FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Park, CJ Sharma, R Lefebvre, B Canlas, PE Ronald, PC AF Park, Chang-Jin Sharma, Rita Lefebvre, Benoit Canlas, Patrick E. Ronald, Pamela C. TI The endoplasmic reticulum-quality control component SDF2 is essential for XA21-mediated immunity in rice SO PLANT SCIENCE LA English DT Article DE ER-QC; Receptor-like kinase; SDF2; Xanthomonas oryzae pv. oryzae; XA21 ID UNFOLDED PROTEIN RESPONSE; PLANT INNATE IMMUNITY; DISEASE RESISTANCE; RECEPTOR EFR; ARABIDOPSIS; GENE; PERCEPTION; XA21; EXPRESSION; COMPLEX AB Plant genomes contain large number of plasma membrane (PM)-localized immune receptors, also called pattern recognition receptors (PRRs). PRRs are synthesized in the endoplasmic reticulum (ER) and then translocated to the PM, where they recognize conserved pathogen-associated molecular patterns (PAMPs) and activate innate immune response. The rice XA21 immune receptor confers resistance to the Gram-negative bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo). To identify components that mediate XA21-mediated signaling, we performed co-purification experiments using C-terminal GFP tagged XA21 protein. Several endoplasmic reticulum-quality control (ER-QC) proteins including stromal-derived factor 2 (SDF2) co-purified with XA21. Silencing of the SDF2 genes in the XA21 rice genetic background compromises resistance to Xoo but does not affect plant growth and development. (c) 2013 Elsevier Ireland Ltd. All rights reserved. C1 [Park, Chang-Jin; Sharma, Rita; Lefebvre, Benoit; Canlas, Patrick E.; Ronald, Pamela C.] Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA. [Park, Chang-Jin; Sharma, Rita; Lefebvre, Benoit; Canlas, Patrick E.; Ronald, Pamela C.] Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA. [Park, Chang-Jin] Sejong Univ, Dept Bioresources Engn, Seoul, South Korea. [Sharma, Rita; Ronald, Pamela C.] Joint BioEnergy Inst, Emeryville, CA USA. RP Ronald, PC (reprint author), Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA. EM pcronald@ucdavis.edu RI lefebvre, benoit/G-2028-2012 FU National Institute of Health (NIH) [GM55962]; National Science Foundation (NSF) [IOS-0817738]; Office of Biological and Environmental Research of the United States DOE [DE-AC0205CH11231]; United States Department of Agriculture National Institute of Food and Agriculture [2011-67009-30153]; ANR project LCOinNON-LEGUMES; INRA FX We thank Randy Ruan for lab and green house management, Daniel F. Caddell and Dr. Cyril Zipfel for helpful discussions. This work was supported by the National Institute of Health (NIH, GM55962), the National Science Foundation (NSF, IOS-0817738), the Office of Biological and Environmental Research of the United States DOE contract no. DE-AC0205CH11231 to the Joint BioEnergy Institute and the United States Department of Agriculture National Institute of Food and Agriculture agreement no. 2011-67009-30153 to P.C.R. Work by B.L. was supported by ANR project LCOinNON-LEGUMES and by INRA. NR 34 TC 9 Z9 10 U1 1 U2 20 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0168-9452 J9 PLANT SCI JI Plant Sci. PD SEP PY 2013 VL 210 BP 53 EP 60 DI 10.1016/j.plantsci.2013.05.003 PG 8 WC Biochemistry & Molecular Biology; Plant Sciences SC Biochemistry & Molecular Biology; Plant Sciences GA 198NX UT WOS:000322930700006 PM 23849113 ER PT J AU Ford, DC Cooley, LD Seidman, DN AF Ford, Denise C. Cooley, Lance D. Seidman, David N. TI First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID AUGMENTED-WAVE METHOD; NB-H ALLOYS; HYDROGEN EMBRITTLEMENT; VACANCY-FORMATION; TRANSITION-METALS; ELECTRON-MICROSCOPY; MOLECULAR-DYNAMICS; TEMPERATURE; ABSORPTION; DIFFUSION AB Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption into interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium-hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities. C1 [Ford, Denise C.] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA. [Ford, Denise C.; Cooley, Lance D.] Fermilab Natl Accelerator Lab, Tech Div, Superconducting Mat Dept, Batavia, IL 60510 USA. [Seidman, David N.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Seidman, David N.] Northwestern Univ Ctr Atom Probe Tomog, Evanston, IL 60208 USA. RP Ford, DC (reprint author), Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA. EM deniseford@u.northwestern.edu RI Seidman, David/B-6697-2009; Cooley, Lance/E-7377-2015 OI Cooley, Lance/0000-0003-3488-2980 FU Fermi Research Alliance, LLC [DE-AC02-07CH11359]; US Department of Energy FX Fermilab is operated by the Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the US Department of Energy. We are pleased to acknowledge scientific discussions with A Dzyuba, A Romanenko, and J Zasadzinski. NR 77 TC 5 Z9 5 U1 3 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD SEP PY 2013 VL 26 IS 9 AR 095002 DI 10.1088/0953-2048/26/9/095002 PG 9 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 200MT UT WOS:000323073800008 ER PT J AU Godeke, A Chlachidze, G Dietderich, DR Ghosh, AK Marchevsky, M Mentink, MGT Sabbi, GL AF Godeke, A. Chlachidze, G. Dietderich, D. R. Ghosh, A. K. Marchevsky, M. Mentink, M. G. T. Sabbi, G. L. TI A review of conductor performance for the LARP high-gradient quadrupole magnets SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID CRITICAL-CURRENT DENSITY; CRITICAL-FIELD; NB3SN; WIRES; CABLES AB We summarize critical current measurements and parameterizations of the data of 112 round wires and extracted strands that were reacted with the first 17 coils for the high-gradient quadrupole (HQ) magnets for the US LHC Accelerator Research Program (LARP). We standardize the strand parameterizations and coil 'short sample' calculations, and demonstrate that the entire critical current database can be captured in two scaling parameters per