702 USA. [Chen, Kewei] Banner Good Samaritan Med Ctr, Phoenix, AZ 85006 USA. RP Zan, YL (reprint author), Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai 200030, Peoples R China. EM qiuhuang@sjtu.edu.cn; lb10363@rjh.com.cn RI Chen, kewei/P-6304-2015 OI Chen, kewei/0000-0001-8497-3069 FU National Science Foundation of China [81201114, 81271610]; NIH [R01 HL50663, R01 EB07219]; Office of Science, Office of Biological and Environmental Research of the US Department of Energy [DE-AC02-05CH11231] FX This work is funded by the National Science Foundation of China (Nos. 81201114 and 81271610) and by NIH Grant Nos. R01 HL50663 and R01 EB07219 and by the Director, Office of Science, Office of Biological and Environmental Research of the US Department of Energy under contract DE-AC02-05CH11231. NR 33 TC 7 Z9 7 U1 0 U2 10 PU AMER ASSOC PHYSICISTS MEDICINE AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0094-2405 J9 MED PHYS JI Med. Phys. PD SEP PY 2013 VL 40 IS 9 AR 092503 DI 10.1118/1.4816944 PG 10 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 216CV UT WOS:000324259800048 PM 24007179 ER PT J AU Bae, WK Brovelli, S Klimov, VI AF Bae, Wan Ki Brovelli, Sergio Klimov, Victor I. TI Spectroscopic insights into the performance of quantum dot light-emitting diodes SO MRS BULLETIN LA English DT Article ID ORGANIC ELECTROLUMINESCENT DEVICES; CDSE/CDS CORE/SHELL NANOCRYSTALS; CORE-SHELL INTERFACE; HOT-CARRIER TRANSFER; SEMICONDUCTOR NANOCRYSTALS; AUGER RECOMBINATION; ENERGY-TRANSFER; COLLOIDAL NANOCRYSTALS; CHARGE INJECTION; BLINKING AB Lighting consumes almost one-fifth of all electricity generated today. In principle, with more efficient light sources replacing incandescent lamps, this demand can be reduced at least twofold. A dramatic improvement in lighting efficiency is possible by replacing traditional incandescent bulbs with light-emitting diodes (LEDs) in which current is directly converted into photons via the process of electroluminescence. The focus of this article is on the emerging technology of LEDs that use solution-processed semiconductor quantum dots (QDs) as light emitters. QDs are nano-sized semiconductor particles whose emission color can be tuned by simply changing their dimensions. They feature near-unity emission quantum yields and narrow emission bands, which result in excellent color purity. Here, we review spectroscopic studies of QDs that address the problem of nonradiative carrier losses in QD-LEDs and approaches for its mitigation via the appropriate design of QD emitters. An important conclusion of our studies is that the realization of high-performance LEDs might require a new generation of QDs that in addition to being efficient single-exciton emitters would also show high emission efficiency in the multicarrier regime. C1 [Bae, Wan Ki; Klimov, Victor I.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Brovelli, Sergio] Univ Milano Bicocca, Dept Mat Sci, Milan, Italy. RP Bae, WK (reprint author), Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. EM wbae@lanl.gov; sergio.brovelli@unimib.it; klimov@lanl.gov RI Arumugam, Thirumagal/C-3408-2014; OI Brovelli, Sergio/0000-0002-5993-855X; Klimov, Victor/0000-0003-1158-3179 FU Chemical Sciences, Biosciences, and Geosciences Division of Office of Science, Office of Basic Energy Sciences, US Department of Energy FX This work was supported by the Chemical Sciences, Biosciences, and Geosciences Division of Office of Science, Office of Basic Energy Sciences, US Department of Energy. NR 92 TC 27 Z9 27 U1 3 U2 73 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 EI 1938-1425 J9 MRS BULL JI MRS Bull. PD SEP PY 2013 VL 38 IS 9 BP 721 EP 730 DI 10.1557/mrs.2013.182 PG 10 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 217RL UT WOS:000324377400017 ER PT J AU Jochem, WC Sims, K Bright, EA Urban, ML Rose, AN Coleman, PR Bhaduri, BL AF Jochem, Warren C. Sims, Kelly Bright, Edward A. Urban, Marie L. Rose, Amy N. Coleman, Phillip R. Bhaduri, Budhendra L. TI Estimating traveler populations at airport and cruise terminals for population distribution and dynamics SO NATURAL HAZARDS LA English DT Article DE LandScan USA; Population distribution and dynamics; Transitional population; Airport; Cruise port; Simulation AB In recent years, uses of high-resolution population distribution databases are increasing steadily for environmental, socioeconomic, public health, and disaster-related research and operations. With the development of daytime population distribution, temporal resolution of such databases has been improved. However, the lack of incorporation of transitional population, namely business and leisure travelers, leaves a significant population unaccounted for within the critical infrastructure networks, such as at transportation hubs. This paper presents two general methodologies for estimating passenger populations in airport and cruise port terminals at a high temporal resolution which can be incorporated into existing population distribution models. The methodologies are geographically scalable and are based on, and demonstrate how, two different transportation hubs with disparate temporal population dynamics can be modeled utilizing publicly available databases including novel data sources of flight activity from the Internet which are updated in near-real time. The airport population estimation model shows great potential for rapid implementation for a large collection of airports on a national scale, and the results suggest reasonable accuracy in the estimated passenger traffic. By incorporating population dynamics at high temporal resolutions into population distribution models, we hope to improve the estimates of populations exposed to or at risk to disasters, thereby improving emergency planning and response, and leading to more informed policy decisions. C1 [Jochem, Warren C.; Sims, Kelly; Bright, Edward A.; Urban, Marie L.; Rose, Amy N.; Coleman, Phillip R.; Bhaduri, Budhendra L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Bhaduri, BL (reprint author), Oak Ridge Natl Lab, POB 2008,MS 6017, Oak Ridge, TN 37831 USA. EM bhaduribl@ornl.gov OI Sims, Kelly/0000-0002-9349-4542 FU UT-Battelle, LLC [DE-AC05-00OR22725]; US Government FX This manuscript has been authored by employees of UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. Accordingly, the United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript or allows others to do so, for United States Government purposes. The authors would like to acknowledge the financial support for this research from the US Government for the development of LandScan USA model and database. Significant improvement to the manuscript was made possible by critical insights from two anonymous reviewers, and the authors sincerely thank them for their assistance. The assistance of Jessica Moehl with the development of figures and Ashton Brannon with general editing is greatly appreciated. NR 32 TC 2 Z9 2 U1 3 U2 19 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0921-030X EI 1573-0840 J9 NAT HAZARDS JI Nat. Hazards PD SEP PY 2013 VL 68 IS 3 BP 1325 EP 1342 DI 10.1007/s11069-012-0441-9 PG 18 WC Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences; Water Resources SC Geology; Meteorology & Atmospheric Sciences; Water Resources GA 221JI UT WOS:000324653900007 ER PT J AU Bai, Y Zhou, KH Doudna, JA AF Bai, Yun Zhou, Kaihong Doudna, Jennifer A. TI Hepatitis C virus 3 ' UTR regulates viral translation through direct interactions with the host translation machinery SO NUCLEIC ACIDS RESEARCH LA English DT Article ID CAP-INDEPENDENT TRANSLATION; INTERNAL RIBOSOMAL ENTRY; SINGLE-NUCLEOTIDE RESOLUTION; MESSENGER-RNA RECRUITMENT; 3'-UNTRANSLATED REGION; INITIATION-FACTOR; ENHANCES TRANSLATION; UNTRANSLATED REGION; EUKARYOTIC RIBOSOME; IRES AB The 3' untranslated region (3'UTR) of hepatitis C virus (HCV) messenger RNA stimulates viral translation by an undetermined mechanism. We identified a high affinity interaction, conserved among different HCV genotypes, between the HCV 3'UTR and the host ribosome. The 3'UTR interacts with 40S ribosomal subunit proteins residing primarily in a localized region on the 40S solvent-accessible surface near the messenger RNA entry and exit sites. This region partially overlaps with the site where the HCV internal ribosome entry site was found to bind, with the internal ribosome entry site-40S subunit interaction being dominant. Despite its ability to bind to 40S subunits independently, the HCV 3'UTR only stimulates translation in cis, without affecting the first round translation rate. These observations support a model in which the HCV 3'UTR retains ribosome complexes during translation termination to facilitate efficient initiation of subsequent rounds of translation. C1 [Bai, Yun; Doudna, Jennifer A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Zhou, Kaihong; Doudna, Jennifer A.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Doudna, JA (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. EM doudna@berkeley.edu FU National Institutes of Health (NIH); Howard Hughes Medical Institute (HHMI) FX National Institutes of Health (NIH); the Howard Hughes Medical Institute (HHMI). J.A.D. is a HHMI investigator. Funding for open access charge: HHMI. NR 48 TC 21 Z9 21 U1 0 U2 17 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD SEP PY 2013 VL 41 IS 16 BP 7861 EP 7874 DI 10.1093/nar/gkt543 PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 228GG UT WOS:000325173300032 PM 23783572 ER PT J AU Rutherford, K Yuan, P Perry, K Sharp, R Van Duyne, GD AF Rutherford, Karen Yuan, Peng Perry, Kay Sharp, Robert Van Duyne, Gregory D. TI Attachment site recognition and regulation of directionality by the serine integrases SO NUCLEIC ACIDS RESEARCH LA English DT Article ID C-TERMINAL DOMAIN; PHI-C31 INTEGRASE; DNA-BINDING; RECOMBINATION SYSTEM; METHICILLIN-RESISTANCE; CENTRAL DINUCLEOTIDE; ESCHERICHIA-COLI; PHIC31 INTEGRASE; BXB1 INTEGRATION; PHAGE INTEGRASES AB Serine integrases catalyze the integration of bacteriophage DNA into a host genome by site-specific recombination between 'attachment sites' in the phage (attP) and the host (attB). The reaction is highly directional; the reverse excision reaction between the product attL and attR sites does not occur in the absence of a phage-encoded factor, nor does recombination occur between other pairings of attachment sites. A mechanistic understanding of how these enzymes achieve site-selectivity and directionality has been limited by a lack of structural models. Here, we report the structure of the C-terminal domains of a serine integrase bound to an attP DNA half-site. The structure leads directly to models for understanding how the integrase-bound attP and attB sites differ, why these enzymes preferentially form attP x attB synaptic complexes to initiate recombination, and how attL x attR recombination is prevented. In these models, different domain organizations on attP vs. attB half-sites allow attachment-site specific interactions to form between integrase subunits via an unusual protruding coiled-coil motif. These interactions are used to preferentially synapse integrase-bound attP and attB and inhibit synapsis of integrase-bound attL and attR. The results provide a structural framework for understanding, testing and engineering serine integrase function. C1 [Rutherford, Karen; Yuan, Peng; Sharp, Robert; Van Duyne, Gregory D.] Univ Penn, Dept Biochem & Biophys, Perelman Sch Med, Philadelphia, PA 19104 USA. [Perry, Kay] Cornell Univ, NE CAT, Argonne Natl Lab, Argonne, IL 60439 USA. [Perry, Kay] Cornell Univ, Dept Chem & Chem Biol, Argonne Natl Lab, Argonne, IL 60439 USA. RP Van Duyne, GD (reprint author), Univ Penn, Dept Biochem & Biophys, Perelman Sch Med, Philadelphia, PA 19104 USA. EM vanduyne@mail.med.upenn.edu OI Perry, Kay/0000-0002-4046-1704 FU NCRR [2P41RR008630-17]; NIGMS [9 P41 GM103622-17, P41-GM103311] FX The APS NE-CAT beamline is supported by grants from the NCRR [2P41RR008630-17] and NIGMS [9 P41 GM103622-17]; UCSF Chimera is supported by NIGMS [P41-GM103311]. Funding for open access charge: Internal funds (Endowed Chair). NR 57 TC 20 Z9 20 U1 1 U2 14 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD SEP PY 2013 VL 41 IS 17 BP 8341 EP 8356 DI 10.1093/nar/gkt580 PG 16 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 228HF UT WOS:000325175900036 PM 23821671 ER PT J AU Matzen, LE Benjamin, AS AF Matzen, Laura E. Benjamin, Aaron S. TI Older and Wiser: Older Adults' Episodic Word Memory Benefits From Sentence Study Contexts SO PSYCHOLOGY AND AGING LA English DT Article DE aging; false memory; context effects; conjunction errors; semantic errors ID AGE-RELATED DIFFERENCES; SHORT-TERM RECALL; FALSE MEMORIES; RECOLLECTION REJECTION; RECOGNITION MEMORY; CONJUNCTION ERRORS; REMEMBERING WORDS; DRYAD THEORY; YOUNGER; REPETITION AB A hallmark of adaptive cognition is the ability to modulate learning in response to the demands posed by different types of tests and different types of materials. Here we evaluate how older adults process out-of-context words and sentences differently by examining patterns of memory errors. In two experiments, we explored younger and older adults' sensitivity to lures on a recognition test following study of words in these two types of contexts. Among the studied words were compound words such as "blackmail" and "jailbird" that were related to conjunction lures (e. g., "blackbird") and semantic lures (e. g., "criminal"). Participants engaged in a recognition test that included old items, conjunction lures, semantic lures, and unrelated new items. In both experiments, younger and older adults had the same general pattern of memory errors: more incorrect endorsements of semantic than conjunction lures following sentence study and more incorrect endorsements of conjunction than semantic lures following list study. The similar pattern reveals that older and younger adults responded to the constraints of the two different study contexts in similar ways. However, although younger and older adults showed similar levels of memory performance for the list study context, the sentence study context elicited superior memory performance in the older participants. It appears as though memory tasks that take advantage of greater expertise in older adults-in this case, greater experience with sentence processing-can reveal superior memory performance in the elderly. C1 [Matzen, Laura E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Benjamin, Aaron S.] Univ Illinois, Dept Psychol, Urbana, IL 61801 USA. RP Matzen, LE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM lematze@sandia.gov FU NIA NIH HHS [R01 AG026263] NR 75 TC 5 Z9 6 U1 0 U2 12 PU AMER PSYCHOLOGICAL ASSOC PI WASHINGTON PA 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA SN 0882-7974 J9 PSYCHOL AGING JI Psychol. Aging PD SEP PY 2013 VL 28 IS 3 BP 754 EP 767 DI 10.1037/a0032945 PG 14 WC Gerontology; Psychology, Developmental SC Geriatrics & Gerontology; Psychology GA 217FI UT WOS:000324342000016 PM 23834493 ER PT J AU Calderon, F Haddix, M Conant, R Magrini-Bair, K Paul, E AF Calderon, Francisco Haddix, Michelle Conant, Richard Magrini-Bair, Kimberly Paul, Eldor TI Diffuse-Reflectance Fourier-Transform Mid-Infrared Spectroscopy as a Method of Characterizing Changes in Soil Organic Matter SO SOIL SCIENCE SOCIETY OF AMERICA JOURNAL LA English DT Article ID FT-IR SPECTROSCOPY; DRIFT SPECTROSCOPY; FOREST SOILS; CARBON; FRACTIONS; NMR; INCUBATION; DYNAMICS; DECOMPOSITION; ACIDS AB Diffuse-reflectance Fourier-transform mid-infrared spectroscopy (MidIR) can identify the presence of important organic functional groups in soil organic matter (SOM); however, spectral interpretation needs to be validated to correctly assess changes in SOM quality and quantity. We amended soils with known standards, increasing the total C in the sample by 50%, and measured changes in MidIR spectra. Adenine, casein, cellulose, ergosterol, glucosamine, glycine, guanine, indole, methionine, palmitic acid, egg protein, chlorophyllin, tannic acid, xylose, urease, and vanillin standards were used. In addition, corn (Zea mays L.) stalk feedstock and two chars produced at different temperatures were studied. Two soils were used: a Hoytville, OH, soil (2.5% C and 36% clay) and an Akron, CO, soil (1.5% C and 14% clay). The addition of standards with >10% N content resulted in increased amide-like absorbance at 1670, 1588, and 1513 cm(-1). Bands at 2970 to 2800, 2200 to 2000, and 1030 to 1160 cm(-1) were sensitive to added polysaccharide. Protein addition increased absorption at 2970 to 2800 cm(-1) but also increased the 1691 and 1547 cm(-1) amide bands. Vanillin addition resulted in higher absorbance at the 1592, 1515, and 1295 cm(-1) aromatic C=C bands. Biochars produced at 300 degrees C resulted in increased absorbance at carbonyl and aliphatic bands, while addition of 500 degrees C biochar increased aromatic absorbance. Our results showed that MidIR is sensitive to relatively small changes in SOM. If assumptions about the soil mineralogy are met, specific spectral bands can be used to follow changes in SOM chemistry. C1 [Calderon, Francisco] USDA ARS, Cent Great Plains Res Stn, Akron, CO 80520 USA. [Haddix, Michelle; Conant, Richard; Paul, Eldor] Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA. [Magrini-Bair, Kimberly] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Calderon, F (reprint author), USDA ARS, Cent Great Plains Res Stn, 40335 Cty Rd GG, Akron, CO 80520 USA. EM francisco.calderon@ars.usda.gov RI Conant, Richard/B-7586-2013; OI Conant, Richard/0000-0001-7315-2476; Haddix, Michelle/0000-0003-0984-0404 NR 38 TC 19 Z9 19 U1 8 U2 84 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 0361-5995 J9 SOIL SCI SOC AM J JI Soil Sci. Soc. Am. J. PD SEP-OCT PY 2013 VL 77 IS 5 BP 1591 EP 1600 DI 10.2136/sssaj2013.04.0131 PG 10 WC Soil Science SC Agriculture GA 220ZO UT WOS:000324626600013 ER PT J AU Gerke, BF Wechsler, RH Behroozi, PS Cooper, MC Yan, RB Coil, AL AF Gerke, Brian F. Wechsler, Risa H. Behroozi, Peter S. Cooper, Michael C. Yan, Renbin Coil, Alison L. TI IMPROVED MOCK GALAXY CATALOGS FOR THE DEEP2 GALAXY REDSHIFT SURVEY FROM SUBHALO ABUNDANCE AND ENVIRONMENT MATCHING SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE ark matter; galaxies: evolution; galaxies: halos; galaxies: high-redshift; large-scale structure of universe ID HALO OCCUPATION DISTRIBUTION; DIGITAL SKY SURVEY; LUMINOSITY FUNCTION; SATELLITE GALAXIES; THEORETICAL-MODELS; EVOLUTION; MASS; Z-SIMILAR-TO-1; DEPENDENCE; SIMULATIONS AB We develop empirical methods for modeling the galaxy population and populating cosmological N-body simulations with mock galaxies according to the observed properties of galaxies in survey data. We use these techniques to produce a new set of mock catalogs for the DEEP2 Galaxy Redshift Survey based on the output of the high-resolution Bolshoi simulation, as well as two other simulations with different cosmological parameters, all of which we release for public use. The mock-catalog creation technique uses subhalo abundance matching to assign galaxy luminosities to simulated dark-matter halos. It then adds color information to the resulting mock galaxies in a manner that depends on the local galaxy density, in order to reproduce the measured color-environment relation in the data. In the course of constructing the catalogs, we test various models for including scatter in the relation between halo mass and galaxy luminosity, within the abundance-matching framework. We find that there is no constant-scatter model that can simultaneously reproduce both the luminosity function and the autocorrelation function of DEEP2. This result has implications for galaxy-formation theory, and it restricts the range of contexts in which the mock catalogs can be usefully applied. Nevertheless, careful comparisons show that our new mock catalogs accurately reproduce a wide range of the other properties of the DEEP2 catalog, suggesting that they can be used to gain a detailed understanding of various selection effects in DEEP2. C1 [Gerke, Brian F.; Wechsler, Risa H.; Behroozi, Peter S.] SLAC Natl Accelerator Lab, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Wechsler, Risa H.; Behroozi, Peter S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Cooper, Michael C.] Univ Calif Irvine, Ctr Galaxy Evolut, Dept Phys & Astron, Irvine, CA 92697 USA. [Yan, Renbin] NYU, Dept Phys, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Coil, Alison L.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. RP Gerke, BF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Efficiency Stand Grp, 1 Cyclotron Rd,M-S 90R4000, Berkeley, CA 94720 USA. EM bgerke@slac.stanford.edu OI Yan, Renbin/0000-0003-1025-1711 FU U.S. Department of Energy [DE-AC03-76SF00515]; Spitzer space telescope fellowship program FX B.F.G. and R.H.W. were supported by the U.S. Department of Energy under contract number DE-AC03-76SF00515. M.C.C. acknowledges the support of the Spitzer space telescope fellowship program. We thank Marc Davis, Jeff Newman, Carlos Frenk, and especially Michael Busha for fruitful conversations. We thank Anatoly Klypin and Joel Primack for providing access to the Bolshoi simulation, which was run on the Pleiades machine at NASA Ames. We thank Jeremy Tinker for providing us with his code to compute wp(rp) in a simulation box. NR 55 TC 10 Z9 10 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD SEP PY 2013 VL 208 IS 1 AR UNSP 1 DI 10.1088/0067-0049/208/1/1 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 214XS UT WOS:000324172700001 ER PT J AU Newman, JA Cooper, MC Davis, M Faber, SM Coil, AL Guhathakurta, P Koo, DC Phillips, AC Conroy, C Dutton, AA Finkbeiner, DP Gerke, BF Rosario, DJ Weiner, BJ Willmer, CNA Yan, RB Harker, JJ Kassin, SA Konidaris, NP Lai, K Madgwick, DS Noeske, KG Wirth, GD Connolly, AJ Kaiser, N Kirby, EN Lemaux, BC Lin, L Lotz, JM Luppino, GA Marinoni, C Matthews, DJ Metevier, A Schiavon, RP AF Newman, Jeffrey A. Cooper, Michael C. Davis, Marc Faber, S. M. Coil, Alison L. Guhathakurta, Puragra Koo, David C. Phillips, Andrew C. Conroy, Charlie Dutton, Aaron A. Finkbeiner, Douglas P. Gerke, Brian F. Rosario, David J. Weiner, Benjamin J. Willmer, C. N. A. Yan, Renbin Harker, Justin J. Kassin, Susan A. Konidaris, N. P. Lai, Kamson Madgwick, Darren S. Noeske, K. G. Wirth, Gregory D. Connolly, A. J. Kaiser, N. Kirby, Evan N. Lemaux, Brian C. Lin, Lihwai Lotz, Jennifer M. Luppino, G. A. Marinoni, C. Matthews, Daniel J. Metevier, Anne Schiavon, Ricardo P. TI THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE cosmology: observations; galaxies: distances and redshifts; galaxies: evolution; galaxies: fundamental parameters; galaxies: high-redshift; galaxies: statistics; large-scale structure of universe; methods: data analysis; surveys ID SIMILAR-TO 1; STAR-FORMING GALAXIES; DIGITAL SKY SURVEY; ACTIVE GALACTIC NUCLEI; GROTH STRIP SURVEY; EXTRAGALACTIC LEGACY SURVEY; SPITZER-SPACE-TELESCOPE; OPTICAL-ROTATION CURVES; COLOR-DENSITY RELATION; TULLY-FISHER RELATION AB We describe the design and data analysis of the DEEP2 Galaxy Redshift Survey, the densest and largest high-precision redshift survey of galaxies at z similar to 1 completed to date. The survey was designed to conduct a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude M-B = -20 at z similar to 1 via similar to 90 nights of observation on the Keck telescope. The survey covers an area of 2.8 deg(2) divided into four separate fields observed to a limiting apparent magnitude of R-AB = 24.1. Objects with z less than or similar to 0.7 are readily identifiable using BRI photometry and rejected in three of the four DEEP2 fields, allowing galaxies with z > 0.7 to be targeted similar to 2.5 times more efficiently than in a purely magnitude-limited sample. Approximately 60% of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets that fail to yield secure redshifts are blue objects that lie beyond z similar to 1.45, where the [O II] 3727 angstrom doublet lies in the infrared. The DEIMOS 1200 line mm(-1) grating used for the survey delivers high spectral resolution (R similar to 6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the DEEP2 DEIMOS data reduction pipelines. Extensive details are provided on object selection, mask design, biases in target selection and redshift measurements, the spec2d two-dimensional data-reduction pipeline, the spec1d automated redshift pipeline, and the zspec visual redshift verification process, along with examples of instrumental signatures or other artifacts that in some cases remain after data reduction. Redshift errors and catastrophic failure rates are assessed through more than 2000 objects with duplicate observations. Sky subtraction is essentially photon-limited even under bright OH sky lines; we describe the strategies that permitted this, based on high image stability, accurate wavelength solutions, and powerful B-spline modeling methods. We also investigate the impact of targets that appear to be single objects in ground-based targeting imaging but prove to be composite in Hubble Space Telescope data; they constitute several percent of targets at z similar to 1, approaching similar to 5%-10% at z > 1.5. Summary data are given that demonstrate the superiority of DEEP2 over other deep high-precision redshift surveys at z similar to 1 in terms of redshift accuracy, sample number density, and amount of spectral information. We also provide an overview of the scientific highlights of the DEEP2 survey thus far. C1 [Newman, Jeffrey A.; Matthews, Daniel J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Cooper, Michael C.] Univ Calif Irvine, Dept Phys & Astron, Ctr Galaxy Evolut, Irvine, CA 92697 USA. [Davis, Marc; Madgwick, Darren S.] Univ Calif Berkeley, Dept Phys & Astron, Berkeley, CA 94720 USA. [Faber, S. M.; Guhathakurta, Puragra; Koo, David C.; Phillips, Andrew C.; Conroy, Charlie; Harker, Justin J.; Lai, Kamson] Univ Calif Santa Cruz, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Coil, Alison L.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Conroy, Charlie; Finkbeiner, Douglas P.] Harvard Univ, Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Dutton, Aaron A.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Gerke, Brian F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Rosario, David J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Weiner, Benjamin J.; Willmer, C. N. A.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Yan, Renbin] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. [Kassin, Susan A.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Kassin, Susan A.; Noeske, K. G.; Lotz, Jennifer M.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Konidaris, N. P.; Kirby, Evan N.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Wirth, Gregory D.] Keck Observ, Kamuela, HI 96743 USA. [Connolly, A. J.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Kaiser, N.; Luppino, G. A.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Lemaux, Brian C.] Lab Astrophys Marseille, Marseilles, France. [Lin, Lihwai] Acad Sinica, Inst Astron & Astrophys, Taipei 106, Taiwan. [Marinoni, C.] Ctr Phys Theor Marseilles, Marseilles, France. [Metevier, Anne] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Schiavon, Ricardo P.] Liverpool John Moores Univ, Astrophys Res Inst, Wirral H41 1LD, Merseyside, England. RP Newman, JA (reprint author), Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. EM janewman@pitt.edu; m.cooper@uci.edu; mdavis@berkeley.edu; faber@ucolick.org; acoil@ucsd.edu; raja@ucolick.org; koo@ucolick.org; phillips@ucolick.org; cconroy@cfa.harvard.edu; dutton@mpia.de; dfinkbeiner@cfa.harvard.edu; bfgerke@lbl.gov; rosario@mpe.mpg.de; bjw@as.arizona.edu; cnaw@as.arizona.edu; yanrenbin@gmail.com; jharker@ucolick.org; susan.kassin@nasa.gov; npk@astro.caltech.edu; klai@ucolick.org; noeske@stsci.edu; wirth@keck.hawaii.edu; ajc@astro.washington.edu; kaiser@ifa.hawaii.edu; enk@astro.caltech.edu; brian.lemaux@oamp.fr; lihwailin@asiaa.sinica.edu.tw; lotz@stsci.edu; ger@ifa.hawaii.edu; marinoni@cpt.univ-mrs.fr; djm70@pitt.edu; ajmetevier@gmail.com; R.P.Schiavon@ljmu.ac.uk OI Weiner, Benjamin/0000-0001-6065-7483; Kirby, Evan/0000-0001-6196-5162 FU NSF Center for Particle Astrophysics; National Science Foundation [AST 95-29098, 00-711098, 05-07483, 08-08133, AST 00-71048, 05-07428, 08-07630, 08-06732, ARI 92-14621]; NASA [HST-AR-01947]; NASA through Hubble Fellowship [51256.01, 51269.01, NAS 5-26555]; Space Telescope Science Institute; CARA; Hubble Fellowships; Hubble Fellowship; Spitzer Fellowship; W. M. Keck Foundation; University of California; NASA; California Association for Research in Astronomy (Keck Observatory); University of California/Lick Observatory FX The DEEP2 survey was initiated under the auspices of the NSF Center for Particle Astrophysics. Major grant support was provided by National Science Foundation grants AST 95-29098, 00-711098, 05-07483, and 08-08133 to UCSC, AST 00-71048, 05-07428, and 08-07630 to UCB, and 08-06732 to the University of Pittsburgh. Computing hardware used to analyze DEEP2 data was provided by Sun Microsystems. The HST ACS imaging mosaic in EGS was constructed by Anton Koekemoer and Jennifer Lotz and was funded by grant HST-AR-01947 from NASA. NASA imaging of the original Groth Strip was planned and executed by Ed Groth and Jason Rhodes with support from NAS5-1661 and NAG5-6279 to the WFPC1 IDT. Support for this work was provided by NASA through Hubble Fellowship grants 51256.01 and 51269.01 awarded to E.N.K. and M.C.C., respectively, by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. Sandra Faber thank CARA for a generous research grant and the Miller Institute at UC Berkeley for a Visiting Miller Professorship, during which much of this paper was written. Jeffrey Newman and Alison Coil acknowledge support from Hubble Fellowships during their DEEP2 work, and Michael Cooper acknowledges support from both Hubble and Spitzer Fellowships.; Thanks are due to the many institutions and individuals who have made the DEEP2 survey possible. First thanks go to the W. M. Keck Foundation, the University of California, and NASA for providing funds to construct and operate the Keck telescopes. Second, we wish to thank the technical teams in the UCO/Lick Shops and at Keck Observatory for their role in building and commissioning the DEIMOS spectrograph and for their superb support during many observing runs. Funds for the spectrograph were provided by instrumentation grant ARI 92-14621 from the National Science Foundation and instrument funds from the California Association for Research in Astronomy (Keck Observatory) and from the University of California/Lick Observatory. NR 156 TC 181 Z9 181 U1 2 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD SEP PY 2013 VL 208 IS 1 AR UNSP 5 DI 10.1088/0067-0049/208/1/5 PG 57 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 214XS UT WOS:000324172700005 ER PT J AU Eranki, PL Manowitz, DH Bals, BD Izaurralde, RC Kim, S Dale, BE AF Eranki, Pragnya L. Manowitz, David H. Bals, Bryan D. Izaurralde, R. Cesar Kim, Seungdo Dale, Bruce E. TI The watershed-scale optimized and rearranged landscape design (WORLD) model and local biomass processing depots for sustainable biofuel production: Integrated life cycle assessments SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Article DE Bioethanol; sustainability; environmental assessments; cellulosic feedstocks; LCA; biofuel supply-chain model ID UNITED-STATES; SWITCHGRASS; ETHANOL; ENERGY; COPRODUCTION; GRASSLAND; RUNOFF; COVER AB An array of feedstock is being evaluated as potential raw material for cellulosic biofuel production. Thorough assessments are required in regional landscape settings before these feedstocks can be cultivated and sustainable management practices can be implemented. On the processing side, a potential solution to the logistical challenges of large biorefineries is provided by a network of distributed processing facilities called local biomass processing depots. A large-scale cellulosic ethanol industry is likely to emerge soon in the United States. We have the opportunity to influence the sustainability of this emerging industry. The watershed-scale optimized and rearranged landscape design (WORLD) model estimates land allocations for different cellulosic feedstocks at biorefinery scale without displacing current animal nutrition requirements. This model also incorporates a network of the aforementioned depots. An integrated life cycle assessment is then conducted over the unified system of optimized feedstock production, processing, and associated transport operations to evaluate net energy yields (NEYs) and environmental impacts. A sustainability assessment was conducted in a nine-county region of Michigan for the categories of cellulosic ethanol production, soil characteristics, water quality, and greenhouse gas (GHG) emissions. Making significant changes such as introducing perennial grasses, riparian buffers and double crops in current landscapes provides the largest absolute NEYs of about 53 GJ/ha while also attaining 120% gains in soil organic carbon, 103% lower nitrogen leaching, and 68% reductions in net GHG emissions (compared to a baseline of current conventional landscapes). Interestingly, minimizing certain environmental impacts also provides greater NEYs. (c) 2013 Society of Chemical Industry and John Wiley & Sons, Ltd C1 [Eranki, Pragnya L.; Bals, Bryan D.; Dale, Bruce E.] Michigan State Univ, Lansing, MI 48910 USA. [Manowitz, David H.; Izaurralde, R. Cesar] Pacific NW Natl Lab, College Pk, MD USA. [Manowitz, David H.] Univ Maryland, College Pk, MD 20742 USA. [Izaurralde, R. Cesar] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. [Kim, Seungdo] Michigan State Univ, Dept Chem Engn & Mat Sci, Lansing, MI 48910 USA. RP Eranki, PL (reprint author), Michigan State Univ, Biomass Convers Res Lab, Dept Chem Engn & Mat Sci, 3815 Technol Blvd Suite 1045, Lansing, MI 48910 USA. EM erankipr@msu.edu FU DOE Great Lakes Bioenergy Research Center; US Department of Energy, Office of Science, Office of Biological and Environmental Research [DEFC02-07ER64494] FX This work was funded by DOE Great Lakes Bioenergy Research Center (www.greatlakesbioenergy.org) supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through Cooperative Agreement DEFC02-07ER64494. NR 35 TC 10 Z9 11 U1 1 U2 60 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1932-104X J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD SEP PY 2013 VL 7 IS 5 BP 537 EP 550 DI 10.1002/bbb.1426 PG 14 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 211JZ UT WOS:000323904400016 ER PT J AU Laskar, DD Yang, B Wang, HM Lee, J AF Laskar, Dhrubojyoti D. Yang, Bin Wang, Huamin Lee, John TI Pathways for biomass-derived lignin to hydrocarbon fuels SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Review DE lignin; biomass; biomass pre-treatment; catalytic processing; depolymerization; hydrocarbon; hydrodeoxygenation; hydrogenation ID METHYL-SUBSTITUTED PHENOLS; DILUTE-ACID PRETREATMENT; NOBLE-METAL CATALYSTS; FAST PYROLYSIS OIL; BIO-OIL; CARBOHYDRATE COMPLEXES; KRAFT LIGNIN; REACTION NETWORK; MODEL-COMPOUND; WOOD LIGNIN AB Production of hydrocarbon fuel from biomass-derived lignin sources with current vision of biorefinery infrastructure would significantly improve the total carbon use in biomass and make biomass conversion more economically viable. Thus, developing specialty and commodity products from biomass derived-lignin has been an important industrial and scientific endeavor for several decades. However, deconstruction of lignin's complex polymeric framework into low molecular weight reactive moieties amenable for deoxygenation and subsequent processing into hydrocarbons has proven challenging. This review offers a comprehensive outlook on the existing body of work that has been devoted to catalytic processing of lignin derivatives into hydrocarbon fuels, focusing on: (i) the intrinsic complexity and characteristic structural features of biomass-derived lignin; (ii) existing processing technologies for the isolation and depolymerization of bulk lignin (including detailed mechanistic considerations); (iii) approaches aimed at significantly improving the yields of depolymerized lignin species amenable to catalytic upgrading; and (iv) catalytic upgrading, using aqueous phase processes for transforming depolymerized lignin to hydrocarbon derivatives. Technical barriers and challenges to the valorization of lignin are highlighted throughout. The central goal of this review is to present an array of strategies that have been reported to obtain lignin, deconstruct it to reactive intermediates, and reduce its substantial oxygen content to yield hydrocarbon liquids. In this regard, reaction networks with reference to studies of lignin model compounds are exclusively surveyed. Special attention is paid to catalytic hydrodeoxygenation, hydrogenolyis, and hydrogenation. Finally, this review addresses important features of lignin that are vital to economic success of hydrocarbon production. Published in 2013 by John Wiley & Sons, Ltd C1 [Laskar, Dhrubojyoti D.; Yang, Bin] Washington State Univ, Richland, WA 99354 USA. [Wang, Huamin; Lee, John] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Yang, B (reprint author), Washington State Univ, Dept Biol Syst Engn, Richland, WA 99354 USA. EM binyang@tricity.wsu.edu OI yang, bin/0000-0003-1686-8800 FU Department of Biological Systems Engineering; Bioproducts, Sciences & Engineering Laboratory at Washington State University; DARPA [N66001-11-1-4141/P00001]; National Science Foundation [1258504]; National Renewable Energy Laboratory [XGB-2-22204-01] FX We are grateful for the support from the Department of Biological Systems Engineering and the Bioproducts, Sciences & Engineering Laboratory at Washington State University. The material in this work was also supported by DARPA Young Faculty Award # N66001-11-1-4141/P00001; National Science Foundation Award # 1258504, and the National Renewable Energy Laboratory # XGB-2-22204-01. We also appreciate the assistance of Mr Daniel Lehrburger in writing this paper. NR 180 TC 42 Z9 43 U1 13 U2 341 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1932-104X EI 1932-1031 J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD SEP PY 2013 VL 7 IS 5 BP 602 EP 626 DI 10.1002/bbb.1422 PG 25 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 211JZ UT WOS:000323904400020 ER PT J AU Duff-Brown, B Hecker, SS AF Duff-Brown, Beth Hecker, Siegfried S. TI Siegfried S. Hecker: The story of Plutonium Mountain SO BULLETIN OF THE ATOMIC SCIENTISTS LA English DT Editorial Material DE fissile material; highly enriched uranium; Kazakhstan; Los Alamos; nuclear security; nuclear test; Nunn-Lugar Cooperative Threat Reduction Program; plutonium; Russia; Semipalatinsk; United States AB In this interview, former Los Alamos National Laboratory director Siegfried S. Hecker details one of the world's great nonproliferation storiesthe effort to secure the Semipalatinsk Test Site in Kazakhstan. He recounts his visit to the Russian nuclear weapons labs in early 1992, after the collapse of the Soviet Union, when he found underfunded scientists who were indifferent to the cleanup of the testing site in the now-independent Kazakhstan and doubtful that the site would pose a security threat. Hecker talks about how he was able to organize engineers and nuclear scientists in the United States, Russia, and Kazakhstan to come together in a 15-year, $150-million effort to secure many of the tunnels and test areas at the sprawling Semipalatinsk Test Site. C1 [Hecker, Siegfried S.] Los Alamos Natl Lab, Los Alamos, NM USA. NR 0 TC 0 Z9 0 U1 1 U2 10 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0096-3402 J9 B ATOM SCI JI Bull. Atom. Scient. PD SEP PY 2013 VL 69 IS 5 BP 1 EP 7 DI 10.1177/0096340213504891 PG 7 WC International Relations; Social Issues SC International Relations; Social Issues GA 209FL UT WOS:000323739900001 ER PT J AU Bambha, RP Dansson, MA Schrader, PE Michelsen, HA AF Bambha, Ray P. Dansson, Mark A. Schrader, Paul E. Michelsen, Hope A. TI Effects of volatile coatings and coating removal mechanisms on the morphology of graphitic soot SO CARBON LA English DT Article ID LASER-INDUCED INCANDESCENCE; OPTICAL-PROPERTIES; LIGHT-SCATTERING; MOBILITY RELATIONSHIP; ELECTRON-MICROSCOPE; PARTICLE MASS; SULFURIC-ACID; CARBON; COMBUSTION; AEROSOLS AB We have measured morphological changes of combustion-generated mature soot with various quantities of hydrocarbon coating and different coating-removal mechanisms. We made these measurements on soot extracted from a burner and then (1) coated with oleic acid, (2) coated with oleic acid and then denuded using a thermodenuder, (3) coated with oleic acid and then heated with a laser, and (4) coated with oleic acid, denuded with a thermodenuder, and then laser heated. We compared these results to results for untreated soot from the burner. The soot samples were size selected using a differential mobility analyzer prior to coating. Uncoated, coated, and denuded particles were characterized by electric mobility size, particle and coating mass, and particle morphology. Our results show that the particles are restructured (become compact) when coated. Particles sent through the thermodenuder are irreversibly restructured. Laser desorption of coatings with thicknesses >= 20% by mass, however, returns the soot particles to a less compact morphology with some fragmentation as the coating rapidly vaporizes. A majority of laser-heated heavily coated particles stay associated with unvaporized oleic acid droplets despite some fragment ejection from the droplet. Thermally denuded particles neither return to a less compact morphology nor fragment when laser heated. (C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved. C1 [Bambha, Ray P.; Dansson, Mark A.; Schrader, Paul E.; Michelsen, Hope A.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Michelsen, HA (reprint author), Sandia Natl Labs, Combust Res Facil, POB 969,MS 9055, Livermore, CA 94551 USA. EM hamiche@sandia.gov FU Sandia Laboratory Directed Research and Development program; Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the US Department of Energy; National Nuclear Security Administration [DE-AC04-94-AL85000] FX We thank Daniel Strong for the rendition of the experimental setup shown in Fig. 1. We are very grateful to Chris Sorensen for his sage advice on fractal analysis. We also appreciate Alexei Khalizov's insightful comments about soot restructuring and Jeff Headrick's assistance with the TEM image analysis. This work was funded by the Sandia Laboratory Directed Research and Development program. The TEM analysis, the thermodenuder design, construction, and testing, and the CPMA were funded by the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the US Department of Energy. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under contract DE-AC04-94-AL85000. NR 50 TC 6 Z9 6 U1 5 U2 35 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 EI 1873-3891 J9 CARBON JI Carbon PD SEP PY 2013 VL 61 BP 80 EP 96 DI 10.1016/j.carbon.2013.04.070 PG 17 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 188QN UT WOS:000322208700009 ER PT J AU Wang, Q Yang, XQ Qu, DY AF Wang, Qiang Yang, Xiao-Qing Qu, Deyang TI In situ ESR spectro-electrochemical investigation of the superoxide anion radical during the electrochemical O-2 reduction reaction in aprotic electrolyte SO CARBON LA English DT Article ID SPIN-RESONANCE; DIMETHYL-SULFOXIDE; MOLECULAR-OXYGEN; CARBON-BLACKS; GENERATION; ELECTROREDUCTION; ACETONITRILE; ION; DIOXYGEN AB For the first time, electrochemically generated superoxide ions on a porous carbon electrode are investigated by means of in situ electrochemical ESR technique at ambient conditions. Superoxide ions (O-2(center dot-)) are detected as the product of the electrochemical O-2 reduction reaction. The redox couple (O-2/O-2(center dot-)) is reversible in DMSO electrolyte. The superoxide ions are believed to be absorbed and de-mobilized on the carbon surface. Overlapping a symmetric carbon ESR signal, the anisotropic signal of the superoxide is observed. The g-factor of the carbon ESR spectra is found to be 2.0025, which is almost identical to that of a free electron; Anisotropic g-factors for the O-2(center dot-) are g(perpendicular to) = 2.0031, g(parallel to) = 2.0750. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Wang, Qiang; Qu, Deyang] Univ Massachusetts, Dept Chem, Boston, MA 02125 USA. [Yang, Xiao-Qing] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Qu, DY (reprint author), Univ Massachusetts, Dept Chem, 100 Morrissey Blvd, Boston, MA 02125 USA. EM deyang.qu@umb.edu FU Office of Vehicle Technologies of the U.S. Department of Energy [DEAC02-98CH10886] FX The authors are indebted to the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy for financial support under Contract Number DEAC02-98CH10886. NR 24 TC 9 Z9 9 U1 2 U2 34 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD SEP PY 2013 VL 61 BP 336 EP 341 DI 10.1016/j.carbon.2013.05.013 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 188QN UT WOS:000322208700037 ER PT J AU Johns, TR Gaudet, JR Peterson, EJ Miller, JT Stach, EA Kim, CH Balogh, MP Datye, AK AF Johns, Tyne R. Gaudet, Jason R. Peterson, Eric J. Miller, Jeffrey T. Stach, Eric A. Kim, Chang H. Balogh, Michael P. Datye, Abhaya K. TI Microstructure of Bimetallic PtPd Catalysts under Oxidizing Conditions SO CHEMCATCHEM LA English DT Article DE EXAFS spectroscopy; bimetallic catalysts; palladium; platinum; structure elucidation ID DIESEL OXIDATION CATALYSTS; NO OXIDATION; ELECTRON-MICROSCOPY; ETHYLENE OXIDATION; PARTICLE-SIZE; PD; METHANE; COMBUSTION; STABILITY; DEACTIVATION AB Diesel oxidation catalysts (DOCs), which decrease the amount of harmful carbon monoxide (CO), nitrogen oxide (NO), and hydrocarbon (HC) emissions in engine exhaust, typically utilize Pt and Pd in the active phase. There is universal agreement that the addition of Pd improves both the catalytic performance and the durability of Pt catalysts. However, the mechanisms by which Pd improves the performance of Pt are less clear. Because these catalysts operate under oxidizing conditions, it is important to understand these catalysts in their working state. Herein, we report the microstructure of PtPd catalysts that are aged in air at 750 degrees C. After 10h of aging, EXAFS and XANES analysis show that the Pt is fully reduced but that almost 30% of the Pd species are present as an oxide. HRTEM images show no evidence of surface oxides on the metallic PtPd particles. Instead, the PdO is present as a separate phase that is dispersed over the alumina support. Within the metallic particles, Pt and Pd are uniformly distributed and there is no evidence of core-shell structures. Therefore, the improved catalytic performance is likely associated with the co-existence of metallic Pt and Pd on the catalyst surface. C1 [Johns, Tyne R.; Gaudet, Jason R.; Peterson, Eric J.; Datye, Abhaya K.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [Miller, Jeffrey T.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Kim, Chang H.; Balogh, Michael P.] Gen Motors Global R&D, Chem & Mat Syst Lab, Warren, MI 48090 USA. RP Datye, AK (reprint author), Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. EM datye@unm.edu RI Stach, Eric/D-8545-2011; Kim, Chang/E-7752-2010; ID, MRCAT/G-7586-2011; OI Stach, Eric/0000-0002-3366-2153; Datye, Abhaya/0000-0002-7126-8659 FU NSF [GOALI CBET-1067803, IGERT DGE-0504276, PIRE OISE-0730277, CBET 0960256]; Department of Energy; MRCAT; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Institute for Atom-Efficient Chemical Transformations (IACT), an Energy Frontier Research Center; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX We acknowledge financial support from the NSF through grants GOALI CBET-1067803, IGERT DGE-0504276, and PIRE OISE-0730277. Part of this work was performed at beamline 10-ID-B (MRCAT) of the Advanced Photon Source at the Argonne National Laboratory. MRCAT operations were supported by the Department of Energy and the MRCAT member institutions. The use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. J.T.M. is supported as part of the Institute for Atom-Efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Part of this work was performed on a JEOL JEM 2100F AC at General Motors Global R&D, and some work was performed on an FEI Titan 80-300 environmental transmission electron microscope (E-TEM) at the Center for Functional Nanomaterials at Brookhaven National Laboratory, supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract No. DE-AC02-98CH10886. We also acknowledge support from the NSF for the acquisition of the XRD through a Major Research Instrumentation grant (CBET 0960256). We thank Hien Pham for her assistance in obtaining the SEM images. NR 31 TC 15 Z9 15 U1 9 U2 100 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1867-3880 J9 CHEMCATCHEM JI ChemCatChem PD SEP PY 2013 VL 5 IS 9 SI SI BP 2636 EP 2645 DI 10.1002/cctc.201300181 PG 10 WC Chemistry, Physical SC Chemistry GA 206IV UT WOS:000323514200015 ER PT J AU Browning, ND Aydin, C Lu, J Kulkarni, A Okamoto, NL Ortalan, V Reed, BW Uzun, A Gates, BC AF Browning, Nigel D. Aydin, Ceren Lu, Jing Kulkarni, Apoorva Okamoto, Norihiko L. Ortalan, Volkan Reed, Bryan W. Uzun, Alper Gates, Bruce C. TI Quantitative Z-Contrast Imaging of Supported Metal Complexes and ClustersA Gateway to Understanding Catalysis on the Atomic Scale SO CHEMCATCHEM LA English DT Article DE cluster compounds; electron microscopy; EXAFS spectroscopy; metal-support interactions; structure elucidation; supported catalysts ID TRANSMISSION ELECTRON-MICROSCOPY; DARK-FIELD IMAGES; CO OXIDATION; MULTISLICE METHOD; IRIDIUM CLUSTERS; ZEOLITE NAY; RESOLUTION; CRYSTALS; STEM; NANOPARTICLES AB Z-contrast imaging in an aberration-corrected scanning transmission electron microscope can be used to observe and quantify the sizes, shapes, and compositions of the metal frames in supported mono-, bi-, and multimetallic metal clusters and can even detect the metal atoms in single-metal-atom complexes, as well as providing direct structural information characterizing the metal-support interface. Herein, we assess the major experimental challenges associated with obtaining atomic resolution Z-contrast images of the materials that are highly beam-sensitive, that is, the clusters readily migrate and sinter on support surfaces, and the support itself can drastically change in structure if the experiment is not properly controlled. Calibrated and quantified Z-contrast images are used in conjunction with exsitu analytical measurements and larger-scale characterization methods such as extended X-ray absorption fine structure spectroscopy to generate an atomic-scale understanding of supported catalysts and their function. Examples of the application of these methods include the characterization of a wide range of sizes and compositions of supported clusters, primarily those incorporating Ir, Os, and Au, on highly crystalline supports (zeolites and MgO). C1 [Browning, Nigel D.; Aydin, Ceren; Lu, Jing; Kulkarni, Apoorva; Okamoto, Norihiko L.; Ortalan, Volkan; Uzun, Alper; Gates, Bruce C.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95618 USA. [Browning, Nigel D.] Univ Calif Davis, Dept Mol & Cellular Biol, Davis, CA 95618 USA. [Reed, Bryan W.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Browning, ND (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, 902 Battelle Blvd, Richland, WA 99352 USA. EM nigel.browning@pnnl.gov RI Okamoto, Norihiko/A-7345-2010; OI Browning, Nigel/0000-0003-0491-251X; Okamoto, Norihiko/0000-0003-0199-7271; Uzun, Alper/0000-0001-7024-2900 FU US Department of Energy (DOE) [DE-FG02-03ER46057, DE-FG02-04ER15513, DE-SC0005822]; University of California Lab Fee Program; Oak Ridge National Laboratory SHaRE User Facility; Division of Scientific User Facilities, DOE Office of Science, Basic Energy Sciences FX The work presented herein was supported by the US Department of Energy (DOE, Grants DE-FG02-03ER46057, DE-FG02-04ER15513 (C.A) and DE-SC0005822 (J.L.)) and the University of California Lab Fee Program. We acknowledge time and the support of the Oak Ridge National Laboratory SHaRE User Facility, which is supported by the Division of Scientific User Facilities, DOE Office of Science, Basic Energy Sciences. NR 60 TC 2 Z9 2 U1 5 U2 70 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1867-3880 J9 CHEMCATCHEM JI ChemCatChem PD SEP PY 2013 VL 5 IS 9 SI SI BP 2673 EP 2683 DI 10.1002/cctc.201200872 PG 11 WC Chemistry, Physical SC Chemistry GA 206IV UT WOS:000323514200020 ER PT J AU Johnson, GE Priest, T Laskin, J AF Johnson, Grant E. Priest, Thomas Laskin, Julia TI Synthesis and Characterization of Gold Clusters Ligated with 1,3-Bis(dicyclohexylphosphino)propane SO CHEMPLUSCHEM LA English DT Article DE cluster compounds; gold; mass spectrometry; phosphine ligands; substituent effects ID SIMPLE METAL-CLUSTERS; NANOCLUSTER FORMATION; NANOPARTICLES; MONODISPERSE; UNDECAGOLD; REACTIVITY; COMPLEXES; PHYSICS; CO AB In this multidisciplinary study the chemical reduction synthesis of novel gold clusters in solution was combined with high-resolution analytical mass spectrometry (MS) to gain insight into the composition of the gold clusters and how their size, ionic charge state, and ligand substitution influences their gas-phase fragmentation pathways. Ultrasmall cationic gold clusters ligated with 1,3-bis(dicyclohexylphosphino)propane (dcpp) were synthesized for the first time and introduced into the gas phase using electrospray ionization (ESI). Mass-selected cluster ions were fragmented by employing collision-induced dissociation (CID) and the product ions were analyzed using MS. The solutions were found to contain the multiply charged cationic gold clusters Au9L43+, Au13L53+, Au6L32+, Au8L32+, and Au10L42+ (L=dcpp). The gas-phase fragmentation pathways of these cluster ions were examined systematically by employing CID combined with MS. In addition, CID experiments were performed on related gold clusters of the same size and ionic charge state but capped with 1,3-bis(diphenylphosphino)propane (dppp) ligands containing phenyl functional groups at the two phosphine centers instead of cyclohexane rings. It is shown that this relatively small change in the molecular substitution of the two phosphine centers in diphosphine ligands (C6H11 versus C6H5) exerts a pronounced influence on the size of the species that are preferentially formed in solution during reduction synthesis as well as the gas-phase fragmentation channels of otherwise identical gold cluster ions. The mass spectrometry results indicate that in addition to the length of the alkyl chain between the two phosphine centers, the substituents at the phosphine centers also play a crucial role in determining the composition, size, and stability of diphosphine-ligated gold clusters synthesized in solution. C1 [Johnson, Grant E.; Priest, Thomas; Laskin, Julia] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Johnson, GE (reprint author), Pacific NW Natl Lab, Div Phys Sci, POB 999,MSIN K8-88, Richland, WA 99352 USA. EM Grant.Johnson@pnnl.gov RI Laskin, Julia/H-9974-2012; OI Laskin, Julia/0000-0002-4533-9644; Johnson, Grant/0000-0003-3352-4444 FU Linus Pauling Postdoctoral Fellowship Program; Laboratory Directed Research and Development Program at the Pacific Northwest National Laboratory (PNNL); U.S. Department of Energy (DOE), Office of Basic Energy Sciences, and Division of Chemical Sciences, Geosciences, and Biosciences; DOE's Science Undergraduate Laboratory Internship (SULI) at PNNL; U.S. DOE of Biological and Environmental Research and located at PNNL FX G.E.J. acknowledges the support of the Linus Pauling Postdoctoral Fellowship Program and the Laboratory Directed Research and Development Program at the Pacific Northwest National Laboratory (PNNL). J.L. and T.P. acknowledge support from the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, and Division of Chemical Sciences, Geosciences, and Biosciences. T.P. was supported in part by the DOE's Science Undergraduate Laboratory Internship (SULI) at PNNL. The research was performed using EMSL, a national scientific user facility sponsored by the U.S. DOE of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the U.S. DOE. NR 43 TC 5 Z9 5 U1 3 U2 40 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 2192-6506 J9 CHEMPLUSCHEM JI ChemPlusChem PD SEP PY 2013 VL 78 IS 9 SI SI BP 1033 EP 1039 DI 10.1002/cplu.201300134 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 213GL UT WOS:000324043400022 ER PT J AU Williams, DN Bremer, T Doutriaux, C Patchett, J Williams, S Shipman, G Miller, R Pugmire, DR Smith, B Steed, C Bethel, EW Childs, H Krishnan, H Prabhat Wehner, M Silva, CT Santos, E Hoop, D Ellqvist, T Poco, J Geveci, B Chaudhary, A Bauer, A Pletzer, A Kindig, D Potter, GL Maxwell, TP AF Williams, Dean N. Bremer, Timo Doutriaux, Charles Patchett, John Williams, Sean Shipman, Galen Miller, Ross Pugmire, David R. Smith, Brian Steed, Chad Bethel, E. Wes Childs, Hank Krishnan, Harinarayan Prabhat Wehner, Michael Silva, Claudio T. Santos, Emanuele Hoop, David Ellqvist, Tommy Poco, Jorge Geveci, Berk Chaudhary, Aashish Bauer, Andy Pletzer, Alexander Kindig, Dave Potter, Gerald L. Maxwell, Thomas P. CA Ultrascale Visualization Climate TI Ultrascale Visualization of Climate Data SO COMPUTER LA English DT Article AB Collaboration across research, government, academic, and private sectors is integrating more than 70 scientific computing libraries and applications through a tailorable provenance framework, empowering scientists to exchange and examine data in novel ways. C1 [Williams, Dean N.; Bremer, Timo; Doutriaux, Charles] Lawrence Livermore Natl Lab, Livermore, CA USA. [Patchett, John; Williams, Sean] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Shipman, Galen; Miller, Ross; Pugmire, David R.; Smith, Brian; Steed, Chad] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Bethel, E. Wes; Childs, Hank; Krishnan, Harinarayan; Prabhat; Wehner, Michael] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Silva, Claudio T.; Santos, Emanuele; Hoop, David; Ellqvist, Tommy; Poco, Jorge] NYU, Polytech Inst, New York, NY 10003 USA. [Potter, Gerald L.; Maxwell, Thomas P.] NASA, Goddard Space Flight Ctr, Washington, DC USA. RP Williams, DN (reprint author), Lawrence Livermore Natl Lab, Livermore, CA USA. EM williams13@llnl.gov; bremer5@llnl.gov; doutriaux1@llnl.gov; patchett@lanl.gov; seanw@lanl.gov; gshipman@ornl.gov; rgmiller@ornl.gov; pugmire@ornl.gov; smithbe@ornl.gov; steedca@ornl.gov; ewbethel@lbl.gov; hchilds@lbl.gov; hkrishnan@lbl.gov; prabhat@lbl.gov; MFWehner@lbl.gov; csilva@nyu.edu; emanuele@lia.ufc.br; dkoop@poly.edu; tommy.ellqvist@yahoo.se; jpocom@nyu.edu; berk.geveci@kitware.com; aashish.chaudhary@kitware.com; andy.bauer@kitware.com; pletzer@txcorp.com; kindig@txcorp.com; gerald.potter@nasa.gov; thomas.maxwell@nasa.gov OI Steed, Chad/0000-0002-3501-909X; Poco, Jorge/0000-0001-9096-6287 FU Office of Science, Office of Biological and Environmental Research, of the US Department of Energy [DE-AC02-05CH11231, DE-AC52-07NA27344]; National Aeronautics and Space Administration; DOE Office of Science [DE-AC05-00OR22725] FX This work is supported by the Director, Office of Science, Office of Biological and Environmental Research, of the US Department of Energy, under contracts DE-AC02-05CH11231 and DE-AC52-07NA27344 and by the National Aeronautics and Space Administration. This research used resources of the Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory, which is supported by the DOE Office of Science under Contract No. DE-AC05-00OR22725. NR 6 TC 11 Z9 11 U1 0 U2 27 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0018-9162 J9 COMPUTER JI Computer PD SEP PY 2013 VL 46 IS 9 BP 68 EP 76 PG 9 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering SC Computer Science GA 218UG UT WOS:000324457400020 ER PT J AU Harrison, E Love, CN Jones, KL Lance, SL Trexler, JC Collins, T AF Harrison, Elizabeth Love, Cara N. Jones, Kenneth L. Lance, Stacey L. Trexler, Joel C. Collins, Timothy TI Isolation and characterization of 18 novel polymorphic microsatellite markers from the Mayan cichlid (Cichlasoma urophthalmus) SO CONSERVATION GENETICS RESOURCES LA English DT Article DE Cichlasoma; Illumina; Microsatellite; PAL_FINDER; PCR primers; SSR ID FLORIDA AB We isolated and characterized 18 microsatellite loci from the Mayan cichlid, Cichlasoma urophthalmus. Loci were screened for 24 specimens from a total of seven sites in south Florida, Mexico, Belize and Honduras. The number of alleles per locus ranged from 3 to 21, observed heterozygosity ranged from 0.208 to 0.875, and the probability of identity values ranged from 0.012 to 0.203. These new loci will provide tools for identifying the source population(s) for the introduction of Mayan cichlids in south Florida and for comparing population genetic structure of Mayan cichlids within and among subpopulations in its native (Central America) and introduced ranges (south Florida). Mayan cichlids are an invasive species in south Florida so identifying source populations may reveal pathways that can be managed to prevent further introductions. Mayan cichlids may also be useful as a model system in which to examine the relationship between introduction history, population genetic diversity, and invasibility. C1 [Harrison, Elizabeth; Trexler, Joel C.; Collins, Timothy] Florida Int Univ, Dept Biol Sci, North Miami, FL 33181 USA. [Love, Cara N.; Lance, Stacey L.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Jones, Kenneth L.] Univ Colorado, Sch Med, Dept Biochem & Mol Genet, Aurora, CO 80045 USA. RP Harrison, E (reprint author), Florida Int Univ, Dept Biol Sci, 3000 NE 151 St, North Miami, FL 33181 USA. EM eharr001@fiu.edu RI Lance, Stacey/K-9203-2013 OI Lance, Stacey/0000-0003-2686-1733 FU Sigma Xi; Florida International University Latin American and Caribbean Center; DOE [DE-FC09-07SR22506] FX We thank Joel Loera, Ella Vasquez, Ulises Razo Mendivil, Luis Zambrano, Xavier Chiapas, Wilfredo Matamoros and Christian Barrientos for their help in collecting and organizing samples. We also thank Paul Sharp for his help in laboratory techniques. This research was funded by Sigma Xi and the Florida International University Latin American and Caribbean Center. Manuscript preparation was partially supported by the DOE under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation. NR 12 TC 2 Z9 2 U1 0 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1877-7252 EI 1877-7260 J9 CONSERV GENET RESOUR JI Conserv. Genet. Resour. PD SEP PY 2013 VL 5 IS 3 BP 703 EP 705 DI 10.1007/s12686-013-9886-8 PG 3 WC Biodiversity Conservation; Genetics & Heredity SC Biodiversity & Conservation; Genetics & Heredity GA 194GT UT WOS:000322619900025 ER PT J AU Carson, EW Beasley, RR Jones, KL Lance, SL Lozano-Vilano, MD Vela-Valladares, L Banda-Villanueva, I Turner, TF De la Maza-Benignos, M AF Carson, Evan W. Beasley, Rochelle R. Jones, Kenneth L. Lance, Stacey L. de Lourdes Lozano-Vilano, Ma Vela-Valladares, Lilia Banda-Villanueva, Iris Turner, Thomas F. De la Maza-Benignos, Mauricio TI Development of polymorphic microsatellite markers for the microendemic pupfishes Cyprinodon julimes and C-pachycephalus SO CONSERVATION GENETICS RESOURCES LA English DT Article DE Cyprinodon; Illumina; Microsatellite; PAL_FINDER; PCR primers; SSR AB We developed microsatellite loci for the Julimes pupfish, Cyprinodon julimes. Twenty-five loci were screened across 19 individuals from Julimes Spring, Chihuahua, Mexico. The number of alleles per locus ranged from 2 to 14, observed heterozygosity ranged from 0.105 to 0.947, and the probability of identity values ranged from 0.022 to 0.588. We then tested for cross-amplification in the bighead pupfish, C. pachycephalus; twenty-three individuals from San Diego de Alcala, Chihuahua, Mexico, were screened across the 20 loci that amplified cleanly. These new loci will be used for long-term genetic monitoring of these critically endangered species. C1 [Carson, Evan W.; Turner, Thomas F.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [Carson, Evan W.; Turner, Thomas F.] Univ New Mexico, Museum Southwestern Biol, Albuquerque, NM 87131 USA. [Beasley, Rochelle R.; Lance, Stacey L.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Jones, Kenneth L.] Univ Colorado, Sch Med, Dept Biochem & Mol Genet, Aurora, CO 80045 USA. [de Lourdes Lozano-Vilano, Ma] Univ Autonoma Nuevo Leon, Lab Ictiol, Fac Ciencias Biol, San Nicolas De Los Garza 66450, NL, Mexico. [Vela-Valladares, Lilia; Banda-Villanueva, Iris; De la Maza-Benignos, Mauricio] Pronatura Noreste AC, Monterrey 64710, NL, Mexico. RP Carson, EW (reprint author), Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. EM evan.carson@gmail.com RI Lance, Stacey/K-9203-2013; Beasley, Rochelle/M-1396-2015 OI Lance, Stacey/0000-0003-2686-1733; Beasley, Rochelle/0000-0001-7325-4085 FU Secretary of Environment and Natural Resources of Mexico (SEMARNAT) [08D01-00025/1201]; DOE [DE-FC09-07SR22506]; TFT; Pronatura Noreste FX The authors acknowledge the grant support provided by the Secretary of Environment and Natural Resources of Mexico (SEMARNAT), through "Fomento a la Conservacion y al Aprovechamiento Sustentable de la Vida Silvestre" under award number 08D01-00025/1201 to Amigos del Pandeno, A. C. Manuscript preparation was partially supported by the DOE under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation. Funding was provided by TFT and a grant to EWC by Pronatura Noreste, A. C. Samples were collected under permit numbers SGPA-DGVS-02015-11 and SGPA-DGVS-02833-12 issued to MLLV and vouchered at Coleccion Ictiologica de la Facultad de Ciencias Biologicas de la UANL, under voucher numbers UANL 19666, UANL 19669, and UANL 20830 (C. julimes), and UANL 19667, UANL 19668, and UANL 20840 (C. pachycephalus). NR 10 TC 4 Z9 4 U1 0 U2 10 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1877-7252 J9 CONSERV GENET RESOUR JI Conserv. Genet. Resour. PD SEP PY 2013 VL 5 IS 3 BP 853 EP 856 DI 10.1007/s12686-013-9925-5 PG 4 WC Biodiversity Conservation; Genetics & Heredity SC Biodiversity & Conservation; Genetics & Heredity GA 194GT UT WOS:000322619900060 ER PT J AU Manley, DK Hines, VA Jordan, MW Stoltz, RE AF Manley, Dawn K. Hines, Valerie A. Jordan, Matthew W. Stoltz, Ronald E. TI A survey of energy policy priorities in the United States: Energy supply security, economics, and the environment SO ENERGY POLICY LA English DT Article DE Energy policy goals; Opinion poll; Multi-criteria decision analysis ID MULTICRITERIA DECISION-MAKING; AID APPROACH; ATTITUDES; DESIGN; TRENDS; POWER AB Security, environment, and economic concerns are commonly identified as three major objectives of energy policy. State and federal governments have set aggressive targets for carbon emissions reductions and for alternative fuel use and increased vehicle efficiency to reduce petroleum consumption. Moreover, jobs creation and GDP growth are often cited as key drivers for energy policies. Previous studies on energy policy decision-making have examined the process for developing and evaluating options using multi-criteria decision analysis tools. In addition, energy opinion polls have either elicited preferences between two goals or whether the public supports a specific policy action. In this article, we report results from a survey of 884 members of professional membership organizations on how the U.S. should prioritize energy policy across the goals of energy supply security, environment and climate, and economics and job creation. The majority favor policymaking that is balanced across all three. Security and economic concerns increase with age for male respondents, whereas environment is the highest priority for females regardless of age. Unlike previous surveys that target the general public and focus on a particular objective or technology, these results provide an example of eliciting a portfolio allocation across multiple energy policy goals from targeted constituents. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Manley, Dawn K.; Hines, Valerie A.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Manley, DK (reprint author), Sandia Natl Labs, POB 969, Livermore, CA 94551 USA. EM dmanley@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors thank Dr. Laura McNamara and the anonymous reviewers for their thoughtful review and helpful comments. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 42 TC 6 Z9 6 U1 2 U2 37 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD SEP PY 2013 VL 60 BP 687 EP 696 DI 10.1016/j.enpol.2013.04.061 PG 10 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 206OB UT WOS:000323530900069 ER PT J AU Dooley, JJ AF Dooley, James J. TI Human choice and CCS deployment: What have we learned from the social sciences about CCS? SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Editorial Material C1 Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD USA. RP Dooley, JJ (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD USA. EM jj.dooley@pnnl.gov NR 4 TC 1 Z9 1 U1 0 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD SEP PY 2013 VL 17 BP V EP VI DI 10.1016/j.ijggc.2013.05.028 PG 2 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 214RO UT WOS:000324153700001 ER PT J AU Sakaki, T Plampin, MR Pawar, R Komatsu, M Illangasekare, TH AF Sakaki, Toshihiro Plampin, Michael R. Pawar, Rajesh Komatsu, Mitsuru Illangasekare, Tissa H. TI What controls carbon dioxide gas phase evolution in the subsurface? Experimental observations in a 4.5 m-long column under different heterogeneity conditions SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Exsolution; Heterogeneity; Long-column experiments; Critical gas saturation; Dielectric constant; Electrical conductivity ID POROUS-MEDIUM; BUBBLE-GROWTH; SOLUTE DIFFUSION; DISPOSAL; SATURATION; AQUIFERS; SENSORS; CO2 AB In order to assess the risk of CO2 leakage affecting the groundwater quality in aquifers, it is important to understand the mechanisms of CO2 gas release when brine carrying dissolved CO2 migrates to the shallow subsurface from sequestrated zones of deep geologic formations. As the brine with dissolved CO2 elevates where the water pressure is lower, development of a gas phase starts with evolution of gas out of liquid, followed by gas phase growth and movement. However, conditions under which CO2 gas evolution is triggered, how the gaseous phase CO2 migrates and/or gets entrapped in the naturally heterogeneous formations are not well understood due to the difficulties involved with obtaining detailed experimental data. In this study, our goal was to identify the conditions under which dissolved CO2 forms a gas phase and to understand how the formed CO2 gas migrates through the saturated soil formation. In particular, we put emphasis on the critical gas saturation (at which the onset of gas phase migration occurs) and how this is explained by the theoretical and modeling studies reported in the literature. We have performed a series of experiments in the laboratory using a highly instrumented long column under highly controlled conditions that are not feasible in field settings. The 4.5 m-long vertical column setup was instrumented with automated sensors to continuously monitor phase saturation, electrical conductivity (EC), temperature, and water pressure distribution along the column length as well as the rates of water and gas outflow at the upstream end of the column. The observations showed that (1) concentration of dissolved CO2 influenced the vertical extent of the gas phase formation, (2) the gas formation pattern was different if the saturation pressure was lower or higher than the static water pressure at the injection port which results largely from the gravity and viscous forces somewhat competing under the conditions in the experiments, (3) the mass transfer-dominant period where bubbles grew and water outflow increased was relatively short, (4) gas outflow was detected at the column outlet only after a continuous gas phase was formed and breakthrough had occurred, (5) the critical gas phase saturation at which the generated gas phase gets mobilized was always about 0.3-0.4 in homogeneous cases, (6) for the heterogeneous cases, a gas saturation higher than the critical gas saturation was observed due to accumulation of gas phase under a finer layer, (7) the injection rate did not affect the gas formation behavior whereas the temperature variation did, and (8) in some cases formation of gas appeared to be triggered by heterogeneities. These observations are expected to improve our understanding of gas evolution for better conceptualization and model development. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Sakaki, Toshihiro; Plampin, Michael R.; Illangasekare, Tissa H.] Colorado Sch Mines, Ctr Expt Study Subsurface Environm Proc CESEP, Golden, CO 80401 USA. [Pawar, Rajesh] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. [Komatsu, Mitsuru] Okayama Univ, Grad Sch Environm & Life Sci, Okayama 7008530, Japan. RP Sakaki, T (reprint author), Natl Cooperat Disposal Radioact Waste NAGRA, Int Serv & Projects Div, Hard Str 73, CH-5430 Wettingen, Switzerland. EM toshihiro.sakaki@nagra.ch; mplampin@mymail.mines.edu; rajesh@lanl.gov; mkomatsu@okayama-u.ac.jp; tissa@mines.edu RI Plampin, Michael/K-9110-2016 OI Plampin, Michael/0000-0003-4068-5801 FU US Department of Energy's Office of Fossil Energy through National Energy Technology Laboratory's CO2 Sequestration RD Program FX This research was funded by the US Department of Energy's Office of Fossil Energy through National Energy Technology Laboratory's CO2 Sequestration R&D Program. NR 30 TC 13 Z9 13 U1 1 U2 20 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD SEP PY 2013 VL 17 BP 66 EP 77 DI 10.1016/j.ijggc.2013.03.025 PG 12 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 214RO UT WOS:000324153700007 ER PT J AU Martinez, MJ Newell, P Bishop, JE Turner, DZ AF Martinez, M. J. Newell, P. Bishop, J. E. Turner, D. Z. TI Coupled multiphase flow and geomechanics model for analysis of joint reactivation during CO2 sequestration operations SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Geomechanics; Multiphase flow; Coupled flow and geomechanics; Jointed rock; CO2 sequestration ID DEEP SALINE AQUIFERS; CARBON-DIOXIDE; FLUID-FLOW; NORMAL STIFFNESS; STORAGE; ROCK; FRACTURE; PRESSURES; INJECTION; MEDIA AB The initial and primary trapping mechanism for long term subsurface sequestration of CO2 is structural trapping beneath a low permeability caprock layer. Maintaining caprock integrity during injection operations is paramount to successful sequestration. Evaluation of jointed/fractured caprock systems is of particular concern to CO2 sequestration because creation of fractures or reactivation of joints can lead to enhanced pathways for leakage. In this work, a joint model is introduced to describe joint reactivation during injection of CO2. The model assumes equally spaced anisotropic joint sets with non-linear normal stiffness and linear shear stiffness. Normal displacement of the joints is mapped into a dynamically evolving effective anisotropic permeability tensor, assuming a cubic law for fracture permeability as a function of joint aperture. A model problem is presented to demonstrate features of the joint model and how it affects the coupled geomechanics and flow during injection of CO2 into deep saline aquifers. The model is used to demonstrate injection reservoir properties and injection rates that have potential for inducing leakage through the caprock due to overpressures associated with CO2 injection. In situations where pore pressure approaches or exceeds lithostatic pressure under a constant-rate, 30 year injection, the model indicates between 16 and 20% of injected CO2 could leak past the primary caprock after 50 years. The model also indicates a concomitant overpressure reduction that could signal caprock leakage during the injection. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Martinez, M. J.; Newell, P.; Bishop, J. E.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. [Turner, D. Z.] Univ Stellenbosch, Dept Civil Engn, ZA-7600 Stellenbosch, South Africa. RP Martinez, MJ (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. EM mjmarti@sandia.gov FU Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001114]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 65 TC 14 Z9 15 U1 3 U2 28 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD SEP PY 2013 VL 17 BP 148 EP 160 DI 10.1016/j.ijggc.2013.05.008 PG 13 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 214RO UT WOS:000324153700015 ER PT J AU Wainwright, HM Finsterle, S Zhou, QL Birkholzer, JT AF Wainwright, Haruko M. Finsterle, Stefan Zhou, Quanlin Birkholzer, Jens T. TI Modeling the performance of large-scale CO2 storage systems: A comparison of different sensitivity analysis methods SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE CO2 storage; Basin-scale reservoir model; CO2 saturation; Pressure buildup; CO2 plume extent; Sensitivity analysis ID DEEP SALINE AQUIFERS; NATURAL ANALOG SITE; GEOLOGIC STORAGE; PRESSURE BUILDUP; CARBON-DIOXIDE; SEQUESTRATION; LEAKAGE; SIMULATION; INJECTION; IMPACT AB In this study, we perform sensitivity analyses using a high-resolution basin-scale reservoir model developed for a hypothetical carbon sequestration project located in the Southern San Joaquin Basin in California, USA. We use the massively parallel version of the multiphase multicomponent simulator TOUGH2 to simulate CO2/brine migration and pressure buildup within the CO2 storage formation and overlying/underlying formations. We evaluate the impact of parameter uncertainty on risk-related performance measures, i.e., CO2 saturation and pressure buildup at multiple locations, and the extent of the CO2 plume and overpressure zone. We compare three sensitivity analysis methods: a local sensitivity method and the global Morris and Sobol'/Saltelli methods. The uncertainty of sensitivity indices in the global methods is evaluated so that we can interpret the results even when we have a limitation in the computational resources. Results show that the three methods provide complementary information for identifying important parameters and system understanding. All three methods give consistent interpretations and importance rankings, except when a parameter has a significant non-linear effect and/or strong interaction with some other parameters. In addition to the magnitude of parameter sensitivity, our analysis emphasizes the direction (i.e., favorable or adverse in the risk perspective), non-linearity and/or interaction effects, and physical interpretation of each parameter sensitivity trend. Parameter importance varies with time and space, and also depends on the CO2 plume or pressure behaviors. In this study, the reservoir permeability is among the most important parameters for all measures, although it has a large trade-off effect in risk such that a higher permeability would tend to reduce reservoir pressure but, at the same time, increase the size of the CO2 plume footprint. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Wainwright, Haruko M.; Finsterle, Stefan; Zhou, Quanlin; Birkholzer, Jens T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Wainwright, HM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM hmwainwright@lbl.gov RI Zhou, Quanlin/B-2455-2009; Finsterle, Stefan/A-8360-2009; Wainwright, Haruko/A-5670-2015; Birkholzer, Jens/C-6783-2011 OI Zhou, Quanlin/0000-0001-6780-7536; Finsterle, Stefan/0000-0002-4446-9906; Wainwright, Haruko/0000-0002-2140-6072; Birkholzer, Jens/0000-0002-7989-1912 FU DOE Office of Fossil Energy's Cross Cutting Research program; U.S. Department of Energy [DE-AC02-05CH11231] FX This work was completed as part of National Risk Assessment Partnership (NRAP) project. Support for this project came from the DOE Office of Fossil Energy's Cross Cutting Research program. Funding was provided to Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231. The authors wish to thank Jeff Wagoner of Lawrence Livermore National Laboratory for developing the geologic framework model of the Southern San Joaquin Basin and Yingqi Zhang of Lawrence Berkeley National Laboratory for technical review. Helpful suggestions and comments by George Guthrie of National Energy Technology Laboratory are greatly appreciated. We also thank two anonymous reviewers for their helpful comments. NR 44 TC 26 Z9 27 U1 0 U2 24 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD SEP PY 2013 VL 17 BP 189 EP 205 DI 10.1016/j.ijggc.2013.05.007 PG 17 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 214RO UT WOS:000324153700019 ER PT J AU Suh, DM Sun, X AF Suh, Dong-Myung Sun, Xin TI Particle-scale CO2 adsorption kinetics modeling considering three reaction mechanisms SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE CO2 capture; Reaction kinetics; Sorbent particle; Simulation; Adsorption ID CARBON-DIOXIDE CAPTURE; FIRED POWER-PLANTS; FLUIDIZED-BED; SOLID SORBENTS; MONOETHANOLAMINE; CONFIGURATIONS; TECHNOLOGY AB In the presence of water (H2O), dry and wet adsorptions of carbon dioxide (CO2) and physical adsorption of H2O happen concurrently in a sorbent particle. The three reactions depend on each other and have a complicated, but important, effect on CO2 capturing via a solid sorbent. In this study, transport phenomena in the sorbent were modeled, including the three reactions, and a numerical solving procedure for the model also was explained. The reaction variable distribution in the sorbent and their average values were calculated, and simulation results were compared with experimental data to validate the proposed model. Some differences, caused by thermodynamic parameters, were observed between them. However, the developed model reasonably simulated the adsorption behaviors of a sorbent. The weight gained by each adsorbed species, CO2 and H2O, is difficult to determine experimentally. It is known that more CO2 can be captured in the presence of water. Still, it is not yet known quantitatively how much more CO2 the sorbent can capture, nor is it known how much dry and wet adsorptions separately account for CO2 capture. This study addresses those questions by modeling CO2 adsorption in a particle and simulating the adsorption process using the model. As adsorption temperature changed into several values, the adsorbed amount of each species was calculated. The captured CO2 in the sorbent particle was compared quantitatively between dry and wet conditions. As the adsorption temperature decreased, wet adsorption increased. However, dry adsorption was reduced. Published by Elsevier B.V. C1 [Suh, Dong-Myung; Sun, Xin] Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA. RP Suh, DM (reprint author), Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA. EM dongmyung.suh@gmail.com NR 45 TC 3 Z9 3 U1 0 U2 13 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD SEP PY 2013 VL 17 BP 388 EP 396 DI 10.1016/j.ijggc.2013.05.029 PG 9 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 214RO UT WOS:000324153700036 ER PT J AU Rubin, ES Short, C Booras, G Davison, J Ekstrom, C Matuszewski, M Mccoy, S AF Rubin, Edward S. Short, Christopher Booras, George Davison, John Ekstrom, Clas Matuszewski, Michael McCoy, Sean TI A proposed methodology for CO2 capture and storage cost estimates SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE CO2 capture and storage; CCS costs; Costing methods; Cost reporting; Levelized cost of electricity ID POWER-PLANTS; CAPACITY ESTIMATION; CARBON CAPTURE AB There are significant differences in the methods employed by various organizations to estimate the cost of carbon capture and storage (CCS) systems for fossil fuel power plants. Such differences often are not apparent in publicly reported CCS cost estimates, and thus contribute to misunderstanding, confusion, and mis-representation of CCS cost information, especially among audiences not familiar with the details of CCS costing. Given the international importance of CCS as an option for climate change mitigation, efforts to harmonize methods of estimating CCS costs and improving the communication of cost assumptions and results are especially urgent and timely. Based on an analysis of current deficiencies, this paper recommends a common costing methodology plus guidelines for CCS cost reporting to improve the clarity and consistency of cost estimates for greenhouse gas mitigation measures. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Rubin, Edward S.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Short, Christopher] Global Carbon Capture & Storage Inst, Canberra, ACT, Australia. [Booras, George] Elect Power Res Inst, Palo Alto, CA USA. [Davison, John] Int Energy Agcy Greenhouse Gas Programme, Cheltenham, Glos, England. [Ekstrom, Clas] Vattenfall AB, Stockholm, Sweden. [Matuszewski, Michael] US DOE, Natl Energy Technol Lab, Pittsburgh, PA USA. [McCoy, Sean] Int Energy Agcy, Paris, France. RP Rubin, ES (reprint author), Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. EM rubin@cmu.edu OI McCoy, Sean/0000-0003-0401-893X NR 25 TC 27 Z9 27 U1 4 U2 27 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD SEP PY 2013 VL 17 BP 488 EP 503 DI 10.1016/j.ijggc.2013.06.004 PG 16 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 214RO UT WOS:000324153700045 ER PT J AU Birkholzer, JT Nicot, JP Oldenburg, CM Zhou, QL Kraemer, S Bandilla, K AF Birkholzer, Jens T. Nicot, Jean Philippe Oldenburg, Curtis M. Zhou, Quanlin Kraemer, Stephen Bandilla, Karl TI Reply to comments by Schnaar et al. on "Brine flow up a well caused by pressure perturbation from geologic carbon sequestration: Static and dynamic evaluations" by Birkholzer et al. (2011) SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Letter C1 [Birkholzer, Jens T.; Oldenburg, Curtis M.; Zhou, Quanlin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Nicot, Jean Philippe] Univ Texas Austin, Bur Econ Geol, Austin, TX 78713 USA. [Kraemer, Stephen; Bandilla, Karl] US EPA, Off Res & Dev, Athens, GA 30605 USA. RP Birkholzer, JT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM jtbirkholzer@lbl.gov RI Zhou, Quanlin/B-2455-2009; Oldenburg, Curtis/L-6219-2013; Birkholzer, Jens/C-6783-2011; Nicot, Jean-Philippe/A-3954-2009 OI Zhou, Quanlin/0000-0001-6780-7536; Oldenburg, Curtis/0000-0002-0132-6016; Birkholzer, Jens/0000-0002-7989-1912; NR 4 TC 0 Z9 0 U1 0 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD SEP PY 2013 VL 17 BP 544 EP 545 DI 10.1016/j.ijggc.2013.06.001 PG 2 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 214RO UT WOS:000324153700051 ER PT J AU Kyle, P Davies, EGR Dooley, JJ Smith, SJ Clarke, LE Edmonds, JA Hejazi, M AF Kyle, Page Davies, Evan G. R. Dooley, James J. Smith, Steven J. Clarke, Leon E. Edmonds, James A. Hejazi, Mohamad TI Influence of climate change mitigation technology on global demands of water for electricity generation (vol 13, pg 112, 2013) SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Correction C1 [Kyle, Page; Dooley, James J.; Smith, Steven J.; Clarke, Leon E.; Edmonds, James A.; Hejazi, Mohamad] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Davies, Evan G. R.] Univ Alberta, Dept Civil & Environm Engn, Edmonton, AB T6G 2W2, Canada. RP Kyle, P (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, 5825 Univ Res Court,Suite 3500, College Pk, MD 20740 USA. EM pkyle@pnnl.gov RI Davies, Evan/A-3379-2008 OI Davies, Evan/0000-0003-0536-333X NR 1 TC 0 Z9 0 U1 2 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD SEP PY 2013 VL 17 BP 549 EP 552 DI 10.1016/j.ijggc.2013.03.017 PG 4 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 214RO UT WOS:000324153700053 ER PT J AU Yue, P Di, LP Wei, YX Han, WG AF Yue, Peng Di, Liping Wei, Yaxing Han, Weiguo TI Intelligent services for discovery of complex geospatial features from remote sensing imagery SO ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING LA English DT Article DE Image mining; Geospatial services; Workflow; Semantic; Feature discovery; GIS; Complex geospatial features ID TOPOLOGICAL SPATIAL RELATIONS; WEB SERVICE; GEOGRAPHIC INFORMATION; DATA INFRASTRUCTURES; ROAD EXTRACTION; SEMANTIC WEB; LIDAR DATA; ONTOLOGY; CLASSIFICATION; GEODATA AB Remote sensing imagery has been commonly used by intelligence analysts to discover geospatial features, including complex ones. The overwhelming volume of routine image acquisition requires automated methods or systems for feature discovery instead of manual image interpretation. The methods of extraction of elementary ground features such as buildings and roads from remote sensing imagery have been studied extensively. The discovery of complex geospatial features, however, is still rather understudied. A complex feature, such as a Weapon of Mass Destruction (WMD) proliferation facility, is spatially composed of elementary features (e.g., buildings for hosting fuel concentration machines, cooling towers, transportation roads, and fences). Such spatial semantics, together with thematic semantics of feature types, can be used to discover complex geospatial features. This paper proposes a workflow-based approach for discovery of complex geospatial features that uses geospatial semantics and services. The elementary features extracted from imagery are archived in distributed Web Feature Services (WFSs) and discoverable from a catalogue service. Using spatial semantics among elementary features and thematic semantics among feature types, workflow-based service chains can be constructed to locate semantically-related complex features in imagery. The workflows are reusable and can provide on-demand discovery of complex features in a distributed environment. (C) 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved. C1 [Yue, Peng; Di, Liping; Han, Weiguo] George Mason Univ, CSISS, Fairfax, VA 22032 USA. [Yue, Peng] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China. [Wei, Yaxing] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Di, LP (reprint author), George Mason Univ, CSISS, 10519 Braddock Rd STE 2900, Fairfax, VA 22032 USA. EM ldi@gmu.edu RI Wei, Yaxing/K-1507-2013; Han, Weiguo/N-1791-2014 OI Wei, Yaxing/0000-0001-6924-0078; Han, Weiguo/0000-0002-2760-0909 FU U.S. Department of Energy [DE-NA0001123]; National Basic Research Program of China [2011CB707105]; NSFC; [41271397] FX We are grateful to the anonymous reviewers for their valuable comments. Part of the work discussed in the paper was funded by U.S. Department of Energy (Grant #DE-NA0001123, PI: Prof. Liping Di), National Basic Research Program of China (2011CB707105), and Project 41271397 supported by NSFC. The authors would also like to thank Ms. Julia Di for editing and proofreading the manuscript. NR 72 TC 15 Z9 16 U1 4 U2 63 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0924-2716 EI 1872-8235 J9 ISPRS J PHOTOGRAMM JI ISPRS-J. Photogramm. Remote Sens. PD SEP PY 2013 VL 83 BP 151 EP 164 DI 10.1016/j.isprsjprs.2013.02.015 PG 14 WC Geography, Physical; Geosciences, Multidisciplinary; Remote Sensing; Imaging Science & Photographic Technology SC Physical Geography; Geology; Remote Sensing; Imaging Science & Photographic Technology GA 212WQ UT WOS:000324013900014 ER PT J AU Davis, CE Epton, M Frank, M Gryshuk, A Kenyon, NJ AF Davis, Cristina E. Epton, Michael Frank, Matthias Gryshuk, Amy Kenyon, Nicholas J. TI Emerging topics and new developments in the field: the 2012 international breath analysis meeting SO JOURNAL OF BREATH RESEARCH LA English DT Article AB The 2012 International Breath Analysis meeting was held in Sonoma, CA (USA) from 28 October-01 November 2012. The focus of the meeting covered several important topics within the research area, including both engineering and the biomedical sciences. As human breath analysis further develops as a multi-disciplinary field, it is clear that sensor development, instrumentation systems and algorithms play critical roles. Although much emphasis in the last decade has focused on breath biomarker compound identification and physiological relevance, we increasingly turn our attention toward portable, fieldable sensor platforms for non-invasive breath monitoring. The mission of this workshop was to assemble a group of leading experts to discuss their own research, debate trends and future directions of the field, and contemplate areas of research that deserve special attention moving forward. C1 [Davis, Cristina E.] Univ Calif Davis, Dept Mech & Aerosp Engn, Davis, CA 95616 USA. [Epton, Michael] Christchurch Hosp, Canterbury Resp Res Grp, Canterbury 8022, New Zealand. [Frank, Matthias; Gryshuk, Amy] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Kenyon, Nicholas J.] Univ Calif Davis, Ctr Comparat Resp Biol & Med, Div Pulm Crit Care & Sleep Med, Davis, CA 95616 USA. RP Davis, CE (reprint author), Univ Calif Davis, Dept Mech & Aerosp Engn, Davis, CA 95616 USA. EM cedavis@ucdavis.edu RI Davis, Cristina/C-4437-2008; Frank, Matthias/O-9055-2014 FU UC Davis School of Medicine; Lawrence Livermore National Laboratory; Fairmont Sonoma Mission Inn; PSAV Presentation Services; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; MGC Diagnostics, Inc.; Aerocrine, Inc.; Shinwa Chemical Industries, Ltd.; Respiratory Research, Inc.; PAS Technology, GmbH.; Center for Biophotonics Science and Technology at UC Davis; National Science Foundation [PHY 0120999]; National Center for Advancing Translational Sciences a component of the National Institutes of Health (NIH) [UL1 TR000002]; NIH Roadmap for Medical Research; NIH [HL 105573]; Gilead Sciences, Inc.; Department of the Army; Hartwell Foundation; Soberlink, Inc.; Office of Naval Research FX The organizing committee acknowledges the financial support by UC Davis School of Medicine and by Lawrence Livermore National Laboratory as well as the hospitality and logistical support by the Fairmont Sonoma Mission Inn and PSAV Presentation Services that all helped make this conference possible. Part of this work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Financial support was also by our industrial sponsors: MGC Diagnostics, Inc.; Aerocrine, Inc.; Shinwa Chemical Industries, Ltd.; Respiratory Research, Inc.; PAS Technology, GmbH.; and The Center for Biophotonics Science and Technology at UC Davis (this work has been supported by funding from the National Science Foundation. The Center for Biophotonics, an NSF Science and Technology Center, is managed by the University of California, Davis, under cooperative agreement no. PHY 0120999).; The organizing committee themselves have research support from several funding agencies. This content of this work is solely the responsibility of the authors and does not necessarily represent the official view of these agencies. Partial support is acknowledged from: UL1 TR000002 from the National Center for Advancing Translational Sciences a component of the National Institutes of Health (NIH), and NIH Roadmap for Medical Research [CED, NJK]; NIH #HL 105573 [NJK]; Gilead Sciences, Inc. [CED]; Department of the Army [CED], The Hartwell Foundation [CED, NJK]; Soberlink, Inc. [CED]; Office of Naval Research [CED]. NR 3 TC 4 Z9 4 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1752-7155 J9 J BREATH RES JI J. Breath Res. PD SEP PY 2013 VL 7 IS 3 AR 039001 DI 10.1088/1752-7155/7/3/039001 PG 9 WC Biochemical Research Methods; Respiratory System SC Biochemistry & Molecular Biology; Respiratory System GA 214FQ UT WOS:000324117800019 PM 23999878 ER PT J AU Manginell, RP Pimentel, AS Mowry, CD Mangan, MA Moorman, MW Allen, A Schares, ES Achyuthan, KE AF Manginell, Ronald P. Pimentel, Adam S. Mowry, Curtis D. Mangan, Michael A. Moorman, Matthew W. Allen, Amy Schares, Elizabeth S. Achyuthan, Komandoor E. TI Diagnostic potential of the pulsed discharged helium ionization detector (PDHID) for pathogenic Mycobacterial volatile biomarkers SO JOURNAL OF BREATH RESEARCH LA English DT Article ID ELECTRON-CAPTURE DETECTOR; GAS-CHROMATOGRAPHY; ORGANIC-COMPOUNDS; PULMONARY TUBERCULOSIS; MOBILITY SPECTROMETRY; BREATH TEST; IN-VITRO; NOSE; IDENTIFICATION; BACTERIA AB Pathogenic Mycobacteria cause diseases in animals and humans with significant economic and societal consequences. Current methods for Mycobacterial detection relies upon time- and labor-intensive techniques such as culturing or DNA analysis. Using gas chromatography and mass spectrometry, four volatile compounds (methyl phenylacetate, methyl p-anisate, methyl nicotinate and o-phenyl anisole) were recently proposed as potential biomarkers for Mycobacteria. We demonstrate for the first time the capabilities of a field-deployable, pulsed discharge helium ionization detector (PDHID) for sensing these volatiles. We determined the analytical performance of the PDHID toward these Mycobacterial volatiles. Detector performance was moderately affected over the temperature range of 150 to 350 degrees C. The linear dynamic range for all four analytes exceeded three orders of magnitude. The limits of detection (LOD) and quantitation (LOQ) were calculated as 150 and 450 pg respectively, for all compounds, except methyl phenylacetate (LOD and LOQ, 90 and 270 pg, respectively). Control charts revealed that the PDHID detection system was generally stable, and deviations could be traced to common causes and excluded special causes. Grob tests and ionization potential data suggest that the PDHID is capable of detecting Mycobacterial volatiles in a complex milieu such as culture headspace or breath samples from tuberculosis patients. The diagnostic potential of the PDHID is critical to our goal of a handheld, field-deployable 'sniffer' system for biological pathogens and chemical warfare agents. C1 [Manginell, Ronald P.; Moorman, Matthew W.] Sandia Natl Labs, Microsyst Enabled Detect Dept, Albuquerque, NM 87185 USA. [Pimentel, Adam S.] LMATA Govt Serv LLC, Sandia Natl Labs, Albuquerque, NM 87185 USA. [Mowry, Curtis D.] Sandia Natl Labs, Mat Characterizat Dept, Albuquerque, NM 87185 USA. [Mangan, Michael A.] Sandia Natl Labs, Photon Microsyst Technol Dept, Albuquerque, NM 87185 USA. [Allen, Amy] Sandia Staffing Alliance LLC, Sandia Natl Labs, Albuquerque, NM 87185 USA. [Schares, Elizabeth S.] New Mexico Inst Min & Technol, Dept Chem Engn, Albuquerque, NM 87185 USA. [Schares, Elizabeth S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Achyuthan, Komandoor E.] Sandia Natl Labs, Biosensors & Nanomat Dept, Albuquerque, NM 87185 USA. RP Manginell, RP (reprint author), Sandia Natl Labs, Microsyst Enabled Detect Dept, POB 5800,MS0892, Albuquerque, NM 87185 USA. EM rpmangi@sandia.gov FU United States Department of Energy [DE-AC04-94AL85000]; Sandia's Laboratory Directed Research and Development (LDRD) project [151318] FX Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. These investigations were funded by Sandia's Laboratory Directed Research and Development (LDRD) project 151318. NR 53 TC 5 Z9 5 U1 5 U2 36 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1752-7155 J9 J BREATH RES JI J. Breath Res. PD SEP PY 2013 VL 7 IS 3 AR 037107 DI 10.1088/1752-7155/7/3/037107 PG 9 WC Biochemical Research Methods; Respiratory System SC Biochemistry & Molecular Biology; Respiratory System GA 214FQ UT WOS:000324117800015 PM 23867723 ER PT J AU Poulsen, CJ Zhou, J AF Poulsen, Christopher J. Zhou, Jing TI Sensitivity of Arctic Climate Variability to Mean State: Insights from the Cretaceous SO JOURNAL OF CLIMATE LA English DT Article DE Climate variability; Paleoclimate; Climate models ID OCEAN HEAT-TRANSPORT; THERMOHALINE CIRCULATION; SYSTEM MODEL; SEA-ICE; THERMAL MAXIMUM; CCSM3; TEMPERATURES; WARM; AMPLIFICATION; OSCILLATION AB This study investigates Arctic climate variability during a period of extreme warmth using the Community Climate System Model, version 3 (CCSM3) coupled ocean-atmosphere general circulation model. Four mid-Cretaceous simulations were completed with different CO2 levels (1, 10, and 16 times preindustrial levels with dynamic vegetation) and vegetation treatments (10 times with specified uniform bare ground). The magnitude and frequency of Arctic temperature variability is highly sensitive to the mean state and high-latitude upper-ocean static stability. As stability increases with a rise in CO2 levels from 1 to 10 times preindustrial levels, the frequency of temperature variability increases from decades (1x) to centuries (10x with bare ground) and longer (10x) and the peak-to-peak magnitude increases from similar to 1 degrees (for 1x) to similar to 2 degrees C (for 10x). In the 16x simulation with a highly stratified ocean, Arctic temperature variability is low with peak-to-peak magnitudes <0.5 degrees C. Under low CO2, Arctic climate variability is tied to sensible heat release from the ocean during movement of the sea ice margin. In absence of substantial sea ice, variability is driven by mass transport and upper-ocean salinity advection into the Arctic. In both cases, destruction of low-level clouds acts as an important feedback on low-level warming. The authors also report a link between unforced Arctic climate variability and North Pacific meridional overturning with warming events leading intensification. These results suggest that the nature of Arctic climate variability was likely much different in past climates and is likely to be so in the future. C1 [Poulsen, Christopher J.; Zhou, Jing] Univ Michigan, Dept Earth & Environm Sci, Ann Arbor, MI 48109 USA. [Zhou, Jing] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Poulsen, CJ (reprint author), Univ Michigan, Dept Earth & Environm Sci, 2534 CC Little Bldg,1100 North Univ Ave, Ann Arbor, MI 48109 USA. EM poulsen@umich.edu RI Poulsen, Christopher/C-6213-2009 OI Poulsen, Christopher/0000-0001-5104-4271 FU National Science Foundations' Paleoclimate Program [0433440]; University of Michigan FX This study was financially supported by a grant (0433440) from the National Science Foundations' Paleoclimate Program to C. Poulsen and a Barbour Scholarship from the University of Michigan to J. Zhou. We thank E. Brady, B. Briegleb, C. Shields, and N. Rosenbloom for assistance with CCSM3, and three reviewers for their constructive comments. The CCSM3 simulations were run at the National Center for Atmospheric Research (NCAR). NR 67 TC 7 Z9 7 U1 1 U2 18 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD SEP PY 2013 VL 26 IS 18 BP 7003 EP 7022 DI 10.1175/JCLI-D-12-00825.