coil. These parameters summarize the short sample performance for each coil for either HQ magnet tests, or mirror tests of individual coils. We also demonstrate that for RRP (R) conductors, generic strain scaling parameters can be derived for at least four substantially different wire configurations, and standardize self-field corrections for LARP. The parameterized conductor performance is used to judge the performance of the HQ magnets and mirror tests. We find that although the HQ magnets reach around 86% of their short sample limitations, they are limited by factors other than the critical current of the conductor. Individual coils in mirror tests reach up to 98% of the expected performance, and do appear limited by the critical current of the conductor. Detailed analysis of short sample performance through accurate parameterizations simplifies the accessibility of short sample data, and enables accurate judgment of magnet performance as well as conductor and cable quality. C1 [Godeke, A.; Dietderich, D. R.; Marchevsky, M.; Mentink, M. G. T.; Sabbi, G. L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Chlachidze, G.] Fermi Natl Lab, Batavia, IL 60510 USA. [Ghosh, A. K.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Godeke, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM agodeke@lbl.gov FU Office of Science, High Energy Physics, US Department of Energy [DE-AC02-05CH11231, DE-AC02-98CH10886] FX The authors would like to thank P Bish, H C Higley, and N L Liggins of Lawrence Berkeley National Laboratory, and J D'Ambra and E D Sperry of Brookhaven National Laboratory for their technical assistance. The authors would also like to thank G Ambrosio of Fermi National Laboratory, and H Felice and S O Prestemon of Berkeley National Laboratory for their valuable contributions and suggestions, and N Cheggour of NIST for making the strain sensitivity data available. This work was supported by the Director, Office of Science, High Energy Physics, US Department of Energy under contract Nos DE-AC02-05CH11231 and DE-AC02-98CH10886. NR 49 TC 15 Z9 15 U1 0 U2 21 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD SEP PY 2013 VL 26 IS 9 AR 095015 DI 10.1088/0953-2048/26/9/095015 PG 15 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 200MT UT WOS:000323073800021 ER PT J AU Nguyen, DN Kim, CH Kim, JH Pamidi, S Ashworth, SP AF Nguyen, D. N. Kim, C. H. Kim, J. H. Pamidi, S. Ashworth, S. P. TI Electrical measurements of AC losses in high temperature superconducting coils at variable temperatures SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID COATED CONDUCTOR; MAGNETIC-FIELDS; TAPES AB Measurements of AC losses in high temperature superconducting (HTS) coils wound from two different types of YBa2Cu3O7 (YBCO) coated conductors are reported. AC loss measurements by different arrangements of voltage loops and pick-up coils were investigated to propose accurate and convenient techniques to measure the AC losses in HTS coils, especially for large coils with the measurement signals significantly higher than the input range of typical lock-in amplifiers. A new and simple sub-cooling technique with an open liquid nitrogen bath was developed to measure AC losses in the sample coils at variable temperatures between 65 and 77 K. The temperature dependence of the losses in these coils was qualitatively explained based on the data on transport and magnetization AC losses in isolated tapes at variable temperatures. C1 [Nguyen, D. N.; Ashworth, S. P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kim, C. H.; Kim, J. H.; Pamidi, S.] Florida State Univ, Ctr Adv Power Syst, Tallahassee, FL 32310 USA. RP Nguyen, DN (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM doan@lanl.gov NR 21 TC 4 Z9 4 U1 1 U2 24 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD SEP PY 2013 VL 26 IS 9 AR 095001 DI 10.1088/0953-2048/26/9/095001 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 200MT UT WOS:000323073800007 ER PT J AU Knecht, AL Goodale, BC Truong, L Simonich, MT Swanson, AJ Matzke, MM Anderson, KA Waters, KM Tanguay, RL AF Knecht, Andrea L. Goodale, Britton C. Truong, Lisa Simonich, Michael T. Swanson, Annika J. Matzke, Melissa M. Anderson, Kim A. Waters, Katrina M. Tanguay, Robert L. TI Comparative developmental toxicity of environmentally relevant oxygenated PAHs SO TOXICOLOGY AND APPLIED PHARMACOLOGY LA English DT Article DE Zebrafish; Development; Oxygenated; PAH; Malformation; Morpholino ID POLYCYCLIC AROMATIC-HYDROCARBONS; RESPIRABLE AIRBORNE PARTICLES; NORTHEASTERN UNITED-STATES; FINE ORGANIC AEROSOL; HUMAN-CELL MUTAGENS; PARTICULATE MATTER; AIR-POLLUTION; ZEBRAFISH EMBRYOS; DIESEL EXHAUST; AH RECEPTOR AB Oxygenated polycyclic aromatic hydrocarbons (OPAHs) are byproducts of combustion and photo-oxidation of parent PAHs. OPAHs are widely present in the environment and pose an unknown hazard to human health. The developing zebrafish was used to evaluate a structurally diverse set of 38 OPAHs for malformation induction, gene expression changes and mitochondrial function. Zebrafish embryos were exposed from 6 to 120 h post fertilization (hpf) to a dilution series of 38 different OPAHs and evaluated for 22 developmental endpoints. AHR activation was determined via CYP1A immunohistochemistry. Phenanthrenequinone (9,10-PHEQ), 1,9-benz-10-anthrone (BEZO), xanthone (XAN), benz(a)anthracene-7,12-dione (7,12-B[a]AQ), and 9,10-anthraquinone (9,10-ANTQ) were evaluated for transcriptional responses at 48 hpf, prior to the onset of malformations. qRT-PCR was conducted for a number of oxidative stress genes, including the glutathione transferase(gst), glutathione peroxidase(gpx), and superoxide dismutase(sod) families. Bioenergetics was assayed to measure in vivo oxidative stress and mitochondrial function in 26 hpf embryos exposed to OPAHs. Hierarchical clustering of the structure-activity outcomes indicated that the most toxic of the OPAHs contained adjacent diones on 6-carbon moieties or terminal, para-diones on multi-ring structures. 