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 213LB UT WOS:000324057600015 ER PT J AU Zelt, CA Haines, S Powers, MH Sheehan, J Rohdewald, S Link, C Hayashi, K Zhao, D Zhou, HW Burton, BL Petersen, UK Bonal, ND Doll, WE AF Zelt, Colin A. Haines, Seth Powers, Michael H. Sheehan, Jacob Rohdewald, Siegfried Link, Curtis Hayashi, Koichi Zhao, Don Zhou, Hua-wei Burton, Bethany L. Petersen, Uni K. Bonal, Nedra D. Doll, William E. TI Blind Test of Methods for Obtaining 2-D Near-Surface Seismic Velocity Models from First-Arrival Traveltimes SO JOURNAL OF ENVIRONMENTAL AND ENGINEERING GEOPHYSICS LA English DT Article ID GROUNDWATER CONTAMINATION SITE; SHEAR-WAVE VELOCITY; TOMOGRAPHY; REFRACTION; INVERSION; SEDIMENTS AB Seismic refraction methods are used in environmental and engineering studies to image the shallow subsurface. We present a blind test of inversion and tomographic refraction analysis methods using a synthetic first-arrival-time dataset that was made available to the community in 2010. The data are realistic in terms of the near-surface velocity model, shot-receiver geometry and the data's frequency and added noise. Fourteen estimated models were determined by ten participants using eight different inversion algorithms, with the true model unknown to the participants until it was revealed at a session at the 2011 SAGEEP meeting. The estimated models are generally consistent in terms of their large-scale features, demonstrating the robustness of refraction data inversion in general, and the eight inversion algorithms in particular. When compared to the true model, all of the estimated models contain a smooth expression of its two main features: a large offset in the bedrock and the top of a steeply dipping low-velocity fault zone. The estimated models do not contain a subtle low-velocity zone and other fine-scale features, in accord with conventional wisdom. Together, the results support confidence in the reliability and robustness of modern refraction inversion and tomographic methods. C1 [Zelt, Colin A.] Rice Univ, Dept Earth Sci, Houston, TX 77005 USA. [Haines, Seth] US Geol Survey, Denver Fed Ctr, Cent Energy Resources Sci Ctr, Denver, CO 80225 USA. [Powers, Michael H.; Burton, Bethany L.] US Geol Survey, Crustal Geophys & Geochem Sci Ctr, Denver, CO 80225 USA. [Sheehan, Jacob] Zonge Int Inc, Lakewood, CO 80214 USA. [Rohdewald, Siegfried] Intelligent Resources Inc, Vancouver, BC V6C 1A1, Canada. [Link, Curtis] Montana Tech Univ, Dept Geophys Engn, Butte, MT 59701 USA. [Hayashi, Koichi] Geometrics, San Jose, CA 95131 USA. [Zhao, Don] Geogiga Technol Corp, Calgary, AB T2P 3N4, Canada. [Zhou, Hua-wei] Univ Houston, Dept Earth & Atmospher Sci, Houston, TX 77204 USA. [Petersen, Uni K.] Faroes Earth & Energy Directorate, Torshavn, Faroe Islands, Denmark. [Bonal, Nedra D.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Doll, William E.] Battelle Mem Inst, Oak Ridge, TN 37830 USA. RP Zelt, CA (reprint author), Rice Univ, Dept Earth Sci, MS 126,6100 Main St, Houston, TX 77005 USA. EM czelt@rice.edu; shaines@usgs.gov; mhpowers@usgs.gov; jacob.sheehan@zonge.us; info@rayfract.com; clink@mtech.edu; khayashi@geometrics.com; don@geogiga.com; hzhou@uh.edu; blburton@usgs.gov; up@jf.fo; nbonal@sandia.gov; dollw@battelle.org FU DOE [DE-FG02-03ER63662]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Karl J. Ellefsen (U.S. Geological Survey) and Leiph A. Preston (Sandia National Laboratories) helped to develop models 12 and 14, respectively. The review of the manuscript by Karl J. Ellefsen is gratefully acknowledged. CZ acknowledges support from DOE grant DE-FG02-03ER63662. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. References to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. NR 29 TC 3 Z9 4 U1 3 U2 11 PU ENVIRONMENTAL ENGINEERING GEOPHYSICAL SOC PI DENVER PA 1720 SOUTH BELLAIRE, STE 110, DENVER, CO 80222-433 USA SN 1083-1363 J9 J ENVIRON ENG GEOPH JI J. Environ. Eng. Geophys. PD SEP PY 2013 VL 18 IS 3 BP 183 EP 194 DI 10.2113/JEEG18.3.183 PG 12 WC Geochemistry & Geophysics; Engineering, Geological SC Geochemistry & Geophysics; Engineering GA 219LK UT WOS:000324508300003 ER PT J AU Franko, KJ Lele, SK AF Franko, Kenneth J. Lele, Sanjiva K. TI Breakdown mechanisms and heat transfer overshoot in hypersonic zero pressure gradient boundary layers SO JOURNAL OF FLUID MECHANICS LA English DT Article DE compressible boundary layers; turbulence simulation; turbulent transition ID DIRECT NUMERICAL-SIMULATION; FLAT-PLATE; MACH-NUMBER; PART 1; TRANSITION; RECEPTIVITY; LAMINAR; DISTURBANCES; STREAKS; RESOLUTION AB A laminar Mach 6 flat plate boundary layer is perturbed using three different types of disturbances introduced through blowing and suction. The linear and nonlinear development and eventual breakdown to turbulence are investigated using direct numerical simulation. The three different transition mechanisms compared are first mode oblique breakdown, second mode oblique breakdown and second mode fundamental resonance. The focus of the present work is to compare the nonlinear development and breakdown to turbulence for the different transition mechanisms and explain the heat transfer overshoot observed in experiments. First mode oblique breakdown leads to the shortest transition length and a clear peak in wall heat transfer in the transitional region. For all three transition mechanisms, the development of streamwise streaks precedes the breakdown to fully turbulent flow. The modal linear and nonlinear development are analysed including the breakdown of the streaks. The effect of wall cooling is investigated for second mode fundamental resonance and no qualitative differences in the nonlinear processes are observed. Finally, the development towards fully turbulent flow including mean flow, turbulent spectra, and turbulent fluctuations is shown and the first mode oblique breakdown simulation shows the furthest development towards a fully turbulent flow. C1 [Franko, Kenneth J.; Lele, Sanjiva K.] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA. RP Franko, KJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM kjfrank@sandia.gov FU Phase-I STTR at Stanford University; AFOSR; Department of Defense [AFOSR FA9550-10-C-0174]; Fannie and John Hertz Foundation Fellowship; Stanford Graduate Fellowship FX Support was provided by a Phase-I STTR at Stanford University in partnership with Cascade Technologies, Mountain View, CA with support from AFOSR (Dr J. Schmisseur, Program Manager). It is now continuing as a Phase-II effort under a sub-award to Stanford University (Cascade Technologies, prime contractor) with support from AFOSR. We appreciate technical discussion and help from Professors G. Iaccarino, Dr O. Marxen, and Dr R. Bhaskaran. We appreciate technical discussions with Dr M. Holden of CUBRC and with Dr O. Ramesh of IISc, Bangalore, regarding heat transfer overshoot. S. K. L. acknowledges very useful discussion with Professor R. Narasimha regarding the overshoot in figure 31. The presentation in the paper benefited from this discussion. Computational resources were provided by the Department of Defense through contract AFOSR FA9550-10-C-0174. K. J. F. thanks the Fannie and John Hertz Foundation Fellowship and Stanford Graduate Fellowship for support. We appreciate the referees' helpful comments and suggestions which significantly improved the paper. NR 62 TC 3 Z9 3 U1 1 U2 15 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 J9 J FLUID MECH JI J. Fluid Mech. PD SEP PY 2013 VL 730 BP 491 EP 532 DI 10.1017/jfm.2013.350 PG 42 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 216GN UT WOS:000324270200007 ER PT J AU Alonso-Gutierrez, J Chan, R Batth, TS Adams, PD Keasling, JD Petzold, CJ Lee, TS AF Alonso-Gutierrez, Jorge Chan, Rossana Batth, Tanveer S. Adams, Paul D. Keasling, Jay D. Petzold, Christopher J. Lee, Taek Soon TI Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production SO METABOLIC ENGINEERING LA English DT Article DE Limonene; Perillyl alcohol; Mevalonate pathway; Microbial production; Metabolic engineering; Escherichia coli ID HETEROLOGOUS MEVALONATE PATHWAY; PSEUDOMONAS-PUTIDA; GENE; MONOTERPENES; EXPRESSION; TERPENOIDS; PROTEIN; OPTIMIZATION; BACTERIA; SEQUENCE AB Limonene is a valuable monoterpene used in the production of several commodity chemicals and medicinal compounds. Among them, perillyl alcohol (FOR) is a promising anti-cancer agent that can be produced by hydroxylation of limonene. We engineered E. coli with a heterologous mevalonate pathway and limonene synthase for production of limonene followed by coupling with a cytochrome P450, which specifically hydroxylates limonene to produce FOR. A strain containing all mevalonate pathway genes in a single plasmid produced limonene at titers over 400 mg/L from glucose, substantially higher than has been achieved in the past. Incorporation of a cytochrome P450 to hydroxylate limonene yielded approximately 100 mg/L of FOR. Further metabolic engineering of the pathway and in situ product recovery using anion exchange resins would make this engineered E. cob a potential production platform for any valuable limonene derivative. (C) 2013 Elsevier Inc. All rights reserved. C1 [Alonso-Gutierrez, Jorge; Chan, Rossana; Batth, Tanveer S.; Adams, Paul D.; Keasling, Jay D.; Petzold, Christopher J.; Lee, Taek Soon] Joint Bioenergy Inst, Emeryville, CA 94608 USA. [Alonso-Gutierrez, Jorge; Chan, Rossana; Batth, Tanveer S.; Adams, Paul D.; Keasling, Jay D.; Petzold, Christopher J.; Lee, Taek Soon] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. RP Lee, TS (reprint author), Joint Bioenergy Inst, 5885 Hollis St, Emeryville, CA 94608 USA. EM tslee@lbl.gov RI Keasling, Jay/J-9162-2012; Adams, Paul/A-1977-2013 OI Keasling, Jay/0000-0003-4170-6088; Adams, Paul/0000-0001-9333-8219 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Fundacion Ramon Areces FX The authors thank James Kirby, Pamela Peralta-Yahya at JBEI and Seon-Won Kim at Gyeongsang National University in Korea for helpful discussions. This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. J.A-G. thanks "Fundacion Ramon Areces" for his postdoctoral fellowship. NR 44 TC 93 Z9 97 U1 8 U2 111 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1096-7176 J9 METAB ENG JI Metab. Eng. PD SEP PY 2013 VL 19 BP 33 EP 41 DI 10.1016/j.ymben.2013.05.004 PG 9 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 214UO UT WOS:000324162100005 PM 23727191 ER PT J AU Weston, DJ Wullschleger, SD Tuskan, GA AF Weston, David J. Wullschleger, Stan D. Tuskan, Gerald A. TI Extending the Arabidopsis flowering paradigm to a mass flowering phenomenon in the tropics SO MOLECULAR ECOLOGY LA English DT News Item DE drought; ecological genomics; mass flowering; transcriptomics ID DIPTEROCARPACEAE; ECOLOGY AB Flowering time is a critical life history trait, one that is shaped by evolution to maximize fecundity, reproductive success and fitness (Amasino 2010). This is especially true of annual plants where the cycle of floral initiation, pollination and seed production occur at regular intervals to ensure the survival of the species. In long-lived perennials, however, flowering can be an intermittent phenomenon and thus a challenge to understand. In this issue of Molecular Ecology, Kobayashi et al. (2013) tackle this particular challenge by applying modern-day molecular techniques to the 'spectacular and mysterious' mass flowering that takes places in mixed dipterocarp forests of South-East Asia. Here, amidst an almost unimaginable diversity of forbs, shrubs and trees, these authors used next-generation sequencing technology to characterize what they refer to as the 'ecological transcriptome' in an attempt to glimpse into the functional genomic reprogramming of Shorea beccariana at pre-and postflowering developmental transitions. They encountered many of the challenges that are often underappreciated yet typical for tropical ecological research including sample collection within a similar to 40-m high tree canopy, unpredictable flowering intervals and determining the most appropriate pre-flowering state for sampling. Despite these challenges, the authors were able to integrate gene ontology relationships with gene-clustering algorithms and environmental data to support the hypothesis that drought is a key trigger for flowering in S. beccariana. The cloning and transgenic expression of selected S. beccariana genes to corroborate presumed protein function is a key feature of their work and seldom applied within an ecological framework. As illustrated by Kobayashi et al. (2013), the inclusion of molecular biology, genomics and bioinformatics has the potential to shed light on long-standing questions of ecological concern. C1 [Weston, David J.; Tuskan, Gerald A.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Wullschleger, Stan D.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Weston, DJ (reprint author), Oak Ridge Natl Lab, Biosci Div, POB 2008 MS-6407, Oak Ridge, TN 37831 USA. EM westondj@ornl.gov RI Wullschleger, Stan/B-8297-2012; Tuskan, Gerald/A-6225-2011 OI Wullschleger, Stan/0000-0002-9869-0446; Tuskan, Gerald/0000-0003-0106-1289 NR 11 TC 1 Z9 1 U1 1 U2 38 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0962-1083 J9 MOL ECOL JI Mol. Ecol. PD SEP PY 2013 VL 22 IS 18 BP 4603 EP 4605 DI 10.1111/mec.12473 PG 3 WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GA 212ZP UT WOS:000324022600001 PM 24167825 ER PT J AU Hambleton, KM Kurtz, DW Prsa, A Guzik, JA Pavlovski, K Bloemen, S Southworth, J Conroy, K Littlefair, SP Fuller, J AF Hambleton, K. M. Kurtz, D. W. Prsa, A. Guzik, J. A. Pavlovski, K. Bloemen, S. Southworth, J. Conroy, K. Littlefair, S. P. Fuller, J. TI KIC 4544587: an eccentric, short-period binary system with delta Sct pulsations and tidally excited modes SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE binaries: eclipsing; stars: individual: KIC 4544587; stars: oscillations; stars: variables: delta Scuti ID ZZ CETI STARS; GAMMA-DORADUS; COMPONENT SPECTRA; ECLIPSING BINARIES; SCUTI STAR; KEPLER OBSERVATIONS; STELLAR PULSATIONS; RADIAL-VELOCITIES; MAIN-SEQUENCE; SPACED DATA AB We present Kepler photometry and ground-based spectroscopy of KIC 4544587, a short-period eccentric eclipsing binary system with self-excited pressure and gravity modes, tidally excited modes, tidally influenced p modes and rapid apsidal motion of 182 yr per cycle. The primary and secondary components of KIC 4544587 reside within the delta Scuti and gamma Dor instability region of the Hertzsprung-Russell diagram, respectively. By applying the binary modelling software phoebe to prewhitened Kepler photometric data and radial velocity data obtained using the William Herschel Telescope and 4-m Mayall telescope at Kitt Peak Northern Observatory (KPNO), the fundamental parameters of this important system have been determined, including the stellar masses, 1.98 +/- 0.07 and 1.60 +/- 0.06 M-circle dot, and radii, 1.76 +/- 0.03 and 1.42 +/- 0.02 R, for the primary and secondary components, respectively. Frequency analysis of the residual data revealed 31 modes, 14 in the gravity mode region and 17 in the pressure mode region. Of the 14 gravity modes, 8 are orbital harmonics: a signature of tidal resonance. While the measured amplitude of these modes may be partially attributed to residual signal from binary model subtraction, we demonstrate through consideration of the folded light curve that these frequencies do in fact correspond to tidally excited pulsations. Furthermore, we present an echelle diagram of the pressure mode frequency region (modulo the orbital frequency) and demonstrate that the tides are also influencing the p modes. A first look at asteroseismology hints that the secondary component is responsible for the p modes, which is contrary to our expectation that the hotter star should pulsate in higher radial overtone, higher frequency p modes. C1 [Hambleton, K. M.; Kurtz, D. W.] Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England. [Hambleton, K. M.; Bloemen, S.] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [Hambleton, K. M.; Prsa, A.] Villanova Univ, Dept Astron & Astrophys, Villanova, PA 19085 USA. [Guzik, J. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Pavlovski, K.] Univ Zagreb, Fac Sci, Dept Phys, Zagreb 41000, Croatia. [Southworth, J.] Keele Univ, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Conroy, K.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Littlefair, S. P.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Fuller, J.] Cornell Univ, Dept Astron, Ctr Space Res, Ithaca, NY 14853 USA. RP Hambleton, KM (reprint author), Univ Cent Lancashire, Jeremiah Horrocks Inst, Preston PR1 2HE, Lancs, England. EM kmhambleton@uclan.ac.uk FU Science and Technology Funding Council (STFC); RAS; NASA Kepler PSP grant [NNX12AD20G]; European Research Council under the European Community [227224]; Research Council of KU Leuven [GOA/2008/04]; NASA's Science Mission Directorate FX We express our sincere thanks to NASA and the Kepler team for allowing us to work with and analyse the Kepler data, making this work possible. The Kepler mission is funded by NASA's Science Mission Directorate. This work was also supported by the Science and Technology Funding Council (STFC). We would also like to thank the RAS for providing grants which enabled KH's attendance at conferences and thus enabled the development of collaborations and the successful completion of this work. AP acknowledges support through NASA Kepler PSP grant NNX12AD20G. The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 227224 (PROSPERITY), as well as from the Research Council of KU Leuven grant agreement GOA/2008/04. We acknowledge the observations taken using the 4-m Mayall telescope at the NOAO, survey number #11A-0022 and the Isaac Newton Group of Telescopes for the use of the William Herschel Telescope (WHT). The WHT is operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. We would also like to thank Susan Thompson and William Welsh for their comments and suggestions. NR 79 TC 50 Z9 50 U1 0 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP PY 2013 VL 434 IS 2 BP 925 EP 940 DI 10.1093/mnras/stt886 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 207XO UT WOS:000323638200002 ER PT J AU Xavier, HS Gupta, RR Sako, M D'Andrea, CB Frieman, JA Galbany, L Garnavich, PM Marriner, J Nichol, RC Olmstead, MD Schneider, DP Smith, M AF Xavier, Henrique S. Gupta, Ravi R. Sako, Masao D'Andrea, Chris B. Frieman, Joshua A. Galbany, Lluis Garnavich, Peter M. Marriner, John Nichol, Robert C. Olmstead, Matthew D. Schneider, Donald P. Smith, Mathew TI Properties of Type Ia supernovae inside rich galaxy clusters SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE supernovae: general; galaxies: clusters: general ID DIGITAL SKY SURVEY; OSCILLATION SPECTROSCOPIC SURVEY; GIANT-BRANCH STARS; STANDARD STELLAR LIBRARY; INITIAL MASS FUNCTION; TP-AGB MODELS; DATA RELEASE; SDSS-III; HOST GALAXIES; LEGACY SURVEY AB We used the Gaussian Mixture Brightest Cluster Galaxy catalogue and Sloan Digital Sky Survey-II supernovae data with redshifts measured by the Baryon Oscillation Spectroscopic Survey to identify 48 Type Ia supernovae (SNe Ia) residing in rich galaxy clusters and compare their properties with 1015 SNe Ia in the field. Their light curves were parametrized by the SALT2 model and the significance of the observed differences was assessed by a resampling technique. To test our samples and methods, we first looked for known differences between SNe Ia residing in active and passive galaxies. We confirm that passive galaxies host SNe Ia with smaller stretch, weaker colour-luminosity relation [beta of 2.54(22) against 3.35(14)], and that are similar to 0.1 mag more luminous after stretch and colour corrections. We show that only 0.02 per cent of random samples drawn from our set of SNe Ia in active galaxies can reach these values. Reported differences in the Hubble residuals scatter could not be detected, possibly due to the exclusion of outliers. We then show that, while most field and cluster SNe Ia properties are compatible at the current level, their stretch distributions are different (similar to 3 Sigma): besides having a higher concentration of passive galaxies than the field, the cluster's passive galaxies host SNe Ia with an average stretch even smaller than those in field passive galaxies (at 95 per cent confidence). We argue that the older age of passive galaxies in clusters is responsible for this effect since, as we show, old passive galaxies host SNe Ia with smaller stretch than young passive galaxies (similar to 4 Sigma). C1 [Xavier, Henrique S.] Univ Sao Paulo, Inst Fis, BR-05508090 Sao Paulo, Brazil. [Xavier, Henrique S.; Gupta, Ravi R.; Sako, Masao] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [D'Andrea, Chris B.; Nichol, Robert C.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Frieman, Joshua A.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Frieman, Joshua A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Frieman, Joshua A.; Marriner, John] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Galbany, Lluis] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Galbany, Lluis] Inst Super Tecn, Ctr Multidisciplinar Astrofis, P-1049001 Lisbon, Portugal. [Garnavich, Peter M.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Olmstead, Matthew D.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Schneider, Donald P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Smith, Mathew] Univ Western Cape, Dept Phys, ZA-7535 Cape Town, South Africa. RP Xavier, HS (reprint author), Univ Sao Paulo, Inst Fis, Rua Matao,Travessa R,187, BR-05508090 Sao Paulo, Brazil. EM hsxavier@if.usp.br RI Galbany, Lluis/A-8963-2017 OI Galbany, Lluis/0000-0002-1296-6887 FU Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; University of Cambridge; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University FX Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation and the US Department of Energy Office of Science. The SDSS-III website is http://www.sdss3.org/.; SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington and Yale University. NR 74 TC 2 Z9 2 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP PY 2013 VL 434 IS 2 BP 1443 EP 1459 DI 10.1093/mnras/stt1100 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 207XO UT WOS:000323638200039 ER PT J AU Wei, H House, S Wu, JJX Zhang, J Wang, ZD He, Y Gao, EJ Gao, YG Robinson, H Li, W Zuo, JM Robertson, IM Lu, Y AF Wei, Hui House, Stephen Wu, Jiangjiexing Zhang, Jiong Wang, Zidong He, Ying Gao, Elizabeth J. Gao, Yigui Robinson, Howard Li, Wei Zuo, Jianmin Robertson, Ian M. Lu, Yi TI Enhanced and tunable fluorescent quantum dots within a single crystal of protein SO NANO RESEARCH LA English DT Article DE functional bio-nanomaterials; quantum dots; protein single crystals; X-ray crystallography; tomography ID UP-CONVERSION NANOPARTICLES; GOLD NANOPARTICLES; DIRECTED SYNTHESIS; SEMICONDUCTOR CRYSTALLITES; LYSOZYME CRYSTALS; CANCER-CELLS; ION; CLUSTERS; NANOSTRUCTURES; NANOMATERIALS AB The design and synthesis of bio-nano hybrid materials can not only provide new materials with novel properties, but also advance our fundamental understanding of interactions between biomolecules and their abiotic counterparts. Here, we report a new approach to achieving such a goal by growing CdS quantum dots (QDs) within single crystals of lysozyme protein. This bio-nano hybrid emitted much stronger red fluorescence than its counterpart without the crystal, and such fluorescence properties could be either enhanced or suppressed by the addition of Ag(I) or Hg(II), respectively. The three-dimensional incorporation of CdS QDs within the lysozyme crystals was revealed by scanning transmission electron microscopy with electron tomography. More importantly, since our approach did not disrupt the crystalline nature of the lysozyme crystals, the metal and protein interactions were able to be studied by X-ray crystallography, thus providing insight into the role of Cd(II) in the CdS QDs formation. C1 [Wei, Hui; Wu, Jiangjiexing; Gao, Elizabeth J.; Lu, Yi] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [House, Stephen; Zhang, Jiong; Wang, Zidong; He, Ying; Zuo, Jianmin; Robertson, Ian M.; Lu, Yi] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Wu, Jiangjiexing; Li, Wei] Tianjin Univ, Key Lab Green Chem Technol MOE, Tianjin 300072, Peoples R China. [Gao, Yigui] Univ Illinois, George L Clark Xray Facil, Urbana, IL 61801 USA. [Gao, Yigui] Univ Illinois, Mat Lab 3M, Urbana, IL 61801 USA. [Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Zuo, JM (reprint author), Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA. EM jianzuo@illinois.edu; ianr@illinois.edu; yi-lu@illinois.edu RI Wei, Hui/E-6799-2011; Lu, Yi/B-5461-2010; OI Wei, Hui/0000-0003-0870-7142; Lu, Yi/0000-0003-1221-6709; House, Stephen/0000-0003-2035-6373 FU US National Science Foundation [CMMI 0749028, DMR-0117792]; US Department of Energy [DE-FC36-05GO15064]; Office of Biological and Environmental Research of the US Department of Energy; Office of Basic Energy Sciences of the US Department of Energy; National Center for Research Resources of the National Institutes of Health [P41RR012408]; National Institute of General Medical Sciences of the National Institutes of Health [P41GM103473] FX This work was supported by the US National Science Foundation (Nos. CMMI 0749028 and DMR-0117792). The authors thank C. Lei and W. Swiech for help with the STEM imaging, C. M. Bee and D. Zhang for fluorescence microscopic measurements, S. M. Nie for the use of Nuance system and A. M. Smith for insightful discussions. S. H. and I. M. R. acknowledge support from the US Department of Energy (grant No. DE-FC36-05GO15064). STEM experiments were carried out in part in the Frederick Seitz Materials Research Laboratory Central Facilities, University of Illinois. X-ray crystallographic data for this study were measured at beamline X12C of the National Synchrotron Light Source, Brookhaven National Laboratory. Financial support comes principally from the Offices of Biological and Environmental Research and of Basic Energy Sciences of the US Department of Energy, and from the National Center for Research Resources (No. P41RR012408) and the National Institute of General Medical Sciences (No. P41GM103473) of the National Institutes of Health. NR 75 TC 10 Z9 10 U1 5 U2 102 PU TSINGHUA UNIV PRESS PI BEIJING PA TSINGHUA UNIV, RM A703, XUEYAN BLDG, BEIJING, 10084, PEOPLES R CHINA SN 1998-0124 J9 NANO RES JI Nano Res. PD SEP PY 2013 VL 6 IS 9 BP 627 EP 634 DI 10.1007/s12274-013-0348-0 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 214NU UT WOS:000324141400001 ER PT J AU Langille, MGI Zaneveld, J Caporaso, JG McDonald, D Knights, D Reyes, JA Clemente, JC Burkepile, DE Thurber, RLV Knight, R Beiko, RG Huttenhower, C AF Langille, Morgan G. I. Zaneveld, Jesse Caporaso, J. Gregory McDonald, Daniel Knights, Dan Reyes, Joshua A. Clemente, Jose C. Burkepile, Deron E. Thurber, Rebecca L. Vega Knight, Rob Beiko, Robert G. Huttenhower, Curtis TI Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences SO NATURE BIOTECHNOLOGY LA English DT Article ID PROTEIN FAMILIES; GUT MICROBIOME; GLOBAL-NETWORK; EVOLUTION; GENOME; METAGENOMICS; BACTERIA; DATABASE; GREENGENES; PHYLOGENY AB Profiling phylogenetic marker genes, such as the 16S rRNA gene, is a key tool for studies of microbial communities but does not provide direct evidence of a community's functional capabilities. Here we describe PICRUSt (phylogenetic investigation of communities by reconstruction of unobserved states), a computational approach to predict the functional composition of a metagenome using marker gene data and a database of reference genomes. PICRUSt uses an extended ancestral-state reconstruction algorithm to predict which gene families are present and then combines gene families to estimate the composite metagenome. Using 16S information, PICRUSt recaptures key findings from the Human Microbiome Project and accurately predicts the abundance of gene families in host-associated and environmental communities, with quantifiable uncertainty. Our results demonstrate that phylogeny and function are sufficiently linked that this 'predictive metagenomic' approach should provide useful insights into the thousands of uncultivated microbial communities for which only marker gene surveys are currently available. C1 [Langille, Morgan G. I.; Beiko, Robert G.] Dalhousie Univ, Fac Comp Sci, Halifax, NS, Canada. [Zaneveld, Jesse; Thurber, Rebecca L. Vega] Oregon State Univ, Dept Microbiol, Corvallis, OR 97331 USA. [Caporaso, J. Gregory] No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA. [Caporaso, J. Gregory] Argonne Natl Lab, Inst Genom & Syst Biol, Lemont, IL USA. [McDonald, Daniel] Univ Colorado, BioFrontiers Inst, Boulder, CO 80309 USA. [McDonald, Daniel] Univ Colorado, Dept Comp Sci, Boulder, CO 80309 USA. [Knights, Dan] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN USA. [Knights, Dan] Univ Minnesota, Inst Biotechnol, St Paul, MN 55108 USA. [Reyes, Joshua A.; Huttenhower, Curtis] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA. [Clemente, Jose C.; Knight, Rob] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Burkepile, Deron E.] Florida Int Univ, Dept Biol Sci, Miami Beach, FL USA. [Knight, Rob] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA. [Huttenhower, Curtis] Broad Inst MIT & Harvard, Cambridge, MA USA. RP Huttenhower, C (reprint author), Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA. EM chuttenh@hsph.harvard.edu RI Knight, Rob/D-1299-2010; OI Langille, Morgan/0000-0002-6604-3009; Huttenhower, Curtis/0000-0002-1110-0096 FU Canadian Institutes of Health Research; Canada Research Chairs program; US National Science Foundation (NSF) [1130786]; Howard Hughes Medical Institute; US National Institutes of Health (NIH) [P01DK078669, U01HG004866, R01HG004872]; Crohn's and Colitis Foundation of America; Sloan Foundation; NSF [CAREER DBI1053486]; ARO [W911NF-11-1-0473]; [NIH 1R01HG005969] FX We would like to thank A. Robbins-Pianka and N. Segata, along with all members of the Knight, Beiko, Vega Thurber, Caporaso and Huttenhower laboratories, for their assistance during PICRUSt conception and development. This work was supported in part by the Canadian Institutes of Health Research (M. G. I. L., R. G. B.), the Canada Research Chairs program (R. G. B.), US National Science Foundation (NSF) OCE #1130786 (R. V. T., D. B.), the Howard Hughes Medical Institute (R. K.), US National Institutes of Health (NIH) P01DK078669, U01HG004866, R01HG004872 (R. K.), the Crohn's and Colitis Foundation of America (R. K.), the Sloan Foundation (R. K.), NIH 1R01HG005969 (C. H.), NSF CAREER DBI1053486 (C. H.) and ARO W911NF-11-1-0473 (C.H.). NR 49 TC 625 Z9 632 U1 63 U2 387 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1087-0156 J9 NAT BIOTECHNOL JI Nat. Biotechnol. PD SEP PY 2013 VL 31 IS 9 BP 814 EP + DI 10.1038/nbt.2676 PG 10 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 216TC UT WOS:000324306300021 PM 23975157 ER PT J AU Pattanayak, V Lin, S Guilinger, JP Ma, EB Doudna, JA Liu, DR AF Pattanayak, Vikram Lin, Steven Guilinger, John P. Ma, Enbo Doudna, Jennifer A. Liu, David R. TI High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity SO NATURE BIOTECHNOLOGY LA English DT Article ID ZINC-FINGER NUCLEASES; GENE DISRUPTION; CRISPR; SYSTEMS; CELLS; ENDONUCLEASE; SEQUENCE; IMMUNITY; TALENS AB The RNA-programmable Cas9 endonuclease cleaves double-stranded DNA at sites complementary to a 20-base-pair guide RNA. The Cas9 system has been used to modify genomes in multiple cells and organisms, demonstrating its potential as a facile genome-engineering tool. We used in vitro selection and high-throughput sequencing to determine the propensity of eight guide-RNA:Cas9 complexes to cleave each of 10(12) potential off-target DNA sequences. The selection results predicted five off-target sites in the human genome that were confirmed to undergo genome cleavage in HEK293T cells upon expression of one of two guide-RNA:Cas9 complexes. In contrast to previous models, our results show that guide-RNA:Cas9 specificity extends past a 7- to 12-base-pair seed sequence. Our results also suggest a tradeoff between activity and specificity both in vitro and in cells as a shorter, less-active guide RNA is more specific than a longer, more-active guide RNA. High concentrations of guide-RNA:Cas9 complexes can cleave off-target sites containing mutations near or within the PAM that are not cleaved when enzyme concentrations are limiting. C1 [Pattanayak, Vikram; Guilinger, John P.; Liu, David R.] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. [Pattanayak, Vikram; Guilinger, John P.; Liu, David R.] Harvard Univ, Howard Hughes Med Inst, Cambridge, MA 02138 USA. [Lin, Steven; Ma, Enbo; Doudna, Jennifer A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Lin, Steven; Ma, Enbo; Doudna, Jennifer A.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Doudna, JA (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM doudna@berkeley.edu; drliu@fas.harvard.edu FU DARPA [HR0011-11-2-0003, N66001-12-C-4207]; Howard Hughes Medical Institute; National Institute of General Medical Sciences [T32GM007753]; Howard Hughes Medical Institute (HHMI); US National Institutes of Health [R01GM073794-05]; HHMI FX V.P., J.P.G. and D.R.L. were supported by DARPA HR0011-11-2-0003, DARPA N66001-12-C-4207, and the Howard Hughes Medical Institute. V.P. was supported by award no. T32GM007753 from the National Institute of General Medical Sciences. S.L. and J.A.D. were supported by the Howard Hughes Medical Institute (HHMI); E. M. was supported by US National Institutes of Health grant R01GM073794-05 to J.A.D.; J.A.D. and D.R.L. are HHMI Investigators. NR 21 TC 402 Z9 431 U1 31 U2 172 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1087-0156 J9 NAT BIOTECHNOL JI Nat. Biotechnol. PD SEP PY 2013 VL 31 IS 9 BP 839 EP + DI 10.1038/nbt.2673 PG 7 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 216TC UT WOS:000324306300025 PM 23934178 ER PT J AU Jones, AM Yu, HY Ghimire, NJ Wu, SF Aivazian, G Ross, JS Zhao, B Yan, JQ Mandrus, DG Xiao, D Yao, W Xu, XD AF Jones, Aaron M. Yu, Hongyi Ghimire, Nirmal J. Wu, Sanfeng Aivazian, Grant Ross, Jason S. Zhao, Bo Yan, Jiaqiang Mandrus, David G. Xiao, Di Yao, Wang Xu, Xiaodong TI Optical generation of excitonic valley coherence in monolayer WSe2 SO NATURE NANOTECHNOLOGY LA English DT Article ID ELECTRONIC-STRUCTURE; CHARGED EXCITONS; QUANTUM-WELLS; MOS2; POLARIZATION; SEMICONDUCTOR; DOTS AB As a consequence of degeneracies arising from crystal symmetries, it is possible for electron states at band-edges ('valleys') to have additional spin-like quantum numbers(1-6). An important question is whether coherent manipulation can be performed on such valley pseudospins, analogous to that implemented using true spin, in the quest for quantum technologies(7,8). Here, we show that valley coherence can be generated and detected. Because excitons in a single valley emit circularly polarized photons, linear polarization can only be generated through recombination of an exciton in a coherent superposition of the two valley states. Using monolayer semiconductor WSe2 devices, we first establish the circularly polarized optical selection rules for addressing individual valley excitons and trions. We then demonstrate coherence between valley excitons through the observation of linearly polarized luminescence, whose orientation coincides with that of the linearly polarized excitation, for any given polarization angle. In contrast, the corresponding photoluminescence from trions is not observed to be linearly polarized, consistent with the expectation that the emitted photon polarization is entangled with valley pseudospin. The ability to address coherence(9,10), in addition to valley polarization(11-15), is a step forward towards achieving quantum manipulation of the valley index necessary for coherent valleytronics. C1 [Jones, Aaron M.; Wu, Sanfeng; Aivazian, Grant; Zhao, Bo; Xu, Xiaodong] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Yu, Hongyi; Yao, Wang] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Yu, Hongyi; Yao, Wang] Univ Hong Kong, Ctr Theoret & Computat Phys, Hong Kong, Hong Kong, Peoples R China. [Ghimire, Nirmal J.; Mandrus, David G.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Ghimire, Nirmal J.; Yan, Jiaqiang; Mandrus, David G.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Ross, Jason S.; Xu, Xiaodong] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. [Yan, Jiaqiang; Mandrus, David G.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Xiao, Di] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. RP Yao, W (reprint author), Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. EM wangyao@hku.hk; xuxd@uw.edu RI Xiao, Di/B-1830-2008; Yao, Wang/C-1353-2008; Mandrus, David/H-3090-2014; Wu, Sanfeng/L-1323-2016; OI Xiao, Di/0000-0003-0165-6848; Yao, Wang/0000-0003-2883-4528; Wu, Sanfeng/0000-0002-6227-6286; Jones, Aaron/0000-0002-8326-1294 FU National Science Foundation (NSF) [DMR-1150719]; Defense Advanced Research Projects Agency (DARPA) [N66001-11-1-4124]; Research Grant Council [HKU705513P]; University Grant Council of the government of Hong Kong [AoE/P-04/08]; Croucher Foundation; US Department of Energy (DoE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division FX The authors thank B. Spivak, D. Cobden, A. Andreev and K-M. Fu for helpful discussions. This work was mainly supported by the National Science Foundation (NSF, DMR-1150719). The experimental set-up and device fabrication was partially supported by a Defense Advanced Research Projects Agency (DARPA) Young Faculty Award (YFA) (N66001-11-1-4124). H.Y. and W.Y. were supported by the Research Grant Council (HKU705513P) and the University Grant Council (AoE/P-04/08) of the government of Hong Kong, and the Croucher Foundation under the Croucher Innovation Award. N.G., J.Y., D. M. and D. X. were supported by the US Department of Energy (DoE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division. Device fabrication was performed at the University of Washington Microfabrication Facility and the NSF-funded Nanotech User Facility. NR 33 TC 345 Z9 345 U1 53 U2 424 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD SEP PY 2013 VL 8 IS 9 BP 634 EP 638 DI 10.1038/NNANO.2013.151 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 214XT UT WOS:000324172800010 PM 23934096 ER PT J AU Laocharoensuk, R Palaniappan, K Smith, NA Dickerson, RM Werder, DJ Baldwin, JK Hollingsworth, JA AF Laocharoensuk, Rawiwan Palaniappan, Kumaranand Smith, Nickolaus A. Dickerson, Robert M. Werder, Donald J. Baldwin, Jon K. Hollingsworth, Jennifer A. TI Flow-based solution-liquid-solid nanowire synthesis SO NATURE NANOTECHNOLOGY LA English DT Article ID SEMICONDUCTOR NANOWIRES; CDSE NANOWIRES; QUANTUM WIRES; MICROFLUIDIC REACTORS; SILICON NANOWIRES; SLS GROWTH; HETEROSTRUCTURES; NANOCRYSTALS; SUBSTRATE; ZNSE AB Discovered almost two decades ago, the solution-liquid-solid (SLS) method for semiconductor nanowire synthesis has proven to be an important route to high-quality, single-crystalline anisotropic nanomaterials. In execution, the SLS technique is similar to colloidal quantum-dot synthesis in that it entails the injection of chemical precursors into a hot surfactant solution, but mechanistically it is considered the solution-phase analogue to vapour-liquid-solid (VLS) growth. Both SLS and VLS methods make use of molten metal nanoparticles to catalyse the nucleation and elongation of single-crystalline nanowires. Significantly, however, the methods differ in how chemical precursors are introduced to the metal catalysts. In SLS, precursors are added in a one-off fashion in a flask, whereas in VLS they are carried by a flow of gas through the reaction chamber, and by-products are removed similarly. The ability to dynamically control the introduction of reactants and removal of by-products in VLS synthesis has enabled a degree of synthetic control not possible with SLS growth. We show here that SLS synthesis can be transformed into a continuous technique using a microfluidic reactor. The resulting flow-based SLS ('flow-SLS') platform allows us to slow down the synthesis of nanowires and capture mechanistic details concerning their growth in the solution phase, as well as synthesize technologically relevant axially heterostructured semiconductor nanowires, while maintaining the propensity of SLS for accessing ultrasmall diameters below 10 nm. C1 [Laocharoensuk, Rawiwan; Palaniappan, Kumaranand; Smith, Nickolaus A.; Baldwin, Jon K.; Hollingsworth, Jennifer A.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Dickerson, Robert M.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Werder, Donald J.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Hollingsworth, JA (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. EM jenn@lanl.gov RI Dennis, Allison/A-7654-2014 FU Los Alamos National Laboratory (LANL) Laboratory Directed Research and Development (LDRD); National Science and Technology Development Agency of Thailand (NSTDA); LANL Center for Integrated Nanotechnologies (CINT); LANL LDRD programme; LANL CINT; National Nuclear Security Administration of the US DOE [DE-AC52-06NA25396] FX R.L. was supported by a Los Alamos National Laboratory (LANL) Laboratory Directed Research and Development (LDRD) Program's Director's Postdoctoral Research Fellowship. R. L. is currently supported by the National Science and Technology Development Agency of Thailand (NSTDA), through which some of the data analysis was completed. K. P. was supported in part by LANL Center for Integrated Nanotechnologies (CINT) postdoctoral funding. N.A.S., R. M. D., D.J.W. and J.A.H. acknowledge support from the LANL LDRD programme. J.K.B. was funded by LANL CINT. This work was performed in large part at CINT, a US Department of Energy (DOE) Office of Science Nanoscale Science Research Center and User Facility. LANL, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US DOE under contract DE-AC52-06NA25396. NR 43 TC 30 Z9 30 U1 14 U2 156 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD SEP PY 2013 VL 8 IS 9 BP 660 EP 666 DI 10.1038/NNANO.2013.149 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 214XT UT WOS:000324172800015 PM 23955811 ER PT J AU Onses, MS Song, C Williamson, L Sutanto, E Ferreira, PM Alleyne, AG Nealey, PF Ahn, H Rogers, JA AF Onses, M. Serdar Song, Chiho Williamson, Lance Sutanto, Erick Ferreira, Placid M. Alleyne, Andrew G. Nealey, Paul F. Ahn, Heejoon Rogers, John A. TI Hierarchical patterns of three-dimensional block-copolymer films formed by electrohydrodynamic jet printing and self-assembly SO NATURE NANOTECHNOLOGY LA English DT Article ID THIN-FILMS; DIBLOCK COPOLYMERS; NANOSCALE PATTERNS; TEMPLATES; BLENDS; ARRAYS; NANOLITHOGRAPHY; NANOSTRUCTURES; GRAPHOEPITAXY; LITHOGRAPHY AB Self-assembly of block-copolymers provides a route to the fabrication of small (size, <50 nm) and dense (pitch, <100 nm) features with an accuracy that approaches even the demanding specifications for nanomanufacturing set by the semiconductor industry. A key requirement for practical applications, however, is a rapid, high-resolution method for patterning block-copolymers with different molecular weights and compositions across a wafer surface, with complex geometries and diverse feature sizes. Here we demonstrate that an ultrahigh-resolution jet printing technique that exploits electrohydrodynamic effects can pattern large areas with block-copolymers based on poly(styrene-block-methyl methacrylate) with various molecular weights and compositions. The printed geometries have diameters and linewidths in the sub-500 nm range, line edge roughness as small as similar to 45 nm, and thickness uniformity and repeatability that can approach molecular length scales (similar to 2 nm). Upon thermal annealing on bare, or chemically or topographically structured substrates, such printed patterns yield nanodomains of block-copolymers with well-defined sizes, periodicities and morphologies, in overall layouts that span dimensions from the scale of nanometres (with sizes continuously tunable between 13 nm and 20 nm) to centimetres. As well as its engineering relevance, this methodology enables systematic studies of unusual behaviours of block-copolymers in geometrically confined films. C1 [Onses, M. Serdar; Song, Chiho; Ahn, Heejoon; Rogers, John A.] Univ Illinois, Dept Mat Sci & Engn, Beckman Inst, Urbana, IL 61801 USA. [Onses, M. Serdar; Song, Chiho; Ahn, Heejoon; Rogers, John A.] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. [Sutanto, Erick; Ferreira, Placid M.; Alleyne, Andrew G.; Rogers, John A.] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA. [Williamson, Lance; Nealey, Paul F.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Williamson, Lance; Nealey, Paul F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Song, Chiho; Ahn, Heejoon] Hanyang Univ, Dept Organ & Nano Engn, Seoul 133791, South Korea. [Song, Chiho; Ahn, Heejoon] Hanyang Univ, Inst Nano Sci & Technol, Seoul 133791, South Korea. RP Rogers, JA (reprint author), Univ Illinois, Dept Mat Sci & Engn, Beckman Inst, Urbana, IL 61801 USA. EM ahn@hanyang.ac.kr; jrogers@illinois.edu RI ferreira, placid/D-5308-2012; Alleyne, Andrew/C-3127-2015; Ahn, Heejoon/K-4603-2015; Rogers, John /L-2798-2016 OI ferreira, placid/0000-0002-5517-6586; Alleyne, Andrew/0000-0002-1347-9669; Ahn, Heejoon/0000-0002-3322-6423; FU Center for Nanoscale Chemical Electrical Mechanical Manufacturing Systems at the University of Illinois; National Science Foundation [CMMI-0749028]; National Research Foundation of Korea; Ministry of Education, Science and Technology [2012R1A6A1029029] FX This work was supported by the Center for Nanoscale Chemical Electrical Mechanical Manufacturing Systems at the University of Illinois (funded by the National Science Foundation under grant CMMI-0749028). The authors acknowledge R. Gronheid and P. Rincon Delgadillo for providing the chemically patterned substrates. C. S. and H. A. were partially supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2012R1A6A1029029). The authors thank S. Maclaren and K. Chow for support with AFM and electron-beam lithography, respectively. AFM and SEM studies were carried out in the Frederick Seitz Materials Research Laboratory Central Facilities, University of Illinois. NR 38 TC 54 Z9 55 U1 19 U2 171 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD SEP PY 2013 VL 8 IS 9 BP 667 EP 675 DI 10.1038/NNANO.2013.160 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 214XT UT WOS:000324172800016 PM 23975188 ER PT J AU Burgos, JMM Burrell, KH Solomon, WM Grierson, BA Loch, SD Ballance, CP Chrystal, C AF Burgos, J. M. Munoz Burrell, K. H. Solomon, W. M. Grierson, B. A. Loch, S. D. Ballance, C. P. Chrystal, C. TI Kinetic theory and atomic physics corrections for determination of ion velocities from charge-exchange spectroscopy SO NUCLEAR FUSION LA English DT Article ID POLOIDAL ROTATION; HYDROGENIC IONS; FUSION PLASMAS; R-MATRIX; POPULATIONS; STATES AB Charge-exchange spectroscopy is a powerful diagnostic tool for determining ion temperatures, densities and rotational velocities in tokamak plasmas. This technique depends on detailed understanding of the atomic physics processes that affect the measured apparent velocities with respect to the true ion rotational velocities. These atomic effects are mainly due to energy dependence of the charge-exchange cross-sections, and in the case of poloidal velocities, due to gyro-motion of the ion during the finite lifetime of the excited states. Accurate lifetimes are necessary for correct interpretation of measured poloidal velocities, specially for high density plasma regimes on machines such as ITER, where l-mixing effects must be taken into account. In this work, a full nl-resolved atomic collisional radiative model coupled with a full kinetic calculation that includes the effects of electric and magnetic fields on the ion gyro-motion is presented for the first time. The model directly calculates from atomic physics first principles the excited state lifetimes that are necessary to evaluate the gyro-orbit effects. It is shown that even for low density plasmas where l-mixing effects are unimportant and coronal conditions can be assumed, the nl-resolved model is necessary for an accurate description of the gyro-motion effects to determine poloidal velocities. This solution shows good agreement when compared to three QH-mode shots on DIII-D, which contain a wide range of toroidal velocities and high ion temperatures where greater atomic corrections are needed. The velocities obtained from the model are compared to experimental velocities determined from co- and counter-injection of neutral beams on DIII-D. C1 [Burgos, J. M. Munoz] Oak Ridge Inst Sci Educ, Oak Ridge, TN 37830 USA. [Burrell, K. H.] Gen Atom Co, San Diego, CA 92186 USA. [Solomon, W. M.; Grierson, B. A.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Loch, S. D.; Ballance, C. P.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Chrystal, C.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. RP Burgos, JMM (reprint author), Oak Ridge Inst Sci Educ, Oak Ridge, TN 37830 USA. EM munozj@fusion.gat.com OI Solomon, Wayne/0000-0002-0902-9876 FU US Department of Energy [DE-AC05-06OR23100, DE-FC02-04ER54698, DE-ACO2-09CH11466, DE-AC05-00OR22725]; Auburn University; ADAS consortium; DIII-D Team FX This work was supported in part by the US Department of Energy under DE-AC05-06OR23100, DE-FC02-04ER54698, DE-ACO2-09CH11466 and DE-AC05-00OR22725. The authors wish to acknowledge the support of the atomic physics group at Auburn University, the ADAS consortium and the DIII-D Team. NR 40 TC 1 Z9 1 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD SEP PY 2013 VL 53 IS 9 AR 093012 DI 10.1088/0029-5515/53/9/093012 PG 24 WC Physics, Fluids & Plasmas SC Physics GA 214TZ UT WOS:000324160400014 ER PT J AU Degnan, JH Amdahl, DJ Domonkos, M Lehr, FM Grabowski, C Robinson, PR Ruden, EL White, WM Wurden, GA Intrator, TP Sears, J Weber, T Waganaar, WJ Frese, MH Frese, SD Camacho, JF Coffey, SK Makhin, V Roderick, NF Gale, DG Kostora, M Lerma, A McCullough, JL Sommars, W Kiuttu, GF Bauer, B Fuelling, SR Siemon, RE Lynn, AG Turchi, PJ AF Degnan, J. H. Amdahl, D. J. Domonkos, M. Lehr, F. M. Grabowski, C. Robinson, P. R. Ruden, E. L. White, W. M. Wurden, G. A. Intrator, T. P. Sears, J. Weber, T. Waganaar, W. J. Frese, M. H. Frese, S. D. Camacho, J. F. Coffey, S. K. Makhin, V. Roderick, N. F. Gale, D. G. Kostora, M. Lerma, A. McCullough, J. L. Sommars, W. Kiuttu, G. F. Bauer, B. Fuelling, S. R. Siemon, R. E. Lynn, A. G. Turchi, P. J. TI Recent magneto-inertial fusion experiments on the field reversed configuration heating experiment SO NUCLEAR FUSION LA English DT Article ID TARGET FUSION; THETA-PINCH; PLASMA; COMPRESSION; LINER AB Magneto-inertial fusion (MIF) approaches take advantage of an embedded magnetic field to improve plasma energy confinement by reducing thermal conduction relative to conventional inertial confinement fusion (ICF). MIF reduces required precision in the implosion and the convergence ratio. Since 2008 (Wurden et al 2008 IAEA 2008 Fusion Energy Conf. (Geneva, Switzerland, 13-18 October) IC/P4-13 LA-UR-08-0796) and since our prior refereed publication on this topic (Degnan et al 2008 IEEE Trans. Plasma Sci. 36 80), AFRL and LANL have developed further one version of MIF. We have (1) reliably formed, translated, and captured field reversed configurations (FRCs) in magnetic mirrors inside metal shells or liners in preparation for subsequent compression by liner implosion; (2) imploded a liner with interior magnetic mirror field, obtaining evidence for compression of a 1.36 T field to 540 T; (3) performed a full system experiment of FRC formation, translation, capture, and imploding liner compression operation; (4) identified by comparison of 2D-MHD simulation and experiments factors limiting the closed-field lifetime of FRCs to about half that required for good liner compression of FRCs to multi-keV, 10(19) ion cm(-3), high energy density plasma (HEDP) conditions; and (5) designed and prepared hardware to increase that closed-field FRC lifetime to the required amount. Those lifetime experiments are now underway, with the goal of at least doubling closed-field FRC lifetimes and performing FRC implosions to HEDP conditions this year. These experiments have obtained imaging evidence of FRC rotation, and of initial rotation control measures slowing and stopping such rotation. Important improvements in fidelity of simulation to experiment have been achieved, enabling improved guidance and understanding of experiment design and performance. C1 [Degnan, J. H.; Amdahl, D. J.; Domonkos, M.; Lehr, F. M.; Grabowski, C.; Robinson, P. R.; Ruden, E. L.; White, W. M.] Air Force Res Lab, Directed Energy Directorate, Kirtland AFB, NM 87117 USA. [Wurden, G. A.; Intrator, T. P.; Sears, J.; Weber, T.; Waganaar, W. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Frese, M. H.; Frese, S. D.; Camacho, J. F.; Coffey, S. K.; Makhin, V.; Roderick, N. F.] NumerEx LLC, Albuquerque, NM 87106 USA. [Gale, D. G.; Kostora, M.; Lerma, A.; McCullough, J. L.; Sommars, W.] SAIC, Albuquerque, NM 87113 USA. [Kiuttu, G. F.] VariTech Serv, Albuquerque, NM 87112 USA. [Bauer, B.; Fuelling, S. R.; Siemon, R. E.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Lynn, A. G.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [Turchi, P. J.] Los Alamos Sci Lab, Los Alamos, NM 87545 USA. RP Degnan, JH (reprint author), Air Force Res Lab, Directed Energy Directorate, Kirtland AFB, NM 87117 USA. RI Wurden, Glen/A-1921-2017 OI Wurden, Glen/0000-0003-2991-1484 FU Department of Energy, Office of Fusion Energy Science [IA-DE-AI02-04ER54764] FX This work was supported by The Department of Energy, Office of Fusion Energy Science, Grant IA-DE-AI02-04ER54764. The support and encouragement of Dr Robert E. Peterkin, Jr, Chief Scientist of Air Force Research Laboratory, Directed Energy Directorate is acknowledged and appreciated. NR 34 TC 14 Z9 14 U1 3 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD SEP PY 2013 VL 53 IS 9 AR UNSP 093003 DI 10.1088/0029-5515/53/9/093003 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 214TZ UT WOS:000324160400005 ER PT J AU Diallo, A Canik, J Goerler, T Ku, SH Kramer, GJ Osborne, T Snyder, P Smith, DR Guttenfelder, W Bell, RE Boyle, DP Chang, CS LeBlanc, BP Maingi, R Podesta, M Sabbagh, S AF Diallo, A. Canik, J. Goeerler, T. Ku, S. -H. Kramer, G. J. Osborne, T. Snyder, P. Smith, D. R. Guttenfelder, W. Bell, R. E. Boyle, D. P. Chang, C. -S. LeBlanc, B. P. Maingi, R. Podesta, M. Sabbagh, S. TI Progress in characterization of the pedestal stability and turbulence during the edge-localized-mode cycle on National Spherical Torus Experiment SO NUCLEAR FUSION LA English DT Article ID TOKAMAK AB Progress in characterizing the edge stability and properties of the microinstabilities responsible for enhanced transport in the pedestal region is reported. The stability of the pedestal is characterized in high performance discharges on National Spherical Torus Experiment. These high performance plasmas are found to be ideal kink-peeling and ideal infinite-n ballooning unstable prior to the onset of edge-localized modes (ELM). The spatial structure of turbulence present during an ELM cycle in the pedestal region indicates poloidal spatial scales k(theta)rho(pedi)(i) similar to 0.2 propagating in the ion diamagnetic drift direction at the pedestal top, and radial spatial scales k(r)rho(pedi)(i) similar to 0.7. These propagating spatial scales are found to be poloidally elongated and consistent with ion-scale microturbulence. Both global and local gyrokinetic simulations have been performed to identify the microturbulence structure. The local gyrokinetic analysis indicates the presence of a linearly unstable hybrid kinetic ballooning mode and trapped electron mode with spatial scale and propagation direction consistent with experimental observations. In the global gyrokinetic analysis, the nonlinearly saturated potential fluctuations show radial and poloidal correlation lengths in agreement with experimental density fluctuation correlation length measurements. C1 [Diallo, A.; Ku, S. -H.; Kramer, G. J.; Guttenfelder, W.; Bell, R. E.; Boyle, D. P.; Chang, C. -S.; LeBlanc, B. P.; Maingi, R.; Podesta, M.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08544 USA. [Canik, J.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Goeerler, T.] Max Planck Inst Plasma Phys, Garching, Germany. [Osborne, T.; Snyder, P.] Gen Atom, San Diego, CA USA. [Smith, D. R.] Univ Wisconsin, Dept Engn Phys, Madison, WI USA. [Sabbagh, S.] Columbia Univ, Dept Appl Phys, New York, NY 10027 USA. RP Diallo, A (reprint author), Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08544 USA. EM adiallo@pppl.gov RI Ku, Seung-Hoe/D-2315-2009; OI Ku, Seung-Hoe/0000-0002-9964-1208; Canik, John/0000-0001-6934-6681; Boyle, Dennis/0000-0001-8091-8169; Gorler, Tobias/0000-0002-0851-6699 FU US Dept of Energy [DE-AC02-09CH11466, DE-AC05-00OR22725, DE-SC0001288, DE-FG02-99ER54524] FX A. D. acknowledges useful discussions with N. Crocker and the UCLA group for providing the reflectometer data. We also thank the anonymous referees for their constructive suggestions. This work is supported by US Dept of Energy contracts DE-AC02-09CH11466, DE-AC05-00OR22725, DE-SC0001288, and DE-FG02-99ER54524. A part of this work was carried out using the HELIOS supercomputer system at IFERC-CSC, Aomori, Japan. NR 35 TC 10 Z9 10 U1 1 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD SEP PY 2013 VL 53 IS 9 AR 093026 DI 10.1088/0029-5515/53/9/093026 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 214TZ UT WOS:000324160400028 ER PT J AU Eich, T Leonard, AW Pitts, RA Fundamenski, W Goldston, RJ Gray, TK Herrmann, A Kirk, A Kallenbach, A Kardaun, O Kukushkin, AS LaBombard, B Maingi, R Makowski, MA Scarabosio, A Sieglin, B Terry, J Thornton, A AF Eich, T. Leonard, A. W. Pitts, R. A. Fundamenski, W. Goldston, R. J. Gray, T. K. Herrmann, A. Kirk, A. Kallenbach, A. Kardaun, O. Kukushkin, A. S. LaBombard, B. Maingi, R. Makowski, M. A. Scarabosio, A. Sieglin, B. Terry, J. Thornton, A. CA ASDEX Upgrade Team JET EFDA Contributors TI Scaling of the tokamak near the scrape-off layer H-mode power width and implications for ITER SO NUCLEAR FUSION LA English DT Article ID ALCATOR C-MOD; HEAT-FLUX; JET; FLUCTUATIONS; TRANSPORT; ASDEX AB Amulti-machine database for the H-mode scrape-off layer power fall-off length, lambda(q) in JET, DIII-D, ASDEX Upgrade, C-Mod, NSTX and MAST has been assembled under the auspices of the International Tokamak Physics Activity. Regression inside the database finds that the most important scaling parameter is the poloidal magnetic field (or equivalently the plasma current), with lambda(q) decreasing linearly with increasing B-pol. For the conventional aspect ratio tokamaks, the regression finds lambda(q) alpha B-tor(-0.8). q(95)(1.1).P-SOL(0.1).R-geo(0), yielding lambda(q,) (ITER) congruent to 1mm for the baseline inductive H-mode burning plasma scenario at I-p = 15 MA. The experimental divertor target heat flux profile data, from which lambda(q) is derived, also yield a divertor power spreading factor (S) which, together with lambda(q), allows an integral power decay length on the target to be estimated. There are no differences in the lambda(q) scaling obtained from all-metal or carbon dominated machines and the inclusion of spherical tokamaks has no significant influence on the regression parameters. Comparison of the measured lambda(q) with the values expected from a recently published heuristic drift based model shows satisfactory agreement for all tokamaks. C1 [Eich, T.; Herrmann, A.; Kallenbach, A.; Kardaun, O.; Scarabosio, A.; Sieglin, B.] Max Planck Inst Plasma Phys, D-85748 Garching, Germany. Culham Sci Ctr, JET EFDA, Abingdon OX14 3DB, Oxon, England. [Leonard, A. W.] Gen Atom, San Diego, CA 92186 USA. [Pitts, R. A.; Kukushkin, A. S.] ITER Org, F-13115 St Paul Les Durance, France. [Fundamenski, W.; Kirk, A.; Thornton, A.] EURATOM, Culham Sci Ctr, CCFE, Abingdon, Oxon, England. [Goldston, R. J.; Maingi, R.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Gray, T. K.; Maingi, R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [LaBombard, B.; Terry, J.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Makowski, M. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Eich, T (reprint author), Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany. FU US DOE [DE-FC02-04ER54698, DE-AC02-09CH11466, DE-FC02-99ER54512, DE-AC05-00OR22725, DE-AC52-07NA27344]; EURATOM FX The views and opinions expressed herein do not necessarily reflect those of the ITER Organization. This work was supported in part by the US DOE under DE-FC02-04ER54698 (GA), DE-AC02-09CH11466 (PPPL), DE-FC02-99ER54512 (MIT), DE-AC05-00OR22725 (ORNL), and DE-AC52-07NA27344 (LLNL). This work was supported by EURATOM and carried out within the framework of the European Fusion Development Agreement (EFDA). The views and opinions expressed herein do not necessarily reflect those of the European Commission. NR 29 TC 78 Z9 78 U1 9 U2 54 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD SEP PY 2013 VL 53 IS 9 AR 093031 DI 10.1088/0029-5515/53/9/093031 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 214TZ UT WOS:000324160400033 ER PT J AU Evans, TE Orlov, DM Wingen, A Wu, W Loarte, A Casper, TA Schmitz, O Saibene, G Schaffer, MJ Daly, E AF Evans, T. E. Orlov, D. M. Wingen, A. Wu, W. Loarte, A. Casper, T. A. Schmitz, O. Saibene, G. Schaffer, M. J. Daly, E. TI 3D vacuum magnetic field modelling of the ITER ELM control coil during standard operating scenarios SO NUCLEAR FUSION LA English DT Article ID TOKAMAK PLASMAS; EDGE; PERTURBATIONS; SUPPRESSION; STABILITY; PHYSICS AB In-vessel, non-axisymmetric, control coils have proven to be an important option for mitigating and suppressing edg-elocalized modes (ELMs) in high performance operating regimes on a growing number of tokamaks. Additionally, an in-vessel non-axisymmetric ELM control coil is being considered in the ITER baseline design. In preparing for the initial operation of this coil set, a comprehensive study was carried out to characterize the linear superposition of the 3D vacuum magnetic field, produced by the ELM coil, on a series of equilibria representing nine standard ITER operating scenarios. Here, the spatial phase angle of toroidally distributed currents, specified with a cosine waveform, in the upper and lower rows of the ITER ELM coil (IEC) set is varied in 2 degrees. steps while holding the current in the equatorial row of coils constant. The peak current in each of the three toroidal rows of window-frame coils making up the IEC is scanned between 5 kAt and 90 kAt in 5 kAt steps and the width of the edge region covered by overlapping vacuum field magnetic islands is calculated. This width is compared to a vacuum field ELM suppression correlation criterion found in DIII-D. A minimum coil current satisfying the DIII-D criterion, along with an associated set of phase angles, is identified for each ITER operating scenario. These currents range from 20 kAt to 75 kAt depending on the operating scenario being used and the toroidal mode number (n) of the cosine waveform. Comparisons between the scaling of the divertor footprint area in cases with n = 3 perturbation fields versus those with n = 4 show significant advantages when using n = 3. In addition, it is found that the DIII-D correlation criterion can be satisfied in the event that various combinations of individual IEC window-frame coils need to be turned off due to malfunctioning components located inside the vacuum vessel. Details of these results for both the full set of 27 window-frame coils and various reduced sets, using either n = 3 and n = 4 perturbation fields, are discussed. C1 [Evans, T. E.; Wu, W.; Schaffer, M. J.] Gen Atom, San Diego, CA 92186 USA. [Orlov, D. M.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Wingen, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Loarte, A.; Casper, T. A.; Daly, E.] ITER Org, F-13115 St Paul Les Durance, France. [Schmitz, O.] Forschungszentrum Julich, IEF 4 Euratom Assoc, D-52425 Julich, Germany. [Saibene, G.] Fus Energy Joint Undertaking, Barcelona, Spain. RP Evans, TE (reprint author), Gen Atom, POB 85608, San Diego, CA 92186 USA. EM evans@fusion.gat.com RI Wingen, Andreas/K-8822-2013; Orlov, Dmitriy/D-2406-2016; OI Orlov, Dmitriy/0000-0002-2230-457X; Wingen, Andreas/0000-0001-8855-1349 FU UT BATTELLE, LLC [4000095588]; US Department of Energy [DE-FG02-05ER54809, DE-FG02-07ER54917, DE-AC05-00OR22725]; ITER [C19TD42FU] FX This work was supported by UT BATTELLE, LLC under 4000095588 and the US Department of Energy under DE-FG02-05ER54809, DE-FG02-07ER54917, DE-AC05-00OR22725 and ITER Task Agreement C19TD42FU. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization. NR 34 TC 27 Z9 27 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD SEP PY 2013 VL 53 IS 9 AR 093029 DI 10.1088/0029-5515/53/9/093029 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 214TZ UT WOS:000324160400031 ER PT J AU Groebner, RJ Chang, CS Hughes, JW Maingi, R Snyder, PB Xu, XQ Boedo, JA Boyle, DP Callen, JD Canik, JM Cziegler, I Davis, EM Diallo, A Diamond, PH Elder, JD Eldon, DP Ernst, DR Fulton, DP Landreman, M Leonard, AW Lore, JD Osborne, TH Pankin, AY Parker, SE Rhodes, TL Smith, SP Sontag, AC Stacey, WM Walk, J Wan, W Wang, EHJ Watkins, JG White, AE Whyte, DG Yan, Z Belli, EA Bray, BD Candy, J Churchill, RM Deterly, TM Doyle, EJ Fenstermacher, ME Ferraro, NM Hubbard, AE Joseph, I Kinsey, JE LaBombard, B Lasnier, CJ Lin, Z Lipschultz, BL Liu, C Ma, Y McKee, GR Ponce, DM Rost, JC Schmitz, L Staebler, GM Sugiyama, LE Terry, JL Umansky, MV Waltz, RE Wolfe, SM Zeng, L Zweben, SJ AF Groebner, R. J. Chang, C. S. Hughes, J. W. Maingi, R. Snyder, P. B. Xu, X. Q. Boedo, J. A. Boyle, D. P. Callen, J. D. Canik, J. M. Cziegler, I. Davis, E. M. Diallo, A. Diamond, P. H. Elder, J. D. Eldon, D. P. Ernst, D. R. Fulton, D. P. Landreman, M. Leonard, A. W. Lore, J. D. Osborne, T. H. Pankin, A. Y. Parker, S. E. Rhodes, T. L. Smith, S. P. Sontag, A. C. Stacey, W. M. Walk, J. Wan, W. Wang, E. H. -J. Watkins, J. G. White, A. E. Whyte, D. G. Yan, Z. Belli, E. A. Bray, B. D. Candy, J. Churchill, R. M. Deterly, T. M. Doyle, E. J. Fenstermacher, M. E. Ferraro, N. M. Hubbard, A. E. Joseph, I. Kinsey, J. E. LaBombard, B. Lasnier, C. J. Lin, Z. Lipschultz, B. L. Liu, C. Ma, Y. McKee, G. R. Ponce, D. M. Rost, J. C. Schmitz, L. Staebler, G. M. Sugiyama, L. E. Terry, J. L. Umansky, M. V. Waltz, R. E. Wolfe, S. M. Zeng, L. Zweben, S. J. TI Improved understanding of physics processes in pedestal structure, leading to improved predictive capability for ITER SO NUCLEAR FUSION LA English DT Article ID ALCATOR C-MOD; BOOTSTRAP-CURRENT; ASPECT-RATIO; ARBITRARY COLLISIONALITY; PLASMA-CONFINEMENT; TRANSPORT MODELS; TOKAMAK PLASMAS; CHAPTER 2; DIII-D; TEMPERATURE AB Joint experiment/theory/modelling research has led to increased confidence in predictions of the pedestal height in ITER. This work was performed as part of a US Department of Energy Joint Research Target in FY11 to identify physics processes that control the H-mode pedestal structure. The study included experiments on C-Mod, DIII-D and NSTX as well as interpretation of experimental data with theory-based modelling codes. This work provides increased confidence in the ability of models for peeling-ballooning stability, bootstrap current, pedestal width and pedestal height scaling to make correct predictions, with some areas needing further work also being identified. A model for pedestal pressure height has made good predictions in existing machines for a range in pressure of a factor of 20. This provides a solid basis for predicting the maximum pedestal pressure height in ITER, which is found to be an extrapolation of a factor of 3 beyond the existing data set. Models were studied for a number of processes that are proposed to play a role in the pedestal n(e) and T-e profiles. These processes include neoclassical transport, paleoclassical transport, electron temperature gradient turbulence and neutral fuelling. All of these processes may be important, with the importance being dependent on the plasma regime. Studies with several electromagnetic gyrokinetic codes show that the gradients in and on top of the pedestal can drive a number of instabilities. C1 [Groebner, R. J.; Snyder, P. B.; Leonard, A. W.; Osborne, T. H.; Smith, S. P.; Belli, E. A.; Bray, B. D.; Candy, J.; Deterly, T. M.; Ferraro, N. M.; Kinsey, J. E.; Liu, C.; Ponce, D. M.; Staebler, G. M.; Waltz, R. E.] Gen Atom, San Diego, CA 92186 USA. [Chang, C. S.; Maingi, R.; Boyle, D. P.; Diallo, A.; Zweben, S. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Hughes, J. W.; Davis, E. M.; Ernst, D. R.; Landreman, M.; Walk, J.; White, A. E.; Whyte, D. G.; Churchill, R. M.; Hubbard, A. E.; LaBombard, B.; Lipschultz, B. L.; Ma, Y.; Rost, J. C.; Sugiyama, L. E.; Terry, J. L.; Wolfe, S. M.] MIT, Cambridge, MA 02139 USA. [Xu, X. Q.; Wang, E. H. -J.; Fenstermacher, M. E.; Joseph, I.; Lasnier, C. J.; Umansky, M. V.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Boedo, J. A.; Cziegler, I.; Diamond, P. H.; Eldon, D. P.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Callen, J. D.; Yan, Z.; McKee, G. R.] Univ Wisconsin, Coll Engn, Madison, WI 53706 USA. [Canik, J. M.; Lore, J. D.; Sontag, A. C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Elder, J. D.] Univ Toronto, Inst Aerosp Studies, Toronto, ON M3H 576, Canada. [Fulton, D. P.; Lin, Z.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92616 USA. [Pankin, A. Y.] Tech X, Boulder, CO 80303 USA. [Parker, S. E.; Wan, W.] Univ Colorado Boulder, Dept Phys, Boulder, CO 80309 USA. [Rhodes, T. L.; Doyle, E. J.; Schmitz, L.; Zeng, L.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Rhodes, T. L.; Doyle, E. J.; Schmitz, L.; Zeng, L.] Univ Calif Los Angeles, PSTI, Los Angeles, CA 90095 USA. [Stacey, W. M.] Georgia Inst Technol, Atlanta, GA 30332 USA. [Watkins, J. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Groebner, RJ (reprint author), Gen Atom, POB 85608, San Diego, CA 92186 USA. EM groebner@fusion.gat.com RI Diallo, Ahmed/M-7792-2013; Lipschultz, Bruce/J-7726-2012; Ernst, Darin/A-1487-2010; Landreman, Matt/C-7684-2017; OI Boyle, Dennis/0000-0001-8091-8169; Lipschultz, Bruce/0000-0001-5968-3684; Lore, Jeremy/0000-0002-9192-465X; Eldon, David/0000-0003-1895-0648; Ernst, Darin/0000-0002-9577-2809; Landreman, Matt/0000-0002-7233-577X; Canik, John/0000-0001-6934-6681 FU US Department of Energy [DE-FC02-04ER54698, DE-FG02-95ER54309, DE-FG02-00ER54538, DE-AC52-07NA27344, DE-FC02-93ER54186, DE-AC05-00OR22725, DE-AC02-09CH11466, DE-AC04-94AL85000, DE-FG03-94ER54271, DE-FG02-08ER54984, DE-FG02-07ER54917, DE-FC02-05ER54816, DE-FG02-89ER53296, DE-FG02-08ER54999]; Natural Sciences and Engineering Research Council of Canada FX This work was supported in part by the US Department of Energy under DE-FC02-04ER54698, DE-FG02-95ER54309, DE-FG02-00ER54538, DE-AC52-07NA27344, DE-FC02-93ER54186, DE-AC05-00OR22725, DE-AC02-09CH11466, DE-AC04-94AL85000, DE-FG03-94ER54271, DE-FG02-08ER54984, DE-FG02-07ER54917, DE-FC02-05ER54816, DE-FG02-89ER53296, DE-FG02-08ER54999 and work performed at the University of Toronto was funded by the Natural Sciences and Engineering Research Council of Canada. NR 85 TC 21 Z9 21 U1 2 U2 56 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD SEP PY 2013 VL 53 IS 9 AR 093024 DI 10.1088/0029-5515/53/9/093024 PG 19 WC Physics, Fluids & Plasmas SC Physics GA 214TZ UT WOS:000324160400026 ER PT J AU Guttenfelder, W Peterson, JL Candy, J Kaye, SM Ren, Y Bell, RE Hammett, GW LeBlanc, BP Mikkelsen, DR Nevins, WM Yuh, H AF Guttenfelder, W. Peterson, J. L. Candy, J. Kaye, S. M. Ren, Y. Bell, R. E. Hammett, G. W. LeBlanc, B. P. Mikkelsen, D. R. Nevins, W. M. Yuh, H. TI Progress in simulating turbulent electron thermal transport in NSTX SO NUCLEAR FUSION LA English DT Article ID SPHERICAL TOKAMAK; TEARING INSTABILITIES; ANOMALOUS TRANSPORT; KINETIC-THEORY; MODES; GRADIENT; MICROTURBULENCE; MICROSTABILITY; CONFINEMENT; FACILITY AB Nonlinear simulations based on multiple NSTX discharge scenarios have progressed to help differentiate unique instability mechanisms and to validate with experimental turbulence and transport data. First nonlinear gyrokinetic simulations of microtearing turbulence in a high-beta NSTX H-mode discharge predict experimental levels of electron thermal transport that are dominated by magnetic flutter and increase with collisionality, roughly consistent with energy confinement times in dimensionless collisionality scaling experiments. Electron temperature gradient (ETG) simulations predict significant electron thermal transport in some low-and high-beta discharges when ion scales are suppressed by E x B shear. Although the predicted transport in H-modes is insensitive to variation in collisionality (inconsistent with confinement scaling), it is sensitive to variations in other parameters, particularly density gradient stabilization. In reversed shear L-mode discharges that exhibit electron internal transport barriers, ETG transport has also been shown to be suppressed nonlinearly by strong negative magnetic shear, s << 0. In many high-beta plasmas, instabilities which exhibit a stiff beta dependence characteristic of kinetic ballooning modes (KBMs) are sometimes found in the core region. However, they do not have a distinct finite beta threshold, instead transitioning gradually to a trapped electron mode (TEM) as beta is reduced to zero. Nonlinear simulations of this 'hybrid' TEM/KBM predict significant transport in all channels, with substantial contributions from compressional magnetic perturbations. As multiple instabilities are often unstable simultaneously in the same plasma discharge, even on the same flux surface, unique parametric dependencies are discussed which may be useful for distinguishing the different mechanisms experimentally. C1 [Guttenfelder, W.; Kaye, S. M.; Ren, Y.; Bell, R. E.; Hammett, G. W.; LeBlanc, B. P.; Mikkelsen, D. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Peterson, J. L.; Nevins, W. M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Candy, J.] Gen Atom Co, San Diego, CA 92186 USA. [Yuh, H.] Nova Photon Inc, Princeton, NJ 08540 USA. RP Guttenfelder, W (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM wgutten@pppl.gov RI Hammett, Gregory/D-1365-2011 OI Hammett, Gregory/0000-0003-1495-6647 FU US DOE [DE-AC02-05CH11231]; DOE [DE-AC05-00OR22725, DE-AC02-09CH11466, DE-FG03-95ER54309, DE-AC52-07NA27344, DE-FG02-99ER54527] FX We would like to thank J. Canik, S. Gerhardt and J. Menard for useful discussions. This research used resources of the National Energy Research Scientific Computing Center, supported by US DOE Contract DE-AC02-05CH11231, and the Oak Ridge Leadership Computing Facility, supported by DOE contract DE-AC05-00OR22725. This work was also supported by DOE contracts DE-AC02-09CH11466, DE-FG03-95ER54309, DE-AC52-07NA27344 and DE-FG02-99ER54527. NR 95 TC 26 Z9 26 U1 4 U2 25 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD SEP PY 2013 VL 53 IS 9 AR 093022 DI 10.1088/0029-5515/53/9/093022 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 214TZ UT WOS:000324160400024 ER PT J AU Heidbrink, WW Van Zeeland, MA Austin, ME Bass, EM Ghantous, K Gorelenkov, NN Grierson, BA Spong, DA Tobias, BJ AF Heidbrink, W. W. Van Zeeland, M. A. Austin, M. E. Bass, E. M. Ghantous, K. Gorelenkov, N. N. Grierson, B. A. Spong, D. A. Tobias, B. J. TI The effect of the fast-ion profile on Alfven eigenmode stability SO NUCLEAR FUSION LA English DT Article ID DIII-D TOKAMAK; SPECTROSCOPY; DRIVEN; EXCITATION AB Different combinations of on-axis and off-axis neutral beams are injected into DIII-D plasmas that are unstable to reversed shear Alfven eigenmodes (RSAE) and toroidal Alfven eigenmodes (TAE). The variations alter the classically expected fast-ion gradient. del beta(f) in the plasma interior. Off-axis injection reduces the amplitude of RSAE activity an order of magnitude. Core TAEs are also strongly stabilized. In contrast, at larger minor radius, the fast-ion gradient is similar for on-and off-axis injection and switching the angle of injection has a weaker effect on the stability of TAEs. The average mode amplitude correlates strongly with the classically expected profile but the measured profile relaxes to similar values independent of the fraction of off-axis beams. The observations agree qualitatively with a 'critical-gradient' model of fast-ion transport. C1 [Heidbrink, W. W.] Univ Calif Irvine, Irvine, CA 92717 USA. [Van Zeeland, M. A.] Gen Atom Co, San Diego, CA USA. [Austin, M. E.] Univ Texas Austin, Austin, TX 78712 USA. [Bass, E. M.] Univ Calif San Diego, San Diego, CA 92103 USA. [Ghantous, K.; Gorelenkov, N. N.; Grierson, B. A.; Tobias, B. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Spong, D. A.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Heidbrink, WW (reprint author), Univ Calif Irvine, Irvine, CA 92717 USA. FU US Department of Energy [SC-G903402, DE-FC02-04ER54698, DE-AC02-09CH11466, DE-AC05-0000R22725] FX We thank the DIII-D team for their support. This work was funded by the US Department of Energy under SC-G903402, DE-FC02-04ER54698, DE-AC02-09CH11466 and DE-AC05-0000R22725. NR 39 TC 15 Z9 15 U1 1 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD SEP PY 2013 VL 53 IS 9 AR 093006 DI 10.1088/0029-5515/53/9/093006 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 214TZ UT WOS:000324160400008 ER PT J AU Kessel, CE Wolfe, SM Hutchinson, IH Hughes, JW Lin, Y Ma, Y Mikkelsen, DR Poli, FM Reinke, ML Wukitch, SJ AF Kessel, C. E. Wolfe, S. M. Hutchinson, I. H. Hughes, J. W. Lin, Y. Ma, Y. Mikkelsen, D. R. Poli, F. M. Reinke, M. L. Wukitch, S. J. CA C-Mod Team TI Alcator C-Mod experiments in support of the ITER baseline 15 MA scenario SO NUCLEAR FUSION LA English DT Article ID PLASMA; CONSUMPTION; DENSITY; LIMITS; JET AB Experiments on Alcator C-Mod from 2009-2012 have examined the rampup, flattop and rampdown phases of the proposed ITER 15 MA baseline scenario. Rampup studies show ICRF heating can significantly reduce the V-s requirement, and that an H-mode late in the ramp can reduce this further. ICRF modifications to l(i) in L-mode are minimal, although the T-e profile is peaked relative to ohmic in the plasma centre, and reduces the sawtooth onset times. Flattop plasmas targeting ITER baseline parameters have been sustained for 20 tau(E) or 8 - 13 tau(CR), but only reach H-98 similar to 0.6 at n/n(Gr) = 0.85, rising to 0.9 at n/n(Gr) = 0.65. Rampdown studies show H-modes can be routinely sustained with ICRF power injection, avoiding an OH coil over-current associated with the H-L transition. In addition, faster current rampdowns are preferred to avoid an over-current when an H-L transition ultimately does occur. In the H-mode rampdown the density is found to drop with I-p, preserving the n/n(Gr) ratio, so long as ICRF power is injected. C1 [Kessel, C. E.; Mikkelsen, D. R.; Poli, F. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Wolfe, S. M.; Hutchinson, I. H.; Hughes, J. W.; Lin, Y.; Ma, Y.; Reinke, M. L.; Wukitch, S. J.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. RP Kessel, CE (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM ckessel@pppl.gov RI poli, francesca/C-2226-2008 OI poli, francesca/0000-0003-3959-4371 FU DOE [DE-FC0299ER54512, DE-AC02-09CH11466] FX Work supported by DOE contracts DE-FC0299ER54512 and DE-AC02-09CH11466. NR 15 TC 4 Z9 4 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD SEP PY 2013 VL 53 IS 9 AR 093021 DI 10.1088/0029-5515/53/9/093021 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 214TZ UT WOS:000324160400023 ER PT J AU Olynyk, GM Granetz, RS Reinke, ML Whyte, DG Golfinopoulos, T Hughes, JW Walk, JR Izzo, VA Combs, SK Milora, SL Brookman, MW AF Olynyk, G. M. Granetz, R. S. Reinke, M. L. Whyte, D. G. Golfinopoulos, T. Hughes, J. W. Walk, J. R. Izzo, V. A. Combs, S. K. Milora, S. L. Brookman, M. W. TI Rapid shutdown experiments with one and two gas jets on Alcator C-Mod SO NUCLEAR FUSION LA English DT Article ID DISRUPTION MITIGATION; DIII-D; ITER AB Massive gas injection rapid shutdown experiments have been conducted on the Alcator C-Mod tokamak using two toroidally separated gas injectors, in order to investigate the effect of multiple gas injection locations on the toroidal asymmetry in the radiated power. Toroidal radiation asymmetry is diagnosed by an array of six single-channel photodiodes mounted on the vessel wall. The presence of magnetohydrodynamic (MHD) activity is diagnosed using an array of magnetic pickup (Mirnov) coils, mounted on stalks on the vessel wall. Scans were conducted of the relative timing between the two jets, of the 95th percentile safety factor, and of the plasma elongation. It is observed that firing the two gas jets so that the injected impurities arrive at the plasma at nearly the same time produced an increase in the toroidal radiation asymmetry. In addition, the radiation asymmetry in the thermal quench phase correlates with the growth rate of low toroidal mode number MHD modes, indicating that these mode(s) are playing a role in setting the radiation asymmetry. C1 [Olynyk, G. M.; Granetz, R. S.; Reinke, M. L.; Whyte, D. G.; Golfinopoulos, T.; Hughes, J. W.; Walk, J. R.] MIT Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Izzo, V. A.] UCSD Ctr Energy Res, La Jolla, CA 92093 USA. [Combs, S. K.; Milora, S. L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Brookman, M. W.] Univ Texas Fus Res Ctr, Austin, TX 78712 USA. RP Olynyk, GM (reprint author), MIT Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. EM golynyk@psfc.mit.edu FU United States Department of Energy [DE-FC02-99ER54512]; Canada NSERC PGS D program FX The authors would like to thank the Alcator C-Mod team, including especially the engineers and technical staff, without whom no experiments could be carried out. Valuable discussions with A.N. Tronchin-James are acknowledged. This work was supported by United States Department of Energy Cooperative Agreement DE-FC02-99ER54512 and the Canada NSERC PGS D program. NR 16 TC 13 Z9 13 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD SEP PY 2013 VL 53 IS 9 AR 092001 DI 10.1088/0029-5515/53/9/092001 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 214TZ UT WOS:000324160400001 ER PT J AU Rice, JE Podpaly, YA Reinke, ML Gao, C Shiraiwa, S Terry, JL Theiler, C Wallace, GM Bonoli, PT Brunner, D Churchill, RM Cziegler, I Delgado-Aparicio, L Diamond, PH Faust, IC Fisch, NJ Granetz, RS Greenwald, MJ Hubbard, AE Hughes, JW Hutchinson, IH Irby, JH Lee, J Lin, Y Marmar, ES Mumgaard, R Parker, RR Scott, SD Walk, JR Wolfe, SM Wukitch, SJ AF Rice, J. E. Podpaly, Y. A. Reinke, M. L. Gao, C. Shiraiwa, S. Terry, J. L. Theiler, C. Wallace, G. M. Bonoli, P. T. Brunner, D. Churchill, R. M. Cziegler, I. Delgado-Aparicio, L. Diamond, P. H. Faust, I. C. Fisch, N. J. Granetz, R. S. Greenwald, M. J. Hubbard, A. E. Hughes, J. W. Hutchinson, I. H. Irby, J. H. Lee, J. Lin, Y. Marmar, E. S. Mumgaard, R. Parker, R. R. Scott, S. D. Walk, J. R. Wolfe, S. M. Wukitch, S. J. TI Effects of LHRF on toroidal rotation in Alcator C-Mod plasmas SO NUCLEAR FUSION LA English DT Article ID NO MOMENTUM INPUT; TOKAMAK PLASMA; DIII-D; CYCLOTRON; TRANSPORT; FREQUENCY; JET AB Application of lower hybrid range of frequencies (LHRF) waves can induce both co- and counter-current directed changes in toroidal rotation in Alcator C-Mod plasmas, depending on the target plasma current, electron density, confinement regime and magnetic shear. For ohmic L-mode discharges with good core LH wave absorption, and significant current drive at a fixed LH power near 0.8 MW, the interior (r/a < 0.5) rotation increments (on a time scale of order the current relaxation time) in the counter-current direction if n(e)(10(20) m(-3)) > q(95)/11.5, and in the co-current direction if n(e)(10(20) m(-3)) < q(95)/11.5. All discharges with co-current rotation changes have q(0) > 1, indicating a good correlation with driven current fraction, unifying the results observed on various tokamaks. For high density (n(e) >= 1.2 x 10(20) m(-3)) L-mode target discharges, where core LH wave absorption is low, the rotation change is in the co-current direction, but evolves on a shorter momentum transport time scale, and is seen across the entire spatial profile. For H-mode target plasmas, both co- and counter-current direction increments have been observed with LHRF. The H-mode co-rotation is correlated with the pedestal temperature gradient, which itself is enhanced by the LH waves absorbed in the plasma periphery. The H-mode counter-rotation increment, a flattening of the peaked velocity profile in the core, is consistent with a reduction in the momentum pinch correlated with a steepening of the core density profile. Most of these rotation changes must be due to indirect transport effects of LH waves on various parameters, which modify the momentum flux. C1 [Rice, J. E.; Podpaly, Y. A.; Reinke, M. L.; Gao, C.; Shiraiwa, S.; Terry, J. L.; Theiler, C.; Wallace, G. M.; Bonoli, P. T.; Brunner, D.; Churchill, R. M.; Faust, I. C.; Granetz, R. S.; Greenwald, M. J.; Hubbard, A. E.; Hughes, J. W.; Hutchinson, I. H.; Irby, J. H.; Lee, J.; Lin, Y.; Marmar, E. S.; Mumgaard, R.; Parker, R. R.; Walk, J. R.; Wolfe, S. M.; Wukitch, S. J.] MIT, PSFC, Cambridge, MA 02139 USA. [Cziegler, I.; Diamond, P. H.] Univ Calif San Diego, CMTFO, San Diego, CA 92093 USA. [Delgado-Aparicio, L.; Fisch, N. J.; Scott, S. D.] PPPL, Princeton, NJ 08543 USA. RP Rice, JE (reprint author), MIT, PSFC, 77 Massachusetts Ave, Cambridge, MA 02139 USA. OI Theiler, Christian/0000-0003-3926-1374; Greenwald, Martin/0000-0002-4438-729X FU DoE [DE-FC02-99ER54512] FX The authors thank C. Fenzi, B. Chouli, F. Nave, M. Yoshida, S. Koide and Y. Shi for information regarding LHCD rotation and the Alcator C-Mod operations, LH and ICRF groups for expert running of the tokamak. Work supported at MIT by DoE Contract No DE-FC02-99ER54512 and in part by an appointment to the US DOE Fusion Energy Postdoctoral Research Programme administered by ORISE. NR 78 TC 11 Z9 12 U1 5 U2 29 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD SEP PY 2013 VL 53 IS 9 AR 093015 DI 10.1088/0029-5515/53/9/093015 PG 17 WC Physics, Fluids & Plasmas SC Physics GA 214TZ UT WOS:000324160400017 ER PT J AU Solomon, WM Politzer, PA Buttery, RJ Holcomb, CT Ferron, JR Garofalo, AM Grierson, BA Hanson, JM In, Y Jackson, GL Kinsey, JE La Haye, RJ Lanctot, MJ Luce, TC Okabayashi, M Petty, CC Turco, F Welander, AS AF Solomon, W. M. Politzer, P. A. Buttery, R. J. Holcomb, C. T. Ferron, J. R. Garofalo, A. M. Grierson, B. A. Hanson, J. M. In, Y. Jackson, G. L. Kinsey, J. E. La Haye, R. J. Lanctot, M. J. Luce, T. C. Okabayashi, M. Petty, C. C. Turco, F. Welander, A. S. TI Access to high beta advanced inductive plasmas at low injected torque SO NUCLEAR FUSION LA English DT Article ID NEOCLASSICAL TEARING MODE; CYCLOTRON CURRENT DRIVE; DIII-D; STABILIZATION; CONFINEMENT; PERFORMANCE; DISCHARGES; TRANSPORT; TOKAMAKS; ITER AB Recent experiments on DIII-D demonstrate that advanced inductive (AI) discharges with high equivalent normalized fusion gain can be accessed and sustained with very low amounts (similar to 1Nm) of externally injected torque, a level of torque that is anticipated to drive a similar amount of rotation as the beams on ITER, via simple consideration of the scaling of the moment of inertia and confinement time. The AI regime is typically characterized by high confinement, and high beta(N), allowing the possibility for high performance, high gain operation at reduced plasma current. Discharges achieved beta(N) similar to 3.1 with H-98(y,H-2) similar to 1 at q(95) similar to 4, and are sustained for the maximum duration of the counter neutral beams (NBs). In addition, plasmas using zero net NB torque from the startup all the way through to the high beta(N) phase have been created. AI discharges are found to become increasingly susceptible to m/n = 2/1 neoclassical tearing modes as the torque is decreased, which if left unmitigated, generally slow and lock, terminating the high performance phase of the discharge. Access is not notably different whether one ramps the torque down at high beta(N), or ramps beta(N) up at low torque. The use of electron cyclotron heating (ECH) and current drive proved to be an effective method of avoiding such modes, enabling stable operation at high beta and low torque, a portion of phase space that has otherwise been inaccessible. Thermal confinement is significantly reduced at low rotation, a result that is reproduced using the TGLF transport model. Although it is thought that stiffness is increased in regions of low magnetic shear, in these AI plasmas, the reduced confinement occurs at radii outside the low shear, and in fact, higher temperature gradients can be found in the low shear region at low rotation. Momentum transport is also larger at low rotation, but a significant intrinsic torque is measured that is consistent with a previous scaling considering the role of the turbulent Reynolds stress and thermal ion orbit loss. Although high normalized fusion performance has been achieved in these discharges, more detailed projections suggest that enhancement in the confinement needs to be realized in order to obtain a low current solution consistent with ITER Q = 10 performance, and this remains a future research challenge. C1 [Solomon, W. M.; Grierson, B. A.; Okabayashi, M.