5-carbon moieties with adjacent diones were among the least toxic OPAHs while the toxicity of multi-ring structures with more centralized para-diones varied considerably. 9,10-PHEQ BEZO, 7,12-B[a]AQ and XAN exposures increased expression of several oxidative stress related genes and decreased oxygen consumption rate (OCR), a measurement of mitochondrial respiration. Comprehensive in vivo characterization of 38 structurally diverse OPAHs indicated differential AHR dependency and a prominent role for oxidative stress in the toxicity mechanisms. Published by Elsevier Inc. C1 [Knecht, Andrea L.; Goodale, Britton C.; Truong, Lisa; Simonich, Michael T.; Swanson, Annika J.; Anderson, Kim A.; Tanguay, Robert L.] Oregon State Univ, Dept Environm & Mol Toxicol, Environm Hlth Sci Ctr, Corvallis, OR 97333 USA. [Matzke, Melissa M.; Waters, Katrina M.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Tanguay, RL (reprint author), Oregon State Univ, Dept Environm & Mol Toxicol, 28645 East HWY 34, Corvallis, OR 97333 USA. EM andrea.knecht@tanguaylab.com; goodaleb@onid.orst.edu; lisa.truong.888@gmail.com; mtsimonich@oregonstate.edu; swansoan@onid.orst.edu; melissa.matzke@pnl.gov; kim.anderson@oregonstate.edu; katrina.waters@pnl.gov; robert.tanguay@oregonstate.edu FU NIEHS [P42 ES016465, RC4ES019764 P30 ES00210, T32ES7060] FX This work was supported by the NIEHS P42 ES016465, RC4ES019764 P30 ES00210 and the NIEHS Training Grant T32ES7060 to RLT. The authors would also like to thank Derik Haggard for the help with logistical regression data analysis and the members of the Tanguay laboratory and the Sinnhuber Aquatic Research Laboratory for their assistance with fish husbandry and chemical screening. NR 60 TC 35 Z9 37 U1 10 U2 89 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0041-008X J9 TOXICOL APPL PHARM JI Toxicol. Appl. Pharmacol. PD SEP 1 PY 2013 VL 271 IS 2 BP 266 EP 275 DI 10.1016/j.taap.2013.05.006 PG 10 WC Pharmacology & Pharmacy; Toxicology SC Pharmacology & Pharmacy; Toxicology GA 200ST UT WOS:000323091900015 PM 23684558 ER PT J AU Cox, LM Almeter, AL Saterson, KA AF Cox, Llael M. Almeter, Andrew L. Saterson, Kathryn A. TI Protecting our life support systems: An inventory of US federal research on ecosystem services SO ECOSYSTEM SERVICES LA English DT Article DE Federal government; Ecosystem services; Research; Inventory AB In the United States, a broad range of federal resource management and environmental agencies are conducting research related to ecosystem goods and services (EGS), and government agencies at all levels are increasingly interested in measuring the outcomes of proposed decisions in terms of ecosystem service benefits. The United States Environmental Protection Agency's (USEPA) Ecosystem Services Research Program responded to the need for increased awareness of EGS efforts across agencies by conducting a web-based inventory of U.S. federal ecosystem services research. This characterization describes the breadth and focus of ecosystem services programs and projects that were ongoing or completed between April 2010 and May 2012 at nine federal agencies: the Department of Defense (DOD), Department of Energy (DOE), Department of the Interior (DOI), Department of Transportation (DOT), National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Administration (NOAA), United States Army Corps of Engineers (USACE), United States Department of Agriculture (USDA), and USEPA. This paper discusses the progress, gaps, and opportunities revealed and will increase awareness of current efforts, enhance opportunities for the public and private sector to collaborate on ecosystem services vvork, identify high priority research areas, and help avoid duplication. (C) 2013 Elsevier B.V. All rights reserved. C1 [Cox, Llael M.; Almeter, Andrew L.] US EPA, Oak Ridge Inst Sci & Educ, Res Triangle Pk, NC 27711 USA. [Saterson, Kathryn A.] US EPA, Natl Hlth & Environm Effects Res Lab, Res Triangle Pk, NC 27711 USA. RP Cox, LM (reprint author), TW Alexander Dr, Res Triangle Pk, NC 27709 USA. EM cox.llael@epa.gov NR 13 TC 4 Z9 4 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2212-0416 J9 ECOSYST SERV JI Ecosyst. Serv. PD SEP PY 2013 VL 5 BP E163 EP E169 DI 10.1016/j.ecoser.2013.04.006 PG 7 WC Ecology; Environmental Sciences; Environmental Studies SC Environmental Sciences & Ecology GA V41BD UT WOS:000209520800019 ER PT J AU Evans, AM Rice, GE Teuschler, LK Wright, JM AF Evans, A. M. Rice, G. E. Teuschler, L. K. Wright, J. M. TI CUMULATIVE EXPOSURE TO NEURODEVELOPMENTAL STRESSORS IN U. S. WOMEN OF REPRODUCTIVE AGE. SO FERTILITY AND STERILITY LA English DT Meeting Abstract CT International-Federation-of-Fertility-Societies 21st World Congress on Fertility and Sterility / 69th Annual Meeting of the American-Society-for-Reproductive-Medicine CY OCT 12-17, 2013 CL Boston, MA SP Int Federat Fertil Soc, Amer Soc Reprod Med C1 [Evans, A. M.] US EPA, Oak Ridge Inst Sci & Educ, Natl Ctr Environm Assessment, Cincinnati, OH 45268 USA. [Rice, G. E.; Teuschler, L. K.; Wright, J. M.] US EPA, Off Res & Dev, Natl Ctr Environm Assessment, Cincinnati, OH 45268 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0015-0282 EI 1556-5653 J9 FERTIL STERIL JI Fertil. Steril. PD SEP PY 2013 VL 100 IS 3 SU S MA P-946 BP S421 EP S421 PG 1 WC Obstetrics & Gynecology; Reproductive Biology SC Obstetrics & Gynecology; Reproductive Biology GA AQ1PY UT WOS:000342554501717 ER PT J AU Yang, X Liu, C Wang, JH AF Yang, Xi Liu, Cong Wang, Jianhui TI Large-scale branch contingency analysis through master/slave parallel computing SO JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY LA English DT Article DE Massive parallel computing; Power system; Contingency analysis AB Contingency analysis (CA) requires fast execution time for real-time power system operations. Because CA problems can naturally be divided into separate subtasks, parallel computing helps to speed up the computation time. This paper proposes a master/slave parallel computing architecture and studies the computation of CA in a large-scale power system through high performance computing, adopting a message passing interface for implementation. In particular, although the execution time of CA varies, there is a tradeoff between having an imbalanced workload and "paying" a synchronization penalty for parallel computing: either factor blocks the progress of scalability. The proposed layered dynamic scheduling method is effective to tackle the challenge of high synchronization cost and workload imbalance and have the potential to further scale for the N - 2 contingency analysis. C1 [Yang, Xi; Liu, Cong; Wang, Jianhui] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. RP Wang, JH (reprint author), Argonne Natl Lab, Decis & Informat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM xyang34@hawk.iit.edu; liuc@anl.gov; jianhui.wang@anl.gov FU U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up non-exclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 15 TC 0 Z9 0 U1 2 U2 2 PU STATE GRID ELECTRIC POWER RESEARCH INST PI NANJING PA NO 19 CHENGXIN AVE, JIANGNING DISTRICT, NANJING, 211106, PEOPLES R CHINA SN 2196-5625 EI 2196-5420 J9 J MOD POWER SYST CLE JI J. Mod. Power Syst. Clean Energy PD SEP PY 2013 VL 1 IS 2 BP 159 EP 166 DI 10.1007/s40565-013-0024-0 PG 8 WC Engineering, Electrical & Electronic SC Engineering GA V41DP UT WOS:000209527200010 ER PT J AU Hubbard, JA Ezekoye, OA Haglund, JS AF Hubbard, J. A. Ezekoye, O. A. Haglund, J. S. TI Modeling Liquid Film Evaporation in a Wetted Wall Bioaerosol Sampling Cyclone SO JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS LA English DT Article AB The wetted wall bioaerosol sampling cyclone (WWC) is a complex multiphase flow device which collects and concentrates dilute bioaerosols into liquid samples for biological analysis (McFarland et al., 2009, "Wetted Wall Cyclones for Bioaerosol Sampling,"Aerosol Sci. Technol., 44(4), pp. 241-252). Understanding heat and mass transfer processes occurring inside the WWC is the key to enhancing its performance through an effective coupling to lab-on-chip analysis platforms which require small volumes of liquid output. There exists a critical liquid input rate below which there is no sample collection since all liquid is lost to evaporative effects. The purpose of this study was to model critical film evaporation based on first principles and develop semi-empirical WWC performance correlations as an improvement to existing empirical correlations. A one-dimensional, coupled heat and mass transfer model was developed approximating WWC multiphase flow as cocurrent air-film flow. Governing equations were simplified and approximate solutions were used to optimize model parameters like the heat transfer coefficient based on empirical data from previous works. Optimized model parameters were then used in the full numerical solution to calculate liquid evaporation rates within the WWC over the full range of relative humidity and air temperature. Semi-empirical correlations developed in this study were compared to existing empirical models and showed much improvement: proper physical behavior at the extreme limits of temperature and relative humidity was observed, and the nonlinear dependence of evaporative effects on environmental conditions was also captured. C1 [Ezekoye, O. A.; Haglund, J. S.] Univ Texas Austin, Appl Res Labs, Austin, TX 78713 USA. [Ezekoye, O. A.; Haglund, J. S.] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA. RP Hubbard, JA (reprint author), Sandia Natl Labs, Fire & Aerosol Sci, POB 5800,MS1135, Albuquerque, NM 87185 USA. EM jahubba@sandia.gov FU Texas Engineering Experiment Station [W911SR-07-C-0056, A1601-1, DAAD13-03-C-0050, A0181] FX This work would not have been possible without the financial sponsorship of The Texas Engineering Experiment Station (Contract No. W911SR-07-C-0056, Subrecipient Agreement No. A1601-1, and Contract No. DAAD13-03-C-0050, Subrecipient Agreement No. A0181). NR 25 TC 0 Z9 0 U1 2 U2 2 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 1948-5085 EI 1948-5093 J9 J THERM SCI ENG APPL JI J. Therm. Sci. Eng. Appl. PD SEP PY 2013 VL 5 IS 3 AR 031007 DI 10.1115/1.4023309 PG 10 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA V40YX UT WOS:000209515000007 ER PT J AU Moreno, G Narumanchi, S Venson, T Bennion, K AF Moreno, Gilberto Narumanchi, Sreekant Venson, Travis Bennion, Kevin TI Microstructured Surfaces for Single-Phase Jet Impingement Heat Transfer Enhancement SO JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS LA English DT Article DE jet impingement; liquid cooling; microstructured surfaces; power electronics AB An experimental investigation was conducted to examine the use of microstructured surfaces to enhance jet impingement heat transfer. Three microstructured surfaces were evaluated: a microfinned surface, a microporous coating, and a spray pyrolysis coating. The performance of these surface coatings/structures was compared to the performance of simple surface roughening techniques and millimeter-scale finned surfaces. Experiments were conducted using water in both the free- and submerged-jet configurations at Reynolds numbers ranging from 3300 to 18,700. At higher Reynolds numbers, the microstructured surfaces were found to increase Nusselt numbers by 130% and 100% in the free- and