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Politzer, P. A.; Buttery, R. J.; Ferron, J. R.; Garofalo, A. M.; Jackson, G. L.; Kinsey, J. E.; La Haye, R. J.; Luce, T. C.; Petty, C. C.; Welander, A. S.] Gen Atom, San Diego, CA 92186 USA. [Hanson, J. M.; Turco, F.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [In, Y.] FAR TECH Inc, San Diego, CA 92121 USA. [Holcomb, C. T.; Lanctot, M. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Solomon, WM (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM wsolomon@pppl.gov RI Lanctot, Matthew J/O-4979-2016; OI Lanctot, Matthew J/0000-0002-7396-3372; Solomon, Wayne/0000-0002-0902-9876 FU US Department of Energy [DE-AC02-09CH11466, DE-FC02-04ER54698, DE-FG02-04ER54761, DE-FG02-08ER85195, DE-AC52-07NA27344] FX This work was supported by the US Department of Energy under DE-AC02-09CH11466, DE-FC02-04ER54698, DE-FG02-04ER54761, DE-FG02-08ER85195 and DE-AC52-07NA27344. NR 31 TC 6 Z9 6 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD SEP PY 2013 VL 53 IS 9 AR 093033 DI 10.1088/0029-5515/53/9/093033 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 214TZ UT WOS:000324160400035 ER PT J AU Belova, IV Kulkarni, NS Sohn, YH Murch, GE AF Belova, I. V. Kulkarni, N. S. Sohn, Y. H. Murch, G. E. TI Simultaneous measurement of tracer and interdiffusion coefficients: an isotopic phenomenological diffusion formalism for the binary alloy SO PHILOSOPHICAL MAGAZINE LA English DT Article DE diffusion; SIMS; theoretical ID VACANCIES; TRANSPORT; SOLIDS AB In this paper, a new development of the classic Onsager phenomenological formalism is derived using relations based on linear response theory. The development concerns the correct description of the fluxes of the atomic isotopes. The resulting expressions in the laboratory frame are surprisingly simple and consist of terms coming from the standard interdiffusion expressions and from Fick's first law, where the tracer diffusion coefficient is involved thus providing a better understanding of the relationship between the two approaches - Fick's first law and the Onsager phenomenological formalism. From an experimental application perspective, the new development is applied to the binary alloy case. The formalism provides the means to obtain the interdiffusion coefficient and tracer diffusion coefficients simultaneously from analysis of the interdiffusion composition profiles in a single experiment. C1 [Belova, I. V.; Murch, G. E.] Univ Newcastle, Ctr Mass & Thermal Transport Engn Mat, Callaghan, NSW 2308, Australia. [Kulkarni, N. S.] Oak Ridge Natl Lab, Measurement Sci & Syst Engn Div, Oak Ridge, TN USA. [Sohn, Y. H.] Univ Cent Florida, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. [Sohn, Y. H.] Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Orlando, FL 32816 USA. RP Belova, IV (reprint author), Univ Newcastle, Ctr Mass & Thermal Transport Engn Mat, Callaghan, NSW 2308, Australia. EM Irina.Belova@newcastle.edu.au RI Sohn, Yongho/A-8517-2010 OI Sohn, Yongho/0000-0003-3723-4743 FU Australian Research Council [DP130101464]; US Department of Energy, Office of Vehicle Technologies, Automotive Lightweight Materials Program [DE-AC05-00OR22725]; UT-Battelle, LLC FX The authors (IVB and GEM) gratefully acknowledge encouraging discussions with emeritus professor Alan Allnatt (University of Western Ontario).This research was primarily supported under the Australian Research Council Discovery Projects funding scheme (project number DP130101464). Two of the authors (Kulkarni and Sohn) are also grateful for the financial support from the US Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, Automotive Lightweight Materials Program under contract DE-AC05-00OR22725 with UT-Battelle, LLC. NR 11 TC 11 Z9 12 U1 0 U2 6 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PD SEP 1 PY 2013 VL 93 IS 26 BP 3515 EP 3526 DI 10.1080/14786435.2013.813982 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 210EY UT WOS:000323813300005 ER PT J AU Yu, KY Sun, C Chen, Y Liu, Y Wang, H Kirk, MA Li, M Zhang, X AF Yu, K. Y. Sun, C. Chen, Y. Liu, Y. Wang, H. Kirk, M. A. Li, M. Zhang, X. TI Superior tolerance of Ag/Ni multilayers against Kr ion irradiation: an in situ study SO PHILOSOPHICAL MAGAZINE LA English DT Article DE Ag/Ni; in situ radiation; Kr; interface ID RADIATION-DAMAGE; GRAIN-SIZE; FISSION NEUTRONS; VOID FORMATION; COMPOSITES; BOUNDARIES; ENERGY; INTERFACES; REDUCTION; METALS AB Monolithic Ag and Ni films and Ag/Ni multilayers with individual layer thickness of 5 and 50nm were subjected to in situ Kr ion irradiation at room temperature to 1 displacement-per-atom (a fluence of 2x10(14)ions/cm(2)). Monolithic Ag has high density of small loops (4nm in diameter), whereas Ni has fewer but much greater loops (exceeding 20nm). In comparison, dislocation loops, approximate to 4nm in diameter, were the major defects in the irradiated Ag/Ni 50nm film, while the loops were barely observed in the Ag/Ni 5nm film. At 0.2dpa (0.4x10(14)ions/cm), defect density in both monolithic Ag and Ni saturated at 1.6 and 0.2x10(23)/m(3), compared with 0.8x10(23)/m(3) in Ag/Ni 50nm multilayer at a saturation fluence of approximate to 1dpa (2x10(14)ions/cm(2)). Direct observations of frequent loop absorption by layer interfaces suggest that these interfaces are efficient defect sinks. Ag/Ni 5nm multilayer showed a superior morphological stability against radiation compared to Ag/Ni 50nm film. C1 [Yu, K. Y.; Sun, C.; Chen, Y.; Liu, Y.; Wang, H.; Zhang, X.] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA. [Wang, H.] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. [Kirk, M. A.] Argonne Natl Lab, Mat Sci Div, Argonne, IL 60439 USA. [Li, M.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Zhang, X.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. RP Zhang, X (reprint author), Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA. EM zhangx@tamu.edu RI Sun, Cheng/G-8953-2013; Yu, Kaiyuan /B-8398-2014; Liu, Yue/H-4071-2014; Zhang, Xinghang/H-6764-2013; Wang, Haiyan/P-3550-2014; Chen, Youxing/P-5006-2016 OI Sun, Cheng/0000-0002-1368-243X; Yu, Kaiyuan /0000-0002-5442-2992; Liu, Yue/0000-0001-8518-5734; Zhang, Xinghang/0000-0002-8380-8667; Wang, Haiyan/0000-0002-7397-1209; Chen, Youxing/0000-0003-1111-4495 FU US Army Research Office - Materials Science Division [W911NF-09-1-0223]; DOE-NEUP [DE-AC07-05ID14517-00088120]; NSF-DMR metallic materials and nanostructures program [0644835]; DOE-BES FX We acknowledge financial support by US Army Research Office - Materials Science Division, under contract no. W911NF-09-1-0223. Radiation effort was partially supported by DOE-NEUP under contract no. DE-AC07-05ID14517-00088120. Y. Liu and a portion of TEM work were supported by NSF-DMR metallic materials and nanostructures program, under grant no. 0644835. We also thank Edward A. Ryan and Peter M. Baldo at Argonne National Laboratory for their help during in situ experiments. The IVEM facility at Argonne National Laboratory is supported by DOE-BES. NR 38 TC 17 Z9 17 U1 1 U2 26 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PD SEP 1 PY 2013 VL 93 IS 26 BP 3547 EP 3562 DI 10.1080/14786435.2013.815378 PG 16 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 210EY UT WOS:000323813300007 ER PT J AU Allegrini, F Dayeh, MA Desai, MI Funsten, HO Fuselier, SA Janzen, PH McComas, DJ Mobius, E Reisenfeld, DB Rodriguez, MDF Schwadron, N Wurz, P AF Allegrini, F. Dayeh, M. A. Desai, M. I. Funsten, H. O. Fuselier, S. A. Janzen, P. H. McComas, D. J. Moebius, E. Reisenfeld, D. B. Rodriguez, D. F. M. Schwadron, N. Wurz, P. TI Lunar energetic neutral atom (ENA) spectra measured by the interstellar boundary explorer (IBEX) SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Energetic neutral atoms; ENA Moon albedo; Solar wind; IBEX ID CHANDRAYAAN-1 MISSION; INSTRUMENT; MOON AB The solar wind continuously flows out from the Sun, filling interplanetary space and directly interacting with the surfaces of small planetary bodies and other objects throughout the solar system. A significant fraction of these ions backscatter from the surface as energetic neutral atoms (ENAs). The first observations of these ENA emissions from the Moon were recently reported from the Interstellar Boundary Explorer (IBEX). These observations yielded a lunar ENA albedo of similar to 10% and showed that the Moon reflects similar to 150 metric tons of neutral hydrogen per year. More recently, a survey of the first 2.5 years of IBEX observations of lunar ENAs was conducted for times when the Moon was in the solar wind. Here, we present the first IBEX ENA observations when the Moon is inside the terrestrial magnetosheath and compare them with observations when the Moon is in the solar wind. Our analysis shows that: (1) the ENA intensities are on average higher when the Moon is in the magnetosheath, (2) the energy spectra are similar above similar to 0.6* solar wind energy but below there are large differences of the order of a factor of 10, (3) the energy spectra resemble a power law with a "hump" at similar to 0.6 * solar wind energy, and (4) this "hump" is broader when the Moon is in the magnetosheath. We explore potential scenarios to explain the differences, namely the effects of the topography of the lunar surface and the consequences of a very different Mach number in the solar wind versus in the magnetosheath. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Allegrini, F.; Dayeh, M. A.; Desai, M. I.; Fuselier, S. A.; McComas, D. J.] SW Res Inst, San Antonio, TX 78228 USA. [Allegrini, F.; Desai, M. I.; McComas, D. J.] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX 78249 USA. [Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Janzen, P. H.; Reisenfeld, D. B.] Univ Montana, Missoula, MT 59812 USA. [Moebius, E.; Schwadron, N.] Univ New Hampshire, Ctr Space Sci, Dept Phys & Astron, Durham, NH 03824 USA. [Rodriguez, D. F. M.; Wurz, P.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. RP Allegrini, F (reprint author), SW Res Inst, PO Drawer 28510, San Antonio, TX 78228 USA. EM fallegrini@swri.edu RI Funsten, Herbert/A-5702-2015; Reisenfeld, Daniel/F-7614-2015; OI Funsten, Herbert/0000-0002-6817-1039; Moebius, Eberhard/0000-0002-2745-6978 FU Swiss national Science Foundation FX We acknowledge the use of ACE and Wind solar wind data, provided through the OMNIWeb Plus data at Goddard Space Flight Center through their public through their public interface. Simulation results have been provided by the Community Coordinated Modeling Center at Goddard Space Flight Center through their public Runs on Request system (http://ccmc.gsfc.nasa.gov). The CCMC is a multi-agency partnership between NASA, AFMC, AFOSR, AFRL, AFWA, NOAA, NSF and ONR. The BATSRUS Model was developed by the Dr. Tamas Gombosi et al. at the Center for Space Environment Modeling, University of Michigan. We also acknowledge the use of a Clementine basemap V2 map obtained from NASA PDS Imaging Node, USGS Astrogeology Research Program. D.F.R.M. and P.W. acknowledge the financial support by the Swiss national Science Foundation. NR 25 TC 7 Z9 7 U1 1 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD SEP 1 PY 2013 VL 85 BP 232 EP 242 DI 10.1016/j.pss.2013.06.014 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 217MR UT WOS:000324364100018 ER PT J AU Inabinett, D Knight, T Adams, T Gray, J AF Inabinett, D. Knight, T. Adams, T. Gray, J. TI Study of XeF2 fluorination potential against SrO, MoO3, and Nb2O5 in TG/DTA for use in reactive gas recycle SO PROGRESS IN NUCLEAR ENERGY LA English DT Article DE Xenon difluoride; TG/DTA; Reactive gas recycle; Reprocessing; Fluorination; Used nuclear fuel ID FLUORIDE VOLATILITY METHOD; FUEL AB Oxides SrO, MoO3, and Nb2O5, simulating parts of the Used Nuclear Fuel (UNF) matrix were fluorinated using XeF2 to form volatile and non-volatile compounds to demonstrate the possibility of a chemical and thermal separations. Experiments were conducted using a TG/DTA instrument at the milligram quantity scale, and XRD enabled confirmation for the fluorination reaction when sample residues were present. The study of these chemistries could be incorporated into advanced separations methods to provide another possible solution for the long-term, sustainability of nuclear power as the issue of reuse and disposal of commercial fuel continues to grow. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Inabinett, D.; Knight, T.] Univ S Carolina, Columbia, SC 29208 USA. [Adams, T.; Gray, J.] Savannah River Natl Lab, Savannah, GA USA. RP Knight, T (reprint author), Univ S Carolina, 300 Main St, Columbia, SC 29208 USA. EM knighttw@cec.sc.edu OI Knight, Travis/0000-0002-8517-7395 FU National Academy for Nuclear Training (NANT) FX The authors Wish to acknowledge Joe Teprovich for his assistance in the XRD analysis. Thanks are also given to SRNL's internship program which allowed Dillon Inabinett to join the RGR research team and complete this research. Finally, the authors would like to thank the National Academy for Nuclear Training (NANT) in providing a fellowship to fund Dillon Inabinett in his pursuit of a Master's Degree. NR 6 TC 1 Z9 1 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0149-1970 J9 PROG NUCL ENERG JI Prog. Nucl. Energy PD SEP PY 2013 VL 68 BP 16 EP 19 DI 10.1016/j.pnucene.2013.05.002 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 218TT UT WOS:000324456100002 ER PT J AU Tian, HM Mancilla-David, F Ellis, K Muljadi, E Jenkins, P AF Tian, Hongmei Mancilla-David, Fernando Ellis, Kevin Muljadi, Eduard Jenkins, Peter TI Determination of the optimal configuration for a photovoltaic array depending on the shading condition SO SOLAR ENERGY LA English DT Article DE Photovoltaic array; Shading effects; Optimal configuration; Mathematical simulation; Outdoor measurement ID MODEL AB This paper utilizes the cell-to-module-to-array model to investigate the effects of temperature and shading on the performance of a photovoltaic (PV) array. Three shading conditions for a PV array were investigated: (1) each module operates at the same cell temperature, but at a different irradiation level; (2) each module operates at the same irradiation level, but at a different cell temperature; (3) each module operates at a different cell temperature and irradiation level. Current voltage (I-V) and power voltage (P-V) curves were calculated from model results for each shading condition and the effect of the bypass diode. Model results were used to determine the optimal configuration depending on the shading condition. Outdoor experiments were performed to validate model results using a four module array composed of Kyocera's KC85TS PV panels. Measured I-V and P-V curves were obtained for different configurations of the PV array under natural shading conditions. Model results and outdoor measurement show good agreement and reveal that I-V curves display step behavior while P-V curves exhibit multiple extrema behavior. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Tian, Hongmei; Mancilla-David, Fernando] Univ Colorado, Dept Elect Engn, Denver, CO 80217 USA. [Tian, Hongmei] Shenzhen Polytech, Ind Training Ctr, Shenzhen 518055, Guangdong, Peoples R China. [Muljadi, Eduard] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Ellis, Kevin; Jenkins, Peter] Univ Colorado, Dept Mech Engn, Denver, CO 80217 USA. RP Mancilla-David, F (reprint author), Univ Colorado, Dept Elect Engn, 1200 Larimer St, Denver, CO 80217 USA. EM hmtian@szpt.edu.cn; Fernando.Mancilla-David@ucdenver.edu; kevin.ellis86@gmail.com; eduard.muljadi@nrel.gov; Peter.Jenkins@ucdenver.edu NR 20 TC 19 Z9 19 U1 0 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD SEP PY 2013 VL 95 BP 1 EP 12 DI 10.1016/j.solener.2013.05.028 PG 12 WC Energy & Fuels SC Energy & Fuels GA 212WN UT WOS:000324013600001 ER PT J AU Ho, CK Sment, J Yuan, J Sims, CA AF Ho, Clifford K. Sment, Jeremy Yuan, James Sims, Cianan A. TI Evaluation of a reflective polymer film for heliostats SO SOLAR ENERGY LA English DT Article DE Heliostat; Polymer film; SMF1100; Beam quality AB Commercially available Solar Mirror Film (SMF) 1100 from 3M was evaluated for application in concentrating solar power tower applications, where large arrays of heliostats are used to reflect and concentrate sunlight toward a central receiver at potentially large distances. The reflectance and soiling rate of SMF1100 was compared to silvered glass mirrors during outdoor exposure for over a year. In addition, the reflected beam quality and peak flux resulting from solar reflections from SMF1100 and silvered glass facets at distances up to 1700 m were compared. Results showed that the impacts of soiling and outdoor exposure on the solar-weighted reflectance of coupons of SMF1100 did not differ significantly from that of silvered glass over a year of testing. However, the initial (clean) specular reflectance (at 660 nm) of SMF1100 was found to be similar to 2-4% lower than that of silvered glass for acceptance angles ranging from 25 mrad to 15 mrad, which contributed to a lower overall heliostat beam power projected onto the tower similar to 200 m away when compared to an adjacent heliostat with silvered glass. The peak flux was measured from individual facets with SMF1100 and silvered glass at distances up to similar to 1700 m. Slight differences existed in the focal length, specular reflectance, and time of testing of the individual facets, but results showed that the mean of the measured peak fluxes (normalized to the direct normal irradiance at the time of testing) of the SMF100 and silvered glass facets were statistically similar. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Ho, Clifford K.; Sment, Jeremy; Yuan, James; Sims, Cianan A.] Sandia Natl Labs, Concentrating Solar Technol Dept, Albuquerque, NM 87185 USA. RP Ho, CK (reprint author), Sandia Natl Labs, Concentrating Solar Technol Dept, POB 5800, Albuquerque, NM 87185 USA. EM ckho@sandia.gov FU US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors thank Mark O'Neill, Mark Speir, Roger Buck, Joe Eaton, Ed Smith, J.J. Kelton, Daniel Ray, Bradley Ho, and Cheryl Ghanbari for their assistance with the testing. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 9 TC 2 Z9 2 U1 0 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD SEP PY 2013 VL 95 BP 229 EP 236 DI 10.1016/j.solener.2013.06.015 PG 8 WC Energy & Fuels SC Energy & Fuels GA 212WN UT WOS:000324013600020 ER PT J AU Forst, M Mankowsky, R Bromberger, H Fritz, DM Lemke, H Zhu, D Chollet, M Tomioka, Y Tokura, Y Merlin, R Hill, JP Johnson, SL Cavalleri, A AF Foerst, M. Mankowsky, R. Bromberger, H. Fritz, D. M. Lemke, H. Zhu, D. Chollet, M. Tomioka, Y. Tokura, Y. Merlin, R. Hill, J. P. Johnson, S. L. Cavalleri, A. TI Displacive lattice excitation through nonlinear phononics viewed by femtosecond X-ray diffraction SO SOLID STATE COMMUNICATIONS LA English DT Article DE Correlated electron systems; Ionic Raman Scattering; Nonlinear phononics; Time-resolved hard X-ray diffraction ID RAMAN-SCATTERING; METAL TRANSITION; SUPERCONDUCTIVITY; VISUALIZATION; MANGANITE; LAMNO3; PHASE AB The nonlinear lattice dynamics of La0.7Sr0.3MnO3, as initiated by strong mid-infrared femtosecond pulses made resonant with a specific lattice vibration, are measured with ultrafast X-ray diffraction at the LCLS free electron laser. Our experiments show that large amplitude excitation of an infrared-active stretching mode leads also to a displacive motion along the coordinate of a second, anharmonically coupled, Raman mode. This rectification of the vibrational field is described within the framework of the Ionic Raman Scattering theory and explains how direct lattice excitation in the nonlinear regime can induce a structural phase transition. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Foerst, M.; Mankowsky, R.; Bromberger, H.; Cavalleri, A.] Max Planck Inst Struct & Dynam Matter, D-22761 Hamburg, Germany. [Fritz, D. M.; Lemke, H.; Zhu, D.; Chollet, M.] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. [Tomioka, Y.] AIST, Correlated Electron Engn Grp, Tsukuba, Ibaraki 3058562, Japan. [Tokura, Y.] Univ Tokyo, Dept Appl Phys, Tokyo 1138656, Japan. [Merlin, R.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Hill, J. P.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Johnson, S. L.] ETH, Inst Quantum Elect, Dept Phys, CH-8093 Zurich, Switzerland. [Cavalleri, A.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. RP Forst, M (reprint author), Max Planck Inst Struct & Dynam Matter, D-22761 Hamburg, Germany. EM michael.foerst@mpsd.cfel.de; andrea.cavalleri@mpsd.cfel.de RI Zhu, Diling/D-1302-2013; Forst, Michael/D-8924-2012; Johnson, Steven/B-3252-2008; Tokura, Yoshinori/C-7352-2009; Lemke, Henrik Till/N-7419-2016; OI Johnson, Steven/0000-0001-6074-4894; Lemke, Henrik Till/0000-0003-1577-8643; Merlin, Roberto/0000-0002-5584-0248 FU US Department of Energy, Division of Materials Science [DE-AC02-98CH10886] FX Work performed at Brookhaven National Laboratory was supported by the US Department of Energy, Division of Materials Science, under Contract no. DE-AC02-98CH10886. NR 25 TC 17 Z9 17 U1 2 U2 47 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 J9 SOLID STATE COMMUN JI Solid State Commun. PD SEP PY 2013 VL 169 BP 24 EP 27 DI 10.1016/j.ssc.2013.06.024 PG 4 WC Physics, Condensed Matter SC Physics GA 218SI UT WOS:000324452400006 ER PT J AU McManamay, RA Orth, DJ Dolloff, CA AF McManamay, Ryan A. Orth, Donald J. Dolloff, Charles A. TI Macroinvertebrate Community Responses to Gravel Addition in a Southeastern Regulated River SO SOUTHEASTERN NATURALIST LA English DT Article ID BENTHIC INVERTEBRATE COMMUNITIES; STREAM HABITAT RESTORATION; CALIFORNIA RIVER; ECOSYSTEM; ASSEMBLAGES; REHABILITATION; DISTURBANCE; DIVERSITY; DYNAMICS; RECOVERY AB Sediment transport, one of the key processes of river systems, is altered or stopped by dams, leaving lower river reaches barren of sand and gravel, both of which are essential habitat for fish and macroinvertebrates. One way to compensate for losses in sediment is to supplement gravel to river reaches below impoundments. Because gravel addition has become a widespread practice, it is essential to evaluate the biotic response to restoration projects in order to improve the efficacy of future applications. The purpose of our study was to evaluate the response of the macroinvertebrate community to gravel addition in a high-gradient, regulated river in western North Carolina. We collected benthic macroinvertebrate samples from gravel-enhanced areas and unenhanced areas for 1 season before gravel addition, and for 4 seasons afterwards. Repeated measures multivariate analysis of variance indicated that the responses of macroinvertebrates to gravel addition were generally specific to individual taxa or particular functional feeding groups and did not lead to consistent patterns in overall family richness, diversity, density, or evenness. Non-metric multi-dimensional scaling showed that shifts in macroinvertebrate community composition were temporary and dependent upon site conditions and season. Correlations between macroinvertebrate response variables and substrate microhabitat variables existed with or without the inclusion of data from enhanced areas, which suggests that substrate-biotic relationships were present before gravel addition. A review of the current literature suggests that the responses of benthic macroinvertebrates to substrate restoration are inconsistent and dependent upon site conditions and the degree habitat improvement of pre-restoration site conditions. C1 [McManamay, Ryan A.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Orth, Donald J.] Virginia Polytech Inst & State Univ, Dept Fish & Wildlife Conservat, Blacksburg, VA 24061 USA. [Dolloff, Charles A.] Virginia Polytech Inst & State Univ, US Forest Serv, USDA, Dept Fish & Wildlife Conservat, Blacksburg, VA 24061 USA. RP McManamay, RA (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM mcmanamayra@ornl.gov FU Cheoah Fund Board; Alcoa Power; USDA Forest Service; US Fish and Wildlife Service; North Carolina Wildlife Resources Commission; NC Division of Water Resources-DENR; Sigma Xi Scientific Research Society FX This work was funded by the Cheoah Fund Board, a multi-agency collaboration between Alcoa Power, USDA Forest Service, US Fish and Wildlife Service, North Carolina Wildlife Resources Commission, and the NC Division of Water Resources-DENR, and other grants provided by the USDA Forest Service. Funding was also provided through the Grants-in-Aid-of-Research program through Sigma Xi Scientific Research Society. We thank Travis Patton, Toby Coyner, and Rachel McManamay for their assistance in the field and Jason Herrala for his assistance in the lab. We also thank John Smith for his assistance with statistical procedures. NR 49 TC 1 Z9 1 U1 2 U2 38 PU HUMBOLDT FIELD RESEARCH INST PI STEUBEN PA PO BOX 9, STEUBEN, ME 04680-0009 USA SN 1528-7092 J9 SOUTHEAST NAT JI Southeast. Nat. PD SEP PY 2013 VL 12 IS 3 BP 599 EP 618 DI 10.1656/058.012.0313 PG 20 WC Biodiversity Conservation; Ecology SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 217RW UT WOS:000324378800013 ER PT J AU Aruga, Y Nako, H Tsuneishi, H Hasegawa, Y Tao, H Ichihara, C Serizawa, A AF Aruga, Yasuhiro Nako, Hidenori Tsuneishi, Hidemasa Hasegawa, Yuki Tao, Hiroaki Ichihara, Chikara Serizawa, Ai TI Effect of Mg or Ag addition on the evaporation field of Al SO ULTRAMICROSCOPY LA English DT Article; Proceedings Paper CT 53rd International Field Emission Symposium (IFES) CY MAY 21-25, 2013 CL Tuscaloosa, AL DE Atom probe tomography; Evaporation field; Image force model; Work function; Binding energy; Al alloy ID 3D ATOM-PROBE; TEMPERATURE; IONS AB It is known that the distribution of the charge-states as well as the evaporation field shift to higher values as the specimen temperature is decreased at a constant rate of evaporation. This study has explored the effect of Mg or Ag addition on the evaporation field of Al in terms of the charge state distribution of the field evaporated Al ions. The fractional abundance of Al2+ ions with respect to the total Al ions in Al-Mg alloy is lower than that in pure Al, whereas it shows higher level in the Al-Ag alloy at lower temperatures. The temperature dependence of the fractional abundance of Al2+ ions has been also confirmed, suggesting that Al atoms in the Al-Mg alloy need lower evaporation field, while higher field is necessary to evaporate Al atoms in the Al-Ag alloy, compared with pure Al. This tendency is in agreement with that of the evaporation fields estimated theoretically by means of measurements of the work function and calculations of the binding energy of the pure Al, Al-Mg and Al-Ag alloys. (C) 2012 Elsevier B.V. All rights reserved. C1 [Aruga, Yasuhiro; Nako, Hidenori] Kobe Steel Ltd, Mat Res Lab, Nishi Ku, Kobe, Hyogo 6512271, Japan. [Tsuneishi, Hidemasa; Hasegawa, Yuki] Kobelco Res Inst Inc, Div Elect, Nishi Ku, Kobe, Hyogo 6512271, Japan. [Tao, Hiroaki; Ichihara, Chikara] Kobe Steel Ltd, Elect Res Lab, Nishi Ku, Kobe, Hyogo 6512271, Japan. [Serizawa, Ai] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Aruga, Y (reprint author), Kobe Steel Ltd, Mat Res Lab, Nishi Ku, 1-5-5Takatsukadai, Kobe, Hyogo 6512271, Japan. EM aruga.yasuhiro@kobelco.com FU Office of Basic Energy Sciences, US Department of Energy [DE-AC05-000R22725]; UT-Battelle, LLC. FX This research was conducted at the Oak Ridge National Laboratory SHaRE User Facility, which is sponsored by the Office of Basic Energy Sciences, US Department of Energy, under Contract no, DE-AC05-000R22725 with UT-Battelle, LLC. The authors thank Dr. Michael K. Miller of ORNL for fruitful discussions and Dr. Baptiste Gault of McMaster University for helpful comments. NR 17 TC 1 Z9 1 U1 3 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 EI 1879-2723 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD SEP PY 2013 VL 132 BP 31 EP 35 DI 10.1016/j.ultramic.2012.10.011 PG 5 WC Microscopy SC Microscopy GA 215UF UT WOS:000324235500006 PM 23234834 ER PT J AU Broderick, SR Bryden, A Suram, SK Rajan, K AF Broderick, Scott R. Bryden, Aaron Suram, Santosh K. Rajan, Krishna TI Data mining for isotope discrimination in atom probe tomography SO ULTRAMICROSCOPY LA English DT Article; Proceedings Paper CT 53rd International Field Emission Symposium (IFES) CY MAY 21-25, 2013 CL Tuscaloosa, AL DE Atom probe tomography (APT); Eigenvalue decomposition; Kinetic energy discrimination; Principal component analysis (PCA); Data visualization ID SPECTRA; ENERGY AB Ions with similar time (TOP) can be discriminated by mapping their kinetic energy. While current generation position sensitive detectors have been considered insufficient for capturing the isotope kinetic energy, we demonstrate in this paper that statistical learning methodologies can be used to capture the kinetic energy from all or the parameters currently measured by mathematically transforming the signal. This approach works because the kinetic energy is sufficiently described by the descriptors on the potential, the material, and the evaporation process within atom probe tomography (APT). We discriminate the isotopes for Mg and Al by capturing the kinetic energy, and then decompose the TOF spectrum into its isotope components and identify the isotope for each individual atom measured. This work demonstrates the value of advanced data mining methods to help enhance the information resolution of the atom probe. (C) 2013 Elsevier By. All rights reserved. C1 [Broderick, Scott R.; Suram, Santosh K.; Rajan, Krishna] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Broderick, Scott R.; Suram, Santosh K.; Rajan, Krishna] Iowa State Univ, Inst Combinatorial Discovery, Ames, IA 50011 USA. [Bryden, Aaron] Ames Natl Lab, Ames, IA 50011 USA. RP Rajan, K (reprint author), Iowa State Univ, I2220 Hoover Hall, Ames, IA 50011 USA. EM krajan@iastate.edu FU NSF-CDI Type II program [PHY 09-41576]; NSF-ARI Program [CMMI 09-3890182]; Defense Advanced Research Projects Agency (DARPA) N/MEMS S&T Fundamentals program [N66001-10-1-4004]; Space and Naval Warfare Systems Center Pacific (SPAWAR); Air Force Office of Scientific Research (AFOSR) [FA9550-10-1-0256, FA9550-11-1-0158, FA9550-12-0496]; Wilkinson Professorship of Interdisciplinary Engineering FX This work was supported by NSF-CDI Type II program: grant no. PHY 09-41576; NSF-ARI Program: CMMI 09-3890182; the Defense Advanced Research Projects Agency (DARPA) N/MEMS S&T Fundamentals program under grant no. N66001-10-1-4004 issued by the Space and Naval Warfare Systems Center Pacific (SPAWAR); and Air Force Office of Scientific Research (AFOSR) grant nos. FA9550-10-1-0256, FA9550-11-1-0158 and FA9550-12-0496. KR also acknowledges support from the Wilkinson Professorship of Interdisciplinary Engineering. NR 20 TC 7 Z9 7 U1 2 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 EI 1879-2723 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD SEP PY 2013 VL 132 BP 121 EP 128 DI 10.1016/j.ultramic.2013.02.001 PG 8 WC Microscopy SC Microscopy GA 215UF UT WOS:000324235500021 PM 23522846 ER PT J AU Bryden, A Broderick, S Suram, SK Kaluskar, K LeSar, R Rajan, K AF Bryden, Aaron Broderick, Scott Suram, Santosh K. Kaluskar, Kaustubh LeSar, Richard Rajan, Krishna TI Interactive visualization of APT data at full fidelity SO ULTRAMICROSCOPY LA English DT Article; Proceedings Paper CT 53rd International Field Emission Symposium (IFES) CY MAY 21-25, 2013 CL Tuscaloosa, AL DE Atom probe tomography; Visualization; Spherical impostor; Materials visualization ID ATOM-PROBE TOMOGRAPHY; FIELD EVAPORATION; SPATIAL-RESOLUTION; MASS-SPECTRA; SURFACE; MICROSTRUCTURES; BEHAVIOR; TUNGSTEN; SILICON AB Understanding the impact of noise and incomplete data is a critical need for using atom probe tomography effectively. Although many tools and techniques have been developed to address this problem, visualization of the raw data remains an important part of this process. In this paper, we present two contributions to the visualization of data acquired through atom probe tomography. First, we describe the application of a rendering technique, ray cast spherical impostors, that enables the interactive rendering of large numbers (as large as 10 million plus) of pixel perfect, lit spheres representing individual atoms. This technique is made possible by the use of a consumer level graphics processing unit (CPU), and it yields an order of magnitude improvement both in render quality and speed over techniques previously used to render spherical glyphs in this domain. Second, we present an interactive tool that allows the user to mask, filter, and colorize the data in real time to help them understand and visualize a precise subset and properties of the raw data. We demonstrate the effectiveness of our tool through benchmarks and an example that shows how the ability to interactively render large numbers of spheres, combined with the use of filters and masks, leads to improved understanding of the three-dimensional (3D) and incomplete nature of atom probe data This improvement arises from the ability of lit spheres to more effectively show the 3D position and the local spatial distribution of individual atoms than what is possible with point or isosurface renderings. The techniques described in this paper serve to introduce new rendering and interaction techniques that have only recently become practical as well as new ways of interactively exploring the raw data (C) 2012 Elsevier B.V. All rights reserved. C1 [Bryden, Aaron; LeSar, Richard] Ames Natl Lab, Ames, IA 50011 USA. [Broderick, Scott; Suram, Santosh K.; Kaluskar, Kaustubh; LeSar, Richard; Rajan, Krishna] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Broderick, Scott; Suram, Santosh K.; Kaluskar, Kaustubh; LeSar, Richard; Rajan, Krishna] Iowa State Univ, Inst Combinatorial Discovery, Ames, IA 50011 USA. RP Rajan, K (reprint author), Iowa State Univ, Dept Mat Sci & Engn, 2220 Hoover Hall, Ames, IA 50011 USA. EM krajan@iastate.edu FU US Department of Energy National Energy Technology Laboratory; Department of Energy [DE-AC02-07CH11358]; US Department of Energy, Office of Basic Energy Sciences; NSF-CDI [PHY 09-41576]; NSF-ARI [CMMI 09-3890182]; Defense Advanced Research Projects Agency (DARPA) N/MEMS S&T Fundamentals program [N66001-10-1-4004]; Space and Naval Warfare Systems Center Pacific (SPAWAR); Wilkinson Professorship of Interdisciplinary Engineering FX The work of A.B. was funded in part by the US Department of Energy National Energy Technology Laboratory. Work at the Ames Laboratory was supported by the Department of Energy under Contract no. DE-AC02-07CH11358, The work of R.L. was funded in part by the US Department of Energy, Office of Basic Energy Sciences, SB, SKS, KK, and KR were supported by NSF-CDI Type II program: grant #PHY 09-41576 NSF-ARI Program: CMMI 09-3890182; the Defense Advanced Research Projects Agency (DARPA) N/MEMS S&T Fundamentals program under Grant no. N66001-10-1-4004 issued by the Space and Naval Warfare Systems Center Pacific (SPAWAR). KR also acknowledges support from the Wilkinson Professorship of Interdisciplinary Engineering. NR 41 TC 2 Z9 2 U1 1 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 EI 1879-2723 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD SEP PY 2013 VL 132 BP 129 EP 135 DI 10.1016/j.ultramic.2012.12.006 PG 7 WC Microscopy SC Microscopy GA 215UF UT WOS:000324235500022 PM 23352804 ER PT J AU Chen-Wiegart, YCK Wang, S McNulty, I Dunand, DC AF Chen-Wiegart, Yu-chen Karen Wang, Steve McNulty, Ian Dunand, David C. TI Effect of Ag-Au composition and acid concentration on dealloying front velocity and cracking during nanoporous gold formation SO ACTA MATERIALIA LA English DT Article DE Nanofoam; TXM; X-ray imaging; In situ ID BEHAVIOR; EVOLUTION AB Nanoporous gold has many potential applications in various fields, including energy storage, catalysis, sensing and actuating. Dealloying of Ag-Au alloys under free corrosion conditions is a simple method to fabricate nanoporous gold. Here, we systematically investigate the dealloying rate of Ag-xAu alloy for a range of alloy compositions (x = 20-40 at.%) and nitric acid concentration (7.3-14.9 M) using in situ transmission X-ray microscopy. High-resolution in situ X-ray projections and ex situ tomographic reconstructions allow imaging of the dealloying front position during dealloying. The dealloying front velocity is constant with time, and depends exponentially on the alloy Ag/Au atomic ratio and the acid molar concentration. Only the leanest alloy, Ag-20 Au, shows a large macroscopic shrinkage in sample diameter (similar to 38%) after dealloying, which leads to crack nucleation and growth observed in real time during dealloying. Finite element modeling is used to estimate dealloying-induced stresses and strains, and sheds light on the cracks created by the diameter shrinkage. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Chen-Wiegart, Yu-chen Karen; Dunand, David C.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Wang, Steve] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [McNulty, Ian] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Chen-Wiegart, YCK (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. EM yuchen.karen.chen@gmail.com RI Dunand, David/B-7515-2009; OI Dunand, David/0000-0001-5476-7379 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We gratefully thank Prof. Peter Voorhees (NU) for useful discussions throughout the experimental design and data analysis and Mr. Alex Deny (APS) who helped with the in situ dealloying setup. X-ray imaging was assisted by Dr. Alix Deymier-Black (NU), Ms. Rachel Mak (NU) and Mr. Ashish Tripathi (U Melbourne). Use of the APS is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 42 TC 11 Z9 12 U1 3 U2 74 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD SEP PY 2013 VL 61 IS 15 BP 5561 EP 5570 DI 10.1016/j.actamat.2013.05.039 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 210AK UT WOS:000323801500002 ER PT J AU Pasebani, S Charit, I Wu, YQ Butt, DP Cole, JI AF Pasebani, S. Charit, I. Wu, Y. Q. Butt, D. P. Cole, J. I. TI Mechanical alloying of lanthana-bearing nanostructured ferritic steels SO ACTA MATERIALIA LA English DT Article DE Mechanical alloying; Nanostructured ferritic steels; Oxide dispersion strengthened steels; Lanthanum oxide ID 3-DIMENSIONAL ATOM-PROBE; OXIDE; PARAMETERS; CLUSTERS AB A novel nanostructured ferritic steel powder with the nominal composition Fe-14Cr-1Ti-0.3Mo-0.5La(2)O(3) (wt.%) was developed via high energy ball milling. La2O3 was added to this alloy instead of the traditionally used Y2O3. The effects of varying the ball milling parameters, such as milling time, steel ball size and ball to powder ratio, on the mechanical properties and microstructural characteristics of the as-milled powder were investigated. Nanocrystallites of a body-centered cubic ferritic solid solution matrix with a mean size of approximately 20 nm were observed by transmission electron microscopy. Nanoscale characterization of the as-milled powder by local electrode atom probe tomography revealed the formation of Cr-Ti-La-O-enriched nanoclusters during mechanical alloying. The Cr:Ti:La:O ratio is considered "non-stoichiometric". The average size (radius) of the nanoclusters was about 1 nm, with number density of 3.7 x 10(24) m(-3). The mechanism for formation of nanoclusters in the as-milled powder is discussed. La2O3 appears to be a promising alternative rare earth oxide for future nanostructured ferritic steels. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Pasebani, S.; Charit, I.] Univ Idaho, Dept Chem & Mat Engn, Moscow, ID 83844 USA. [Pasebani, S.; Charit, I.; Wu, Y. Q.; Butt, D. P.; Cole, J. I.] Ctr Adv Energy Studies, Idaho Falls, ID 83401 USA. [Wu, Y. Q.; Butt, D. P.] Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83725 USA. [Cole, J. I.] Idaho Natl Lab, Idaho Falls, ID 83401 USA. RP Charit, I (reprint author), Univ Idaho, Dept Chem & Mat Engn, Moscow, ID 83844 USA. EM icharit@uidaho.edu RI Pasebani, Somayeh/G-5448-2014; OI Cole, James/0000-0003-1178-5846 FU Laboratory Directed Research and Development Program of the Idaho National Laboratory [DE-AC07-05ID14517]; Advanced Test Reactor National Scientific User Facility FX This work was supported partly by the Laboratory Directed Research and Development Program of the Idaho National Laboratory, contract DE-AC07-05ID14517, and partly by a grant from the Advanced Test Reactor National Scientific User Facility. TEM and APT were done at the Microscopy and Characterization Suite (MaCS), Center for Advanced Energy Studies. We would also like to acknowledge the help of Ms Jatupom Burns and Dr Kerry Allahar. Furthermore, we would like to thank the reviewers for their helpful comments. NR 35 TC 16 Z9 16 U1 2 U2 37 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD SEP PY 2013 VL 61 IS 15 BP 5605 EP 5617 DI 10.1016/j.actamat.2013.06.002 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 210AK UT WOS:000323801500006 ER PT J AU Zhu, YY Ophus, C Ciston, J Wang, HY AF Zhu, Yuanyuan Ophus, Colin Ciston, Jim Wang, Haiyan TI Interface lattice displacement measurement to 1 pm by geometric phase analysis on aberration-corrected HAADF STEM images SO ACTA MATERIALIA LA English DT Article DE Lattice strains; Heterogeneous interface; Thin films; Scanning transmission electron microscopy (STEM); Geometric phase analysis (GPA) ID TRANSMISSION ELECTRON-MICROSCOPY; DARK-FIELD IMAGES; SURFACE RELAXATION; STRAIN; HETEROSTRUCTURES; INSULATOR; CONTRAST; DEFECTS; ORIGIN; HREM AB In this work, the accuracy of geometric phase analysis (GPA) on aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (Cs-corrected HAADF-STEM) images for lattice strain measurement at heterogeneous interfaces has been systematically investigated. Starting with an ideal crystal lattice of synthetic images, and then experimental HAADF images of a single-crystal lattice, we have quantitatively evaluated the inherent GPA processing artifacts and experimental errors due to STEM scanning distortions. Our results suggest that, with a properly chosen Fourier mask size and strain profile direction/width, 1 pm accuracy can be achieved for GPA strain quantification in the STEM fast-scan direction with a spatial resolution of <1 nm. To demonstrate the effectiveness and reliability of the STEM-based GPA strain profile, we have applied it to two experimental heterointerfaces: the strained LaAlO3/SrTiO3 (LAO/STO) and the relaxed SrTiO3/MgO (STO/MgO). Interestingly, GPA strain mapping reveals a novel secondary relaxation mechanism in the LAO/STO heterostructures. Essential limitations in GPA are also discussed using the example of a FeSe0.5Te0.5(FST)/SrTiO3 heterointerface. Although we focus on the interfacial lattice strain in this paper, the approaches for strain error estimation and the fundamental discussions on line profiles can also be applied, with some modifications, to other nanostructures. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Zhu, Yuanyuan; Wang, Haiyan] Texas A&M Univ, Program Mat Sci & Engn, College Stn, TX 77843 USA. [Ophus, Colin; Ciston, Jim] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Wang, Haiyan] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. RP Wang, HY (reprint author), Texas A&M Univ, Program Mat Sci & Engn, College Stn, TX 77843 USA. EM wangh@ece.tamu.edu RI Wang, Haiyan/P-3550-2014; Foundry, Molecular/G-9968-2014; OI Wang, Haiyan/0000-0002-7397-1209; Ophus, Colin/0000-0003-2348-8558 FU National Science Foundation [0846504]; Air Force Office of Scientific Research [FA9550-09-1-0114]; Office of Science, Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-05CH11231] FX This research was funded by National Science Foundation (Ceramic Program Award No. 0846504). The superconductor work was funded by the Air Force Office of Scientific Research (Contract No. FA9550-09-1-0114). A portion of the electron microscopy experiments were performed at NCEM, which is supported by the Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-05CH11231. Y.Z. is grateful to Drs. A. Minor, C. Kisielowski and Chengyu Song for additional help and fruitful discussions at NCEM. Y.Z. also thanks Dr. Holzenburg at TAMU for the advice on conducting complementary real space measurement. NR 44 TC 11 Z9 11 U1 6 U2 88 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD SEP PY 2013 VL 61 IS 15 BP 5646 EP 5663 DI 10.1016/j.actamat.2013.06.006 PG 18 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 210AK UT WOS:000323801500010 ER PT J AU Otto, F Dlouhy, A Somsen, C Bei, H Eggeler, G George, EP AF Otto, F. Dlouhy, A. Somsen, Ch. Bei, H. Eggeler, G. George, E. P. TI The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy SO ACTA MATERIALIA LA English DT Article DE High-entropy alloys; Mechanical properties; Deformation twinning; Yield strength; Temperature dependence ID STACKING-FAULT ENERGY; STRESS-STRAIN BEHAVIOR; MULTICOMPONENT ALLOYS; SINGLE-CRYSTALS; DEFORMATION-BEHAVIOR; TRIP/TWIP STEELS; PHASE-STABILITY; SOLID-SOLUTIONS; YIELD REGION; FCC ALLOYS AB An equiatomic CoCrFeMnNi high-entropy alloy, which crystallizes in the face-centered cubic (fcc) crystal structure, was produced by arc melting and drop casting. The drop-cast ingots were homogenized, cold rolled and recrystallized to obtain single-phase microstructures with three different grain sizes in the range 4-160 mu m. Quasi-static tensile tests at an engineering strain rate of 10(-3) s(-1) were then performed at temperatures between 77 and 1073 K. Yield strength, ultimate tensile strength and elongation to fracture all increased with decreasing temperature. During the initial stages of plasticity (up to similar to 2% strain), deformation occurs by planar dislocation glide on the normal fcc slip system, {1 1 1} < 1 1 0 >, at all the temperatures and grain sizes investigated. Undissociated 1/2 < 1 1 0 > dislocations were observed, as were numerous stacking faults, which imply the dissociation of several of these dislocations into 1/6 < 1 1 2 > Shockley partials. At later stages (similar to 20% strain), nanoscale deformation twins were observed after interrupted tests at 77 K, but not in specimens tested at room temperature, where plasticity occurred exclusively by the aforementioned dislocations which organized into cells. Deformation twinning, by continually introducing new interfaces and decreasing the mean free path of dislocations during tensile testing ("dynamic Hall-Petch"), produces a high degree of work hardening and a significant increase in the ultimate tensile strength. This increased work hardening prevents the early onset of necking instability and is a reason for the enhanced ductility observed at 77 K. A second reason is that twinning can provide an additional deformation mode to accommodate plasticity. However, twinning cannot explain the increase in yield strength with decreasing temperature in our high-entropy alloy since it was not observed in the early stages of plastic deformation. Since strong temperature dependencies of yield strength are also seen in binary fcc solid solution alloys, it may be an inherent solute effect, which needs further study. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Otto, F.; Bei, H.; George, E. P.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Otto, F.; George, E. P.] Univ Tennessee, Mat Sci & Engn Dept, Knoxville, TN 37996 USA. [Dlouhy, A.] Acad Sci Czech Republic, Inst Phys Mat, Brno 61662, Czech Republic. [Somsen, Ch.; Eggeler, G.] Ruhr Univ Bochum, Inst Werkstoffe, D-44780 Bochum, Germany. RP Otto, F (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM frederik.otto@rub.de RI Dlouhy, Antonin/F-9721-2014; George, Easo/L-5434-2014; Eggeler, Gunther/R-9833-2016; OI Bei, Hongbin/0000-0003-0283-7990 FU US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; Alexander von Humboldt Foundation through a Feodor Lynen Research Fellowship; IPM AS CR [RVO:68081723] FX This research was supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. F.O. also received funding from the Alexander von Humboldt Foundation through a Feodor Lynen Research Fellowship. A.D. received financial support through the IPM AS CR development program no. RVO:68081723. NR 53 TC 195 Z9 201 U1 65 U2 357 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD SEP PY 2013 VL 61 IS 15 BP 5743 EP 5755 DI 10.1016/j.actamat.2013.06.018 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 210AK UT WOS:000323801500019 ER PT J AU Liedahl, DA Rubenchik, A Libby, SB Nikolaev, S Phipps, CR AF Liedahl, D. A. Rubenchik, A. Libby, S. B. Nikolaev, S. Phipps, C. R. TI Pulsed laser interactions with space debris: Target shape effects SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Laser ablation; Laser orbit modification AB Among the approaches to the proposed mitigation and remediation of the space debris problem is the de-orbiting of objects in low Earth orbit through irradiation by ground-based high-intensity pulsed lasers. Laser ablation of a thin surface layer causes target recoil, resulting in the depletion of orbital angular momentum and accelerated atmospheric re-entry. However, both the magnitude and direction of the recoil are shape dependent, a feature of the laser-based remediation concept that has received little attention. Since the development of a predictive capability is desirable, we have investigated the dynamical response to ablation of objects comprising a variety of shapes. We derive and demonstrate a simple analytical technique for calculating the ablation-driven transfer of linear momentum, emphasizing cases for which the recoil is not exclusively parallel to the incident beam. For the purposes of comparison and contrast, we examine one case of momentum transfer in the low-intensity regime, where photon pressure is the dominant momentum transfer mechanism, showing that shape and orientation effects influence the target response in a similar, but not identical, manner. We address the related problem of target spin and, by way of a few simple examples, show how ablation can alter the spin state of a target, which often has a pronounced effect on the recoil dynamics. (C) 2013 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Liedahl, D. A.; Rubenchik, A.; Libby, S. B.; Nikolaev, S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Liedahl, DA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM liedahl1@llnl.gov; rubenchik1@llnl.gov; libby1@llnl.gov; nikolaev2@llnl.gov; crphipps@photonicassociates.com FU U.S. Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344] FX The authors thank the referees for providing useful suggestions that have helped to improve the clarity of the manuscript. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. NR 29 TC 16 Z9 18 U1 2 U2 19 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD SEP 1 PY 2013 VL 52 IS 5 BP 895 EP 915 DI 10.1016/j.asr.2013.05.019 PG 21 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 210TN UT WOS:000323857700011 ER PT J AU Klunder, GL Plaue, JW Spackman, PE Grant, PM Lindvall, RE Hutcheon, ID AF Klunder, Gregory L. Plaue, Jonathan W. Spackman, Paul E. Grant, Patrick M. Lindvall, Rachel E. Hutcheon, Ian D. TI Application of Visible/Near-Infrared Reflectance Spectroscopy to Uranium Ore Concentrates for Nuclear Forensic Analysis and Attribution SO APPLIED SPECTROSCOPY LA English DT Article DE Near-infrared spectroscopy; Nuclear forensic analysis; Uranium ore concentrate; Yellowcake; Ammonium uranates; Uranium speciation ID X-RAY-DIFFRACTION; AMMONIUM URANATES; YELLOW CAKES; SPECTRA; OXIDES; SPECTROMETRY; ORIGIN AB Uranium ore concentrates (UOCs) are produced at mining facilities from the various types of uranium-bearing ores using several processes that can include different reagents, separation procedures, and drying conditions. The final UOC products can consist of different uranium species, which are important to identify to trace interdicted samples back to their origins. Color has been used as a simple indicator; however, visual determination is subjective and no chemical information is provided. In this work, we report the application of near-infrared (NIR) spectroscopy as a non-contact, non-destructive method to rapidly analyze UOC materials for species and/or process information. Diffuse reflectance spectra from 350 to 2500 nm were measured from a number UOC samples that were also characterized by X-ray diffraction. Combination and overtone bands were used to identify the amine and hydroxyl-containing species, such as ammonium uranates or ammonium uranyl carbonate, while other uranium oxide species (e.g., uranium trioxide [UO3] and triuranitum octoxide [U3O8]) exhibit absorption bands arising from crystal field effects and electronic transitions. Principal component analysis was used to classify the different UOC materials. C1 [Klunder, Gregory L.; Plaue, Jonathan W.; Spackman, Paul E.; Grant, Patrick M.; Lindvall, Rachel E.; Hutcheon, Ian D.] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94551 USA. RP Klunder, GL (reprint author), Lawrence Livermore Natl Lab, Div Chem Sci, POB 808,L-091, Livermore, CA 94551 USA. EM klunder@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NNSA Office on Nonproliferation Verification FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was supported by the NNSA Office on Nonproliferation Verification. The authors greatly appreciate and acknowledge the technical support of Mike Sharp, Sarah Roberts, Lars Borg, and Martin Robel. NR 32 TC 8 Z9 8 U1 1 U2 31 PU SOC APPLIED SPECTROSCOPY PI FREDERICK PA 5320 SPECTRUM DRIVE SUITE C, FREDERICK, MD 21703 USA SN 0003-7028 J9 APPL SPECTROSC JI Appl. Spectrosc. PD SEP PY 2013 VL 67 IS 9 BP 1049 EP 1056 DI 10.1366/12-06947 PG 8 WC Instruments & Instrumentation; Spectroscopy SC Instruments & Instrumentation; Spectroscopy GA 210CB UT WOS:000323805800009 PM 24067636 ER PT J AU Manner, VW Chellappa, RS Sheffield, SA Liu, ZX Dattelbaum, DM AF Manner, Virginia W. Chellappa, Raja S. Sheffield, Stephen A. Liu, Zhenxian Dattelbaum, Dana M. TI High-Pressure Far-Infrared Spectroscopic Studies of Hydrogen Bonding in Formic Acid SO APPLIED SPECTROSCOPY LA English DT Article DE Formic acid; Far infrared; Diamond anvil cell; High pressure; Hydrogen bonding ID HIGHER-ENERGY CONFORMER; X-RAY-DIFFRACTION; EXTREME CONDITIONS; CRYSTAL-STRUCTURE; CARBOXYLIC ACIDS; ACETIC ACIDS; SOLID ARGON; SPECTRA; MOLECULES; DIMER AB Simple molecules such as HCOOH, or formic acid, are suggested to have played important roles in planetary physics due to their possibility for high pressure and temperature chemistry under impact conditions. In this study, we have investigated the effect of pressure (up to 50 GPa) on H-bonding and reactivity of formic acid using synchrotron far infrared spectroscopy. Based on the pressure-induced changes to H-bond nu(O-H center dot center dot center dot O) stretching and gamma(O-H center dot center dot center dot O) deformations, we observe significant reorganization of H-bonding network beginning at similar to 20 GPa. This is in good agreement with reports of symmetrization of H-bonds reported at 16-21 GPa from X-ray diffraction and Raman spectroscopy studies as well as molecular dynamics simulations. With further increase in pressure, beyond 35 GPa, formic acid undergoes a polymerization process that is complete beyond 45 GPa. Remarkably, upon decompression, the polymeric phase reverts to the crystalline high-pressure phase at 8 GPa. C1 [Manner, Virginia W.; Chellappa, Raja S.; Sheffield, Stephen A.; Dattelbaum, Dana M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Liu, Zhenxian] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. RP Dattelbaum, DM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM danadat@lanl.gov FU U.S. Department of Energy [DE-AC52-06NA25396]; LANL LDRD program, LDRD project [20110012DR]; Agnew National Security Fellowship and Campaign 2; NSF [DMR0805056, EAR 06-49658]; DOE/NNSA [DE-FCO303N00144]; DOE/BES [DE-AC02-98CH10886] FX Los Alamos National Laboratory is operated by LANS, LLC, for the U.S. Department of Energy under contract DE-AC52-06NA25396. Funding was provided by the LANL LDRD program, LDRD project 20110012DR. VWM acknowledges funding from the Agnew National Security Fellowship and Campaign 2. The use of U2A beamline was supported by NSF (DMR0805056; EAR 06-49658, COMPRES) and DOE/NNSA (DE-FCO303N00144, CDAC). NSLS (National Synchrotron Light Source) is supported by the DOE/BES (DE-AC02-98CH10886). NR 61 TC 1 Z9 1 U1 4 U2 35 PU SOC APPLIED SPECTROSCOPY PI FREDERICK PA 5320 SPECTRUM DRIVE SUITE C, FREDERICK, MD 21703 USA SN 0003-7028 J9 APPL SPECTROSC JI Appl. Spectrosc. PD SEP PY 2013 VL 67 IS 9 BP 1080 EP 1086 DI 10.1366/13-07040 PG 7 WC Instruments & Instrumentation; Spectroscopy SC Instruments & Instrumentation; Spectroscopy GA 210CB UT WOS:000323805800013 PM 24067640 ER PT J AU Jones, RW Rathke, SJ Laird, DA McClelland, JF AF Jones, Roger W. Rathke, Samuel J. Laird, David A. McClelland, John F. TI Real-Time Sensing of Soil Nitrate Concentration in the Parts per Million Range While the Soil Is in Motion SO APPLIED SPECTROSCOPY LA English DT Article DE Soil nitrate; Transient infrared spectroscopy; Photoacoustic spectroscopy; PAS; Diffuse reflectance; DRIFTS ID TRANSIENT INFRARED-SPECTROSCOPY; PARTIAL LEAST-SQUARES; MIDINFRARED SPECTROSCOPY; REFLECTANCE SPECTROSCOPY; IDENTIFICATION; REGRESSION; ARRAY AB Reactive nitrogen (Nr) is a term used to describe non-nitrogen gas (non-N-2) forms of nitrogen (N) in the biosphere. It causes major pollution problems when it occurs in excess, and it has many sources, including fertilizers used in production agriculture. Currently there is no on-the-go soil nitrate sensor that could guide the application of the optimal amount of fertilizer, which often varies significantly within a field. We report for the first time nitrate-in-soil measurements performed on moving soil samples at concentration levels relevant for fertilizer application. An infrared emission technique called transient infrared spectroscopy (TIRS) was tested on soil samples spiked with different nitrate concentrations in the parts-per-million range and moving at a velocity of 2.6 m/s (5.8 miles per hour) in the laboratory. The TIRS Fourier transform infrared (FT-IR) spectra were modeled by partial least squares and produced a standard error of cross-validation (SECV) of 6.3 parts per million (ppm) N and an R-2 of 0.938 for 512-scan spectra. These results are compared to those using fewer TIRS scans and to those from photoacoustic spectroscopy (PAS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements on stationary samples. TIRS 128-, 32-, and 8-scan spectra yielded SEC Vs of 11.2, 11.4, and 18.4 ppm N and R-2 values of 0.800, 0.831, and 0.583, respectively. The PAS and DRIFTS measurements produced SECVs of 12.4 and 9.0 ppm N and R-2 values of 0.766 and 0.876, respectively. C1 [Jones, Roger W.; McClelland, John F.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Rathke, Samuel J.; Laird, David A.] Iowa State Univ, Dept Agron, Ames, IA 50011 USA. [McClelland, John F.] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. RP McClelland, JF (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. EM mcclelland.john7@gmail.com RI Laird, David/E-8598-2014 FU U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358] FX This research was performed at the Ames Laboratory. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under contract no. DE-AC02-07CH11358. NR 29 TC 2 Z9 2 U1 0 U2 22 PU SOC APPLIED SPECTROSCOPY PI FREDERICK PA 5320 SPECTRUM DRIVE SUITE C, FREDERICK, MD 21703 USA SN 0003-7028 J9 APPL SPECTROSC JI Appl. Spectrosc. PD SEP PY 2013 VL 67 IS 9 BP 1106 EP 1110 DI 10.1366/13-07064 PG 5 WC Instruments & Instrumentation; Spectroscopy SC Instruments & Instrumentation; Spectroscopy GA 210CB UT WOS:000323805800017 PM 24067644 ER PT J AU Lam, PS Lam, PY Sokhansanj, S Bi, XTT Lim, CJ AF Lam, Pak Sui Lam, Pak Yiu Sokhansanj, Shahab Bi, Xiaotao T. Lim, C. J. TI Mechanical and compositional characteristics of steam-treated Douglas fir (Pseudotsuga menziesii L.) during pelletization SO BIOMASS & BIOENERGY LA English DT Article DE Steam treatment; Wood pellet; Asymptotic modulus; Stress relaxation; Hardness; Binding ID MOISTURE-CONTENT; FUEL PELLETS; BIOMASS; TEMPERATURE; WOOD; TORREFACTION; PRETREATMENT; RELAXATION; COMPACTION; SOFTWOOD AB Rheological properties of pelletizing steam-treated Douglas fir at four different severities were investigated. Steam-treated wood pellets exhibited three compression regions that became more distinct with increasing treatment severity. Hydrolysis of hemicelluloses and condensations of lignin led to an increase in elasticity of pellets made from steam treated feedstock. The increased treatment duration improved the dimensional stability of pellets. The increase in particle surface roughness and concentration of mono-sugars and extractives contributed to the increase in required energy for extruding steam treated pellets from the die. The maximum breaking force, Meyer hardness and the hardness modulus increased with steam treatment. The increased hardness and dimensional stability of steam-treated pellets can be attributed to the binding role of mono-sugars released from Douglas fir during steam treatment. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Lam, Pak Sui; Lam, Pak Yiu; Sokhansanj, Shahab; Bi, Xiaotao T.; Lim, C. J.] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada. [Sokhansanj, Shahab] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Lam, PS (reprint author), Univ British Columbia, Dept Chem & Biol Engn, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada. EM wilsonlam82@yahoo.com FU Natural Science and Engineering Research Council of Canada (NSERC); Wood Pellet Association of Canada; B.C. Ministry of Forest and Range; Agricultural Biorefining Innovative Network; U.S. Department of Energy's Office of Biomass Program FX The author would like to acknowledge Professor Jack Saddler and his research group of Forest Biotechnology Group in University of British Columbia for the technical support of the analysis of the biomass's chemical composition. The author would like to acknowledge Mr. Jeff Hoi for the help of the pelletization's experiment. The author would also like to acknowledge the financial support in part by the Natural Science and Engineering Research Council of Canada (NSERC), Wood Pellet Association of Canada, B.C. Ministry of Forest and Range and Agricultural Biorefining Innovative Network. The U.S. Department of Energy's Office of Biomass Program funded and supported the off-site research at the University of British Columbia. NR 39 TC 10 Z9 10 U1 2 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0961-9534 J9 BIOMASS BIOENERG JI Biomass Bioenerg. PD SEP PY 2013 VL 56 BP 116 EP 126 DI 10.1016/j.biombioe.2013.05.001 PG 11 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 210BR UT WOS:000323804800015 ER PT J AU Asdrubali, F Baldassarri, C Fthenakis, V AF Asdrubali, Francesco Baldassarri, Catia Fthenakis, Vasilis TI Life cycle analysis in the construction sector: Guiding the optimization of conventional Italian buildings SO ENERGY AND BUILDINGS LA English DT Article DE Life Cycle Assessment; Buildings; Energy optimization; LCA; Environment ID ENVIRONMENTAL PERFORMANCE; EMBODIED ENERGY; SPAIN; DWELLINGS; CARBON; NEED AB Life Cycle Assessment (LCA) is a widely known methodology for "cradle to grave" investigation of the environmental impacts of products and technological lifecycles; however, this methodology has not been yet broadly used as an eco-design tool among the practitioners of the building sector. We applied LCA on three conventional Italian buildings - a detached residential house, a multi-family and a multi-story office building. Our analysis includes all the life stages, from the production of the construction materials, to their transportation, assembling, lighting, appliances, cooling- and heating-usages during the operating phase, to the end of life of all the materials and components. We found that the operation phase has the greatest contribution to the total impact (from 77% of that of the detached house, up to 85% of the office building), whereas the impact of the construction phase ranges from about 14% (office building) to 21% (detached house). We carried further analyses to evaluate the influence of various optimizations of the buildings, e.g., more efficient envelopes and facilities, on the entire life cycle of the three buildings. In addition, we propose a methodological approach, which can contribute to the acceptance of LCA as a tool in the eco-friendly design of buildings, especially those buildings whose impact during the construction phase needs to be carefully checked, such as Nearly Zero Energy Buildings. (C) 2013 Elsevier B.V. All rights reserved. C1 [Asdrubali, Francesco; Baldassarri, Catia] Univ Perugia, Dept Ind Engn, I-06125 Perugia, Italy. [Fthenakis, Vasilis] Brookhaven Natl Lab, New York, NY USA. [Fthenakis, Vasilis] Columbia Univ, New York, NY USA. RP Asdrubali, F (reprint author), Univ Perugia, Dept Ind Engn, Via G Duranti 67, I-06125 Perugia, Italy. EM fasdruba@unipg.it RI Asdrubali, Francesco/N-4690-2015 OI Asdrubali, Francesco/0000-0003-1943-7547 FU Italian Ministry for Education and Research FX The study was carried out within the national research project FISR "GENIUS LOCI - The role of the building sector on climate change", funded by the Italian Ministry for Education and Research to Perugia University. NR 47 TC 55 Z9 55 U1 3 U2 49 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 J9 ENERG BUILDINGS JI Energy Build. PD SEP PY 2013 VL 64 BP 73 EP 89 DI 10.1016/j.enbuild.2013.04.018 PG 17 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA 207UC UT WOS:000323629100009 ER PT J AU Lumsdaine, A AF Lumsdaine, Arnold TI Fusion Science and Technology PREFACE SO FUSION SCIENCE AND TECHNOLOGY LA English DT Editorial Material C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Lumsdaine, A (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. NR 0 TC 0 Z9 0 U1 4 U2 7 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD SEP PY 2013 VL 64 IS 3 BP V EP V PG 1 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 211NK UT WOS:000323914800001 ER PT J AU Yang, HL Kwak, JG Oh, YK Park, KR Kim, WC Lee, SG Kim, JY Bae, YS Park, YM Kim, HK Chu, Y Park, MK Kim, JS In, SR Joung, SH Choe, WH Park, HK Hwang, YS Na, YS Park, JG Ahn, JW Park, YS Kwon, M Leuer, JA Eidietis, NW Hyatt, AW Walker, M Gorelov, Y Lohr, J Mueller, D Grisham, LR Sabbagh, SA Watanabe, K Inoue, T Sakamoto, K Oda, Y Kajiwara, K Ellis, R Hosea, J Delpech, L Hoang, TT Litaudon, X Namkung, W Cho, MH AF Yang, H. L. Kwak, J. G. Oh, Y. K. Park, K. R. Kim, W. C. Lee, S. G. Kim, J. Y. Bae, Y. S. Park, Y. M. Kim, H. K. Chu, Y. Park, M. K. Kim, J. S. In, S. R. Joung, S. H. Choe, W. H. Park, H. K. Hwang, Y. S. Na, Y. S. Park, J. G. Ahn, J. W. Park, Y. S. Kwon, M. Leuer, J. A. Eidietis, N. W. Hyatt, A. W. Walker, M. Gorelov, Y. Lohr, J. Mueller, D. Grisham, L. R. Sabbagh, S. A. Watanabe, K. Inoue, T. Sakamoto, K. Oda, Y. Kajiwara, K. Ellis, R. Hosea, J. Delpech, L. Hoang, T. T. Litaudon, X. Namkung, W. Cho, M. H. CA KSTAR Team TI OVERVIEW OF KSTAR RESULTS IN PHASE-I OPERATION SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 20th American-Nuclear-Society (ANS) Topical Meeting on the Technology of Fusion Energy (TOFE) CY AUG 27-31, 2012 CL Nashville, TN SP Amer Nucl Soc (ANS), Oak Ridge Natl Lab, US ITER, Lawrence Livermore Natl Lab, Princeton Plasma Phys Lab, Naval Res Lab, Atom Energy Soc Japan, Canadian Nucl Soc, Inst Elect & Elect Engineers ID TOKAMAK AB The KSTAR (Korea Superconducting Tokamak Advanced Research) pursued to develop key technologies for superconducting tokamak operation and to contribute to a few research items for ITER relevant issues. As a result, the KSTAR achieved highly confined mode (H-mode) in 2010 campaign and successfully demonstrated suppression of Edge Localized Mode (ELM) using n=1 Resonant Magnetic Perturbation (RMP) coils. The KSTAR is also initiating machine performance based on the designed machine parameters. The plasma current we achieved was I MA, and longest plasma pulse length has been extended to 10 s. In spite of limited heating power to 3.5 MW, several key actuators satisfactorily supported to implement a few scientific researches such as ELM control. On the basis of big progress in both the plasma performance and the experimental results, the KSTAR operation will explore key scientific and technical research issues under steady state operation condition in phase-2 operation. C1 [Yang, H. L.; Kwak, J. G.; Oh, Y. K.; Park, K. R.; Kim, W. C.; Lee, S. G.; Kim, J. Y.; Bae, Y. S.; Park, Y. M.; Kim, H. K.; Chu, Y.; Park, M. K.; Kim, J. S.; Kwon, M.] Natl Fus Res Inst, Taejon 305333, South Korea. [In, S. R.; Joung, S. H.] Korea Atom Energy Res Insititute, Taejon 305333, South Korea. [Choe, W. H.] Korea Adv Inst Sci & Technol, Taejon 305701, South Korea. [Park, H. K.; Namkung, W.; Cho, M. H.] Pohang Univ Sci & Technol, Pohang 790784, Gyungbuk, South Korea. [Hwang, Y. S.; Na, Y. S.] Seoul Natl Univ, Seoul 151742, South Korea. [Park, J. G.; Mueller, D.; Grisham, L. R.; Ellis, R.; Hosea, J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Ahn, J. W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Leuer, J. A.; Eidietis, N. W.; Hyatt, A. W.; Walker, M.; Gorelov, Y.; Lohr, J.] Gen Atom Co, San Diego, CA 92121 USA. [Park, Y. S.; Sabbagh, S. A.] Columbia Univ, Princeton, NJ 08543 USA. [Watanabe, K.; Inoue, T.; Sakamoto, K.; Oda, Y.; Kajiwara, K.] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan. [Delpech, L.; Hoang, T. T.; Litaudon, X.] CEA, IFRM, F-13108 St Paul Les Durance, France. RP Yang, HL (reprint author), Natl Fus Res Inst, 113 Gwahangno, Taejon 305333, South Korea. EM hlyang@nfri.re.kr RI Choe, Wonho/C-1556-2011; OI Walker, Michael/0000-0002-4341-994X NR 19 TC 2 Z9 2 U1 0 U2 13 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD SEP PY 2013 VL 64 IS 3 BP 407 EP 416 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 211NK UT WOS:000323914800004 ER PT J AU Kessel, CE Tillack, MS Blanchard, JP AF Kessel, C. E. Tillack, M. S. Blanchard, J. P. TI THE EVALUATION OF THE HEAT LOADING FROM STEADY, TRANSIENT AND OFF-NORMAL CONDITIONS IN ARIES POWER PLANTS SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 20th American-Nuclear-Society (ANS) Topical Meeting on the Technology of Fusion Energy (TOFE) CY AUG 27-31, 2012 CL Nashville, TN SP Amer Nucl Soc (ANS), Oak Ridge Natl Lab, US ITER, Lawrence Livermore Natl Lab, Princeton Plasma Phys Lab, Naval Res Lab, Atom Energy Soc Japan, Canadian Nucl Soc, Inst Elect & Elect Engineers ID PLASMA-FACING COMPONENTS; PARTICLE LOSSES; 1ST WALL; I ELMS; H-MODE; ENERGY; ITER; DISRUPTIONS; DIVERTOR; JET AB The heat loading on plasma facing components (PFCs) provides a critical limitation for design and operation of the first wall, divertor, and other special components. Power plants will have high power entering the scrape-off layer and transporting to the first wall and divertor. Although the engineering design for steady heat loads is understood, characterizing the steady heat load and the approach for transient and off-normal loading is not. The characterization of heat loads developed for ITER can be applied to power plants to better develop the operating space of viable solutions and point to research focus areas. C1 [Kessel, C. E.] Princeton Plasma Phys Lab, Princeton, NJ 08534 USA. [Tillack, M. S.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Blanchard, J. P.] Univ Wisconsin, Madison, WI 53706 USA. RP Kessel, CE (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08534 USA. EM ckessel@pppl.gov NR 42 TC 7 Z9 7 U1 0 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD SEP PY 2013 VL 64 IS 3 BP 440 EP 448 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 211NK UT WOS:000323914800008 ER PT J AU El-Guebaly, L Huhn, T Rowcliffe, A Malang, S AF El-Guebaly, L. Huhn, T. Rowcliffe, A. Malang, S. CA ARIES-ACT Team TI DESIGN CHALLENGES AND ACTIVATION CONCERNS FOR ARIES VACUUM VESSEL SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 20th American-Nuclear-Society (ANS) Topical Meeting on the Technology of Fusion Energy (TOFE) CY AUG 27-31, 2012 CL Nashville, TN SP Amer Nucl Soc (ANS), Oak Ridge Natl Lab, US ITER, Lawrence Livermore Natl Lab, Princeton Plasma Phys Lab, Naval Res Lab, Atom Energy Soc Japan, Canadian Nucl Soc, Inst Elect & Elect Engineers ID STEELS AB Research has been conducted to find the optimal steel to use in the vacuum vessel (VV) of ARIES power plants. The VV should meet several design criteria, including activation and fabrication requirements. Seven different types of steel were examined in order to determine which steel would be the best candidate for the ARIES VV. The main concerns are related to activation, properties under irradiation, and fabrication of a sizable VV. Steels generating high-level waste (such as 316-SS) were excluded from possible material choices. As a VV material, there is the necessity for a carefully controlled the post-weld-heat-treatment at similar to 750 degrees C after assembly, welding, and rewelding. For this particular reason, the F82H FS is not suitable for the ARIES VV. The newly developed 3Cr-3WV bainitic FS meets the activation requirements and has the potential to satisfy the fabrication requirements for the ARIES VV. It is recommended for further consideration because of several advantages over other candidate steels. C1 [El-Guebaly, L.; Huhn, T.] Univ Wisconsin, Madison, WI 53706 USA. [Rowcliffe, A.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP El-Guebaly, L (reprint author), Univ Wisconsin, 1500 Engn Dr, Madison, WI 53706 USA. EM elguebaly@engr.wisc.edu; afrowcliffe@atlanticbb.net; smalang@web.de NR 13 TC 7 Z9 7 U1 1 U2 7 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD SEP PY 2013 VL 64 IS 3 BP 449 EP 454 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 211NK UT WOS:000323914800009 ER PT J AU Neilson, GH Brown, TG Gates, DA Kessel, CE Menard, JE Prager, SC Scott, SD Wilson, JR Zarnstorff, MC AF Neilson, G. H. Brown, T. G. Gates, D. A. Kessel, C. E. Menard, J. E. Prager, S. C. Scott, S. D. Wilson, J. R. Zarnstorff, M. C. TI MISSION AND READINESS ASSESSMENT FOR FUSION NUCLEAR FACILITIES SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 20th American-Nuclear-Society (ANS) Topical Meeting on the Technology of Fusion Energy (TOFE) CY AUG 27-31, 2012 CL Nashville, TN SP Amer Nucl Soc (ANS), Oak Ridge Natl Lab, US ITER, Lawrence Livermore Natl Lab, Princeton Plasma Phys Lab, Naval Res Lab, Atom Energy Soc Japan, Canadian Nucl Soc, Inst Elect & Elect Engineers ID POWER-PLANT; TOKAMAK AB Magnetic fusion development toward DEMO will most likely require a number of fusion nuclear facilities (FNF), intermediate between ITER and DEMO, to test and validate plasma and nuclear technologies and to advance the level of system integration. The FNF mission space is wide, ranging from basic materials research to net electricity demonstration, so there is correspondingly a choice among machine options, scope, and risk in planning such a step. Readiness requirements to proceed with a DEMO are examined, and two FNF options are assessed in terms of the contributions they would make to closing DEMO readiness gaps, and their readiness to themselves proceed with engineering design about ten years from now. An advanced tokamak (AT) pilot plant with superconducting coils and a mission to demonstrate net electricity generation would go a long way toward DEMO. As a next step, however, a pilot plant would entail greater risk than a copper-coil FNSF-AT with its more focussed mission and technology requirements. The stellarator path to DEMO is briefly discussed. Regardless of the choice of FNF option, an accompanying science and technology development program, also aimed at DEMO readiness, is absolutely essential. C1 [Neilson, G. H.; Brown, T. G.; Gates, D. A.; Kessel, C. E.; Menard, J. E.; Prager, S. C.; Scott, S. D.; Wilson, J. R.; Zarnstorff, M. C.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Neilson, GH (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM hneilson@pppl.gov OI Menard, Jonathan/0000-0003-1292-3286 NR 15 TC 0 Z9 0 U1 0 U2 10 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD SEP PY 2013 VL 64 IS 3 BP 463 EP 472 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 211NK UT WOS:000323914800011 ER PT J AU Zolfaghari, A Brooks, A Michaels, A Hanson, J Hartwell, G AF Zolfaghari, A. Brooks, A. Michaels, A. Hanson, J. Hartwell, G. TI CALCULATION OF EDDY CURRENTS IN THE CTH VACUUM VESSEL AND COIL FRAME FOR USE IN MHD EQUILIBRIUM RECONSTRUCTION OF THE PLASMA DISCHARGE SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 20th American-Nuclear-Society (ANS) Topical Meeting on the Technology of Fusion Energy (TOFE) CY AUG 27-31, 2012 CL Nashville, TN SP Amer Nucl Soc (ANS), Oak Ridge Natl Lab, US ITER, Lawrence Livermore Natl Lab, Princeton Plasma Phys Lab, Naval Res Lab, Atom Energy Soc Japan, Canadian Nucl Soc, Inst Elect & Elect Engineers AB Knowledge of eddy currents in the vacuum vessel walls and nearby conducting support structures can significantly contribute to the accuracy of Magnetohydrodynamics (MHD) equilibrium reconstruction in toroidal plasmas. Moreover, the magnetic fields produced by the eddy currents could generate error fields that may give rise to islands at rational surfaces or cause field lines to become chaotic. In the Compact Toroidal Hybrid (CTH) device (R0 = 0.75 m, a = 0.29 m, B <= 0.7 T), the primary driver of the eddy currents during the plasma discharge is the changing flux of the ohmic heating transformer. Electromagnetic simulations are used to calculate eddy current paths and profile in the vacuum vessel and in the coil frame pieces with known time dependent currents in the ohmic heating coils. MAXWELL and SPARK codes were used for the Electromagnetic modeling and simulation. MAXWELL code was used for detailed 3D finite-element analysis of the eddy currents in the structures. SPARK code was used to calculate the eddy currents in the structures as modeled with shell/surface elements, with each element representing a current loop. In both cases current filaments representing the eddy currents were prepared for input into VMEC code for MHD equilibrium reconstruction of the plasma discharge. C1 [Zolfaghari, A.; Brooks, A.; Michaels, A.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Hanson, J.; Hartwell, G.] Auburn Univ, Auburn, AL 36849 USA. RP Zolfaghari, A (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM azolfagh@pppl.gov NR 3 TC 2 Z9 2 U1 0 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD SEP PY 2013 VL 64 IS 3 BP 498 EP 501 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 211NK UT WOS:000323914800016 ER PT J AU Combs, SK Foust, CR McGill, JM Caughman, JBO McCarthy, KJ Baylor, LR Chamorro, M Fehling, DT Garcia, R Harris, JH Sanchez, JH Hidalgo, C Meitner, SJ Rasmussen, DA Unamuno, R AF Combs, S. K. Foust, C. R. McGill, J. M. Caughman, J. B. O. McCarthy, K. J. Baylor, L. R. Chamorro, M. Fehling, D. T. Garcia, R. Harris, J. H. Hernandez Sanchez, J. Hidalgo, C. Meitner, S. J. Rasmussen, D. A. Unamuno, R. TI RESULTS FROM LABORATORY TESTING OF A NEW FOUR-BARREL PELLET INJECTOR FOR THE TJ-II STELLARATOR SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 20th American-Nuclear-Society (ANS) Topical Meeting on the Technology of Fusion Energy (TOFE) CY AUG 27-31, 2012 CL Nashville, TN SP Amer Nucl Soc (ANS), Oak Ridge Natl Lab, US ITER, Lawrence Livermore Natl Lab, Princeton Plasma Phys Lab, Naval Res Lab, Atom Energy Soc Japan, Canadian Nucl Soc, Inst Elect & Elect Engineers ID MST AB A compact pellet injector has been built/tested at Oak Ridge National Laboratory (ORNL) for the TJ-II stellarator. The design is an upgraded version of that used for the ORNL injector installed on the Madison Symmetric Torus (MST). It is a four-barrel system equipped with a cryogenic refrigerator for in situ hydrogen pellet formation, a propellant valve system for pellet acceleration (speeds similar to 1000 m/s), pellet diagnostics, and an injection line. On TJ-II, it will be used as an active diagnostic and for fueling. To accommodate the plasma experiments planned for TJ-II, pellet sizes significantly smaller than those used for the MST application are required The system has been initially equipped with four pellet sizes, with the gun barrel bores ranging between 0.4 and 1.0 mm. The most challenging technical issue is achieving reliable operation with the smallest pellet size. The system is described, highlighting the new features added since the original MST injector was constructed Results from laboratory testing are presented and discussed, including the range of pellet sizes and speeds that will be available for initial experiments on and the expected reliability of delivering intact pellets to the plasmas. C1 [Combs, S. K.; Foust, C. R.; McGill, J. M.; Caughman, J. B. O.; Baylor, L. R.; Fehling, D. T.; Harris, J. H.; Meitner, S. J.; Rasmussen, D. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [McCarthy, K. J.; Chamorro, M.; Garcia, R.; Hernandez Sanchez, J.; Hidalgo, C.; Unamuno, R.] CIEMAT, Lab Nacl Fus, E-28040 Madrid, Spain. RP Combs, SK (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM combssk@ornl.gov; kieran.mccarthy@ciemat.es RI Caughman, John/R-4889-2016; Hidalgo, Carlos/H-6109-2015 OI Caughman, John/0000-0002-0609-1164; NR 18 TC 3 Z9 3 U1 2 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD SEP PY 2013 VL 64 IS 3 BP 513 EP 520 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 211NK UT WOS:000323914800018 ER PT J AU Diem, SJ Fehling, DT Hillis, DL Horton, AR Nagy, A Pinsker, RI Unterberg, EA AF Diem, S. J. Fehling, D. T. Hillis, D. L. Horton, A. R. Nagy, A. Pinsker, R. I. Unterberg, E. A. TI INITIAL TESTING OF OPTICAL ARC DETECTOR INSIDE 285/300 FAST WAVE ANTENNA BOX ON DIII-D SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 20th American-Nuclear-Society (ANS) Topical Meeting on the Technology of Fusion Energy (TOFE) CY AUG 27-31, 2012 CL Nashville, TN SP Amer Nucl Soc (ANS), Oak Ridge Natl Lab, US ITER, Lawrence Livermore Natl Lab, Princeton Plasma Phys Lab, Naval Res Lab, Atom Energy Soc Japan, Canadian Nucl Soc, Inst Elect & Elect Engineers AB Locating arcs within the fast wave current drive system is necessary to improve antenna performance and coupling to the plasma. Previously, there had been no way to observe arcs inside the vacuum vessel in an ICRF antenna on DIII-D. A new diagnostic that uses photomultiplier tubes has been installed for the 2012 run campaign on the 285/300 antenna of the fast wave system. The diagnostic has top and bottom views of the back of the four antenna straps and uses narrow-bandpass visible filters to isolate emission lines of copper (577 nm) and deuterium (656.1 nm). This diagnostic is based on the ORNL filterscope system currently in use on multiple devices. The system will be used to guide fast wave antenna conditioning, plasma operation and provide insight into future antenna upgrades on DIII-D. C1 [Diem, S. J.; Fehling, D. T.; Hillis, D. L.; Horton, A. R.; Unterberg, E. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Nagy, A.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Pinsker, R. I.] Gen Atom Co, San Diego, CA 92121 USA. RP Diem, SJ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM diemsj@ornl.gov RI Unterberg, Ezekial/F-5240-2016 OI Unterberg, Ezekial/0000-0003-1353-8865 NR 5 TC 0 Z9 0 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD SEP PY 2013 VL 64 IS 3 BP 530 EP 532 PG 3 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 211NK UT WOS:000323914800021 ER PT J AU Sawan, ME Bohm, TD Ulrickson, MA AF Sawan, M. E. Bohm, T. D. Ulrickson, M. A. TI NEUTRONICS ANALYSIS OF ITER BLANKET MODULES WITH IMPACT ON VACUUM VESSEL SHIELDING SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 20th American-Nuclear-Society (ANS) Topical Meeting on the Technology of Fusion Energy (TOFE) CY AUG 27-31, 2012 CL Nashville, TN SP Amer Nucl Soc (ANS), Oak Ridge Natl Lab, US ITER, Lawrence Livermore Natl Lab, Princeton Plasma Phys Lab, Naval Res Lab, Atom Energy Soc Japan, Canadian Nucl Soc, Inst Elect & Elect Engineers AB Detailed profiles of nuclear heating and radiation damage parameters were determined in ITER blanket modules at different poloidal locations. The results indicate that the nuclear parameters are sensitive to the configuration and material composition. Nuclear analysis was performed for several sections with cutouts in the back of the blanket modules for manifolds, inter-modular keys, and in-vessel coils to assess the impact on vacuum vessel shielding. C1 [Sawan, M. E.; Bohm, T. D.] Univ Wisconsin, Madison, WI 53706 USA. [Ulrickson, M. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Sawan, ME (reprint author), Univ Wisconsin, Madison, WI 53706 USA. EM sawan@engr.wisc.edu NR 9 TC 0 Z9 0 U1 1 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD SEP PY 2013 VL 64 IS 3 BP 555 EP 562 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 211NK UT WOS:000323914800026 ER PT J AU Youssef, MZ Feder, R AF Youssef, Mahmoud Z. Feder, Russell TI SUMMARY OF THE UP-TO-DATE 3-D NUCLEAR ANALYSES OF ITER DIAGNOSTICS GENERIC EQUATORIAL PORT PLUG (GEPP) PERFORMED WITH THE ATTILA DESIGN CODE SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 20th American-Nuclear-Society (ANS) Topical Meeting on the Technology of Fusion Energy (TOFE) CY AUG 27-31, 2012 CL Nashville, TN SP Amer Nucl Soc (ANS), Oak Ridge Natl Lab, US ITER, Lawrence Livermore Natl Lab, Princeton Plasma Phys Lab, Naval Res Lab, Atom Energy Soc Japan, Canadian Nucl Soc, Inst Elect & Elect Engineers ID NEUTRONICS ANALYSIS AB The upper, equatorial, and lower diagnostics port plugs in ITER will include numerous intermingling labyrinths and many streaming paths whose impact should be carefully studied For this purpose, the 3-D Discrete Ordinates code, Attila, has been routinely used by PPPL/UCLA to assess the nuclear field in these geometrically complex plugs both during operation and after shutdown. In this paper we describe the calculation procedure followed and the input parameters/assumptions applied to assess the shutdown dose rates (SDDR) everywhere with emphasize on their values inside the generic equatorial port plug (GEPP) and its inter-space extension area. Factors inherent in the Discrete Ordinates method that impact the accuracy of the results (e.g. quadrature sets used, boundary conditions applied, etc.) are discussed Means to minimize streaming through straight gaps and open channels present in the GEPP are presented in this paper, along with an examination of their effectiveness in reducing the SDDR in the port inter-space area. C1 [Youssef, Mahmoud Z.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Feder, Russell] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Youssef, MZ (reprint author), Univ Calif Los Angeles, Los Angeles, CA 90024 USA. EM youssef@fusion.ucla.edu; rfeder@pppl.gov NR 19 TC 3 Z9 3 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD SEP PY 2013 VL 64 IS 3 BP 571 EP 581 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 211NK UT WOS:000323914800028 ER PT J AU Wong, CPC Abdou, M Katoh, Y Kurtz, RJ Lumsdaine, A Marriott, E Merrill, B Morley, N Pint, BA Sawan, ME Smolentsev, S Williams, B Willms, RS Youssef, M AF Wong, C. P. C. Abdou, M. Katoh, Y. Kurtz, R. J. Lumsdaine, A. Marriott, E. Merrill, B. Morley, N. Pint, B. A. Sawan, M. E. Smolentsev, S. Williams, B. Willms, R. S. Youssef, M. TI PROGRESS ON DCLL BLANKET CONCEPT SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 20th American-Nuclear-Society (ANS) Topical Meeting on the Technology of Fusion Energy (TOFE) CY AUG 27-31, 2012 CL Nashville, TN SP Amer Nucl Soc (ANS), Oak Ridge Natl Lab, US ITER, Lawrence Livermore Natl Lab, Princeton Plasma Phys Lab, Naval Res Lab, Atom Energy Soc Japan, Canadian Nucl Soc, Inst Elect & Elect Engineers ID CORROSION BEHAVIOR; PB-17LI; DESIGN; EXTRACTION; STEELS; ITER AB Under the US Fusion Nuclear Science and Technology Development program, we have selected the Dual Coolant Lead Lithium concept (DCLL) as a reference blanket, which has the potential to be a high performance DEMO blanket design with a projected thermal efficiency of >40%. Reduced activation ferritic/martensitic (RAF/M) steel is used as the structural material. The self-cooled breeder PbLi is circulated for power conversion and for tritium breeding. A SiC-based flow channel insert (FCI) is used as a means for magnetohydrodynamic pressure drop reduction from the circulating liquid PbLi and as a thermal insulator to separate the high-temperature PbLi (similar to 700 degrees C) from the helium-cooled RAF/M steel structure. We are making progress on related R&D needs to address critical Fusion Nuclear Science and Facility (FNSF) and DEMO blanket development issues. While performing the function as the Interface Coordinator for the DCLL blanket concept, we were developing the mechanical design and performing neutronics, structural and thermal hydraulics analyses of the DCLL TBM module. We estimated the necessary ancillary equipment that will be needed at the ITER site, and a detailed safety impact report was prepared. This provided additional understanding of the DCLL blanket concept in preparation for the FNSF and DEMO. This paper is a summary report on the progress of the DCLL TBM design and R&D for the DCLL blanket concept. C1 [Wong, C. P. C.] Gen Atom Co, San Diego, CA 92186 USA. [Abdou, M.; Morley, N.; Smolentsev, S.; Youssef, M.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Katoh, Y.; Lumsdaine, A.; Pint, B. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Kurtz, R. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Marriott, E.; Sawan, M. E.] Univ Wisconsin, Madison, WI 53706 USA. [Merrill, B.] Idaho Natl Lab, Idaho Falls, ID 83515 USA. [Williams, B.] Ultramet Inc, Pacoima, CA 91331 USA. [Willms, R. S.] ITER Org, Cadarache, France. RP Wong, CPC (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM wongc@fusion.gat.com RI Pint, Bruce/A-8435-2008 OI Pint, Bruce/0000-0002-9165-3335 NR 31 TC 5 Z9 5 U1 0 U2 9 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD SEP PY 2013 VL 64 IS 3 BP 623 EP 630 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 211NK UT WOS:000323914800035 ER PT J AU Brown, T Costley, AE Goldston, RJ El-Guebaly, L Kessel, C Neilson, GH Malang, S Menard, JE Prager, S Waganer, L Titus, P Zarnstorff, M AF Brown, T. Costley, A. E. Goldston, R. J. El-Guebaly, L. Kessel, C. Neilson, G. H. Malang, S. Menard, J. E. Prager, S. Waganer, L. Titus, P. Zarnstorff, M. TI COMPARISON OF OPTIONS FOR A PILOT PLANT FUSION NUCLEAR MISSION SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 20th American-Nuclear-Society (ANS) Topical Meeting on the Technology of Fusion Energy (TOFE) CY AUG 27-31, 2012 CL Nashville, TN SP Amer Nucl Soc (ANS), Oak Ridge Natl Lab, US ITER, Lawrence Livermore Natl Lab, Princeton Plasma Phys Lab, Naval Res Lab, Atom Energy Soc Japan, Canadian Nucl Soc, Inst Elect & Elect Engineers ID POWER-PLANT; ARIES-ST; TOKAMAK AB A fusion pilot plant study was initiated to clarify the development needs in moving from ITER to a first of a kind fusion power plant, following a path similar to the approach adopted for the commercialization of fission. The pilot plant mission encompassed component test and fusion nuclear science missions plus the requirement to produce net electricity with high availability in a device designed to be prototypical of the commercial device. Three magnetic configuration options were developed around this mission: the advanced tokamak (AT), spherical tokamak (ST) and compact stellarator (CS). With the completion of the study and separate documentation of each design option a question can now be posed; how do the different designs compare with each other as candidates for meeting the pilot plant mission? In a pro/con format this paper will examine the key arguments for and against the AT, ST and CS magnetic configurations. Key topics addressed include: plasma parameters, device configurations, size and weight comparisons, diagnostic issues, maintenance schemes, availability influences and possible test cell arrangement schemes. C1 [Brown, T.; Goldston, R. J.; Kessel, C.; Neilson, G. H.; Menard, J. E.; Prager, S.; Titus, P.; Zarnstorff, M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [El-Guebaly, L.] Univ Wisconsin, Madison, WI USA. [Malang, S.] Fus Nucl Technol Consulting, Linkenheim, Germany. [Waganer, L.] Boeing Co, St Louis, MO USA. RP Brown, T (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM tbrown@pppl.gov OI Menard, Jonathan/0000-0003-1292-3286 NR 26 TC 2 Z9 2 U1 1 U2 7 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD SEP PY 2013 VL 64 IS 3 BP 662 EP 669 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 211NK UT WOS:000323914800042 ER PT J AU Titus, PH Zolfaghari, A AF Titus, Peter H. Zolfaghari, Ali TI TF INNER LEG SPACE ALLOCATION FOR PILOT PLANT DESIGN STUDIES SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 20th American-Nuclear-Society (ANS) Topical Meeting on the Technology of Fusion Energy (TOFE) CY AUG 27-31, 2012 CL Nashville, TN SP Amer Nucl Soc (ANS), Oak Ridge Natl Lab, US ITER, Lawrence Livermore Natl Lab, Princeton Plasma Phys Lab, Naval Res Lab, Atom Energy Soc Japan, Canadian Nucl Soc, Inst Elect & Elect Engineers AB A critical design feature of any tokamak is the space taken up by the inner leg of the toroidal field (TF) coil. The radial build needed for the TF inner leg, along with shield thickness, size of the central solenoid and plasma minor radius set the major radius of the machine. Small reductions in the TF build can have a large impact on the overall cost of the reactor. The cross section of the TF inner leg support the centering force and that portion of the vertical separating force that is not supported by the outer structures. In this paper, the TF inner leg equatorial plane cross sections are considered. Out-of-Plane (OOP) forces are taken by structures that are not closely coupled with the radial build of the central column at the equatorial plane. The "Vertical Access AT Pilot Plant" currently under consideration at PPPL is used as a starting point for the structural, field and current requirements. Other TF structural concepts are considered. With the expectation that the pilot plant will be a steady state machine, a static stress criteria is used for all the concepts. The coils are assumed to be superconducting, with the superconductor not contributing to the structural strength. Limit analysis is employed to assess the degree of conservatism in the static criteria as it is applied to a linear elastic stress analysis. TF concepts, and in particular the PPPL AT PILOT plate concept are evaluated based on amount of space needed for structure and the amount of space left for superconductor. C1 [Titus, Peter H.; Zolfaghari, Ali] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Titus, PH (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM ptitus@pppl.gov NR 4 TC 0 Z9 0 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD SEP PY 2013 VL 64 IS 3 BP 680 EP 686 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 211NK UT WOS:000323914800045 ER PT J AU Nilsen, J Johnson, WR Cheng, KT AF Nilsen, Joseph Johnson, Walter R. Cheng, K. T. TI The effect of bound states on X-ray Thomson scattering for partially ionized plasmas SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Average atom technique; Thomson scattering; X-FEL; Plasma diagnostic techniques; Laser-plasma interactions; Strongly coupled plasmas; Dielectric properties AB X-ray Thomson scattering is being developed as a method to measure the temperature, electron density, and ionization state of high energy density plasmas such as those used in inertial confinement fusion. Xray laser sources have always been of interest because of the need to have a bright monochromatic X-ray source to overcome plasma emission and eliminate other lines in the background that complicate the analysis. With the advent of the X-ray free electron laser (X-FEL) at the SNAL Linac Coherent Light Source (LCLS) and other facilities coming online worldwide, we now have such a source available in the key regime. An important challenge with X-ray Thomson scattering experiments is understanding how to model the scattering for partially ionized plasmas. Most Thomson scattering codes used to model experimental data greatly simplify or neglect the contributions of the bound electrons to the scattered intensity. In this work we take the existing models of Thomson scattering that include elastic ion ion scattering and inelastic electron electron scattering and add the contribution of bound electrons in the partially ionized plasmas. Except for hydrogen plasmas, most plasmas studied today have bound electrons and it is important to understand their contribution to the Thomson scattering, especially as new X-ray sources such as an X-FEL will allow us to study much higher Z plasmas. To date, most experiments have studied hydrogen or beryllium plasmas. We first analyze existing experimental data for beryllium to validate the code. We then consider several higher Z materials such as Cr and predict the existence of additional peaks in the scattering spectrum that require new computational tools to understand. For a Sn plasma, we show that bound contributions change the shape of the scattered spectrum in a way that would change the plasma temperature and density inferred from experiment. (C) 2013 Elsevier B.V. All rights reserved. C1 [Nilsen, Joseph; Cheng, K. T.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Johnson, Walter R.] Univ Notre Dame, Notre Dame, IN 46556 USA. RP Nilsen, J (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM jnilsen@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 9 TC 3 Z9 3 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD SEP PY 2013 VL 9 IS 3 BP 388 EP 391 DI 10.1016/j.hedp.2013.04.010 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 210SP UT WOS:000323855100002 ER PT J AU Johnson, WR Nilsen, J Cheng, KT AF Johnson, W. R. Nilsen, J. Cheng, K. T. TI Resonant bound-free contributions to Thomson scattering of X-rays by warm dense matter SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE 52.25.Os: Emission; Absorption and scattering of radiation; 52.38.-r: Laser-plasma interaction; 52.70.-m: Plasma diagnostic techniques; 56.65.Rr: Particle in cell method AB Recent calculations [Nilsen et al. arXiv:1212.5972] predict that contributions to the scattered photon spectrum from 3s and 3p bound states in chromium (Z = 24) at metallic density and T = 12 eV resonate below the respective bound-state thresholds. These resonances are shown to be closely related to continuum lowering, where 3d bound states in the free atom dissolve into a resonant l = 2 partial wave in the continuum. The resulting d-state resonance dominates contributions to the bound-free dynamic structure function, leading to the predicted resonances in the scattered X-ray spectrum. Similar resonant features are shown to occur in all elements in the periodic table between Ca and Mn (20 <= Z <= 25). (C) 2013 Elsevier B.V. All rights reserved. C1 [Johnson, W. R.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Nilsen, J.; Cheng, K. T.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Johnson, WR (reprint author), Univ Notre Dame, Notre Dame, IN 46556 USA. EM johnson@nd.edu; nilsen1@llnl.gov; ktcheng@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors owe a debt of gratitude to T. Doppner for bringing up the question of the origin of the resonances predicted in average-atom calculations. The work of J.N. and K.T.C. was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 3 TC 3 Z9 3 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD SEP PY 2013 VL 9 IS 3 BP 407 EP 409 DI 10.1016/j.hedp.2013.03.008 PG 3 WC Physics, Fluids & Plasmas SC Physics GA 210SP UT WOS:000323855100005 ER PT J AU Zhang, Z Nishimura, H Namimoto, T Fujioka, S Arikawa, Y Nagatomo, H Nakai, M Ozaki, T Koga, M Johzaki, T Sunahara, A Chen, H Park, J Williams, GJ Shiraga, H Kojima, S Nishikino, M Kawachi, T Hosoda, H Okano, Y Miyanaga, N Kawanaka, J Nakata, Y Jitsuno, T Azechi, H AF Zhang, Z. Nishimura, H. Namimoto, T. Fujioka, S. Arikawa, Y. Nagatomo, H. Nakai, M. Ozaki, T. Koga, M. Johzaki, T. Sunahara, A. Chen, H. Park, J. Williams, G. J. Shiraga, H. Kojima, S. Nishikino, M. Kawachi, T. Hosoda, H. Okano, Y. Miyanaga, N. Kawanaka, J. Nakata, Y. Jitsuno, T. Azechi, H. TI Quantitative measurement of hard X-ray spectra from laser-driven fast ignition plasma SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE X-ray spectroscopy; Laser-plasma interaction; Hard X-rays; Fast ignition ID PULSE AB Absolute K alpha line spectroscopy is proposed for studying laser plasma interactions taking place in the Au cone-guided fast ignition targets. X-ray spectra ranging from 20 to 100 key were quantitatively measured with a Laue spectrometer composed of a cylindrically curved crystal and a filter-absorption method for Bremsstrahlung continuum emission. The absolute sensitivities of the Laue spectrometer systems were calibrated using pre-characterized laser-produced X-ray sources and radioisotopes. The integrated reflectivity for the crystal is in good agreement with predictions by an X-ray diffraction code. The energy transfer efficiency from incident laser beams to hot electrons, as the energy transfer mechanism, is derived from this work. The absolute yield of Au and Ta K alpha lines were measured in the fast ignition experimental campaign performed at Institute of Laser Engineering, Osaka University. Applying the hot electron spectrum information from electron spectrometer and scaling laws, the energy transfer efficiency from the incident LFEX, a kJ-class PW laser, to hot electrons was derived for the first time. (C) 2013 Elsevier B.V. All rights reserved. C1 [Zhang, Z.; Nishimura, H.; Namimoto, T.; Fujioka, S.; Arikawa, Y.; Nagatomo, H.; Nakai, M.; Koga, M.; Shiraga, H.; Kojima, S.; Hosoda, H.; Miyanaga, N.; Kawanaka, J.; Nakata, Y.; Jitsuno, T.; Azechi, H.] Osaka Univ, Inst Laser Engn, Suita, Osaka 5650871, Japan. [Ozaki, T.] LHD, Natl Inst Fus Sci, Gifu 5095292, Japan. [Johzaki, T.] Hiroshima Univ, Grad Sch Engn, Higashihiroshima 7398527, Japan. [Sunahara, A.] Inst Laser Technol, Suita, Osaka 5650871, Japan. [Chen, H.; Park, J.; Williams, G. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Nishikino, M.; Kawachi, T.] JAEA, Kansai Photon Sci Inst, Quantum Beam Sci Directorate, Kyoto 6190215, Japan. [Okano, Y.] Natl Inst Nat Sci, Inst Mol Sci, Laser Res Ctr Mol Sci, Okazaki, Aichi 4448585, Japan. RP Zhang, Z (reprint author), Osaka Univ, Inst Laser Engn, 2-2 Yamada Oka, Suita, Osaka 5650871, Japan. EM zhang-z@ile.osaka-u.ac.jp RI Johzaki, Tomoyuki/D-8678-2012; Okano, Yasuaki/A-3998-2015; Miyanaga, Noriaki/F-1340-2015; Azechi, Hiroshi/H-5876-2015; Nakai, Mitsuo/I-6758-2015; Nishimura, Hiroaki/I-4908-2015; Shiraga, Hiroyuki/I-9565-2015; Fujioka, Shinsuke/J-5530-2015; Nakata, Yoshiki/L-4957-2015; Arikawa, Yasunobu/L-8760-2015; Jitsuno, Takahisa/M-6056-2015; Kawanaka, Junji/P-8065-2015; Zhang, Zhe/J-2655-2014 OI SUNAHARA, ATSUSHI/0000-0001-7543-5226; Miyanaga, Noriaki/0000-0002-9902-5392; Nakai, Mitsuo/0000-0001-6076-756X; Fujioka, Shinsuke/0000-0001-8406-1772; Nakata, Yoshiki/0000-0002-0680-999X; Arikawa, Yasunobu/0000-0002-3142-3060; Kawanaka, Junji/0000-0001-5655-7981; Zhang, Zhe/0000-0001-8076-5094 FU U.S. DOE by LLNL [DE-AC52-07NA27344] FX The authors would like to thank the Gekko-XII and LFEX laser operation crew, the target fabrication group, the plasma diagnostics group, and the computer operation staffs for their great contribution to this work. The work by LLNL staffs was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344. NR 20 TC 3 Z9 3 U1 0 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD SEP PY 2013 VL 9 IS 3 BP 435 EP 438 DI 10.1016/j.hedp.2013.04.001 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 210SP UT WOS:000323855100010 ER PT J AU Grosskopf, MJ Drake, RP Miles, AR Plewa, T Kuranz, CC AF Grosskopf, M. J. Drake, R. P. Miles, A. R. Plewa, T. Kuranz, C. C. TI Modeling of aspheric, diverging hydrodynamic instability experiments on the National Ignition Facility SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Computer simulation; Laboratory astrophysics ID CORE-COLLAPSE SUPERNOVAE; RAYLEIGH-TAYLOR INSTABILITY; 2-DIMENSIONAL SIMULATIONS; DECELERATING INTERFACE; EARLY EVOLUTION; NOVA LASER; SN-1987A; EXPLOSIONS; RELEVANT; JETS AB One branch of work in the laboratory astrophysics community has been focused on developing the understanding of hydrodynamic mixing in core-collapse supernovae (ccSNe) by the Rayleigh Taylor instability. Experiments studying these processes in the past have been limited to planar systems in large part due to limitations of drive energy. The National Ignition Facility (NIF) is now capable of providing experiments with far more energy than has been previously available on laser facilities, enabling supernova-relevant hydrodynamics in a diverging system. This paper focuses on a proposed design in which hydrodynamic instabilities develop from an aspheric blast-wave driven through multiple, coupled interfaces in a hemispheric target in which the relative masses of the layers are scaled to those within the ccSNe progenitor star. The simulations investigate the diagnosability and experimental value of different designs using a variety of drive conditions. (C) 2013 Elsevier B.V. All rights reserved. C1 [Grosskopf, M. J.; Drake, R. P.; Kuranz, C. C.] Univ Michigan, Ann Arbor, MI 48109 USA. [Miles, A. R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Plewa, T.] Florida State Univ, Tallahassee, FL 32306 USA. RP Grosskopf, MJ (reprint author), Univ Michigan, Ann Arbor, MI 48109 USA. EM mikegros@umich.edu RI Drake, R Paul/I-9218-2012 OI Drake, R Paul/0000-0002-5450-9844 FU NNSA-DS; SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas; National Laser User Facility Program in NNSA-DS; Predictive Sciences Academic Alliances Program in NNSA-ASC; [DE-FG52-09NA29548]; [DE-FG52-09NA29034]; [DE-FC52-08NA28616] FX This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, by the National Laser User Facility Program in NNSA-DS and by the Predictive Sciences Academic Alliances Program in NNSA-ASC. The corresponding grant numbers are DE-FG52-09NA29548, DE-FG52-09NA29034, and DE-FC52-08NA28616. NR 49 TC 1 Z9 1 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 EI 1878-0563 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD SEP PY 2013 VL 9 IS 3 BP 439 EP 447 DI 10.1016/j.hedp.2013.04.003 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 210SP UT WOS:000323855100011 ER PT J AU Gaffney, JA Clark, D Sonnad, V Libby, SB AF Gaffney, J. A. Clark, D. Sonnad, V. Libby, S. B. TI Bayesian inference of inaccuracies in radiation transport physics from inertial confinement fusion experiments SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Inertial confinement fusion; Radiation hydrodynamic simulation; Bayesian inference; Plasma opacity; Uncertainty quantification; National Ignition Facility radiation transport AB First principles microphysics models are essential to the design and analysis of high energy density physics experiments. Using experimental data to investigate the underlying physics is also essential, particularly when simulations and experiments are not consistent with each other. This is a difficult task, due to the large number of physical models that play a role, and due to the complex and noisy nature of the experiments. This results in a large number of parameters that make any inference a daunting task; it is also very important to consistently treat both experimental and prior understanding of the problem. In this paper we present a Bayesian method that includes both these effects, and allows the inference of a set of modifiers that have been constructed to give information about microphysics models from experimental data. We pay particular attention to radiation transport models. The inference takes into account a large set of experimental parameters and an estimate of the prior knowledge through a modified chi(2) function, which is minimised using an efficient genetic algorithm. Both factors play an essential role in our analysis. We find that although there is evidence of inaccuracies in off-line calculations of X-ray drive intensity and Ge L shell absorption, modifications to radiation transport are unable to reconcile differences between 1D HYDRA simulations and the experiment. (C) 2013 Elsevier B.V. All rights reserved. C1 [Gaffney, J. A.; Clark, D.; Sonnad, V.; Libby, S. B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Gaffney, JA (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM gaffney3@llnl.gov OI Gaffney, Jim/0000-0002-2408-0047 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; [LLNL-JRNL-617033] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-JRNL-617033. NR 18 TC 4 Z9 4 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD SEP PY 2013 VL 9 IS 3 BP 457 EP 461 DI 10.1016/j.hedp.2013.04.012 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 210SP UT WOS:000323855100013 ER PT J AU Turck-Chieze, S Gilles, D Le Pennec, M Blenski, T Thais, F Bastiani-Ceccotti, S Blancard, C Busquet, M Caillaud, T Colgan, J Cosse, P Delahaye, F Ducreta, JE Faussurier, G Fontes, CJ Gilleron, F Guzik, J Harris, JW Kilcrease, DP Loisel, G Magee, NH Pain, JC Reverdin, C Silvert, V Villette, B Zeippen, CJ AF Turck-Chieze, S. Gilles, D. Le Pennec, M. Blenski, T. Thais, F. Bastiani-Ceccotti, S. Blancard, C. Busquet, M. Caillaud, T. Colgan, J. Cosse, P. Delahaye, F. Ducreta, J. E. Faussurier, G. Fontes, C. J. Gilleron, F. Guzik, J. Harris, J. W. Kilcrease, D. P. Loisel, G. Magee, N. H. Pain, J. C. Reverdin, C. Silvert, V. Villette, B. Zeippen, C. J. TI Radiative properties of stellar envelopes: Comparison of asteroseismic results to opacity calculations and measurements for iron and nickel SO HIGH ENERGY DENSITY PHYSICS LA English DT Review DE Stellar plasma; Stellar opacity calculations; Opacity measurements ID TRANSITION-ARRAYS; ABSORPTION-MEASUREMENTS; ELEMENT OPACITIES; PLASMAS; STARS; PULSATIONS; SPECTRA; PROJECT; MODEL; CODE AB The international OPAC consortium consists of astrophysicists, plasma physicists and experimentalists who examine opacity calculations used in stellar physics that appear questionable and perform new calculations and laser experiments to understand the differences and improve the calculations. We report on iron and nickel opacities for envelopes of stars from 2 to 14 M and deliver our first conclusions concerning the reliability of the used calculations by illustrating the importance of the configuration interaction and of the completeness of the calculations for temperatures around 15-27 eV. (C) 2013 Elsevier B.V. All rights reserved. C1 [Turck-Chieze, S.; Gilles, D.; Le Pennec, M.; Ducreta, J. E.] CE Saclay, CEA DSM IRFU SAp, UMR 7158, F-91190 Gif Sur Yvette, France. [Blenski, T.; Thais, F.; Loisel, G.] CE Saclay, CEA DSM IRAMIS SPAM, F-91190 Gif Sur Yvette, France. [Bastiani-Ceccotti, S.] UPMC, CEA, CNRS, LULI,Ecole Polytech, F-91128 Palaiseau, France. [Blancard, C.; Caillaud, T.; Cosse, P.; Faussurier, G.; Gilleron, F.; Pain, J. C.; Reverdin, C.; Silvert, V.; Villette, B.] CEA DAM DIF, F-91297 Arpajon, France. [Busquet, M.] ARTEP, Ellicott City, MD 21042 USA. [Colgan, J.; Guzik, J.; Kilcrease, D. P.; Magee, N. H.] LANL, Div Theoret, Los Alamos, NM 87545 USA. [Fontes, C. J.] LANL, Computat Phys Div, Los Alamos, NM 87545 USA. [Delahaye, F.; Zeippen, C. J.] LERMA Observ Paris, F-92195 Meudon, France. [Harris, J. W.] AWE, Reading RG7 4PR, Berks, England. RP Turck-Chieze, S (reprint author), CE Saclay, CEA DSM IRFU SAp, UMR 7158, F-91190 Gif Sur Yvette, France. EM Sylvaine.Turck-Chieze@cea.fr OI Colgan, James/0000-0003-1045-3858; Pain, Jean-Christophe/0000-0002-7825-1315; Kilcrease, David/0000-0002-2319-5934 NR 43 TC 11 Z9 11 U1 2 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 EI 1878-0563 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD SEP PY 2013 VL 9 IS 3 BP 473 EP 479 DI 10.1016/j.hedp.2013.04.004 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 210SP UT WOS:000323855100015 ER PT J AU Welser-Sherrill, L Fincke, J Doss, F Loomis, E Flippo, K Offermann, D Keiter, P Haines, B Grinstein, F AF Welser-Sherrill, L. Fincke, J. Doss, F. Loomis, E. Flippo, K. Offermann, D. Keiter, P. Haines, B. Grinstein, F. TI Two laser-driven mix experiments to study reshock and shear SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Turbulence; Mix; High energy density experiments; Inertial Confinement Fusion AB In an effort to better understand mix in Inertial Confinement Fusion (ICF) implosion cores, a series of laser-driven mix experiments has been designed for the University of Rochester's OMEGA laser. Our objective is to perform experiments to investigate the turbulent mixing at material interfaces when subject to multiple shocks and reshocks or high-speed shear. Ultimately, these experiments are providing detailed quantitative measurements to assist in validation efforts for the BHR-2 mix model, which is implemented in the RAGE hydrodynamics code. The Reshock experiment studies the physical process of shocking and reshocking mix layers. Radiographs are recorded to compile a temporal evolution of the mixing layer and its subsequent reshock, compression, and re-growth phases. The Shear experiment investigates shear-driven growth of a mix layer, and radiography captures the time evolution of the development of turbulent mixing due to shear. Simulations of both the Reshock and Shear experiments using RAGE and the BHR-2 mix model demonstrate good agreement with the mix evolution seen in the experimental data, giving confidence that BHR-2 is capable of simulating the behavior of both compressive and shear-driven turbulent flows. (C) 2013 Elsevier B.V. All rights reserved. C1 [Welser-Sherrill, L.; Fincke, J.; Doss, F.; Loomis, E.; Flippo, K.; Offermann, D.; Keiter, P.; Haines, B.; Grinstein, F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Welser-Sherrill, L (reprint author), MS T086,POB 1663, Los Alamos, NM 87545 USA. EM lwelser@lanl.gov RI Flippo, Kirk/C-6872-2009; OI Flippo, Kirk/0000-0002-4752-5141; Offermann, Dustin/0000-0002-6033-4905; Haines, Brian/0000-0002-3889-7074 FU U.S. Department of Energy [DE-AC52-06NA25396] FX The authors would like to gratefully acknowledge the contributions of Los Alamos target fabrication and the OMEGA operations crew, who were invaluable to the success of these experiments. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, under contract DE-AC52-06NA25396 for the U.S. Department of Energy. NR 9 TC 18 Z9 18 U1 3 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD SEP PY 2013 VL 9 IS 3 BP 496 EP 499 DI 10.1016/j.hedp.2013.04.015 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 210SP UT WOS:000323855100019 ER PT J AU Golovkin, I MacFarlane, JJ Woodruff, P Hall, I Gregori, G Bailey, J Harding, E Ao, T Glenzer, S AF Golovkin, Igor MacFarlane, Joseph J. Woodruff, Pamela Hall, Iain Gregori, Gianluca Bailey, James Harding, Eric Ao, Tom Glenzer, Siegfried TI Simulation of X-ray scattering diagnostics in multi-dimensional plasma SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE X-ray scattering; Dense plasma diagnostics; Spectroscopy ID INERTIAL CONFINEMENT FUSION; NATIONAL IGNITION FACILITY; SOLID DENSITY PLASMAS; THOMSON SCATTERING; PHYSICS BASIS AB X-ray scattering is a powerful diagnostic technique that has been used in a variety of experimental settings to determine the temperature, density, and ionization state of warm dense matter. In order to maximize the intensity of the scattered signal, the x-ray source is often placed in close proximity to the target plasma. Therefore, the interpretation of the experimental data can become complicated by the fact that the detector records photons scattered at different angles from points within the plasma volume. In addition, the target plasma that is scattering the x-rays can have significant temperature and density gradients. To address these issues, we have developed the capability to simulate x-ray scattering for realistic experimental configurations where the effects of plasma non-uniformities and a range of x-ray scattering angles are included. We will discuss the implementation details and show results relevant to previous and ongoing experimental investigations. (C) 2013 Elsevier B.V. All rights reserved. C1 [Golovkin, Igor; MacFarlane, Joseph J.; Woodruff, Pamela; Hall, Iain] Prism Computat Sci Inc, Madison, WI 53711 USA. [Gregori, Gianluca] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. [Bailey, James; Harding, Eric; Ao, Tom] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Glenzer, Siegfried] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Golovkin, I (reprint author), Prism Computat Sci Inc, 455 Sci Dr,Suite 140, Madison, WI 53711 USA. EM golovkin@prism-cs.com NR 20 TC 5 Z9 5 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD SEP PY 2013 VL 9 IS 3 BP 510 EP 515 DI 10.1016/j.hedp.2013.05.001 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 210SP UT WOS:000323855100022 ER PT J AU Hansen, S Armstrong, GSJ Bastiani-Ceccotti, S Bowen, C Chung, HK Colgan, JP de Dortan, F Fontes, CJ Gilleron, F Marques, JR Piron, R Peyrusse, O Poirier, M Ralchenko, Y Sasaki, A Stambulchik, E Thais, F AF Hansen, Stephanie Armstrong, G. S. J. Bastiani-Ceccotti, S. Bowen, C. Chung, H. -K. Colgan, J. P. de Dortan, F. Fontes, C. J. Gilleron, F. Marques, J. -R. Piron, R. Peyrusse, O. Poirier, M. Ralchenko, Yu. Sasaki, A. Stambulchik, E. Thais, F. TI Testing the reliability of non-LTE spectroscopic models for complex ions SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE X-ray spectroscopy; Atomic kinetics; Plasma diagnostics; L-shell ID X-RAY; PLASMAS; WORKSHOP; RECOMBINATION AB Collisional-radiative atomic models are widely used to help diagnose experimental plasma conditions through fitting and interpreting measured spectra. Here we present the results of a code comparison in which a variety of models determined plasma temperatures and densities by finding the best fit to an experimental L-shell Kr spectrum from a well characterized, but not benchmarked, laser plasma. While variations in diagnostic strategies and qualities of fit were significant, the results generally confirmed the typically quoted uncertainties for such diagnostics of 20% in electron temperature and factors of about two in density. The comparison also highlighted some model features important for spectroscopic diagnostics: fine structure was required to match line positions and relative intensities within each charge state and for density diagnostics based on emission from metastable states; an extensive configuration set was required to fit the wings of satellite features and to reliably diagnose the temperature through the inferred charge state distribution; and the inclusion of self-consistent opacity effects was an important factor in the quality of the fit. Published by Elsevier B.V. C1 [Hansen, Stephanie] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Armstrong, G. S. J.; Colgan, J. P.; Fontes, C. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bastiani-Ceccotti, S.; Marques, J. -R.] UPMC, LULI, Ecole Polytech, CNRS,CEA, F-91128 Palaiseau, France. [Bowen, C.; Gilleron, F.; Piron, R.] CEA, DAM, DIF, F-91297 Arpajon, France. [Chung, H. -K.] IAEA, Nucl Data Sect, A-1400 Vienna, Austria. [de Dortan, F.] Acad Sci Czech Republic, Inst Phys, Prague 8, Czech Republic. [de Dortan, F.] UPM, DENIM, Madrid, Spain. [Peyrusse, O.] Univ Bordeaux, CEA, CNRS, CELIA,UMR 5107, F-33400 Talence, France. [Poirier, M.; Thais, F.] CEA, IRAMIS, Serv Photons Atomes & Mol, Ctr Etud Saclay, F-91191 Gif Sur Yvette, France. [Ralchenko, Yu.] NIST, Gaithersburg, MD 20899 USA. [Sasaki, A.] Japan Atom Energy Agcy, Kizugawa, Kyoto 6190215, Japan. [Stambulchik, E.] Weizmann Inst Sci, Fac Phys, IL-76100 Rehovot, Israel. RP Hansen, S (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. EM sbhanse@sandia.gov RI Ralchenko, Yuri/E-9297-2016; Sasaki, Akira/J-8158-2016; OI Ralchenko, Yuri/0000-0003-0083-9554; Colgan, James/0000-0003-1045-3858 FU Sandia, a multiprogram laboratory; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; United States Department of Energy [DE-AC52-06NA25396]; Office of Fusion Energy Sciences of the U.S. Department of Energy; JSPS (Japan Society for the Promotion of Science) [23340185, 23246165]; Czech Republic's Ministry of Education, Youth and Sports [CZ,1.05/1.1.00/02.0061]; EC OP [CZ.1.07/2.3.00/20.0087] FX S.H. was supported by Sandia, a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The work of G.A., J.C., and C.F. was performed under the auspices of the United States Department of Energy under contract DE-AC52-06NA25396. Yu.R. was supported in part by the Office of Fusion Energy Sciences of the U.S. Department of Energy. A.S. was supported in part by JSPS (Japan Society for the Promotion of Science) grants No. 23340185 and 23246165. F.dD. was funded by Czech Republic's Ministry of Education, Youth and Sports to the ELI-Beamlines (ELI, CZ,1.05/1.1.00/02.0061) and EC OP CZ.1.07/2.3.00/20.0087. NR 31 TC 12 Z9 12 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD SEP PY 2013 VL 9 IS 3 BP 523 EP 527 DI 10.1016/j.hedp.2013.05.002 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 210SP UT WOS:000323855100024 ER PT J AU Pikuz, SA Faenov, AY Colgan, J Dance, RJ Abdallah, J Wagenaars, E Booth, N Culfa, O Evans, RG Gray, RJ Kaempfer, T Lancaster, KL McKenna, P Rossall, AL Skobelev, IY Schulze, KS Uschmann, I Zhidkov, AG Woolsey, NC AF Pikuz, S. A. Faenov, A. Ya. Colgan, J. Dance, R. J. Abdallah, J. Wagenaars, E. Booth, N. Culfa, O. Evans, R. G. Gray, R. J. Kaempfer, T. Lancaster, K. L. McKenna, P. Rossall, A. L. Skobelev, I. Yu. Schulze, K. S. Uschmann, I. Zhidkov, A. G. Woolsey, N. C. TI Measurement and simulations of hollow atom X-ray spectra of solid-density relativistic plasma created by high-contrast PW optical laser pulses SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Relativistic laser plasma; Hollow atoms; X-ray spectroscopy; X-ray sources; Radiation-dominated kinetics ID EMISSION; ALUMINUM; RADIATION; IONS; IONIZATION; SCATTERING; SURFACE AB K-shell spectra of solid Al excited by petawatt picosecond laser pulses have been investigated at the Vulcan PW facility. Laser pulses of ultrahigh contrast with an energy of 160 J on the target allow studies of interactions between the laser field and solid state matter at 10(20) W/cm(2). Intense X-ray emission of KK hollow atoms (atoms without n = 1 electrons) from thin aluminum foils is observed from optical laser plasma for the first time. Specifically for 1.5 mu m thin foil targets the hollow atom yield dominates the resonance line emission. It is suggested that the hollow atoms are predominantly excited by the impact of X-ray photons generated by radiation friction to fast electron currents in solid-density plasma due to Thomson scattering and bremsstrahlung in the transverse plasma fields. Numerical simulations of Al hollow atom spectra using the ATOMIC code confirm that the impact of keV photons dominates the atom ionization. Our estimates demonstrate that solid-density plasma generated by relativistic optical laser pulses provide the source of a polychromatic key range X-ray field of 10(18) W/cm(2) intensity, and allows the study of excited matter in the radiation-dominated regime. High-resolution X-ray spectroscopy of hollow atom radiation is found to be a powerful tool to study the properties of high-energy density plasma created by intense X-ray radiation. (C) 2013 Elsevier B.V. All rights reserved. C1 [Pikuz, S. A.; Faenov, A. Ya.; Skobelev, I. Yu.] Russian Acad Sci, Joint Inst High Temp, Moscow 125412, Russia. [Colgan, J.; Abdallah, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Dance, R. J.; Wagenaars, E.; Culfa, O.; Rossall, A. L.; Woolsey, N. C.] Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England. [Booth, N.; Lancaster, K. L.] STFC Rutherford Appleton Lab, Cent Laser Facil, Didcot OX11 0QX, Oxon, England. [Evans, R. G.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England. [Gray, R. J.; McKenna, P.] Univ Strathclyde, SUPA, Dept Phys, Glasgow G4 ONG, Lanark, Scotland. [Kaempfer, T.; Schulze, K. S.; Uschmann, I.] Helmholtzinst Jena, D-07743 Jena, Germany. [Zhidkov, A. G.] Osaka Univ, Photon Pioneers Ctr, Suita, Osaka 5650871, Japan. [Zhidkov, A. G.] JST CREST, Suita, Osaka 5650871, Japan. [Faenov, A. Ya.] Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Kizu, Kyoto 6190215, Japan. [Uschmann, I.] Univ Jena, Inst Opt & Quantenelekt, D-07743 Jena, Germany. RP Pikuz, SA (reprint author), Russian Acad Sci, Joint Inst High Temp, 13-2 Izhorskaya St, Moscow 125412, Russia. EM spikuz@gmail.com RI Pikuz, Sergey/F-7768-2014; McKenna, Paul/B-9764-2009; Wagenaars, Erik/A-9248-2013; Rossall, Andrew/R-2312-2016; OI Pikuz, Sergey/0000-0003-2529-1142; McKenna, Paul/0000-0001-8061-7091; Wagenaars, Erik/0000-0002-5493-3434; Rossall, Andrew/0000-0002-0123-8163; Colgan, James/0000-0003-1045-3858 FU U.S. Department of Energy [DE-AC52-06NA25396]; STFC; EPSRC of the United Kingdom [EP/E048668/1]; RFBR; Royal Society [12-02-92617-KOa, E120059]; RF President Grant [MK-4725.2012.8] FX The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. The research leading to these results has received funding from STFC and EPSRC of the United Kingdom (Grant No. EP/E048668/1). The work is supported by a mutual grant of the RFBR and Royal Society No. 12-02-92617-KOa / No. E120059, and RF President Grant No. MK-4725.2012.8. We thank Vulcan technical and target preparation teams at the Central Laser Facility for their support during the experiments. NR 44 TC 11 Z9 11 U1 2 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD SEP PY 2013 VL 9 IS 3 BP 560 EP 567 DI 10.1016/j.hedp.2013.05.008 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 210SP UT WOS:000323855100030 ER PT J AU Barrios, MA Fournier, KB Regan, SP Landen, O May, M Opachich, YP Widmann, K Bradley, DK Collins, GW AF Barrios, M. A. Fournier, K. B. Regan, S. P. Landen, O. May, M. Opachich, Y. P. Widmann, K. Bradley, D. K. Collins, G. W. TI Backlighter development at the National Ignition Facility (NIF): Zinc to zirconium SO HIGH ENERGY DENSITY PHYSICS LA English DT Review DE X-ray emission; Conversion efficiency; Backlighter foils ID SECONDARY-ELECTRON EMISSION; LASER-PRODUCED PLASMAS; X-RAYS; CSI; OPACITY; REGION AB K-shell X-ray emission from laser-irradiated planar Zn, Ge, Br, and Zr foils was measured at the National Ignition Facility for laser irradiances in the range of 0.6-9.5 x 10(15) W/cm(2). The incident laser power had a pre-pulse to enhance the laser-to-X-ray conversion efficiency (CE) of a 2-5 ns constant-intensity pulse used as the main laser drive. The measured CE into the 8-16 key energy band ranged from 0.43% to 2%, while the measured CE into the He-like resonance 1s2-1s2p(1P) and intercombination 1s2-1s2p(3P) transitions, as well as from their 1s2(2s,2p)l-1s2p(2s,2p)l satellite transitions for l = 1, 2, 3, corresponding to the Li-, Be-, and B-like resonances, respectively, ranged from 0.3% to 1.5%. Absolute and relative CE measurements are consistent with X-ray energy scaling of (hv)(-3) to (he)(-5), where he is the X-ray energy. The temporal evolution of the broadband X-ray power was similar to the main laser drive for ablation plasmas having a critical density surface. (C) 2013 Elsevier B.V. All rights reserved. C1 [Barrios, M. A.; Fournier, K. B.; Landen, O.; May, M.; Opachich, Y. P.; Widmann, K.; Bradley, D. K.; Collins, G. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Regan, S. P.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. RP Barrios, MA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM barriosgarci1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors thank the operations crew at NIF for their effort and support for these experiments. This work was done under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 41 TC 17 Z9 17 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 EI 1878-0563 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD SEP PY 2013 VL 9 IS 3 BP 626 EP 634 DI 10.1016/j.hedp.2013.05.018 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 210SP UT WOS:000323855100039 ER PT J AU Vaughan, K Moore, AS Smalyuk, V Wallace, K Gate, D Glendinning, SG McAlpin, S Park, HS Sorce, C Stevenson, RM AF Vaughan, K. Moore, A. S. Smalyuk, V. Wallace, K. Gate, D. Glendinning, S. G. McAlpin, S. Park, H. S. Sorce, C. Stevenson, R. M. TI High-resolution 22-52 keV backlighter sources and application to X-ray radiography SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Radiography; Backlighter; High-intensity; k-alpha ID LASER-SOLID INTERACTIONS AB The requirement for sources of hard X-rays suitable for high resolution radiography through large pR targets is prominent in many aspects of current laser-driven plasma physics research. In recent work using the OMEGA EP laser facility [L. J. Waxer, M. J. Guardalben, J. H. Kelly et al., CLEO/QELS, Optical Society of America, San Jose, CA, IEEE (2008)] at the Laboratory for Laser Energetics (LLE) in Rochester, NY, experiments have been performed to measure characteristics of 22-52 keV X-ray sources using high intensity short-pulse lasers. High quality point projection, two-dimensional radiography was demonstrated by irradiating microwire targets with laser intensities of 10(16)W cm(-2)-10(19) W cm(-2). Microwire targets were manufactured to dimensions of 10 mu m x 10 mu m x 300 mu m and were supported by a 100 mu m x 300 mu m x 6 mu m low-Z substrate. Measurements of the k-alpha conversion efficiency and X-ray source-size are discussed and, of particular importance for radiography, the spectral purity of the backlighter is characterized to assess the relative importance of the K alpha emission to bremsstrahlung background. (C) 2013 Published by Elsevier B.V. C1 [Vaughan, K.; Moore, A. S.; Wallace, K.; Gate, D.; McAlpin, S.; Stevenson, R. M.] Atom Weap Estab, Aldermaston, England. [Smalyuk, V.; Glendinning, S. G.; Park, H. S.; Sorce, C.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Moore, AS (reprint author), Atom Weap Estab, Aldermaston, England. EM alastair.moore@physics.org FU Ministry of Defence (MOD/UK) FX These experiments were funded by the Ministry of Defence (MOD/UK). NR 17 TC 3 Z9 3 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 EI 1878-0563 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD SEP PY 2013 VL 9 IS 3 BP 635 EP 641 DI 10.1016/j.hedp.2013.05.006 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 210SP UT WOS:000323855100040 ER PT J AU Carpenter, J Sandberg, R AF Carpenter, John Sandberg, Richard TI Perspective on the Use of Coherent Diffraction Imaging as a Tool for High Resolution Materials Characterization SO JOM LA English DT Editorial Material C1 [Carpenter, John] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Carpenter, John; Sandberg, Richard] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Carpenter, J (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM carpenter@lanl.gov OI Sandberg, Richard/0000-0001-9719-8188; Carpenter, John/0000-0001-8821-043X NR 0 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD SEP PY 2013 VL 65 IS 9 BP 1181 EP 1182 DI 10.1007/s11837-013-0671-7 PG 2 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 207SF UT WOS:000323623400017 ER PT J AU Harder, R Robinson, IK AF Harder, Ross Robinson, Ian K. TI Coherent X-Ray Diffraction Imaging of Morphology and Strain in Nanomaterials SO JOM LA English DT Article ID BARIUM-TITANATE; NANOSCALE; PHASE; MICROCRYSTALS; MICROSCOPY; DYNAMICS; FIELD AB The last decade has seen a remarkable surge in x-ray characterization methods (Willmott, An Introduction to Synchrotron Radiation, John Wiley & Sons, Inc., New York, 2011). Imaging with x-rays has evolved from simple radiography, to image internal structure and diagnose injury, to a full-fledged tool for nanoscale characterization (Holt et al., Annu Rev Mater Res 43:1, 2013). Central to this development has been the advent of high-brilliance synchrotron and free electron laser sources of x-rays. The high degree of spacial coherence of the resulting beams has enabled novel imaging methods. Of these, coherent diffraction imaging has proven highly successful at imaging the structure in nano materials (Miao et al., Nature 400:342, 1999). In addition, this imaging method can be combined with Bragg diffraction to image strain with high sensitivity (Pfeifer et al., Nature 442:63, 2006; Robinson and Harder, Nat Mater 8:291, 2009). C1 [Harder, Ross] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Robinson, Ian K.] UCL, London Ctr Nanotechnol, London WC1E 6BT, England. [Robinson, Ian K.] Harwell, Didcot OX11 0DE, Oxon, England. RP Harder, R (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM rharder@aps.anl.gov FU U.S. Department of Energy, Basic Energy Sciences, Office of Science [DE-AC02-06CH11357] FX This work is supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under Contract DE-AC02-06CH11357. NR 42 TC 7 Z9 7 U1 5 U2 43 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD SEP PY 2013 VL 65 IS 9 BP 1202 EP 1207 DI 10.1007/s11837-013-0682-4 PG 6 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 207SF UT WOS:000323623400019 ER PT J AU Sandberg, RL Huang, ZF Xu, R Rodriguez, JA Miao, JW AF Sandberg, Richard L. Huang, Zhifeng Xu, Rui Rodriguez, Jose A. Miao, Jianwei TI Studies of Materials at the Nanometer Scale Using Coherent X-Ray Diffraction Imaging SO JOM LA English DT Article ID ORDER HARMONIC-GENERATION; FOURIER-TRANSFORM HOLOGRAPHY; EXTREME-ULTRAVIOLET LASER; PHASE-MATCHED GENERATION; FREE-ELECTRON LASERS; ATOMIC-RESOLUTION; 3-DIMENSIONAL STRUCTURE; WAVELENGTH RESOLUTION; ULTRAFAST LASERS; NONLINEAR OPTICS AB For many years, x-ray microscopy has been attractive for materials studies with its ability to image thick samples and provide nanometer-scale resolution. However, the ability to manufacture high-resolution x-ray optics has been a hurdle to achieving the full potential of diffraction limited x-ray imaging. Recently, the advent of bright and coherent x-ray sources at synchrotrons and x-ray free electron lasers has enabled a lensless imaging technique called coherent diffractive imaging (CDI). Since it was first demonstrated in 1999, CDI has been rapidly developing into a materials imaging technique with resolutions approaching a few nanometers. This review provides an overview of the development of CDI and several applications to nanometer-scale imaging in two and three dimensions of biological and condensed mater materials. Also, we review the development of tabletop, coherent, soft x-ray sources that provide a complimentary and potentially more accessible source for nanometer-scale coherent imaging of materials. C1 [Sandberg, Richard L.] Los Alamos Natl Lab, Lab Ultrafast Mat & Opt Sci, Ctr Integrated Nanotechnol, Los Alamos, NM 87544 USA. [Huang, Zhifeng; Xu, Rui; Miao, Jianwei] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Huang, Zhifeng; Xu, Rui; Miao, Jianwei] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA. [Rodriguez, Jose A.] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Dept Biol Chem, Los Angeles, CA 90095 USA. [Rodriguez, Jose A.] Howard Hughes Med Inst, Chevy Chase, MD 20815 USA. RP Sandberg, RL (reprint author), Los Alamos Natl Lab, Lab Ultrafast Mat & Opt Sci, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87544 USA. EM sandberg@lanl.gov OI Sandberg, Richard/0000-0001-9719-8188 NR 167 TC 4 Z9 4 U1 3 U2 60 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD SEP PY 2013 VL 65 IS 9 BP 1208 EP 1220 DI 10.1007/s11837-013-0699-8 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 207SF UT WOS:000323623400020 ER PT J AU Carlsson, P Lycksam, H Gren, P Gebart, R Wiinikka, H Iisa, K AF Carlsson, Per Lycksam, Henrik Gren, Per Gebart, Rikard Wiinikka, Henrik Iisa, Kristiina TI High-speed imaging of biomass particles heated with a laser SO JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS LA English DT Article; Proceedings Paper CT 19th International Symposium on Analytical and Applied Pyrolysis (PYROLYSIS) CY MAY 21-25, 2012 CL Johannes Kepler Univ, Linz, AUSTRIA SP Bruker, CDS Analyt, Frontier Lab, Gerstel, JKU Chem Serv, Linz Tourism, Syreta, Shimadzu, Thermo Sci HO Johannes Kepler Univ DE Biomass; Pyrolysis; Laser; High-speed photography; Melting ID PYROLYSIS; TEMPERATURE; CELLULOSE AB In this work two types of lignocellulosic biomass particles, European spruce and American hardwood (particle sizes from 100 pm to 500 mu m) were pyrolyzed with a continuous wave 2W Nd:YAG laser. Simultaneously a high-speed camera was used to capture the behavior of the biomass particle as it was heated for about 0.1 s. Cover glasses were used as a sample holder which allowed for light microscope studies after the heating. Since the cover glasses are not initially heated by the laser, vapors from the biomass particle are quenched on the glass within about 1 particle diameter from the initial particle. Image processing was used to track the contour of the biomass particle and the enclosed area of the contour was calculated for each frame. The main observations are: there is a significant difference between how much surface energy is needed to pyrolyze the spruce (about 75% more) compared to the hardwood. The oil-like substance which appeared on the glass during the experiment is solid at room temperature and shows different levels of transparency. A fraction of this substance is water soluble. A brownish coat is seen on the unreacted biomass. The biomass showed insignificant swelling as it was heated. The biomass particle appears to melt and boil at the front that is formed between the laser beam and the biomass particle. The part of the particle that is not subjected to the laser beam seems to be unaffected. (c) 2012 Elsevier B.V. All rights reserved. C1 [Carlsson, Per; Wiinikka, Henrik] ETC, S-94128 Pitea, Sweden. [Lycksam, Henrik; Gren, Per; Gebart, Rikard] Lulea Univ Technol, S-95187 Lulea, Sweden. [Iisa, Kristiina] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Carlsson, P (reprint author), ETC, Box 726, S-94128 Pitea, Sweden. EM per.carlsson@etcpitea.se OI Gebart, Rikard/0000-0002-6958-5508 NR 17 TC 1 Z9 2 U1 0 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-2370 J9 J ANAL APPL PYROL JI J. Anal. Appl. Pyrolysis PD SEP PY 2013 VL 103 SI SI BP 278 EP 286 DI 10.1016/j.jaap.2012.11.020 PG 9 WC Chemistry, Analytical; Spectroscopy SC Chemistry; Spectroscopy GA 210RO UT WOS:000323852400038 ER PT J AU Akhavan, M Imhoff, PT Andres, AS Finsterle, S AF Akhavan, Maryam Imhoff, Paul T. Andres, A. Scott Finsterle, Stefan TI Model evaluation of denitrification under rapid infiltration basin systems SO JOURNAL OF CONTAMINANT HYDROLOGY LA English DT Article DE Land based wastewater treatment; Denitrification; Biodegradation; Modeling; Unsaturated zone; Overland flow ID DISSOLVED ORGANIC-CARBON; SOIL-AQUIFER TREATMENT; MULTICOMPONENT REACTIVE TRANSPORT; IN-SITU DENITRIFICATION; WASTE-WATER SYSTEMS; MICROBIAL-GROWTH; NITROGEN TRANSFORMATION; GROUNDWATER RECHARGE; MEDIA; SIMULATION AB Rapid Infiltration Basin Systems (RIBS) are used for disposing reclaimed wastewater into soil to achieve additional treatment before it recharges groundwater. Effluent from most new sequenced batch reactor wastewater treatment plants is completely nitrified, and denitrification (DNF) is the main reaction for N removal. To characterize effects of complex surface and subsurface flow patterns caused by non-uniform flooding on DNF, a coupled overland flow-vadose zone model is implemented in the multiphase flow and reactive transport simulator TOUGHREACT. DNF is simulated in two representative soils varying the application cycle, hydraulic loading rate, wastewater quality, water table depth, and subsurface heterogeneity. Simulations using the conventional specified flux boundary condition under-predict DNF by as much as 450% in sand and 230% in loamy sand compared to predictions from the coupled overland flow-vadose zone model, indicating that simulating coupled flow is critical for predicting DNF in cases where hydraulic loading rates are not sufficient to spread the wastewater over the whole basin. Smaller ratios of wetting to drying time and larger hydraulic loading rates result in greater water saturations, more anoxic conditions, and faster water transport in the vadose zone, leading to greater DNF. These results in combination with those from different water table depths explain why reported DNF varied with soil type and water table depth in previous field investigations. Across all simulations, cumulative percent DNF varies between 2 and 49%, indicating that NO3 removal in RIBS may vary widely depending on operational procedures and subsurface conditions. These modeling results improve understanding of DNF in RIBS and suggest operational procedures that may improve NO3 removal. (c) 2013 Elsevier B.V. All rights reserved. C1 [Akhavan, Maryam; Imhoff, Paul T.] Univ Delaware, Dept Civil & Environm Engn, Newark, DE 19716 USA. [Andres, A. Scott] Delaware Geol Survey, Newark, DE 19716 USA. [Finsterle, Stefan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Imhoff, PT (reprint author), Univ Delaware, Dept Civil & Environm Engn, Newark, DE 19716 USA. EM makhavan@udel.edu; imhoff@udel.edu; asandres@udel.edu; safinsterle@lbl.gov RI Finsterle, Stefan/A-8360-2009 OI Finsterle, Stefan/0000-0002-4446-9906 FU Delaware Water Resources Center; U.S. Dept. of Energy [DE-AC02-05CH11231] FX The authors thank Dr. Chuanhui Gu and Dr. Federico Maggi for their help with TOUGHREACT and Dr. Andrew Barry for the helpful comments on bioclogging. Computational facilities at the University of Delaware Center for Applied Coastal Research were used in this work. Financial support for this study was provided by the Delaware Water Resources Center. The last co-author was supported, in part, by the U.S. Dept. of Energy under Contract No. DE-AC02-05CH11231. NR 84 TC 4 Z9 4 U1 4 U2 59 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-7722 EI 1873-6009 J9 J CONTAM HYDROL JI J. Contam. Hydrol. PD SEP PY 2013 VL 152 BP 18 EP 34 DI 10.1016/j.jconhyd.2013.05.007 PG 17 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 212OE UT WOS:000323991900003 PM 23835290 ER PT J AU Wozniak, JM Wilde, M Katz, DS AF Wozniak, Justin M. Wilde, Michael Katz, Daniel S. TI JETS: Language and System Support for Many-Parallel-Task Workflows SO JOURNAL OF GRID COMPUTING LA English DT Article DE MPI; MTC; MPTC; Swift; JETS; NAMD; Workflow ID MOLECULAR-DYNAMICS; SWIFT AB Many-task computing is a well-established paradigm for implementing loosely coupled applications (tasks) on large-scale computing systems. However, few of the model's existing implementations provide efficient, low-latency support for executing tasks that are tightly coupled multiprocessing applications. Thus, a vast array of parallel applications cannot readily be used effectively within many-task workloads. In this work, we present JETS, a middleware component that provides high performance support for many-parallel-task computing (MPTC). JETS is based on a highly concurrent approach to parallel task dispatch and on new capabilities now available in the MPICH2 MPI implementation and the ZeptoOS Linux operating system. JETS represents an advance over the few known examples of multilevel many-parallel-task scheduling systems: it more efficiently schedules and launches many short-duration parallel application invocations; it overcomes the challenges of coupling the user processes of each multiprocessing application invocation via the messaging fabric; and it concurrently manages many application executions in various stages. We report here on the JETS architecture and its performance on both synthetic benchmarks and an MPTC application in molecular dynamics. C1 [Wozniak, Justin M.; Wilde, Michael; Katz, Daniel S.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Wozniak, JM (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM wozniak@mcs.anl.gov OI Katz, Daniel S./0000-0001-5934-7525 FU Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy [DE-AC02-06CH11357] FX This research is supported by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy under Contract DE-AC02-06CH11357. Computing resources were provided by the Argonne Leadership Computing Facility. NR 46 TC 0 Z9 0 U1 0 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-7873 EI 1572-9184 J9 J GRID COMPUT JI J. Comput. PD SEP PY 2013 VL 11 IS 3 BP 341 EP 360 DI 10.1007/s10723-013-9259-2 PG 20 WC Computer Science, Information Systems; Computer Science, Theory & Methods SC Computer Science GA 208HX UT WOS:000323669800002 ER PT J AU Gu, Y Wu, CQ Liu, X Yu, DT AF Gu, Yi Wu, Chase Qishi Liu, Xin Yu, Dantong TI Distributed Throughput Optimization for Large-Scale Scientific Workflows Under Fault-Tolerance Constraint SO JOURNAL OF GRID COMPUTING LA English DT Article DE Fault tolerance; Throughput; Workflow mapping; Distributed algorithm ID TASK-ALLOCATION ALGORITHMS; MAXIMIZING RELIABILITY; SCHEDULING ALGORITHMS; COMPUTING SYSTEMS; MULTIPROCESSORS; GRAPHS; EXECUTION; TIME AB With the advent of next-generation scientific applications, the workflow approach that integrates various computing and networking technologies has provided a viable solution to managing and optimizing large-scale distributed data transfer, processing, and analysis. This paper investigates a problem of mapping distributed scientific workflows for maximum throughput in faulty networks where nodes and links are subject to probabilistic failures. We formulate this problem as a bi-objective optimization problem to maximize both throughput and reliability. By adapting and modifying a centralized fault-free workflow mapping scheme, we propose a new mapping algorithm to achieve high throughput for smooth data flow in a distributed manner while satisfying a pre-specified bound of the overall failure rate for a guaranteed level of reliability. The performance superiority of the proposed solution is illustrated by both extensive simulation-based comparisons with existing algorithms and experimental results from a real-life scientific workflow deployed in wide-area networks. C1 [Gu, Yi] Univ Tennessee, Dept Management Mkt Comp Sci & Info Syst, Martin, TN 38237 USA. [Wu, Chase Qishi] Univ Memphis, Dept Comp Sci, Memphis, TN 38152 USA. [Liu, Xin; Yu, Dantong] Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA. RP Gu, Y (reprint author), Univ Tennessee, Dept Management Mkt Comp Sci & Info Syst, 554 Univ St, Martin, TN 38237 USA. EM ygu6@utm.edu; qishiwu@memphis.edu; xinliu@bnl.gov; dtyu@bnl.gov FU U.S. Department of Energy's Office of Science [DE-SC0002400]; University of Memphis FX This research is sponsored by U.S. Department of Energy's Office of Science under Grant No. DE-SC0002400 with University of Memphis. NR 41 TC 3 Z9 3 U1 0 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-7873 J9 J GRID COMPUT JI J. Comput. PD SEP PY 2013 VL 11 IS 3 BP 361 EP 379 DI 10.1007/s10723-013-9266-3 PG 19 WC Computer Science, Information Systems; Computer Science, Theory & Methods SC Computer Science GA 208HX UT WOS:000323669800003 ER PT J AU Vahi, K Harvey, I Samak, T Gunter, D Evans, K Rogers, D Taylor, I Goode, M Silva, F Al-Shakarchi, E Mehta, G Deelman, E Jones, A AF Vahi, Karan Harvey, Ian Samak, Taghrid Gunter, Daniel Evans, Kieran Rogers, David Taylor, Ian Goode, Monte Silva, Fabio Al-Shakarchi, Eddie Mehta, Gaurang Deelman, Ewa Jones, Andrew TI A Case Study into Using Common Real-Time Workflow Monitoring Infrastructure for Scientific Workflows SO JOURNAL OF GRID COMPUTING LA English DT Article DE Scientific workflows; Real time monitoring; Common monitoring infrastructure; Log analysis; Troubleshooting; Workflow performance data ID SCIENCE; TOOLKIT AB Scientific workflow systems support various workflow representations, operational modes, and configurations. Regardless of the system used, end users have common needs: to track the status of their workflows in real time, be notified of execution anomalies and failures automatically, perform troubleshooting, and automate the analysis of the workflow results. In this paper, we describe how the Stampede monitoring infrastructure was integrated with the Pegasus Workflow Management System and the Triana Workflow Systems, in order to add generic real time monitoring and troubleshooting capabilities across both systems. Stampede is an infrastructure that provides interoperable monitoring using a three-layer model: (1) a common data model to describe workflow and job executions; (2) high-performance tools to load workflow logs conforming to the data model into a data store; and (3) a common query interface. This paper describes the integration of Stampede monitoring architecture with Pegasus and Triana and shows the new analysis capabilities that Stampede provides to these workflow systems. The successful integration of Stampede with these workflow engines demonstrates the generic nature of the Stampede monitoring infrastructure and its potential to provide a common platform for monitoring across scientific workflow engines. C1 [Vahi, Karan; Mehta, Gaurang; Deelman, Ewa] USC Informat Sci Inst, Marina Del Rey, CA USA. [Harvey, Ian; Evans, Kieran; Rogers, David; Taylor, Ian; Al-Shakarchi, Eddie; Jones, Andrew] Sch Comp Sci, Cardiff, S Glam, Wales. [Samak, Taghrid; Gunter, Daniel; Goode, Monte] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Silva, Fabio] Univ So Calif, Los Angeles, CA USA. RP Vahi, K (reprint author), USC Informat Sci Inst, Marina Del Rey, CA USA. EM vahi@isi.edu; i.c.harvey@cs.cardiff.ac.uk; tsamak@lbl.gov; dkgunter@lbl.gov; k.evans@cs.cardiff.ac.uk; d.m.rogers@cs.cardiff.ac.uk; Ian.J.Taylor@cs.cardiff.ac.uk; mmgoode@lbl.gov; fabio.silva@usc.edu; gmehta@isi.edu; deelman@isi.edu; Andrew.C.Jones@cs.cardiff.ac.uk OI Taylor, Ian/0000-0001-5040-0772 FU Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy [DE-AC02-05CH11231]; NSF [OCI-0943705]; PPARC (GridOneD); PPARC [Geo 600, ST/F002033/1] FX The Stampede work was supported in part by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under contract DE-AC02-05CH11231. Additional support was provided by NSF grant OCI-0943705.; For Triana, we would like to thank our sponsors, PPARC (GridOneD and Geo 600) for the development of Triana, UK STFC TRIACS project ST/F002033/1 for the Triacs work, Wellcome Trust for the Sintero work and the EU for the Gridlab project to help the development of the distributed computing capabilities and SHIWA for the development of the SHIWA bundles that provide the cloud-based distributed mechanisms, described in the Triana sections of this paper. We would also like to thank Andrew Harrison for his insight and for helping recreate Triana in its present form. NR 36 TC 4 Z9 4 U1 0 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-7873 J9 J GRID COMPUT JI J. Comput. PD SEP PY 2013 VL 11 IS 3 BP 381 EP 406 DI 10.1007/s10723-013-9265-4 PG 26 WC Computer Science, Information Systems; Computer Science, Theory & Methods SC Computer Science GA 208HX UT WOS:000323669800004 ER PT J AU Evans, JD Brown, SJ Hackett, KJ Robinson, G Richards, S Lawson, D Elsik, C Coddington, J Edwards, O Emrich, S Gabaldon, T Goldsmith, M Hanes, G Misof, B Munoz-Torres, M Niehuis, O Papanicolaou, A Pfrender, M Poelchau, M Purcell-Miramontes, M Robertson, HM Ryder, O Tagu, D Torres, T Zdobnov, E Zhang, GJ Zhou, X AF Evans, Jay D. Brown, Susan J. Hackett, Kevin J. Robinson, Gene Richards, Stephen Lawson, Daniel Elsik, Christine Coddington, Jonathan Edwards, Owain Emrich, Scott Gabaldon, Toni Goldsmith, Marian Hanes, Glenn Misof, Bernard Munoz-Torres, Monica Niehuis, Oliver Papanicolaou, Alexie Pfrender, Michael Poelchau, Monica Purcell-Miramontes, Mary Robertson, Hugh M. Ryder, Oliver Tagu, Denis Torres, Tatiana Zdobnov, Evgeny Zhang, Guojie Zhou, Xin CA i5K Consortium TI The i5K Initiative:Advancing Arthropod Genomics for Knowledge, Human Health,Agriculture, and the Environment i5K CONSORTIUM SO JOURNAL OF HEREDITY LA English DT Article DE comparative genomics; disease vector; agriculture; insect evolution; genome sequencing ID SEQUENCE AB Insects and their arthropod relatives including mites, spiders, and crustaceans play major roles in the world's terrestrial, aquatic, and marine ecosystems. Arthropods compete with humans for food and transmit devastating diseases. They also comprise the most diverse and successful branch of metazoan evolution, with millions of extant species. Here, we describe an international effort to guide arthropod genomic efforts, from species prioritization to methodology and informatics. The 5000 arthropod genomes initiative (i5K) community met formally in 2012 to discuss a roadmap for sequencing and analyzing 5000 high-priority arthropods and is continuing this effort via pilot projects, the development of standard operating procedures, and training of students and career scientists, With university, governmental, and industry support, the i5K Consortium aspires to deliver sequences and analytical tools for each of the arthropod branches and each of the species having beneficial and negative effects on humankind. C1 [Evans, Jay D.; Hackett, Kevin J.; Hanes, Glenn] USDA ARS, Beltsville, MD USA. [Brown, Susan J.] Kansas State Univ, Manhattan, KS 66506 USA. [Robinson, Gene; Robertson, Hugh M.] Univ Illinois, Urbana, IL 61801 USA. [Richards, Stephen] Baylor Coll Med, Human Genome Sequencing Ctr, Houston, TX 77030 USA. [Lawson, Daniel] European Bioinformat Inst Hinxton, Hinxton, England. [Elsik, Christine] Univ Missouri, Columbia, MO USA. [Coddington, Jonathan] Smithsonian Inst NMNH, Washington, DC USA. [Edwards, Owain] CSIRO, Ctr Environm & Life Sci, Floreat, Australia. [Emrich, Scott; Pfrender, Michael] Univ Notre Dame, South Bend, IN USA. [Gabaldon, Toni] Ctr Genom Regulat, Barcelona, Spain. [Goldsmith, Marian] Univ Rhode Isl, Providence, RI 02908 USA. [Misof, Bernard; Niehuis, Oliver] Ctr Mol Biodivers Res, ZFMK, Bonn, Germany. [Munoz-Torres, Monica] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. [Papanicolaou, Alexie] CSIRO Ecosyst Sci, Black Mt, Australia. [Poelchau, Monica] Georgetown Univ, Dept Biol, Washington, DC 20057 USA. [Purcell-Miramontes, Mary] Natl Inst Food & Agr, USDA, Washington, DC USA. [Ryder, Oliver] San Diego Zoo, Inst Conservat Res, San Diego, CA USA. [Tagu, Denis] INRA UMR 1349 IGEPP, Rennes, France. [Torres, Tatiana] Univ Sao Paulo, Sao Paulo, Brazil. [Zdobnov, Evgeny] Univ Geneva, Sch Med, CH-1211 Geneva, Switzerland. [Zhang, Guojie; Zhou, Xin] BGI Shenzhen, Shenzhen, Peoples R China. RP Evans, JD (reprint author), ARS, USDA, Bee Res Lab, Beltsville, MD 20705 USA. EM jay.evans@ars.usda.gov; kevin.hackett@ars.usda.gov; generobi@illinois.edu; stephenr@hgsc.bcm.edu; lawson@ebi.ac.uk; elsikc@missouri.edu; coddington@si.edu; owain.edwards@csixo.au; semrich@nd.edu; toni.gabaldon@crg.es; mki101@uri.edu; Glenn.Hanes@ars.usda.gov; b.misof.zfmk@uni-bonn.de; mcmunozt@lbl.gov; o.niehuis.zfmk@uni-bonn.de; alexie.papanicolaou@csito.au; pfrender.1@nd.edu; mpoel-chau@gmail.com; mpurcell@nifa.usda.gov; hughrobe@life.uiuc.edu; oryder@sandiegozoo.org; denis.tagu@rennes.inra.fr; tttorres@ib.usp.br; evgeny.zdobnov@unige.ch; zhanggj@genomics.org.cn; xinzhou@genomics.org.cn RI Torres, Tatiana/B-6431-2012; UMR IGEPP, INRA/A-4054-2011; Evans, Jay/C-8408-2012; Zhang, Guojie/B-6188-2014; Edwards, Owain/B-9707-2008; Papanicolaou, Alexie/A-1618-2011; Gabaldon, Toni/A-7336-2008; Zhou, Xin/D-4025-2009; Zdobnov, Evgeny/K-1133-2012; Elsik, Christine/C-4120-2017 OI Torres, Tatiana/0000-0002-4286-3504; Evans, Jay/0000-0002-0036-4651; Zhang, Guojie/0000-0001-6860-1521; Papanicolaou, Alexie/0000-0002-3635-6848; Gabaldon, Toni/0000-0003-0019-1735; Zhou, Xin/0000-0002-1407-7952; Elsik, Christine/0000-0002-4248-7713 FU American Genetic Association; Arthropod Genomics Center (Kansas State University); US Department of Agriculture (National Institute for Food and Agriculture and Agricultural Research Service) FX American Genetic Association; the Arthropod Genomics Center (Kansas State University); and the US Department of Agriculture (National Institute for Food and Agriculture and Agricultural Research Service). NR 4 TC 64 Z9 66 U1 4 U2 36 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0022-1503 EI 1465-7333 J9 J HERED JI J. Hered. PD SEP-OCT PY 2013 VL 104 IS 5 BP 595 EP 600 DI 10.1093/jhered/est050 PG 6 WC Evolutionary Biology; Genetics & Heredity SC Evolutionary Biology; Genetics & Heredity GA 203LJ UT WOS:000323294400001 ER PT J AU Janka, O Baumbach, RE Thompson, JD Bauer, ED Kauzlarich, SM AF Janka, Oliver Baumbach, Ryan E. Thompson, Joe D. Bauer, Eric D. Kauzlarich, Susan M. TI Crystal structure, magnetism and transport properties of Ce3Ni25.75Ru3.16Al4.1B10 SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Rare earths; Intermetallic; Magnetic properties; Electrical resistivity; Single crystal; Crystal structure ID INTERMETALLIC COMPOUNDS; FLUX; ND AB Single crystals of Ce3Ni25.75Ru3.16Al4.1B10 were obtained from a process in which a polycrystalline sample of CeRu2Al2B was annealed in an excess of a Ni-In flux. The initial phase, CeRu2Al2B, does not recrystallize, instead, crystals of a new phase, Ce3Ni25.75Ru3.16Al4.1B10, could be isolated once the flux was removed. The title compound crystallizes in the tetragonal space group P4/nmm (No. 129) with a=1139.02(8), c=801.68(6) pm (c/a=0.70) in the Nd3Ni29Si4B10 structure type. Electrical resistivity measurements reveal metallic behavior with a minimum of 700 mu Omega cm and a small residual resistivity ratio of RRR=1.4 indicating a large amount of disorder scattering. The cerium atoms are either in the 4+ or an intermediate valence state with a valence fluctuation temperature far above room temperature. (c) 2013 Published by Elsevier Inc. C1 [Janka, Oliver; Kauzlarich, Susan M.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Baumbach, Ryan E.; Thompson, Joe D.; Bauer, Eric D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Bauer, ED (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM edbauer@lanl.gov; smkauzlarich@ucdavis.edu RI Janka, Oliver/B-3233-2011; OI Janka, Oliver/0000-0002-9480-3888; Bauer, Eric/0000-0003-0017-1937 FU NSF [DMR-1100313]; US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Los Alamos Laboratory Directed Research and Development program FX This work was funded by NSF DMR-1100313. Work at Los Alamos National Laboratory was performed under the auspices of the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, PECASE funding from the US DOE, OBES, Division of Material Science and Engineering, and funded in part by the Los Alamos Laboratory Directed Research and Development program. NR 19 TC 1 Z9 1 U1 3 U2 15 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD SEP PY 2013 VL 205 BP 154 EP 159 DI 10.1016/j.jssc.2013.05.041 PG 6 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 210TS UT WOS:000323858200024 ER PT J AU Zhernenkov, M Fabbris, G Chmaissem, O Mitchell, JF Zheng, H Haskel, D AF Zhernenkov, Mikhail Fabbris, Gilberto Chmaissem, Omar Mitchell, J. F. Zheng, H. Haskel, Daniel TI Pressure-induced volume collapse and structural phase transitions in SrRuO3 SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Pv-to-pPv transition; High pressure; X-ray diffraction; Volume collapse; SrRuO3 ID METAL-INSULATOR TRANSITIONS; QUANTUM CRITICALITY; SINGLE-CRYSTAL; PEROVSKITES; DIFFRACTION; BEHAVIOR; OXIDES AB We report on the low temperature (6 K) structural properties of SrRuO3 under quasi-hydrostatic pressure studied by synchrotron X-ray powder diffraction in a diamond anvil cell. First principle calculations predict a first-order perovskite (N) to post-perovskite (pPv) phase transition at similar to 40 GPa accompanied by a 1.9% volume collapse. Our results rule out the occurrence of a pPv phase to 54 GPa. Instead, we find a Pv to monoclinic to triclinic sequence of phase transitions. The monoclinic to triclinic phase transition at similar to 38 GPa is accompanied by a 3.5% volume collapse. X-ray absorption spectroscopy indicates that this volume collapse is not accompanied by a change in Ru valence state. Our results should help guide improvements to theoretical treatments of this and other correlated d-electron systems based on density functional theory. (c) 2013 Elsevier Inc. All rights reserved. C1 [Zhernenkov, Mikhail; Fabbris, Gilberto; Haskel, Daniel] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Fabbris, Gilberto] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Chmaissem, Omar] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Chmaissem, Omar; Mitchell, J. F.; Zheng, H.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Zhernenkov, M (reprint author), Brookhaven Natl Lab, POB 5000, Upton, NY 11973 USA. EM zherne@bnl.gov RI Fabbris, Gilberto/F-3244-2011; OI Fabbris, Gilberto/0000-0001-8278-4985; Zhernenkov, Mikhail/0000-0003-3604-0672 FU U.S. Department of Energy, Office of Science [DE-AC02-06CH11357]; CIW; CDAC; UNLV; LLNL; DOE-BES; NSF FX Work at Argonne National Laboratory is supported by the U.S. Department of Energy, Office of Science, under contract No. DE-AC02-06CH11357. HP-CAT is supported by CIW, CDAC, UNLV, LLNL through funding from DOE-NNSA, DOE-BES and NSF. We would like to thank Brian Toby (ANL) for the enlightening discussion on powder diffraction results, Sergey Tkachev (GSECARS, APS, ANL) for his gracious help with gas loading system, Changyong Park, Dmitri Popov, and Curtis Kenney-Benson for their help during experiments at HP-CAT and Yang Ding for his valuable advice regarding the use of Beryllium gaskets in the diamond anvil cell. NR 36 TC 3 Z9 3 U1 3 U2 40 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD SEP PY 2013 VL 205 BP 177 EP 182 DI 10.1016/j.jssc.2013.07.002 PG 6 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 210TS UT WOS:000323858200028 ER PT J AU Bridges, CA Harrison, KL Unocic, RR Idrobo, JC Paranthaman, MP Manthiram, A AF Bridges, Craig A. Harrison, Katharine L. Unocic, Raymond R. Idrobo, Juan-Carlos Paranthaman, M. Parans Manthiram, Arumugam TI Defect chemistry of phospho-olivine nanoparticles synthesized by a microwave-assisted solvothermal process SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Lithium-ion batteries; LiFePO4 cathode; Antisite disorder; Neutron diffraction ID LITHIUM IRON PHOSPHATE; HYDROTHERMALLY PREPARED LIFEPO4; DOMINO-CASCADE MODEL; ION BATTERIES; SURFACE MODIFICATION; ELECTRODE MATERIALS; ANTISITE DEFECTS; SINGLE-CRYSTALS; LIMPO4 M=MN; DIFFRACTION AB Nanocrystalline LiFePO4 powders synthesized by a microwave-assisted solvothermal (MW-ST) process have been structurally characterized with a combination of high resolution powder neutron diffraction, synchrotron X-ray diffraction, and aberration-corrected HAADF STEM imaging. A significant level of defects has been found in the samples prepared at 255 and 275 degrees C. These temperatures are significantly higher than what has previously been suggested to be the maximum temperature for defect formation in LiFePO4, so the presence of defects is likely related to the rapid MW-ST synthesis involving a short reaction time (similar to 5 min). A defect model has been tentatively proposed, though it has been shown that powder diffraction data alone cannot conclusively determine the precise defect distribution in LiFePO4 samples. The model is consistent with other literature reports on nanopowders synthesized at low temperatures, in which the unit cell volume is significantly reduced relative to defect-free, micron-sized LiFePO4 powders. Published by Elsevier Inc. C1 [Bridges, Craig A.; Paranthaman, M. Parans] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Unocic, Raymond R.; Idrobo, Juan-Carlos] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Harrison, Katharine L.; Manthiram, Arumugam] Univ Texas Austin, Electrochem Energy Lab, Austin, TX 78712 USA. [Harrison, Katharine L.; Manthiram, Arumugam] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA. RP Bridges, CA (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM bridgesca@ornl.gov RI Idrobo, Juan/H-4896-2015; Paranthaman, Mariappan/N-3866-2015; OI Idrobo, Juan/0000-0001-7483-9034; Paranthaman, Mariappan/0000-0003-3009-8531; Unocic, Raymond/0000-0002-1777-8228 FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division, at the University of Texas at Austin [DE-SC0005397]; U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division, at Oak Ridge National Laboratory (ORNL); National Science Foundation; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This work was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division, at the University of Texas at Austin (under award number DE-SC0005397) and at Oak Ridge National Laboratory (ORNL). We acknowledge Ashfia Huq and Jason Hodges for assistance with collection of powder neutron diffraction data at the Spallation Neutron Source (SNS). Research at ORNL's SNS, Center of Nano-phase Materials Sciences (CNMS) and Shared Research Equipment (ShaRE) User Facility Programs were sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. One of the authors (KH) thanks the National Science Foundation for the award of a Graduate Research Fellowship. NR 49 TC 5 Z9 5 U1 2 U2 57 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD SEP PY 2013 VL 205 BP 197 EP 204 DI 10.1016/j.jssc.2013.07.011 PG 8 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 210TS UT WOS:000323858200031 ER PT J AU Logvenov, G Gozar, A Bozovic, I AF Logvenov, G. Gozar, A. Bozovic, I. TI High Temperature Interface Superconductivity SO JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM LA English DT Article; Proceedings Paper CT 4th International Conference on Fundamental Problems of High Temperature Superconductivity (FPS) CY OCT 03-07, 2011 CL Moscow-Zvenigorod, RUSSIA DE High temperature interface superconductivity; Molecular beam epitaxy; Oxides heterostructures ID LA2-XSRXCUO4; INSULATOR; OXIDES AB We use atomic-layer-by-layer molecular beam epitaxy (ALL-MBE) to deposit atomically smooth films of cuprate superconductors and other complex oxides. Bilayers, multilayers, and superlattices are grown with atomic precision and virtually perfect interfaces. This has allowed a discovery and in-depth study of high-temperature interface superconductivity, which is briefly reviewed here. C1 [Logvenov, G.] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany. [Gozar, A.; Bozovic, I.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Logvenov, G (reprint author), Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany. EM G.Logvenov@fkf.mpg.de FU US DOE [MA-509-MACA] FX The experiments at BNL were done in collaboration with A. T. Bollinger, V.Y. Butko, C. Deville Caveline, and J. Seo, and the numerical simulation in collaboration with Z. Radovic and N. Bozovic. This research has been supported by US DOE Grant MA-509-MACA. NR 18 TC 2 Z9 3 U1 5 U2 50 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1557-1939 EI 1557-1947 J9 J SUPERCOND NOV MAGN JI J. Supercond. Nov. Magn PD SEP PY 2013 VL 26 IS 9 BP 2863 EP 2865 DI 10.1007/s10948-013-2215-3 PG 3 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 211RE UT WOS:000323926600017 ER PT J AU Khaymovich, IM Chtchelkatchev, NM Vinokur, VM AF Khaymovich, I. M. Chtchelkatchev, N. M. Vinokur, V. M. TI Interplay of Superconductivity and Topological Order in HgTe Quantum Wells SO JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM LA English DT Article; Proceedings Paper CT 4th International Conference on Fundamental Problems of High Temperature Superconductivity (FPS) CY OCT 03-07, 2011 CL Moscow-Zvenigorod, RUSSIA DE Topological insulators; Superconductivity AB Using the microscopic tight-binding equations we derive the effective Hamiltonian for the double-layer comprised of the two-dimensional topological insulator (TI) coupled to the s-wave isotropic superconductor (SC), and show that it contains terms describing mixing of the TI sub-band branches by the superconducting correlations induced by the proximity effect. We find that the proximity effect breaks down the rotational symmetry of the TI spectrum. We show that the edge states not only acquire the gap, as follows from the standard theory, but can also become localized by the Andreev-backscattering mechanism in a small coupling regime. In a strong coupling regime the edge states merge with the bulk states, and the TI transforms into an anisotropic narrow-gap semiconductor. C1 [Khaymovich, I. M.] RAS, IPM, Nizhnii Novgorod 603950, Russia. [Chtchelkatchev, N. M.] RAS, HPPI & ITP LD Landau, Moscow 117940, Russia. [Vinokur, V. M.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Chtchelkatchev, NM (reprint author), RAS, HPPI & ITP LD Landau, Moscow 117940, Russia. EM n.chtchelkatchev@gmail.com RI Chtchelkatchev, Nikolay/L-1273-2013; Khaymovich, Ivan/F-2695-2013 OI Chtchelkatchev, Nikolay/0000-0002-7242-1483; Khaymovich, Ivan/0000-0003-2160-5984 NR 5 TC 1 Z9 1 U1 2 U2 9 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1557-1939 EI 1557-1947 J9 J SUPERCOND NOV MAGN JI J. Supercond. Nov. Magn PD SEP PY 2013 VL 26 IS 9 BP 2881 EP 2883 DI 10.1007/s10948-013-2207-3 PG 3 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 211RE UT WOS:000323926600022 ER PT J AU Kobayashi, R Ogane, Y Hirai, D Nishioka, T Matsumura, M Kawamura, Y Matsubayashi, K Uwatoko, Y Tanida, H Sera, M AF Kobayashi, Riki Ogane, Yuta Hirai, Daishi Nishioka, Takashi Matsumura, Masahiro Kawamura, Yukihiro Matsubayashi, Kazuyuki Uwatoko, Yoshiya Tanida, Hiroshi Sera, Masafumi TI Change in Unusual Magnetic Properties by Rh Substitution in CeRu2Al10 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN LA English DT Article DE CeRu2Al10; Ce(Ru1-xRhx)(2)Al-10; Kondo semiconductor; Rh substitution effect; electron doping; specific heat; magnetic susceptibility; electrical resistivity; Hall resistivity; T-x phase diagram ID PRESSURE; GAP AB We have studied the Rh substitution (electron doping) effect in the Kondo semiconductor CeRu2Al10, which orders antiferromagnetically below (T-0 = 27 K), by specific heat C, magnetic susceptibility chi, electrical resistivity rho, and Hall resistivity rho(H) measurements of Ce(Ru1-xRhx)(2)Al-10 (x = 0: 12, 0.2, 0.23, 0.34) single crystals. T-0 decreases monotonically with an increase in x. In addition, new anomalies occur at T-1 similar to 6.5 and T-2 similar to 3.0 K in all the Rh substitution samples. However, T-1 and T-2 are almost independent of x. The shape of the anomaly at T-0 in chi(T) changes with Rh substitution, which implies the reorientation of the ordered moment. These phenomena indicate that the magnetic properties of CeRu2Al10 are strongly associated with the number of 4d electrons. C1 [Kobayashi, Riki] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Kobayashi, Riki] Univ Tokyo, Inst Solid State Phys, Neutron Sci Lab, Tokai, Ibaraki 3191106, Japan. [Kobayashi, Riki; Ogane, Yuta; Hirai, Daishi; Nishioka, Takashi; Matsumura, Masahiro; Kawamura, Yukihiro] Kochi Univ, Grad Sch Integrated Arts & Sci, Kochi 7808520, Japan. [Kawamura, Yukihiro] Muroran Inst Technol, Muroran, Hokkaido 0508585, Japan. [Matsubayashi, Kazuyuki; Uwatoko, Yoshiya] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan. [Tanida, Hiroshi; Sera, Masafumi] Hiroshima Univ, ADSM, Dept Quantum Matter, Hiroshima 7398530, Japan. RP Kobayashi, R (reprint author), Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. EM kobayashi.riki@issp.u-tokyo.ac.jp RI Tanida, Hiroshi/E-1878-2013; Matsubayashi, Kazuyuki/F-7696-2013 FU Ministry of Education, Culture, Sports, Science and Technology, Japan; Comprehensive Support Programs for Creation of Regional Innovation of Japan Science and Technology Agency (JST) FX We would like to thank Professor H. Yoshizawa for the use of PPMS and Mr. T. Matsuzaki for the composition analysis using an EPMA device. We also thank Dr. K. Kaneko, Dr. S. Wakimoto, and Dr. M. Takeda for valuable discussions and suggestions. This work was partially supported by a Grant-in-Aid for Scientific Research (C) from the Ministry of Education, Culture, Sports, Science and Technology, Japan and the Comprehensive Support Programs for Creation of Regional Innovation of Japan Science and Technology Agency (JST). NR 43 TC 16 Z9 16 U1 1 U2 17 PU PHYSICAL SOC JAPAN PI TOKYO PA YUSHIMA URBAN BUILDING 5F, 2-31-22 YUSHIMA, BUNKYO-KU, TOKYO, 113-0034, JAPAN SN 0031-9015 J9 J PHYS SOC JPN JI J. Phys. Soc. Jpn. PD SEP PY 2013 VL 82 IS 9 AR 093702 DI 10.7566/JPSJ.82.093702 PG 5 WC Physics, Multidisciplinary SC Physics GA 210GS UT WOS:000323819500003 ER PT J AU Tong, S Ma, BH Narayanan, M Liu, SS Balachandran, U Shi, DL AF Tong, Sheng Ma, Beihai Narayanan, Manoj Liu, Shanshan Balachandran, Uthamalingam Shi, Donglu TI Dielectric behavior of lead lanthanum zirconate titanate thin films deposited on different electrodes/substrates SO MATERIALS LETTERS LA English DT Article DE Thin films; Ferroelectrics; Dielectrics; Deposition; X-ray techniques ID STRESS; ELECTRODES AB The dielectric properties of lead lanthanum zirconate titanate (PLZT) thin films are investigated on different combinations of bottom electrode (Pt, LaNiO3) and substrate (Ni, Si). The results indicate strong effects of electrode on the permittivity and dielectric loss of these PLZT thin-films capacitors. The substrate-induced thermal strain has a great impact on the temperature dependence of the dielectric behavior. Based on these findings, dielectric applications using PLZT thin films in a wide range of temperature are possible by selecting appropriate electrodes and substrates. (C) 2013 Published by Elsevier B.V. C1 [Tong, Sheng; Shi, Donglu] Univ Cincinnati, Coll Engn & Appl Sci, Cincinnati, OH 45221 USA. [Tong, Sheng; Ma, Beihai; Narayanan, Manoj; Liu, Shanshan; Balachandran, Uthamalingam] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Tong, Sheng] Argonne Natl Lab, Nanosci & Technol Div, Argonne, IL 60439 USA. RP Tong, S (reprint author), Argonne Natl Lab, Nanosci & Technol Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM shengtg@mail.uc.edu; shid@ucmail.uc.edu RI Tong, Sheng/A-2129-2011; Ma, Beihai/I-1674-2013 OI Tong, Sheng/0000-0003-0355-7368; Ma, Beihai/0000-0003-3557-2773 FU US Department of Energy, Vehicle Technologies Program [DE-AC02-06CH11357] FX This work was supported by the US Department of Energy, Vehicle Technologies Program, under Contract DE-AC02-06CH11357. NR 29 TC 2 Z9 2 U1 2 U2 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-577X J9 MATER LETT JI Mater. Lett. PD SEP 1 PY 2013 VL 106 BP 405 EP 408 DI 10.1016/j.matlet.2013.05.068 PG 4 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 195DM UT WOS:000322682500106 ER PT J AU Hu, HY Lin, H Zheng, W Tomanicek, SJ Johs, A Feng, XB Elias, DA Liang, LY Gu, BH AF Hu, Haiyan Lin, Hui Zheng, Wang Tomanicek, Stephen J. Johs, Alexander Feng, Xinbin Elias, Dwayne A. Liang, Liyuan Gu, Baohua TI Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria SO NATURE GEOSCIENCE LA English DT Article ID DESULFOVIBRIO-DESULFURICANS ND132; NATURAL ORGANIC-MATTER; ANOXIC ENVIRONMENTS; GASEOUS MERCURY; REDUCTION; WATERS; COMPLEXATION; HG(0); VAPOR AB Methylmercury is a neurotoxin that poses significant health risks to humans. Some anaerobic sulphate- and iron-reducing bacteria can methylate oxidized forms of mercury, generating methylmercury(1-4). One strain of sulphate-reducing bacteria (Desulfovibrio desulphuricans ND132) can also methylate elemental mercury(5). The prevalence of this trait among different bacterial strains and species remains unclear, however. Here, we compare the ability of two strains of the sulphate-reducing bacterium Desulfovibrio and one strain of the iron-reducing bacterium Geobacter to oxidize and methylate elemental mercury in a series of laboratory incubations. Experiments were carried out under dark, anaerobic conditions, in the presence of environmentally relevant concentrations of elemental mercury. We report differences in the ability of these organisms to oxidize and methylate elemental mercury. In line with recent findings(5), we show that D. desulphuricans ND132 can both oxidize and methylate elemental mercury. We find that the rate of methylation of elemental mercury is about one-third the rate of methylation of oxidized mercury. We also show that Desulfovibrio alaskensis G20 can oxidize, but not methylate, elemental mercury. Geobacter sulphurreducens PCA is able to oxidize and methylate elemental mercury in the presence of cysteine. We suggest that the activity of methylating and non-methylating bacteria may together enhance the formation of methylmercury in anaerobic environments. C1 [Hu, Haiyan; Lin, Hui; Zheng, Wang; Tomanicek, Stephen J.; Johs, Alexander; Liang, Liyuan; Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37830 USA. [Hu, Haiyan; Feng, Xinbin] Chinese Acad Sci, Inst Geochem, State Key Lab Environm Geochem, Guiyang 550002, Peoples R China. [Elias, Dwayne A.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Gu, BH (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37830 USA. EM gub1@ornl.gov RI Johs, Alexander/F-1229-2011; Elias, Dwayne/B-5190-2011; Feng, Xinbin/F-4512-2011; Liang, Liyuan/O-7213-2014; Gu, Baohua/B-9511-2012 OI Johs, Alexander/0000-0003-0098-2254; Elias, Dwayne/0000-0002-4469-6391; Feng, Xinbin/0000-0002-7462-8998; Liang, Liyuan/0000-0003-1338-0324; Gu, Baohua/0000-0002-7299-2956 FU Office of Biological and Environmental Research, Office of Science, US Department of Energy (DOE) as part of the Mercury Science Focus Area Program at ORNL; DOE [DE-AC05-00OR22725] FX We thank X. Yin, Y. Qian, R. Jr Hurt and M. Drake at Oak Ridge National Laboratory (ORNL) and H. Guo at the University of Tennessee for technical assistance and support. This research was sponsored by the Office of Biological and Environmental Research, Office of Science, US Department of Energy (DOE) as part of the Mercury Science Focus Area Program at ORNL, which is managed by UT-Battelle LLC for the DOE under contract DE-AC05-00OR22725. NR 30 TC 42 Z9 44 U1 18 U2 176 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 J9 NAT GEOSCI JI Nat. Geosci. PD SEP PY 2013 VL 6 IS 9 BP 751 EP 754 DI 10.1038/NGEO1894 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 208YA UT WOS:000323717500018 ER PT J AU Drosg, M Lisowski, PW AF Drosg, M. Lisowski, P. W. TI Neutron Interactions with He-3 Revisited-II: Nonelastic Cross Sections in the Mega-Electron-Volt Range SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID ELASTIC-SCATTERING; HE3 AB Reliable nonelastic cross-section measurements of fast neutrons with He-3 are sparse. In the energy range up to 40 MeV, the data are dominated by unpublished nonelastic n-He-3 values derived from measurements made in 1982. As mentioned elsewhere, n-He-3 elastic cross-section data reported in the same report had not been corrected for the outgoing neutron attenuation even though the sample size was >7 mol. To check the database of existing nonelastic n-He-3 cross-section data, and in particular those from 1982, a detailed balance calculation of time-reversed charged-particle data was performed. Because there are few existing independent data, we provide an updated detailed balance analysis in the energy range up to 31 MeV for both He-3(n,p)H-3 and He-3(n,d)H-2, supplying accurate absolute-angle-dependent differential cross sections. Subtracting the integrals of these and the elastic cross sections from the total provides a prediction for the sum of the He-3(n,2n)2p and He-3(n,n + p)H-2 cross sections. The relevant experimental data are compared with their time-reversed counterparts. C1 [Drosg, M.] Univ Vienna, Vienna, Austria. [Lisowski, P. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Drosg, M (reprint author), Univ Vienna, Vienna, Austria. EM lisowski@lanl.gov FU University of Vienna FX Thanks are due B. Hoop, who made us aware of the nonlinearity of the charge collection in proportional counters. One of the authors (M. D.) acknowledges support from the University of Vienna. NR 28 TC 2 Z9 2 U1 1 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD SEP PY 2013 VL 175 IS 1 BP 19 EP 27 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 211NC UT WOS:000323913900002 ER PT J AU Favorite, JA AF Favorite, Jeffrey A. TI Nonspherical Perturbations of Spherical Geometries in Transport Theory SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID INTERNAL INTERFACE PERTURBATIONS AB It is often desirable to solve radiation transport problems in one-dimensional spherical geometries even if the actual object being modeled is not spherical. It may be possible to use perturbation theory to account for the difference between the real multidimensional system and the spherical approximation. This idea is tested using uncollided as well as multigroup inhomogeneous transport problems with upscattering. Asymmetric and nonuniform perturbations are made to the shielding (not the source) of spherical geometries, including transformations from a sphere to a cube (the surface transformation function is derived), and Schwinger, Roussopolos, and combined perturbation estimates are applied. For uncollided fluxes, perturbation theory, particularly the Schwinger estimate, worked very well when the response of interest was the flux measured at a symmetric spherical 4 pi detector external to the geometry, but perturbation theory did not work well when the response of interest was the flux measured at a single external point (unless extra care was taken to account for geometric effects). For neutron-induced gamma-ray line fluxes, the Roussopolos estimate worked well when the response of interest was the flux measured at an external 4 pi detector or an external point detector. C1 Los Alamos Natl Lab, Computat Phys X CP Div, Los Alamos, NM 87545 USA. RP Favorite, JA (reprint author), Los Alamos Natl Lab, Computat Phys X CP Div, MS F663, Los Alamos, NM 87545 USA. EM fave@lanl.gov NR 29 TC 1 Z9 1 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD SEP PY 2013 VL 175 IS 1 BP 44 EP 69 PG 26 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 211NC UT WOS:000323913900004 ER PT J AU Zhang, DK Rahnema, F Ougouag, AM AF Zhang, Dingkang Rahnema, Farzad Ougouag, Abderrafi M. TI A Local Incident Flux Response Expansion Transport Method for Coupling to the Diffusion Method in Cylindrical Geometry SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID SIMULATIONS AB A local incident flux response expansion transport method is developed to generate transport solutions for coupling to diffusion theory codes regardless of their solution method (e.g., fine mesh, nodal, response based, finite element, etc.) for reactor core calculations in both two-dimensional (2-D) and three-dimensional (3-D) cylindrical geometries. In this approach, a Monte Carlo method is first used to precompute the local transport solution (i.e., response function library) for each unique transport coarse node, in which diffusion theory is not valid due to strong transport effects. The response function library is then used to iteratively determine the albedo coefficients on the diffusion-transport interfaces, which are then used as the coupling parameters within the diffusion code. This interface coupling technique allows a seamless integration of the transport and diffusion methods. The new method retains the detailed heterogeneity of the transport nodes and naturally constructs any local solution within them by a simple superposition of local responses to all incoming fluxes from the contiguous coarse nodes. A new technique is also developed for coupling to fine-mesh diffusion methods/codes. The local transport method/module is tested in 2-D and 3-D pebble-bed reactor benchmark problems consisting of an inner reflector, an annular fuel region, and a controlled outer reflector. It is found that the results predicted by the transport module agree very well with the reference fluxes calculated directly by MCNP in both benchmark problems. C1 [Zhang, Dingkang; Rahnema, Farzad] Georgia Inst Technol, Nucl & Radiol Engn Program, Atlanta, GA 30332 USA. [Zhang, Dingkang; Rahnema, Farzad] Georgia Inst Technol, Med Phys Program, Atlanta, GA 30332 USA. [Ougouag, Abderrafi M.] Idaho Natl Lab, Idaho Falls, ID 83401 USA. RP Zhang, DK (reprint author), Georgia Inst Technol, Nucl & Radiol Engn Program, 770 State St, Atlanta, GA 30332 USA. EM farzad@gatech.edu OI Ougouag, Abderrafi/0000-0003-4436-380X FU U.S. Department of Energy under the Nuclear Energy Research Initiative [DE-FC07-07ID14821] FX This work was supported by grant DE-FC07-07ID14821 from the U.S. Department of Energy under the Nuclear Energy Research Initiative. NR 14 TC 0 Z9 0 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD SEP PY 2013 VL 175 IS 1 BP 70 EP 80 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 211NC UT WOS:000323913900005 ER PT J AU Rising, ME Talou, P Kawano, T Prinja, AK AF Rising, M. E. Talou, P. Kawano, T. Prinja, A. K. TI Evaluation and Uncertainty Quantification of Prompt Fission Neutron Spectra of Uranium and Plutonium Isotopes SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID NUCLEAR-DATA; ENERGY; U-235; SCIENCE AB The prompt fission neutron spectra (PFNS) of the low-incident-energy neutron-induced fission reactions n + U229-238 and n + Pu235-242 have been systematically evaluated using differential experimental data and the Los Alamos model (LA model). Using the first-order, linear Kalman filter, the LA model parameters are constrained using the experimental data and an evaluation of the PFNS and its uncertainties across a suite of isotopes' results. Correlations between isotopes of each actinide are presented through the model parameter correlations, and the resulting evaluations can be used to fill in inconsistencies within the ENDF/B-VII.1 library where PFNS data are scarce or in need of an update. C1 [Rising, M. E.; Talou, P.; Kawano, T.] Los Alamos Natl Lab, Nucl & Particle Phys Astrophys & Cosmol Theoret D, Los Alamos, NM 87545 USA. [Rising, M. E.; Prinja, A. K.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. RP Rising, ME (reprint author), Los Alamos Natl Lab, Nucl & Particle Phys Astrophys & Cosmol Theoret D, POB 1663, Los Alamos, NM 87545 USA. EM mrising@lanl.gov NR 37 TC 14 Z9 14 U1 0 U2 7 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD SEP PY 2013 VL 175 IS 1 BP 81 EP 93 PG 13 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 211NC UT WOS:000323913900006 ER PT J AU Ilas, G AF Ilas, Germina TI SPECIAL ISSUE ON THE INTERNATIONAL TOPICAL MEETING ON REACTOR PHYSICS PHYSOR 2012 FOREWORD SO NUCLEAR TECHNOLOGY LA English DT Editorial Material C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Ilas, G (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. NR 0 TC 0 Z9 0 U1 1 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD SEP PY 2013 VL 183 IS 3 BP 271 EP 271 PG 1 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 208OM UT WOS:000323689000001 ER PT J AU Cisneros, AT Ilas, D AF Cisneros, Anselmo T. Ilas, Dan TI NEUTRONICS AND DEPLETION METHODS FOR MULTIBATCH FLUORIDE SALT-COOLED HIGH-TEMPERATURE REACTORS WITH SLAB FUEL GEOMETRY SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT International Topical Meeting on Reactor Physics CY APR 15-20, 2012 CL Oak Ridge Knoxville Local Sect ANS, Knoxville, TN HO Oak Ridge Knoxville Local Sect ANS DE linear reactivity model; reactivity-equivalent physical transformation; fluoride salt-cooled high-temperature reactor AB The Advanced High-Temperature Reactor (AHTR) is a 3400-MW(thermal) fluoride salt cooled high-temperature reactor that uses coated particle fuel compacted into slabs rather than spherical or cylindrical fuel compacts. Simplified methods are required for parametric design studies to perform burnup analysis on the entire feasible design space. These simplifications include fuel homogenization techniques to increase the speed of neutron transport calculations and equilibrium depletion analysis methods to analyze systems with multibatch fuel management schemes. This paper presents three elements of significant novelty. First, the reactivity-equivalent physical transformation (RPT) methodology usually applied in systems with cylindrical and spherical geometries has been extended to slab geometries. Second, implementing this RPT homogenization, a Monte Carlo based depletion methodology was developed to search for the maximum discharge burnup in a multibatch system by iteratively estimating the beginning of equilibrium cycle composition and sampling different discharge burnups. This iterative equilibrium depletion search method fully defines an equilibrium fuel cycle (k(eff), power, flux, and composition evolutions) but is computationally demanding. Therefore, an analytical method, the nonlinear reactivity model, was developed so that single-batch depletion results could be extrapolated to estimate the maximum discharge burnup in systems with multibatch fuel management schemes. C1 [Cisneros, Anselmo T.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Ilas, Dan] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM tommycisneros@berkeley.edu OI Ilas, Dan/0000-0002-4971-9476 FU U.S. Department of Energy (DOE) Nuclear Energy University Programs Graduate Fellowship [DE-AC05-00OR22725]; Nuclear Engineering Science Laboratory Synthesis (NESLS) internship program at Oak Ridge National Laboratory (ORNL); UT-Battelle LLC [DE-AC05-00OR22725]; DOE FX This material is based on previous work supported by a U.S. Department of Energy (DOE) Nuclear Energy University Programs Graduate Fellowship. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the Department of Energy.; This manuscript has been authored by UT-Battelle LLC under contract DE-AC05-00OR22725 with the DOE.; The work performed by the first author was supported by the Nuclear Engineering Science Laboratory Synthesis (NESLS) internship program at Oak Ridge National Laboratory (ORNL). The AHTR concept is under development at ORNL as part of the DOE's Advanced Reactor Concepts program. The authors acknowledge the suggestions of J. C. Gehin and B. J. Ade during the ORNL internal review process. NR 12 TC 1 Z9 1 U1 0 U2 8 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD SEP PY 2013 VL 183 IS 3 BP 331 EP 340 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 208OM UT WOS:000323689000007 ER PT J AU Ilas, D AF Ilas, Dan TI SCALE CODE VALIDATION FOR PRISMATIC HIGH-TEMPERATURE GAS-COOLED REACTORS SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT International Topical Meeting on Reactor Physics CY APR 15-20, 2012 CL Oak Ridge Knoxville Local Sect ANS, Knoxville, TN HO Oak Ridge Knoxville Local Sect ANS DE high-temperature gas-cooled reactor; High Temperature Engineering Test Reactor; SCALE AB Using experimental data published in the International Handbook of Evaluated Reactor Physics Benchmark Experiments for the fresh cold core of the High Temperature Engineering Test Reactor, a comprehensive validation study has been carried out to assess the performance of the SCALE code system for analysis of high-temperature gas-cooled reactor configurations. This paper describes part of the results of that effort. The studies performed included criticality evaluations for the full core and for the annular cores realized during the fuel loading, as well as calculations and comparisons for excess reactivity, shutdown margin, control rod worths, temperature coefficient of reactivity, and reaction rate distributions. Comparisons of the SCALE results with both experimental values and MCNP-calculated values are presented. The comparisons show that the SCALE calculated results, obtained with both multi group and continuous energy cross sections, are in reasonable agreement with the experimental data and the MCNP predictions. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM ilasd@ornl.gov OI Ilas, Dan/0000-0002-4971-9476 FU U.S. Nuclear Regulatory Commission Office of Research; UT-Battelle LLC [DE-AC05-00OR22725] FX The work described in this paper was sponsored by the U.S. Nuclear Regulatory Commission Office of Research. This paper has been authored by UT-Battelle LLC under contract DE-AC05-00OR22725 with the U.S. Department of Energy. NR 7 TC 1 Z9 1 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD SEP PY 2013 VL 183 IS 3 BP 379 EP 390 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 208OM UT WOS:000323689000011 ER PT J AU Kelly, R Ilas, D AF Kelly, Ryan Ilas, Dan TI VERIFICATION OF A DEPLETION METHOD IN SCALE FOR THE ADVANCED HIGH-TEMPERATURE REACTOR SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT International Topical Meeting on Reactor Physics CY APR 15-20, 2012 CL Oak Ridge Knoxville Local Sect ANS, Knoxville, TN HO Oak Ridge Knoxville Local Sect ANS DE SCALE; VESTA; AHTR AB This study describes a new approach employing the Dancoff correction method to model the TRISO-based fuel form used by the Advanced High-Temperature Reactor (AHTR) design concept. The Dancoff correction method is used to perform isotope depletion analysis using the TRITON sequence of SCALE and is verified by code-to-code comparisons. The current AHTR fuel design has TRISO particles concentrated along the edges of a slab fuel element. This geometry prevented the use of the DOUBLEHET treatment, previously developed in SCALE to model spherical and cylindrical fuel. The new method permits fuel depletion on complicated geometries that traditionally can be handled only by continuous-energy-based depletion code systems. The method was initially tested on a fuel configuration typical of the Next Generation Nuclear Plant, where DOUBLEHET treatment is possible. A confirmatory study was performed on the AHTR reference core geometry using the VESTA code, which uses the continuous-energy MCNP5 code as a transport solver and ORIGEN2.2 code for depletion calculations. Comparisons of the results indicate good agreement of whole-core characteristics, such as the multiplication factor and the isotopics, including their spatial distribution. Key isotopes analyzed included U-235, Pu-239, Pu-240, and Pu-241. The results from this study indicate that the Dancoff factor method can generate estimates of core characteristics with reasonable precision for scoping studies of configurations where DOUBLEHET treatment cannot be performed. C1 [Kelly, Ryan] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Ilas, Dan] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM kell2443@tamu.edu OI Ilas, Dan/0000-0002-4971-9476 FU National Nuclear Security Administration; UT-Battelle LLC [DE-AC05-00OR22725] FX The first author would like to acknowledge the help of T. Cisneros in developing his understanding of the RPT method, and for his advice on various aspects of the VESTA model. The development of the VESTA AHTR model and the inter-comparisons of the SCALE depletion procedure based on the Dancoff factor with the results of the VESTA simulations were performed at ORNL during a safeguards internship sponsored by the National Nuclear Security Administration. The AHTR concept is under development at ORNL as part of the U.S. Department of Energy (DOE) Advanced Reactor Concepts program. I. Maldonado of University of Tennessee in Knoxville is acknowledged for allowing the use of the computer cluster at the Department of Nuclear Engineering for VESTA computations.; This manuscript has been authored by UT-Battelle LLC under contract DE-AC05-00OR22725 with the DOE. NR 7 TC 1 Z9 1 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD SEP PY 2013 VL 183 IS 3 BP 391 EP 397 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 208OM UT WOS:000323689000012 ER PT J AU Tak, T Lee, D Kim, TK AF Tak, Taewoo Lee, Deokjung Kim, T. K. TI DESIGN OF ULTRALONG-CYCLE FAST REACTOR EMPLOYING BREED-AND-BURN STRATEGY SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT International Topical Meeting on Reactor Physics CY APR 15-20, 2012 CL Oak Ridge Knoxville Local Sect ANS, Knoxville, TN HO Oak Ridge Knoxville Local Sect ANS DE breed and burn; ultralong-cycle fast reactor ID CANDLE; CODE AB A new design of ultralong-cycle fast reactor (UCFR) with power rate of 1000 MW (electric) has been developed based on the strategy of breed and burn. The bottom region of the core with low-enriched uranium plays a role of igniter of the core burning and the upper natural uranium region acts as a blanket for breeding. Fissile materials are bred in the blanket and the active core moves upward at a speed of 5.0 cm/year. Through the core depletion calculation using Monte Carlo code McCARD, it is confirmed that a full-power operation of 60 years without refueling is feasible with respect to nuclear isotopics and criticality. Core performance characteristics have been evaluated in terms of axial/radial power shapes, reactivity feedback coefficients, etc. This design will serve as a base model for further design study of UCFRs using light water reactor spent fuels in the blanket region. C1 [Tak, Taewoo; Lee, Deokjung] Ulsan Natl Inst Sci & Technol, Ulsan 689798, South Korea. [Kim, T. K.] Argonne Natl Lab, Argonne, IL 60564 USA. EM deokjung@unist.ac.kr OI Lee, Deokjung/0000-0002-3935-5058 FU National Research Foundation of Korea; Korea government (MEST) FX This work was supported by National Research Foundation of Korea grant funded by the Korea government (MEST). NR 24 TC 5 Z9 5 U1 0 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD SEP PY 2013 VL 183 IS 3 BP 427 EP 435 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 208OM UT WOS:000323689000015 ER PT J AU McGraw, C Ilas, G AF McGraw, Carolyn Ilas, Germina TI PRESSURIZED WATER REACTOR ENDF/B-VII CROSS-SECTION LIBRARIES FOR ORIGEN-ARP SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT International Topical Meeting on Reactor Physics CY APR 15-20, 2012 CL Oak Ridge Knoxville Local Sect ANS, Knoxville, TN HO Oak Ridge Knoxville Local Sect ANS DE pressurized water reactor; SCALE; ORIGEN ID ANALYSIS CAPABILITIES; SCALE; DEPLETION AB New pressurized water reactor (PWR) cross-section libraries were generated for use with the ORIGEN-ARP depletion sequence in the SCALE nuclear analysis code system. These libraries are based on ENDF/B-VILO nuclear data and were generated using the two-dimensional depletion sequence, TRITON/NEWT, in SCALE 6.1. The libraries contain multiple burnup-dependent cross sections for seven PWR fuel designs, with enrichments ranging from 1.5 to 6 wt% U-235 and burnups from 0 to 90 GW(d)/tonne U. The computational methodology and studies performed to establish an optimal depletion model for cross-section library generation are discussed in this paper. Verification against detailed TRITON simulations for the considered assembly designs showed that depletion calculations performed in ORIGEN-ARP with the pregenerated libraries provide results similar to those obtained with direct TRITON depletion while greatly reducing the computation time. Validation of the libraries, carried out using radiochemical assay measurements and decay heat measurements for PWR spent fuel, showed good agreement between calculated and experimental data. C1 [McGraw, Carolyn] Texas A&M Univ, College Stn, TX 77840 USA. [Ilas, Germina] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM car3262@tamu.edu FU Nuclear Engineering Science Laboratory Synthesis internship program at Oak Ridge National Laboratory; UT-Battelle LLC [DE-AC05-00OR22725] FX The first author would like to thank the Nuclear Engineering Science Laboratory Synthesis internship program at Oak Ridge National Laboratory for funding her work.; This manuscript has been authored by UT-Battelle LLC under contract DE-AC05-00OR22725 with the U.S. Department of Energy. NR 16 TC 0 Z9 0 U1 0 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD SEP PY 2013 VL 183 IS 3 BP 436 EP 445 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 208OM UT WOS:000323689000016 ER PT J AU Williams, ML Ilas, G Jessee, MA Rearden, BT Wiarda, D Zwermann, W Gallner, L Klein, M Krzykacz-Hausmann, B Pautz, A AF Williams, M. L. Ilas, G. Jessee, M. A. Rearden, B. T. Wiarda, D. Zwermann, W. Gallner, L. Klein, M. Krzykacz-Hausmann, B. Pautz, A. TI A STATISTICAL SAMPLING METHOD FOR UNCERTAINTY ANALYSIS WITH SCALE AND XSUSA SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT International Topical Meeting on Reactor Physics CY APR 15-20, 2012 CL Oak Ridge Knoxville Local Sect ANS, Knoxville, TN HO Oak Ridge Knoxville Local Sect ANS DE uncertainty analysis; statistical sampling; SCALE ID ANALYSIS CAPABILITIES; SENSITIVITY AB A new statistical sampling sequence called Sampler has been developed for the SCALE code system. Random values for the input multigroup cross sections are determined by using the XSUSA program to sample uncertainty data provided in the SCALE covariance library. Using these samples, Sampler computes perturbed self-shielded cross sections and propagates the perturbed nuclear data through any specified SCALE analysis sequence, including those for criticality safety, lattice physics with depletion, and shielding calculations. Statistical analysis of the output distributions provides uncertainties and correlations in the desired responses, due to nuclear data uncertainties. The Sampler/XSUSA methodology is described, and example applications are shown for criticality safety and spent-fuel analysis. C1 [Williams, M. L.; Ilas, G.; Jessee, M. A.; Rearden, B. T.; Wiarda, D.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. EM williamsml@ornl.gov FU U.S. Nuclear Regulatory Commission Office of Research; German Federal Ministry of Economics and Technology; UT-Battelle, LLC [DE-ACO5-00OR22725] FX This work was sponsored by the U.S. Nuclear Regulatory Commission Office of Research and the German Federal Ministry of Economics and Technology.; This manuscript has been authored by UT-Battelle, LLC, under contract DE-ACO5-00OR22725 with the U.S. Department of Energy. NR 14 TC 12 Z9 12 U1 1 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD SEP PY 2013 VL 183 IS 3 BP 515 EP 526 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 208OM UT WOS:000323689000023 ER PT J AU Zou, L Zhang, HB Gehin, J Kochunas, B AF Zou, Ling Zhang, Hongbin Gehin, Jess Kochunas, Brendan TI COUPLED THERMAL-HYDRAULIC/NEUTRONICS/CRUD FRAMEWORK IN PREDICTION OF CRUD-INDUCED POWER SHIFT PHENOMENON SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT International Topical Meeting on Reactor Physics CY APR 15-20, 2012 CL Oak Ridge Knoxville Local Sect ANS, Knoxville, TN HO Oak Ridge Knoxville Local Sect ANS DE crud; computational fluid dynamics; neutronics ID DEPOSITS AB A thermal-hydraulics (TH)/neutronics/crud multi-physics coupling framework to simulate the crud deposits' impact on crud-induced power shift (CIPS) phenomenon is proposed in this paper. The coupling among three essential physics (i.e., TH, crud, and neutronics) was implemented by coupling the computational fluid dynamics software STAR-CCM+, a newly developed crud module, and the neutronics code DeCART. A typical 3 x 3 pressurized water reactor fuel pin problem was analyzed with this framework and simulation results are presented. Time-dependent results are provided for a 12-month simulation. Simulation results provide the history of crud deposits inventory and their distributions on fuel rods, boron hideout amount inside crud deposits, and power shape changing over time. The obtained results clearly showed the power shape suppression in regions where crud deposits exist, a clear indication of CIPS phenomenon. C1 [Zou, Ling; Zhang, Hongbin] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Gehin, Jess] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Kochunas, Brendan] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. EM Ling.Zou@inl.gov RI Zou, Ling/D-7577-2016; OI Zou, Ling/0000-0003-0664-0474; Gehin, Jess/0000-0001-8337-9551 FU U.S. Department of Energy, Office of Nuclear Energy, under U.S. Department of Energy Idaho Operations Offic [DE-AC07-05ID14517] FX This work was supported by the U.S. Department of Energy, Office of Nuclear Energy, under U.S. Department of Energy Idaho Operations Office contract DE-AC07-05ID14517. NR 29 TC 0 Z9 0 U1 0 U2 12 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD SEP PY 2013 VL 183 IS 3 BP 535 EP 542 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 208OM UT WOS:000323689000025 ER PT J AU McCloy, JS Potter, BG AF McCloy, John S. Potter, Barrett G. TI Photoluminescence in Chemical Vapor Deposited ZnS: insight into electronic defects SO OPTICAL MATERIALS EXPRESS LA English DT Article ID POLYCRYSTALLINE CVD-ZNS; ZINC-SULFIDE; LUMINESCENCE-CENTERS; PRESSURE; TEMPERATURE; PHOSPHORS; LASERS AB Photoluminescence spectra taken from chemical vapor deposited (CVD) ZnS are shown to exhibit sub-band-gap emission bands characteristic of isoelectronic oxygen defects. The emission spectra vary spatially with position and orientation with respect to the major axis of CVD growth. These data suggest that a complex set of defects exist in the band gap of CVD ZnS whose structural nature is highly dependent upon local deposition and growth conditions, contributing to inherent heterogeneity in optical behavior throughout the material. (c) 2013 Optical Society of America C1 [McCloy, John S.] Pacific NW Natl Lab, Richland, WA 99352 USA. [McCloy, John S.] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. [Potter, Barrett G.] Univ Arizona, Dept Mat Sci & Engn, Tucson, AZ 85721 USA. [Potter, Barrett G.] Univ Arizona, Ctr Opt Sci, Tucson, AZ 85721 USA. RP McCloy, JS (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM john.mccloy@wsu.edu RI McCloy, John/D-3630-2013 OI McCloy, John/0000-0001-7476-7771 FU Raytheon Company FX This work was performed as part of the primary author's doctorate work at the University of Arizona with support from Raytheon Company. NR 27 TC 6 Z9 7 U1 1 U2 27 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 2159-3930 J9 OPT MATER EXPRESS JI Opt. Mater. Express PD SEP 1 PY 2013 VL 3 IS 9 BP 1273 EP 1278 DI 10.1364/OME.3.001273 PG 6 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA 211XH UT WOS:000323944700008 ER PT J AU Pitarka, A Thio, HK Somerville, P Bonilla, LF AF Pitarka, Arben Thio, Hong Kie Somerville, Paul Bonilla, Luis Fabian TI Broadband Ground-Motion Simulation of an Intraslab Earthquake and Nonlinear Site Response: 2010 Ferndale, California, Earthquake Case Study SO SEISMOLOGICAL RESEARCH LETTERS LA English DT Article ID BEHAVIOR; BASIN; FAULT C1 [Pitarka, Arben] Atmospher Earth & Energy Div, Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Thio, Hong Kie; Somerville, Paul] URS Corp, Los Angeles, CA 90017 USA. [Bonilla, Luis Fabian] Univ Paris Est IFSTTAR, Dept GERS Geotech Environm Risques Nat & Sci Terr, Lab Seismes & Vibrat, F-77447 Marne La Vallee 2, France. RP Pitarka, A (reprint author), Atmospher Earth & Energy Div, Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. EM pitarka1@llnl.gov RI pitarka, arben/K-5491-2014; Bonilla, Luis Fabian/K-5092-2012 FU California Department of Conservation, California Geological Survey, Strong Motion Instrumentation Program [1010-933] FX This work was partially supported by the California Department of Conservation, California Geological Survey, Strong Motion Instrumentation Program, Contract 1010-933. We thank the anonymous reviewer for his helpful suggestions, and Anthony Shakal for the constructive discussions. NR 26 TC 2 Z9 2 U1 1 U2 5 PU SEISMOLOGICAL SOC AMER PI ALBANY PA 400 EVELYN AVE, SUITE 201, ALBANY, CA 94706-1375 USA SN 0895-0695 J9 SEISMOL RES LETT JI Seismol. Res. Lett. PD SEP-OCT PY 2013 VL 84 IS 5 BP 785 EP 795 DI 10.1785/0220130031 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 212NS UT WOS:000323990700009 ER PT J AU Harmon, RS Russo, RE Hark, RR AF Harmon, Russell S. Russo, Richard E. Hark, Richard R. TI Applications of laser-induced breakdown spectroscopy for geochemical and environmental analysis: A comprehensive review SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Review DE Laser-induced breakdown spectroscopy; GEOLIBS; Geochemical analysis; Environmental analysis; Chemometrics ID INDUCED PLASMA SPECTROSCOPY; QUANTITATIVE ELEMENTAL ANALYSIS; INDIVIDUAL FLUID INCLUSIONS; BULK AQUEOUS-SOLUTIONS; IN-SITU CHARACTERIZATION; DOUBLE-PULSE LIBS; TOTAL SOIL CARBON; EMISSION-SPECTROSCOPY; REAL-TIME; IRON-ORE AB Applications of laser-induced breakdown spectroscopy (LIBS) have been growing rapidly and continue to be extended to a broad range of materials. This paper reviews recent application of LIBS for the analysis of geological and environmental materials, here termed "GEOLIBS". Following a summary of fundamentals of the LIBS analytical technique and its potential for chemical analysis in real time, the history of the application of LIBS to the analysis of natural fluids, minerals, rocks, soils, sediments, and other natural materials is described. (C) 2013 Elsevier B.V. All rights reserved. C1 [Russo, Richard E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hark, Richard R.] Juniata Coll, Dept Chem, Huntingdon, PA 16652 USA. RP Hark, RR (reprint author), Juniata Coll, Dept Chem, Huntingdon, PA 16652 USA. EM Russell.S.Harmon@usace.army.mil; rerusso@lbl.gov; hark@juniata.edu FU Army Research Laboratory; Chemical Science Division, Office of Basic Energy Sciences; Defense Nuclear Nonproliferation Research and Development Office of the U.S. Department of Energy at the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; ARO Grant [60674-EV]; II-VI Foundation FX The authors gratefully acknowledge Army Research Laboratory funding to RSH, support by the Chemical Science Division, Office of Basic Energy Sciences and the Defense Nuclear Nonproliferation Research and Development Office of the U.S. Department of Energy under contract number DE-AC02-05CH11231 at the Lawrence Berkeley National Laboratory to RER, and financial support to RRH from ARO Grant 60674-EV and the II-VI Foundation. NR 216 TC 49 Z9 51 U1 8 U2 135 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD SEP 1 PY 2013 VL 87 BP 11 EP 26 DI 10.1016/j.sab.2013.05.017 PG 16 WC Spectroscopy SC Spectroscopy GA 210ZN UT WOS:000323874000003 ER PT J AU Martin, MZ Mayes, MA Heal, KR Brice, DJ Wullschleger, SD AF Martin, Madhavi Z. Mayes, Melanie A. Heal, Katherine R. Brice, Deanne J. Wullschleger, Stan D. TI Investigation of laser-induced breakdown spectroscopy and multivariate analysis for differentiating inorganic and organic C in a variety of soils SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article DE Soil carbon; Inorganic carbon and organic carbon in soils; LIBS; PLS models ID CARBON; SPECTRA; SAMPLES; FOREST AB Laser-induced breakdown spectroscopy (LIBS) along with multivariate analysis was used to differentiate between the total carbon (C), inorganic C, and organic C in a set of 58 different soils from 5 soil orders. A 532 nm laser with 45 mJ of laser power was used to excite the 58 samples of soil and the emission of all the elements present in the soil samples was recorded in a single spectrum with a wide wavelength range of 200-800 nm. The results were compared to the laboratory standard technique, e.g., combustion on a LECO-CN analyzer, to determine the true values for total C, inorganic C, and organic C concentrations. Our objectives were: 1) to determine the characteristic spectra of soils containing different amounts of organic and inorganic C, and 2) to examine the viability of this technique for differentiating between soils that contain predominantly organic and/or inorganic C content for a range of diverse soils. Previous work has shown that LIBS is an accurate and reliable approach to measuring total carbon content of soils, but it remains uncertain whether inorganic and organic forms of carbon can be separated using this approach. Total C and inorganic C exhibited correlation with rock-forming elements such as Al, Si, Fe, Ti, Ca, and Sr, while organic C exhibited minor correlation with these elements and a major correlation with Mg. We calculated a figure of merit (Mg/Ca) based on our results to enable differentiation between inorganic versus organic C. We obtained the LIBS validation prediction for total, inorganic, and organic C to have a coefficient of regression, r(2) = 0.91, 0.87, and 0.91 respectively. These examples demonstrate an advance in LIBS-based techniques to distinguish between organic and inorganic C using the full wavelength spectra. (C) 2013 Elsevier B.V. All rights reserved. C1 [Martin, Madhavi Z.] Oak Ridge Natl Lab, BioSci Div, Oak Ridge, TN 37831 USA. [Mayes, Melanie A.; Brice, Deanne J.; Wullschleger, Stan D.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Mayes, Melanie A.; Wullschleger, Stan D.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. [Heal, Katherine R.] Univ Washington, Dept Oceanog, Seattle, WA 98122 USA. RP Martin, MZ (reprint author), Oak Ridge Natl Lab, BioSci Div, Oak Ridge, TN 37831 USA. EM martinm1@ornl.gov RI Wullschleger, Stan/B-8297-2012; OI Wullschleger, Stan/0000-0002-9869-0446; Martin, Madhavi/0000-0002-6677-2180 FU U.S. Department of Energy Office of Science Biological and Environmental Research (BER) Program; U.S. Department of Energy [DE-AC05-00OR22725] FX This research was supported by the U.S. Department of Energy Office of Science Biological and Environmental Research (BER) Program. This manuscript has been authored by UT-Battelle LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 31 TC 12 Z9 13 U1 1 U2 34 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD SEP 1 PY 2013 VL 87 BP 100 EP 107 DI 10.1016/j.sab.2013.05.026 PG 8 WC Spectroscopy SC Spectroscopy GA 210ZN UT WOS:000323874000014 ER PT J AU Brand, V Baker, MS de Boer, MP AF Brand, Vitali Baker, Michael S. de Boer, Maarten P. TI Impact of Contact Materials and Operating Conditions on Stability of Micromechanical Switches SO TRIBOLOGY LETTERS LA English DT Article DE Tribopolymer; Nanoswitch; Microswitch; Cold-switching; Gas environment; Pt; RuO2 ID VAPOR-PHASE LUBRICATION; MEMS SWITCHES; ELECTRICAL CONTACTS; ORGANIC VAPORS; METAL; CHEMISTRY; RESISTANCE; POLYMERS; DEVICES; CMOS AB Nano and micromechanical switches are of great interest in applications that require high speed, low-power consumption and high electrical isolation. There is strong evidence that airborne hydrocarbon accumulation on the contact surfaces of the switch is a key cause for device failure. Relatively unexplored contact materials such as RuO2 are of interest because they are believed to be less prone to hydrocarbon deposit accumulation than more commonly used materials such as Pt and Au. Here, we measure the reliability of RuO2 and Pt-coated microswitches in hydrocarbon-rich environments with N-2 and N-2:O-2 background gases. The RuO2 material performs very poorly in contaminated N-2, but very well in contaminated N-2:O-2. Furthermore, RuO2 performs much better than Pt in the contaminated N-2:O-2. It is demonstrated that the deposit, initially being an insulator, can be electrically broken-down, thereby substantially lowering switch resistance. It is further shown that the passage of electrical current through the contacts augments deposit accumulation. C1 [Brand, Vitali; de Boer, Maarten P.] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA. [Baker, Michael S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP de Boer, MP (reprint author), Carnegie Mellon Univ, Dept Mech Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA. EM mpdebo@andrew.cmu.edu RI de Boer, Maarten/C-1525-2013 OI de Boer, Maarten/0000-0003-1574-9324 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; General Electric Corporation FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. We acknowledge General Electric Corporation for providing funds to construct the test chamber. NR 58 TC 14 Z9 14 U1 0 U2 23 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1023-8883 J9 TRIBOL LETT JI Tribol. Lett. PD SEP PY 2013 VL 51 IS 3 BP 341 EP 356 DI 10.1007/s11249-013-0166-2 PG 16 WC Engineering, Chemical; Engineering, Mechanical SC Engineering GA 203ZE UT WOS:000323332800005 ER PT J AU Bryan, T Gonzalez, JM Bacik, JP DeNunzio, NJ Unkefer, CJ Schrader, TE Ostermann, A Dunaway-Mariano, D Allen, KN Fisher, SZ AF Bryan, Tyrel Gonzalez, Javier M. Bacik, John P. DeNunzio, Nicholas J. Unkefer, Clifford J. Schrader, Tobias E. Ostermann, Andreas Dunaway-Mariano, Debra Allen, Karen N. Fisher, S. Zoe TI Neutron diffraction studies towards deciphering the protonation state of catalytic residues in the bacterial KDN9P phosphatase SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID CARBONIC-ANHYDRASE II; JOINT X-RAY; PROTEIN CRYSTALLOGRAPHY; HYDROGEN; SUPERFAMILY; DIVERSITY; NETWORK; ENZYMES; ROLES; MODEL AB The enzyme 2-keto-3-deoxy-9-O-phosphonononic acid phosphatase (KDN9P phosphatase) functions in the pathway for the production of 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid, a sialic acid that is important for the survival of commensal bacteria in the human intestine. The enzyme is a member of the haloalkanoate dehalogenase superfamily and represents a good model for the active-site protonation state of family members. Crystals of approximate dimensions 1.5 x 1.0 x 1.0 mm were obtained in space group P2(1)2(1)2, with unit-cell parameters a = 83.1, b = 108.9, c = 75.7 angstrom. A complete neutron data set was collected from a medium-sized H/D-exchanged crystal at BIODIFF at the Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany in 18 d. Initial refinement to 2.3 angstrom resolution using only neutron data showed significant density for catalytically important residues. C1 [Bryan, Tyrel; Dunaway-Mariano, Debra] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. [Gonzalez, Javier M.; Bacik, John P.; Unkefer, Clifford J.; Fisher, S. Zoe] Los Alamos Natl Lab, BioSci Div B11, Los Alamos, NM 87545 USA. [DeNunzio, Nicholas J.; Allen, Karen N.] Boston Univ, Dept Chem, Boston, MA 02115 USA. [Schrader, Tobias E.] Forschungszentrum Julich, JCNS, Heinz Maier Leibnitz Zentrum MLZ, D-85748 Garching, Germany. [Ostermann, Andreas] Tech Univ Munich, Heinz Maier Leibnitz Zentrum MLZ, D-85748 Garching, Germany. RP Fisher, SZ (reprint author), Los Alamos Natl Lab, BioSci Div B11, POB 1663, Los Alamos, NM 87545 USA. EM zfisher@lanl.gov OI Allen, Karen/0000-0001-7296-0551; Ostermann, Andreas/0000-0002-1477-5590; Gonzalez, Javier M./0000-0002-3298-2235; Schrader, Tobias Erich/0000-0001-5159-0846 FU National Institute of Health [U54 GM093342]; Department of Energy Office of Biological and Environmental Research (DOE-OBER) FX We acknowledge funding from the National Institute of Health U54 GM093342 (to KNA and DD-M). The PCS is funded by the Department of Energy Office of Biological and Environmental Research (DOE-OBER). NR 34 TC 1 Z9 1 U1 0 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD SEP PY 2013 VL 69 BP 1015 EP 1019 DI 10.1107/S1744309113021386 PN 9 PG 5 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 208YT UT WOS:000323719700014 PM 23989152 ER PT J AU Kordilla, J Tartakovsky, AM Geyer, T AF Kordilla, J. Tartakovsky, A. M. Geyer, T. TI A smoothed particle hydrodynamics model for droplet and film flow on smooth and rough fracture surfaces SO ADVANCES IN WATER RESOURCES LA English DT Article DE Unsaturated flow; Fractured rocks; Smoothed particle hydrodynamics; Gravity-driven flow; Film flow; Surface tension ID HYDRAULIC CONDUCTIVITY; POROUS-MEDIA; LIQUID-DROPS; UNSATURATED FRACTURES; HORIZONTAL SURFACES; SCALING PROPERTIES; CONTACT-ANGLE; DYNAMICS; TRANSPORT; TENSION AB Flow on fracture surfaces has been identified by many authors as an important flow process in unsaturated fractured rock formations. Given the complexity of flow dynamics on such small scales, robust numerical methods have to be employed in order to capture the highly dynamic interfaces and flow intermittency. In this work we use a three-dimensional multiphase Smoothed Particle Hydrodynamics (SPH) model to simulate surface tension dominated flow on smooth fracture surfaces. We model droplet and film flow over a wide range of contact angles and Reynolds numbers encountered in such flows on rock surfaces. We validate our model via comparison with existing empirical and semi-analytical solutions for droplet flow. We use the SPH model to investigate the occurrence of adsorbed trailing films left behind droplets under various flow conditions and its importance for the flow dynamics when films and droplets coexist. It is shown that flow velocities are higher on prewetted surfaces covered by a thin film which is qualitatively attributed to the enhanced dynamic wetting and dewetting at the trailing and advancing contact lines. Finally, we demonstrate that the SPH model can be used to study flow on rough surfaces. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Kordilla, J.; Geyer, T.] Univ Gottingen, Geosci Ctr, D-37073 Gottingen, Germany. [Tartakovsky, A. M.] Pacific NW Natl Lab, Computat Math Grp, Richland, WA 99352 USA. RP Kordilla, J (reprint author), Univ Gottingen, Geosci Ctr, Goldschmidstr 3, D-37073 Gottingen, Germany. EM jkordil@gwdg.de FU DAAD (German Academic Exchange Service); Department of Energy's Office of Advanced Scientific Computing Research Program FX The authors thank four anonymous reviewers. This work was partially supported by the DAAD (German Academic Exchange Service) providing J. Kordilla with an international research scholarship at the Pacific Northwest National Laboratory (PNNL), USA. A.M. Tartakovsky was supported by the Department of Energy's Office of Advanced Scientific Computing Research Program and at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the US Department of Energy. NR 64 TC 11 Z9 11 U1 6 U2 50 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 EI 1872-9657 J9 ADV WATER RESOUR JI Adv. Water Resour. PD SEP PY 2013 VL 59 BP 1 EP 14 DI 10.1016/j.advwatres.2013.04.009 PG 14 WC Water Resources SC Water Resources GA 207MZ UT WOS:000323606500001 ER PT J AU Tartakovsky, GD Tartakovsky, AM Scheibe, TD Fang, Y Mahadevan, R Lovley, DR AF Tartakovsky, G. D. Tartakovsky, A. M. Scheibe, T. D. Fang, Y. Mahadevan, R. Lovley, D. R. TI Pore-scale simulation of microbial growth using a genome-scale metabolic model: Implications for Darcy-scale reactive transport SO ADVANCES IN WATER RESOURCES LA English DT Article DE Pore-scale; Simulation; Biogeochemistry; Metal reduction; Geobacter; Genome-scale model ID SMOOTHED PARTICLE HYDRODYNAMICS; SITU URANIUM BIOREMEDIATION; POROUS-MEDIA; IN-SITU; ESCHERICHIA-COLI; GEOBACTER-SULFURREDUCENS; FLOW; REDUCTION; SILICO; SUBSURFACE AB Recent advances in microbiology have enabled the quantitative simulation of microbial metabolism and growth based on genome-scale characterization of metabolic pathways and fluxes. We have incorporated a genome-scale metabolic model of the iron-reducing bacteria Geobacter sulfurreducens into a pore-scale simulation of microbial growth based on coupling of iron reduction to oxidation of a soluble electron donor (acetate). In our model, fluid flow and solute transport is governed by a combination of the Navier-Stokes and advection-diffusion-reaction equations. Microbial growth occurs only on the surface of soil grains where solid-phase mineral iron oxides are available. Mass fluxes of chemical species associated with microbial growth are described by the genome-scale microbial model, implemented using a constraint-based metabolic model, and provide the Robin-type boundary condition for the advection-diffusion equation at soil grain surfaces. Conventional models of microbially-mediated subsurface reactions use a lumped reaction model that does not consider individual microbial reaction pathways, and describe reactions rates using empirically-derived rate formulations such as the Monod-type kinetics. We have used our pore-scale model to explore the relationship between genome-scale metabolic models and Monod-type formulations, and to assess the manifestation of pore-scale variability (microenvironments) in terms of apparent Darcy-scale microbial reaction rates. The genome-scale model predicted lower biomass yield, and different stoichiometry for iron consumption, in comparison to prior Monod formulations based on energetics considerations. We were able to fit an equivalent Monod model, by modifying the reaction stoichiometry and biomass yield coefficient, that could effectively match results of the genome-scale simulation of microbial behaviors under excess nutrient conditions, but predictions of the fitted Monod model deviated from those of the genome-scale model under conditions in which one or more nutrients were limiting. The fitted Monod kinetic model was also applied at the Darcy scale; that is, to simulate average reaction processes at the scale of the entire pore-scale model domain. As we expected, even under excess nutrient conditions for which the Monod and genome-scale models predicted equal reaction rates at the pore scale, the Monod model over-predicted the rates of biomass growth and iron and acetate utilization when applied at the Darcy scale. This discrepancy is caused by an inherent assumption of perfect mixing over the Darcy-scale domain, which is clearly violated in the pore-scale models. These results help to explain the need to modify the flux constraint parameters in order to match observations in previous applications of the genome-scale model at larger scales. These results also motivate further investigation of quantitative multi-scale relationships between fundamental behavior at the pore scale (where genome-scale models are appropriately applied) and observed behavior at larger scales (where predictions of reactive transport phenomena are needed). (C) 2013 Elsevier Ltd. All rights reserved. C1 [Tartakovsky, G. D.; Scheibe, T. D.; Fang, Y.] Pacific NW Natl Lab, Hydrol Grp, Richland, WA 99352 USA. [Tartakovsky, A. M.] Pacific NW Natl Lab, Computat Math Grp, Richland, WA 99352 USA. [Mahadevan, R.] Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON M5S 1A1, Canada. [Lovley, D. R.] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA. RP Tartakovsky, GD (reprint author), Pacific NW Natl Lab, Hydrol Grp, Richland, WA 99352 USA. EM guzel.tartakovsky@pnl.gov RI Scheibe, Timothy/A-8788-2008; Fang, Yilin/J-5137-2015; Mahadevan, Radhakrishnan/A-8502-2008 OI Scheibe, Timothy/0000-0002-8864-5772; Mahadevan, Radhakrishnan/0000-0002-1270-9063 FU Subsurface Biogeochemical Research Program of the U.S. Department of Energy, Office of Science; Advanced Scientific Computing Research Program of the U.S. Department of Energy, Office of Science FX This work was supported by the Subsurface Biogeochemical Research Program and the Advanced Scientific Computing Research Program of the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy. NR 68 TC 5 Z9 5 U1 7 U2 73 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 J9 ADV WATER RESOUR JI Adv. Water Resour. PD SEP PY 2013 VL 59 BP 256 EP 270 DI 10.1016/j.advwatres.2013.05.007 PG 15 WC Water Resources SC Water Resources GA 207MZ UT WOS:000323606500020 ER PT J AU Meixner, M Panuzzo, P Roman-Duval, J Engelbracht, C Babler, B Seale, J Hony, S Montiel, E Sauvage, M Gordon, K Misselt, K Okumura, K Chanial, P Beck, T Bernard, JP Bolatto, A Bot, C Boyer, ML Carlson, LR Clayton, GC Chen, CHR Cormier, D Fukui, Y Galametz, M Galliano, F Hora, JL Hughes, A Indebetouw, R Israel, FP Kawamura, A Kemper, F Kim, S Kwon, E Lebouteiller, V Li, A Long, KS Madden, SC Matsuura, M Muller, E Oliveira, JM Onishi, T Otsuka, M Paradis, D Poglitsch, A Reach, WT Robitaille, TP Rubio, M Sargent, B Sewilo, M Skibba, R Smith, LJ Srinivasan, S Tielens, AGGM van Loon, JT Whitney, B AF Meixner, M. Panuzzo, P. Roman-Duval, J. Engelbracht, C. Babler, B. Seale, J. Hony, S. Montiel, E. Sauvage, M. Gordon, K. Misselt, K. Okumura, K. Chanial, P. Beck, T. Bernard, J. -P. Bolatto, A. Bot, C. Boyer, M. L. Carlson, L. R. Clayton, G. C. Chen, C. -H. R. Cormier, D. Fukui, Y. Galametz, M. Galliano, F. Hora, J. L. Hughes, A. Indebetouw, R. Israel, F. P. Kawamura, A. Kemper, F. Kim, S. Kwon, E. Lebouteiller, V. Li, A. Long, K. S. Madden, S. C. Matsuura, M. Muller, E. Oliveira, J. M. Onishi, T. Otsuka, M. Paradis, D. Poglitsch, A. Reach, W. T. Robitaille, T. P. Rubio, M. Sargent, B. Sewilo, M. Skibba, R. Smith, L. J. Srinivasan, S. Tielens, A. G. G. M. van Loon, J. Th. Whitney, B. TI THE HERSCHEL INVENTORY OF THE AGENTS OF GALAXY EVOLUTION IN THE MAGELLANIC CLOUDS, A HERSCHEL OPEN TIME KEY PROGRAM SO ASTRONOMICAL JOURNAL LA English DT Article DE catalogs; dust, extinction; infrared: galaxies; Magellanic Clouds; submillimeter: general; surveys ID STAR-FORMATION HISTORY; YOUNG STELLAR OBJECTS; III PHOTOMETRIC MAPS; LOW METALLICITY; SPITZER SURVEY; MOLECULAR CLOUDS; EVOLVED STARS; INFRARED OBSERVATIONS; APERTURE SYNTHESIS; EXCESS EMISSION AB We present an overview of the HERschel Inventory of The Agents of Galaxy Evolution (HERITAGE) in the Magellanic Clouds project, which is a Herschel Space Observatory open time key program. We mapped the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) at 100, 160, 250, 350, and 500 mu m with the Spectral and Photometric Imaging Receiver (SPIRE) and Photodetector Array Camera and Spectrometer (PACS) instruments on board Herschel using the SPIRE/PACS parallel mode. The overriding science goal of HERITAGE is to study the life cycle of matter as traced by dust in the LMC and SMC. The far-infrared and submillimeter emission is an effective tracer of the interstellar medium (ISM) dust, the most deeply embedded young stellar objects (YSOs), and the dust ejected by the most massive stars. We describe in detail the data processing, particularly for the PACS data, which required some custom steps because of the large angular extent of a single observational unit and overall the large amount of data to be processed as an ensemble. We report total global fluxes for the LMC and SMC and demonstrate their agreement with measurements by prior missions. The HERITAGE maps of the LMC and SMC are dominated by the ISM dust emission and bear most resemblance to the tracers of ISM gas rather than the stellar content of the galaxies. We describe the point source extraction processing and the criteria used to establish a catalog for each waveband for the HERITAGE program. The 250 mu m band is the most sensitive and the source catalogs for this band have similar to 25,000 objects for the LMC and similar to 5500 objects for the SMC. These data enable studies of ISM dust properties, submillimeter excess dust emission, dust-to-gas ratio, Class 0 YSO candidates, dusty massive evolved stars, supernova remnants (including SN1987A), H II regions, and dust evolution in the LMC and SMC. All images and catalogs are delivered to the Herschel Science Center as part of the community support aspects of the project. These HERITAGE images and catalogs provide an excellent basis for future research and follow up with other facilities. C1 [Meixner, M.; Roman-Duval, J.; Seale, J.; Gordon, K.; Beck, T.; Boyer, M. L.; Long, K. S.; Sargent, B.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Meixner, M.; Sewilo, M.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Panuzzo, P.; Hony, S.; Sauvage, M.; Okumura, K.; Chanial, P.; Cormier, D.; Galliano, F.; Lebouteiller, V.; Madden, S. C.] CEA, Irfu SAp, Lab AIM, F-91191 Gif Sur Yvette, France. [Panuzzo, P.] Observ Paris, CNRS, Lab GEPI, F-92195 Meudon, France. [Engelbracht, C.; Montiel, E.; Misselt, K.; Skibba, R.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Engelbracht, C.] Raytheon Co, Tucson, AZ 85756 USA. [Babler, B.; Whitney, B.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Montiel, E.; Clayton, G. C.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Bernard, J. -P.; Paradis, D.] CNRS, IRAP, F-31028 Toulouse 4, France. [Bernard, J. -P.; Paradis, D.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Bolatto, A.] Univ Maryland, Dept Astron, Lab Millimeter Wave Astron, College Pk, MD 20742 USA. [Bot, C.] Univ Strasbourg, Observ Astron Strasbourg, F-67000 Strasbourg, France. [Bot, C.] CNRS, Observ Astron Strasbourg, UMR7550, F-67000 Strasbourg, France. [Boyer, M. L.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Boyer, M. L.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. [Carlson, L. R.; Israel, F. P.; Tielens, A. G. G. M.] Leiden Univ, Sterrewacht Leiden, NL-2300 RA Leiden, Netherlands. [Chen, C. -H. R.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Fukui, Y.] Nagoya Univ, Dept Astrophys, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Galametz, M.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Hora, J. L.] Harvard Univ, Ctr Astrophys, Cambridge, MA 02138 USA. [Hughes, A.; Robitaille, T. P.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Indebetouw, R.] Univ Virginia, Dept Astron, Charlottesville, VA 22903 USA. [Indebetouw, R.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Kawamura, A.; Muller, E.] Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Kemper, F.; Otsuka, M.; Srinivasan, S.] Acad Sinica, Inst Astron & Astrophys, Taipei 10617, Taiwan. [Kim, S.; Kwon, E.] Sejong Univ, Dept Astron & Space Sci, Seoul 143747, South Korea. [Li, A.] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA. [Matsuura, M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Oliveira, J. M.; van Loon, J. Th.] Keele Univ, Lennard Jones Labs, Sch Phys & Geog Sci, Keele ST5 5BG, Staffs, England. [Onishi, T.] Osaka Prefecture Univ, Dept Phys Sci, Sakai, Osaka 5998531, Japan. [Poglitsch, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Rubio, M.] Univ Chile, Dept Astron, Santiago, Chile. [Sargent, B.] Rochester Inst Technol, Ctr Imaging Sci, Rochester, NY 14623 USA. [Sargent, B.] Rochester Inst Technol, Lab Multiwavelength Astrophys, Rochester, NY 14623 USA. [Smith, L. J.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Smith, L. J.] European Space Agcy, Baltimore, MD 21218 USA. [Srinivasan, S.] Inst Astrophys, UPMC CNRS, UMR7095, F-75014 Paris, France. RP Meixner, M (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. EM meixner@stsci.edu RI Kemper, Francisca/D-8688-2011; Rubio, Monica/J-3384-2016; OI Kemper, Francisca/0000-0003-2743-8240; Bot, Caroline/0000-0001-6118-2985; Babler, Brian/0000-0002-6984-5752; Lebouteiller, Vianney/0000-0002-7716-6223; Reach, William/0000-0001-8362-4094; Robitaille, Thomas/0000-0002-8642-1329; Clayton, Geoffrey/0000-0002-0141-7436 FU NASA Herschel Science Center, JPL [1381522, 1381650, 1350371]; FONDECYT [1080335]; FONDAP [15010003]; National Science Council [NSC100-2112-M-001-023-MY3]; European Space Agency (ESA); Herschel Science Center; NASA Herschel Science Center; PACS; SPIRE Instrument Control Centers FX We acknowledge financial support from the NASA Herschel Science Center, JPL contract Nos. 1381522 and 1381650. M. R. is supported by FONDECYT No1080335 and FONDAP No15010003. F. K. acknowledges support from the National Science Council in the form of grant NSC100-2112-M-001-023-MY3. R. A. S. acknowledges financial support from the NASA Herschel Science Center, JPL contract No. 1350371. We are thankful for the contributions and support from the European Space Agency (ESA), the PACS and SPIRE teams, the Herschel Science Center (esp. L. Conversi) and the NASA Herschel Science Center (esp. A. Barbar and R. Paladini), and the PACS and SPIRE Instrument Control Centers (esp. George Bendo), without which none of this work would be possible. NR 111 TC 45 Z9 45 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD SEP PY 2013 VL 146 IS 3 AR 62 DI 10.1088/0004-6256/146/3/62 PG 35 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 203OO UT WOS:000323302700019 ER PT J AU Sabbi, E Anderson, J Lennon, DJ van der Marel, RP Aloisi, A Boyer, ML Cignoni, M de Marchi, G de Mink, SE Evans, CJ Gallagher, JS Gordon, K Gouliermis, DA Grebel, EK Koekemoer, AM Larsen, SS Panagia, N Ryon, JE Smith, LJ Tosi, M Zaritsky, D AF Sabbi, E. Anderson, J. Lennon, D. J. van der Marel, R. P. Aloisi, A. Boyer, M. L. Cignoni, M. de Marchi, G. de Mink, S. E. Evans, C. J. Gallagher, J. S., III Gordon, K. Gouliermis, D. A. Grebel, E. K. Koekemoer, A. M. Larsen, S. S. Panagia, N. Ryon, J. E. Smith, L. J. Tosi, M. Zaritsky, D. TI HUBBLE TARANTULA TREASURY PROJECT: UNRAVELING TARANTULA'S WEB. I. OBSERVATIONAL OVERVIEW AND FIRST RESULTS SO ASTRONOMICAL JOURNAL LA English DT Article DE galaxies: star clusters: individual (30 Doradus); Magellanic Clouds; stars: formation; stars: imaging; stars: pre-main sequence ID LARGE-MAGELLANIC-CLOUD; 30 DORADUS NEBULA; YOUNG STELLAR POPULATIONS; STAR-FORMATION HISTORY; INITIAL MASS FUNCTION; LYMAN BREAK GALAXIES; ALL-SKY SURVEY; DWARF GALAXIES; IRREGULAR GALAXIES; INTERMEDIATE-MASS AB The Hubble Tarantula Treasury Project (HTTP) is an ongoing panchromatic imaging survey of stellar populations in the Tarantula Nebula in the Large Magellanic Cloud that reaches into the sub-solar mass regime (<0.5 M-circle dot). HTTP utilizes the capability of the Hubble Space Telescope to operate the Advanced Camera for Surveys and the Wide Field Camera 3 in parallel to study this remarkable region in the near-ultraviolet, optical, and near-infrared spectral regions, including narrow-band H alpha images. The combination of all these bands provides a unique multi-band view. The resulting maps of the stellar content of the Tarantula Nebula within its main body provide the basis for investigations of star formation in an environment resembling the extreme conditions found in starburst galaxies and in the early universe. Access to detailed properties of individual stars allows us to begin to reconstruct the temporal and spatial evolution of the stellar skeleton of the Tarantula Nebula over space and time on a sub-parsec scale. In this first paper we describe the observing strategy, the photometric techniques, and the upcoming data products from this survey and present preliminary results obtained from the analysis of the initial set of near-infrared observations. C1 [Sabbi, E.; Anderson, J.; van der Marel, R. P.; Aloisi, A.; de Mink, S. E.; Gordon, K.; Koekemoer, A. M.; Panagia, N.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Lennon, D. J.] ESA, European Space Astron Ctr, E-28691 Madrid, Spain. [Boyer, M. L.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Boyer, M. L.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. [Cignoni, M.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. [Cignoni, M.; Tosi, M.] Osservatorio Astron Bologna, Ist Nazl Astrofis, I-40127 Bologna, Italy. [de Marchi, G.] European Space Agcy, Dept Space Sci, NL-2200 AG Noordwijk, Netherlands. [de Mink, S. E.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Evans, C. J.] Royal Observ, UK Astron Technol Ctr, Edinburgh EH9 3HJ, Midlothian, Scotland. [Gallagher, J. S., III; Ryon, J. E.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Gouliermis, D. A.] Heidelberg Univ, Inst Theoret Astrophys, Zentrum Astron, D-69120 Heidelberg, Germany. [Grebel, E. K.] Heidelberg Univ, Astron Rechen Inst, Zentrum Astron, D-69120 Heidelberg, Germany. [Larsen, S. S.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands. [Panagia, N.] Osserv Astrofis Catania, Ist Nazl Astrofis, I-95123 Catania, Italy. [Smith, L. J.] ESA, STScI, Baltimore, MD 21218 USA. [Zaritsky, D.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. RP Sabbi, E (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. EM sabbi@stsci.edu RI Tosi, Monica/O-9377-2015; Cignoni, Michele/J-9365-2016; OI Tosi, Monica/0000-0002-0986-4759; Cignoni, Michele/0000-0001-6291-6813; de Mink, Selma/0000-0001-9336-2825; Lennon, Daniel/0000-0003-3063-4867; Gouliermis, Dimitrios/0000-0002-2763-0075; /0000-0002-1891-3794; Koekemoer, Anton/0000-0002-6610-2048 FU NASA through Space Telescope Science Institute [GO-12499, GO-12939]; NASA [NAS 5-26555]; Collaborative Research Center "The Milky Way System" of the German Research Foundation (DFG) [SFB 881]; German Research Foundation (DFG) [GO 1659/3-1]; NASA through Hubble Fellowship [HST-HF-51270.01-A]; Space Telescope Science Institute; [ASI I009/10/0]; [PRIN-INAF-2010]; [PRIN-MIUR-2010-11] FX The authors are grateful to Zolt Levay for his work on the images shown in Figures 1 and 3. M. T. and M. C. have been partially funded by contracts ASI I009/10/0, PRIN-INAF-2010 and PRIN-MIUR-2010-11. Support for programs GO-12499 and GO-12939 was provided by NASA through grants from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. E. K. G. acknowledges support from the Collaborative Research Center "The Milky Way System" (SFB 881) of the German Research Foundation (DFG), particularly by subproject B5. D. A. G. kindly acknowledges financial support by the German Research Foundation (DFG) through grant GO 1659/3-1. S.d.M. acknowledges support by NASA through Hubble Fellowship grant HST-HF-51270.01-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. NR 88 TC 18 Z9 18 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD SEP PY 2013 VL 146 IS 3 AR 53 DI 10.1088/0004-6256/146/3/53 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 203OO UT WOS:000323302700010 ER PT J AU Bard, D Kratochvil, JM Chang, C May, M Kahn, SM AlSayyad, Y Ahmad, Z Bankert, J Connolly, A Gibson, RR Gilmore, K Grace, E Haiman, Z Hannel, M Huffenberger, KM Jernigan, JG Jones, L Krughoff, S Lorenz, S Marshall, S Meert, A Nagarajan, S Peng, E Peterson, J Rasmussen, AP Shmakova, M Sylvestre, N Todd, N Young, M AF Bard, D. Kratochvil, J. M. Chang, C. May, M. Kahn, S. M. AlSayyad, Y. Ahmad, Z. Bankert, J. Connolly, A. Gibson, R. R. Gilmore, K. Grace, E. Haiman, Z. Hannel, M. Huffenberger, K. M. Jernigan, J. G. Jones, L. Krughoff, S. Lorenz, S. Marshall, S. Meert, A. Nagarajan, S. Peng, E. Peterson, J. Rasmussen, A. P. Shmakova, M. Sylvestre, N. Todd, N. Young, M. TI EFFECT OF MEASUREMENT ERRORS ON PREDICTED COSMOLOGICAL CONSTRAINTS FROM SHEAR PEAK STATISTICS WITH LARGE SYNOPTIC SURVEY TELESCOPE SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmological parameters; dark energy; gravitational lensing: weak; methods: statistical ID WEAK LENSING SURVEYS; PRIMORDIAL NON-GAUSSIANITY; DARK-MATTER HALOS; GALAXY CLUSTERS; NUMBER COUNTS; MODEL; COSMOS; FIELDS AB We study the effect of galaxy shape measurement errors on predicted cosmological constraints from the statistics of shear peak counts with the Large Synoptic Survey Telescope (LSST). We use the LSST Image Simulator in combination with cosmological N-body simulations to model realistic shear maps for different cosmological models. We include both galaxy shape noise and, for the first time, measurement errors on galaxy shapes. We find that the measurement errors considered have relatively little impact on the constraining power of shear peak counts for LSST. C1 [Bard, D.; Chang, C.; Kahn, S. M.; Gilmore, K.; Marshall, S.; Rasmussen, A. P.; Shmakova, M.] Stanford Univ, KIPAC, Stanford, CA 94309 USA. [Kratochvil, J. M.; Huffenberger, K. M.] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. [May, M.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [AlSayyad, Y.; Connolly, A.; Gibson, R. R.; Jones, L.; Krughoff, S.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Ahmad, Z.; Bankert, J.; Grace, E.; Hannel, M.; Lorenz, S.; Meert, A.; Nagarajan, S.; Peng, E.; Peterson, J.; Sylvestre, N.; Todd, N.; Young, M.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Haiman, Z.; Jernigan, J. G.] Columbia Univ, Dept Astron & Astrophys, New York, NY 10027 USA. [Jernigan, J. G.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Bard, D (reprint author), Stanford Univ, KIPAC, 452 Lomita Mall, Stanford, CA 94309 USA. EM djbard@slac.stanford.edu OI Huffenberger, Kevin/0000-0001-7109-0099 FU NASA's Jet Propulsion Laboratory [1363745]; U.S. Department of Energy [DE-AC02-98CH10886]; National Science Foundation [0809409]; Department of Energy [DE-AC02-76-SFO0515]; SLAC National Accelerator Laboratory FX We would like to thank Brandon Calabro for useful discussions on shear maps and aperture mass statistics. J.M.K. and K. M. H. receive support from NASA's Jet Propulsion Laboratory subcontract 1363745. This research utilized resources at the New York Center for Computational Sciences, a cooperative effort between Brookhaven National Laboratory and Stony Brook University, supported in part by the State of New York. This work is supported in part by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.; LSST project activities are supported in part by the National Science Foundation through Governing Cooperative Agreement 0809409 managed by the Association of Universities for Research in Astronomy (AURA), and the Department of Energy under contract DE-AC02-76-SFO0515 with the SLAC National Accelerator Laboratory. Additional LSST funding comes from private donations, grants to universities, and in-kind support from LSSTC Institutional Members. NR 60 TC 15 Z9 15 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2013 VL 774 IS 1 AR 49 DI 10.1088/0004-637X/774/1/49 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 205FA UT WOS:000323426700049 ER PT J AU Boyer, ML Girardi, L Marigo, P Williams, BF Aringer, B Nowotny, W Rosenfield, P Dorman, CE Guhathakurta, P Dalcanton, JJ Melbourne, JL Olsen, KAG Weisz, DR AF Boyer, M. L. Girardi, L. Marigo, P. Williams, B. F. Aringer, B. Nowotny, W. Rosenfield, P. Dorman, C. E. Guhathakurta, P. Dalcanton, J. J. Melbourne, J. L. Olsen, K. A. G. Weisz, D. R. TI IS THERE A METALLICITY CEILING TO FORM CARBON STARS?-A NOVEL TECHNIQUE REVEALS A SCARCITY OF C STARS IN THE INNER M31 DISK SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: individual (M31); stars: AGB and post-AGB; stars: carbon; stars: late-type ID ASYMPTOTIC GIANT BRANCH; SMALL-MAGELLANIC-CLOUD; NEAR-INFRARED IDENTIFICATION; HIGH-REDSHIFT GALAXIES; AGB-STARS; LOCAL GROUP; STELLAR POPULATIONS; TP-AGB; SYNTHETIC PHOTOMETRY; RED SUPERGIANTS AB We use medium-band near-infrared (NIR) Hubble Space Telescope WFC3 photometry with model NIR spectra of asymptotic giant branch (AGB) stars to develop a new tool for efficiently distinguishing carbon-rich (C-type) AGB stars from oxygen-rich (M-type) AGB stars in galaxies at the edge of and outside the Local Group. We present the results of a test of this method on a region of the inner disk of M31, where we find a surprising lack of C stars, contrary to the findings of previous C star searches in other regions of M31. We find only one candidate C star (plus up to six additional, less certain C star candidates), resulting in an extremely low ratio of C to M stars (C/M = (3.3(-0.1)(+20)) x 10(-4)) that is one to two orders of magnitude lower than other C/M estimates in M31. The low C/M ratio is likely due to the high metallicity in this region which impedes stars from achieving C/O > 1 in their atmospheres. These observations provide stringent constraints to evolutionary models of metal-rich AGB stars and suggest that there is a metallicity threshold above which M stars are unable to make the transition to C stars, dramatically affecting AGB mass loss and dust production and, consequently, the observed global properties of metal-rich galaxies. C1 [Boyer, M. L.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Boyer, M. L.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. [Girardi, L.] Osservatorio Astron Padova INAF, I-35122 Padua, Italy. [Marigo, P.] Univ Padua, Dept Phys & Astron G Galilei, I-35122 Padua, Italy. [Williams, B. F.; Rosenfield, P.; Dalcanton, J. J.; Weisz, D. R.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Aringer, B.; Nowotny, W.] Univ Vienna, Dept Astrophys, A-1180 Vienna, Austria. [Dorman, C. E.; Guhathakurta, P.] Univ Calif Santa Cruz, Univ Calif Observ, Lick Observ, Santa Cruz, CA 95064 USA. [Melbourne, J. L.] CALTECH, Caltech Opt Observ, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Olsen, K. A. G.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. RP Boyer, ML (reprint author), NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665, Greenbelt, MD 20771 USA. EM martha.boyer@nasa.gov FU NASA Postdoctoral Program at the Goddard Space Flight Center; NASA [NAS5-26555]; NASA through HST from the STScI [GO-12862, GO-12055]; University of Padova [CPDA125588/12]; Austrian Science Fund (FWF) [P21988-N16] FX We thank the referee, Jacco van Loon, for thoughtful comments that improved the manuscript and helped to clarify important issues. This work was supported by the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by ORAU through a contract with NASA and by NASA through HST grant numbers GO-12862 and GO-12055 from the STScI, which is operated by AURA, Inc., under NASA contract NAS5-26555. P.M. and L.G. acknowledge support from Progetto di Ateneo 2012, University of Padova, ID: CPDA125588/12. This research was funded in part by the Austrian Science Fund (FWF): P21988-N16. NR 65 TC 24 Z9 24 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2013 VL 774 IS 1 AR 83 DI 10.1088/0004-637X/774/1/83 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 205FA UT WOS:000323426700083 ER PT J AU Kasen, D Badnell, NR Barnes, J AF Kasen, Daniel Badnell, N. R. Barnes, Jennifer TI OPACITIES AND SPECTRA OF THE r-PROCESS EJECTA FROM NEUTRON STAR MERGERS SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational waves; nuclear reactions, nucleosynthesis, abundances; opacity; radiative transfer; stars: neutron; supernovae: general ID GAMMA-RAY BURSTS; COMPACT OBJECT MERGERS; LIGHT CURVES; ELECTROMAGNETIC COUNTERPARTS; PROCESS NUCLEOSYNTHESIS; ANALYTIC SOLUTIONS; IA SUPERNOVAE; BINARIES; EXPLOSION; COALESCENCE AB Material ejected during (or immediately following) the merger of two neutron stars may assemble into heavy elements through the r-process. The subsequent radioactive decay of the nuclei can power transient electromagnetic emission similar to, but significantly dimmer than, an ordinary supernova. Identifying such events is an important goal of future optical surveys, offering new perspectives on the origin of r-process nuclei and the astrophysical sources of gravitational waves. Predictions of the transient light curves and spectra, however, have suffered from the uncertain optical properties of heavy ions. Here we argue that the opacity of an expanding r-process material is dominated by bound-bound transitions from those ions with the most complex valence electron structure, namely the lanthanides. For a few representative ions, we run atomic structure models to calculate the radiative transition rates for tens of millions of lines. The resulting r-process opacities are orders of magnitude larger than that of ordinary (e.g., iron-rich) supernova ejecta. Radiative transport calculations using these new opacities suggest that the light curves should be longer, dimmer, and redder than previously thought. The spectra appear to be pseudo-blackbody, with broad absorption features, and peak in the infrared (similar to 1 mu m). We discuss uncertainties in the opacities and attempt to quantify their impact on the spectral predictions. The results have important implications for observational strategies to find and study the radioactively powered electromagnetic counterparts to neutron star mergers. C1 [Kasen, Daniel; Barnes, Jennifer] Univ Calif Berkeley, Dept Phys & Astron, Berkeley, CA 94720 USA. [Kasen, Daniel; Barnes, Jennifer] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Badnell, N. R.] Univ Strathclyde, Dept Phys, Glasgow G4 0NG, Lanark, Scotland. RP Kasen, D (reprint author), Univ Calif Berkeley, Dept Phys & Astron, Berkeley, CA 94720 USA. FU Department of Energy Office of Nuclear Physics; Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the U.S. Department of Energy [DE-AC02-05CH11231]; STFC [ST/J000892/1] FX This work was supported by the Department of Energy Office of Nuclear Physics Early Career Award, and by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The work of N.R.B. was supported by STFC (ST/J000892/1). NR 63 TC 82 Z9 83 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2013 VL 774 IS 1 AR 25 DI 10.1088/0004-637X/774/1/25 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 205FA UT WOS:000323426700025 ER PT J AU McDonald, M Benson, BA Vikhlinin, A Stalder, B Bleem, LE de Haan, T Lin, HW Aird, KA Ashby, MLN Bautz, MW Bayliss, M Bocquet, S Brodwin, M Carlstrom, JE Chang, CL Cho, HM Clocchiatti, A Crawford, TM Crites, AT Desai, S Dobbs, MA Dudley, JP Foley, RJ Forman, WR George, EM Gettings, D Gladders, MD Gonzalez, AH Halverson, NW High, FW Holder, GP Holzapfel, WL Hoover, S Hrubes, JD Jones, C Joy, M Keisler, R Knox, L Lee, AT Leitch, EM Liu, J Lueker, M Luong-Van, D Mantz, A Marrone, DP McMahon, JJ Mehl, J Meyer, SS Miller, ED Mocanu, L Mohr, JJ Montroy, TE Murray, SS Nurgaliev, D Padin, S Plagge, T Pryke, C Reichardt, CL Rest, A Ruel, J Ruhl, JE Saliwanchik, BR Saro, A Sayre, JT Schaffer, KK Shirokoff, E Song, J Suhada, R Spieler, HG Stanford, SA Staniszewski, Z Stark, AA Story, K van Engelen, A Vanderlinde, K Vieira, JD Williamson, R Zahn, O Zenteno, A AF McDonald, M. Benson, B. A. Vikhlinin, A. Stalder, B. Bleem, L. E. de Haan, T. Lin, H. W. Aird, K. A. Ashby, M. L. N. Bautz, M. W. Bayliss, M. Bocquet, S. Brodwin, M. Carlstrom, J. E. Chang, C. L. Cho, H. M. Clocchiatti, A. Crawford, T. M. Crites, A. T. Desai, S. Dobbs, M. A. Dudley, J. P. Foley, R. J. Forman, W. R. George, E. M. Gettings, D. Gladders, M. D. Gonzalez, A. H. Halverson, N. W. High, F. W. Holder, G. P. Holzapfel, W. L. Hoover, S. Hrubes, J. D. Jones, C. Joy, M. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. Liu, J. Lueker, M. Luong-Van, D. Mantz, A. Marrone, D. P. McMahon, J. J. Mehl, J. Meyer, S. S. Miller, E. D. Mocanu, L. Mohr, J. J. Montroy, T. E. Murray, S. S. Nurgaliev, D. Padin, S. Plagge, T. Pryke, C. Reichardt, C. L. Rest, A. Ruel, J. Ruhl, J. E. Saliwanchik, B. R. Saro, A. Sayre, J. T. Schaffer, K. K. Shirokoff, E. Song, J. Suhada, R. Spieler, H. G. Stanford, S. A. Staniszewski, Z. Stark, A. A. Story, K. van Engelen, A. Vanderlinde, K. Vieira, J. D. Williamson, R. Zahn, O. Zenteno, A. TI THE GROWTH OF COOL CORES AND EVOLUTION OF COOLING PROPERTIES IN A SAMPLE OF 83 GALAXY CLUSTERS AT 0.3 < z < 1.2 SELECTED FROM THE SPT-SZ SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE early universe; galaxies: clusters: general; galaxies: clusters: intracluster medium; X-rays: galaxies: clusters ID SOUTH-POLE TELESCOPE; ACTIVE GALACTIC NUCLEI; RAY LUMINOUS CLUSTERS; COLD MOLECULAR GAS; 720 SQUARE DEGREES; STAR-FORMATION; FLOW CLUSTERS; HIGH-REDSHIFT; INTRACLUSTER MEDIUM; PERSEUS CLUSTER AB We present first results on the cooling properties derived from Chandra X-ray observations of 83 high-redshift (0.3 < z < 1.2) massive galaxy clusters selected by their Sunyaev-Zel'dovich signature in the South Pole Telescope data. We measure each cluster's central cooling time, central entropy, and mass deposition rate, and compare these properties to those for local cluster samples. We find no significant evolution from z similar to 0 to z similar to 1 in the distribution of these properties, suggesting that cooling in cluster cores is stable over long periods of time. We also find that the average cool core entropy profile in the inner similar to 100 kpc has not changed dramatically since z similar to 1, implying that feedback must be providing nearly constant energy injection to maintain the observed "entropy floor" at similar to 10 keV cm(2). While the cooling properties appear roughly constant over long periods of time, we observe strong evolution in the gas density profile, with the normalized central density (rho(g),(0)/rho(crit)) increasing by an order of magnitude from z similar to 1 to z similar to 0. When using metrics defined by the inner surface brightness profile of clusters, we find an apparent lack of classical, cuspy, cool-core clusters at z > 0.75, consistent with earlier reports for clusters at z > 0.5 using similar definitions. Our measurements indicate that cool cores have been steadily growing over the 8 Gyr spanned by our sample, consistent with a constant, similar to 150M(circle dot) yr(-1) cooling flow that is unable to cool below entropies of 10 keV cm(2) and, instead, accumulates in the cluster center. We estimate that cool cores began to C1 [McDonald, M.; Bautz, M. W.; Miller, E. D.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; High, F. W.; Hoover, S.; Keisler, R.; Leitch, E. M.; Mantz, A.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Padin, S.; Plagge, T.; Schaffer, K. K.; Story, K.; Vieira, J. D.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Hoover, S.; Meyer, S. S.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Vikhlinin, A.; Stalder, B.; Ashby, M. L. N.; Bayliss, M.; Foley, R. J.; Forman, W. R.; Jones, C.; Murray, S. S.; Stark, A. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Story, K.; Vieira, J. D.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [de Haan, T.; Dobbs, M. A.; Dudley, J. P.; Holder, G. P.; van Engelen, A.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Lin, H. W.] Caddo Parish Magnet High Sch, Shrevport, LA 71101 USA. [Aird, K. A.; Hrubes, J. D.; Luong-Van, D.] Univ Chicago, Chicago, IL 60637 USA. [Bayliss, M.; Nurgaliev, D.; Ruel, J.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Bocquet, S.; Desai, S.; Liu, J.; Mohr, J. J.; Saro, A.; Suhada, R.; Zenteno, A.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Bocquet, S.; Desai, S.; Liu, J.; Mohr, J. J.; Zenteno, A.] Excellence Cluster Univ, D-85748 Garching, Germany. [Brodwin, M.] Univ Missouri, Dept Phys & Astron, Kansas City, MO 64110 USA. [Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; High, F. W.; Leitch, E. M.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Padin, S.; Plagge, T.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Carlstrom, J. E.; Chang, C. L.; Mehl, J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cho, H. M.] NIST Quantum Devices Grp, Boulder, CO 80305 USA. [Clocchiatti, A.] Pontificia Univ Catolica, Dept Astron & Astrosif, Santiago, Chile. [George, E. M.; Holzapfel, W. L.; Lee, A. T.; Lueker, M.; Reichardt, C. L.; Shirokoff, E.; Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Gettings, D.; Gonzalez, A. H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Joy, M.] NASA, George C Marshall Space Flight Ctr, Dept Space Sci, Huntsville, AL 35812 USA. [Knox, L.; Stanford, S. A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Lee, A. T.; Spieler, H. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Lueker, M.; Padin, S.; Shirokoff, E.; Vieira, J. D.] CALTECH, Pasadena, CA 91125 USA. [Marrone, D. P.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [McMahon, J. J.; Song, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Montroy, T. E.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Ctr Educ & Res Cosmol & Astrophys, Cleveland, OH 44106 USA. [Pryke, C.] Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA. [Rest, A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Schaffer, K. K.] Sch Art Inst Chicago, Liberal Arts Dept, Chicago, IL 60603 USA. [Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA. [Vanderlinde, K.] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Vanderlinde, K.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Zahn, O.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP McDonald, M (reprint author), MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM mcdonald@space.mit.edu RI Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; OI Williamson, Ross/0000-0002-6945-2975; Aird, Kenneth/0000-0003-1441-9518; Reichardt, Christian/0000-0003-2226-9169; Lin, Henry/0000-0003-2767-6142 FU NASA [HST-HF51308.01-A, 12800071, 12800088, 13800883]; Space Telescope Science Institute; Association of Universities for Research in Astronomy, Inc., for NASA [NAS 5-26555]; National Science Foundation [ANT-0638937]; NSF Physics Frontier Center [PHY-0114422]; Kavli Foundation; Gordon and Betty Moore Foundation; NSF [AST-1009012, AST-1009649, MRI-0723073]; U.S. Department of Energy [DE-AC02-06CH11357] FX M.M. acknowledges support by NASA through a Hubble Fellowship grant HST-HF51308.01-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. The South Pole Telescope program is supported by the National Science Foundation through grant ANT-0638937. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation. Support for X-ray analysis was provided by NASA through Chandra Award Nos. 12800071, 12800088, and 13800883 issued by the Chandra X-Ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA. Galaxy cluster research at Harvard is supported by NSF grant AST-1009012 and at SAO in part by NSF grants AST-1009649 and MRI-0723073. Argonne National Laboratory's work was supported under U.S. Department of Energy contract DE-AC02-06CH11357. NR 95 TC 43 Z9 43 U1 1 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2013 VL 774 IS 1 AR UNSP 23 DI 10.1088/0004-637X/774/1/23 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 205FA UT WOS:000323426700023 ER PT J AU Orlove, ST Smith, CW Vasquez, BJ Schwadron, NA Skoug, RM Zurbuchen, TH Zhao, L AF Orlove, Steven T. Smith, Charles W. Vasquez, Bernard J. Schwadron, Nathan A. Skoug, Ruth M. Zurbuchen, Thomas H. Zhao, Liang TI INTERVALS OF RADIAL INTERPLANETARY MAGNETIC FIELDS AT 1 AU, THEIR ASSOCIATION WITH RAREFACTION REGIONS, AND THEIR APPARENT MAGNETIC FOOT POINTS AT THE SUN SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetohydrodynamics (MHD); solar wind; turbulence ID ADVANCED COMPOSITION EXPLORER; SOLAR-WIND; HELIOSPHERE AB We have examined 226 intervals of nearly radial interplanetary magnetic field orientations at 1 AU lasting in excess of 6 hr. They are found within rarefaction regions as are the previously reported high-latitude observations. We show that these rarefactions typically do not involve high-speed wind such as that seen by Ulysses at high latitudes during solar minimum. We have examined both the wind speeds and the thermal ion composition before, during and after the rarefaction in an effort to establish the source of the flow that leads to the formation of the rarefaction. We find that the bulk of the measurements, both fast- and slow-wind intervals, possess both wind speeds and thermal ion compositions that suggest they come from typical low-latitude sources that are nominally considered slow-wind sources. In other words, we find relatively little evidence of polar coronal hole sources even when we examine the faster wind ahead of the rarefaction regions. While this is in contrast to high-latitude observations, we argue that this is to be expected of low-latitude observations where polar coronal hole sources are less prevalent. As with the previous high-latitude observations, we contend that the best explanation for these periods of radial magnetic field is interchange reconnection between two sources of different wind speed. C1 [Orlove, Steven T.; Smith, Charles W.; Vasquez, Bernard J.; Schwadron, Nathan A.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Orlove, Steven T.; Smith, Charles W.; Vasquez, Bernard J.; Schwadron, Nathan A.] Univ New Hampshire, Ctr Space Sci, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Skoug, Ruth M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Zurbuchen, Thomas H.; Zhao, Liang] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. RP Orlove, ST (reprint author), Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. EM stx33@wildcats.unh.edu; Charles.Smith@unh.edu; Bernie.Vasquez@unh.edu; N.Schwadron@unh.edu; rskoug@lanl.gov; thomasz@umich.edu; lzh@umich.edu OI Zhao, Liang/0000-0002-5975-7476 FU Caltech [44A-1062037]; NASA Guest Investigator grant [NNX09AG28G]; NASA/SRT grant [NNX10AC18G]; NSF/SHINE grant [ATM0850705]; NSF FESD Sun-to-Ice Project; U.S. Department of Energy; NASA ACE program; ACE program subcontract from Caltech FX S.T.O. and C.W.S. are supported by Caltech subcontract 44A-1062037 to the University of New Hampshire in support of the ACE/MAG instrument. B.J.V. is supported by NASA Guest Investigator grant NNX09AG28G, NASA/SR&T grant NNX10AC18G, and NSF/SHINE grant ATM0850705. Support for N.A.S. is provided by the NSF FESD Sun-to-Ice Project. Support at LANL was provided under the auspices of the U.S. Department of Energy, with financial support from the NASA ACE program. T.H.Z. and L.Z. are supported by an ACE program subcontract from Caltech. S.T.O. is an undergraduate physics major at the University of New Hampshire. NR 25 TC 4 Z9 4 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2013 VL 774 IS 1 AR 15 DI 10.1088/0004-637X/774/1/15 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 205FA UT WOS:000323426700015 ER PT J AU Whalen, DJ Johnson, JL Smidt, J Meiksin, A Heger, A Even, W Fryer, CL AF Whalen, Daniel J. Johnson, Jarrett L. Smidt, Joseph Meiksin, Avery Heger, Alexander Even, Wesley Fryer, Chris L. TI THE SUPERNOVA THAT DESTROYED A PROTOGALAXY: PROMPT CHEMICAL ENRICHMENT AND SUPERMASSIVE BLACK HOLE GROWTH SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; black hole physics; early universe; galaxies: high-redshift; hydrodynamics; quasars: general; radiative transfer; stars: early-type; supernovae: general ID PAIR-INSTABILITY SUPERNOVAE; METAL-POOR STARS; DIGITAL SKY SURVEY; HYDRODYNAMIC MODEL-CALCULATIONS; REDSHIFT DWARF GALAXIES; PRIMORDIAL HII-REGIONS; DARK-MATTER HALOES; EARLY UNIVERSE; 1ST STARS; DIRECT COLLAPSE AB The first primitive galaxies formed from accretion and mergers by z similar to 15, and were primarily responsible for cosmological reionization and the chemical enrichment of the early cosmos. But a few of these galaxies may have formed in the presence of strong Lyman-Werner UV fluxes that sterilized them of H-2, preventing them from forming stars or expelling heavy elements into the intergalactic medium prior to assembly. At masses of 10(8) M-circle dot and virial temperatures of 10(4) K, these halos began to rapidly cool by atomic lines, perhaps forming 10(4)-10(6) M-circle dot Pop III stars and, later, the seeds of supermassive black holes. We have modeled the explosion of a supermassive Pop III star in the dense core of a line-cooled protogalaxy with the ZEUS-MP code. We find that the supernova (SN) expands to a radius of similar to 1 kpc, briefly engulfing the entire galaxy, but then collapses back into the potential well of the dark matter. Fallback fully mixes the interior of the protogalaxy with metals, igniting a violent starburst and fueling the rapid growth of a massive black hole at its center. The starburst would populate the protogalaxy with stars in greater numbers and at higher metallicities than in more slowly evolving, nearby halos. The SN remnant becomes a strong synchrotron source that can be observed with eVLA and eMERLIN and has a unique signature that easily distinguishes it from less energetic SN remnants. Such explosions, and their attendant starbursts, may well have marked the birthplaces of supermassive black holes on the sky. C1 [Whalen, Daniel J.; Johnson, Jarrett L.; Smidt, Joseph] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Whalen, Daniel J.] Heidelberg Univ, Inst Theoret Astrophys, Zentrum Astron, D-69120 Heidelberg, Germany. [Meiksin, Avery] Univ Edinburgh, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Heger, Alexander] Monash Univ, Monash Ctr Astrophys, Clayton, Vic 3800, Australia. [Even, Wesley; Fryer, Chris L.] Los Alamos Natl Lab, CCC 2, Los Alamos, NM 87545 USA. RP Whalen, DJ (reprint author), Los Alamos Natl Lab, T-2, Los Alamos, NM 87545 USA. OI Meiksin, Avery/0000-0002-5451-9057; Even, Wesley/0000-0002-5412-3618 FU Baden-Wurttemberg-Stiftung via the program Internationale Spitzenforschung II [P-LS-SPII/18]; LANL Director's Fellowships; U.S. DOE Program for Scientific Discovery through Advanced Computing (SciDAC) [DE-FC02-09ER41618]; U.S. Department of Energy [DE-FG02-7ER40328]; Joint Institute for Nuclear Astrophysics (JINA); Joint Institute for Nuclear Astrophysics (NSF) [PHY08-22648, PHY110-2511]; ARC Future Fellowship [FT120100363]; Monash University Larkins Fellowship; National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX D.J.W. acknowledges support from the Baden-Wurttemberg-Stiftung by contract research via the program Internationale Spitzenforschung II (grant P-LS-SPII/18). J.L.J. and J.S. were supported by LANL Director's Fellowships. A. H. was supported by the U.S. DOE Program for Scientific Discovery through Advanced Computing (SciDAC; DE-FC02-09ER41618), by the U.S. Department of Energy under grant DE-FG02-7ER40328, and by the Joint Institute for Nuclear Astrophysics (JINA; NSF grant PHY08-22648 and PHY110-2511). A. H. acknowledges support by an ARC Future Fellowship (FT120100363) and a Monash University Larkins Fellowship. Work at LANL was done under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. All ZEUS-MP simulations were performed on Institutional Computing platforms (Pinto) at LANL. NR 134 TC 24 Z9 24 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2013 VL 774 IS 1 AR 64 DI 10.1088/0004-637X/774/1/64 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 205FA UT WOS:000323426700064 ER PT J AU Eichorst, SA Varanasi, P Stavila, V Zemla, M Auer, M Singh, S Simmons, BA Singer, SW AF Eichorst, Stephanie A. Varanasi, Patanjali Stavila, Vatalie Zemla, Marcin Auer, Manfred Singh, Seema Simmons, Blake A. Singer, Steven W. TI Community dynamics of cellulose-adapted thermophilic bacterial consortia SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID GLYCOSIDE HYDROLASE ACTIVITIES; SP-NOV.; GEN. NOV.; SEQUENCE DATA; FRESH-WATER; SOIL; SWITCHGRASS; MEMBER; DEGRADATION; CELLULASES AB Enzymatic hydrolysis of cellulose is a key process in the global carbon cycle and the industrial conversion of biomass to biofuels. In natural environments, cellulose hydrolysis is predominately performed by microbial communities. However, detailed understanding of bacterial cellulose hydrolysis is primarily confined to a few model isolates. Developing models for cellulose hydrolysis by mixed microbial consortia will complement these isolate studies and may reveal new mechanisms for cellulose deconstruction. Microbial communities were adapted to microcrystalline cellulose under aerobic, thermophilic conditions using green waste compost as the inoculum to study cellulose hydrolysis in a microbial consortium. This adaptation selected for three dominant taxa - the Firmicutes, Bacteroidetes and Thermus. A high-resolution profile of community development during the enrichment demonstrated a community transition from Firmicutes to a novel Bacteroidetes population that clusters in the Chitinophagaceae family. A representative strain of this population, strain NYFB, was successfully isolated, and sequencing of a nearly full-length 16S rRNA gene demonstrated that it was only 86% identical compared with other validated strains in the phylum Bacteroidetes. Strain NYFB grew well on soluble polysaccharide substrates, but grew poorly on insoluble polysaccharide substrates. Similar communities were observed in companion thermophilic enrichments on insoluble wheat arabinoxylan, a hemicellulosic substrate, suggesting a common model for deconstruction of plant polysaccharides. Combining observations of community dynamics and the physiology of strain NYFB, a cooperative successional model for polysaccharide hydrolysis by the Firmicutes and Bacteroidetes in the thermophilic cellulolytic consortia is proposed. C1 [Eichorst, Stephanie A.; Varanasi, Patanjali; Stavila, Vatalie; Zemla, Marcin; Auer, Manfred; Singh, Seema; Simmons, Blake A.; Singer, Steven W.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Eichorst, Stephanie A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Eichorst, Stephanie A.] Univ Vienna, Div Microbial Ecol, A-1090 Vienna, Austria. [Varanasi, Patanjali; Stavila, Vatalie; Singh, Seema; Simmons, Blake A.] Sandia Natl Labs, Biol & Mat Sci Ctr, Livermore, CA 94551 USA. [Zemla, Marcin; Auer, Manfred] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Singer, Steven W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Singer, SW (reprint author), Joint BioEnergy Inst, Emeryville, CA 94608 USA. EM swsinger@lbl.gov RI Eichorst, Stephanie A/A-1079-2017; OI Eichorst, Stephanie A/0000-0002-9017-7461; Simmons, Blake/0000-0002-1332-1810 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was performed as part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. Pyrotag sequencing was conducted by the Joint Genome Institute which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 45 TC 17 Z9 17 U1 6 U2 70 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1462-2912 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD SEP PY 2013 VL 15 IS 9 SI SI BP 2573 EP 2587 DI 10.1111/1462-2920.12159 PG 15 WC Microbiology SC Microbiology GA 211HK UT WOS:000323897000013 PM 23763762 ER PT J AU Rodi, WL Myers, SC AF Rodi, William L. Myers, Stephen C. TI Computation of traveltime covariances based on stochastic models of velocity heterogeneity SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE Seismic monitoring and test-ban treaty verification; Body waves; Computational seismology; Statistical seismology ID SEISMIC LOCATION; MANTLE; SHEAR; FLUCTUATIONS; UNCERTAINTY; TOMOGRAPHY; INVERSION; LASA AB We formulate the error covariance for calculated seismic traveltimes (traveltime covariance) along any two propagation paths as a double integral of a covariance function describing velocity-model error (velocity covariance) with sensitivity distributions for the paths. Two numerical techniques are presented for evaluating the traveltime covariance matrix for multiple paths. The first technique evaluates the covariance matrix directly. The second evaluates the inverse of the covariance matrix summed with a covariance matrix for observational errors, as is utilized in event locators. Our approach takes the velocity covariance to be the Green's function of a differential operator, which can be specified in terms of physically meaningful parameters, such as spatially variable velocity variance and correlation lengths. Our numerical algorithms reduce to solving finite-difference equations based on the differential operator. As a demonstration, we compute traveltime covariance using ray-based sensitivity distributions and a suite of depth-dependent models of velocity covariance. We compare our theoretical calculations to empirical estimates of traveltime variance versus event-station distance, derived from observed residuals relative to the 'ak135' velocity model. Our calculations predict and explain some key features of the distance dependence of observed residual statistics, such as abrupt changes in variance at crossover points separating branches of the first-arrival traveltime curve. We find that the observed traveltime variances in the distance range 2 degrees-33 degrees are well matched by assuming a velocity standard deviation (relative to 'ak135') of > 10 per cent in the crust and decaying from similar to 2 per cent in the uppermost mantle to near 0 per cent below the 410-km discontinuity. These variance estimates hold over a wide range of assumed correlation lengths of velocity error, which are not well constrained by traveltime variance observations. By providing a physical understanding of traveltime covariance, our approach may help in the development of improved methods for locating seismic events, for estimating path-specific corrections to baseline traveltime models, and for constraining the statistics of velocity variations in the Earth. C1 [Rodi, William L.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Myers, Stephen C.] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94550 USA. RP Rodi, WL (reprint author), MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. EM rodi@mit.edu RI Myers, Stephen/K-1368-2014 OI Myers, Stephen/0000-0002-0315-5599 FU US Department of Energy, National Nuclear Security Administration [DE-FC52-05NA26603, DE-AC52-07NA27344] FX This research was sponsored by the US Department of Energy, National Nuclear Security Administration, under contracts DE-FC52-05NA26603 (to Massachusetts Institute of Technology) and DE-AC52-07NA27344 (to LLNL). The authors are grateful to Vernon Cormier of the University of Connecticut for his thoughtful review of the paper and helpful suggestions for its improvement, and to Jonathan Kane of Shell Oil Company for the insights into geostatistical modelling and inversion he has shared during many years of collaboration. NR 28 TC 2 Z9 2 U1 1 U2 6 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0956-540X J9 GEOPHYS J INT JI Geophys. J. Int. PD SEP PY 2013 VL 194 IS 3 BP 1582 EP 1595 DI 10.1093/gji/ggt171 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 205KJ UT WOS:000323442800022 ER PT J AU Corbus, D Kuss, M Piwko, D Hinkle, G Matsuura, M McNeff, M Roose, L Brooks, A AF Corbus, Dave Kuss, Mike Piwko, Dick Hinkle, Gene Matsuura, Marc McNeff, Mat Roose, Leon Brooks, Alec TI All Options on the Table SO IEEE POWER & ENERGY MAGAZINE LA English DT Article C1 [Corbus, Dave; Kuss, Mike] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Piwko, Dick; Hinkle, Gene] GE Co, Schenectady, NY 12301 USA. [Matsuura, Marc] Hawaiian Elect Co, Honolulu, HI USA. [McNeff, Mat] MECO Elect Co, Maui, HI USA. [Roose, Leon] Univ Hawaii Manoa, Hawaii Nat Energy Inst, Honolulu, HI USA. [Brooks, Alec] Aerovironment, Monrovia, CA USA. RP Corbus, D (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. NR 4 TC 2 Z9 3 U1 1 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1540-7977 J9 IEEE POWER ENERGY M JI IEEE Power Energy Mag. PD SEP-OCT PY 2013 VL 11 IS 5 BP 65 EP 74 DI 10.1109/MPE.2013.2268814 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA 207AC UT WOS:000323567600009 ER PT J AU Sundaram, S Colombo, P Katoh, Y AF Sundaram, Shanmugavelayutham Colombo, Paolo Katoh, Yutai TI Selected Emerging Opportunities for Ceramics in Energy, Environment, and Transportation SO INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY LA English DT Article ID DIESEL; RANGE; THZ; TECHNOLOGY; CORDIERITE; EMISSIONS; SCIENCE; FILTER; DPF AB Novel ceramic materials and advanced techniques for processing them and controlling their microstructure are breaking new ground in the areas of energy, environment, and transportation. For example, terahertz (THz) properties of ceramic materials and advanced structures reveal their potential for sensing in energy and environmental applications as well as local communication networks in transportation. Emerging opportunities for the development of improved porous ceramics for engine emissions control are discussed in particular, in consideration of the key role that this technology has with respect to global environmental and transportation concerns. Moreover, it is anticipated that advanced ceramics and composites of certain classes will enable innovation in nuclear energy by providing breakthrough accident-tolerant features. In this article, we highlight these three areas of ceramics that are critical to the future and also show promise for growth. C1 [Sundaram, Shanmugavelayutham] Alfred Univ, Kazuo Inamori Sch Engn, Alfred, NY 14802 USA. [Sundaram, Shanmugavelayutham] Alfred Univ, New York State Coll Ceram, Alfred, NY 14802 USA. [Colombo, Paolo] Univ Padua, Dipartimento Ingn Ind, I-35131 Padua, Italy. [Colombo, Paolo] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Katoh, Yutai] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Sundaram, S (reprint author), Alfred Univ, Kazuo Inamori Sch Engn, Alfred, NY 14802 USA. EM sundaram@alfred.edu FU United States Government [DE-AC05-00OR22725]; United States Department of Energy; Kyocera Corporation, Japan FX This submission was partly (YK) sponsored by a contractor of the United States Government under contract DE-AC05-00OR22725 with the United States Department of Energy. YK acknowledges useful discussions with Kurt A. Terrani and Lance L. Snead. SKS acknowledges support from the Kyocera Corporation, Japan, in the form of the Inamori Professorship. The authors acknowledge editorial help by Deborah Melinda, ORNL. NR 54 TC 4 Z9 4 U1 1 U2 28 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1546-542X J9 INT J APPL CERAM TEC JI Int. J. Appl. Ceram. Technol. PD SEP PY 2013 VL 10 IS 5 BP 731 EP 739 DI 10.1111/ijac.12155 PG 9 WC Materials Science, Ceramics SC Materials Science GA 211FZ UT WOS:000323892600002 ER PT J AU Asthana, R Singh, M Lin, HT Matsunaga, T Ishikawa, T AF Asthana, Rajiv Singh, Mrityunjay Lin, Hua-Tay Matsunaga, Tadashi Ishikawa, Toshihiro TI Joining of SiC Fiber-Bonded Ceramics using Silver, Copper, Nickel, Palladium, and Silicon-Based Alloy Interlayers SO INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY LA English DT Article ID CU-CLAD-MOLYBDENUM; METALLIC-GLASS INTERLAYERS; CARBON-CARBON COMPOSITES; BRAZED JOINTS; MECHANICAL-PROPERTIES; HIGH-STRENGTH; TI; MICROSTRUCTURE; TITANIUM AB SiC fiber-bonded ceramics, SA-Tyrannohex((R)), (SA-THX) with perpendicular and parallel fiber orientations were brazed using Ag-, Ni- and Pd-base brazes, and four Si-X (X: Ti, Cr, Y, Ta) eutectics. Outcomes were variable, ranging from bonded joints through partially bonded to un-bonded joints. Prominent Ti- and Si-rich interfaces developed with Cusil-ABA, Ticusil, and Copper-ABA and Ni- and Si-rich layers with MBF-20. Stress rupture tests at 650 and 750 degrees C on Cusil-ABA-bonded joints revealed a temperature-dependent behavior for the perpendicular joints but not for the parallel joints with failure occurring at brazed interface. Higher-use temperatures can be targeted with eutectic Si-Ti and Si-Cr alloys. C1 [Asthana, Rajiv] Univ Wisconsin Stout, Dept Engn & Technol, Menomonie, WI 54751 USA. [Singh, Mrityunjay] Ohio Aerosp Inst, Cleveland, OH 44142 USA. [Lin, Hua-Tay] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Matsunaga, Tadashi; Ishikawa, Toshihiro] Ube Ind Ltd, Inorgan Specialty Prod Res Lab, Ube, Yamaguchi 7558633, Japan. RP Asthana, R (reprint author), Univ Wisconsin Stout, Dept Engn & Technol, Menomonie, WI 54751 USA. EM asthanar@uwstout.edu NR 19 TC 4 Z9 4 U1 3 U2 35 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1546-542X J9 INT J APPL CERAM TEC JI Int. J. Appl. Ceram. Technol. PD SEP PY 2013 VL 10 IS 5 BP 801 EP 813 DI 10.1111/ijac.12161 PG 13 WC Materials Science, Ceramics SC Materials Science GA 211FZ UT WOS:000323892600010 ER PT J AU Fang, YL Nguyen, BN Carroll, KC Xu, ZJ Yabusaki, SB Scheibe, TD Bonneville, A AF Fang, Yilin Ba Nghiep Nguyen Carroll, Kenneth C. Xu, Zhijie Yabusaki, Steven B. Scheibe, Timothy D. Bonneville, Alain TI Development of a coupled thermo-hydro-mechanical model in discontinuous media for carbon sequestration SO INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES LA English DT Article DE Carbon sequestration; Geomechanics; Multiphase flow; Rigid Body-Spring Model; Global Arrays toolkit; High-performance simulation ID DEEP SALINE AQUIFERS; CO2 SEQUESTRATION; FLUID-FLOW; FRACTURED ROCKS; GLOBAL ARRAYS; STORAGE; BEHAVIOR; SALAH; FIELD; PERMEABILITY AB Geomechanical alteration of porous media is generally ignored for most shallow subsurface applications, whereas carbon dioxide (CO2) injection, migration, and trapping in deep saline aquifers will be controlled by coupled multifluid flow, energy transfer, and geomechanical processes. The accurate assessment of the risks associated with potential leakage of injected CO2 and the design of effective injection systems require that we represent these coupled processes within numerical simulators. The objectives of this study were to develop a coupled thermo-hydro-mechanical model into a single software and to examine the coupling of thermal, hydrological, and geomechanical processes for simulation of CO2 injection into the subsurface for carbon sequestration. A numerical model was developed to couple nonisothermal multiphase hydrological and geomechanical processes for prediction of multiple interconnected processes for carbon sequestration in deep saline aquifers. The geomechanics model was based on the Rigid Body-Spring Model (RBSM), a discrete method for modeling discontinuous rock systems. Poisson's effect that was often ignored by RBSM was considered in the model. The simulation of large-scale and long-term coupled processes in carbon capture and storage projects requires large memory and computational performance. The Global Array Toolkit was used to build the model to permit high-performance simulations of coupled processes. The model was used to simulate a case study with several scenarios to demonstrate the impacts of considering coupled processes and Poisson's effect for the prediction of CO2 sequestration. As a demonstration of the coupled model, a conceptual 3D model was used to explain the double-lobe uplift pattern observed in the Krechba gas field at In Salah (Algeria), a site that demonstrated the success of a CO2 sequestration effort into a deep saline formation. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Fang, Yilin; Ba Nghiep Nguyen; Carroll, Kenneth C.; Xu, Zhijie; Yabusaki, Steven B.; Scheibe, Timothy D.; Bonneville, Alain] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Fang, YL (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Yilin.Fang@pnnl.gov RI Scheibe, Timothy/A-8788-2008; Carroll, Kenneth/H-5160-2011; Fang, Yilin/J-5137-2015; Xu, Zhijie/A-1627-2009; OI Scheibe, Timothy/0000-0002-8864-5772; Carroll, Kenneth/0000-0003-2097-9589; Xu, Zhijie/0000-0003-0459-4531; Bonneville, Alain/0000-0003-1527-1578 FU United States-China Clean Energy Partnership; Pacific Northwest National Laboratory (PNNL) Laboratory Directed Research and Development Program under PNNL's Carbon Sequestration Initiative; National Energy Technology Laboratory; U.S. Dept. of Energy Office of Fossil Energy as part of the National Risk Assessment Partnership; U.S. Department of Energy Office of Fossil Energy; U.S. Department of Energy Office of Science [DE-AC05-76RL01830] FX This research was supported by the United States-China Clean Energy Partnership and the Pacific Northwest National Laboratory (PNNL) Laboratory Directed Research and Development Program under PNNL's Carbon Sequestration Initiative. Partial funding for this work was provided by the National Energy Technology Laboratory and the U.S. Dept. of Energy Office of Fossil Energy as part of the National Risk Assessment Partnership and the Zero Emissions Research & Technology Program managed by Montana State University and funded by the U.S. Department of Energy Office of Fossil Energy. A portion of the research was performed using PNNL Institutional Computing at Pacific Northwest National Laboratory. PNNL is operated by Battelle for the U.S. Department of Energy Office of Science under Contract DE-AC05-76RL01830. NR 54 TC 10 Z9 10 U1 0 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1365-1609 EI 1873-4545 J9 INT J ROCK MECH MIN JI Int. J. Rock Mech. Min. Sci. PD SEP PY 2013 VL 62 BP 138 EP 147 DI 10.1016/j.ijrmms.2013.05.002 PG 10 WC Engineering, Geological; Mining & Mineral Processing SC Engineering; Mining & Mineral Processing GA 206PF UT WOS:000323533900017 ER PT J AU Gall, DL Ralph, J Donohue, TJ Noguera, DR AF Gall, Daniel L. Ralph, John Donohue, Timothy J. Noguera, Daniel R. TI Benzoyl Coenzyme A Pathway-Mediated Metabolism of meta-Hydroxy-Aromatic Acids in Rhodopseudomonas palustris SO JOURNAL OF BACTERIOLOGY LA English DT Article ID BACTERIUM THAUERA-AROMATICA; ANAEROBIC METABOLISM; PHENOLIC-COMPOUNDS; COA PATHWAY; LYSINE ACETYLATION; GENOME SEQUENCE; ELECTRON-DONOR; KEY ENZYME; DEGRADATION; LIGASE AB Photoheterotrophic metabolism of two meta-hydroxy-aromatic acids, meta-, para-dihydroxybenzoate (protocatechuate) and meta-hydroxybenzoate, was investigated in Rhodopseudomonas palustris. When protocatechuate was the sole organic carbon source, photoheterotrophic growth in R. palustris was slow relative to cells using compounds known to be metabolized by the benzoyl coenzyme A (benzoyl-CoA) pathway. R. palustris was unable to grow when meta-hydroxybenzoate was provided as a sole source of organic carbon under photoheterotrophic growth conditions. However, in cultures supplemented with known benzoyl-CoA pathway inducers (para-hydroxybenzoate, benzoate, or cyclohexanoate), protocatechuate and meta-hydroxybenzoate were taken up from the culture medium. Further, protocatechuate and meta-hydroxybenzoate were each removed from cultures containing both meta-hydroxy-aromatic acids at equimolar concentrations in the absence of other organic compounds. Analysis of changes in culture optical density and in the concentration of soluble organic compounds indicated that the loss of these meta-hydroxy-aromatic acids was accompanied by biomass production. Additional experiments with defined mutants demonstrated that enzymes known to participate in the dehydroxylation of para-hydroxybenzoyl-CoA (HbaBCD) and reductive dearomatization of benzoyl-CoA (BadDEFG) were required for metabolism of protocatechuate and meta-hydroxybenzoate. These findings indicate that, under photoheterotrophic growth conditions, R. palustris can degrade meta-hydroxy-aromatic acids via the benzoyl-CoA pathway, apparently due to the promiscuity of the enzymes involved. C1 [Gall, Daniel L.; Noguera, Daniel R.] Univ Wisconsin, Dept Civil & Environm Engn, Madison, WI 53706 USA. [Donohue, Timothy J.] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. [Ralph, John] Univ Wisconsin, Dept Biochem, Madison, WI 53705 USA. [Gall, Daniel L.; Ralph, John; Donohue, Timothy J.; Noguera, Daniel R.] Univ Wisconsin, Wisconsin Energy Inst, Great Lakes Bioenergy Res Ctr, Dept Energy, Madison, WI USA. [Noguera, Daniel R.] Univ Wisconsin, Environm Chem & Technol Program, Madison, WI USA. RP Gall, DL (reprint author), Univ Wisconsin, Dept Civil & Environm Engn, Madison, WI 53706 USA. EM noguera@engr.wisc.edu OI Donohue, Timothy/0000-0001-8738-2467 FU Department of Energy Office of Science's Great Lakes Bioenergy Research Center [DE-FG02-07ER64495]; National Institute of General Medical Sciences (NIGMS) [T32 GM08349] FX This study was supported by a Department of Energy Office of Science's Great Lakes Bioenergy Research Center grant (DE-FG02-07ER64495). D. L. G. was supported by a traineeship from the National Institute of General Medical Sciences (NIGMS) under biotechnology training grant T32 GM08349. NR 43 TC 5 Z9 5 U1 1 U2 21 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD SEP PY 2013 VL 195 IS 18 BP 4112 EP 4120 DI 10.1128/JB.00634-13 PG 9 WC Microbiology SC Microbiology GA 208BD UT WOS:000323649300011 PM 23852864 ER PT J AU Jardine, KJ Meyers, K Abrell, L Alves, EG Serrano, AM Kesselmeier, J Karl, T Guenther, A Chambers, JQ Vickers, C AF Jardine, Kolby J. Meyers, Kimberly Abrell, Leif Alves, Eliane G. Yanez Serrano, Ana Maria Kesselmeier, Jurgen Karl, Thomas Guenther, Alex Chambers, Jeffrey Q. Vickers, Claudia TI Emissions of putative isoprene oxidation products from mango branches under abiotic stress SO JOURNAL OF EXPERIMENTAL BOTANY LA English DT Article DE 2-Methyl-3-buten-2-ol; 3-methyl furan; methacrolein; methyl vinyl ketone; reactive oxygen species; volatile organic compounds ID VOLATILE ORGANIC-COMPOUNDS; REACTION MASS-SPECTROMETRY; LIPID-PEROXIDATION; ATMOSPHERIC CHEMISTRY; COMPOUND EMISSIONS; ONLINE ANALYSIS; TRACE GASES; LEAVES; PLANTS; OXYGEN AB Although several per cent of net carbon assimilation can be re-released as isoprene emissions to the atmosphere by many tropical plants, much uncertainty remains regarding its biological significance. In a previous study, we detected emissions of isoprene and its oxidation products methyl vinyl ketone (MVK) and methacrolein (MACR) from tropical plants under high temperature/light stress, suggesting that isoprene is oxidized not only in the atmosphere but also within plants. However, a comprehensive analysis of the suite of isoprene oxidation products in plants has not been performed and production relationships with environmental stress have not been described. In this study, putative isoprene oxidation products from mango (Mangifera indica) branches under abiotic stress were first identified. High temperature/light and freezethaw treatments verified direct emissions of the isoprene oxidation products MVK and MACR together with the first observations of 3-methyl furan (3-MF) and 2-methyl-3-buten-2-ol (MBO) as putative novel isoprene oxidation products. Mechanical wounding also stimulated emissions of MVK and MACR. Photosynthesis under (CO2)-C-13 resulted in rapid (< 30min) labelling of up to five carbon atoms of isoprene, with a similar labelling pattern observed in the putative oxidation products. These observations highlight the need to investigate further the mechanisms of isoprene oxidation within plants under stress and its biological and atmospheric significance. C1 [Jardine, Kolby J.; Chambers, Jeffrey Q.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Climate Sci Dept, Berkeley, CA 94720 USA. [Meyers, Kimberly] ARS, USDA, Tucson, AZ 85719 USA. [Abrell, Leif] Univ Arizona, Dept Chem & Biochem, Tucson, AZ 85721 USA. [Abrell, Leif] Univ Arizona, Dept Soil Water & Environm Sci, Tucson, AZ 85721 USA. [Alves, Eliane G.; Yanez Serrano, Ana Maria] Inst Nacl de Pesquisas da Amazonia, Large Scale Biosphere Atmosphere Expt LBA, BR-69060001 Manaus, Amazonas, Brazil. [Yanez Serrano, Ana Maria; Kesselmeier, Jurgen] Max Planck Inst Chem, Biogeochem Dept, D-55020 Mainz, Germany. [Karl, Thomas] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. [Vickers, Claudia] Univ Queensland, Australian Inst Bioengn & Nanotechnol, St Lucia, Qld 4072, Australia. RP Jardine, KJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Climate Sci Dept, 1 Cyclotron Rd,Bldg 64,Room 241, Berkeley, CA 94720 USA. EM kjjardine@lbl.gov RI Jardine, Kolby/N-2802-2013; Karl, Thomas/D-1891-2009; Vickers, Claudia/A-1288-2009; Chambers, Jeffrey/J-9021-2014; Kesselmeier, Jurgen/E-2389-2016; OI Abrell, Leif/0000-0003-2490-1180; Jardine, Kolby/0000-0001-8491-9310; Karl, Thomas/0000-0003-2869-9426; Vickers, Claudia/0000-0002-0792-050X; Chambers, Jeffrey/0000-0003-3983-7847; Kesselmeier, Jurgen/0000-0002-4446-534X; YANEZ SERRANO, ANA MARIA/0000-0001-6408-5961 FU Office of Biological and Environmental Research of the US Department of Energy [DE-AC02-05CH11231]; Philecology Foundation of Fort Worth, Texas FX This research was supported by the Office of Biological and Environmental Research of the US Department of Energy under Contract no. DE-AC02-05CH11231 as part of their Terrestrial Ecosystem Science Program. Additional funding for this project came from the Philecology Foundation of Fort Worth, Texas, and instrumentation support (CHE 0216226) from the US National Science Foundation. NR 59 TC 18 Z9 18 U1 1 U2 32 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0957 EI 1460-2431 J9 J EXP BOT JI J. Exp. Bot. PD SEP PY 2013 VL 64 IS 12 BP 3697 EP 3709 DI 10.1093/jxb/ert202 PG 13 WC Plant Sciences SC Plant Sciences GA 207DY UT WOS:000323578700012 PM 23881400 ER PT J AU Nguyen, BN Henager, CH AF Ba Nghiep Nguyen Henager, Charles H., Jr. TI Fiber/matrix interfacial thermal conductance effect on the thermal conductivity of SiC/SiC composites SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID SUBCRITICAL CRACK-GROWTH; SILICON-CARBIDE; ELEVATED-TEMPERATURES; FUSION APPLICATIONS; NEUTRON-IRRADIATION; 2D-SICF/SIC COMPOSITES; CVISICF/SIC COMPOSITES; MECHANICAL-PROPERTIES; COMPUTER-SIMULATION; DEFECT ACCUMULATION AB SiC/SiC composites used in fusion reactor applications are subjected to high heat fluxes and require knowledge and tailoring of their in-service thermal conductivity. Accurately predicting the thermal conductivity of SiC/SiC composites as a function of temperature will guide the design of these materials for their intended use, which will eventually include the effects of 14-MeV neutron irradiations. This paper applies an Eshelby-Mori-Tanaka approach (EMTA) to compute the thermal conductivity of unirradiated SiC/SiC composites. The homogenization procedure includes three steps. In the first step EMTA computes the homogenized thermal conductivity of the unidirectional (UD) SiC fiber embraced by its coating layer. The second step computes the thermal conductivity of the UD composite formed by the equivalent SiC fibers embedded in a SiC matrix, and finally the thermal conductivity of the as-formed SiC/SiC composite is obtained by averaging the solution for the UD composite over all possible fiber orientations using the second-order fiber orientation tensor. The EMTA predictions for the transverse thermal conductivity of several types of SiC/SiC composites with different fiber types and interfaces are compared to the predicted and experimental results by Youngblood et al. [J. Nucl. Mater. 307-311 (2002) 1120-1125, Fusion Sci. Technol. 45 (2004) 583-591, Compos. Sci. Technol. 62 (2002) 1127-1139.] (C) 2013 Elsevier B.V. All rights reserved. C1 [Ba Nghiep Nguyen; Henager, Charles H., Jr.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Nguyen, BN (reprint author), Pacific NW Natl Lab, POB 999,MSIN J4-55, Richland, WA 99352 USA. EM Ba.Nguyen@pnnl.gov OI Henager, Chuck/0000-0002-8600-6803 FU United States Department of Energy (US DOE) [DE-AC05-76RL01830]; US DOE Office of Fusion Energy Sciences; US DOE Office of Nuclear Energy; US DOE Office of Vehicle Technologies FX The work described in this article was performed by Pacific Northwest National Laboratory, which is operated by Battelle Memorial Institute for the United States Department of Energy (US DOE) under Contract DE-AC05-76RL01830 and was funded by the US DOE Office of Fusion Energy Sciences and the US DOE Office of Nuclear Energy under the Nuclear Energy Enabling Technologies Reactor Materials Program (NEET-RM). The development of EMTA was funded by the US DOE Office of Vehicle Technologies. NR 51 TC 4 Z9 4 U1 1 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP PY 2013 VL 440 IS 1-3 BP 11 EP 20 DI 10.1016/j.jnucmat.2013.04.031 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 204UL UT WOS:000323396600003 ER PT J AU Mei, ZG Stan, M Pichler, B AF Mei, Zhi-Gang Stan, Marius Pichler, Benjamin TI First-principles study of structural, elastic, electronic, vibrational and thermodynamic properties of UN SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID BRILLOUIN-ZONE INTEGRATIONS; AUGMENTED-WAVE METHOD; URANIUM NITRIDE; HEAT-CAPACITY; THERMAL-EXPANSION; LATTICE-DYNAMICS; NUCLEAR-FUELS; MONONITRIDE; TEMPERATURE; UO2 AB The structural, elastic, electronic, phonon and thermodynamic properties of UN are studied by density functional theory (DFT) within local-density approximation (LDA) and generalized gradient approximation (GGA), and GGA + U. The GGA calculations of the ground state structural and elastic properties of UN show an overall better agreement with experimental data compared to LDA or GGA + U. The melting temperature of UN (T-m) is estimated from the calculated elastic constant, with GGA predicting T-m = 2944 +/- 300 K, in excellent agreement with experimental data. The calculated phonon dispersions of UN agree well with the low temperature measurements. Furthermore, the thermodynamic properties of UN are studied using quasiharmonic approximation by including both lattice vibrational and thermal electronic contributions. The predicted thermodynamic properties, such as enthalpy, entropy, Gibbs energy, heat capacity and thermal expansion coefficient, agree well with experimental data. The derived thermodynamic functions of UN are useful to the thermodynamic modeling of phase stabilities in UN-based materials. This study shows that the thermal electronic energy and entropy due to U 5f electrons are important to describe the free energy of UN, due to the metallic character of UN. The calculated thermodynamic properties also suggest that the anharmonic effects are less important in UN even at high-temperature. (C) 2013 Elsevier B.V. All rights reserved. C1 [Mei, Zhi-Gang; Stan, Marius] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Pichler, Benjamin] Cornell Univ, Coll Arts & Sci, Ithaca, NY 14850 USA. RP Mei, ZG (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM zmei@anl.gov RI Mei, Zhi-Gang/D-3333-2012 OI Mei, Zhi-Gang/0000-0002-4249-7532 FU US Department of Energy, Office of Science [DE-AC02-06CH11357] FX This work was supported by the US Department of Energy, Office of Science under Contract No. DE-AC02-06CH11357. First-principles calculations were carried out on LCRC's high performance computing cluster Fusion and CNM's high performance computing cluster Carbon. ZGM thanks Boris Dorado for providing specific modules for the VASP code. NR 54 TC 12 Z9 12 U1 2 U2 48 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP PY 2013 VL 440 IS 1-3 BP 63 EP 69 DI 10.1016/j.jnucmat.2013.04.058 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 204UL UT WOS:000323396600010 ER PT J AU Wang, LY Li, MM Almer, J AF Wang, Leyun Li, Meimei Almer, Jonathan TI In situ characterization of Grade 92 steel during tensile deformation using concurrent high energy X-ray diffraction and small angle X-ray scattering SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID MARTENSITIC STEEL; NEUTRON-DIFFRACTION; CREEP; TEMPERATURE; SYNCHROTRON; NUCLEATION; STABILITY; EVOLUTION; CEMENTITE; STRENGTH AB The tensile deformation in Grade 92 steel was studied in situ using simultaneous high energy X-ray diffraction (HE-XRD), radiography, and small angle X-ray scattering (SAXS) at room temperature (RT), 400, and 650 degrees C. Temperature-dependent elastic properties, i.e. Young's modulus and Poisson's ratio, were measured for alpha-Fe matrix, M23C6 and Nb(C,N) phases in various crystallographic orientation. Significant differences in the evolution of lattice strain, peak broadening/sharpening, and void development in the a-Fe matrix, M23C6 and Nb(C,N) precipitates revealed markedly different deformation and damage mechanisms at low and high temperature in the alloy. The strengthening effect of each type of precipitates measured by lattice strain agrees with the dislocation pile-up model at room temperature, while a different dislocation behavior was observed at 650 degrees C. Void volume fraction as a function of strain measured by SAXS can be described by a classic void nucleation and growth model at room temperature but not at 650 degrees C, implying a different damage process at high temperature. (C) 2013 Elsevier B.V. All rights reserved. C1 [Wang, Leyun; Li, Meimei; Almer, Jonathan] Argonne Natl Lab, Argonne, IL 60439 USA. RP Wang, LY (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM leyunwang@anl.gov FU U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported under the U.S. Department of Energy Contract DE-AC02-06CH11357. Use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science. We also appreciate the valuable discussion with Dr. Jan Ilavsky on the proper use of the Irena package for SAXS data analysis. NR 42 TC 14 Z9 14 U1 2 U2 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP PY 2013 VL 440 IS 1-3 BP 81 EP 90 DI 10.1016/j.jnucmat.2013.04.063 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 204UL UT WOS:000323396600012 ER PT J AU Van den Bosch, J Anderoglu, O Dickerson, R Hartl, M Dickerson, P Aguiar, JA Hosemann, P Toloczko, MB Maloy, SA AF Van den Bosch, J. Anderoglu, O. Dickerson, R. Hartl, M. Dickerson, P. Aguiar, J. A. Hosemann, P. Toloczko, M. B. Maloy, S. A. TI SANS and TEM of ferritic-martensitic steel T91 irradiated in FFTF up to 184 dpa at 413 degrees C SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID MICROSTRUCTURAL EXAMINATION; NEUTRON-SCATTERING; ALLOYS; CREEP; STABILITY; PHASES; HEATS AB Ferritic-martensitic steel T91 was previously irradiated in the Materials Open Test Assembly (MOTA) program of the Fast Flux Test Reactor Facility (FFTF) at 413 degrees C up to 184 dpa. The microstructure was analyzed by small angle neutron scattering (SANS) and transmission electron microscopy (TEM). Both SANS and TEM revealed a large fraction of voids with an average size of 29-32 nm leading to a calculated void swelling of 1.2-1.6% based on the volume fraction of the voids in the sample. SANS gave no indication of second phase particles having formed under irradiation in the material. Using TEM, one zone was found where a few G-phase particles were analyzed. Quantities were however too low to state reliable particle densities. No alpha prime (alpha') or Laves phase were observed in any of the investigated zones. (C) 2013 Elsevier B.V. All rights reserved. C1 [Van den Bosch, J.; Anderoglu, O.; Dickerson, R.; Hartl, M.; Dickerson, P.; Aguiar, J. A.; Hosemann, P.; Maloy, S. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Van den Bosch, J.] CEN SCK, B-2400 Mol, Belgium. [Hosemann, P.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Toloczko, M. B.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Van den Bosch, J (reprint author), CEN SCK, B-2400 Mol, Belgium. EM jvdbosch@sckcen.be RI Hartl, Monika/F-3094-2014; Maloy, Stuart/A-8672-2009; Hartl, Monika/N-4586-2016 OI Hartl, Monika/0000-0002-6601-7273; Maloy, Stuart/0000-0001-8037-1319; Hartl, Monika/0000-0002-6601-7273 FU Fuel Cycle Research and Development program; Department of Energy's Office of Basic Energy Sciences; DOE [DE-AC52-06NA25396] FX This research is funded by Fuel Cycle Research and Development program. Authors thank T. Romero for the hot cell work. This work has benefitted from the use of the Manuel Lujan, Jr. Neutron Scattering Center at Los Alamos National Laboratory, which is funded by the Department of Energy's Office of Basic Energy Sciences. Los Alamos National laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. NR 24 TC 6 Z9 6 U1 2 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP PY 2013 VL 440 IS 1-3 BP 91 EP 97 DI 10.1016/j.jnucmat.2013.04.025 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 204UL UT WOS:000323396600013 ER PT J AU Fraile, A Cuesta-Lopez, S Iglesias, R Caro, A Perlado, JM AF Fraile, A. Cuesta-Lopez, S. Iglesias, R. Caro, A. Perlado, J. M. TI Atomistic molecular point of view for liquid lead and lithium in Nuclear Fusion technology SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID BLANKET CONCEPT; METALS; DYNAMICS AB Understanding the behavior and properties of liquid metals is a crucial milestone in different current Nuclear Technology developments. Extracting both structural and dynamical properties of liquid metals via Molecular Dynamics simulations, represents a strong pillar for multiscale modeling efforts aiming to understand the suitability of these compounds. Here we present first results on the validation of two semi-empirical potentials for Li and Pb in liquid phase. Our results establish a solid base as a previous, but crucial step, to implement a LiPb cross potential. Structural and thermodynamical analyses confirm that the analyzed potentials for Li and Pb are sufficiently accurate to simulate both elements in the liquid phase, and in conditions of interest for Nuclear Technology. (C) 2013 Published by Elsevier B.V. C1 [Fraile, A.; Perlado, J. M.] Univ Politecn Madrid, ETSI Ind, Inst Fus Nucl, E-28006 Madrid, Spain. [Cuesta-Lopez, S.] Univ Burgos, Burgos 09001, Spain. [Iglesias, R.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Caro, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Cuesta-Lopez, S (reprint author), Univ Burgos, Parque Cient I D I,Plaza Misael Banuelos S-N, Burgos 09001, Spain. EM scuesta@ubu.es OI Cuesta-Lopez, Santiago/0000-0002-7401-3889; Iglesias, Roberto/0000-0002-6406-7883 FU Spanish National Project on Breeding Blanket Technologies TECNO_FUS through CONSOLIDER_INGENIO Programme FX We are grateful to Professor D. Belashchenko for providing us details on his lithium EAM potential and fruitful comments. We thank CESGA (Centro de Supercomputacion de Galicia), for granting us computing resources. This work was partially funded by the Spanish National Project on Breeding Blanket Technologies TECNO_FUS through CONSOLIDER_INGENIO 2010 Programme. NR 31 TC 3 Z9 3 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP PY 2013 VL 440 IS 1-3 BP 98 EP 103 DI 10.1016/j.jnucmat.2013.04.001 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 204UL UT WOS:000323396600014 ER PT J AU Egeland, GW Mariani, RD Hartmann, T Porter, DL Hayes, SL Kennedy, JR AF Egeland, G. W. Mariani, R. D. Hartmann, T. Porter, D. L. Hayes, S. L. Kennedy, J. R. TI Reduction of FCCI effects in lanthanide-iron diffusion couples by doping with palladium SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID CLADDING CHEMICAL INTERACTION; RARE-EARTH METALS; STAINLESS-STEEL; MINOR ACTINIDES; ALLOY SYSTEM; FUEL; NEODYMIUM; BARRIER; CERIUM; PERFORMANCE AB Fast-reactor metallic fuels produce lanthanide fission products which have been shown to diffuse to the fuel periphery. Lanthanides interacting with the cladding is one cause of fuel-cladding chemical interaction. To test the viability of reducing the interaction by pinning these lanthanides, palladium was chosen as a fuel dopant based on the lanthanide-palladium intermetallic thermodynamic stability and fuel compatibility. Three lanthanides were tested, neodymium, cerium, and praseodymium, along with their 1:1 palladium compounds, against iron using diffusion couples. These experiments show the direct contact effect on iron of each lanthanide and its respective palladium compound at temperatures from 580 degrees C to 700 degrees C for 100 h. (C) 2013 Published by Elsevier B.V. C1 [Egeland, G. W.; Hartmann, T.] Univ Nevada, Harry Reid Ctr Environm Studies, Las Vegas, NV 89154 USA. [Mariani, R. D.; Porter, D. L.; Hayes, S. L.; Kennedy, J. R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Egeland, GW (reprint author), Univ Nevada, Harry Reid Ctr Environm Studies, Las Vegas, NV 89154 USA. EM gerald.egeland@gmail.com RI Hayes, Steven/D-8373-2017 OI Hayes, Steven/0000-0002-7583-2069 FU Radiochemistry Department; Harry Reid Center for Environmental Studies at the University of Nevada Las Vegas; DOE [DE-AC07-05ID14517] FX We would like to thank those with the Radiochemistry Department and the Harry Reid Center for Environmental Studies at the University of Nevada Las Vegas for support and assistance. This program was funded by DOE Contract No. DE-AC07-05ID14517. NR 55 TC 6 Z9 6 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP PY 2013 VL 440 IS 1-3 BP 178 EP 192 DI 10.1016/j.jnucmat.2013.04.060 PG 15 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 204UL UT WOS:000323396600025 ER PT J AU Tonks, MR Millett, PC Nerikar, P Du, S Andersson, D Stanek, CR Gaston, D Andrs, D Williamson, R AF Tonks, Michael R. Millett, Paul C. Nerikar, Pankaj Du, Shiyu Andersson, David Stanek, Christopher R. Gaston, Derek Andrs, David Williamson, Richard TI Multiscale development of a fission gas thermal conductivity model: Coupling atomic, meso and continuum level simulations SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID IRRADIATED UO2 FUEL; MOLECULAR-DYNAMICS; URANIUM-DIOXIDE; NUCLEAR-FUEL; THERMOPHYSICAL PROPERTIES; RELEASE; HELIUM AB Fission gas production and evolution significantly impact the fuel performance, causing swelling, a reduction in the thermal conductivity and fission gas release. However, typical empirical models of fuel properties treat each of these effects separately and uncoupled. Here, we couple a fission gas release model to a model of the impact of fission gas on the fuel thermal conductivity. To quantify the specific impact of grain boundary (GB) bubbles on the thermal conductivity, we use atomistic and mesoscale simulations. Atomistic molecular dynamic simulations were employed to determine the GB thermal resistance. These values were then used in mesoscale heat conduction simulations to develop a mechanistic expression for the effective GB thermal resistance of a GB containing gas bubbles, as a function of the percentage of the GB covered by fission gas. The coupled fission gas release and thermal conductivity model was implemented in Idaho National Laboratory's BISON fuel performance code to model the behavior of a 10-pellet LWR fuel rodlet, showing how the fission gas impacts the UO2 thermal conductivity. Furthermore, additional BISON simulations were conducted to demonstrate the impact of average grain size on both the fuel thermal conductivity and the fission gas release. Published by Elsevier B.V. C1 [Tonks, Michael R.; Millett, Paul C.; Gaston, Derek; Andrs, David; Williamson, Richard] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Nerikar, Pankaj; Du, Shiyu; Andersson, David; Stanek, Christopher R.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. RP Tonks, MR (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Michael.Tonks@inl.gov OI Williamson, Richard/0000-0001-7734-3632 FU Department of Energy Nuclear Energy Advanced Modeling and Simulation program; US Department of Energy [DE-AC07-05ID14517] FX The authors thank Jason Hales from Idaho National Laboratory for his help with the BISON fuel performance code and Mark Horstemeyer from Mississippi State University for discussions on ISV theory. This work was funded by the Department of Energy Nuclear Energy Advanced Modeling and Simulation program. This manuscript has been authored by Battelle Energy Alliance, LLC under Contract No. DE-AC07-05ID14517 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 38 TC 11 Z9 11 U1 3 U2 50 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP PY 2013 VL 440 IS 1-3 BP 193 EP 200 DI 10.1016/j.jnucmat.2013.05.008 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 204UL UT WOS:000323396600026 ER PT J AU Wang, H Wang, JAJ Tan, T Jiang, H Cox, TS Howard, RL Bevard, BB Flanagan, M AF Wang, Hong Wang, Jy-An John Tan, Ting Jiang, Hao Cox, Thomas S. Howard, Rob L. Bevard, Bruce B. Flanagan, Michelle TI Development of U-frame bending system for studying the vibration integrity of spent nuclear fuel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID FATIGUE; LIFE AB A bending fatigue system developed to evaluate the response of spent nuclear fuel rods to vibration loads is presented. A U-frame testing setup is used for imposing bending loads on the fuel rod specimen. The U-frame setup consists of two rigid arms, side connecting plates to the rigid arms, and linkages to a universal testing machine. The test specimen's curvature is obtained through a three-point deflection measurement method. The tests using surrogate specimens with stainless steel cladding revealed increased flexural rigidity under unidirectional cyclic bending, significant effect of cladding-pellets bonding on the response of surrogate rods, and substantial cyclic softening in reverse bending mode. These phenomena may cast light on the expected response of a spent nuclear fuel rod. The developed U-frame system is thus verified and demonstrated to be ready for further pursuit in hot-cell tests. (C) 2013 Elsevier B.V. All rights reserved. C1 [Wang, Hong; Wang, Jy-An John; Tan, Ting; Jiang, Hao; Cox, Thomas S.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Howard, Rob L.; Bevard, Bruce B.] Oak Ridge Natl Lab, Reactor & Nucl Syst Div, Oak Ridge, TN 37831 USA. [Flanagan, Michelle] US Nucl Regulatory Commiss, Off Nucl Regulatory Res, Washington, DC 20555 USA. RP Wang, JAJ (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM wangja@ornl.gov RI Wang, Hong/O-1987-2016; OI Wang, Hong/0000-0002-0173-0545; Bevard, Bruce/0000-0002-0272-186X; Wang, Jy-An/0000-0003-2402-3832 FU NRC RES under DOE [DE-AC05-00OR22725]; UT-Battelle, LLC FX The authors gratefully acknowledge Dr. James Hemrick for reviewing this manuscript. Authors also want to thank Brian Sparks, and Randy J. Parten of ORNL for their help in machining the components of the U-frame setup. The research was sponsored by NRC RES under DOE contract DE-AC05-00OR22725 with UT-Battelle, LLC. NR 30 TC 4 Z9 4 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP PY 2013 VL 440 IS 1-3 BP 201 EP 213 DI 10.1016/j.jnucmat.2013.05.009 PG 13 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 204UL UT WOS:000323396600027 ER PT J AU Dremov, VV Sapozhnikov, FA Ionov, GV Karavaev, AV Vorobyova, MA Chung, BW AF Dremov, V. V. Sapozhnikov, F. A. Ionov, G. V. Karavaev, A. V. Vorobyova, M. A. Chung, B. W. TI MD simulations of phase stability of PuGa alloys: Effects of primary radiation defects and helium bubbles SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID GA ALLOYS; PLUTONIUM; DYNAMICS; DELTA; METAL AB We present classical molecular dynamics (MD) with Modified Embedded Atom Model (MEAM) simulations to investigate the role of primary radiation defects and radiogenic helium as factors affecting the phase stability of PuGa alloys in cooling-heating cycles at ambient pressure. The models of PuGa alloys equilibrated at ambient conditions were subjected to cooling-heating cycles in which they were initially cooled down to 100 K and then heated up to 500 K at ambient pressure. The rate of temperature change in the cycles was 10 K/ns. The simulations showed that the initial FCC phase of PuGa alloys undergo polymorphous transition in cooling to a lower symmetry alpha'-phase. All the alloys undergo direct and reverse polymorphous transitions in the cooling-heating cycles. The alloys containing vacancies shift in both transitions to lower temperatures relative to the defect-free alloys. The radiogenic helium has much less effect on the phase stability compared to that of primary radiation defects (in spite of the fact that helium concentration is twice of that for the primary radiation defects). This computational result agrees with experimental data on unconventional stabilization mechanism of PuGa alloys. (C) 2013 Elsevier B.V. All rights reserved. C1 [Dremov, V. V.; Sapozhnikov, F. A.; Ionov, G. V.; Karavaev, A. V.; Vorobyova, M. A.] Russian Fed Nucl Ctr, Inst Tech Phys, Snezhinsk 456770, Chelyabinsk Reg, Russia. [Chung, B. W.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Dremov, VV (reprint author), Russian Fed Nucl Ctr, Inst Tech Phys, 13 Vasiliev St, Snezhinsk 456770, Chelyabinsk Reg, Russia. EM vvd0531@mail.ru RI Chung, Brandon/G-2929-2012; Karavaev, Alexey/D-5306-2013 OI Karavaev, Alexey/0000-0002-2661-9616 FU Russian Scientific Research Institute of Technical Physics (VNIITF) [B582483]; Lawrence Levermore National Laboratory [B582483] FX The work was performed through collaboration authorized under Contract B582483 between the All-Russian Scientific Research Institute of Technical Physics (VNIITF) and Lawrence Levermore National Laboratory. NR 24 TC 7 Z9 8 U1 1 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP PY 2013 VL 440 IS 1-3 BP 278 EP 282 DI 10.1016/j.jnucmat.2013.05.016 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 204UL UT WOS:000323396600036 ER PT J AU Yu, KY Liu, Y Fu, EG Wang, YQ Myers, MT Wang, H Shao, L Zhang, X AF Yu, K. Y. Liu, Y. Fu, E. G. Wang, Y. Q. Myers, M. T. Wang, H. Shao, L. Zhang, X. TI Comparisons of radiation damage in He ion and proton irradiated immiscible Ag/Ni nanolayers SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID DISLOCATION-OBSTACLE INTERACTIONS; GRAIN-BOUNDARIES; MULTILAYERS; METALS; TOLERANCE; SIZE; NI; COMPOSITES; HYDROGEN; DEFECTS AB We compare the evolution of microstructure and mechanical properties of Ag/Ni multilayers of varying layer thickness (1-200 nm) subjected to helium ion and proton irradiation at room temperature to similar dose, similar to 2 displacements-per-atom on average. Layer structure remained intact after both types of irradiation although defects accumulated in the layers are different. Helium bubbles were the major defects in helium ion irradiated films, while dislocation loops were ubiquitous in proton irradiated multilayers. In He ion irradiated multilayers, radiation hardening was greater than that in proton irradiated specimens, and the magnitude of hardening decreased with decreasing individual layer thickness. In comparison no size dependent hardening was observed in proton irradiated films. Mechanisms of irradiation induced hardening were discussed. Published by Elsevier B.V. C1 [Yu, K. Y.; Liu, Y.; Zhang, X.] Texas A&M Univ, Dept Mech Engn, Dept Mat Sci & Engn, College Stn, TX 77843 USA. [Fu, E. G.] Peking Univ, Sch Phys, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Wang, Y. Q.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Myers, M. T.; Shao, L.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Wang, H.] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. RP Zhang, X (reprint author), Texas A&M Univ, Dept Mech Engn, Dept Mat Sci & Engn, College Stn, TX 77843 USA. EM zhangx@tamu.edu RI Yu, Kaiyuan /B-8398-2014; Liu, Yue/H-4071-2014; Zhang, Xinghang/H-6764-2013; Wang, Haiyan/P-3550-2014 OI Yu, Kaiyuan /0000-0002-5442-2992; Liu, Yue/0000-0001-8518-5734; Zhang, Xinghang/0000-0002-8380-8667; Wang, Haiyan/0000-0002-7397-1209 FU US Army Research Office - Materials Science Division [W911NF-09-1-0223]; NSF [CMMI-0846835]; Center for Integrated Nanotechnologies (CINT) under Los Alamos National Laboratory FX XZ acknowledges financial support by US Army Research Office - Materials Science Division, under contract No. W911NF-09-1-0223. LS acknowledges the support by NSF under Grant no. CMMI-0846835. Support by Center for Integrated Nanotechnologies (CINT) under user agreement at Los Alamos National Laboratory is also acknowledged. NR 46 TC 15 Z9 15 U1 1 U2 43 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP PY 2013 VL 440 IS 1-3 BP 310 EP 318 DI 10.1016/j.jnucmat.2013.04.069 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 204UL UT WOS:000323396600041 ER PT J AU Cockeram, BV Byun, TS Leonard, KJ Hollenbeck, JL Snead, LL AF Cockeram, B. V. Byun, T. S. Leonard, K. J. Hollenbeck, J. L. Snead, L. L. TI Post-irradiation fracture toughness of unalloyed molybdenum, ODS molybdenum, and TZM molybdenum following irradiation at 244 degrees C to 507 degrees C SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID TITANIUM-0.1 PCT ZIRCONIUM; FAST-NEUTRON IRRADIATION; MO-5-PERCENT RE ALLOYS; CARBON ARC-CAST; TENSILE PROPERTIES; TEMPERATURE-DEPENDENCE; ANNEALED CONDITIONS; WROUGHT LCAC; MICROSTRUCTURE; REACTOR AB Commercially available unalloyed molybdenum (Low Carbon Arc Cast (LCAC)), Oxide Dispersion Strengthened (ODS) molybdenum, and TZM molybdenum were subject to fracture toughness testing following neutron irradiation at temperatures of nominally 244 degrees C, 407 degrees C, and 509 degrees C to neutron fluences between 1.0 and 4.6 x 10(25) n/m(2) (E > 0.1 MeV). All alloys exhibited a Ductile to Brittle Transition Temperature that was defined to occur at 30 +/- 4 MPa root m. The highest post-irradiated fracture toughness values (26-107 MPa root m) and lowest DBTT (100-150 degrees C) was observed for ODS molybdenum in the longitudinal orientation. The results for ODS molybdenum are anisotropic with lower post-irradiated toughness values (20-30 MPa root m) and higher DBTT (450-600 degrees C) in the transverse (T-L) orientation. The results for ODS molybdenum are better than those for LCAC molybdenum (21-71 MPa root m and 450-800 degrees C DBTT). The fracture toughness values measured for LCAC and T-L ODS molybdenum at temperatures below the DBTT were determined to be 8-18 MPa root m. The role of microstructure and grain size on post-irradiated fracture toughness was evaluated. (C) 2013 Elsevier B.V. All rights reserved. C1 [Cockeram, B. V.; Hollenbeck, J. L.] Bechtel Marine Prop Corp Inc, West Mifflin, PA 15122 USA. [Byun, T. S.; Leonard, K. J.; Snead, L. L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Cockeram, BV (reprint author), Bechtel Marine Prop Corp Inc, POB 79, West Mifflin, PA 15122 USA. EM bcockeram@verizon.net FU USDOE [DE-AC11-98PN38206]; ORNL's Shared Research Equipment (ShaRE) User Facility; Office of Basic Energy Sciences, U.S. Department of Energy FX This work was supported under USDOE Contract No. DE-AC11-98PN38206. The following ORNL personnel contributed to this work by specimen preparation and testing (M.M. Lee, J.P. Strizak, A.W. Williams, and J.L. Bailey). The authors acknowledge D. Ward at Bettis for void size/number analysis and R.W. Smith and J.E. Hack for numerous discussions on this work. Research supported in part by ORNL's Shared Research Equipment (ShaRE) User Facility, which is sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy. NR 52 TC 1 Z9 1 U1 3 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP PY 2013 VL 440 IS 1-3 BP 382 EP 413 DI 10.1016/j.jnucmat.2013.05.027 PG 32 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 204UL UT WOS:000323396600048 ER PT J AU Pint, BA Terrani, KA Brady, MP Cheng, T Keiser, JR AF Pint, B. A. Terrani, K. A. Brady, M. P. Cheng, T. Keiser, J. R. TI High temperature oxidation of fuel cladding candidate materials in steam-hydrogen environments SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID FE-CR ALLOYS; WATER-VAPOR; MODEL ALLOYS; BEHAVIOR; STEELS; VOLATILIZATION; PERFORMANCE; ZIRCALOY-4; KINETICS AB Alternative fuel cladding materials to Zr alloys are being investigated for enhanced accident tolerance, which specifically involves oxidation resistance to steam or steam-H-2 environments at >= 1200 degrees C for short times. Based on a comparison of a range of commercial and model alloys, conventional austenitic steels do not have sufficient oxidation resistance with only similar to 18Cr-10Ni. Higher alloyed type 310 stainless steel is protective but Ni is not a desirable alloy addition for this application. Results at 1350 degrees C indicated that FeCrAl alloys and CVD SiC remain oxidation resistant in steam. At 1200 degrees C, high (>= 25% Cr) ferritic alloys appear to be good candidates for this application. Higher pressures (up to 20.7 bar) and H-2 additions appeared to have a limited effect on the oxidation behavior of the most oxidation resistant alloys, but higher pressures accelerated the maximum metal loss for less oxidation resistant steels and less metal loss was observed for type 317 L tubing in a H-2-50%H2O environment at 10.3 bar compared to 100% H2O. (C) 2013 Elsevier B.V. All rights reserved. C1 [Pint, B. A.; Terrani, K. A.; Brady, M. P.; Cheng, T.; Keiser, J. R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Pint, BA (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM pintba@ornl.gov RI Brady, Michael/A-8122-2008; Pint, Bruce/A-8435-2008 OI Brady, Michael/0000-0003-1338-4747; Pint, Bruce/0000-0002-9165-3335 FU U.S. Department of Energy's Office of Nuclear Energy, Advanced Fuel Campaign of the Fuel Cycle RD program FX The experimental work was conducted by M. Howell, M. Stephens, T. Lowe, H. Longmire, J. Mayotte and T. Jordan. Y. Yamamoto and S.J. Pawel provided useful comments on the manuscript. This research was funded by the U.S. Department of Energy's Office of Nuclear Energy, Advanced Fuel Campaign of the Fuel Cycle R&D program. NR 40 TC 49 Z9 49 U1 8 U2 82 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP PY 2013 VL 440 IS 1-3 BP 420 EP 427 DI 10.1016/j.jnucmat.2013.05.047 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 204UL UT WOS:000323396600050 ER PT J AU Costantini, JM Beuneu, F Weber, WJ AF Costantini, Jean-Marc Beuneu, Francois Weber, William J. TI Radiation damage in cubic-stabilized zirconia SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT Conference on Nuclear Materials (NuMat) CY OCT 22-25, 2012 CL Osaka, JAPAN ID CHARGED-PARTICLE IRRADIATIONS; SINGLE-CRYSTALS; COMPUTER-SIMULATION; THERMAL RECOVERY; DEFECT STRUCTURE; INERT MATRIX; ELECTRON; OXIDE; FUEL; CONDUCTIVITY AB Cubic yttria-stabilized zirconia (YSZ) can be used for nuclear applications as an inert matrix for actinide immobilization or transmutation. Indeed, the large amount of native oxygen vacancies leads to a high radiation tolerance of this material owing to defect recombination occurring in the atomic displacement cascades induced by fast neutron irradiation or ion implantations, as showed by molecular dynamics (MD) simulations. Amorphization cannot be obtained in YSZ either by nuclear-collision or electronic-excitation damage, just like in urania. A kind of polygonization structure with slightly disoriented crystalline domains is obtained in both cases. In the first steps of damage, specific isolated point defects (like F+-type color centers) and point-defect clusters are produced by nuclear collisions with charged particles or neutrons. Further increase of damage leads to dislocation-loop formation then to collapse of the dislocation network into a polygonization structure. For swift heavy ion irradiations, a similar polygonization structure is obtained above a threshold stopping power value of about 20-30 keV nm(-1). (C) 2013 Elsevier B.V. All rights reserved. C1 [Costantini, Jean-Marc] CEA, DEN, SRMA, F-91191 Gif Sur Yvette, France. [Beuneu, Francois] Ecole Polytech, CNRS, CEA, LSI, F-91128 Palaiseau, France. [Weber, William J.] Univ Tennessee, Knoxville, TN 37996 USA. [Weber, William J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Costantini, JM (reprint author), CEA, DEN, SRMA, F-91191 Gif Sur Yvette, France. EM jean-marc.costantini@cea.fr RI Weber, William/A-4177-2008 OI Weber, William/0000-0002-9017-7365 NR 64 TC 10 Z9 10 U1 3 U2 54 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP PY 2013 VL 440 IS 1-3 BP 508 EP 514 DI 10.1016/j.jnucmat.2013.02.041 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 204UL UT WOS:000323396600062 ER PT J AU Colas, KB Motta, AT Daymond, MR Almer, JD AF Colas, Kimberly B. Motta, Arthur T. Daymond, Mark R. Almer, Jonathan D. TI Effect of thermo-mechanical cycling on zirconium hydride reorientation studied in situ with synchrotron X-ray diffraction SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT NuMat Conference CY OCT 22-25, 2012 CL Osaka, JAPAN ID PRECIPITATION; DISSOLUTION; ZIRCALOY; ALLOYS; KINETICS AB The circumferential hydrides normally present in nuclear reactor fuel cladding after reactor exposure may dissolve during drying for dry storage and re-precipitate when cooled under load into a more radial orientation, which could embrittle the fuel cladding. It is necessary to study the rates and conditions under which hydride reorientation may happen in order to assess fuel integrity in dry storage. The objective of this work is to study the effect of applied stress and thermal cycling on the hydride morphology in cold-worked stress-relieved Zircaloy-4 by combining conventional metallography and in situ X-ray diffraction techniques. Metallography is used to study the evolution of hydride morphology after several thermo-mechanical cycles. In situ X-ray diffraction performed at the Advanced Photon Source synchrotron provides real-time information on the process of hydride dissolution and precipitation under stress during several thermal cycles. The detailed study of diffracted intensity, peak position and full-width at half-maximum provides information on precipitation kinetics, elastic strains and other characteristics of the hydride precipitation process. The results show that thermo-mechanical cycling significantly increases the radial hydride fraction as well as the hydride length and connectivity. The radial hydrides are observed to precipitate at a lower temperature than circumferential hydrides. Variations in the magnitude and range of hydride strains due to reorientation and cycling have also been observed. These results are discussed in light of existing models and experiments on hydride reorientation. The study of hydride elastic strains during precipitation shows marked differences between circumferential and radial hydrides, which can be used to investigate the reorientation process. (C) 2013 Elsevier B.V. All rights reserved. C1 [Colas, Kimberly B.; Motta, Arthur T.] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA. [Daymond, Mark R.] Queens Univ, Dept Mech & Mat Engn, Kingston, ON K7L 3N6, Canada. [Almer, Jonathan D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Colas, KB (reprint author), CEA Saclay, French Atom Energy Commiss, DEN DANS DMN SEMI LM2E, F-91191 Gif Sur Yvette, France. EM kimberly.colas@cea.fr OI Colas, Kimberly/0000-0002-5270-5462; Daymond, Mark/0000-0001-6242-7489 NR 26 TC 10 Z9 10 U1 1 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP PY 2013 VL 440 IS 1-3 BP 586 EP 595 DI 10.1016/j.jnucmat.2013.04.047 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 204UL UT WOS:000323396600075 ER PT J AU Tremsin, AS Vogel, SC Mock, M Bourke, MAM Yuan, V Nelson, RO Brown, DW Feller, WB AF Tremsin, A. S. Vogel, S. C. Mock, M. Bourke, M. A. M. Yuan, V. Nelson, R. O. Brown, D. W. Feller, W. B. TI Non-destructive studies of fuel pellets by neutron resonance absorption radiography and thermal neutron radiography SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT NuMat Conference CY OCT 22-25, 2012 CL Osaka, JAPAN ID TEMPERATURE-MEASUREMENT; TRANSMISSION SPECTROSCOPY; WATER DISTRIBUTION; TIME; TOMOGRAPHY; EFFICIENCY; DETECTOR; CAPTURE AB Many isotopes in nuclear materials exhibit strong peaks in neutron absorption cross sections in the epithermal energy range (1-1000 eV). These peaks (often referred to as resonances) occur at energies specific to particular isotopes, providing a means of isotope identification and concentration measurements. The high penetration of epithermal neutrons through most materials is very useful for studies where samples consist of heavy-Z elements opaque to X-rays and sometimes to thermal neutrons as well. The characterization of nuclear fuel elements in their cladding can benefit from the development of high resolution neutron resonance absorption imaging (NRAI), enabled by recently developed spatially-resolved neutron time-of-flight detectors. In this technique the neutron transmission of the sample is measured as a function of spatial location and of neutron energy. In the region of the spectra that borders the resonance energy for a particular isotope, the reduction in transmission can be used to acquire an image revealing the 2-dimensional distribution of that isotope within the sample. Provided that the energy of each transmitted neutron is measured by the neutron detector used and the irradiated sample possesses neutron absorption resonances, then isotope-specific location maps can be acquired simultaneously for several isotopes. This can be done even in the case where samples are opaque or have very similar transmission for thermal neutrons and X-rays or where only low concentrations of particular isotopes are present (<0.1 atom% in some cases). Ultimately, such radiographs of isotope location can be utilized to measure isotope concentration, and can even be combined to produce three-dimensional distributions using tomographic methods. In this paper we present the proof-of-principle of NRAI and transmission Bragg edge imaging performed at Flight Path 5 (FP5) at the LANSCE pulsed, moderated neutron source of Los Alamos National Laboratory. A set of urania mockup fuel assemblies with intentionally introduced defects was investigated. The maps of elemental composition of pellets containing urania and tungsten were obtained simultaneously by resonance absorption imaging with spatial resolution better than similar to 200 mu M, while the voids and cracks were revealed by the transmission images obtained with thermal and cold neutrons. Our proof-of-principle experiments demonstrate that simultaneous acquisition of resonance and Bragg edge spectra enables concurrent mapping of isotope distributions, imaging of cracks and voids as well as measurements of some crystallographic parameters of fuel assemblies and their cladding. A detailed study of energy-dependent neutron statistics achievable at FP5 with our present detection system is also presented for a wide range of neutron energies. (C) 2013 Elsevier B.V. All rights reserved. C1 [Tremsin, A. S.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Vogel, S. C.; Mock, M.; Bourke, M. A. M.; Yuan, V.; Nelson, R. O.; Brown, D. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Feller, W. B.] NOVA Sci Inc, Sturbridge, MA 01566 USA. RP Tremsin, AS (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. EM ast@ssl.berkeley.edu OI Mocko, Michael/0000-0003-0447-4687; Vogel, Sven C./0000-0003-2049-0361 NR 52 TC 10 Z9 10 U1 3 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD SEP PY 2013 VL 440 IS 1-3 BP 633 EP 646 DI 10.1016/j.jnucmat.2013.06.007 PG 14 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 204UL UT WOS:000323396600082 ER PT J AU Lee, BS Gapud, EJ Zhang, SC Dorsett, Y Bredemeyer, A George, R Callen, E Daniel, JA Osipovich, O Oltz, EM Bassing, CH Nussenzweig, A Lees-Miller, S Hammel, M Chen, BPC Sleckman, BP AF Lee, Baeck-Seung Gapud, Eric J. Zhang, Shichuan Dorsett, Yair Bredemeyer, Andrea George, Rosmy Callen, Elsa Daniel, Jeremy A. Osipovich, Oleg Oltz, Eugene M. Bassing, Craig H. Nussenzweig, Andre Lees-Miller, Susan Hammel, Michal Chen, Benjamin P. C. Sleckman, Barry P. TI Functional Intersection of ATM and DNA-Dependent Protein Kinase Catalytic Subunit in Coding End Joining during V(D)J Recombination SO MOLECULAR AND CELLULAR BIOLOGY LA English DT Article ID DOUBLE-STRAND-BREAK; TELANGIECTASIA MUTATED ATM; ATAXIA-TELANGIECTASIA; SIGNAL JOINT; LYMPHOCYTE DEVELOPMENT; GENOMIC INSTABILITY; NONSENSE MUTATION; CELL-LINES; PKCS; REPAIR AB V(D)J recombination is initiated by the RAG endonuclease, which introduces DNA double-strand breaks (DSBs) at the border between two recombining gene segments, generating two hairpin-sealed coding ends and two blunt signal ends. ATM and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are serine-threonine kinases that orchestrate the cellular responses to DNA DSBs. During V(D) J recombination, ATM and DNA-PKcs have unique functions in the repair of coding DNA ends. ATM deficiency leads to instability of postcleavage complexes and the loss of coding ends from these complexes. DNA-PKcs deficiency leads to a nearly complete block in coding join formation, as DNA-PKcs is required to activate Artemis, the endonuclease that opens hairpin-sealed coding ends. In contrast to loss of DNA-PKcs protein, here we show that inhibition of DNA-PKcs kinase activity has no effect on coding join formation when ATM is present and its kinase activity is intact. The ability of ATM to compensate for DNA-PKcs kinase activity depends on the integrity of three threonines in DNA-PKcs that are phosphorylation targets of ATM, suggesting that ATM can modulate DNA-PKcs activity through direct phosphorylation of DNA-PKcs. Mutation of these threonine residues to alanine (DNA-PKcs(3A)) renders DNA-PKcs dependent on its intrinsic kinase activity during coding end joining, at a step downstream of opening hairpin-sealed coding ends. Thus, DNA-PKcs has critical functions in coding end joining beyond promoting Artemis endonuclease activity, and these functions can be regulated redundantly by the kinase activity of either ATM or DNA-PKcs. C1 [Lee, Baeck-Seung; Gapud, Eric J.; Dorsett, Yair; Bredemeyer, Andrea; George, Rosmy; Osipovich, Oleg; Oltz, Eugene M.; Sleckman, Barry P.] Washington Univ, Sch Med, Dept Pathol & Immunol, St Louis, MO 63130 USA. [Zhang, Shichuan; Chen, Benjamin P. C.] Univ Texas SW Med Ctr Dallas, Dept Radiat Oncol, Div Mol Radiat Biol, Dallas, TX 75390 USA. [Callen, Elsa; Nussenzweig, Andre] NCI, Lab Genome Integr, NIH, Bethesda, MD 20892 USA. [Daniel, Jeremy A.] Univ Copenhagen, Fac Hlth & Med Sci, Novo Nordisk Fdn Ctr Prot Res, Copenhagen, Denmark. [Bassing, Craig H.] Univ Penn, Childrens Hosp Philadelphia, Dept Pathol & Lab Med, Ctr Childhood Canc Res,Div Canc Pathobiol, Philadelphia, PA 19104 USA. [Bassing, Craig H.] Univ Penn, Dept Pathol & Lab Med, Abramson Family Canc Res Inst, Philadelphia, PA USA. [Bassing, Craig H.] Univ Penn, Immunol Grad Grp, Perelman Sch Med, Philadelphia, PA 19104 USA. [Lees-Miller, Susan] Univ Calgary, Dept Biochem & Mol Biol, Calgary, AB, Canada. [Lees-Miller, Susan] Univ Calgary, Southern Alberta Canc Res Inst, Calgary, AB, Canada. [Hammel, Michal] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Sleckman, BP (reprint author), Washington Univ, Sch Med, Dept Pathol & Immunol, St Louis, MO 63130 USA. EM sleckman@immunology.wustl.edu RI Daniel, Jeremy/S-4729-2016; OI Daniel, Jeremy/0000-0002-1981-5571; Bredemeyer, Andrea/0000-0003-2970-5998 FU National Institutes of Health [CA136470, AI074953, AI47829, CA92584, GM105404]; Lawrence Berkeley National Lab IDAT program; CIHR [691369] FX This work was supported by National Institutes of Health grants CA136470 (B. P. S.), AI074953 (B. P. S.), AI47829 (B. P. S.), CA92584 (S. L.-M. and M. H.), and GM105404 (M. H.). M. H. was also supported by the Lawrence Berkeley National Lab IDAT program, and S. L.-M. was supported by CIHR grant 691369. NR 64 TC 12 Z9 14 U1 0 U2 14 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0270-7306 J9 MOL CELL BIOL JI Mol. Cell. Biol. PD SEP PY 2013 VL 33 IS 18 BP 3568 EP 3579 DI 10.1128/MCB.00308-13 PG 12 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 208BQ UT WOS:000323651200003 PM 23836881 ER PT J AU Hagos, S Leung, R Rauscher, SA Ringler, T AF Hagos, Samson Leung, Ruby Rauscher, Sara A. Ringler, Todd TI Error Characteristics of Two Grid Refinement Approaches in Aquaplanet Simulations: MPAS-A and WRF SO MONTHLY WEATHER REVIEW LA English DT Article DE Convective parameterization; Model comparison; Model errors; Model evaluation; performance; Multigrid models; Regional models ID GENERAL-CIRCULATION MODEL; REGIONAL CLIMATE SIMULATION; VARIABLE-RESOLUTION GCM; WESTERN UNITED-STATES; STANDARD TEST; PART I; SENSITIVITY; PARAMETERIZATIONS; PRECIPITATION; CONVECTION AB This study compares the error characteristics associated with two grid refinement approaches including global variable resolution and nesting for high-resolution regional climate modeling. The global variable-resolution model, Model for Prediction Across Scales-Atmosphere (MPAS-A), and the limited-area model, Weather Research and Forecasting Model (WRF), are compared in an idealized aquaplanet context. For MPAS-A, simulations have been performed with a quasi-uniform-resolution global domain at coarse (1 degrees) and high (0.25 degrees) resolution, and a variable-resolution domain with a high-resolution region at 0.25 degrees configured inside a coarse-resolution global domain at 1 degrees resolution. Similarly, WRF has been configured to run on a coarse (1 degrees) and high (0.25 degrees) tropical channel domain as well as a nested domain with a high-resolution region at 0.25 degrees nested two-way inside the coarse-resolution (1 degrees) tropical channel. The variable-resolution or nested simulations are compared against the high-resolution simulations. Both models respond to increased resolution with enhanced precipitation and significant reduction in the ratio of convective to nonconvective precipitation. The limited-area grid refinement induces zonal asymmetry in precipitation (heating), accompanied by zonal anomalous Walker-like circulations and standing Rossby wave signals. Within the high-resolution limited area, the zonal distribution of precipitation is affected by advection in MPAS-A and by the nesting strategy in WRF. In both models, the propagation characteristics of equatorial waves are not significantly affected by the variations in resolution. C1 [Hagos, Samson; Leung, Ruby] Pacific NW Natl Lab, Richland, WA 99352 USA. [Rauscher, Sara A.; Ringler, Todd] Los Alamos Natl Lab, Los Alamos, NM USA. RP Hagos, S (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM samson.hagos@pnnl.gov FU Regional and Global Climate Modeling Program of the U.S. Department of Energy Biological and Environmental Research Program; U.S. Department of Energy [DE-AC06-76RLO1830] FX This work is supported by the Regional and Global Climate Modeling Program of the U.S. Department of Energy Biological and Environmental Research Program. Computing resources are provided by the National Energy Research Scientific Computing Center (NERSC). Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DE-AC06-76RLO1830. NR 41 TC 14 Z9 14 U1 1 U2 12 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 J9 MON WEATHER REV JI Mon. Weather Rev. PD SEP PY 2013 VL 141 IS 9 BP 3022 EP 3036 DI 10.1175/MWR-D-12-00338.1 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 208CZ UT WOS:000323655400005 ER PT J AU Martin, MC Dabat-Blondeau, C Unger, M Sedlmair, J Parkinson, DY Bechtel, HA Illman, B Castro, JM Keiluweit, M Buschke, D Ogle, B Nasse, MJ Hirschmugl, CJ AF Martin, Michael C. Dabat-Blondeau, Charlotte Unger, Miriam Sedlmair, Julia Parkinson, Dilworth Y. Bechtel, Hans A. Illman, Barbara Castro, Jonathan M. Keiluweit, Marco Buschke, David Ogle, Brenda Nasse, Michael J. Hirschmugl, Carol J. TI 3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography SO NATURE METHODS LA English DT Article ID EMBRYONIC STEM-CELLS; SPATIAL-RESOLUTION PROPERTIES; FOCAL-PLANE ARRAY; NEURONAL DIFFERENTIATION; ZINNIA-ELEGANS; RECONSTRUCTION; SPECTROMICROSCOPY; MICROSPECTROSCOPY; TISSUE; FTIR AB We report Fourier transform infrared spectro-microtomography, a nondestructive three-dimensional imaging approach that reveals the distribution of distinctive chemical compositions throughout an intact biological or materials sample. The method combines mid-infrared absorption contrast with computed tomographic data acquisition and reconstruction to enhance chemical and morphological localization by determining a complete infrared spectrum for every voxel (millions of spectra determined per sample). C1 [Martin, Michael C.; Dabat-Blondeau, Charlotte; Parkinson, Dilworth Y.; Bechtel, Hans A.] Lawrence Berkeley Natl Lab, Adv Light Source Div, Berkeley, CA USA. [Unger, Miriam; Hirschmugl, Carol J.] Univ Wisconsin, Dept Phys, Milwaukee, WI USA. [Sedlmair, Julia; Illman, Barbara] US Dept Agr Forest Serv, Forest Prod Lab, Madison, WI USA. [Sedlmair, Julia; Illman, Barbara] Univ Wisconsin Madison, Synchrotron Radiat Ctr, Stoughton, WI USA. [Castro, Jonathan M.] Johannes Gutenberg Univ Mainz, Inst Geosci, D-55122 Mainz, Germany. [Keiluweit, Marco] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA USA. [Buschke, David; Ogle, Brenda] Univ Wisconsin, Dept Biomed Engn, Madison, WI USA. [Nasse, Michael J.] Karlsruhe Inst Technol, Lab Applicat Synchrotron Radiat, D-76021 Karlsruhe, Germany. RP Martin, MC (reprint author), Lawrence Berkeley Natl Lab, Adv Light Source Div, Berkeley, CA USA. EM MCMartin@lbl.gov; cjhirsch@uwm.edu RI Parkinson, Dilworth/A-2974-2015 OI Parkinson, Dilworth/0000-0002-1817-0716 FU US National Science Foundation [MRI-0619759, CHE-1112433]; Office of Science, Office of Basic Energy Sciences, US Department of Energy [DE-AC02-05CH11231]; University of Wisconsin-Madison; University of Wisconsin-Milwaukee FX Thanks to K. Krueger, M. Fisher and G. Rogers for outstanding machining skills and technical support. We also thank D. Ron for assistance on the spectral extractions. This work is based on research conducted at the IRENI beamline, whose construction and development was supported by the US National Science Foundation by award MRI-0619759. This work was supported by the US National Science Foundation under grant CHE-1112433. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, US Department of Energy under contract no. DE-AC02-05CH11231. The SRC is primarily funded by the University of Wisconsin-Madison, with supplemental support from facility users and the University of Wisconsin-Milwaukee. NR 40 TC 24 Z9 24 U1 6 U2 59 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1548-7091 J9 NAT METHODS JI Nat. Methods PD SEP PY 2013 VL 10 IS 9 BP 861 EP + DI 10.1038/NMETH.2596 PG 6 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 209LX UT WOS:000323760000021 PM 23913258 ER PT J AU Luther, JM Blackburn, JL AF Luther, Joseph M. Blackburn, Jeffrey L. TI OPTOELECTRONICS Plasmon-enhanced plastic devices SO NATURE PHOTONICS LA English DT News Item ID NANOPARTICLES C1 [Luther, Joseph M.; Blackburn, Jeffrey L.] Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA. RP Luther, JM (reprint author), Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA. EM joey.luther@nrel.gov; jeffrey.blackburn@nrel.gov NR 14 TC 8 Z9 8 U1 0 U2 20 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 EI 1749-4893 J9 NAT PHOTONICS JI Nat. Photonics PD SEP PY 2013 VL 7 IS 9 BP 675 EP 677 DI 10.1038/nphoton.2013.218 PG 2 WC Optics; Physics, Applied SC Optics; Physics GA 208XG UT WOS:000323715000005 ER PT J AU Welp, U Kadowaki, K Kleiner, R AF Welp, Ulrich Kadowaki, Kazuo Kleiner, Reinhold TI Superconducting emitters of THz radiation SO NATURE PHOTONICS LA English DT Review ID INTRINSIC JOSEPHSON-JUNCTIONS; TRIANGULAR BI2SR2CACU2O8+DELTA MESAS; QUANTUM-CASCADE LASERS; LAYERED SUPERCONDUCTORS; TERAHERTZ TECHNOLOGY; FLUX-FLOW; T-C; TUNNELING SPECTROSCOPY; SINGLE-CRYSTALS; PHASE-LOCKING AB Layered superconductors such as the copper-oxide high-temperature superconductor Bi2Sr2CaCu2O8+delta are emerging as compact sources of coherent continuous-wave electromagnetic radiation in the subterahertz and terahertz frequency ranges. The basis of their operation is the Josephson effect, which intrinsically occurs between the superconducting layers. The Josephson effect naturally converts a direct-current voltage into a high-frequency electric current. Therefore, a unique property of the devices reviewed here is the wide tunability of their frequency by varying the bias voltage. Recently, emission powers of free-space radiation of several hundreds of microwatts and emission linewidths as low as 6 MHz at 600 GHz have been achieved. These devices are promising for new applications in imaging, medical diagnostics, spectroscopy and security. C1 [Welp, Ulrich] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Kadowaki, Kazuo] Univ Tsukuba, Fac Pure & Appl Sci, Div Mat Sci, Tsukuba, Ibaraki 3058573, Japan. [Kleiner, Reinhold] Univ Tubingen, Inst Phys, D-72076 Tubingen, Germany. [Kleiner, Reinhold] Univ Tubingen, Ctr Collect Quantum Phenomena LISA, D-72076 Tubingen, Germany. RP Welp, U (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM welp@anl.gov FU U.S. Department of Energy (BES); Japanese Society for the Promotion of Science (JSPS); Japan Science and Technology Agency (JST); Deutsche Forschungsgemeinschaft (DFG) FX The authors thank W. K. Kwok, A. E. Koshelev, T. Benseman, B. Gross, H. B. Wang, V. P. Koshelets, R. G. Mints, D. Koelle, T. Kashiwagi, I. Kakeya, T. Yamamoto, R. A. Klemm, M. Tsujimoto, H. Minami and M. Tachiki for many helpful discussions. U.W. acknowledges support from the U.S. Department of Energy (BES), K.K. acknowledges support from the Japanese Society for the Promotion of Science (JSPS) and the Japan Science and Technology Agency (JST), and R.K. acknowledges support from Deutsche Forschungsgemeinschaft (DFG). NR 109 TC 79 Z9 82 U1 10 U2 122 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 J9 NAT PHOTONICS JI Nat. Photonics PD SEP PY 2013 VL 7 IS 9 BP 702 EP 710 DI 10.1038/NPHOTON.2013.216 PG 9 WC Optics; Physics, Applied SC Optics; Physics GA 208XG UT WOS:000323715000010 ER PT J AU Rabin, BH Swank, WD Wright, RN AF Rabin, B. H. Swank, W. D. Wright, R. N. TI Thermophysical properties of Alloy 617 from 25 degrees C to 1000 degrees C SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article DE Alloy 617; Thermophysical properties; Thermal conductivity ID BASE ALLOY; NICKEL; TEMPERATURE; HEAT AB Key thermophysical properties needed for the successful design and use of Alloy 617 in steam generator and heat exchanger applications have been measured experimentally, and results are compared with literature values and results obtained from some other commercial Ni-Cr alloys and model materials. Specifically, the thermal diffusivity, thermal expansion coefficient, and specific heat capacity have been measured for Alloy 617 over a range of temperatures, allowing calculation of thermal conductivity up to 1000 degrees C. It has been found that the thermal conductivity of Alloy 617 exhibits significant deviation from monotonic behavior in the temperature range from 600 degrees C to 850 degrees C. the temperatures of interest for most heat transfer applications. The non-linear behavior appears to result primarily from short-range order/disorder phenomena known to occur in the Ni-Cr system. Similar deviation from monotonic behavior was observed in the solid solution Ni-Cr-W Alloy 230, and lesser deviations were observed in iron based Alloy 800H and an austenitic stainless steel. Measured thermophysical property data are provided for four different heats of Alloy 617, and it is shown that property variations between the four different heats are not significant. Measurements were also obtained from Alloy 617 that was aged for up to 2000h at 750 degrees C, and it was found that this aging treatment does not significantly influence the thermophysical properties. (C) 2013 Elsevier B.V. All rights reserved. C1 [Rabin, B. H.; Swank, W. D.; Wright, R. N.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Rabin, BH (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM barry.rabin@inl.gov FU U.S. Department of Energy Nuclear Energy; U.S. Department of Energy [DE-AC07-051D14517] FX The authors would like to acknowledge D.C. Haggard for assistance in preparing specimens and Arnie Erickson for performing density measurements. This work was supported through the U.S. Department of Energy Nuclear Energy. Notwithstanding the terms and conditions included in this document, the identified paper, material, or work was or will be authored by Battelle Energy Alliance, LLC (BEA) under and is subject to Contract No. DE-AC07-051D14517 with the U.S. Department of Energy taking priority. The United States Government retains, and the other entity or entities identified in this document, by accepting the identified paper, material, or work for publication acknowledges that the United States Government retains, a non-exclusive, paid-up, irrevocable, world-wide license to publish and reproduce the published form of the identified paper, material, or work or allow others to do so, for United States Government purposes. BEA does not make any expressed or implied representations or warranties, including, but not limited to, with respect to fitness for use of the identified paper, material, or work and BEA does not indemnify the other entity or entities identified in this document or any third parties from any and all claims, damages, or attorney fees that may arise from the use, reproduction, or publication of such paper, material, or work. Any and all litigation involving entities' rights and duties under this document will be brought in a court of competent jurisdiction in the state (or equivalent) of the defendant's principal place of business identified in this document. NR 18 TC 4 Z9 4 U1 0 U2 17 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD SEP PY 2013 VL 262 BP 72 EP 80 DI 10.1016/j.nucengdes.2013.03.048 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 207HE UT WOS:000323588700008 ER PT J AU Hu, R Fanning, TH AF Hu, Rui Fanning, Thomas H. TI A momentum source model for wire-wrapped rod bundles-Concept, validation, and application SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article AB Large uncertainties still exist in the treatment of wire-spacers and drag models for momentum transfer in current lumped parameter models. To improve the hydraulic modeling of wire-wrap spacers in a rod bundle, a three-dimensional momentum source model (MSM) has been developed to model the anisotropic flow without the need to resolve the geometric details of the wire-wraps. The MSM is examined for 7-pin and 37-pin bundles steady-state simulations using the commercial CFD code STAR-CCM+. The calculated steady-state inter-subchannel cross flow velocities match very well in comparisons between bare bundles with the MSM applied and the wire-wrapped bundles with explicit geometry. The validity of the model is further verified by mesh and parameter sensitivity studies. Furthermore, the MSM is applied to a 61-pin EBR-II experimental subassembly for both steady state and PLOF transient simulations. Reasonably accurate predictions of temperature, pressure, and fluid flow velocities have been achieved using the MSM for both steady-state and transient conditions. Significant computing resources are saved with the MSM since it can be used on a much coarser computational mesh. (C) 2013 Elsevier B.V. All rights reserved. C1 [Hu, Rui; Fanning, Thomas H.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Hu, R (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM rhu@anl.gov RI Hu, Rui/A-7624-2012 OI Hu, Rui/0000-0002-3771-2920 FU U.S. Department of Energy Office of Nuclear Energy's Nuclear Energy Advanced Modeling and Simulation (NEAMS) program; U.S. Department of Energy [DE-AC02-06CH11357] FX This work is supported by U.S. Department of Energy Office of Nuclear Energy's Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne") under contract No. DE-AC02-06CH11357 with the U.S. Department of Energy. NR 19 TC 1 Z9 2 U1 0 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD SEP PY 2013 VL 262 BP 371 EP 389 DI 10.1016/j.nucengdes.2013.04.026 PG 19 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 207HE UT WOS:000323588700035 ER PT J AU Bakosi, J Christon, MA Lowrie, RB Pritchett-Sheats, LA Nourgaliev, RR AF Bakosi, J. Christon, M. A. Lowrie, R. B. Pritchett-Sheats, L. A. Nourgaliev, R. R. TI Large-eddy simulations of turbulent flow for grid-to-rod fretting in nuclear reactors SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID SEMIIMPLICIT PROJECTION METHODS; VISCOUS INCOMPRESSIBLE-FLOW; CONSISTENT MASS MATRIX; FINITE-ELEMENT METHOD; FUEL; IMPLEMENTATION AB The grid-to-rod fretting (GTRF) problem in pressurized water reactors is a flow-induced vibration problem that results in wear and failure of the fuel rods in nuclear assemblies. In order to understand the fluid dynamics of GTRF and to build an archival database of turbulence statistics for various configurations, implicit large-eddy simulations of time-dependent single-phase turbulent flow have been performed in 3 x 3 and 5 x 5 rod bundles with a single grid spacer. To assess the computational mesh and resolution requirements, a method for quantitative assessment of unstructured meshes with no-slip walls is described. The calculations have been carried out using Hydra-TH, a thermal-hydraulics code developed at Los Alamos for the Consortium for Advanced Simulation of Light water reactors, a United States Department of Energy Innovation Hub. Hydra-TH uses a second-order implicit incremental projection method to solve the single-phase incompressible Navier Stokes equations. The simulations explicitly resolve the large scale motions of the turbulent flow field using first principles and rely on a monotonicity-preserving numerical technique to represent the unresolved scales. Each series of simulations for the 3 x 3 and 5 x 5 rod-bundle geometries is an analysis of the flow field statistics combined with a mesh-refinement study and validation with available experimental data. Our primary focus is the time history and statistics of the forces loading the fuel rods. These hydrodynamic forces are believed to be the key player resulting in rod vibration and GTRF wear, one of the leading causes for leaking nuclear fuel which costs power utilities millions of dollars in preventive measures. We demonstrate that implicit large-eddy simulation of rod-bundle flows is a viable way to calculate the excitation forces for the GTRF problem. Published by Elsevier B.V. C1 [Bakosi, J.; Christon, M. A.; Lowrie, R. B.; Pritchett-Sheats, L. A.] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Computat Phys Grp CCS 2, Los Alamos, NM 87545 USA. [Nourgaliev, R. R.] Idaho Natl Lab, Reactor Safety Simulat Grp, Thermal Sci & Safety Anal Dept, Idaho Falls, ID 83415 USA. RP Bakosi, J (reprint author), Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Computat Phys Grp CCS 2, POB 1663, Los Alamos, NM 87545 USA. EM jbakosi@lanl.gov; christon@lanl.gov; lowrie@lanl.gov; lpritch@lanl.gov; robert.nourgaliev@inl.gov OI Bakosi, Jozsef/0000-0002-0604-5555; Lowrie, Robert/0000-0001-5537-9183 FU Consortium for Advanced Simulation of Light Water Reactors (CASL); U.S. Department of Energy Innovation Hub FX This research is supported by the Consortium for Advanced Simulation of Light Water Reactors (CASL), a U.S. Department of Energy Innovation Hub. The authors gratefully acknowledge the help in visualization and high-performance computing issues from Ross Toedte and Ramanan Sankaran, respectively, at Oak Ridge National Laboratory; Elvis Dominguez-Ontiveros and Yassin Hassan at Texas A&M University for providing the experimental data; and the help in meshing from Roger Pawlowski and Tom Smith at Sandia National Laboratories. NR 24 TC 6 Z9 7 U1 0 U2 31 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD SEP PY 2013 VL 262 BP 544 EP 561 DI 10.1016/j.nucengdes.2013.06.007 PG 18 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 207HE UT WOS:000323588700050 ER PT J AU Benzi, M Wang, Z AF Benzi, Michele Wang, Zhen TI A parallel implementation of the modified augmented Lagrangian preconditioner for the incompressible Navier-Stokes equations SO NUMERICAL ALGORITHMS LA English DT Article DE Preconditioning; Saddle point problems; Oseen problem; Krylov subspace methods; Multicores AB We describe a parallel implementation of a block triangular preconditioner based on the modified augmented Lagrangian approach to the steady incompressible Navier-Stokes equations. The equations are linearized by Picard iteration and discretized with various finite element and finite difference schemes on two- and three-dimensional domains. We report strong scalability results for up to 64 cores. C1 [Benzi, Michele] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA. [Wang, Zhen] Oak Ridge Natl Lab, Sci Comp Grp, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. RP Benzi, M (reprint author), Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA. EM benzi@mathcs.emory.edu; wangz@ornl.gov FU Laney Graduate School of Arts and Science at Emory University; Mathematical, Information, and Computational Sciences Division, Office of Advanced Scientific Computing Research, U.S. Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC.; University Research Committee of Emory University FX M. Benzi work supported in part by a grant of the University Research Committee of Emory University.; Z. Wang work supported in part by the Laney Graduate School of Arts and Science at Emory University and by the Mathematical, Information, and Computational Sciences Division, Office of Advanced Scientific Computing Research, U.S. Department of Energy, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. NR 19 TC 2 Z9 2 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1017-1398 J9 NUMER ALGORITHMS JI Numer. Algorithms PD SEP PY 2013 VL 64 IS 1 BP 73 EP 84 DI 10.1007/s11075-012-9655-x PG 12 WC Mathematics, Applied SC Mathematics GA 204CU UT WOS:000323343400004 ER PT J AU Ringler, T Petersen, M Higdon, RL Jacobsen, D Jones, PW Maltrud, M AF Ringler, Todd Petersen, Mark Higdon, Robert L. Jacobsen, Doug Jones, Philip W. Maltrud, Mathew TI A multi-resolution approach to global ocean modeling SO OCEAN MODELLING LA English DT Article DE MPAS-Ocean; Global ocean model; Finite-volume; Multi-resolution; Spherical Centroidal Voronoi Tesselations ID CENTROIDAL VORONOI TESSELLATIONS; CIRCULATION MODELS; GENERAL-CIRCULATION; CARIBBEAN SEA; FREE-SURFACE; REPRESENTATION; SIMULATIONS; TOPOGRAPHY; TRANSPORT; PARAMETERIZATION AB A new global ocean model (MPAS-Ocean) capable of using enhanced resolution in selected regions of the ocean domain is described and evaluated. Three simulations using different grids are presented. The first grid is a uniform high-resolution (15 km) mesh; the second grid has similarly high resolution (15 km) in the North Atlantic (NA), but coarse resolution elsewhere; the third grid is a variable resolution grid like the second but with higher resolution (7.5 km) in the NA. Simulation results are compared to observed sea-surface height (SSH), SSH variance and selected current transports. In general, the simulations produce subtropical and subpolar gyres with peak SSH amplitudes too strong by between 0.25 and 0.40 m. The mesoscale eddy activity within the NA is, in general, well simulated in both structure and amplitude. The uniform high-resolution simulation produces reasonable representations of mesoscale activity throughout the global ocean. Simulations using the second variable-resolution grid are essentially identical to the uniform case within the NA region. The third case with higher NA resolution produces a simulation that agrees somewhat better in the NA with observed SSH, SSH variance and transports than the two 15 km simulations. The actual throughput, including I/O, for the x1-15 km simulation is the same as the structured grid Parallel Ocean Program ocean model in its standard high-resolution 0.1 degrees configuration. Our overall conclusion is that this ocean model is a viable candidate for multi-resolution simulations of the global ocean system on climate-change time scales. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Ringler, Todd; Petersen, Mark; Jacobsen, Doug; Jones, Philip W.; Maltrud, Mathew] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Higdon, Robert L.] Oregon State Univ, Dept Math, Corvallis, OR 97331 USA. RP Ringler, T (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM ringler@lanl.gov OI Petersen, Mark/0000-0001-7170-7511 FU Office of Biological and Environmental Research within the US Department of Energy's Office of Science; Cnes FX This ocean model is being developed as a part of the MPAS project to produce a shared software framework for the development of dynamical cores. This work would not have been possible without the contributions from the broad MPAS development team and, in particular, the contributions of Michael Duda. The manuscript benefited from the comments of Sergey Danilov and two anonymous reviewers. The altimeter products were produced by Ssalto/Duacs and distributed by Aviso, with support from Cnes (http://www.aviso.oceanobs.com/duacs/). The authors thank Gregory Johnson for providing observational data of the Equatorial Undercurrent. Simulations were conducted using LANL Institutional Computing resources. This work was supported by the Earth System Modeling and Regional and Global Climate Modeling programs of the Office of Biological and Environmental Research within the US Department of Energy's Office of Science. NR 71 TC 45 Z9 46 U1 1 U2 21 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1463-5003 EI 1463-5011 J9 OCEAN MODEL JI Ocean Model. PD SEP PY 2013 VL 69 BP 211 EP 232 DI 10.1016/j.ocemod.2013.04.010 PG 22 WC Meteorology & Atmospheric Sciences; Oceanography SC Meteorology & Atmospheric Sciences; Oceanography GA 206XF UT WOS:000323558600015 ER PT J AU Prantil, MA Cormier, E Dawson, JW Gibson, DJ Messerly, MJ Barty, CPJ AF Prantil, Matthew A. Cormier, Eric Dawson, Jay W. Gibson, David J. Messerly, Michael J. Barty, C. P. J. TI Widely tunable 11 GHz femtosecond fiber laser based on a nonmode-locked source SO OPTICS LETTERS LA English DT Article ID PULSE-COMPRESSION; COMB AB An 11 GHz fiber laser built on a modulated cw platform is described and characterized. This compact, vibration-insensitive, fiber-based system can be operated at wavelengths compatible with high-energy fiber technology, is driven by an RF signal directly, and is tunable over a wide range of drive frequencies. The demonstration system when operated at 1040 nm is capable of 50 ns bursts of 575 micropulses produced at a macropulse rate of 83 kHz where the macropulse and micropulse energies are 1.8 and 3.2 nJ, respectively. Micropulse durations of 850 fs are demonstrated. Extensions to shorter duration are discussed. (C) 2013 Optical Society of America C1 [Prantil, Matthew A.; Dawson, Jay W.; Gibson, David J.; Messerly, Michael J.; Barty, C. P. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Cormier, Eric] Univ Bordeaux, Bordeaux, France. RP Prantil, MA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM prantil2@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 8 TC 1 Z9 1 U1 0 U2 11 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD SEP 1 PY 2013 VL 38 IS 17 BP 3216 EP 3218 DI 10.1364/OL.38.003216 PG 3 WC Optics SC Optics GA 209LJ UT WOS:000323758000006 PM 23988917 ER PT J AU Kulagin, OV Gorbunov, IA Sergeev, AM Valley, M AF Kulagin, O. V. Gorbunov, I. A. Sergeev, A. M. Valley, M. TI Picosecond Raman compression laser at 1530 nm with aberration compensation SO OPTICS LETTERS LA English DT Article ID SPHERICAL-ABERRATION; PULSE-COMPRESSION; CRYSTALS; 1.5-MU-M; RODS AB A passively Q-switched Nd:YAG laser with a master-oscillator power-amplifier configuration based on Brillouin and Raman pulse compression has been developed. The laser operates at 100 Hz repetition rate, producing 50 mJ pulses of approximately 30 ps duration at 1530 nm wavelength with near-diffraction-limited beam quality (M-2 <= 1.2). The effect of spherical aberration in thermally loaded Nd:YAG rods was studied, and efficient aberration compensation was achieved by use of a specially designed aspheric element. (C) 2013 Optical Society of America C1 [Kulagin, O. V.; Gorbunov, I. A.; Sergeev, A. M.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Valley, M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Kulagin, OV (reprint author), Inst Appl Phys, 46 Uljanov St, Nizhnii Novgorod 603950, Russia. EM ok@appl.sci-nnov.ru RI Sergeev, Alexander/F-3027-2017 FU Sandia National Laboratories [444259, 618301, 748192, 1012071, 1012097]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by Sandia National Laboratories through contracts 444259, 618301, 748192, 1012071, and 1012097. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 21 TC 4 Z9 5 U1 0 U2 6 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD SEP 1 PY 2013 VL 38 IS 17 BP 3237 EP 3240 DI 10.1364/OL.38.003237 PG 4 WC Optics SC Optics GA 209LJ UT WOS:000323758000012 PM 23988923 ER PT J AU Messerly, MJ Pax, PH Dawson, JW AF Messerly, Michael J. Pax, Paul H. Dawson, Jay W. TI Patterned flattened modes SO OPTICS LETTERS LA English DT Article ID LARGE-EFFECTIVE-AREA; FIBERS; DESIGN; LASERS; FIELD AB We show that field-flattened strands may be added to and arbitrarily positioned within a field-flattened shell to create patterned, flattened modes. Patterning does not alter the effective index or flatness of the flattened mode but does alter the characteristics of other modes; we show that it can improve a flattened mode's bend performance significantly. Patterning provides a new and potentially valuable waveguide design tool that may lead to higher-power transport and laser fibers. (C) 2013 Optical Society of America C1 [Messerly, Michael J.; Pax, Paul H.; Dawson, Jay W.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Messerly, MJ (reprint author), Lawrence Livermore Natl Lab, L-491,POB 808, Livermore, CA 94551 USA. EM messerly2@LLNL.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 13 TC 0 Z9 0 U1 0 U2 5 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD SEP 1 PY 2013 VL 38 IS 17 BP 3329 EP 3332 DI 10.1364/OL.38.003329 PG 4 WC Optics SC Optics GA 209LJ UT WOS:000323758000037 PM 23988948 ER PT J AU Gautam, ARS Howe, JM AF Gautam, Abhay Raj S. Howe, James M. TI A method to predict the orientation relationship, interface planes and morphology between a crystalline precipitate and matrix: part II - application SO PHILOSOPHICAL MAGAZINE LA English DT Article DE interfaces; crystalline interface; grain boundaries; orientation relationship; interface orientation ID PERCENT CR ALLOY; INTERPHASE BOUNDARY STRUCTURES; PHASE-TRANSFORMATIONS; HABIT PLANE; ALPHA; CRYSTALLOGRAPHY; MARTENSITE; DEFORMATION; NUCLEATION; ZIRCONIUM AB A model based on near coincidence of diffraction intensity-weighted reciprocal lattice spots was used to study the orientation relationships between a precipitate and matrix in various alloys. The model was used to calculate the orientation relationship and interface orientations between phases including body-centred cubic, body-centred tetragonal, face-centred cubic and hexagonal close-packed crystals. Comparison of calculated results with those reported from various experimental observations demonstrate that in most cases the model can predict the orientation relationship between two phases with an accuracy of a few degrees or better. Calculation of the interface orientation was found to be very sensitive to the exact orientation relationship and therefore, in some cases, showed significant deviation from experimental observations. C1 [Gautam, Abhay Raj S.; Howe, James M.] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. [Gautam, Abhay Raj S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Gautam, ARS (reprint author), Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. EM arg5b@virginia.edu FU National Science Foundation [DMR-0554792, DMR-1106230] FX This research was supported by the National Science Foundation under Grants DMR-0554792 and DMR-1106230. NR 47 TC 1 Z9 1 U1 3 U2 12 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 EI 1478-6443 J9 PHILOS MAG JI Philos. Mag. PD SEP 1 PY 2013 VL 93 IS 25 BP 3472 EP 3490 DI 10.1080/14786435.2013.811307 PG 19 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 207WD UT WOS:000323634500005 ER PT J AU Muthan, B Roston, RL Froehlich, JE Benning, C AF Muthan, Bagyalakshmi Roston, Rebecca L. Froehlich, John E. Benning, Christoph TI Probing Arabidopsis Chloroplast Diacylglycerol Pools by Selectively Targeting Bacterial Diacylglycerol Kinase to Suborganellar Membranes SO PLANT PHYSIOLOGY LA English DT Article ID OUTER ENVELOPE MEMBRANE; PHOSPHATIDIC-ACID; ESCHERICHIA-COLI; SN-1,2-DIACYLGLYCEROL KINASE; SPINACH-CHLOROPLASTS; LIPID TRAFFICKING; TRANSBILAYER DIFFUSION; PRECURSOR PROTEINS; BINDING; MUTANT AB Diacylglycerol (DAG) is an intermediate in metabolism of both triacylglycerols and membrane lipids. Probing the steady-state pools of DAG and understanding how they contribute to the synthesis of different lipids is important when designing plants with altered lipid metabolism. However, traditional methods of assaying DAG pools are difficult, because its abundance is low and because fractionation of subcellular membranes affects DAG pools. To manipulate and probe DAG pools in an in vivo context, we generated multiple stable transgenic lines of Arabidopsis (Arabidopsis thaliana) that target an Escherichia coli DAG kinase (DAGK) to each leaflet of each chloroplast envelope membrane. E. coli DAGK is small, self inserts into membranes, and has catalytic activity on only one side of each membrane. By comparing whole-tissue lipid profiles between our lines, we show that each line has an individual pattern of DAG, phosphatidic acid, phosphatidylcholine, and triacylglycerol steady-state levels, which supports an individual function of DAG in each membrane leaflet. Furthermore, conversion of DAG in the leaflets facing the chloroplast intermembrane space by DAGK impairs plant growth. As a result of DAGK presence in the outer leaflet of the outer envelope membrane, phosphatidic acid accumulation is not observed, likely because it is either converted into other lipids or removed to other membranes. Finally, we use the outer envelope-targeted DAGK line as a tool to probe the accessibility of DAG generated in response to osmotic stress. C1 [Muthan, Bagyalakshmi; Roston, Rebecca L.; Froehlich, John E.; Benning, Christoph] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. [Froehlich, John E.] Michigan State Univ, US DOE, Plant Res Lab, E Lansing, MI 48824 USA. RP Benning, C (reprint author), Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. EM benning@msu.edu OI Roston, Rebecca/0000-0002-3063-5002 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-FG02-98ER20305, DE-FG02-91ER20021]; Michigan AgBioResearch FX This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy (grant nos. DE-FG02-98ER20305 to C. B. and DE-FG02-91ER20021 to J.E.F.) and Michigan AgBioResearch (to C.B.). NR 68 TC 6 Z9 6 U1 0 U2 13 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 J9 PLANT PHYSIOL JI Plant Physiol. PD SEP PY 2013 VL 163 IS 1 BP 61 EP 74 DI 10.1104/pp.113.222513 PG 14 WC Plant Sciences SC Plant Sciences GA 209LS UT WOS:000323759200006 PM 23839866 ER PT J AU Brunner, D LaBombard, B Churchill, RM Hughes, J Lipschultz, B Ochoukov, R Rognlien, TD Theiler, C Walk, J Umansky, MV Whyte, D AF Brunner, D. LaBombard, B. Churchill, R. M. Hughes, J. Lipschultz, B. Ochoukov, R. Rognlien, T. D. Theiler, C. Walk, J. Umansky, M. V. Whyte, D. TI An assessment of ion temperature measurements in the boundary of the Alcator C-Mod tokamak and implications for ion fluid heat flux limiters SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID SCRAPE-OFF LAYER; RETARDING-FIELD ANALYZER; EDGE PLASMA; KATSUMATA PROBE; H-MODE; DIVERTOR; TRANSPORT; PROFILES; SIMULATION; PARAMETERS AB The ion temperature is not frequently measured in the boundary of magnetic fusion devices. Comparisons among different ion temperature techniques and simulations are even rarer. Here we present a comparison of ion temperature measurements in the boundary of the Alcator C-Mod tokamak from three different diagnostics: charge exchange recombination spectroscopy (CXRS), an ion sensitive probe (ISP), and a retarding field analyzer (RFA). Comparison between CXRS and the ISP along with close examination of the ISP measurements reveals that the ISP is space charge limited. It is thus unable to measure ion temperature in the high density (>10(19) m(-3)) boundary plasma of C-Mod with its present geometry. Comparison of ion temperatures measured by CXRS and the RFA shows fair agreement. Ion and electron parallel heat flow is analyzed with a simple 1D fluid code. The code takes divertor measurements as input and results are compared to the measured ratios of upstream ion to electron temperature, as inferred respectively by CXRS and a Langmuir probe. The analysis reveals the limits of the fluid model at high Knudsen number. The upstream temperature ratio is under predicted by a factor of 2. Heat flux limiters (kinetic corrections) to the fluid model are necessary to match experimental data. The values required are found to be close to those reported in kinetic simulations. The 1D code is benchmarked against the 2D plasma fluid code UEDGE with good agreement. C1 [Brunner, D.; LaBombard, B.; Churchill, R. M.; Hughes, J.; Lipschultz, B.; Ochoukov, R.; Theiler, C.; Walk, J.; Whyte, D.] MIT, PSFC, Cambridge, MA 02139 USA. [Rognlien, T. D.; Umansky, M. V.] LLNL, Livermore, CA 94550 USA. RP Brunner, D (reprint author), MIT, PSFC, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI Lipschultz, Bruce/J-7726-2012; OI Lipschultz, Bruce/0000-0001-5968-3684; Theiler, Christian/0000-0003-3926-1374; Churchill, Randy/0000-0001-5711-746X FU US DOE [DEFC02-99ER54512] FX Thanks to the entire Alcator C-Mod Team for making these experiments possible. Work supported by US DOE Coop. Agreement No DEFC02-99ER54512. NR 96 TC 7 Z9 7 U1 3 U2 31 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD SEP PY 2013 VL 55 IS 9 AR 095010 DI 10.1088/0741-3335/55/9/095010 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 209QL UT WOS:000323774400011 ER PT J AU Clayton, DJ Tritz, K Stutman, D Bell, RE Diallo, A LeBlanc, BP Podesta, M AF Clayton, D. J. Tritz, K. Stutman, D. Bell, R. E. Diallo, A. LeBlanc, B. P. Podesta, M. TI Electron temperature profile reconstructions from multi-energy SXR measurements using neural networks SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID ATOMIC DATABASE; RADIATED POWER; TIME; JET; SPECTRA; PLASMAS; CHIANTI AB Neural networks have been implemented to reconstruct electron temperature profiles from multi-energy soft-x-ray (ME-SXR) arrays and other plasma diagnostics with fast time resolution. On NSTX, electron temperature profiles are measured with a Thomson scattering diagnostic at 60 Hz, a speed limited by the repetition rate of the lasers. By training a neural network to match fast (>10 kHz) x-ray data with T-e profiles from Thomson scattering, the ME-SXR diagnostic can be used to produce T-e profiles with high time resolution. In particular, a new ME-SXR system will be used in conjunction with a new laser blow-off impurity injection system to measure cold pulse propagation in NSTX-U plasmas for direct, perturbative heat transport measurements. Synthetic ME-SXR data were used to optimize performance of the neural networks and study the impact of including data from various diagnostics in the networks. Initial tests on data from a previous-generation ME-SXR diagnostic on NSTX have proven successful. C1 [Clayton, D. J.; Tritz, K.; Stutman, D.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Bell, R. E.; Diallo, A.; LeBlanc, B. P.; Podesta, M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Clayton, DJ (reprint author), Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. EM ClaytoDJ@nv.doe.gov RI Stutman, Dan/P-4048-2015 FU United States DoE [DE-FG02-09ER55012] FX This work was supported by the United States DoE contract number DE-FG02-09ER55012. NR 31 TC 4 Z9 4 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD SEP PY 2013 VL 55 IS 9 AR 095015 DI 10.1088/0741-3335/55/9/095015 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 209QL UT WOS:000323774400016 ER PT J AU Lau, C Lin, Y Wallace, G Wukitch, SJ Hanson, GR Labombard, B Ochoukov, R Shiraiwa, S Terry, J AF Lau, C. Lin, Y. Wallace, G. Wukitch, S. J. Hanson, G. R. Labombard, B. Ochoukov, R. Shiraiwa, S. Terry, J. TI Effects of ICRF power on SOL density profiles and LH coupling during simultaneous LH and ICRF operation on Alcator C-Mod SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID PLASMA INTERACTIONS; ION-CYCLOTRON; ANTENNAS; CONVECTION; TFTR AB A dedicated experiment during simultaneous lower hybrid (LH) and ion cyclotron range-of-frequencies (ICRF) operations is carried out to evaluate and understand the effects of ICRF power on the scrape-off-layer (SOL) density profiles and on the resultant LH coupling for a wide range of plasma parameters on Alcator C-Mod. Operation of the LH launcher with the adjacent ICRF antenna significantly degrades LH coupling while operation with the ICRF antenna that is not magnetically connected to the LH launcher minimally affects LH coupling. An X-mode reflectometer system at three poloidal locations adjacent to the LH launcher and a visible video camera imaging the LH launcher are used to measure local SOL density profile and emissivity modifications with the application of LH and LH + ICRF power. These measurements confirm that the density in front of the LH launcher depends strongly on the magnetic field line mapping of the active ICRF antenna. Reflectometer measurements also observe both ICRF-driven and LH-driven poloidal density profile asymmetries, especially a strong density depletion at certain poloidal locations in front of the LH launcher during operation with a magnetically connected ICRF antenna. The results indicate that understanding both LH-driven flows and ICRF sheath driven flows may be necessary to understand the observed density profile modifications and LH coupling results during simultaneous LH + ICRF operation. C1 [Lau, C.; Lin, Y.; Wallace, G.; Wukitch, S. J.; Labombard, B.; Ochoukov, R.; Shiraiwa, S.; Terry, J.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Hanson, G. R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Lau, C (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM cornwall@psfc.mit.edu OI , Cornwall/0000-0002-8576-5867 FU MIT by US DoE [DE-AC05-00OR22725]; ORNL [DE-FC02-99ER54512] FX This work was supported at MIT by US DoE under awards DE-AC05-00OR22725 and at ORNL by DE-FC02-99ER54512. NR 30 TC 6 Z9 6 U1 4 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD SEP PY 2013 VL 55 IS 9 AR 095003 DI 10.1088/0741-3335/55/9/095003 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 209QL UT WOS:000323774400004 ER PT J AU Tobias, B Yu, L Domier, CW Luhmann, NC Austin, ME Paz-Soldan, C Turnbull, AD Classen, IGJ AF Tobias, B. Yu, L. Domier, C. W. Luhmann, N. C., Jr. Austin, M. E. Paz-Soldan, C. Turnbull, A. D. Classen, I. G. J. CA DIII-D Team TI Boundary perturbations coupled to core 3/2 tearing modes on the DIII-D tokamak SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID EMISSION RADIOMETER UPGRADE; DISCHARGES; JET AB High confinement (H-mode) discharges on the DIII-D tokamak are routinely subject to the formation of long-lived, non-disruptive magnetic islands that degrade confinement and limit fusion performance. Simultaneous, 2D measurement of electron temperature fluctuations in the core and edge regions allows for reconstruction of the radially resolved poloidal mode number spectrum and phase of the global plasma response associated with these modes. Coherent, n = 2 excursions of the plasma boundary are found to be the result of coupling to an n = 2, kink-like mode which arises locked in phase to the 3/2 island chain. This coupling dictates the relative phase of the displacement at the boundary with respect to the tearing mode. This unambiguous phase relationship, for which no counter-examples are observed, is presented as a test for modeling of the perturbed fields to be expected outside the confined plasma. C1 [Tobias, B.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Yu, L.; Domier, C. W.; Luhmann, N. C., Jr.] Univ Calif Davis, Davis, CA 95616 USA. [Austin, M. E.] Univ Texas Austin, Austin, TX 78712 USA. [Paz-Soldan, C.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. [Turnbull, A. D.] Gen Atom, San Diego, CA 92186 USA. [Classen, I. G. J.] Dutch Inst Fundamental Energy Res DIFFER, Rijnhuizen, Netherlands. RP Tobias, B (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM bjtobias@pppl.gov FU US DOE [DE-AC02-09CH11466, DE-FG02-99ER54531, DE-FG03-97ER54415] FX The authors would like to thank W A Cooper, N M Ferraro, R J La Haye, S C Jardin, E A Lazarus and A Welander for their insights in discussion of this work. Work supported by US DOE under DE-AC02-09CH11466, DE-FG02-99ER54531 and DE-FG03-97ER54415. NR 37 TC 5 Z9 5 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD SEP PY 2013 VL 55 IS 9 AR 095006 DI 10.1088/0741-3335/55/9/095006 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 209QL UT WOS:000323774400007 ER PT J AU Anctil, A Fthenakis, V AF Anctil, Annick Fthenakis, Vasilis TI Critical metals in strategic photovoltaic technologies: abundance versus recyclability SO PROGRESS IN PHOTOVOLTAICS LA English DT Article; Proceedings Paper CT 27th European Photovoltaic Solar Energy (EU PVSEC) CY 2012 CL Frankfurt, GERMANY DE photovoltaics; recycling ID SOLAR-CELLS; EFFICIENCY; MODULES AB Research efforts have been directed toward photovoltaic technologies using abundant base metals such as copper and zinc (e.g., CZTS or more recently CZTSSe) to overcome the material constraint challenges posed by tellurium, indium, germanium and gallium in current generation technologies (e.g., CdTe, CIGS, a-Si/thin-film Si). These materials are limited in supply because they are minor byproducts of copper, zinc, lead and aluminum production and their economic production is inherently linked to that of the base metals. On the other hand, although the base metals currently are abundant, their reserves are not inexhaustible. In addition to resource availability, the main sustainability metrics for large scales of photovoltaics growth are low cost and minimum environmental impact. As photovoltaics installations grow to greatly displace traditional power generation infrastructures, recycling will play an increasingly important role in managing their end-of-life and relieving pressure on the prices of critical materials. Identifying potential issues of current technologies can help implement take-back or recycling program ahead of time. This work explores the material recycling potential of various commercial and under development photovoltaic technologies. It sheds light on a dimension of sustainability that has not been investigated before. On the basis of entropy analyses, documented by the experience of recycling electronic products, we show that recycling of some types of photovoltaic modules that are based on abundant materials could be burdened by complexity and lack of value, creating, therefore, concerns associated with both end-of life environmental impacts and resource availability. Published 2012. This article is a U.S. Government work and is in the public domain in the USA. C1 [Anctil, Annick; Fthenakis, Vasilis] Brookhaven Natl Lab, PV Environm Res Ctr, Upton, NY 11973 USA. [Fthenakis, Vasilis] Columbia Univ, Ctr Life Cycle Anal, New York, NY USA. RP Fthenakis, V (reprint author), Brookhaven Natl Lab, PV Environm Res Ctr, Upton, NY 11973 USA. EM fthenakis@bnl.gov OI Anctil, Annick/0000-0001-5123-0146 NR 43 TC 39 Z9 41 U1 4 U2 106 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1062-7995 EI 1099-159X J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD SEP PY 2013 VL 21 IS 6 SI SI BP 1253 EP 1259 DI 10.1002/pip.2308 PG 7 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 203YO UT WOS:000323331000001 ER PT J AU Urquhart, B Sengupta, M Keller, J AF Urquhart, Bryan Sengupta, Manajit Keller, Jamie TI Optimizing geographic allotment of photovoltaic capacity in a distributed generation setting SO PROGRESS IN PHOTOVOLTAICS LA English DT Article; Proceedings Paper CT 27th European Photovoltaic Solar Energy (EU PVSEC) CY 2012 CL Frankfurt, GERMANY DE optimization; photovoltaics; variability; distribution; solar ID POWER OUTPUT; PV SYSTEMS; SCALE; FLUCTUATIONS; IRRADIANCE; MODEL AB A multi-objective optimization was performed to allocate 2MW of photovoltaic (PV) among four candidate sites on the island of Lanai, Hawaii, such that energy was maximized and variability in the form of ramp rates was minimized. This resulted in the Pareto-optimal set, an optimal solution set that provides a range of geographic allotment alternatives for fixed PV capacity. Within the Pareto-optimal set, a trade-off was found between energy produced and variability experienced, whereby a decrease in variability always necessitates a simultaneous decrease in energy. With this development, system designers have a method to select the preferred combination of energy generation and variability within the set of optimal alternatives to meet their needs. A design point within the optimal set was selected for study that decreased extreme ramp rates by more than 50% while decreasing annual energy generation by only 3% above the maximum generation allocation. To quantify the allotment mix selected, a new metric called the ramp ratio was developed. It compares ramping magnitude when all capacity is allotted to a single location to the aggregate ramping magnitude in a distributed scenario. The ramp ratio quantifies simultaneously how much more smoothing a distributed scenario would experience than single-site allotment and how much a single site is being underutilized for its ability to reduce aggregate variability. This paper creates a framework for use by cities and municipal utilities to reduce variability impacts while planning for high penetration of PV on the distribution grid, thereby maximizing the value of investments. Copyright (c) 2013 John Wiley & Sons, Ltd. C1 [Urquhart, Bryan; Sengupta, Manajit; Keller, Jamie] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Urquhart, Bryan] Univ Calif San Diego, La Jolla, CA 92093 USA. RP Sengupta, M (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Manajit.Sengupta@nrel.gov NR 17 TC 6 Z9 6 U1 1 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1062-7995 J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD SEP PY 2013 VL 21 IS 6 SI SI BP 1276 EP 1285 DI 10.1002/pip.2334 PG 10 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 203YO UT WOS:000323331000003 ER PT J AU Liu, HH Rutqvist, J AF Liu, Hui-Hai Rutqvist, Jonny TI Coupled Hydro-mechanical Processes Associated with Multiphase Flow in a Dual-continuum System: Formulations and an Application SO ROCK MECHANICS AND ROCK ENGINEERING LA English DT Article DE Hydromechanical process; Rock mechanics; Dual continuum; CO2 geological sequestration; Numerical simulation ID NATURALLY FRACTURED RESERVOIRS; DOUBLE-POROSITY; ROCK; MODEL; GEOMECHANICS; DEFORMATION; SIMULATION; TRANSPORT; MEDIA AB Fractured rock has often been conceptualized as a dual-continuum system for many practical applications. This study proposes a systematic approach to deal with multiphase flow in a dual-continuum system. Considering that fluid flow occurs in pore volumes (including fracture apertures), we first develop a so-called pore-space conservation equation for deformed fractured rock and then combine this equation with fluid mass balance to derive governing equations for multiphase flow associated with rock deformation. Constitutive relationships are also presented for describing stress dependence of hydraulic properties and effective mechanical parameters for bulk rock body (as a function of the corresponding parameters for fracture and matrix continua). Finally, we applied the developed approach to a CO2 geological sequestration problem to demonstrate the usefulness of the approach. C1 [Liu, Hui-Hai; Rutqvist, Jonny] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Liu, HH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM hhliu@lbl.gov RI Rutqvist, Jonny/F-4957-2015 OI Rutqvist, Jonny/0000-0002-7949-9785 FU Office of Sequestration, Hydrogen, and Clean Coal Fuels of the US Department of Energy [DE-AC02-05CH11231] FX We thank Drs. Jonathan Ajo-Franklin and Daniel Hawkes at LBNL for reviewing the initial version of the paper and In Salah Gas Project for providing data sets related to CO2 sequestration activities at the In Salah site. Constructive comments from Prof. Herbert Einstein and anonymous reviewers are appreciated. This work was supported by the Assistant Secretary for Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels of the US Department of Energy under Contract No. DE-AC02-05CH11231. Especially, we like to acknowledge In Salah JIP and their partners BP, StatoiHydro, and Sonatrach for providing field data and valuable discussions. NR 31 TC 5 Z9 6 U1 1 U2 34 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0723-2632 J9 ROCK MECH ROCK ENG JI Rock Mech. Rock Eng. PD SEP PY 2013 VL 46 IS 5 BP 1103 EP 1112 DI 10.1007/s00603-012-0313-3 PG 10 WC Engineering, Geological; Geosciences, Multidisciplinary SC Engineering; Geology GA 208IC UT WOS:000323670300012 ER PT J AU Kim, HM Rutqvist, J Jeong, JH Choi, BH Ryu, DW Song, WK AF Kim, Hyung-Mok Rutqvist, Jonny Jeong, Ju-Hwan Choi, Byung-Hee Ryu, Dong-Woo Song, Won-Kyong TI Characterizing Excavation Damaged Zone and Stability of Pressurized Lined Rock Caverns for Underground Compressed Air Energy Storage SO ROCK MECHANICS AND ROCK ENGINEERING LA English DT Article DE Excavation damaged zone (EDZ); Compliance; Lined rock cavern (LRC); Compressed air energy storage (CAES); TOUGH-FLAC simulator ID FRACTURED ROCK; DISTURBED ZONE; PERFORMANCE; PERMEABILITY; REPOSITORY; MINE; CLAY AB In this paper, we investigate the influence of the excavation damaged zone (EDZ) on the geomechanical performance of compressed air energy storage (CAES) in lined rock caverns. We conducted a detailed characterization of the EDZ in rock caverns that have been excavated for a Korean pilot test program on CAES in (concrete) lined rock caverns at shallow depth. The EDZ was characterized by measurements of P- and S-wave velocities and permeability across the EDZ and into undisturbed host rock. Moreover, we constructed an in situ concrete lining model and conducted permeability measurements in boreholes penetrating the concrete, through the EDZ and into the undisturbed host rock. Using the site-specific conditions and the results of the EDZ characterization, we carried out a model simulation to investigate the influence of the EDZ on the CAES performance, in particular related to geomechanical responses and stability. We used a modeling approach including coupled thermodynamic multiphase flow and geomechanics, which was proven to be useful in previous generic CAES studies. Our modeling results showed that the potential for inducing tensile fractures and air leakage through the concrete lining could be substantially reduced if the EDZ around the cavern could be minimized. Moreover, the results showed that the most favorable design for reducing the potential for tensile failure in the lining would be a relatively compliant concrete lining with a tight inner seal, and a relatively stiff (uncompliant) host rock with a minimized EDZ. Because EDZ compliance depends on its compressibility (or modulus) and thickness, care should be taken during drill and blast operations to minimize the damage to the cavern walls. C1 [Kim, Hyung-Mok] Sejong Univ, Energy & Mineral Resources Engn, Seoul 143747, South Korea. [Rutqvist, Jonny] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Jeong, Ju-Hwan] Minist Knowledge Econ, South Mine Secur Off, Hwasun 519805, South Korea. [Choi, Byung-Hee; Ryu, Dong-Woo; Song, Won-Kyong] Korea Inst Geosci & Mineral Resources KIGAM, Taejon 305350, South Korea. RP Ryu, DW (reprint author), Korea Inst Geosci & Mineral Resources KIGAM, Taejon 305350, South Korea. EM dwryu@kigam.re.kr RI Rutqvist, Jonny/F-4957-2015; OI Rutqvist, Jonny/0000-0002-7949-9785; Ryu, Dongwoo/0000-0002-4556-9669 FU Basic Research Project of the Korea Institute of Geoscience and Mineral Resources (KIGAM) [GP2012-001]; Ministry of Knowledge Economy of Korea; KIGAM; US Department of Energy [DE-AC02-05CH11231] FX This research was supported by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources (KIGAM, GP2012-001), funded by the Ministry of Knowledge Economy of Korea, and funding from KIGAM for Dr. Jonny Rutqvist and Berkeley Lab was provided through the US Department of Energy Contract No. DE-AC02-05CH11231. Editorial review by Dan Hawkes at Berkeley Lab is greatly appreciated. NR 28 TC 7 Z9 8 U1 1 U2 34 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0723-2632 J9 ROCK MECH ROCK ENG JI Rock Mech. Rock Eng. PD SEP PY 2013 VL 46 IS 5 BP 1113 EP 1124 DI 10.1007/s00603-012-0312-4 PG 12 WC Engineering, Geological; Geosciences, Multidisciplinary SC Engineering; Geology GA 208IC UT WOS:000323670300013 ER PT J AU Crowell, SR Sharma, AK Amin, S Soelberg, JJ Sadler, NC Wright, AT Baird, WM Williams, DE Corley, RA AF Crowell, Susan Ritger Sharma, Arun K. Amin, Shantu Soelberg, Jolen J. Sadler, Natalie C. Wright, Aaron T. Baird, William M. Williams, David E. Corley, Richard A. TI Impact of Pregnancy on the Pharmacokinetics of Dibenzo[def,p]chrysene in Mice SO TOXICOLOGICAL SCIENCES LA English DT Article DE PBPK modeling; dibenzo[def; p]chrysene; polycyclic aromatic hydrocarbons; pregnancy; gestation ID TUMOR-INITIATING ACTIVITY; TANDEM MASS-SPECTRA; RAT MAMMARY-GLAND; MOUSE SKIN; IN-VIVO; TRANSPLACENTAL CARCINOGENESIS; ULTIMATE CARCINOGENS; ACCURATE MASS; CYTOCHROME-P450; MODELS AB Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants generated during combustion. Dibenzo[def,p]chrysene (DBC) is a high molecular weight PAH classified as a 2B carcinogen by the International Agency for Research on Cancer. DBC crosses the placenta in exposed mice, causing carcinogenicity in offspring. We present pharmacokinetic data of DBC in pregnant and nonpregnant mice. Pregnant (gestational day 17) and nonpregnant female B6129SF1/J mice were exposed to 15mg/kg DBC by oral gavage. Subgroups of mice were sacrificed up to 48h postdosing, and blood, excreta, and tissues were analyzed for DBC and its major diol and tetrol metabolites. Elevated maximum concentrations and areas under the curve of DBC and its metabolites were observed in blood and tissues of pregnant animals compared with nave mice. Using a physiologically based pharmacokinetic (PBPK) model, we found observed differences in pharmacokinetics could not be attributed solely to changes in tissue volumes and blood flows that occur during pregnancy. Measurement of enzyme activity in nave and pregnant mice by activity-based protein profiling indicated a 2- to 10-fold reduction in activities of many of the enzymes relevant to PAH metabolism. Incorporating this reduction into the PBPK model improved model predictions. Concentrations of DBC in fetuses were one to two orders of magnitude below maternal blood concentrations, whereas metabolite concentrations closely resembled those observed in maternal blood. C1 [Crowell, Susan Ritger; Soelberg, Jolen J.; Sadler, Natalie C.; Wright, Aaron T.; Corley, Richard A.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Sharma, Arun K.; Amin, Shantu] Penn State Univ, Coll Med, Dept Pharmacol, Hershey, PA 17033 USA. [Wright, Aaron T.; Baird, William M.] Oregon State Univ, Dept Environm & Mol Toxicol, Corvallis, OR 97331 USA. RP Crowell, SR (reprint author), Syst Toxicol, 902 Battelle Blvd, Richland, WA 99352 USA. EM susan.crowell@pnnl.gov OI Wright, Aaron/0000-0002-3172-5253 FU National Institute of Environmental Health Sciences [P42 ES016465]; National Institute of General Medical Sciences [8P41GM103493-10]; United States Department of Energy Laboratory Directed Research and Development Project [90001] FX National Institute of Environmental Health Sciences (P42 ES016465), National Institute of General Medical Sciences (8P41GM103493-10), United States Department of Energy Laboratory Directed Research and Development Project 90001. NR 46 TC 8 Z9 8 U1 1 U2 23 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1096-6080 J9 TOXICOL SCI JI Toxicol. Sci. PD SEP PY 2013 VL 135 IS 1 BP 48 EP 62 DI 10.1093/toxsci/kft124 PG 15 WC Toxicology SC Toxicology GA 207SQ UT WOS:000323624500005 PM 23744095 ER PT J AU Liu, HH Valocchi, AJ Kang, QJ Werth, C AF Liu, Haihu Valocchi, Albert J. Kang, Qinjun Werth, Charles TI Pore-Scale Simulations of Gas Displacing Liquid in a Homogeneous Pore Network Using the Lattice Boltzmann Method SO TRANSPORT IN POROUS MEDIA LA English DT Article DE Pore-scale simulations; Fingering; Porous media; Multiphase flows; Lattice Boltzmann ID INCOMPRESSIBLE 2-PHASE FLOWS; LEVEL SET METHOD; POROUS-MEDIA; IMMISCIBLE DISPLACEMENT; RELATIVE PERMEABILITY; INVASION PERCOLATION; LINEAR-STABILITY; MULTIPHASE FLOWS; FLUID INTERFACE; DENSITY RATIOS AB A lattice Boltzmann high-density-ratio model, which uses diffuse interface theory to describe the interfacial dynamics and was proposed originally by Lee and Liu (J Comput Phys 229:8045-8063, 2010), is extended to simulate immiscible multiphase flows in porous media. A wetting boundary treatment is proposed for concave and convex corners. The capability and accuracy of this model is first validated by simulations of equilibrium contact angle, injection of a non-wetting gas into two parallel capillary tubes, and dynamic capillary intrusion. The model is then used to simulate gas displacement of liquid in a homogenous two-dimensional pore network consisting of uniformly spaced square obstructions. The influence of capillary number (Ca), viscosity ratio (), surface wettability, and Bond number (Bo) is studied systematically. In the drainage displacement, we have identified three different regimes, namely stable displacement, capillary fingering, and viscous fingering, all of which are strongly dependent upon the capillary number, viscosity ratio, and Bond number. Gas saturation generally increases with an increase in capillary number at breakthrough, whereas a slight decrease occurs when Ca is increased from to , which is associated with the viscous instability at high Ca. Increasing the viscosity ratio can enhance stability during displacement, leading to an increase in gas saturation. In the two-dimensional phase diagram, our results show that the viscous fingering regime occupies a zone markedly different from those obtained in previous numerical and experimental studies. When the surface wettability is taken into account, the residual liquid blob decreases in size with the affinity of the displacing gas to the solid surface. Increasing Bo can increase the gas saturation, and stable displacement is observed for because the applied gravity has a stabilizing influence on the drainage process. C1 [Liu, Haihu; Valocchi, Albert J.; Werth, Charles] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. [Kang, Qinjun] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Liu, HH (reprint author), Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. EM haihuliu@illinois.edu RI Liu, Haihu/B-2097-2013; Kang, Qinjun/A-2585-2010 OI Liu, Haihu/0000-0002-0295-1251; Kang, Qinjun/0000-0002-4754-2240 FU LDRD Program of the Los Alamos National Laboratory [20100025DR]; International Institute for Carbon Neutral Energy Research (WPI-I2CNER); Japanese Ministry of Education, Culture, Sports, Science and Technology FX The authors gratefully acknowledge the support of the LDRD Program (No. 20100025DR) of the Los Alamos National Laboratory, and the International Institute for Carbon Neutral Energy Research (WPI-I2CNER), sponsored by the Japanese Ministry of Education, Culture, Sports, Science and Technology. The authors would like to thank Dr. A. Hunt, Dr. R. P. Ewing, and two anonymous referees for many valuable comments and suggestions. NR 95 TC 26 Z9 26 U1 4 U2 73 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0169-3913 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD SEP PY 2013 VL 99 IS 3 BP 555 EP 580 DI 10.1007/s11242-013-0200-8 PG 26 WC Engineering, Chemical SC Engineering GA 206HA UT WOS:000323508300007 ER PT J AU Rangarajan, D Curtis, JS Benyahia, S Mychkovsky, AG AF Rangarajan, Deepak Curtis, Jennifer S. Benyahia, Sofiane Mychkovsky, Alexander G. TI Continuum model validation of gas jet plume injection into a gas-solid bubbling fluidized bed SO AICHE JOURNAL LA English DT Article DE multiphase flows for interphase exchanges; Eulerian-Eulerian modeling; continuum gas-solid modeling ID PHASE-VELOCITY PROFILES; NUMERICAL-SIMULATION; SPOUTED BED; LDV MEASUREMENTS; HYDRODYNAMIC MODELS; GRANULAR-MATERIALS; PARTICLE FLOWS; CFD MODELS; PENETRATION; DILUTE AB A continuum gas-solid model that includes descriptions for solid frictional stress and a turbulent gas phase is evaluated against published experimental measurements of mean and fluctuating velocity inside the jet plume region of a bubbling fluidized bed with a high-speed vertical jet injection. The main uncertainties in closure relations necessary in the continuum model are first identified and then determined using available experimental data. The overall model shows good agreement with both the gas and particle experimental velocity profiles. The trends in the centerline mean and fluctuating velocity with change in the fluidized state of the emulsion are also captured favorably. Main deviations between the model and experiment are noted and possible reasons for the mismatch are discussed. (c) 2013 American Institute of Chemical Engineers AIChE J, 59: 3247-3264, 2013 C1 [Rangarajan, Deepak; Curtis, Jennifer S.] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. [Benyahia, Sofiane] Natl Energy Technol Lab, Morgantown, WV 26505 USA. [Mychkovsky, Alexander G.] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA. RP Rangarajan, D (reprint author), Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. EM deepakrangarajan@ufl.edu FU Department of Energy's Office of Fossil Energy's University Research Program [DE-NT0007649] FX The funding for this work was sponsored by the Department of Energy's Office of Fossil Energy's University Research Program under project number DE-NT0007649. The authors acknowledge the University of Florida High-Performance Computing Center for providing computational resources and support that have contributed to the research results reported within this article (URL: http://hpc.ufl.edu). NR 58 TC 1 Z9 2 U1 6 U2 37 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0001-1541 J9 AICHE J JI AICHE J. PD SEP PY 2013 VL 59 IS 9 BP 3247 EP 3264 DI 10.1002/aic.14018 PG 18 WC Engineering, Chemical SC Engineering GA 201NU UT WOS:000323149100012 ER PT J AU D'Ettorre, G Lo Presti, A Gori, C Cella, E Bertoli, A Vullo, V Perno, CF Ciotti, M Foley, BT Ciccozzi, M AF D'Ettorre, Gabriella Lo Presti, Alessandra Gori, Caterina Cella, Eleonora Bertoli, Ada Vullo, Vincenzo Perno, Carlo Federico Ciotti, Marco Foley, Brian T. Ciccozzi, Massimo CA HIV-2 Study Grp TI An HIV Type 2 Case Series in Italy: A Phylogenetic Analysis SO AIDS RESEARCH AND HUMAN RETROVIRUSES LA English DT Article ID IMMUNODEFICIENCY-VIRUS TYPE-2; WEST-AFRICA; GUINEA-BISSAU; INFECTION; EPIDEMIOLOGY; AIDS; PREVALENCE; RETROVIRUS; DIAGNOSES; PORTUGAL AB In recent years, the increase of migration from countries where human immunodeficiency virus type 2 (HIV-2) is endemic to industrialized countries has facilitated the spread of the virus in individuals previously unexposed to this threat. In this report, we performed a phylogenetic analysis on pol and env sequences of HIV-2 strains identified in foreigners and native citizens to trace the origin of infection. All but one of the 17 pol gene sequences were classified as group A. HIV-2 strains were aggregated in several clusters depending by the country of origin and/or infection. One patient (1AA) was classified as being infected with a recombinant between HIV-2 group A and HIV-2 group B, because the pol gene sequence was clearly in the group A, but an env V3 region sequence from this patient was more similar to group B viruses. Therefore, it is urgent to strengthen the surveillance and use adequate molecular virological tools to diagnose and monitor HIV-2 infection. C1 [D'Ettorre, Gabriella; Vullo, Vincenzo] Univ Roma La Sapienza, Dept Publ Hlth & Infect Dis, I-00185 Rome, Italy. [Lo Presti, Alessandra; Cella, Eleonora; Ciccozzi, Massimo] Ist Super Sanita, Dept Infect Dis, I-00161 Rome, Italy. [Gori, Caterina] INMI L Spallanzani, Rome, Italy. [Bertoli, Ada; Perno, Carlo Federico] Univ Roma Tor Vergata, Dept Expt Med & Surg, Rome, Italy. [Ciotti, Marco] Fdn Polyclin Tor Vergata, Mol Virol Lab, Rome, Italy. [Foley, Brian T.] Los Alamos Natl Lab, Theoret Biol Div, Los Alamos, NM USA. RP Ciccozzi, M (reprint author), Ist Super Sanita, Dept Infect Dis, Viale Regina Elena 299, I-00161 Rome, Italy. EM ciccozzi@iss.it RI perno, carlo federico/O-1544-2016; d'Ettorre, Gabriella/K-4511-2016; Cella, Eleonora/J-9961-2016; Lo Presti, Alessandra/K-1451-2016; CICCOZZI, MASSIMO/C-6484-2016; Ceccarelli, Giancarlo/K-6454-2016 OI d'Ettorre, Gabriella/0000-0002-3571-5677; gori, caterina/0000-0002-6042-7570; Cavallari, Eugenio Nelson/0000-0002-6021-484X; BERTOLI, ADA/0000-0003-0663-2503; Foley, Brian/0000-0002-1086-0296; Cella, Eleonora/0000-0002-7870-9744; Lo Presti, Alessandra/0000-0001-7611-5021; CICCOZZI, MASSIMO/0000-0003-3866-9239; Ceccarelli, Giancarlo/0000-0001-5921-3180 NR 25 TC 1 Z9 1 U1 1 U2 11 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 0889-2229 J9 AIDS RES HUM RETROV JI Aids Res. Hum. Retrovir. PD SEP PY 2013 VL 29 IS 9 BP 1254 EP 1259 DI 10.1089/aid.2013.0091 PG 6 WC Immunology; Infectious Diseases; Virology SC Immunology; Infectious Diseases; Virology GA 204NL UT WOS:000323372600012 PM 23638670 ER PT J AU Wissel, SA Zwicker, A Ross, J Gershman, S AF Wissel, Stephanie A. Zwicker, Andrew Ross, Jerry Gershman, Sophia TI The use of dc glow discharges as undergraduate educational tools SO AMERICAN JOURNAL OF PHYSICS LA English DT Article ID PLASMA PHYSICS; LABORATORY COURSE; SPECTROSCOPY AB Plasmas have a beguiling way of getting students interested in physics. We argue that plasmas can and should be incorporated into the undergraduate curriculum as both demonstrations and advanced investigations of electromagnetism and quantum effects. We describe a device, based on a direct-current (dc) glow discharge tube, which allows for a number of experiments into topics such as electrical breakdown, spectroscopy, magnetism, and electron temperature. (C) 2013 American Association of Physics Teachers. C1 [Wissel, Stephanie A.; Zwicker, Andrew] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Ross, Jerry] Shawnee State Univ, Portsmouth, OH 45662 USA. [Gershman, Sophia] Adv Res Innovat Sci Educ ARISE, Scotch Plains, NJ 07076 USA. RP Wissel, SA (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM swissel@physics.ucla.edu; azwicker@pppl.gov NR 24 TC 1 Z9 1 U1 3 U2 6 PU AMER ASSOC PHYSICS TEACHERS AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0002-9505 J9 AM J PHYS JI Am. J. Phys. PD SEP PY 2013 VL 81 IS 9 BP 663 EP 669 DI 10.1119/1.4811435 PG 7 WC Education, Scientific Disciplines; Physics, Multidisciplinary SC Education & Educational Research; Physics GA 203GS UT WOS:000323280600005 ER PT J AU Lindley, MC Lorick, SA Geevarughese, A Lee, SJ Makvandi, M Miller, BL Nace, DA Smith, C Ahmed, F AF Lindley, Megan C. Lorick, Suchita A. Geevarughese, Anita Lee, Soo-Jeong Makvandi, Monear Miller, Brady L. Nace, David A. Smith, Carmela Ahmed, Faruque TI Evaluating a Standardized Measure of Healthcare Personnel Influenza Vaccination SO AMERICAN JOURNAL OF PREVENTIVE MEDICINE LA English DT Article ID LONG-TERM-CARE; RANDOMIZED CONTROLLED-TRIAL; NOSOCOMIAL INFLUENZA; ELDERLY-PEOPLE; HOME STAFF; WORKERS; MORTALITY; RESIDENTS; OUTBREAK; RATES AB Background: Methods of measuring influenza vaccination of healthcare personnel (HCP) vary substantially, as do the groups of HCP that are included in any given set of measurements. Thus, comparison of vaccination rates across healthcare facilities is difficult. Purpose: The goal of the study was to determine the feasibility of implementing a standardized measure for reporting HCP influenza vaccination data in various types of healthcare facilities. Methods: A total of 318 facilities recruited in four U.S. jurisdictions agreed to participate in the evaluation, including hospitals, long-term care facilities, dialysis clinics, ambulatory surgery centers, and physician practices. HCP in participating facilities were categorized as employees, credentialed non-employees, or other non-employees using standard definitions. Data were gathered using cross-sectional web-based surveys completed at three intervals between October 2010 and May 2011; data were analyzed in February 2012. Results: 234 facilities (74%) completed all three surveys. Most facilities could report on-site employee vaccination; almost one third could not provide complete data on HCP vaccinated outside the facility, contraindications, or declinations, primarily due to missing non-employee data. Inability to determine vaccination status of credentialed and other non-employees was cited as a major barrier to measure implementation by 24% and 27% of respondents, respectively. Conclusions: Using the measure to report employee vaccination status was feasible for most facilities; tracking non-employee HCP was more challenging. Based on evaluation findings, the measure was revised to limit the types of non-employees included. Although the revised measure is less comprehensive, it is more likely to produce valid vaccination coverage estimates. Use of this standardized measure can inform quality improvement efforts and facilitate comparison of HCP influenza vaccination among facilities. Published by Elsevier Inc. on behalf of American Journal of Preventive Medicine C1 [Lindley, Megan C.; Lorick, Suchita A.; Ahmed, Faruque] CDC, Natl Ctr Immunizat & Resp Dis, Atlanta, GA 30333 USA. [Geevarughese, Anita] New York City Dept Hlth & Mental Hyg, Bur Immunizat, New York, NY USA. [Lee, Soo-Jeong] Univ Calif San Francisco, Sch Nursing, San Francisco, CA 94143 USA. [Makvandi, Monear] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Miller, Brady L.] Univ Michigan, Sch Med, Ann Arbor, MI USA. [Nace, David A.] Univ Pittsburgh, Div Geriatr Med, Pittsburgh, PA USA. RP Lindley, MC (reprint author), Natl Ctr Immunizat & Resp Dis, 1600 Clifton Rd NE,Mailstop A-19, Atlanta, GA 30333 USA. EM MLindley@cdc.gov RI Nace, David/D-2638-2014 FU CDC FX This work was supported by the CDC. NR 40 TC 2 Z9 2 U1 0 U2 4 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0749-3797 J9 AM J PREV MED JI Am. J. Prev. Med. PD SEP PY 2013 VL 45 IS 3 BP 297 EP 303 DI 10.1016/j.amepre.2013.04.019 PG 7 WC Public, Environmental & Occupational Health; Medicine, General & Internal SC Public, Environmental & Occupational Health; General & Internal Medicine GA 202CU UT WOS:000323191900007 PM 23953356 ER PT J AU Banerjee, A Kaplan, JB Soherwardy, A Nudell, Y Mackenzie, GA Johnson, S Balashova, NV AF Banerjee, Anushree Kaplan, Jeffrey B. Soherwardy, Amenah Nudell, Yoav Mackenzie, Grace A. Johnson, Shannon Balashova, Nataliya V. TI Characterization of TEM-1 beta-Lactamase-Producing Kingella kingae Clinical Isolates SO ANTIMICROBIAL AGENTS AND CHEMOTHERAPY LA English DT Article ID POLYMERASE-CHAIN-REACTION; SKELETAL SYSTEM INFECTIONS; NEISSERIA-GONORRHOEAE; OSTEOARTICULAR INFECTIONS; SEPTIC ARTHRITIS; ACTINOBACILLUS-ACTINOMYCETEMCOMITANS; ANTIBIOTIC SUSCEPTIBILITY; MENINGOCOCCAL PORB; EMERGING PATHOGEN; ESCHERICHIA-COLI AB Kingella kingae is a human pathogen that causes pediatric osteoarticular infections and infective endocarditis in children and adults. The bacterium is usually susceptible to beta-lactam antibiotics, although beta-lactam resistance has been reported in rare isolates. This study was conducted to identify beta-lactam-resistant strains and to characterize the resistance mechanism. Screening of a set of 90 K. kingae clinical isolates obtained from different geographic locations revealed high-level resistance to penicillins among 25% of the strains isolated from Minnesota and Iceland. These strains produced TEM-1 beta-lactamase and were shown to contain additional >= 50-kb plasmids. Ion Torrent sequencing of extrachromosomal DNA from a beta-lactamase-producing strain confirmed the plasmid location of the bla(TEM) gene. An identical plasmid pattern was demonstrated by multiplex PCR in all beta-lactamase producers. The porin gene's fragments were analyzed to investigate the relatedness of bacterial strains. Phylogenetic analysis revealed 27 single-nucleotide polymorphisms (SNPs) in the por gene fragment, resulting in two major clusters with 11 allele types forming bacterial-strain subclusters. beta-Lactamase producers were grouped together based on por genotyping. Our results suggest that the beta-lactamase-producing strains likely originate from a single plasmid-bearing K. kingae isolate that traveled from Europe to the United States, or vice versa. This study highlights the prevalence of penicillin resistance among K. kingae strains in some regions and emphasizes the importance of surveillance for antibiotic resistance of the pathogen. C1 [Banerjee, Anushree; Soherwardy, Amenah; Nudell, Yoav; Mackenzie, Grace A.; Balashova, Nataliya V.] Univ Med & Dent New Jersey, New Jersey Dent Sch, Dept Oral Biol, Newark, NJ 07103 USA. [Kaplan, Jeffrey B.] American Univ, Dept Biol, Washington, DC 20016 USA. [Johnson, Shannon] Los Alamos Natl Lab, Genome Biol Grp, Los Alamos, NM USA. RP Balashova, NV (reprint author), Univ Med & Dent New Jersey, New Jersey Dent Sch, Dept Oral Biol, Newark, NJ 07103 USA. EM balashnv@umdnj.edu FU NIH [AI82392, AI80844]; American Heart Association [9SDG2310194] FX This work was supported in part by NIH grants AI82392 (to J.B.K.) and AI80844 (to N.V.B.) and by American Heart Association grant 9SDG2310194 (to N.V.B.). NR 54 TC 8 Z9 8 U1 0 U2 10 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0066-4804 EI 1098-6596 J9 ANTIMICROB AGENTS CH JI Antimicrob. Agents Chemother. PD SEP PY 2013 VL 57 IS 9 BP 4300 EP 4306 DI 10.1128/AAC.00318-13 PG 7 WC Microbiology; Pharmacology & Pharmacy SC Microbiology; Pharmacology & Pharmacy GA 203IL UT WOS:000323285500026 PM 23796935 ER PT J AU Schaefer, AL Lappala, CR Morlen, RP Pelletier, DA Lu, TYS Lankford, PK Harwood, CS Greenberg, EP AF Schaefer, Amy L. Lappala, Colin R. Morlen, Ryan P. Pelletier, Dale A. Lu, Tse-Yuan S. Lankford, Patricia K. Harwood, Caroline S. Greenberg, E. Peter TI LuxR- and LuxI-Type Quorum-Sensing Circuits Are Prevalent in Members of the Populus deltoides Microbiome SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID HOMOSERINE LACTONE; PSEUDOMONAS-AERUGINOSA; RHIZOBIUM-LEGUMINOSARUM; SINORHIZOBIUM-MELILOTI; VIRULENCE; RHIZOSPHERE; HOMOLOG; GENES; MOLECULES; BACTERIA AB We are interested in the root microbiome of the fast-growing Eastern cottonwood tree, Populus deltoides. There is a large bank of bacterial isolates from P. deltoides, and there are 44 draft genomes of bacterial endophyte and rhizosphere isolates. As a first step in efforts to understand the roles of bacterial communication and plant-bacterial signaling in P. deltoides, we focused on the prevalence of acyl-homoserine lactone (AHL) quorum-sensing-signal production and reception in members of the P. deltoides microbiome. We screened 129 bacterial isolates for AHL production using a broad-spectrum bioassay that responds to many but not all AHLs, and we queried the available genome sequences of microbiome isolates for homologs of AHL synthase and receptor genes. AHL signal production was detected in 40% of 129 strains tested. Positive isolates included members of the Alpha-, Beta-, and Gammaproteobacteria. Members of the luxI family of AHL synthases were identified in 18 of 39 proteobacterial genomes, including genomes of some isolates that tested negative in the bioassay. Members of the luxR family of transcription factors, which includes AHL-responsive factors, were more abundant than luxI homologs. There were 72 in the 39 proteobacterial genomes. Some of the luxR homologs appear to be members of a subfamily of LuxRs that respond to as-yet-unknown plant signals rather than bacterial AHLs. Apparently, there is a substantial capacity for AHL cell-to-cell communication in proteobacteria of the P. deltoides microbiota, and there are also Proteobacteria with LuxR homologs of the type hypothesized to respond to plant signals or cues. C1 [Schaefer, Amy L.; Lappala, Colin R.; Morlen, Ryan P.; Harwood, Caroline S.; Greenberg, E. Peter] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA. [Pelletier, Dale A.; Lu, Tse-Yuan S.; Lankford, Patricia K.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. RP Greenberg, EP (reprint author), Univ Washington, Dept Microbiol, Seattle, WA 98195 USA. EM epgreen@uw.edu FU Genomic Science Program, U.S. Department of Energy, Office of Science, Biological and Environmental Research, Plant Microbe Interfaces Scientific Focus Area; U.S. Department of Energy [DE-AC05-00OR22725] FX This research was sponsored by the Genomic Science Program, U.S. Department of Energy, Office of Science, Biological and Environmental Research, as part of the Plant Microbe Interfaces Scientific Focus Area (http://pmi.ornl.gov). Oak Ridge National Laboratory is managed by UT-Battelle LLC for the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 43 TC 9 Z9 9 U1 2 U2 48 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD SEP PY 2013 VL 79 IS 18 BP 5745 EP 5752 DI 10.1128/AEM.01417-13 PG 8 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 205DO UT WOS:000323421900037 PM 23851092 ER PT J AU Busygina, V Gaines, WA Xu, YY Kwon, Y Williams, GJ Lin, SW Chang, HY Chi, P Wang, HW Sung, P AF Busygina, Valeria Gaines, William A. Xu, Yuanyuan Kwon, Youngho Williams, Gareth J. Lin, Sheng-Wei Chang, Hao-Yen Chi, Peter Wang, Hong-Wei Sung, Patrick TI Functional attributes of the Saccharomyces cerevisiae meiotic recombinase Dmc1 SO DNA REPAIR LA English DT Article DE Dmc1 recombinase; Homologous recombination; Meiosis ID DNA STRAND EXCHANGE; RAD51 NUCLEOPROTEIN FILAMENTS; HELICAL FILAMENTS; GENETIC-RECOMBINATION; YEAST RAD51; MEIOSIS; PROTEIN; HOMOLOG; COMPLEX; ROLES AB The role of Dmc1 as a meiosis-specific general recombinase was first demonstrated in Saccharomyces cerevisiae. Progress in understanding the biochemical mechanism of ScDmc1 has been hampered by its tendency to form inactive aggregates. We have found that the inclusion of ATP during protein purification prevents Dmc1 aggregation. ScDmc1 so prepared is capable of forming D-loops and responsive to its accessory factors Rad54 and Rdh54. Negative staining electron microscopy and iterative helical real-space reconstruction revealed that the ScDmc1-ssDNA nucleoprotein filament harbors 6.5 protomers per turn with a pitch of similar to 106 angstrom. The ScDmc1 purification procedure and companion molecular analyses should facilitate future studies on this recombinase. (c) 2013 Elsevier B.V. All rights reserved. C1 [Busygina, Valeria; Gaines, William A.; Xu, Yuanyuan; Kwon, Youngho; Sung, Patrick] Yale Univ, Sch Med, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA. [Williams, Gareth J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Lin, Sheng-Wei; Chi, Peter] Acad Sinica, Inst Biol Chem, Taipei 115, Taiwan. [Chang, Hao-Yen; Chi, Peter] Natl Taiwan Univ, Inst Biochem Sci, Taipei 10617, Taiwan. [Wang, Hong-Wei] Tsinghua Univ, Tsinghua Peking Joint Ctr Life Sci, Struct Biol Ctr, Minist Educ,Prot Sci Lab,Sch Life Sci, Beijing 100084, Peoples R China. RP Sung, P (reprint author), Yale Univ, Sch Med, Dept Mol Biophys & Biochem, 333 Cedar St,SHM C130, New Haven, CT 06520 USA. EM Patrick.Sung@yale.edu RI Lin, Sheng-Wei/G-8142-2015; OI CHI, HUNG-YUAN/0000-0001-9229-8729 FU NIH [RO1GM057814, RO1ES007061, PO1CA092584, F32GM101808]; National Science Council of Taiwan [NSC 100-2311-B-002-009]; National Taiwan University [102R7848, 102R7560-6]; National Basic Research Program of China [2010CB912401]; National Center for Protein Sciences Beijing FX We are grateful to Douglas Bishop for the (His)6-ScDmc1 expression plasmid and to Edward Egelman for the IHRSR processing package used in the 3D reconstructions. Image acquisition and processing were conducted in the Yale CryoEM and High Performance Computational facilities. This study was supported by NIH grants RO1GM057814, RO1ES007061, and PO1CA092584, NIH postdoctoral fellowship F32GM101808, National Science Council of Taiwan grant NSC 100-2311-B-002-009, National Taiwan University grants 102R7848 and 102R7560-6, National Basic Research Program of China grant 2010CB912401, and the National Center for Protein Sciences Beijing. NR 41 TC 4 Z9 5 U1 1 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1568-7864 J9 DNA REPAIR JI DNA Repair PD SEP PY 2013 VL 12 IS 9 BP 707 EP 712 DI 10.1016/j.dnarep.2013.05.004 PG 6 WC Genetics & Heredity; Toxicology SC Genetics & Heredity; Toxicology GA 205TT UT WOS:000323468400003 PM 23769192 ER PT J AU Horton, JK Stefanick, DF Gassman, NR Williams, JG Gabel, SA Cuneo, MJ Prasad, R Kedar, PS DeRose, EF Hou, EW London, RE Wilson, SH AF Horton, Julie K. Stefanick, Donna F. Gassman, Natalie R. Williams, Jason G. Gabel, Scott A. Cuneo, Matthew J. Prasad, Rajendra Kedar, Padmini S. DeRose, Eugene F. Hou, Esther W. London, Robert E. Wilson, Samuel H. TI Preventing oxidation of cellular XRCC1 affects PARP-mediated DNA damage responses SO DNA REPAIR LA English DT Article DE DNA polymerase beta; XRCC1; PARP-1; Methyl methanesulfonate; PARP inhibitor; Poly(ADP-ribose) ID STRAND-BREAK REPAIR; BASE EXCISION-REPAIR; POLYMERASE-BETA INTERACTION; LIGASE III-ALPHA; BRCT DOMAIN; NUCLEAR ANTIGEN; PROTEIN; CELLS; POLY(ADP-RIBOSE); HYPERSENSITIVITY AB Poly(ADP-ribose) polymerase-1 (PARP-1) binds intermediates of base excision repair (BER) and becomes activated for poly(ADP-ribose) (PAR) synthesis. PAR mediates recruitment and functions of the key BER factors XRCC1 and DNA polymerase beta (pol beta) that in turn regulate PAR. Yet, the molecular mechanism and implications of coordination between XRCC1 and pol beta in regulating the level of PAR are poorly understood. A complex of PARP-1, XRCC1 and pol beta is found in vivo, and it is known that pol beta and XRCC1 interact through a redox-sensitive binding interface in the N-terminal domain of XRCC1. We confirmed here that both oxidized and reduced forms of XRCC1 are present in mouse fibroblasts. To further understand the importance of the C12-C20 oxidized form of XRCC1 and the interaction with pol beta, we characterized cell lines representing stable transfectants in Xrcc1(-/-) mouse fibroblasts of wildtype XRCC1 and two mutants of XRCC1, a novel reduced form with the C12-C20 disulfide bond blocked (C12A) and a reference mutant that is unable to bind pol beta (V88R). XRCC1-deficient mouse fibroblasts are extremely hypersensitive to methyl methanesulfonate (MMS), and transfected wild-type and C12A mutant XRCC1 proteins similarly reversed MMS hypersensitivity. However, after MMS exposure the cellular PAR level was found to increase to a much greater extent in cells expressing the C12A mutant than in cells expressing wild-type XRCC1. PARP inhibition resulted in very strong MMS sensitization in cells expressing wild-type XRCC1, but this sensitization was much less in cells expressing the C12A mutant. The results suggest a role for the oxidized form of XRCC1 in the interaction with pol beta in (1) controlling the PAR level after MMS exposure and (2) enabling the extreme cytotoxicity of PARP inhibition during the MMS DNA damage response. Published by Elsevier B.V. C1 [Horton, Julie K.; Stefanick, Donna F.; Gassman, Natalie R.; Williams, Jason G.; Gabel, Scott A.; Prasad, Rajendra; Kedar, Padmini S.; DeRose, Eugene F.; Hou, Esther W.; London, Robert E.; Wilson, Samuel H.] NIEHS, Struct Biol Lab, NIH, Res Triangle Pk, NC 27709 USA. [Cuneo, Matthew J.] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. RP Wilson, SH (reprint author), NIEHS, Struct Biol Lab, NIH, 111 TW Alexander Dr,POB 12233, Res Triangle Pk, NC 27709 USA. EM wilson5@niehs.nih.gov OI Gassman, Natalie/0000-0002-8488-2332; Cuneo, Matthew/0000-0002-1475-6656 FU Intramural Research Program of the NIH, National Institute of Environmental Health Sciences [Z01 ES050158, ES050159, Z01 ES050147] FX This work was supported by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences (project numbers Z01 ES050158, ES050159 to S.H.W. and Z01 ES050147 to R.E.L.). NR 37 TC 12 Z9 14 U1 0 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1568-7864 J9 DNA REPAIR JI DNA Repair PD SEP PY 2013 VL 12 IS 9 BP 774 EP 785 DI 10.1016/j.dnarep.2013.06.004 PG 12 WC Genetics & Heredity; Toxicology SC Genetics & Heredity; Toxicology GA 205TT UT WOS:000323468400010 PM 23871146 ER PT J AU Pouchard, LC Branstetter, ML Cook, RB Devarakonda, R Green, J Palanisamy, G Alexander, P Noy, NF AF Pouchard, Line C. Branstetter, Marcia L. Cook, Robert B. Devarakonda, Ranjeet Green, Jim Palanisamy, Giri Alexander, Paul Noy, Natalya F. TI A Linked Science investigation: enhancing climate change data discovery with semantic technologies SO EARTH SCIENCE INFORMATICS LA English DT Article DE Linked Science; Ontologies; BioPortal; Semantic search; Climate change; Data discovery ID ONTOLOGY; WEB; ACCESS; SYSTEM; EARTH AB Linked Science is the practice of inter-connecting scientific assets by publishing, sharing and linking scientific data and processes in end-to-end loosely coupled workflows that allow the sharing and re-use of scientific data. Much of this data does not live in the cloud or on the Web, but rather in multi-institutional data centers that provide tools and add value through quality assurance, validation, curation, dissemination, and analysis of the data. In this paper, we make the case for the use of scientific scenarios in Linked Science. We propose a scenario in river-channel transport that requires biogeochemical experimental data and global climate-simulation model data from many sources. We focus on the use of ontologies-formal machine-readable descriptions of the domain-to facilitate search and discovery of this data. Mercury, developed at Oak Ridge National Laboratory, is a tool for distributed metadata harvesting, search and retrieval. Mercury currently provides uniform access to more than 100,000 metadata records; 30,000 scientists use it each month. We augmented search in Mercury with ontologies, such as the ontologies in the Semantic Web for Earth and Environmental Terminology (SWEET) collection by prototyping a component that provides access to the ontology terms from Mercury. We evaluate the coverage of SWEET for the ORNL Distributed Active Archive Center (ORNL DAAC). C1 [Pouchard, Line C.; Branstetter, Marcia L.; Cook, Robert B.; Devarakonda, Ranjeet; Green, Jim; Palanisamy, Giri] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Alexander, Paul; Noy, Natalya F.] Stanford Univ, Stanford Ctr Biomed Informat Res, Stanford, CA 94305 USA. RP Pouchard, LC (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM pouchardlc@ornl.gov RI Devarakonda, Ranjeet/E-5976-2016; OI Devarakonda, Ranjeet/0000-0003-2661-1937; Cook, Robert/0000-0001-7393-7302 FU U.S. Department of Energy [De-AC05-00OR22725] FX This work has been in part performed at Oak Ridge National Laboratory, Managed by UT Battelle, LLC under Contract No. De-AC05-00OR22725 for the U.S. Department of Energy. NR 31 TC 5 Z9 5 U1 1 U2 34 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1865-0473 EI 1865-0481 J9 EARTH SCI INFORM JI Earth Sci. Inform. PD SEP PY 2013 VL 6 IS 3 BP 175 EP 185 DI 10.1007/s12145-013-0118-2 PG 11 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 206DK UT WOS:000323497400006 ER PT J AU Lai, Y Beaver, J Lorente, K Ramjagsingh, S McMurray, C Zhang, Z Liu, Y AF Lai, Y. Beaver, J. Lorente, K. Ramjagsingh, S. McMurray, C. Zhang, Z. Liu, Y. TI MSH2-MSH3 Promotes GAA Repeat Expansion by Stimulating DNA Polymerase beta Activity during Base Excision Repair SO ENVIRONMENTAL AND MOLECULAR MUTAGENESIS LA English DT Meeting Abstract CT 44th Annual Meeting of the Environmental-Mutagenesis-and-Genomics-Society (EMGS) CY SEP 21-25, 2013 CL Monterey, CA SP Environm Mutagenesis & Genom Soc (EMGS) C1 [Lai, Y.; Beaver, J.; Lorente, K.; Ramjagsingh, S.; Liu, Y.] Florida Int Univ, Dept Chem & Biochem, Miami, FL 33199 USA. [Lai, Y.; Zhang, Z.] Sichuan Univ, Dept Environm & Occupat Hlth, West China Sch Publ Hlth, Chengdu 610064, Peoples R China. [McMurray, C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0893-6692 J9 ENVIRON MOL MUTAGEN JI Environ. Mol. Mutagen. PD SEP PY 2013 VL 54 SU 1 BP S30 EP S30 PG 1 WC Environmental Sciences; Genetics & Heredity; Toxicology SC Environmental Sciences & Ecology; Genetics & Heredity; Toxicology GA 205FV UT WOS:000323429400071 ER PT J AU Nath, R Vulimiri, S Pachkowski, B Sonawane, B AF Nath, R. Vulimiri, S. Pachkowski, B. Sonawane, B. TI Evidence for Genotoxicity and Mutagenicity of Formaldehyde SO ENVIRONMENTAL AND MOLECULAR MUTAGENESIS LA English DT Meeting Abstract CT 44th Annual Meeting of the Environmental-Mutagenesis-and-Genomics-Society (EMGS) CY SEP 21-25, 2013 CL Monterey, CA SP Environm Mutagenesis & Genom Soc (EMGS) C1 [Nath, R.; Vulimiri, S.; Pachkowski, B.; Sonawane, B.] US EPA, Natl Ctr Environm Assessment, Off Res & Dev, Washington, DC 20460 USA. [Pachkowski, B.] Oak Ridge Inst Sci & Educ, Washington, DC USA. NR 0 TC 0 Z9 0 U1 1 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0893-6692 J9 ENVIRON MOL MUTAGEN JI Environ. Mol. Mutagen. PD SEP PY 2013 VL 54 SU 1 BP S45 EP S45 PG 1 WC Environmental Sciences; Genetics & Heredity; Toxicology SC Environmental Sciences & Ecology; Genetics & Heredity; Toxicology GA 205FV UT WOS:000323429400134 ER PT J AU Snijders, AM Blakeley, E Chang, P Sridharan, D Mori, H Rosen, C Bjornstad, K Huang, Y Mao, JH Pluth, J AF Snijders, A. M. Blakeley, E. Chang, P. Sridharan, D. Mori, H. Rosen, C. Bjornstad, K. Huang, Y. Mao, J. H. Pluth, J. TI Exposure to Bisphenol-A Alters Mammary Gland Development and Increases Breast Cancer Risk. SO ENVIRONMENTAL AND MOLECULAR MUTAGENESIS LA English DT Meeting Abstract CT 44th Annual Meeting of the Environmental-Mutagenesis-and-Genomics-Society (EMGS) CY SEP 21-25, 2013 CL Monterey, CA SP Environm Mutagenesis & Genom Soc (EMGS) C1 [Snijders, A. M.; Blakeley, E.; Chang, P.; Sridharan, D.; Mori, H.; Rosen, C.; Bjornstad, K.; Huang, Y.; Mao, J. H.; Pluth, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Chang, P.] SRI Int, Menlo Pk, CA 94025 USA. NR 0 TC 0 Z9 0 U1 1 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0893-6692 J9 ENVIRON MOL MUTAGEN JI Environ. Mol. Mutagen. PD SEP PY 2013 VL 54 SU 1 BP S41 EP S41 PG 1 WC Environmental Sciences; Genetics & Heredity; Toxicology SC Environmental Sciences & Ecology; Genetics & Heredity; Toxicology GA 205FV UT WOS:000323429400116 ER PT J AU Sridharan, D Chappell, L Wilson, W Whalen, M Cucinotta, F Pluth, J AF Sridharan, D. Chappell, L. Wilson, W. Whalen, M. Cucinotta, F. Pluth, J. TI Genomic Instability Elicited by the Mutagenic Heavy Ions in Space Differs with Cell Type and Radiation Quality. SO ENVIRONMENTAL AND MOLECULAR MUTAGENESIS LA English DT Meeting Abstract CT 44th Annual Meeting of the Environmental-Mutagenesis-and-Genomics-Society (EMGS) CY SEP 21-25, 2013 CL Monterey, CA SP Environm Mutagenesis & Genom Soc (EMGS) C1 [Sridharan, D.; Wilson, W.; Whalen, M.; Pluth, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Chappell, L.; Cucinotta, F.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0893-6692 J9 ENVIRON MOL MUTAGEN JI Environ. Mol. Mutagen. PD SEP PY 2013 VL 54 SU 1 BP S55 EP S55 PG 1 WC Environmental Sciences; Genetics & Heredity; Toxicology SC Environmental Sciences & Ecology; Genetics & Heredity; Toxicology GA 205FV UT WOS:000323429400172 ER PT J AU Sridharan, D Snijders, A Blakely, E Chang, P Rosen, C Bjornstad, K Mao, JH Pluth, J AF Sridharan, D. Snijders, A. Blakely, E. Chang, P. Rosen, C. Bjornstad, K. Mao, J-H Pluth, J. TI Environmental Levels of Bisphenol-A Can Expand Numbers of Mammary Stem Cells and Potentially Increase Breast Cancer Risk. SO ENVIRONMENTAL AND MOLECULAR MUTAGENESIS LA English DT Meeting Abstract CT 44th Annual Meeting of the Environmental-Mutagenesis-and-Genomics-Society (EMGS) CY SEP 21-25, 2013 CL Monterey, CA SP Environm Mutagenesis & Genom Soc (EMGS) C1 [Sridharan, D.; Snijders, A.; Blakely, E.; Chang, P.; Rosen, C.; Bjornstad, K.; Mao, J-H; Pluth, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 0 TC 1 Z9 1 U1 0 U2 10 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0893-6692 J9 ENVIRON MOL MUTAGEN JI Environ. Mol. Mutagen. PD SEP PY 2013 VL 54 SU 1 BP S41 EP S41 PG 1 WC Environmental Sciences; Genetics & Heredity; Toxicology SC Environmental Sciences & Ecology; Genetics & Heredity; Toxicology GA 205FV UT WOS:000323429400115 ER PT J AU Williams, PT AF Williams, Paul T. TI Walking and Running Produce Similar Reductions in Cause-Specific Disease Mortality in Hypertensives SO HYPERTENSION LA English DT Article DE cardiovascular diseases; diabetes mellitus; type 2; exercise; hypertension; renal insufficiency; chronic ID CORONARY-HEART-DISEASE; DEATH CERTIFICATE COMPLETION; TYPE-2 DIABETES-MELLITUS; TIME PHYSICAL-ACTIVITY; RISK-FACTORS; CARDIOVASCULAR MORTALITY; INSULIN-RESISTANCE; BLOOD-PRESSURE; ANTIHYPERTENSIVE THERAPY; ATRIAL-FIBRILLATION AB To test prospectively in hypertensives whether moderate and vigorous exercise produces equivalent reductions in mortality, Cox-proportional hazard analyses were applied to energy expenditure (metabolic equivalents hours/d [METh/d]) in 6973 walkers and 3907 runners who used hypertensive medications at baseline. A total of 1121 died during 10.2-year follow-up: 695 cardiovascular disease (International Classification of Diseases, Tenth Revision [ICD10] I00-99; 465 underlying cause and 230 contributing cause), 124 cerebrovascular disease, 353 ischemic heart disease (ICD10 I20-25; 257 underlying and 96 contributing), 122 heart failure (ICD10 I50; 24 underlying and 98 contributing), and 260 dysrhythmias (ICD10 I46-49; 24 underlying and 236 contributing). Relative to <1.07 METh/d, running or walking 1.8 to 3.6 METh/d produced significantly lower all-cause (29% reduction; 95% confidence interval [CI], 17%-39%; P=0.0001), cardiovascular disease (34% reduction; 95% CI, 20%-46%; P=0.0001), cerebrovascular disease (55% reduction; 95% CI, 27%-73%; P=0.001), dysrhythmia (47% reduction; 95% CI, 27%-62%; P=0.0001), and heart failure mortality (51% reduction; 95% CI, 21%-70%; P=0.003), as did 3.6 METh/d with all-cause (22% reduction; 95% CI, 6%-35%; P=0.005), cardiovascular disease (36% reduction; 95% CI, 19%-50%; P=0.0002), cerebrovascular disease (47% reduction; 95% CI, 6%-71%; P=0.03), and dysrhythmia mortality (43% reduction; 95% CI, 16%-62%; P=0.004). Diabetes mellitus and chronic kidney disease mortality also decreased significantly with METh/d. All results remained significant when body mass index adjusted. Merely meeting guideline levels (1.07-1.8 METh/d) did not significantly reduced mortality. The dose-response was significantly nonlinear for all end points except diabetes mellitus, and cerebrovascular and chronic kidney disease. Results did not differ between running and walking. Thus, walking and running produce similar reductions in mortality in hypertensives. C1 [Williams, Paul T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Williams, PT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Donner 464,1 Cycloton Rd, Berkeley, CA 94720 USA. EM ptwilliams@lbl.gov FU National Heart, Lung, and Blood Institute [HL094717] FX This research was supported by grant HL094717 from the National Heart, Lung, and Blood Institute and was conducted at the Ernest Orlando Lawrence Berkeley National Laboratory (Department of Energy DE-AC03-76SF00098 to the University of California). The funders had no role in study design, data collection, and analysis, decision to publish, or preparation of the article. NR 46 TC 5 Z9 5 U1 0 U2 7 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0194-911X J9 HYPERTENSION JI Hypertension PD SEP PY 2013 VL 62 IS 3 BP 485 EP 491 DI 10.1161/HYPERTENSIONAHA.113.01608 PG 7 WC Peripheral Vascular Disease SC Cardiovascular System & Cardiology GA 201OA UT WOS:000323149700018 PM 23940195 ER PT J AU Brislawn, CM AF Brislawn, Christopher M. TI Group-Theoretic Structure of Linear Phase Multirate Filter Banks SO IEEE TRANSACTIONS ON INFORMATION THEORY LA English DT Article DE Filter bank; free product; group; group lifting structure; JPEG 2000; lifting; linear phase filter; polyphase matrix; semidirect product; unique factorization; wavelet ID GROUP LIFTING STRUCTURES; PRODUCT GROUP-APPROACH; COMPRESSION STANDARD; WIDE-BAND; SYMMETRIC EXTENSION; CODING STANDARD; DIGITAL AUDIO; SPEECH; SIGNAL; FACTORIZATIONS AB Unique lifting factorization results for group lifting structures are used to characterize the group-theoretic structure of two-channel linear phase FIR perfect reconstruction filter bank groups. For D-invariant, order-increasing group lifting structures, it is shown that the associated lifting cascade group C is isomorphic to the free product of the upper and lower triangular lifting matrix groups. Under the same hypotheses, the associated scaled lifting group S is the semidirect product of C by the diagonal gain scaling matrix group D. These results apply to the group lifting structures for the two principal classes of linear phase perfect reconstruction filter banks, the whole-and half-sample symmetric classes. Since the unimodular whole-sample symmetric class forms a group, W, that is in fact equal to its own scaled lifting group,W = S-W, the results of this paper characterize the group-theoretic structure of W up to isomorphism. Although the half-sample symmetric class h does not form a group, it can be partitioned into cosets of its lifting cascade group,C-h, or, alternatively, into cosets of its scaled lifting group, S-h. Homomorphic comparisons reveal that scaled lifting groups covered by the results in this paper have a structure analogous to a "noncommutative vector space." C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Brislawn, CM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM brislawn@lanl.gov FU U.S. Department of Energy [DE-AC52-06NA25396]; Los Alamos Laboratory-Directed Research & Development Program FX Los Alamos National Laboratory is operated by Los Alamos National Security LLC for the U.S. Department of Energy under contract DE-AC52-06NA25396. This work was supported in part by the Los Alamos Laboratory-Directed Research & Development Program, Kristi D. Brislawn, and Reilly R. Brislawn. NR 86 TC 0 Z9 0 U1 0 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9448 J9 IEEE T INFORM THEORY JI IEEE Trans. Inf. Theory PD SEP PY 2013 VL 59 IS 9 BP 5842 EP 5859 DI 10.1109/TIT.2013.2259292 PG 18 WC Computer Science, Information Systems; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 205PE UT WOS:000323455800041 ER PT J AU Alalaimi, M Lorente, S Anderson, R Bejan, A AF Alalaimi, M. Lorente, S. Anderson, R. Bejan, A. TI Effect of size on ground-coupled heat pump performance SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Constructal design; Cooling; Heat pumps; Ground heat exchangers ID POWER-PLANTS AB Here we document and explain interactions between two thermodynamic trends that determine the optimum performance of refrigeration and heat pump systems. We show analytically why the performance of the system must increase with the size of the installation. The second law efficiency of heat pump systems must increase with their size. We also show that the power requirement for a specific ground-coupled heat pump system must decrease as the size of the ground heat exchanger increases. From these two trends emerges the tradeoff between the size of the heat pump and the size of the ground heat exchanger. The challenge is to find the optimum size of the ground-coupled heat pump. We show numerically the optimum heat pump size and the ground heat exchanger size that correspond to minimum total power requirement subject to a cost constraint. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Alalaimi, M.; Bejan, A.] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA. [Lorente, S.] Univ Toulouse, UPS, INSA, LMDC, F-31077 Toulouse 04, France. [Anderson, R.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Bejan, A (reprint author), Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA. EM dalford@duke.edu FU Kuwait University; National Renewable Energy Laboratory FX Mr. Alalaimi's work was supported by Kuwait University. Drs. Lorente, Anderson, and Bejan's work was sponsored by the National Renewable Energy Laboratory. NR 20 TC 5 Z9 5 U1 0 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 EI 1879-2189 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD SEP PY 2013 VL 64 BP 115 EP 121 DI 10.1016/j.ijheatmasstransfer.2013.04.034 PG 7 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA 202RI UT WOS:000323236900013 ER PT J AU Yu, WH Timofeeva, EV Singh, D France, DM Smith, RK AF Yu, Wenhua Timofeeva, Elena V. Singh, Dileep France, David M. Smith, Roger K. TI Investigations of heat transfer of copper-in-Therminol 59 nanofluids SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Nanofluid; Convective heat transfer; Turbulent flow; Heat transfer prediction; Heat transfer enhancement ID THERMAL-CONDUCTIVITY; TRANSFER ENHANCEMENT; FLOW AB Convective turbulent-flow heat transfer experiments were performed with Therminol 59-based nanofluids containing copper nanoparticles at particle volume concentrations of 0.50% and 0.75%. These nanofluids have the unusual properties of being significantly above the thermal conductivity predictions of the effective medium theory with high dynamic viscosities. The friction factors and heat transfer coefficients of the nanofluids were experimentally determined and compared to the predictions from the standard correlation equations. The experimental heat transfer coefficient enhancements were also compared to the predicted heat transfer coefficient ratios of the nanofluids over the base fluid using their thermophysical properties. Finally, based on the measured thermophysical properties and heat transfer coefficients of the nanofluids, the effect of elevated temperature on the heat transfer coefficient ratios of the nanofluids over the base fluid were evaluated. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Yu, Wenhua; Timofeeva, Elena V.; Smith, Roger K.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Singh, Dileep] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [France, David M.] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA. RP Yu, WH (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM wyu@anl.gov; etimofeeva@anl.gov; dsingh@anl.gov; dfrance@uic.edu; rk.smith@anl.gov RI Timofeeva, Elena/E-6391-2010; OI Timofeeva, Elena V./0000-0001-7839-2727 FU US Department of Energy's Solar Energy Technology Program Office, American Recovery and Reinvestment Act (ARRA) at Argonne National Laboratory [DE-AC02-06CH11357] FX This work was sponsored by the US Department of Energy's Solar Energy Technology Program Office, American Recovery and Reinvestment Act (ARRA) funding, under contract number DE-AC02-06CH11357 at Argonne National Laboratory, managed by UChicago Argonne LLC. Experimental assistance by J. Gaviria and K. Velvadapu is acknowledged. NR 35 TC 11 Z9 11 U1 2 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD SEP PY 2013 VL 64 BP 1196 EP 1204 DI 10.1016/j.ijheatmasstransfer.2013.03.023 PG 9 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA 202RI UT WOS:000323236900114 ER PT J AU Zhou, AF Baidoo, E He, ZL Mukhopadhyay, A Baumohl, JK Benke, P Joachimiak, MP Xie, M Song, R Arkin, AP Hazen, TC Keasling, JD Wall, JD Stahl, DA Zhou, JZ AF Zhou, Aifen Baidoo, Edward He, Zhili Mukhopadhyay, Aindrila Baumohl, Jason K. Benke, Peter Joachimiak, Marcin P. Xie, Ming Song, Rong Arkin, Adam P. Hazen, Terry C. Keasling, Jay D. Wall, Judy D. Stahl, David A. Zhou, Jizhong TI Characterization of NaCl tolerance in Desulfovibrio vulgaris Hildenborough through experimental evolution SO ISME JOURNAL LA English DT Article DE D. vulgaris; experimental evolution; salt adaptation; transcriptomics; metabolites assay; PLFA analysis ID SULFATE-REDUCING BACTERIA; UPTAKE REGULATOR FUR; BACILLUS-SUBTILIS; ESCHERICHIA-COLI; HYPEROSMOTIC STRESS; GLYCINE BETAINE; OSMOTIC-STRESS; HIGH-SALINITY; SALT STRESS; ADAPTATION AB Desulfovibrio vulgaris Hildenborough strains with significantly increased tolerance to NaCl were obtained via experimental evolution. A NaCl-evolved strain, ES9-11, isolated from a population cultured for 1200 generations in medium amended with 100 mM NaCl, showed better tolerance to NaCl than a control strain, EC3-10, cultured for 1200 generations in parallel but without NaCl amendment in medium. To understand the NaCl adaptation mechanism in ES9-11, we analyzed the transcriptional, metabolite and phospholipid fatty acid (PLFA) profiles of strain ES9-11 with 0, 100- or 250 mM-added NaCl in medium compared with the ancestral strain and EC3-10 as controls. In all the culture conditions, increased expressions of genes involved in amino-acid synthesis and transport, energy production, cation efflux and decreased expression of flagellar assembly genes were detected in ES9-11. Consistently, increased abundances of organic solutes and decreased cell motility were observed in ES9-11. Glutamate appears to be the most important osmoprotectant in D. vulgaris under NaCl stress, whereas, other organic solutes such as glutamine, glycine and glycine betaine might contribute to NaCl tolerance under low NaCl concentration only. Unsaturation indices of PLFA significantly increased in ES9-11. Branched unsaturated PLFAs vertical bar 17: 1 omega 9c, a17: 1 omega 9c and branched saturated i15: 0 might have important roles in maintaining proper membrane fluidity under NaCl stress. Taken together, these data suggest that the accumulation of osmolytes, increased membrane fluidity, decreased cell motility and possibly an increased exclusion of Na+ contribute to increased NaCl tolerance in NaCl-evolved D. vulgaris. C1 [Zhou, Aifen; He, Zhili; Xie, Ming; Song, Rong; Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Baidoo, Edward; Mukhopadhyay, Aindrila; Baumohl, Jason K.; Benke, Peter; Joachimiak, Marcin P.; Arkin, Adam P.; Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Hazen, Terry C.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN USA. [Hazen, Terry C.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. [Wall, Judy D.] Univ Missouri, Dept Biochem, Columbia, MO USA. [Wall, Judy D.] Univ Missouri, Dept Mol Microbiol & Immunol, Columbia, MO USA. [Stahl, David A.] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA. [Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. RP Zhou, JZ (reprint author), Univ Oklahoma, Inst Environm Genom, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. EM jzhou@ou.edu RI Keasling, Jay/J-9162-2012; Arkin, Adam/A-6751-2008; Hazen, Terry/C-1076-2012 OI Keasling, Jay/0000-0003-4170-6088; Arkin, Adam/0000-0002-4999-2931; Hazen, Terry/0000-0002-2536-9993 FU Office of Science, Office of Biological and Environmental Research, US Department of Energy [DE-AC02-05CH11231] FX This work conducted by ENIGMA-Ecosystems and Networks Integrated with Genes and Molecular Assemblies (http://enigma.lbl.gov)-a Scientific Focus Area Program at Lawrence Berkeley National Laboratory, was supported by the Office of Science, Office of Biological and Environmental Research, US Department of Energy under Contract No. DE-AC02-05CH11231. NR 42 TC 12 Z9 12 U1 3 U2 42 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 J9 ISME J JI ISME J. PD SEP PY 2013 VL 7 IS 9 BP 1790 EP 1802 DI 10.1038/ismej.2013.60 PG 13 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 204RI UT WOS:000323385600010 PM 23575373 ER PT J AU Isanapong, J Hambright, WS Willis, AG Boonmee, A Callister, SJ Burnum, KE Pasa-Tolic, L Nicora, CD Wertz, JT Schmidt, TM Rodrigues, JLM AF Isanapong, Jantiya Hambright, W. Sealy Willis, Austin G. Boonmee, Atcha Callister, Stephen J. Burnum, Kristin E. Pasa-Tolic, Ljiljana Nicora, Carrie D. Wertz, John T. Schmidt, Thomas M. Rodrigues, Jorge L. M. TI Development of an ecophysiological model for Diplosphaera colotermitum TAV2, a termite hindgut Verrucomicrobium SO ISME JOURNAL LA English DT Article DE termite; microaerophilic; Verrucomicrobia; xylan ID RETICULITERMES-SPERATUS; GUT MICROBIOTA; STENOXYBACTER-ACETIVORANS; OBLIGATE MICROAEROPHILE; PHYSIOLOGICAL ECOLOGY; BACTERIAL MICROBIOTA; MASS-SPECTROMETRY; SOFTWARE PACKAGE; OXIDATIVE STRESS; GEN. NOV. AB Termite hindguts are populated by a dense and diverse community of microbial symbionts working in concert to transform lignocellulosic plant material and derived residues into acetate, to recycle and fix nitrogen, and to remove oxygen. Although much has been learned about the breadth of microbial diversity in the hindgut, the ecophysiological roles of its members is less understood. In this study, we present new information about the ecophysiology of microorganism Diplosphaera colotermitum strain TAV2, an autochthonous member of the Reticulitermes flavipes gut community. An integrated high-throughput approach was used to determine the transcriptomic and proteomic profiles of cells grown under hypoxia (2% O-2) or atmospheric (20% O-2) concentrations of oxygen. Our results revealed that genes and proteins associated with energy production and utilization, carbohydrate transport and metabolism, nitrogen fixation, and replication and recombination were upregulated under 2% O-2. The metabolic map developed for TAV2 indicates that this microorganism may be involved in biological nitrogen fixation, amino-acid production, hemicellulose degradation and consumption of O-2 in the termite hindgut. Variation of O-2 concentration explained 55.9% of the variance in proteomic profiles, suggesting an adaptive evolution of TAV2 to the hypoxic periphery of the hindgut. Our findings advance the current understanding of microaerophilic microorganisms in the termite gut and expand our understanding of the ecological roles for members of the phylum Verrucomicrobia. C1 [Isanapong, Jantiya; Hambright, W. Sealy; Willis, Austin G.; Boonmee, Atcha; Rodrigues, Jorge L. M.] Univ Texas Arlington, Dept Biol, Arlington, TX 76019 USA. [Isanapong, Jantiya] Univ Texas Arlington, Dept Earth & Environm Sci, Arlington, TX 76019 USA. [Boonmee, Atcha] Khon Kaen Univ, Fac Sci, Dept Microbiol, Khon Kaen, Thailand. [Callister, Stephen J.; Burnum, Kristin E.; Nicora, Carrie D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Pasa-Tolic, Ljiljana] Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99352 USA. [Wertz, John T.] Calvin Coll, Dept Biol, Grand Rapids, MI 49506 USA. [Schmidt, Thomas M.] Univ Michigan, Dept Ecol & Evolutionary Biol, Ann Arbor, MI 48109 USA. [Schmidt, Thomas M.] Univ Michigan, Dept Internal Med, Ann Arbor, MI 48109 USA. RP Rodrigues, JLM (reprint author), Univ Texas Arlington, Dept Biol, Arlington, TX 76019 USA. EM Jorge@uta.edu RI Burnum, Kristin/B-1308-2011; OI Burnum, Kristin/0000-0002-2722-4149; Schmidt, Thomas/0000-0002-8209-6055 FU Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory [EMSL 28690] FX A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (EMSL 28690). We thank Maeli Melotto and John Breznak for critically reading this manuscript and providing valuable suggestions. NR 54 TC 5 Z9 5 U1 1 U2 24 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 J9 ISME J JI ISME J. PD SEP PY 2013 VL 7 IS 9 BP 1803 EP 1813 DI 10.1038/ismej.2013.74 PG 11 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 204RI UT WOS:000323385600011 PM 23657364 ER PT J AU Wang, SY L'Heureux, M Yoon, JH AF Wang, Shih-Yu L'Heureux, Michelle Yoon, Jin-Ho TI Are Greenhouse Gases Changing ENSO Precursors in the Western North Pacific? SO JOURNAL OF CLIMATE LA English DT Article DE Atmosphere-ocean interaction; ENSO; Climate models ID SEASONAL FOOTPRINTING MECHANISM; SEA-SURFACE TEMPERATURES; REANALYSIS PROJECT; INDIAN MONSOON; VARIABILITY; ANOMALIES; IMPACT; MODEL; 20TH-CENTURY; EVOLUTION AB Using multiple observational and model datasets, the authors document a strengthening relationship between boreal winter sea surface temperature anomalies (SSTAs) in the western North Pacific (WNP) and the development of the El Nino-Southern Oscillation (ENSO) in the following year. The increased WNP-ENSO association emerged in the mid-twentieth century and has grown through the present, reaching correlation coefficients as high as similar to 0.70 in recent decades. Fully coupled climate experiments with the Community Earth System Model, version 1 (CESM1), replicate the WNP-ENSO association and indicate that greenhouse gases (GHGs) are largely responsible for this observed increase. The authors speculate that shifts in the location of the largest positive SST trends between the subtropical and tropical western Pacific impact the low-level circulation in a manner that reinforces the link between the WNP and the development of ENSO. A strengthened GHG-driven relationship with the WNP provides an example of how anthropogenic climate change may directly influence one of the most prominent patterns of natural climate variability, ENSO, and potentially improve the skill of intraseasonal-to-interannual climate prediction. C1 [Wang, Shih-Yu] Utah State Univ, Utah Climate Ctr, Logan, UT 84322 USA. [Wang, Shih-Yu] Utah State Univ, Dept Plants Soils & Climate, Logan, UT 84322 USA. [L'Heureux, Michelle] NOAA, NCEP, Climate Predict Ctr, Camp Springs, MD USA. [Yoon, Jin-Ho] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wang, SY (reprint author), 4820 Old Main Hill, Logan, UT 84341 USA. EM simon.wang@usu.edu RI Wang, S.-Y. Simon/G-2566-2010; YOON, JIN-HO/A-1672-2009 OI YOON, JIN-HO/0000-0002-4939-8078 FU Utah State University Agricultural Experiment Station [8472]; Office of Science of the U.S. Department of Energy as part of the Earth System Modeling program; National Science Foundation; Office of Science of the U.S. Department of Energy; Department of Energy [DE-AC06-76RLO1830]; [NNX13AC37G]; [MOTC-CWB-101-M-15] FX Critical and valuable comments offered by Tony Barnston, Bruce Anderson, and Karthik Balaguru are highly appreciated. This study was supported under Grants NNX13AC37G, MOTC-CWB-101-M-15, and the Utah State University Agricultural Experiment Station (approved as journal paper 8472). Jin-Ho Yoon is supported by the Office of Science of the U.S. Department of Energy as part of the Earth System Modeling program. The CESM project is supported by the National Science Foundation and the Office of Science of the U.S. Department of Energy. PNNL is operated for the Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO1830. NR 38 TC 14 Z9 14 U1 1 U2 26 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD SEP PY 2013 VL 26 IS 17 BP 6309 EP 6322 DI 10.1175/JCLI-D-12-00360.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 205AK UT WOS:000323412300006 ER PT J AU Fitch, AC Olson, JB Lundquist, JK AF Fitch, Anna C. Olson, Joseph B. Lundquist, Julie K. TI Parameterization of Wind Farms in Climate Models SO JOURNAL OF CLIMATE LA English DT Article DE Boundary layer; Friction; Surface fluxes; Surface temperature; Parameterization; Renewable energy ID ATMOSPHERIC BOUNDARY-LAYER; TURBULENCE CLOSURE-MODEL; LAND-SURFACE; TURBINE WAKES; IMPACTS; SENSITIVITY; STABILITY; FLUXES; POWER; HEAT AB For assessing the impacts of wind farms on regional climate, wind farms may be represented in climate models by an increase in aerodynamic roughness length. Studies employing this method have found near-surface temperature changes of 1-2 K over wind farm areas. By contrast, mesoscale and large-eddy simulations (LES), which represent wind farms as elevated sinks of momentum, generally showed temperature changes of less than 0.5 K. This study directly compares the two methods of representing wind farms in simulations of a strong diurnal cycle. Nearly the opposite wake structure is seen between the two methods, both during the day and at night. The sensible heat fluxes are generally exaggerated in the enhanced roughness approach, leading to much greater changes in temperature. Frequently, the two methods display the opposite sign in temperature change. Coarse resolution moderates the sensible heat fluxes but does not significantly improve the near-surface temperatures or low-level wind speed deficit. Since wind farm impacts modeled by the elevated momentum sink approach are similar to those seen in observations and from LES, the authors conclude that the increased surface roughness approach is not an appropriate option to represent wind farms or explore their impacts. C1 [Fitch, Anna C.] Univ Bergen, Inst Geophys, Bergen, Norway. [Fitch, Anna C.] Uni Res, Bergen, Norway. [Fitch, Anna C.] Natl Ctr Atmospher Res, Mesoscale & Microscale Meteorol Div, Boulder, CO 80307 USA. [Olson, Joseph B.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Olson, Joseph B.] Univ Colorado, NOAA, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Lundquist, Julie K.] Univ Colorado Boulder, Dept Atmospher & Ocean Sci, Boulder, CO USA. [Lundquist, Julie K.] Natl Renewable Energy Lab, Golden, CO USA. RP Fitch, AC (reprint author), Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. EM fitch@ucar.edu RI Olson, Joseph/N-3726-2014; OI Olson, Joseph/0000-0003-3612-0808; LUNDQUIST, JULIE/0000-0001-5490-2702 FU NORCOWE; NREL LDRD [06501101] FX We wish to thank RE power for providing the thrust and power coefficients for the 5M turbine. We express our appreciation for research funding from a variety of sources. Funding for ACF is from NORCOWE and support for JKL is from NREL LDRD 06501101. We thank Jimy Dudhia for useful discussions. All the simulations were performed on the NREL/Sandia Red Mesa high-performance computing system. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NR 46 TC 21 Z9 21 U1 0 U2 26 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD SEP PY 2013 VL 26 IS 17 BP 6439 EP 6458 DI 10.1175/JCLI-D-12-00376.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 205AK UT WOS:000323412300014 ER PT J AU Feldman, DR Coleman, DM Collins, WD AF Feldman, Daniel R. Coleman, Daniel M. Collins, William D. TI On the Usage of Spectral and Broadband Satellite Instrument Measurements to Differentiate Climate Models with Different Cloud Feedback Strengths SO JOURNAL OF CLIMATE LA English DT Article DE Feedback; Radiances; Satellite observations; Time series; Cloud parameterizations; Model comparison ID VERSION-3 CCSM3; SENSITIVITY; RADIANCE; SYSTEM; SPACE; BENCHMARK; TRENDS; DECADE AB Top-of-atmosphere radiometric signals associated with different high- and low-cloud-radiative feedbacks have been examined through the use of an observing system simulation experiment (OSSE). The OSSE simulates variations in the spectrally resolved and spectrally integrated signals that are due to a range of plausible feedbacks of the climate system when forced with CO2 concentrations that increase at 1% yr(-1). This initial version of the OSSE is based on the Community Climate System Model, version 3 (CCSM3), and exploits the fact that CCSM3 exhibits different cloud feedback strengths for different model horizontal resolutions. In addition to the conventional broadband shortwave albedos and outgoing longwave fluxes, a dataset of shortwave spectral reflectance and longwave spectral radiance has been created. These data have been analyzed to determine simulated satellite instrument signals of poorly constrained cloud feedbacks for three plausible realizations of Earth's climate system produced by CCSM3. These data have been analyzed to estimate the observational record length of albedo, outgoing longwave radiation, shortwave reflectance, or longwave radiance required to differentiate these dissimilar Earth system realizations. Shortwave spectral measurements in visible and near-infrared water vapor overtone lines are best suited to differentiate model results, and a 33% difference in shortwave-cloud feedbacks can be detected with 20 years of continuous measurements. Nevertheless, at most latitudes and with most wavelengths, the difference detection time is more than 30 years. This suggests that observing systems of sufficiently stable calibration would be useful in addressing the contribution of low clouds to the spread of climate sensitivities currently exhibited by the models that report to the Intergovernmental Panel on Climate Change (IPCC). C1 [Feldman, Daniel R.; Collins, William D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Coleman, Daniel M.; Collins, William D.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Feldman, DR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 50A4037, Berkeley, CA 94720 USA. EM drfeldman@lbl.gov RI Feldman, Daniel/N-8703-2013; Collins, William/J-3147-2014; Richards, Amber/K-8203-2015 OI Feldman, Daniel/0000-0003-3365-5233; Collins, William/0000-0002-4463-9848; FU NASA [NNX11AE65G]; Contractor Supporting Research (CSR) from Berkeley Lab by Office of Science, of the U.S. Department of Energy [DE-AC02-05CH11231]; NASA High-End Computing Grant [SMD-10-1799] FX Funding for this research was supported by the NASA Grant NNX11AE65G. This work was also supported by Contractor Supporting Research (CSR) funding from Berkeley Lab, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. Additionally, NASA High-End Computing Grant SMD-10-1799 allotted computational resources to produce the simulations. The following individuals also provided considerable assistance with this research: David Young, Bruce Wielicki, and Rosemary Baize of the NASA Langley Research Center; Chris Paciorek, Chris Little, and Tsengdar Lee of the NASA Science Mission Directorate; and the entire NASA High-End Computing technical support team of NASA User Services. We also acknowledge the invaluable feedback from two anonymous peer-reviewers. NR 34 TC 2 Z9 2 U1 0 U2 13 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD SEP PY 2013 VL 26 IS 17 BP 6561 EP 6574 DI 10.1175/JCLI-D-12-00378.