submerged-jet configurations, respectively. Potential enhancement mechanisms due to the microstructured surfaces are discussed for each configuration. Finally, an analysis was conducted to assess the impacts of cooling a power electronic module via a jet impingement scheme utilizing microfinned surfaces. C1 [Moreno, Gilberto; Narumanchi, Sreekant; Venson, Travis; Bennion, Kevin] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Moreno, G (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM gilbert.moreno@nrel.gov OI Narumanchi, Sreekant/0000-0001-5337-6069 NR 30 TC 1 Z9 1 U1 3 U2 3 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 1948-5085 EI 1948-5093 J9 J THERM SCI ENG APPL JI J. Therm. Sci. Eng. Appl. PD SEP PY 2013 VL 5 IS 3 AR 031004 DI 10.1115/1.4023308 PG 9 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA V40YX UT WOS:000209515000004 ER PT J AU Phinney, LM Lu, WY Serrano, JR AF Phinney, Leslie M. Lu, Wei-Yang Serrano, Justin R. TI Raman and Infrared Thermometry for Microsystems SO JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS LA English DT Article DE microthermometry; Raman spectroscropy; Infrared thermography; SOI silicon; thermal microactuator AB This paper reports and compares Raman and infrared thermometry measurements along the legs and on the shuttle of a SOI (silicon on insulator) bent-beam thermal microactuator. Raman thermometry offers micron spatial resolution and measurement uncertainties of 610 K. Typical data collection times are a minute per location leading to measurement times on the order of hours for a complete temperature profile. Infrared thermometry obtains a full-field measurement so the data collection time is on the order of a minute. The spatial resolution is determined by the pixel size, 25 mu m by 25 mu m for the system used, and infrared thermometry also has uncertainties of 610K after calibration with a nonpackaged sample. The Raman and infrared measured temperatures agreed both qualitatively and quantitatively. For example, when the thermal microactuator was operated at 7 V, the peak temperature on an interior leg is 437 K610K and 433K610K from Raman and infrared thermometry, respectively. The two techniques are complementary for microsystems characterization when infrared imaging obtains a full-field temperature measurement and Raman thermometry interrogates regions for which higher spatial resolution is required. C1 [Phinney, Leslie M.; Serrano, Justin R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Lu, Wei-Yang] Sandia Natl Labs, Livermore, CA 94551 USA. RP Phinney, LM (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM lmphinn@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. The authors acknowledge Randy Shul for thermal microactuator fabrication, Katie Francis and Ernie Garcia for supplying the thermal microactuators to test, and Allen Gorby for Raman thermometry experimental support. NR 25 TC 0 Z9 0 U1 0 U2 3 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 1948-5085 EI 1948-5093 J9 J THERM SCI ENG APPL JI J. Therm. Sci. Eng. Appl. PD SEP PY 2013 VL 5 IS 3 AR 031011 DI 10.1115/1.4023395 PG 6 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA V40YX UT WOS:000209515000011 ER PT J AU Hooper, D Slatyer, TR AF Hooper, Dan Slatyer, Tracy R. TI Two emission mechanisms in the Fermi Bubbles: A possible signal of annihilating dark matter SO PHYSICS OF THE DARK UNIVERSE LA English DT Article DE Dark matter indirect detection; Galactic diffuse gamma ray emission; Fermi Bubbles; Galactic Center ID COSMIC-RAY DIFFUSION; GALACTIC-CENTER; MILLISECOND PULSARS; CONSTRAINTS; TELESCOPE; RADIATION; GALAXIES; MODELS; HAZE AB We study the variation of the spectrum of the Fermi Bubbles with Galactic latitude. Far from the Galactic plane (vertical bar b greater than or similar to 30 degrees), the observed gamma-ray emission is nearly invariant with latitude, and is consistent with arising from inverse Compton scattering of the interstellar radiation field by cosmic-ray electrons with an approximately power-law spectrum. The same electrons in the presence of microgauss-scale magnetic fields can also generate the the observed microwave "haze". At lower latitudes (vertical bar b vertical bar less than or similar to 20 degrees), in contrast, the spectrum of the emission correlated with the Bubbles possesses a pronounced spectral feature peaking at similar to 1-4 GeV (in E(2)dN/dE) which cannot be generated by any realistic spectrum of electrons. Instead, we conclude that a second (non-inverse-Compton) emission mechanism must be responsible for the bulk of the low-energy, low-latitude emission. This second component is spectrally similar to the excess GeV emission previously reported from the Galactic Center (GC), and also appears spatially consistent with a luminosity per volume falling approximately as r(-2.4), where r is the distance from the GC. Consequently, we argue that the spectral feature visible in the low-latitude Bubbles is most likely the extended counterpart of the GC excess, now detected out to at least similar to 2-3 kpc from the GC. The spectrum and angular distribution of the signal is broadly consistent with that predicted from similar to 10 GeV dark matter particles annihilating to leptons, or from similar to 50 GeV dark matter particles annihilating to quarks, following a distribution similar to, but slightly steeper than, the canonical Navarro-Frenk-White (NFW) profile. We also consider millisecond pulsars as a possible astrophysical explanation for the signal, as observed millisecond pulsars possess a spectral cutoff at approximately the required energy. Any such scenario would require a large population of unresolved millisecond pulsars extending at least 2-3 kpc from the GC. (C) 2013 The Authors. Published by Elsevier B.V. C1 [Hooper, Dan] Fermilab Natl Accelerator Lab, Theoret Astrophys Grp, Batavia, IL 60510 USA. [Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Slatyer, Tracy R.] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA. RP Slatyer, TR (reprint author), Inst Adv Study, Sch Nat Sci, Olden Lane, Princeton, NJ 08540 USA. EM tslatyer@gmail.com FU US Department of Energy; National Science Foundation [PHY-0907744, AST-0807444, PHYS-1066293] FX We would like to thank Kev Abazajian, Roland Crocker, Doug Finkbeiner, Manoj Kaplinghat, Tim Linden, Simona Murgia, Annika Peter and Neal Weiner for helpful discussions. We thank Ettore Carretti, Roland Crocker and Greg Dobler for providing data from their own work, and the anonymous referee for useful feedback. This work has been supported by the US Department of Energy. T. R. S. is supported by the National Science Foundation under Grants PHY-0907744 and AST-0807444. This work was supported in part by the National Science Foundation under Grant No. PHYS-1066293 and the hospitality of the Aspen Center for Physics, where this project originated. NR 58 TC 161 Z9 161 U1 3 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2212-6864 J9 PHYS DARK UNIVERSE JI Phys. Dark Universe PD SEP PY 2013 VL 2 IS 3 BP 118 EP 138 DI 10.1016/j.dark.2013.06.003 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AR6NT UT WOS:000343700800002 ER PT J AU Shoemaker, IM AF Shoemaker, Ian M. TI Constraints on dark matter protohalos in effective theories and neutrinophilic dark matter SO PHYSICS OF THE DARK UNIVERSE LA English DT Article DE Dark matter substructure; Models of dark matter; Protohalos ID SATELLITES; HALOS AB The mass of primordial dark matter (DM) protohalos remains unknown. However, the missing satellites problem may be an indication that they are quite large. In this paper, we use effective field theory to map constraints on dark matter-SM interactions into limits on the mass of DM protohalos. Given that leptons remain in the thermal bath until late times, we focus on their interactions with DM. To illustrate the method, we use the null results of LEP missing energy searches along with Fermi-LAT searches for DM annihilation in nearby dwarf galaxies, to derive limits on the protohalo mass, less than or similar to (10(-6) to 10(-1)) M-circle dot, with the range depending on the DM mass and the operator. Thus, if DM is to remain thermally coupled until late times and account for the missing satellites, charged lepton interactions are insufficient. This motivates neutrinophilic DM, which can have protohalo masses orders of magnitude larger, with constraints arising from Planck, IceCube and unpublished Super-K data. We show that effective neutrinophilic models offer a viable solution to the missing satellites problem for sub-GeV DM masses with larger than WIMP-sized annihilation cross sections. (C) 2013 Ian M. Shoemaker. Published by Elsevier B.V. C1 Los Alamos Natl Lab, Theoret Div T 2, Los Alamos, NM 87545 USA. RP Shoemaker, IM (reprint author), Los Alamos Natl Lab, Theoret Div T 2, MS B285, Los Alamos, NM 87545 USA. EM ianmshoe@gmail.com FU LANL LDRD program; National Science Foundation [NSF PHY11-25915] FX This research was supported by the LANL LDRD program and the National Science Foundation under Grant No. NSF PHY11-25915. NR 51 TC 21 Z9 21 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2212-6864 J9 PHYS DARK UNIVERSE JI Phys. Dark Universe PD SEP PY 2013 VL 2 IS 3 BP 157 EP 162 DI 10.1016/j.dark.2013.07.002 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AR6NT UT WOS:000343700800004 ER PT J AU Kopp, J Neil, ET Primulando, R Zupan, J AF Kopp, Joachim Neil, Ethan T. Primulando, Reinard Zupan, Jure TI From gamma ray line signals of dark matter to the LHC (vol 2, pg 22, 2013) SO PHYSICS OF THE DARK UNIVERSE LA English DT Correction C1 [Kopp, Joachim; Neil, Ethan T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Kopp, Joachim] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Primulando, Reinard] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Zupan, Jure] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA. RP Zupan, J (reprint author), Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA. EM jkopp@fnal.gov; eneil@fnal.gov; reinard@jhu.edu; zupanje@ucmail.uc.edu NR 5 TC 4 Z9 4 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2212-6864 J9 PHYS DARK UNIVERSE JI Phys. Dark Universe PD SEP PY 2013 VL 2 IS 3 BP 176 EP 177 DI 10.1016/j.dark.2013.09.001 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AR6NT UT WOS:000343700800007 ER PT J AU Lincoln, D AF Lincoln, Don TI Extra Dimensions of Space SO PHYSICS TEACHER LA English DT Article C1 [Lincoln, Don] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Lincoln, D (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM lincoln@fnal.gov NR 4 TC 1 Z9 1 U1 0 U2 0 PU AMER ASSN PHYSICS TEACHERS PI COLLEGE PK PA 5110 ROANOKE PLACE SUITE 101, COLLEGE PK, MD 20740 USA SN 0031-921X J9 PHYS TEACH JI Phys. Teach. PD SEP PY 2013 VL 51 IS 6 BP 334 EP 338 DI 10.1119/1.4818367 PG 5 WC Physics, Multidisciplinary SC Physics GA V41IG UT WOS:000209539300007 ER PT J AU Elliott, DC AF Elliott, Douglas C. TI Transportation fuels from biomass via fast pyrolysis and hydroprocessing SO WILEY INTERDISCIPLINARY REVIEWS-ENERGY AND ENVIRONMENT LA English DT Article ID OILS AB Biomass is a renewable source of carbon, which could provide a means to reduce the greenhouse gas impact from fossil fuels in the transportation sector. Recycling of carbon dioxide from the atmosphere, either by direct chemical conversion or via biomass growth based on solar energy provides the only renewable source of liquid fuels, which could displace petroleum-derived products. Fast pyrolysis is a method of direct thermochemical conversion (nonbioconversion) of biomass to a liquid product. Although the direct conversion product, called bio-oil, is liquid; it is not compatible with the fuel handling systems currently used for transportation. Upgrading the product via catalytic processing with hydrogen gas, hydroprocessing, is a means that has been demonstrated in the laboratory. By this processing, the bio-oil can be deoxygenated to hydrocarbons, which can be useful replacements of the hydrocarbon distillates in petroleum. While the fast pyrolysis of biomass is presently commercial, the upgrading of the liquid product by hydroprocessing remains in development, although it is moving out of the laboratory into scaled-up process demonstration systems. (C) 2013 John Wiley & Sons, Ltd. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Elliott, DC (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM dougc.elliott@pnnl.gov NR 27 TC 6 Z9 7 U1 1 U2 13 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2041-8396 EI 2041-840X J9 WIRES ENERGY ENVIRON JI Wiley Interdiscip. Rev. Energy Environ. PD SEP-OCT PY 2013 VL 2 IS 5 BP 525 EP 533 DI 10.1002/wene.74 PG 9 WC Energy & Fuels SC Energy & Fuels GA AQ9WK UT WOS:000343208500004 ER PT J AU Vorpahl, F Schwarze, H Fischer, T Seidel, M Jonkman, J AF Vorpahl, Fabian Schwarze, Holger Fischer, Tim Seidel, Marc Jonkman, Jason TI Offshore wind turbine environment, loads, simulation, and design SO WILEY INTERDISCIPLINARY REVIEWS-ENERGY AND ENVIRONMENT LA English DT Review AB In the design, certification, and optimization of offshore wind turbines, extensive loads simulation is inevitable to develop reliable and cost-effective turbines. Description of the marine environment is based on a variety of techniques taking the stochastic nature of both, the wind and the water waves into account. The wind turbine is a highly dynamic system including effects of heavy rotating machinery and other significant nonlinearities leading to static, cyclic, transient, and stochastic loads. Due to the nature of the external loading, the system properties and the turbine design lifetime, offshore wind turbines are prone to fatigue-driven failure. For loads assessment, aero-hydro-servo-elastic tools are used including the coupled effects of the environment and the turbine to simulate the overall lifetime of the turbine in the harsh marine environment. These tools are constantly further developed and adapted to the needs of a fast-growing industry and newly arising turbine concepts. Engineering approaches to allow for certification and reliable design are summarized in extensive guidelines and standards supporting engineers in daily design work. (C) 2012 John Wiley & Sons, Ltd. C1 [Vorpahl, Fabian; Schwarze, Holger] Fraunhofer Inst Wind Energy & Energy Syst Technol, Bremerhaven, Germany. [Fischer, Tim] Ramboll Offshore Wind, Hamburg, Germany. [Seidel, Marc] REpower Syst SE, Osnabruck, Germany. [Jonkman, Jason] Natl Renewable Energy Lab, Golden, CO USA. RP Vorpahl, F (reprint author), Fraunhofer Inst Wind Energy & Energy Syst Technol, Bremerhaven, Germany. EM fabian.vorpahl@iwes.fraunhofer.de FU German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety FX The part of this work done at Fraunhofer IWES was funded by the German Federal Ministry for the Environment, Nature Conservation, and Nuclear Safety. The authors would like to thank Julia Gottschall, Gerrit Wolken-Mohlman, and Hristo Lilov for the input concerning the offshore environment. Thank you for your support to Urs Wihlfahrt, Wojciech Popko, Sebastian Hetmanczyk, and Mareike Strach (all from IWES). NR 86 TC 14 Z9 14 U1 3 U2 9 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2041-8396 EI 2041-840X J9 WIRES ENERGY ENVIRON JI Wiley Interdiscip. Rev. Energy Environ. PD SEP-OCT PY 2013 VL 2 IS 5 BP 548 EP 570 DI 10.1002/wene.52 PG 23 WC Energy & Fuels SC Energy & Fuels GA AQ9WK UT WOS:000343208500006 ER PT J AU Atanackovic, J Kramer, GH Hogue, M AF Atanackovic, Jovica Kramer, Gary H. Hogue, Mark TI Monte Carlo model of HPGe detectors used in routine lung counting SO APPLIED RADIATION AND ISOTOPES LA English DT Article DE HPGe detector; MCNP detector modelling; Eu-152 source; Lung counting facility; Low level gamma counting; Spectral function fitting AB An MCNP model of a pair of planar HPGe detectors (designated as: detector 3 and detector 4), that are used for routine lung counting at AECL, was developed. The model was benchmarked against experimental results, where a multi-line Eu-152 source was counted in several different geometrical arrangements. The best agreement for both detectors was achieved when side and back dead layers (of both detectors) were quadrupled, with respect to the ones quoted by their manufacturer (Canberra). In the case of detector 4, the agreement between simulated and measured spectra was within 4%, throughout the whole gamma-spectrum, spanning 70-1600 keV. The same was true for detector 3 at the lower end of the gamma-spectrum. However, at the high end of the gamma-spectrum, the agreement was within 7% and 12% for Eu-152 gamma-lines at 778.9 and 1408.01 keV. Crown Copyright (c) 2013 Published by Elsevier Ltd. All rights reserved. C1 [Atanackovic, Jovica] Atom Energy Canada Ltd, Chalk River Labs, Chalk River, ON K0J 1J0, Canada. [Kramer, Gary H.] Hlth Canada, Natl Internal Radiat Assessment Sect, Human Monitoring Lab, Ottawa, ON K1A 1C1, Canada. [Hogue, Mark] Savannah River Site, Aiken, SC 29808 USA. RP Atanackovic, J (reprint author), Atom Energy Canada Ltd, Chalk River Labs, Chalk River, ON K0J 1J0, Canada. EM atanackj@aecl.ca OI Atanackovic, Jovica/0000-0003-3084-5381 FU Candu Owners Group (COG) [COG-30212] FX The author would like to thank Candu Owners Group (COG) for financially supporting this work through work package COG-30212. We