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 205AK UT WOS:000323412300021 ER PT J AU Tanaka, T Nagao, Y Mochinaga, T Saito, K Guo, QX Nishio, M Yu, KM Walukiewicz, W AF Tanaka, Tooru Nagao, Yasuhiro Mochinaga, Tomohiro Saito, Katsuhiko Guo, Qixin Nishio, Mitsuhiro Yu, Kin M. Walukiewicz, Wladek TI Molecular beam epitaxial growth of ZnCdTeO epilayers for intermediate band solar cells SO JOURNAL OF CRYSTAL GROWTH LA English DT Article; Proceedings Paper CT 17th International Conference on Molecular Beam Epitaxy (MBE) CY SEP 23-28, 2012 CL Nara, JAPAN DE Molecular beam epitaxy; Highly mismatched alloy; Semiconducting II-VI materials; Intermediate band solar cells ID OPTICAL-PROPERTIES; ALLOYS; SPECTROSCOPY; ZNTE AB We report the growth and characterization of the lattice-matched Zn1-xCdxTe1-yOy(ZnCdTeO) layers on ZnTe substrates by radio frequency plasma-assisted molecular beam epitaxy technique. The Cd composition increases linearly with increasing Cd/(Zn+Cd) flux ratio, indicating a controllability of Cd composition by Cd flux. Introduction of O radical during the growth of ZnCdTe resulted in the formation of ZnCdTeO layer. At particular O and Cd compositions lattice-matched ZnCdTeO epilayers on ZnTe substrate were obtained. Photoreflectance (PR) spectroscopy on the lattice-matched ZnCdTeO layer revealed two distinct PR features in the energy regions at 2.2-2.5 eV and 1.5-1.8 eV, which can be attributed to transitions from the valence band to the two conduction subbands, E+ and E-, respectively. (c) 2013 Elsevier B.V. All rights reserved. C1 [Tanaka, Tooru; Nagao, Yasuhiro; Mochinaga, Tomohiro; Saito, Katsuhiko; Guo, Qixin; Nishio, Mitsuhiro] Saga Univ, Dept Elect & Elect Engn, Saga 8408502, Japan. [Tanaka, Tooru] Japan Sci & Technol Agcy JST, PRESTO, Kawaguchi, Saitama 3320012, Japan. [Yu, Kin M.; Walukiewicz, Wladek] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Tanaka, T (reprint author), Saga Univ, Dept Elect & Elect Engn, 1 Honjo, Saga 8408502, Japan. EM ttanaka@cc.saga-u.ac.jp OI Tanaka, Tooru/0000-0001-5747-1717; Yu, Kin Man/0000-0003-1350-9642 NR 19 TC 5 Z9 5 U1 1 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD SEP 1 PY 2013 VL 378 BP 259 EP 262 DI 10.1016/j.jcrysgro.2012.12.086 PG 4 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 204HJ UT WOS:000323355900066 ER PT J AU Kajimoto, M Priddy, CMO Ledee, DR Xu, C Isern, N Olson, AK Portman, MA AF Kajimoto, Masaki Priddy, Colleen M. O'Kelly Ledee, Dolena R. Xu, Chun Isern, Nancy Olson, Aaron K. Portman, Michael A. TI Extracorporeal membrane oxygenation promotes long chain fatty acid oxidation in the immature swine heart in vivo SO JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY LA English DT Article DE Extracorporeal membrane oxygenation; Immature heart; Fatty acid oxidation; Nuclear magnetic resonance; Substrate metabolism ID MECHANICAL CIRCULATORY SUPPORT; PYRUVATE-DEHYDROGENASE KINASE; GENE-EXPRESSION; LIFE-SUPPORT; CARDIOPULMONARY BYPASS; CONTRACTILE FUNCTION; CARDIAC-HYPERTROPHY; PROTEIN-METABOLISM; SKELETAL-MUSCLE; MALONYL-COA AB Extracorporeal membrane oxygenation (ECMO) supports infants and children with severe cardiopulmonary compromise. Nutritional support for these children includes provision of medium- and long-chain fatty acids (FAs). However, ECM induces a stress response, which could limit the capacity for FA oxidation. Metabolic impairment could induce new or exacerbate existing myocardial dysfunction. Using a clinically relevant piglet model, we tested the hypothesis that ECM maintains the myocardial capacity for FA oxidation and preserves myocardial energy state. Provision of 13-Carbon labeled medium-chain FA (octanoate), long-chain free FAs (LCFAs), and lactate into systemic circulation showed that ECM promoted relative increases in myocardial LCFA oxidation while inhibiting lactate oxidation. Loading of these labeled substrates at high dose into the left coronary artery demonstrated metabolic flexibility as the heart preferentially oxidized octanoate. ECM preserved this octanoate metabolic response, but also promoted LCFA oxidation and inhibited lactate utilization. Rapid upregulation of pyruvate dehydrogenase kinase-4 (PDK4) protein appeared to participate in this metabolic shift during ECMO. ECM also increased relative flux from lactate to alanine further supporting the role for pyruvate dehydrogenase inhibition by PDK4. High dose substrate loading during ECM() also elevated the myocardial energy state indexed by phosphocreatine to ATP ratio. ECM promotes LCFA oxidation in immature hearts, while maintaining myocardial energy state. These data support the appropriateness of FA provision during ECMO support for the immature heart (C) 2013 Elsevier Ltd. All rights reserved. C1 [Kajimoto, Masaki; Priddy, Colleen M. O'Kelly; Ledee, Dolena R.; Xu, Chun; Olson, Aaron K.; Portman, Michael A.] Seattle Childrens Res Inst, Ctr Dev Therapeut, Seattle, WA 98101 USA. [Isern, Nancy] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Olson, Aaron K.; Portman, Michael A.] Univ Washington, Dept Pediat, Div Cardiol, Seattle, WA 98195 USA. RP Portman, MA (reprint author), Seattle Childrens Res Inst, 1900 9th Ave, Seattle, WA 98101 USA. EM michael.portman@seattlechildrens.org RI Isern, Nancy/J-8016-2013; OI Isern, Nancy/0000-0001-9571-8864 FU National Institutes of Health [R01HL60666]; Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory FX This work was supported by the National Institutes of Health R01HL60666 to M. A. Portman. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 53 TC 10 Z9 10 U1 0 U2 6 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2828 EI 1095-8584 J9 J MOL CELL CARDIOL JI J. Mol. Cell. Cardiol. PD SEP PY 2013 VL 62 BP 144 EP 152 DI 10.1016/j.yjmcc.2013.05.014 PG 9 WC Cardiac & Cardiovascular Systems; Cell Biology SC Cardiovascular System & Cardiology; Cell Biology GA 198RV UT WOS:000322940900019 PM 23727393 ER PT J AU Bezrukov, F Kartavtsev, A Lindner, M AF Bezrukov, F. Kartavtsev, A. Lindner, M. TI Leptogenesis in models with keV sterile neutrino dark matter SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article ID BARYON ASYMMETRY; UNIVERSE; BARYOGENESIS; CONSTRAINTS AB We analyze leptogenesis in gauge extensions of the Standard Model with keV sterile neutrino dark matter. We find that both the observed dark matter abundance and the correct baryon asymmetry of the Universe can simultaneously emerge in these models. Both the dark matter abundance and the leptogenesis are controlled by the out-of-equilibrium decays of the same heavy right-handed neutrino. C1 [Bezrukov, F.] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Bezrukov, F.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Bezrukov, F.] Univ Munich, D-80333 Munich, Germany. [Kartavtsev, A.; Lindner, M.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. RP Bezrukov, F (reprint author), Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. EM fedor.bezrukov@uconn.edu; alexander.kartavtsev@mpi-hd.mpg.de; manfred.lindner@mpi-hd.mpg.de OI Bezrukov, Fedor/0000-0003-3601-1003; Lindner, Manfred/0000-0002-3704-6016 FU Humboldt foundation; DFG [KA-3274/1-1] FX The work of FB was partially supported by the Humboldt foundation. AK is supported by DFG under grant KA-3274/1-1 'Systematic analysis of baryogenesis in non-equilibrium quantum field theory'. NR 29 TC 6 Z9 6 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD SEP PY 2013 VL 40 IS 9 AR 095202 DI 10.1088/0954-3899/40/9/095202 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 201IZ UT WOS:000323135200016 ER PT J AU Jimenez-Delgado, P Melnitchouk, W Owens, JF AF Jimenez-Delgado, P. Melnitchouk, W. Owens, J. F. TI Parton momentum and helicity distributions in the nucleon SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Review ID DEEP-INELASTIC-SCATTERING; NEUTRON SPIN STRUCTURE; DEPENDENT STRUCTURE-FUNCTION; STRUCTURE FUNCTIONS G(1)(P); ELECTRON-PROTON SCATTERING; INTRINSIC CHARM COMPONENT; STRUCTURE FUNCTIONS G(2); HEAVY FLAVOR PRODUCTION; DRELL-YAN PROCESS; LIGHT-QUARK SEA AB We review the current status of spin-averaged and spin-dependent parton distribution functions (PDFs) of the nucleon. After presenting the formalism used to fit PDFs in modern global data analyses, we discuss constraints placed on the PDFs by specific data types. We give representative examples of unpolarized and polarized PDFs and their errors, and list open questions in global quantum chromodynamics fitting. Finally, we anticipate how future facilities, with fixed-target and collider experiments, may impact our knowledge of PDFs and reduce their uncertainties. C1 [Jimenez-Delgado, P.; Melnitchouk, W.] Jefferson Lab, Newport News, VA 23606 USA. [Owens, J. F.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. RP Jimenez-Delgado, P (reprint author), Jefferson Lab, Newport News, VA 23606 USA. EM wmelnitc@jlab.org FU DOE under which Jefferson Science Associates, LLC operates Jefferson Lab [DE-AC05-06OR23177]; DOE [DE-FG02-13ER41942] FX We thank A Accardi and K Griffioen for helpful comments and a careful reading of the manuscript. The work of PJ-D and WM was supported by DOE contract no. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC operates Jefferson Lab. The work of JFO was supported by DOE contract no. DE-FG02-13ER41942. NR 266 TC 26 Z9 26 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD SEP PY 2013 VL 40 IS 9 AR 093102 DI 10.1088/0954-3899/40/9/093102 PG 51 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 201IZ UT WOS:000323135200002 ER PT J AU Wang, HX Yoda, Y Dong, WB Huang, SPD AF Wang, Hongxin Yoda, Yoshitaka Dong, Weibing Huang, Songping D. TI Energy calibration issues in nuclear resonant vibrational spectroscopy: observing small spectral shifts and making fast calibrations SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE nuclear resonant vibrational spectroscopy; high-resolution monochromator; in situ energy calibration; quick-switching energy calibration; small energy shift; energy scale; energy position ID NORMAL-MODE ANALYSIS; SCATTERING BEAMLINE; FEMO-COFACTOR; RAMAN; CLUSTER; NRVS; HYDROGENASE; NITROGENASE; SPRING-8; SITE AB The conventional energy calibration for nuclear resonant vibrational spectroscopy (NRVS) is usually long. Meanwhile, taking NRVS samples out of the cryostat increases the chance of sample damage, which makes it impossible to carry out an energy calibration during one NRVS measurement. In this study, by manipulating the 14.4 keV beam through the main measurement chamber without moving out the NRVS sample, two alternative calibration procedures have been proposed and established: (i) an in situ calibration procedure, which measures the main NRVS sample at stage A and the calibration sample at stage B simultaneously, and calibrates the energies for observing extremely small spectral shifts; for example, the 0.3 meV energy shift between the 100%-Fe-57-enriched [Fe4S4Cl4](=) and 10%-Fe-57 and 90%-Fe-54 labeled [Fe4S4Cl4](=) has been well resolved; (ii) a quick-switching energy calibration procedure, which reduces each calibration time from 3-4 h to about 30 min. Although the quick-switching calibration is not in situ, it is suitable for normal NRVS measurements. C1 [Wang, Hongxin; Dong, Weibing] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Wang, Hongxin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Yoda, Yoshitaka] JASRI, Sayo, Hyogo 6795198, Japan. [Dong, Weibing] Liaoning Normal Univ, Liaoning Prov Key Lab Biotechnol & Drug Discovery, Dalian 116081, Peoples R China. [Huang, Songping D.] Kent State Univ, Dept Chem & Biochem, Kent, OH 44242 USA. RP Wang, HX (reprint author), Univ Calif Davis, Dept Chem, 1 Shields Ave, Davis, CA 95616 USA. EM hxwang2@lbl.gov FU NIH [GM-65440, EB-001962]; DOE Office of Biological and Environmental Research; NIH-NCI [1R21CA143408-01A1] FX This work was funded by NIH grants GM-65440, EB-001962, and the DOE Office of Biological and Environmental Research (all to Professor Stephen P. Cramer at UC Davis). The work at Kent State University was supported by NIH-NCI (1R21CA143408-01A1, to SDH). NRVS spectra were measured at SPring-8 BL09XU with the approval of JASRI (Proposal No. 2011A/B0032 and 2012A/B0032). We also thank Professor Cramer (at UC Davis) for the overall support, Dr Ilya Sergeev/Dr Aleksandr Chumakov (at ESRF/ID18) for assistance in obtaining the [MgFe(CN)6]= NRVS, and Dr Jiyong Zhao (at APS 03ID) for discussion on HRM calibrations. NR 23 TC 2 Z9 2 U1 0 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2013 VL 20 BP 683 EP 690 DI 10.1107/S0909049513021201 PN 5 PG 8 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 203HN UT WOS:000323282800002 PM 23955030 ER PT J AU Pompidor, G Dworkowski, FSN Thominet, V Schulze-Briese, C Fuchs, MR AF Pompidor, Guillaume Dworkowski, Florian S. N. Thominet, Vincent Schulze-Briese, Clemens Fuchs, Martin R. TI A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE macromolecular crystallography; single-crystal spectroscopy; micro-spectrophotometry; complementary techniques; Raman spectroscopy ID X-RAY CRYSTALLOGRAPHY; RESONANCE RAMAN; RADIATION-DAMAGE; PROTEIN CRYSTALLOGRAPHY; BIOLOGICAL CRYSTALS; BEAMLINE X26-C; MYOGLOBIN; COMPLEX; INTERMEDIATE; MICROSPECTROPHOTOMETER AB The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years. C1 [Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent; Fuchs, Martin R.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Schulze-Briese, Clemens] DECTRIS Ltd, CH-5400 Baden, Switzerland. RP Fuchs, MR (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM mfuchs@bnl.gov OI Dworkowski, Florian/0000-0001-5004-8684 FU PSI Forschungskommission; Max Planck Gesellschaft; Novartis; F. Hoffman-La Roche FX The authors would like to thank Alke Meents (DESY), Robin Owen (DLS) and Arwen Pearson (University of Leeds) for inspiration and helpful input and discussions. The presented work would have been impossible without the support by Jose Gabadinho, Ezequiel Panepucci, Claude Pradervand, Jorg Schneider, Roman Schneider, Takashi Tomizaki and the rest of the SLS MX-Group. Funding was provided by a PSI Forschungskommission grant as well as the X10SA beamline partners Max Planck Gesellschaft, Novartis and F. Hoffman-La Roche. NR 54 TC 9 Z9 9 U1 0 U2 15 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2013 VL 20 BP 765 EP 776 DI 10.1107/S0909049513016063 PN 5 PG 12 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 203HN UT WOS:000323282800013 PM 23955041 ER PT J AU Roessler, CG Kuczewski, A Stearns, R Ellson, R Olechno, J Orville, AM Allaire, M Soares, AS Heroux, A AF Roessler, Christian G. Kuczewski, Anthony Stearns, Richard Ellson, Richard Olechno, Joseph Orville, Allen M. Allaire, Marc Soares, Alexei S. Heroux, Annie TI Acoustic methods for high-throughput protein crystal mounting at next-generation macromolecular crystallographic beamlines SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE acoustic droplet ejection; conveyor belt; crystal mounting; high throughput; X-ray diffraction; macromolecular crystallography ID X-RAY-DIFFRACTION; INTEGRATED SOFTWARE; DATA-COLLECTION; CRYSTALLIZATION; OPTIMIZATION; SYSTEM AB To take full advantage of advanced data collection techniques and high beam flux at next-generation macromolecular crystallography beamlines, rapid and reliable methods will be needed to mount and align many samples per second. One approach is to use an acoustic ejector to eject crystal-containing droplets onto a solid X-ray transparent surface, which can then be positioned and rotated for data collection. Proof-of-concept experiments were conducted at the National Synchrotron Light Source on thermolysin crystals acoustically ejected onto a polyimide 'conveyor belt'. Small wedges of data were collected on each crystal, and a complete dataset was assembled from a well diffracting subset of these crystals. Future developments and implementation will focus on achieving ejection and translation of single droplets at a rate of over one hundred per second. C1 [Roessler, Christian G.; Kuczewski, Anthony; Orville, Allen M.; Allaire, Marc; Soares, Alexei S.; Heroux, Annie] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. [Stearns, Richard; Ellson, Richard; Olechno, Joseph] Labcyte Inc, Sunnyvale, CA 94089 USA. [Orville, Allen M.] Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. RP Soares, AS (reprint author), Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. EM soares@bnl.gov; heroux@bnl.gov RI Soares, Alexei/F-4800-2014 OI Soares, Alexei/0000-0002-6565-8503 FU Brookhaven National Laboratory/US Department of Energy, Laboratory Directed Research and Development [11-008]; DOE Office of Biological and Environmental Research [FWP BO-70]; National Center for Research Resources of the National Institutes of Health [2-P41-RR012408]; National Institute of General Medical Sciences [Y1 GM 0080-03]; DOE Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Data for this study were measured at beamline X25 of the National Synchrotron Light Source (NSLS). This work was supported by the Brookhaven National Laboratory/US Department of Energy, Laboratory Directed Research and Development grant 11-008, from the DOE Office of Biological and Environmental Research (FWP BO-70) and from the National Center for Research Resources of the National Institutes of Health (2-P41-RR012408) and the National Institute of General Medical Sciences (Grant Y1 GM 0080-03). The NSLS was supported by the DOE Office of Basic Energy Sciences (DE-AC02-98CH10886). Author contributions: CGR, AMO, MA, ASS and AH designed the experiment. CGR, AK, ASS and AH performed the beamline experiments. RS, RE and JO provided critical information relating to acoustic droplet ejection. CGR, ASS and AH analyzed the data. All authors wrote the paper. NR 26 TC 21 Z9 22 U1 1 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2013 VL 20 BP 805 EP 808 DI 10.1107/S0909049513020372 PN 5 PG 4 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 203HN UT WOS:000323282800018 PM 23955046 ER PT J AU Aubry, S Arsenlis, A AF Aubry, S. Arsenlis, A. TI Use of spherical harmonics for dislocation dynamics in anisotropic elastic media SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article ID GREENS FUNCTIONS AB Large-scale dislocation dynamics simulations usually involve several millions of interacting dislocation segments. The stress at a point and interaction force between two segments need to be computed many times during simulations. We evaluate the cost versus accuracy of using spherical harmonics series to approximate the anisotropic elastic Green's function in calculating stresses and forces between segments. The stress at a point is obtained by analytically integrating the spherical harmonics series once and the forces by integrating it analytically twice. We analyze the convergence and cost of using this approach and describe the elements of a fast implementation. We find that the cost of the force and stress calculations grows quadratically with the accuracy for a fixed anisotropy ratio. C1 [Aubry, S.; Arsenlis, A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Aubry, S (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. FU US Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344] FX The Lawrence Livermore National Laboratory is operated by the Lawrence Livermore National Security, LLC, for the US Department of Energy, National Nuclear Security Administration, under Contract DE-AC52-07NA27344. NR 15 TC 6 Z9 6 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD SEP PY 2013 VL 21 IS 6 AR 065013 DI 10.1088/0965-0393/21/6/065013 PG 18 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 203KF UT WOS:000323290600014 ER PT J AU Homes, CC Vogt, T AF Homes, Christopher C. Vogt, Thomas TI COLOSSAL PERMITTIVITY MATERIALS Doping for superior dielectrics SO NATURE MATERIALS LA English DT News Item ID CONSTANT C1 [Homes, Christopher C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Vogt, Thomas] Univ S Carolina, NanoCtr, Columbia, SC 29208 USA. [Vogt, Thomas] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. RP Homes, CC (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM homes@bnl.gov; tvogt@mailbox.sc.edu NR 7 TC 17 Z9 17 U1 5 U2 111 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD SEP PY 2013 VL 12 IS 9 BP 782 EP 783 PG 2 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 205CE UT WOS:000323417600010 PM 23966049 ER PT J AU King, BA Alam, S Promoff, G Arrazola, R Dube, SR AF King, Brian A. Alam, Suhana Promoff, Gabbi Arrazola, Rene Dube, Shanta R. TI Awareness and Ever-Use of Electronic Cigarettes Among U.S. Adults, 2010-2011 SO NICOTINE & TOBACCO RESEARCH LA English DT Article ID NICOTINE DELIVERY-SYSTEMS; TOBACCO; POLICY; SMOKE; RISE AB Introduction: Electronic cigarettes, or e-cigarettes, were introduced into the U.S. market in recent years. However, little is known about the health impact of the product or the extent of its use. This study assessed the prevalence and correlates of awareness and ever-use of e-cigarettes among U.S. adults during 2010-2011. Methods: Data were obtained from the HealthStyles survey, a national consumer-based survey of U.S. adults aged years old. In 2010, data collection for the HealthStyles survey was both mail-based (n = 4,184) and web-based (n = 2,505), and in 2011, web-based (n = 4,050) only. Estimates of awareness and ever-use of e-cigarettes were calculated overall and by sex, age, race/ethnicity, educational attainment, household income, region, and smoking status. Results: In 2010, overall awareness of e-cigarettes was 38.5% (mail survey) and 40.9% (web survey); in 2011, awareness was 57.9% (web survey). Ever-use of e-cigarettes among all respondents was 2.1% in the 2010 mail survey, 3.3% in the 2010 web survey, and 6.2% in the 2011 web survey. Ever-use of e-cigarettes was significantly higher among current smokers compared with both former and never-smokers, irrespective of survey method or year. During 2010-2011, ever-use increased among both sexes, those aged 45-54 years, non-Hispanic Whites, those living in the South, and current and former smokers. Conclusions: Awareness and ever-use of e-cigarettes increased among U.S. adults from 2010 to 2011. In 2011, approximately 1 in 5 current smokers reported having ever-used e-cigarettes. Continued surveillance of e-cigarettes is needed for public health planning. C1 [King, Brian A.; Alam, Suhana; Promoff, Gabbi; Arrazola, Rene; Dube, Shanta R.] Ctr Dis Control & Prevent, Off Smoking & Hlth, Natl Ctr Chron Dis Prevent & Hlth Promot, Atlanta, GA 30341 USA. [King, Brian A.] Ctr Dis Control & Prevent, Epidem Intelligence Serv, Div Appl Sci, Sci Educ & Profess Dev Program Off, Atlanta, GA 30341 USA. [Alam, Suhana] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. RP King, BA (reprint author), Ctr Dis Control & Prevent, Off Smoking & Hlth, Natl Ctr Chron Dis Prevent & Hlth Promot, 4770 Buford Highway,MS K-50, Atlanta, GA 30341 USA. EM baking@cdc.gov FU U.S. Department of Energy; CDC [DE-AC05-06OR23100] FX This project was supported in part by an appointment to the Research Participation Program at the Centers for Disease Control and Prevention (CDC) administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and the CDC (Grant DE-AC05-06OR23100). NR 27 TC 201 Z9 203 U1 2 U2 52 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1462-2203 J9 NICOTINE TOB RES JI Nicotine Tob. Res. PD SEP PY 2013 VL 15 IS 9 BP 1623 EP 1627 DI 10.1093/ntr/ntt013 PG 5 WC Substance Abuse; Public, Environmental & Occupational Health SC Substance Abuse; Public, Environmental & Occupational Health GA 202CM UT WOS:000323191100018 PM 23449421 ER PT J AU Wen, J Gao, C Li, YH Wang, YQ Zhang, LM Hu, BT Chen, LJ Su, X AF Wen, J. Gao, C. Li, Y. H. Wang, Y. Q. Zhang, L. M. Hu, B. T. Chen, L. J. Su, X. TI Ion irradiation induced order-to-disorder transformation in delta-phase Lu4Hf3O12 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Ion irradiation; delta-Lu4Hf3O12; Order-to-disorder transformation ID NUCLEAR-WASTE; PLUTONIUM DISPOSITION; RADIATION TOLERANCE; CERAMIC INSULATORS; DELTA-SC4ZR3O12; IMMOBILIZATION; ACTINIDES; SPECTRUM; OXIDES; FORM AB In this study, polycrystalline delta-phase Lu4Hf3O12 was irradiated with 6 MeV Xe26+ ions to fluences ranging from 2 x 10(13) to 1 x 10(15) ions/cm(2). Ion irradiation-induced microstructural evolution was examined by using grazing incidence X-ray diffraction (GIXRD). A complete phase transformation from ordered rhombohedral to disordered fluorite (O-D) was observed by a fluence of 1 x 10(15) ions/cm(2), equivalent to a peak ballistic damage dose of similar to 3.49 displacements per atom (dpa). To research the different irradiation effect between light ion and heavy ion on delta-Lu4Hf3O12, 400 keV Ne2+ ions were implanted to ion fluences ranging from 1 x 10(14) to 1 x 10(15) ions/cm(2). A complete O-D crystal structure transformation was observed by a fluence of 5 x 10(14) ions/cm(2) (similar to 0.22 dpa). This threshold dose was found to be observably lower than the threshold dose to produce order-to-disorder transformation using Xe26+ ions on delta-Lu4Hf3O12. This suggests that heavy ions are less efficient than light ions in producing the retained defects that are responsible for the O-D transformation. The theoretical calculations show that the O-D transformation of delta-phase was attributed to the anion oxygen Frenkel pair defect. The ion irradiation-induced transformation of delta-phase Lu4Hf3O12 into disordered fluorite structure observed here is also discussed in relation to the temperature-composition (T-C) phase diagrams for the compound. (C) 2013 Elsevier B.V. All rights reserved. C1 [Wen, J.; Gao, C.; Li, Y. H.; Zhang, L. M.; Hu, B. T.; Chen, L. J.; Su, X.] Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Peoples R China. [Wang, Y. Q.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Li, YH (reprint author), Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Peoples R China. EM liyuhong@lzu.edu.cn FU National Natural Science Foundation of China [11175076, 10975065, 91026021, 11135002]; U.S Department of Energy (DOE), Office of Basic Energy Sciences (OBES), Division of Materials Sciences and Engineering FX This work was sponsored by the National Natural Science Foundation of China (11175076, 10975065, 91026021 and 11135002). The work also sponsored by the U.S Department of Energy (DOE), Office of Basic Energy Sciences (OBES), Division of Materials Sciences and Engineering. The author wishes to thank the operators of the 320 kV platform for multi-discipline research with highly charged ions at the Institute of Modern Physics, CAS. NR 26 TC 0 Z9 0 U1 2 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD SEP 1 PY 2013 VL 310 BP 1 EP 5 DI 10.1016/j.nimb.2013.04.055 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 203NE UT WOS:000323299100001 ER PT J AU Salvadori, MC Teixeira, FS Sgubin, LG Cattani, M Brown, IG AF Salvadori, M. C. Teixeira, F. S. Sgubin, L. G. Cattani, M. Brown, I. G. TI Electrical conductivity of gold-implanted alumina nanocomposite SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Conducting ceramic; Metal ion implantation; Surface conductivity; Percolation ID DYNAMIC COMPOSITION CHANGES; METAL-ION IMPLANTATION; FILTERED VACUUM-ARC; FILMS; NANOPARTICLES; DEPOSITION; SIMULATION; CERAMICS; TRIDYN AB We have carried out ion implantation of gold into alumina ceramic substrates and measured the surface resistivity as a function of implantation dose. The Au ion energy was 40 keV and the dose spanned the range 2.7-8.9 x 10(16) cm(-2). Imaging of the implanted material by transmission electron microscopy revealed that the implanted gold self-assembles into nanoparticles, thus forming a gold-alumina nanocomposite. The surface resistivity measurements were compared with the predictions of a model based on percolation theory, in which electron transport through the composite is explained by conduction through a random resistor network formed by the Au nanoparticles. The electrical conductivity of a composite, near the critical conductor-insulator transition, is given by sigma approximate to sigma(0)(x-x(c))(t), where sigma(0) is the saturation conductivity for which the material still remains a composite, x is the normalized metal atom concentration of the conducting phase, x(c) is the critical concentration, or percolation threshold and t is the critical exponent. Excellent agreement was found between the experimental results and the predictions of the theory, and the results are consistent with prior related (but more limited) work. The percolation dose was 4.4 x 10(16) cm(-2), and the critical exponent obtained was t = 1.4 +/- 0.1. We conclude that the conductivity process is due to percolation and that the contribution from tunneling conduction is negligible. (C) 2013 Elsevier B.V. All rights reserved. C1 [Salvadori, M. C.; Teixeira, F. S.; Sgubin, L. G.; Cattani, M.] Univ Sao Paulo, Inst Phys, BR-05314970 Sao Paulo, Brazil. [Brown, I. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Salvadori, MC (reprint author), Univ Sao Paulo, Inst Phys, CP 66318, BR-05314970 Sao Paulo, Brazil. EM mcsalvadori@if.usp.br RI Cattani, Mauro/N-9749-2013; Teixeira, Fernanda/A-9395-2013; Salvadori, Maria Cecilia/A-9379-2013 FU Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil FX This work was supported by the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) and the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil. We are grateful to the Institute of Ion Beam Physics and Materials Research at the Forschungszentrum Dresden-Rossendorf, Germany, for the TRIDYN-FZR computer simulation code. NR 35 TC 6 Z9 6 U1 1 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD SEP 1 PY 2013 VL 310 BP 32 EP 36 DI 10.1016/j.nimb.2013.05.024 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 203NE UT WOS:000323299100007 ER PT J AU Stoller, RE Toloczko, MB Was, GS Certain, AG Dwaraknath, S Garner, FA AF Stoller, R. E. Toloczko, M. B. Was, G. S. Certain, A. G. Dwaraknath, S. Garner, F. A. TI On the use of SRIM for computing radiation damage exposure SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE SRIM code; dpa; Radiation dose ID DISPLACEMENT DAMAGE; DEFECT PRODUCTION; IRRADIATION; SOLIDS; METALS; RATES; ATOMS AB The SRIM (formerly TRIM) Monte Carlo simulation code is widely used to compute a number of parameters relevant to ion beam implantation and ion beam processing of materials. It also has the capability to compute a common radiation damage exposure unit known as atomic displacements per atom (dpa). Since dpa is a standard measure of primary radiation damage production, most researchers who employ ion beams as a tool for inducing radiation damage in materials use SRIM to determine the dpa associated with their irradiations. The use of SRIM for this purpose has been evaluated and comparisons have been made with an internationally-recognized standard definition of dpa, as well as more detailed atomistic simulations of atomic displacement cascades. Differences between the standard and SRIM-based dpa are discussed and recommendations for future usage of SRIM in radiation damage studies are made. In particular, it is recommended that when direct comparisons between ion and neutron data are intended, the Kinchin-Pease option of SRIM should be selected. (C) 2013 Elsevier B.V. All rights reserved. C1 [Stoller, R. E.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Toloczko, M. B.; Certain, A. G.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Was, G. S.; Dwaraknath, S.] Univ Michigan, Ann Arbor, MI 48109 USA. [Garner, F. A.] Radiat Effects Consulting, Richland, WA USA. RP Stoller, RE (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM rkn@ornl.gov OI Dwaraknath, Shyam/0000-0003-0289-2607 FU Office of Fusion Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC; U.S. Department of Energy Office of Nuclear Energy FX Research sponsored by the Office of Fusion Energy Sciences, U.S. Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC (RES), and by the U.S. Department of Energy Office of Nuclear Energy Fuel Cycle Technology Program (MBZ). NR 32 TC 167 Z9 169 U1 11 U2 129 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD SEP 1 PY 2013 VL 310 BP 75 EP 80 DI 10.1016/j.nimb.2013.05.008 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 203NE UT WOS:000323299100011 ER PT J AU Kreyssig, A Beutier, G Hiroto, T Kim, MG Tucker, GS de Boissieu, M Tamura, R Goldman, AI AF Kreyssig, Andreas Beutier, Guillaume Hiroto, Takanobu Kim, Min Gyu Tucker, Gregory S. de Boissieu, Marc Tamura, Ryuji Goldman, Alan I. TI Antiferromagnetic order and the structural order-disorder transition in the Cd6Ho quasicrystal approximant SO PHILOSOPHICAL MAGAZINE LETTERS LA English DT Article DE quasicrystal; approximant; antiferromagnetism; X-ray resonant magnetic scattering ID PHASE AB It has generally been accepted that the orientational ordering of the Cd-4 tetrahedron within the Cd6R quasicrystal approximants is kinetically inhibited for R=Ho, Er, Tm and Lu by steric constraints. Our high-resolution X-ray scattering measurements of the Cd6Ho quasicrystal approximant, however, reveal an abrupt (first-order) transition to a monoclinic structure below T-S=178K for samples that have aged' at room temperature for approximately one year, reopening this question. Using X-ray resonant magnetic scattering at the Ho L-3-edge we have elucidated the nature of the antiferromagnetic ordering below T-N=8.5K in Cd6Ho. The magnetic Bragg peaks are found at the charge forbidden H+K+L=2n+1 positions, referenced to the high-temperature body-centred cubic structure. In general terms, this corresponds to antiferromagnetic arrangements of the Ho moments on adjacent clusters in the unit cell as previously found for Cd6Tb. C1 [Kreyssig, Andreas; Kim, Min Gyu; Tucker, Gregory S.; Goldman, Alan I.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Kreyssig, Andreas; Kim, Min Gyu; Tucker, Gregory S.; Goldman, Alan I.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Beutier, Guillaume; de Boissieu, Marc] UMR 5266 CNRS Grenoble INP UJF, SIMaP, St Martin Dheres, France. [Hiroto, Takanobu; Tamura, Ryuji] Tokyo Univ Sci, Dept Mat Sci & Technol, Noda, Chiba JP2788510, Japan. RP Kreyssig, A (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. EM kreyssig@ameslab.gov; goldman@ameslab.gov RI Kim, Min Gyu/B-8637-2012; Tucker, Gregory/L-9357-2013 OI Kim, Min Gyu/0000-0001-7676-454X; Tucker, Gregory/0000-0002-2787-8054 FU Department of Physics and Astronomy [DE-AC02-07CH11358] FX The work as part of Andreas Kreyssig, Guillaume Beutier, Takanobu Hiroto, Min Gyu Kim, Gregory S. Tucker, Marc de Boissieu, Ryuji Tamura and Alan I. Goldman's official duties as Federal Government Contractors is published by permission of the Ames Laboratory, U. S. DOE and Department of Physics and Astronomy under Contract Number DE-AC02-07CH11358. The US Government retains for itself, and others acting on its behalf, a paid-up, non-exclusive, and irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 17 TC 4 Z9 4 U1 2 U2 11 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0950-0839 J9 PHIL MAG LETT JI Philos. Mag. Lett. PD SEP 1 PY 2013 VL 93 IS 9 BP 512 EP 520 DI 10.1080/09500839.2013.815375 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 204ZL UT WOS:000323409700003 ER PT J AU Xie, ZB Xu, YP Liu, G Liu, Q Zhu, JG Tu, C Amonette, JE Cadisch, G Yong, JWH Hu, SJ AF Xie, Zubin Xu, Yanping Liu, Gang Liu, Qi Zhu, Jianguo Tu, Cong Amonette, James E. Cadisch, Georg Yong, Jean W. H. Hu, Shuijin TI Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China SO PLANT AND SOIL LA English DT Article DE Biochar; Greenhouse gases; Carbon sequestration; Nitrogen use efficiency; Rice ID OXIDE EMISSION; N2O EMISSIONS; METHANE EMISSION; WATER MANAGEMENT; PLANT-GROWTH; FIELDS; CO2; FERTILIZERS; CH4; CHARCOAL AB Two field microcosm experiments and N-15 labeling techniques were used to investigate the effects of biochar addition on rice N nutrition and GHG emissions in an Inceptisol and an Ultisol. Biochar N bioavailability and effect of biochar on fertilizer nitrogen-use efficiency (NUE) were studied by N-15-enriched wheat biochar (7.8803 atom% N-15) and fertilizer urea (5.0026 atom% N-15) (Experiment I). Corn biochar and corn stalks were applied at 12 Mg ha(-1) to study their effects on GHG emissions (Experiment II). Biochar had no significant impact on rice production and less than 2 % of the biochar N was available to plants in the first season. Biochar addition increased soil C and N contents and decreased urea NUE. Seasonal cumulative CH4 emissions with biochar were similar to the controls, but significantly lower than the local practice of straw amendment. N2O emissions with biochar were similar to the control in the acidic Ultisol, but significantly higher in the slightly alkaline Inceptisol. Carbon-balance calculations found no major losses of biochar-C. Low bio-availability of biochar N did not make a significantly impact on rice production or N nutrition during the first year. Replacement of straw amendments with biochar could decrease CH4 emissions and increase SOC stocks. C1 [Xie, Zubin; Xu, Yanping; Liu, Gang; Liu, Qi; Zhu, Jianguo] Chinese Acad Sci, Inst Soil Sci, Jiangsu Biochar Engn Ctr, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Jiangsu, Peoples R China. [Xie, Zubin; Tu, Cong; Hu, Shuijin] N Carolina State Univ, Dept Plant Pathol, Soil Ecol Lab, Raleigh, NC 27695 USA. [Xu, Yanping; Liu, Qi] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China. [Amonette, James E.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. [Cadisch, Georg] Univ Hohenheim, Inst Plant Prod & Agroecol Trop & Subtrop, D-70593 Stuttgart, Germany. [Yong, Jean W. H.] Singapore Univ Technol & Design, Singapore 138682, Singapore. RP Xie, ZB (reprint author), Chinese Acad Sci, Inst Soil Sci, Jiangsu Biochar Engn Ctr, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Jiangsu, Peoples R China. EM zbxie@issas.ac.cn; wshxyp@126.com; gliu@issas.ac.cn; liuq@issas.ac.cn; jgzhu@issas.ac.cn; congtu62@yahoo.com; jim.amonette@pnl.gov; georg.cadisch@uni-hohenheim.de; jyong@sutd.edu.sg; shu4@ncsu.edu FU Natural Science Foundation of China [41171191, 40871146]; Chinese Academy of Sciences [KZCX2-YW-Q1-07, KZCX2-EW-409]; Ministry of Science and Technology of China [2008BAD95B05]; Blue Moon Fund, USA FX We wish to express our gratitude to the Natural Science Foundation of China (41171191, 40871146), Chinese Academy of Sciences (KZCX2-YW-Q1-07, KZCX2-EW-409), Ministry of Science and Technology of China (2008BAD95B05) and Blue Moon Fund, USA for financial support. The constructive comments of the two anonymous reviewers are highly appreciated. NR 58 TC 35 Z9 46 U1 20 U2 255 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0032-079X J9 PLANT SOIL JI Plant Soil PD SEP PY 2013 VL 370 IS 1-2 BP 527 EP 540 DI 10.1007/s11104-013-1636-x PG 14 WC Agronomy; Plant Sciences; Soil Science SC Agriculture; Plant Sciences GA 202XG UT WOS:000323253500039 ER PT J AU Pearman, BP Mohajeri, N Slattery, DK Hampton, MD Seal, S Cullen, DA AF Pearman, Benjamin P. Mohajeri, Nahid Slattery, Darlene K. Hampton, Michael D. Seal, Sudipta Cullen, David A. TI The chemical behavior and degradation mitigation effect of cerium oxide nanoparticles in perfluorosulfonic acid polymer electrolyte membranes SO POLYMER DEGRADATION AND STABILITY LA English DT Article DE Cerium oxide; Perfluorosulfonic acid; Polymer electrolyte membrane (PEM); Fuel cell; Fenton test; Degradation mitigation ID PROTON-EXCHANGE MEMBRANE; FUEL-CELLS; RADICALS AB Perfluorosulfonic acid membranes are susceptible to degradation during hydrogen fuel cell operation due to radical attack on the polymer chains. Mitigation of this attack by cerium-based radical scavengers is an approach that has shown promise. In this work, two formulations of crystalline cerium oxide nanoparticles, with an order of magnitude difference in particle size, are incorporated into said membranes and subjected to proton conductivity measurements and ex-situ durability tests. We found that ceria is reduced to Ce(III) ions in the acidic environment of a heated, humidified membrane which negatively impacts proton conductivity. In liquid and gas Fenton testing, fluoride emission is reduced by an order of magnitude, drastically increasing membrane longevity. Sideproduct analysis demonstrated that in the liquid Fenton test, the main point of attack is weak polymer end groups, while in the gas Fenton test, there is additional side-chain attack. Both mechanisms are mitigated by the addition of the ceria nanoparticles, whereby the extent of the concentration-dependent durability improvement is found to be independent of particle size. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Pearman, Benjamin P.; Mohajeri, Nahid; Slattery, Darlene K.] Univ Cent Florida, Florida Solar Energy Ctr, Cocoa, FL 32922 USA. [Pearman, Benjamin P.; Hampton, Michael D.] Univ Cent Florida, Dept Chem, Orlando, FL 32816 USA. [Seal, Sudipta] Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. [Cullen, David A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Mohajeri, N (reprint author), Univ Cent Florida, Florida Solar Energy Ctr, 1679 Clearlake Rd, Cocoa, FL 32922 USA. EM nmohajeri@fsec.ucf.edu RI Cullen, David/A-2918-2015 OI Cullen, David/0000-0002-2593-7866 FU DOE under the Florida Hydrogen Initiative [DE-FC36-04GO14225]; Oak Ridge National Laboratory's ShaRE User Facility; Office of Basic Energy Sciences, U.S. Department of Energy; Chemistry Department at the University of Central Florida FX The authors gratefully acknowledge funding from DOE under the Florida Hydrogen Initiative, contract #DE-FC36-04GO14225. NMR support was provided by Dr. David Richardson of the Chemistry Department at the University of Central Florida and ceria synthesis and characterization help by Dr. Ajay Karakoti. This research was supported by Oak Ridge National Laboratory's ShaRE User Facility, which is sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy. Work was performed at the Materials Characterization Facility of the University of Central Florida with valuable instrumental and analytical help provided by Mr. Kirk Scammon. Ion chromatography work was performed by Mr. Peter Kubiak and Mr. Nicholas Miller. Thanks to J.M. Zuo and J.C. Mabon for use of the web-based electron microscopy application software Web-EMAPS, available at http://emaps.mrl.uiuc.edu/. NR 33 TC 9 Z9 9 U1 1 U2 32 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0141-3910 J9 POLYM DEGRAD STABIL JI Polym. Degrad. Stabil. PD SEP PY 2013 VL 98 IS 9 BP 1766 EP 1772 DI 10.1016/j.polymdegradstab.2013.05.025 PG 7 WC Polymer Science SC Polymer Science GA 205SD UT WOS:000323464200028 ER PT J AU Der, BS Jha, RK Lewis, SM Thompson, PM Guntas, G Kuhlman, B AF Der, Bryan S. Jha, Raamesh K. Lewis, Steven M. Thompson, Peter M. Guntas, Gurkan Kuhlman, Brian TI Combined computational design of a zinc-binding site and a protein-protein interaction: One open zinc coordination site was not a robust hotspot for de novo ubiquitin binding (vol 81, pg 1245, 2013) SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Correction C1 [Der, Bryan S.; Jha, Raamesh K.; Lewis, Steven M.; Thompson, Peter M.; Guntas, Gurkan; Kuhlman, Brian] Univ N Carolina, Dept Biochem & Biophys, Chapel Hill, NC 27599 USA. [Jha, Raamesh K.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Kuhlman, Brian] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA. RP Kuhlman, B (reprint author), Univ N Carolina, Dept Biochem & Biophys, Chapel Hill, NC 27599 USA. EM bkuhlman@email.unc.edu OI Jha, Ramesh/0000-0001-5904-3441 NR 1 TC 0 Z9 0 U1 0 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-3585 J9 PROTEINS JI Proteins PD SEP PY 2013 VL 81 IS 9 BP 1678 EP 1678 DI 10.1002/prot.24379 PG 1 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 204RT UT WOS:000323386900018 ER PT J AU Chen, X Guo, S Li, J Zhang, GT Lu, M Shi, Y AF Chen, Xi Guo, Stephen Li, Jinwei Zhang, Guitao Lu, Ming Shi, Yong TI Flexible piezoelectric nanofiber composite membranes as high performance acoustic emission sensors SO SENSORS AND ACTUATORS A-PHYSICAL LA English DT Article DE Lead zirconate titanate (PZT); Nanofiber; Flexible electronics; Acoustic emission (AE) sensor; Structural health monitoring (SHM) ID FIBER COMPOSITES; PZT; NANOGENERATORS; TRANSDUCERS; ARRAYS; STRAIN; DAMAGE AB A flexible acoustic emission (AE) sensor based on lead zirconate titanate (PZT) nanofiber composite membrane is described. The PZT nanofibers, with diameters varying from 50 nm to 120 nm, were electrospun and aligned across interdigitated electrodes. After being packaged in a flexible polymer structure with a thickness of similar to 5 mu m, this small scale AE sensor can bend freely to follow curved surfaces or embedded into structures. High piezoelectric voltage constant, flexibility and mechanical strength of PZT nanfibers result in a high performance of the demonstrated AE sensor. Fundamental characterization indicates a spontaneous polarization of the PZT nanofibers without any polarization treatment. The electromechanical coupling effect was increased up to 370% after 90 min of polarization under an external electric field of similar to 3 V/mu m. The anisotropic sensitivity, which can reduce the required number of sensors to indentify the location of the AE source, was observed from the attenuation maps. The small scale, flexible and highly sensitive PZT nanofiber AE sensor opens up new applications for monitoring small scale structures, curved surfaces and even living cells. (c) 2013 Elsevier B.V. All rights reserved. C1 [Chen, Xi; Guo, Stephen; Li, Jinwei; Zhang, Guitao; Shi, Yong] Stevens Inst Technol, Dept Mech Engn, Hoboken, NJ 07030 USA. [Lu, Ming] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Shi, Y (reprint author), Stevens Inst Technol, Dept Mech Engn, Hoboken, NJ 07030 USA. EM xc2239@columbia.edu; yong.shi@stevens.edu FU National Science Foundation [CMMI-0826418, ECCS-0802168]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This work was supported in part by the National Science Foundation (Award No. CMMI-0826418 & No. ECCS-0802168). Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. The authors would also like to thank Sibo Li for the help of annealing process. NR 35 TC 8 Z9 8 U1 3 U2 61 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0924-4247 J9 SENSOR ACTUAT A-PHYS JI Sens. Actuator A-Phys. PD SEP 1 PY 2013 VL 199 BP 372 EP 378 DI 10.1016/j.sna.2013.06.011 PG 7 WC Engineering, Electrical & Electronic; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 202RZ UT WOS:000323238600051 ER PT J AU Qiu, DR Wei, HH Tu, QC Yang, YF Xie, M Chen, JR Pinkerton, MH Liang, YL He, ZL Zhou, JZ AF Qiu, Dongru Wei, Hehong Tu, Qichao Yang, Yunfeng Xie, Ming Chen, Jingrong Pinkerton, Mark H., Jr. Liang, Yili He, Zhili Zhou, Jizhong TI Combined Genomics and Experimental Analyses of Respiratory Characteristics of Shewanella putrefaciens W3-18-1 SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID C-TYPE CYTOCHROME; PERIPLASMIC NITRATE REDUCTASE; ONEIDENSIS MR-1; ANAEROBIC RESPIRATION; FUMARATE REDUCTASE; ESCHERICHIA-COLI; PSEUDOMONAS-AERUGINOSA; GENUS SHEWANELLA; SYSTEMS BIOLOGY; SP. NOV AB It has previously been shown that the Shewanella putrefaciens W3-18-1 strain produces remarkably high current in microbial fuel cells (MFCs) and can form magnetite at 0 degrees C. To explore the underlying mechanisms, we developed a genetic manipulation method by deleting the restriction-modification system genes of the SGI1 (Salmonella genome island 1)-like prophage and analyzed the key genes involved in bacterial respiration. W3-18-1 has less respiratory flexibility than the well-characterized S. oneidensis MR-1 strain, as it possesses fewer cytochrome c genes and lacks the ability to oxidize sulfite or reduce dimethyl sulfoxide (DMSO) and timethylamine oxide (TMAO). W3-18-1 lacks the hydrogen-producing Fe-only hydrogenase, and the hydrogen-oxidizing Ni-Fe hydrogenase genes were split into two separate clusters. Two periplasmic nitrate reductases (NapDAGHB and NapDABC) were functionally redundant in anaerobic growth of W3-18-1 with nitrate as the electron acceptor, though napDABC was not regulated by Crp. Moreover, nitrate respiration started earlier in W3-18-1 than in MR-1 (with NapDAGHB only) under microoxic conditions. These results indicate that Shewanella putrefaciens W3-18-1 is well adapted to habitats with higher oxygen levels. Taken together, the results of this study provide valuable insights into bacterial genome evolution. C1 [Qiu, Dongru; Tu, Qichao; Xie, Ming; Chen, Jingrong; Pinkerton, Mark H., Jr.; Liang, Yili; He, Zhili; Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. [Qiu, Dongru; Tu, Qichao; Xie, Ming; Chen, Jingrong; Pinkerton, Mark H., Jr.; Liang, Yili; He, Zhili; Zhou, Jizhong] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Qiu, Dongru; Wei, Hehong] Chinese Acad Sci, Inst Hydrobiol, Wuhan, Peoples R China. [Qiu, Dongru; Wei, Hehong] Chinese Acad Sci, Grad Univ, Wuhan, Peoples R China. [Yang, Yunfeng] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. [Yang, Yunfeng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Zhou, JZ (reprint author), Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. EM jzhou@ou.edu FU U.S. Department of Energy (DOE) [DE-FG02-07ER64383]; Chinese Academy of Science [Y15103-1-401]; ENIGMA under the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by U.S. Department of Energy (DOE) grant DE-FG02-07ER64383 to J.Z.D.Q. and H.W. were partly supported by the Chinese Academy of Science Grant Y15103-1-401 to D.Q. This work was also supported by ENIGMA under contract DE-AC02-05CH11231 by the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy. NR 42 TC 8 Z9 9 U1 3 U2 42 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD SEP PY 2013 VL 79 IS 17 BP 5250 EP 5257 DI 10.1128/AEM.00619-13 PG 8 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 197CZ UT WOS:000322828100019 PM 23811511 ER PT J AU Goltsman, DSA Dasari, M Thomas, BC Shah, MB VerBerkmoes, NC Hettich, RL Banfield, JF AF Goltsman, Daniela S. Aliaga Dasari, Mauna Thomas, Brian C. Shah, Manesh B. VerBerkmoes, Nathan C. Hettich, Robert L. Banfield, Jillian F. TI New Group in the Leptospirillum Clade: Cultivation-Independent Community Genomics, Proteomics, and Transcriptomics of the New Species "Leptospirillum Group IV UBA BS" SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID ACID-MINE DRAINAGE; ACIDOPHILIC MICROBIAL COMMUNITY; SP-NOV; IRON MOUNTAIN; COPPER MINE; BACTERIA; FERROOXIDANS; ENVIRONMENT; RESISTANCE; SEQUENCE AB Leptospirillum spp. are widespread members of acidophilic microbial communities that catalyze ferrous iron oxidation, thereby increasing sulfide mineral dissolution rates. These bacteria play important roles in environmental acidification and are harnessed for bioleaching-based metal recovery. Known members of the Leptospirillum clade of the Nitrospira phylum are Leptospirillum ferrooxidans (group I), Leptospirillum ferriphilum and "Leptospirillum rubarum" (group II), and Leptospirillum ferrodiazotrophum (group III). In the Richmond Mine acid mine drainage (AMD) system, biofilm formation is initiated by L. rubarum; L. ferrodiazotrophum appears in later developmental stages. Here we used community metagenomic data from unusual, thick floating biofilms to identify distinguishing metabolic traits in a rare and uncultivated community member, the new species "Leptospirillum group IV UBA BS." These biofilms typically also contain a variety of Archaea, Actinobacteria, and a few other Leptospirillum spp. The Leptospirillum group IV UBA BS species shares 98% 16S rRNA sequence identity and 70% average amino acid identity between orthologs with its closest relative, L. ferrodiazotrophum. The presence of nitrogen fixation and reverse tricarboxylic acid (TCA) cycle proteins suggest an autotrophic metabolism similar to that of L. ferrodiazotrophum, while hydrogenase proteins suggest anaerobic metabolism. Community transcriptomic and proteomic analyses demonstrate expression of a multicopper oxidase unique to this species, as well as hydrogenases and core metabolic genes. Results suggest that the Leptospirillum group IV UBA BS species might play important roles in carbon fixation, nitrogen fixation, hydrogen metabolism, and iron oxidation in some acidic environments. C1 [Goltsman, Daniela S. Aliaga; Dasari, Mauna; Thomas, Brian C.; Banfield, Jillian F.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Shah, Manesh B.; VerBerkmoes, Nathan C.; Hettich, Robert L.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Goltsman, DSA (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. EM dgoltsman@berkeley.edu RI Hettich, Robert/N-1458-2016; OI Hettich, Robert/0000-0001-7708-786X; Dasari, Mauna/0000-0002-1956-2500 FU U.S. Department of Energy [DE-FG02-05ER64134, DE-FG02-10ER64996]; NSF GRFP FX This research was supported by the U.S. Department of Energy through the Genomic Sciences (DE-FG02-05ER64134) and Carbon-Cycling (DE-FG02-10ER64996) programs. D. S. A. G. was supported by an NSF GRFP fellowship. NR 56 TC 17 Z9 17 U1 3 U2 43 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD SEP PY 2013 VL 79 IS 17 BP 5384 EP 5393 DI 10.1128/AEM.00202-13 PG 10 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 197CZ UT WOS:000322828100034 PM 23645189 ER PT J AU Lawrence, BA Jackson, RD Kucharik, CJ AF Lawrence, Beth A. Jackson, Randall D. Kucharik, Christopher J. TI Testing the stability of carbon pools stored in tussock sedge meadows SO APPLIED SOIL ECOLOGY LA English DT Article DE Carex stricta; C mineralization; Incubation; Methane; Restoration; Wetland ID LEAF-LITTER DECOMPOSITION; NITROGEN MINERALIZATION; METHANE PRODUCTION; NORTHERN WETLANDS; SOIL RESPIRATION; CLIMATE-CHANGE; TEMPERATURE; PEATLAND; DIOXIDE; VEGETATION AB Tussocks formed by Carex stricta are a relatively large carbon (C) pool in sedge meadows, but the stability of organic matter in these ecosystems is not well understood. We initiated year-long incubation experiments (22.5 degrees C) to evaluate the CO2 and CH4 production potentials of sedge meadow substrates under field moist and inundated treatments from five sites in the Upper Midwest, USA (4 reference, I restored). C mineralization potentials decreased with depth (tussocks > underlying soil), and were positively correlated with macro-organic matter content and negatively with lignin. Across sites, C stored in tussocks and soil at the restoration was the least stable, suggesting that the restoration of C-storage function may take decades. Mineralization potentials were similar between field moist and inundated treatments, but inundation resulted in higher methane production, accounting for 24-51% of total carbon mineralized from tussocks. In the field however, C stricta tussocks emitted less methane (393 +/- 76 mg CH4 m(-2) d(-1)) than tussock interspaces (1362 +/- 371 mg CH4 m(-2) d(-1)) early in the growing season; we suggest that tussock tops oxidized methane produced from deeper anoxic horizons. Our results highlight the importance of considering how microtopography modulates greenhouse gas flux from wetlands and suggests that the C stored in the older, more decomposed C stricta tussock sedge meadow substrates (both within and between sites) is relatively stable. (C) 2013 Elsevier B.V. All rights reserved. C1 [Lawrence, Beth A.] Univ Wisconsin Madison, Dept Bot, Madison, WI 53706 USA. [Jackson, Randall D.; Kucharik, Christopher J.] Univ Wisconsin Madison, Dept Agron, Madison, WI 53706 USA. [Jackson, Randall D.; Kucharik, Christopher J.] Univ Wisconsin Madison, US DOE, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Kucharik, Christopher J.] Univ Wisconsin Madison, Ctr Sustainabil & Global Environm, Madison, WI 53706 USA. RP Lawrence, BA (reprint author), De Paul Univ, Dept Environm Sci & Studies, 1110 West Belden Ave, Chicago, IL 60614 USA. EM blawren6@depaul.edu OI Kucharik, Christopher/0000-0002-0400-758X FU NSF Doctoral Dissertation Improvement Grant [0909933]; Wetlands Foundation; ON and EK Allen Fellowship FX Research was supported in part by a NSF Doctoral Dissertation Improvement Grant (#0909933), a Wetlands Foundation Travel Grant, and an ON and EK Allen Fellowship to BAL. We thank the UW-Madison Arboretum, Cherokee Marsh Conservation Park, Wisconsin DNR State Natural Areas, and Wetlands Research, Inc. for access to research sites. Joy Zedler provided insightful guidance during all phases of the project. We also thank Gary Oates and Gregg Sanford for technical support, Cecile Ane for statistical consultation, Tim Fahey and Joe Yavitt for insightful advice, and constructive feedback from two anonymous reviewers. NR 54 TC 2 Z9 2 U1 4 U2 45 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0929-1393 J9 APPL SOIL ECOL JI Appl. Soil Ecol. PD SEP PY 2013 VL 71 BP 48 EP 57 DI 10.1016/j.apsoil.2013.05.007 PG 10 WC Soil Science SC Agriculture GA 198MF UT WOS:000322926300007 ER PT J AU Hoagland, KC Ruark, MD Renz, MJ Jackson, RD AF Hoagland, Kolby C. Ruark, Matthew D. Renz, Mark J. Jackson, Randall D. TI Agricultural Management of Switchgrass for Fuel Quality and Thermal Energy Yield on Highly Erodible Land in the Driftless Area of Southwest Wisconsin SO BIOENERGY RESEARCH LA English DT Article DE Switchgrass; Highly erodible land; Nitrogen; Moisture; Ash; Chloride; Thermal energy yield ID BIOENERGY CROP PRODUCTION; BIOMASS YIELD; UNITED-STATES; NITROGEN-FERTILIZATION; PANICUM-VIRGATUM; SOUTHERN IOWA; BIOFUELS; HARVEST; USA; COMBUSTION AB Converting row crop production to a perennial grass crop on highly erodible land has numerous benefits. Switchgrass, grown as a biofuel crop, can provide soil conservation benefits as a perennial crop and also provide economic value to the grower. However, little information exists regarding switchgrass management and production on these lands. The objectives of this study were to determine the effect of two management practices, nitrogen (N) fertilizer rate (0, 56, 112, 168, and 224 kg ha(-1)) and harvest timing (mid-fall, late-fall, and spring), on: (1) dry matter (DM) yield, (2) switchgrass quality components (moisture, ash, and chloride (Cl-) concentrations), and (3) combustion energy content and yield. The study was conducted in 2009 and 2010 on highly erodible lands in the Driftless Area of southwest Wisconsin. Results showed a positive response of switchgrass DM to N fertilizer, with no yield gain above 112 kg ha(-1) of N, although application of N increased Cl- concentrations. Harvest timing also affected switchgrass yield, with decreases in yield observed with progressively later harvest timings; this yield decrease was slightly greater compared with previous studies. Progressively later harvest timings led to a decrease in moisture, ash concentration, and Cl- concentration in both years. Energy content of switchgrass was not significantly affected by management. Energy yields, similar to DM yields, were maximized with 112 kg ha(-1) of N with a mid-fall harvest. The similarities between this study and other research indicate there is a universal response of switchgrass to N in the northern USA and yields determined in this study indicate that highly erodible lands in the Driftless Area can be used to produce switchgrass at regionally expected yields. C1 [Hoagland, Kolby C.] BBI Int, Grand Forks, ND 58203 USA. [Ruark, Matthew D.] Univ Wisconsin, Dept Soil Sci, Madison, WI 53706 USA. [Renz, Mark J.; Jackson, Randall D.] Univ Wisconsin, Dept Agron, Madison, WI 53706 USA. [Jackson, Randall D.] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. RP Ruark, MD (reprint author), Univ Wisconsin, Dept Soil Sci, 1525 Observ Dr, Madison, WI 53706 USA. EM mdruark@wisc.edu FU DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER) [DE-FC02-07ER64494]; State of Wisconsin's Office of Energy Independence; USDA Hatch; University of Wisconsin-Madison [WIS01541] FX This work was funded in part by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494), a grant by the State of Wisconsin's Office of Energy Independence, and a grant from USDA Hatch and University of Wisconsin-Madison (project No. WIS01541). The authors would also like to recognize the contributions of Mack Naber, Peter Wakeman, Anna Tapsieva, Julie Doll, Madeline Raudenbush, and Jessica Miesel for their assistance on this project. NR 41 TC 6 Z9 7 U1 1 U2 50 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1939-1234 J9 BIOENERG RES JI BioEnergy Res. PD SEP PY 2013 VL 6 IS 3 BP 1012 EP 1021 DI 10.1007/s12155-013-9335-2 PG 10 WC Energy & Fuels; Environmental Sciences SC Energy & Fuels; Environmental Sciences & Ecology GA 197DU UT WOS:000322830400016 ER PT J AU Otter, RR Hayden, M Mathews, T Fortner, A Bailey, FC AF Otter, Ryan R. Hayden, Mary Mathews, Teresa Fortner, Allison Bailey, Frank C. TI The use of tetragnathid spiders as bioindicators of metal exposure at a coal ASH spill site SO ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY LA English DT Article DE Spiders; Tetragnathid; Selenium; Mercury; Coal ash ID SWALLOWS TACHYCINETA-BICOLOR; SELENIUM; BIOACCUMULATION; ACCUMULATION; CONTAMINANTS; FISH; BIOAVAILABILITY; METHYLMERCURY; TENNESSEE; KINGSTON AB On 22 December 2008, a dike containing coal fly ash from the Tennessee Valley Authority Kingston Fossil Fuel Plant (TN, USA) failed, resulting in the largest coal ash spill in US history. The present study was designed to determine sediment metal concentrations at multiple site locations and to determine whether site-specific bioaccumulation of metals existed in tetragnathid spiders. Selenium and nickel were the only 2 metals to exceed the US Environmental Protection Agency sediment screening levels. Selenium concentrations in spiders were significantly higher at ash-affected sites than in those from reference sites. The ratio of methylmercury to total mercury in spiders was found to be similar to that in other organisms (65-75%), which highlights the potential use of tetragnathid spiders as an indicator species for tracing contaminant transfer between the aquatic and terrestrial ecosystems. (C) 2013 SETAC C1 [Otter, Ryan R.; Hayden, Mary; Bailey, Frank C.] Middle Tennessee State Univ, Dept Biol, Murfreesboro, TN 37130 USA. [Mathews, Teresa] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Fortner, Allison] ARCADIS US, Knoxville, TN USA. RP Otter, RR (reprint author), Middle Tennessee State Univ, Dept Biol, Murfreesboro, TN 37130 USA. EM Ryan.Otter@mtsu.edu FU Tennessee Valley Authority; Middle Tennessee State University's Undergraduate Research Experience and Creative Activity Program; Oak Ridge National Laboratory [DE-ACO5-000R22725] FX The present study was funded by the Tennessee Valley Authority as part of a larger project investigating the environmental consequences of the coal ash spill at the Kingston Tennessee fossil fuel plant. Additional support was provided by Middle Tennessee State University's Undergraduate Research Experience and Creative Activity Program. The Oak Ridge National Laboratory is managed by UT-Battelle for the US Department of Energy under contract number DE-ACO5-000R22725. Special thanks to B. Gendron for assistance with the collection of spiders and to T. Jeff for final laboratory preparation of samples. NR 31 TC 12 Z9 12 U1 2 U2 37 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0730-7268 J9 ENVIRON TOXICOL CHEM JI Environ. Toxicol. Chem. PD SEP PY 2013 VL 32 IS 9 BP 2065 EP 2068 DI 10.1002/etc.2277 PG 4 WC Environmental Sciences; Toxicology SC Environmental Sciences & Ecology; Toxicology GA 189FX UT WOS:000322253800017 PM 23686551 ER PT J AU Skogen, EJ Vawter, GA Tauke-Pedretti, A Alford, CR Overberg, ME Sullivan, CT AF Skogen, Erik J. Vawter, G. Allen Tauke-Pedretti, Anna Alford, Charles R. Overberg, Mark E. Sullivan, Charles T. TI Integrated Guided-Wave Photodiode Using Through-Absorber Quantum-Well-Intermixing SO IEEE PHOTONICS TECHNOLOGY LETTERS LA English DT Article DE Ion implantation; photodiodes; quantum well devices; integrated optoelectronics ID COMPONENTS AB A high-speed, high-saturation power photodiode compatible with a relatively simple monolithic integration process is described. The detector is comprised of an intrinsic bulk absorption layer, an electron drift region, and a field termination layer, and is grown above a main waveguide core comprised of a number of quantum wells, which are used as the active region of a phase modulator. Through-absorber quantum-well-intermixing is used to blue-shift the bandedge of the underlying quantum wells, reducing the optical losses of that material. The detectors demonstrate >90% quantum efficiency, >16 dBm input saturation power, and 3-dB bandwidth of 50 GHz. C1 [Skogen, Erik J.; Vawter, G. Allen; Tauke-Pedretti, Anna; Alford, Charles R.; Overberg, Mark E.; Sullivan, Charles T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Skogen, EJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM erik.skogen@sandia.gov; gavawte@sandia.gov; ataukep@sandia.gov; cralfor@sandia.gov; meoverb@sandia.gov; ctsulli@sandia.gov FU Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Manuscript received April 10, 2013; revised June 3, 2013; accepted July 9, 2013. Date of publication July 17, 2013; date of current version August 5, 2013. This work was supported in part by the Sandia National Laboratories, which is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, and in part by the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 5 TC 1 Z9 1 U1 2 U2 18 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1041-1135 J9 IEEE PHOTONIC TECH L JI IEEE Photonics Technol. Lett. PD SEP 1 PY 2013 VL 25 IS 17 BP 1684 EP 1686 DI 10.1109/LPT.2013.2273754 PG 3 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 202LW UT WOS:000323219100009 ER PT J AU Li, JL Armstrong, BL Daniel, C Kiggans, J Wood, DL AF Li, Jianlin Armstrong, Beth L. Daniel, Claus Kiggans, Jim Wood, David L., III TI Optimization of multicomponent aqueous suspensions of lithium iron phosphate (LiFePO4) nanoparticles and carbon black for lithium-ion battery cathodes SO JOURNAL OF COLLOID AND INTERFACE SCIENCE LA English DT Article DE Dispersant; Lithium-ion batteries; Lithium iron phosphate; Materials processing; Polyethyleneimine; Aqueous processing ID ELECTROCHEMICAL PERFORMANCE; CARBOXYMETHYL CELLULOSE; DISPERSION HOMOGENEITY; CELL PERFORMANCE; LICOO2 CATHODES; ELECTRODES AB Addition of polyethyleneimine (PEI) to aqueous LiFePO4 nanoparticle suspensions improves stability and reduces agglomerate size, which is beneficial to lithium-ion battery cathode manufacturing. This research examines the effect of both PEI concentration and molecular weight (MW) on dispersing LiFePO4 and Super P C45 in multicomponent aqueous suspensions. It is demonstrated that the optimal conditions for obtaining stable suspensions with minimal agglomerate size are 1.5 wt% PEI with MW = 2000 g mol(-1) and 5.0 wt% PEI with MW = 10,000 g mol(-1) for LiFePO4 and Super P C45, respectively. The mixing sequence also affects rheological properties of these suspensions. It is found that dispersing the LiFePO4 and Super P C45 separately yielded suspensions with superior properties (Newtonian rheological behavior, smaller agglomerate size, improved settling, etc.). In particular, dispersing the LiFePO4 prior to the Super P C45 when making the final multicomponent suspension is found to be beneficial, which was evidenced by higher half-cell discharge capacity. (C) 2013 Elsevier Inc. All rights reserved. C1 [Li, Jianlin; Daniel, Claus] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. [Armstrong, Beth L.; Kiggans, Jim; Wood, David L., III] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Daniel, Claus] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN 37996 USA. RP Li, JL (reprint author), 1 Bethel Valley Rd,POB 2008,MS-6479, Oak Ridge, TN 37831 USA. EM lij4@oml.gov; armstrongbl@oml.gov; danielc@oml.gov; kiggansjojr@orni.gov; wooddl@oml.gov RI Daniel, Claus/A-2060-2008; Li, Jianlin/D-3476-2011; kiggans, james/E-1588-2017; Armstrong, Beth/E-6752-2017 OI Daniel, Claus/0000-0002-0571-6054; Li, Jianlin/0000-0002-8710-9847; kiggans, james/0000-0001-5056-665X; Armstrong, Beth/0000-0001-7149-3576 FU U.S. Department of Energy (DOE) [DE-AC05-00OR22725]; Vehicle Technologies Program (VTP); Office of Energy Efficiency and Renewable Energy (EERE) Advanced Manufacturing Office FX This research was performed at Oak Ridge National Laboratory (ORNL), managed by UT Battelle, LLC, for the U.S. Department of Energy (DOE) under contract DE-AC05-00OR22725, and was sponsored by the Office of Energy Efficiency and Renewable Energy (EERE) Advanced Manufacturing Office and Vehicle Technologies Program (VTP) (Applied Battery Research Program Manager: Peter Faguy). The authors further wish to acknowledge Kevin Cooley for assistance with the experiments. The authors also thank Phostech Lithium Inc. and TIMCAL Graphite & Carbon for supplying materials. NR 24 TC 12 Z9 13 U1 7 U2 91 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9797 J9 J COLLOID INTERF SCI JI J. Colloid Interface Sci. PD SEP 1 PY 2013 VL 405 BP 118 EP 124 DI 10.1016/j.jcis.2013.05.030 PG 7 WC Chemistry, Physical SC Chemistry GA 180MD UT WOS:000321598400017 PM 23764234 ER PT J AU Ding, YZ Liu, B Shen, X Zhong, LR Li, XQ AF Ding, Yuanzhao Liu, Bo Shen, Xin Zhong, Lirong Li, Xiqing TI Foam-Assisted Delivery of Nanoscale Zero Valent Iron in Porous Media SO JOURNAL OF ENVIRONMENTAL ENGINEERING LA English DT Article DE Foam; Delivery; Nanoscale zero valent iron (nZVI); Vadose zone; Porous media ID CONTAMINATED SOIL; SURFACTANT FOAM; RHAMNOLIPID FOAM; VADOSE ZONE; REMEDIATION; PARTICLES; NANOPARTICLES; GROUNDWATER; FILTRATION; SEDIMENTS AB Foam is potentially a promising vehicle to deliver nanoparticles for vadose-zone remediation because foam can overcome the intrinsic problems associated with solution-based delivery, such as preferential flow and contaminant mobilization and spreading. In this work, the feasibility of using foam to deliver nanoscale zero valent iron (nZVI) in unsaturated porous media was investigated. Foam generated using the surfactant sodium lauryl ether sulfate (SLES) showed excellent ability to carry nZVI. SLES and nZVI concentrations in the foaming solutions did not affect the percentages of nZVI concentrations in foam relative to nZVI concentrations in the solutions. When foams carrying nZVI were injected through the unsaturated columns, the fractions of nZVI exiting the column were much higher than those when nZVI was injected with liquid. The enhanced nZVI transport implies that foam delivery could significantly increase the radius of influence of injected nZVI. The type and concentrations of surfactants and the influent nZVI concentrations did not noticeably affect nZVI transport during foam delivery. In contrast, nZVI retention increased considerably as the grain size of porous media decreased. Oxidation of foam-delivered nZVI due to oxygen diffusion into unsaturated porous media was visually examined in flow cell texts. It was demonstrated that if foam is injected to cover a deep vadose-zone layer, oxidation would only cause a small fraction of foam-delivered nZVI to be oxidized before it reacts with contaminants. C1 [Ding, Yuanzhao; Liu, Bo; Li, Xiqing] Peking Univ, Coll Urban & Environm Sci, Lab Earth Surface Proc, Beijing 100871, Peoples R China. [Shen, Xin] China Natl Environm Monitoring Ctr, Beijing 100012, Peoples R China. [Zhong, Lirong] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. RP Li, XQ (reprint author), Peking Univ, Coll Urban & Environm Sci, Lab Earth Surface Proc, Beijing 100871, Peoples R China. EM lirong.zhong@pnl.gov; xli@urban.pku.edu.cn FU National High-Tech Research and Development Program of the Ministry of Science and Technology of China [2009AA063102]; Shenzhen Bureau of Science Information [SY200806300176A]; U.S. DOE [DE-AC06-76RLO 1830] FX This material is based on work funded by the National High-Tech Research and Development Program of the Ministry of Science and Technology of China (Grant 2009AA063102) and the Shenzhen Bureau of Science & Information (Grant SY200806300176A). The Pacific Northwest National Laboratory (PNNL) is operated by Battelle for the U.S. DOE under Contract DE-AC06-76RLO 1830. NR 47 TC 1 Z9 1 U1 2 U2 44 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9372 J9 J ENVIRON ENG JI J. Environ. Eng.-ASCE PD SEP 1 PY 2013 VL 139 IS 9 BP 1206 EP 1212 DI 10.1061/(ASCE)EE.1943-7870.0000727 PG 7 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 198YY UT WOS:000322961500008 ER PT J AU Freedman, VL Mackley, R Waichler, SR Horner, J AF Freedman, Vicky L. Mackley, Rob Waichler, Scott R. Horner, Jake TI Evaluation of Analytical and Numerical Techniques for Defining the Radius of Influence for an Open-Loop Ground Source Heat Pump System SO JOURNAL OF HYDROLOGIC ENGINEERING LA English DT Article DE Open-loop heat pumps; Ground source heat pumps; Groundwater heat pumps (GHPs); Groundwater; Radius of influence ID DELAYED GRAVITY RESPONSE; UNCONFINED AQUIFERS; FLOW AB In an open-loop groundwater heat pump (GHP) system, groundwater is extracted, run through a heat exchanger, and injected back into the ground, resulting in no mass balance changes to the flow system. Although the groundwater use is nonconsumptive, the withdrawal and injection of groundwater may cause negative hydraulic and thermal impacts to the flow system. Because GHPs are a relatively new technology and regulatory guidelines for determining environmental impacts for GHPs may not exist, consumptive-use metrics may need to be used for permit applications. For consumptive-use permits, a radius of influence is often used, which is defined as the radius beyond which hydraulic impacts to the system are considered negligible. In this paper, the hydraulic radius of influence concept was examined using analytical and numerical methods for a nonconsumptive GHP system in southeastern Washington State. At this location, the primary hydraulic concerns were impacts to nearby contaminant plumes and a water supply well field. The results reported in this paper show that distance drawdown methods for both analytical and numerical methods were generally unsuitable because they overpredicted the influence of the well system. Particle tracking yielded more reasonable results because flow paths demonstrated the probable impact on the flow system. In particular, the use of a capture zone analysis was identified as the best method for determining potential changes in current contaminant plume trajectories, which could be performed with both analytical and numerical techniques. Capture zone analysis is a more quantitative and reliable tool for determining the radius of influence with a greater accuracy and better insight for a nonconsumptive GHP assessment. (C) 2013 American Society of Civil Engineers. C1 [Freedman, Vicky L.; Mackley, Rob; Waichler, Scott R.; Horner, Jake] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Freedman, VL (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM vicky.freedman@pnnl.gov NR 25 TC 0 Z9 0 U1 0 U2 19 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 1084-0699 J9 J HYDROL ENG JI J. Hydrol. Eng. PD SEP 1 PY 2013 VL 18 IS 9 BP 1170 EP 1179 DI 10.1061/(ASCE)HE.1943-5584.0000720 PG 10 WC Engineering, Civil; Environmental Sciences; Water Resources SC Engineering; Environmental Sciences & Ecology; Water Resources GA 198ZG UT WOS:000322962300013 ER PT J AU Fitz-Gibbon, S Tomida, S Chiu, BH Nguyen, L Du, C Liu, MH Elashoff, D Erfe, MC Loncaric, A Kim, J Modlin, RL Miller, JF Sodergren, E Craft, N Weinstock, GM Li, HY AF Fitz-Gibbon, Sorel Tomida, Shuta Chiu, Bor-Han Lin Nguyen Du, Christine Liu, Minghsun Elashoff, David Erfe, Marie C. Loncaric, Anya Kim, Jenny Modlin, Robert L. Miller, Jeff F. Sodergren, Erica Craft, Noah Weinstock, George M. Li, Huiying TI Propionibacterium acnes Strain Populations in the Human Skin Microbiome Associated with Acne SO JOURNAL OF INVESTIGATIVE DERMATOLOGY LA English DT Article ID STREPTOLYSIN-S; STAPHYLOCOCCUS-AUREUS; ESCHERICHIA-COLI; BODY HABITATS; BACTERIA; SEQUENCE; STREPTOCOCCUS; RESISTANCE; DIVERSITY; GENES AB The human skin microbiome has important roles in skin health and disease. However, bacterial population structure and diversity at the strain level is poorly understood. We compared the skin microbiome at the strain level and genome level of Propionibacterium acnes, a dominant skin commensal, between 49 acne patients and 52 healthy individuals by sampling the pilosebaceous units on their noses. Metagenomic analysis demonstrated that although the relative abundances of P. acnes were similar, the strain population structures were significantly different in the two cohorts. Certain strains were highly associated with acne, and other strains were enriched in healthy skin. By sequencing 66 previously unreported P. acnes strains and comparing 71 P. acnes genomes, we identified potential genetic determinants of various P. acnes strains in association with acne or health. Our analysis suggests that acquired DNA sequences and bacterial immune elements may have roles in determining virulence properties of P. acnes strains, and some could be future targets for therapeutic interventions. This study demonstrates a previously unreported paradigm of commensal strain populations that could explain the pathogenesis of human diseases. It underscores the importance of strain-level analysis of the human microbiome to define the role of commensals in health and disease. C1 [Fitz-Gibbon, Sorel; Tomida, Shuta; Chiu, Bor-Han; Lin Nguyen; Du, Christine; Li, Huiying] Univ Calif Los Angeles, David Geffen Sch Med, Crump Inst Mol Imaging, Dept Mol & Med Pharmacol, Los Angeles, CA 90095 USA. [Du, Christine; Elashoff, David; Loncaric, Anya; Kim, Jenny; Modlin, Robert L.] Univ Calif Los Angeles, David Geffen Sch Med, Dept Med, Los Angeles, CA 90095 USA. [Liu, Minghsun; Modlin, Robert L.; Miller, Jeff F.] Univ Calif Los Angeles, David Geffen Sch Med, Dept Microbiol Immunol & Mol Genet, Los Angeles, CA 90095 USA. [Erfe, Marie C.; Craft, Noah] Univ Calif Los Angeles, David Geffen Sch Med, Harbor UCLA Med Ctr, Ctr Immunotherapeut Res,Los Angeles Biomed Res In, Los Angeles, CA 90095 USA. [Kim, Jenny; Sodergren, Erica; Weinstock, George M.] Vet Affairs Greater Los Angeles Healthcare Syst, Dept Dermatol, Los Angeles, CA USA. [Li, Huiying] Washington Univ, Genome Inst, St Louis, MO USA. [Fitz-Gibbon, Sorel; Tomida, Shuta] UCLA DOE Inst Genom & Prote, Los Angeles, CA USA. RP Li, HY (reprint author), Univ Calif Los Angeles, 4339 CNSI,570 Westwood Plaza,Bldg 114, Los Angeles, CA 90095 USA. EM huiying@mednet.ucla.edu OI Modlin, Robert/0000-0003-4720-031X FU NIH [U54HG004968]; NIH/NIAMS [UH2AR057503] FX We thank G Kasimatis, B Shi, EE Curd, R Yan, M Wong, and J Liu for comments and technical support. We thank C Lee for performing statistical analyses in the initial phase. We also thank Z Guo and CS Miller for critical reading of the manuscript. This research was funded as one of the Demonstration Projects by the NIH Human Microbiome Project (HMP). It was supported by grant UH2AR057503 from NIH/NIAMS and grant U54HG004968 from NIH. NR 43 TC 106 Z9 111 U1 8 U2 80 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0022-202X J9 J INVEST DERMATOL JI J. Invest. Dermatol. PD SEP PY 2013 VL 133 IS 9 BP 2152 EP 2160 DI 10.1038/jid.2013.21 PG 9 WC Dermatology SC Dermatology GA 202GY UT WOS:000323203300013 PM 23337890 ER PT J AU Craft, N Li, HY AF Craft, Noah Li, Huiying TI Response to the Commentaries on the Paper: Propionibacterium acnes Strain Populations in the Human Skin Microbiome Associated with Acne SO JOURNAL OF INVESTIGATIVE DERMATOLOGY LA English DT Letter C1 [Craft, Noah] Univ Calif Los Angeles, Los Angeles Med Ctr, Ctr Immunotherapeut Res, Los Angeles Biomed Res Inst Harbor, Los Angeles, CA 90024 USA. [Li, Huiying] Univ Calif Los Angeles, David Geffen Sch Med, Crump Inst Mol Imaging, Dept Mol & Med Pharmacol, Los Angeles, CA 90095 USA. [Li, Huiying] Univ Calif Los Angeles, DOE Inst Genom & Prote, Los Angeles, CA USA. RP Craft, N (reprint author), Univ Calif Los Angeles, Los Angeles Med Ctr, Ctr Immunotherapeut Res, Los Angeles Biomed Res Inst Harbor, Los Angeles, CA 90024 USA. EM huiying@mednet.ucla.edu NR 17 TC 6 Z9 6 U1 0 U2 23 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0022-202X J9 J INVEST DERMATOL JI J. Invest. Dermatol. PD SEP PY 2013 VL 133 IS 9 BP 2295 EP 2297 DI 10.1038/jid.2013.275 PG 3 WC Dermatology SC Dermatology GA 202GY UT WOS:000323203300031 PM 23774528 ER PT J AU Al Hasan, NM Johnson, GE Laskin, J AF Al Hasan, Naila M. Johnson, Grant E. Laskin, Julia TI Gas-Phase Synthesis of Singly and Multiply Charged Polyoxovanadate Anions Employing Electrospray Ionization and Collision Induced Dissociation SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY LA English DT Article DE Polyoxometalate; Electrospray ionization; Vanadium oxide; Multiply charged; Mass spectrometry; Collision-induced dissociation ID OXIDE CLUSTER CATIONS; NEUTRAL VANADIUM-OXIDE; MASS-SPECTROMETRY; VIBRATIONAL SPECTROSCOPY; PHOTOELECTRON-SPECTROSCOPY; ELECTRONIC-STRUCTURE; CHEMISTRY; IONS; CATALYSIS; CAGES AB Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including VxOy (n-) and VxOyCln- ions (x = 1-14, y = 2-36, n = 1-3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V14O36Cl(L)(5) (L = Et4N+, tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged VxOyCln- and VxOyCl(L)((n-1)-) clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Delta m = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller VxOyCl(1-2)- and VxOy ((1-2)-) anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged VxOyCl and VxOy species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of VxOyCl and VxOy anions through low-energy CID. Furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques. C1 [Al Hasan, Naila M.; Johnson, Grant E.; Laskin, Julia] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Laskin, J (reprint author), Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. EM Julia.Laskin@pnnl.gov RI Laskin, Julia/H-9974-2012; OI Laskin, Julia/0000-0002-4533-9644; Johnson, Grant/0000-0003-3352-4444 FU Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy (DOE); DOE Science Undergraduate Laboratory Internship (SULI); Linus Pauling Fellowship; Laboratory Directed Research and Development Program at the Pacific Northwest National Laboratory (PNNL); Department of Energy's Office of Biological and Environmental Research and located at PNNL FX This research was funded by the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy (DOE). N.M.A. acknowledges support from the DOE Science Undergraduate Laboratory Internship (SULI). G.E.J. acknowledges support from the Linus Pauling Fellowship and the Laboratory Directed Research and Development Program at the Pacific Northwest National Laboratory (PNNL). This work was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the U.S. DOE. NR 71 TC 3 Z9 3 U1 3 U2 53 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1044-0305 J9 J AM SOC MASS SPECTR JI J. Am. Soc. Mass Spectrom. PD SEP PY 2013 VL 24 IS 9 BP 1385 EP 1395 DI 10.1007/s13361-013-0683-0 PG 11 WC Biochemical Research Methods; Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA 200HX UT WOS:000323060000010 PM 23817833 ER PT J AU Lee, H Caparelli, E Li, HF Mandal, A Smith, SD Zhang, SN Bilfinger, TV Benveniste, H AF Lee, Hedok Caparelli, Elisabeth Li, Haifang Mandal, Amit Smith, S. David Zhang, Shaonan Bilfinger, Thomas V. Benveniste, Helene TI Computerized MRS voxel registration and partial volume effects in single voxel H-1-MRS SO MAGNETIC RESONANCE IMAGING LA English DT Article DE (HMRS)-H-1; Partial volume effects; Image reconstruction ID MAGNETIC-RESONANCE-SPECTROSCOPY; SHORT-ECHO-TIME; PROTON NMR-SPECTRA; HUMAN BRAIN; IN-VIVO; METABOLITE CONCENTRATIONS; WHITE-MATTER; N-ACETYLASPARTATE; TISSUE WATER; H-1 MRS AB Partial volume effects in proton magnetic resonance spectroscopy in the brain have been studied previously in terms of proper water concentration calculations, but there is a lack of disclosure in terms of voxel placement techniques that would affect the calculations. The purpose of this study is to facilitate a fully automated MRS voxel registration method which is time efficient, accurate, and can be extended to all imaging modalities. A total of thirteen healthy adults underwent single voxel 1H-MRS scans in 3.0 T MRI scanners. Transposition of a MRS voxel onto an anatomical scan is derived along with a full calculation of water concentration with a correction term to account for the partial volume effects. Five metabolites (tNAA, Glx, tCr, ml, and tCho) known to yield high reliability are studied. Pearson's correlation analyses between tissue volume fractions and metabolite concentrations were statistically significant in parietal (tCr, Glx, and tNAA) lobe and occipital lobe (tNAA). MRS voxel overlaps quantified by dice metric over repeated visits yielded 60% similar to 70% and coefficients of variance in metabolites concentration were 4% similar to 10%. These findings reiterate an importance of considering the partial volume effects when tissue water is used as an internal concentration reference so as to avoid misinterpreting a morphometric difference as a metabolic difference. (C) 2013 Elsevier Inc. All rights reserved. C1 [Lee, Hedok; Mandal, Amit; Benveniste, Helene] SUNY Stony Brook, Dept Anesthesiol, Stony Brook, NY 11794 USA. [Caparelli, Elisabeth] SUNY Stony Brook, Social Cognit & Affect Neurosci Ctr, Stony Brook, NY 11794 USA. [Li, Haifang; Benveniste, Helene] SUNY Stony Brook, Dept Radiol, Stony Brook, NY 11794 USA. [Smith, S. David] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Zhang, Shaonan] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. [Bilfinger, Thomas V.] SUNY Stony Brook, Dept Surg, Stony Brook, NY 11794 USA. RP Lee, H (reprint author), SUNY Stony Brook, Dept Anesthesiol, Stony Brook, NY 11794 USA. EM hedoklee@gmail.com FU Translational Research Opportunity Grant from the School of Medicine, State University of New York at Stony Brook FX This research was supported by a grant from a Translational Research Opportunity Grant from the School of Medicine, State University of New York at Stony Brook. Preliminary account was previously presented at the International Society for Magnetic Resonance in Medicine, May 7-11, 2012; Melbourne, Australia. We thank the Wellcome Trust Centre for Neuroimaging at University College London (http://www.fil.ion.ucl.ac.uk/spm/) for the development of SPM. NR 64 TC 5 Z9 5 U1 0 U2 14 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0730-725X J9 MAGN RESON IMAGING JI Magn. Reson. Imaging PD SEP PY 2013 VL 31 IS 7 BP 1197 EP 1205 DI 10.1016/j.mri.2013.04.001 PG 9 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 198TG UT WOS:000322944600022 PM 23659770 ER PT J AU Tasora, A Anitescu, M AF Tasora, Alessandro Anitescu, Mihai TI A complementarity-based rolling friction model for rigid contacts SO MECCANICA LA English DT Article DE Variational inequalities; Contacts; Rolling friction; Multibody; Complementarity ID DISCRETE ELEMENT METHOD; MULTIBODY DYNAMICS; GRANULAR-MATERIALS; BODY DYNAMICS; LARGE-SCALE; RESISTANCE AB In this work (also, preprint ANL/MCS-P3020-0812, Argonne National Laboratory) we introduce a complementarity-based rolling friction model to characterize dissipative phenomena at the interface between moving parts. Since the formulation is based on differential inclusions, the model fits well in the context of nonsmooth dynamics, and it does not require short integration timesteps. The method encompasses a rolling resistance limit for static cases, similar to what happens for sliding friction; this is a simple yet efficient approach to problems involving transitions from rolling to resting, and vice-versa. We propose a convex relaxation of the formulation in order to achieve algorithmic robustness and stability; moreover, we show the side effects of the convexification. A natural application of the model is the dynamics of granular materials, because of the high computational efficiency and the need for only a small set of parameters. In particular, when used as a micromechanical model for rolling resistance between granular particles, the model can provide an alternative way to capture the effect of irregular shapes. Other applications can be related to real-time simulations of rolling parts in bearing and guideways, as shown in examples. C1 [Tasora, Alessandro] Univ Parma, Dipartimento Ingn Ind, I-43100 Parma, Italy. [Anitescu, Mihai] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Tasora, A (reprint author), Univ Parma, Dipartimento Ingn Ind, I-43100 Parma, Italy. EM tasora@ied.unipr.it; anitescu@mcs.anl.gov FU U.S. Department of Energy [DE-AC02-06CH11357]; Ferrari Automotive; TP Engineering FX A. Tasora thanks Ferrari Automotive and TP Engineering for financial support. Mihai Anitescu was supported by the U.S. Department of Energy, under Contract No. DE-AC02-06CH11357. NR 37 TC 8 Z9 8 U1 2 U2 25 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0025-6455 J9 MECCANICA JI Meccanica PD SEP PY 2013 VL 48 IS 7 BP 1643 EP 1659 DI 10.1007/s11012-013-9694-y PG 17 WC Mechanics SC Mechanics GA 200IO UT WOS:000323061900008 ER PT J AU Hazen, TC AF Hazen, Terry C. TI The SuperChip for microbial community structure, and function from all environments SO MICROBIAL BIOTECHNOLOGY LA English DT Editorial Material ID SEA OIL PLUME AB We have the technology and capability to develop an all-in-one microarray that can provide complete information on a microbial community, including algae, protozoa, bacteria, archaea, fungi, viruses, antimicrobial resistance, biotoxins and functional activity. With lab-on-a-chip, nanotechnology integrating a variety of the latest methods for a large number of sample types (water, sediment, waste water, food, blood, etc.) it is possible to make a desktop instrument that would have universal applications. There are two major thrusts to this grand challenge that will allow us to take advantage of the latest biotechnological breakthroughs in real time. The first is a bioengineering thrust that will take advantage of the large multidisciplinary laboratories in developing key technologies. Miniaturization will reduce reagent costs and increase sensitivity and reaction kinetics for rapid turnaround time. New and evolving technologies will allow us to port the designs for state-of-the-art microarrays today to completely new nanotechnology inspired platforms as they mature. The second thrust is in bioinformatics to use our existing expertise to take advantage of the rapidly evolving landscape of bioinformatics data. This increasing capacity of the data set will allow us to resolve microbial species to greatly improved levels and identify functional genes beyond the hypothetical protein level. A cheap and portable assay would impact countless areas, including clean water technologies, emerging diseases, bioenergy, infectious disease diagnosis, climate change, food safety, environmental clean-up and bioterrorism. In my opinion it is possible but it will require a very large group of multidiscplenary scientists from multiple institutions crossing many international boundaries and funding over a 5-year period of more than $100 million. Given the impact that this SuperChip could have it is well worth the price!!! C1 [Hazen, Terry C.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Hazen, Terry C.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Hazen, Terry C.] Oak Ridge Natl Lab, Biol Sci Div, Oak Ridge, TN 37831 USA. RP Hazen, TC (reprint author), Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. EM tchazen@utk.edu RI Luan, Gan/B-3211-2015; Hazen, Terry/C-1076-2012 OI Hazen, Terry/0000-0002-2536-9993 NR 6 TC 1 Z9 2 U1 4 U2 37 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1751-7907 EI 1751-7915 J9 MICROB BIOTECHNOL JI Microb. Biotechnol. PD SEP PY 2013 VL 6 IS 5 BP 450 EP 452 DI 10.1111/1751-7915.12045 PG 3 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 200XP UT WOS:000323105200002 PM 23464831 ER PT J AU Piskorska, M Soule, T Gosse, JL Milliken, C Flickinger, MC Smith, GW Yeager, CM AF Piskorska, M. Soule, T. Gosse, J. L. Milliken, C. Flickinger, M. C. Smith, G. W. Yeager, C. M. TI Preservation of H-2 production activity in nanoporous latex coatings of Rhodopseudomonas palustris CGA009 during dry storage at ambient temperatures SO MICROBIAL BIOTECHNOLOGY LA English DT Article ID LACTIC-ACID BACTERIA; HYDROGEN-PRODUCTION; ESCHERICHIA-COLI; BIOCATALYTIC COATINGS; DRIED BACTERIA; IMMOBILIZATION; MICROORGANISMS; SORBITOL; CELLS; MICROSTRUCTURE AB To assess the applicability of latex cell coatings as an 'off-the-shelf' biocatalyst, the effect of osmoprotectants, temperature, humidity and O2 on preservation of H2 production in Rhodopseudomonas palustris coatings was evaluated. Immediately following latex coating coalescence (24 h) and for up to 2 weeks of dry storage, rehydrated coatings containing different osmoprotectants displayed similar rates of H2 production. Beyond 2 weeks of storage, sorbitol-treated coatings lost all H2 production activity, whereas considerable H2 production was still detected in sucrose-and trehalose-stabilized coatings. The relative humidity level at which the coatings were stored had a significant impact on the recovery and subsequent rates of H2 production. After 4 weeks storage under air at 60% humidity, coatings produced only trace amounts of H2 (0-0.1% headspace accumulation), whereas those stored at < 5% humidity retained 27-53% of their H2 production activity after 8 weeks of storage. When stored in argon at < 5% humidity and room temperature, R. palustris coatings retained full H2 production activity for 3 months, implicating oxidative damage as a key factor limiting coating storage. Overall, the results demonstrate that biocatalytic latex coatings are an attractive cell immobilization platform for preservation of bioactivity in the dry state. C1 [Piskorska, M.; Smith, G. W.] Univ S Carolina, Aiken, SC 29801 USA. [Soule, T.; Milliken, C.; Yeager, C. M.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Gosse, J. L.; Flickinger, M. C.] N Carolina State Univ, Raleigh, NC 27695 USA. RP Yeager, CM (reprint author), Los Alamos Natl Lab, Biosci Div, POB 1663, Los Alamos, NM 87545 USA. EM cyeager@lanl.gov OI Flickinger, Michael/0000-0002-2192-2501 FU US Department of Energy, Office of Environmental Management [LDRD09060]; DOE, Office of Fossil Energy - National Energy Technology Laboratory [DE-EE0003152]; Economic Development Partnership for Aiken [0026]; Edgefield Counties FX This project was supported by the US Department of Energy, Office of Environmental Management as administered by the SRNL Laboratory Directed Research and Development Program (LDRD09060), DOE Grant DE-EE0003152, Office of Fossil Energy - National Energy Technology Laboratory and support from the Economic Development Partnership for Aiken 0026; Edgefield Counties. NR 48 TC 2 Z9 2 U1 3 U2 25 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1751-7907 J9 MICROB BIOTECHNOL JI Microb. Biotechnol. PD SEP PY 2013 VL 6 IS 5 BP 515 EP 525 DI 10.1111/1751-7915.12032 PG 11 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 200XP UT WOS:000323105200006 PM 23331993 ER EF