would also like to thank Debie Behm, Linda Paterson and Blair Smith of AECL Chalk River Dosimetry Services for providing help and support during experimental setups. Furthermore, we would like to thank Steve Allen of Cameco Health Physics Group for helping in background data acquisition at Cameco mobile LCF. Lastly, the author would like to thank Mr. Harvey Shepard of Canberra for providing important details regarding the geometry and drawings of Act-II detectors and Dr. Nicholas Priest of AECL for sharing his expertise on the topic and proofreading this paper. NR 11 TC 0 Z9 0 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD SEP PY 2013 VL 79 BP 94 EP 102 DI 10.1016/j.apradiso.2013.04.016 PG 9 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 189UR UT WOS:000322294300015 PM 23747513 ER PT J AU Jody, BJ Doctor, RD Petchsingto, T Snyder, SW AF Jody, Bassam J. Doctor, Richard D. Petchsingto, Tawatchai Snyder, Seth W. TI Concept for production of chemicals and power using geothermal energy SO APPLIED THERMAL ENGINEERING LA English DT Article DE Geothermal; EGS; Chemical reactions; NH3; Wastewater treatment; CH3OH production ID PARTIAL OXIDATION; METHANOL; CATALYSTS AB This paper presents a concept for conducting commercial chemical reactions and production of power using geothermal heat. The high pressures (Ps) and temperatures (Ts) that fluids attain in deep reservoirs can be used to manufacture chemicals or decontaminate wastes. High P reactions which can be expensive and/or unsafe to conduct above ground can be conducted in geothermal reservoirs using closed designs. We present examples of reactions that could benefit from Enhanced Geothermal Systems (EGS) including production of ammonia (NH3), supercritical oxidation of wastewater contaminants, production of hydrogen (H-2) by steam reforming of methanol (CH3OH) and partial oxidation of methane (CH4) to produce CH3OH. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Jody, Bassam J.; Doctor, Richard D.; Petchsingto, Tawatchai; Snyder, Seth W.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Jody, BJ (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM bjody@anl.gov; richard.doctor@att.net; txp192@hotmail.com; seth@anl.gov FU Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; United States DOE - Geothermal Technologies Program - Enhanced Geothermal Systems FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. This work is sponsored by the United States DOE - Geothermal Technologies Program - Enhanced Geothermal Systems. NR 13 TC 1 Z9 1 U1 1 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-4311 J9 APPL THERM ENG JI Appl. Therm. Eng. PD SEP PY 2013 VL 58 IS 1-2 BP 564 EP 569 DI 10.1016/j.applthermaleng.2013.04.047 PG 6 WC Thermodynamics; Energy & Fuels; Engineering, Mechanical; Mechanics SC Thermodynamics; Energy & Fuels; Engineering; Mechanics GA 186NM UT WOS:000322051300061 ER PT J AU Konyakhina, TM Wu, J Mastroianni, JD Heberle, FA Feigenson, GW AF Konyakhina, Tatyana M. Wu, Jing Mastroianni, James D. Heberle, Frederick A. Feigenson, Gerald W. TI Phase diagram of a 4-component lipid mixture: DSPC/DOPC/POPC/chol SO BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES LA English DT Article DE 4-Component lipid phase diagram; Quaternary phase diagram; Modulated phase; 3-Dye method; Competing interaction; Lipid raft ID PLASMA-MEMBRANE VESICLES; MAXIMUM SOLUBILITY; MODEL BIOMEMBRANES; MODULATED PHASES; CHOLESTEROL; BILAYERS; BEHAVIOR; RAFTS; CONNECTIVITY; FLUCTUATIONS AB We report the first 4-component phase diagram for the lipid bilayer mixture, DSPC/DOPC/POPC/chol (distearoylphosphatidylcholine/dioleoylphosphatidylcholine/l-palmitoyl, 2-oleoylphosphatidylcholine/cholesterol). This phase diagram, which has macroscopic Ld + Lo phase domains, clearly shows that all phase boundaries determined for the 3-component mixture containing DOPC transition smoothly into the boundaries for the 3-component mixture containing POPC, which has nanoscopic phase domains of Ld + Lo. Our studies start from two published ternary phase diagrams, and show how these can be combined into a quaternary phase diagram by study of a few hundred samples of intermediate compositions. (C) 2013 Elsevier B.V. All rights reserved. C1 [Konyakhina, Tatyana M.; Mastroianni, James D.; Feigenson, Gerald W.] Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY 14853 USA. [Wu, Jing] Univ Michigan, Dept Biophys, Ann Arbor, MI 48109 USA. [Heberle, Frederick A.] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. RP Feigenson, GW (reprint author), Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY 14853 USA. EM gwf3@cornell.edu FU National Institutes of Health [R01 GM077198, 1-T32-GM08267]; National Science Foundation [MCB 0842839] FX We thank Erwin London for providing us with TOE. Support was received from research awards from the National Institutes of Health R01 GM077198 and the National Science Foundation MCB 0842839 (to G.W.F.). T.M.K. was supported in part by the National Institutes of Health research award 1-T32-GM08267. NR 40 TC 34 Z9 34 U1 2 U2 53 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0005-2736 J9 BBA-BIOMEMBRANES JI Biochim. Biophys. Acta-Biomembr. PD SEP PY 2013 VL 1828 IS 9 BP 2204 EP 2214 DI 10.1016/j.bbamem.2013.05.020 PG 11 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 190PY UT WOS:000322353900021 PM 23747294 ER PT J AU Drolle, E Kucerka, N Hoopes, MI Choi, Y Katsaras, J Karttunen, M Leonenko, Z AF Drolle, E. Kucerka, N. Hoopes, M. I. Choi, Y. Katsaras, J. Karttunen, M. Leonenko, Z. TI Effect of melatonin and cholesterol on the structure of DOPC and DPPC membranes SO BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES LA English DT Article DE Lipid membrane; Cholesterol; Melatonin; Small-angle neutron diffraction (SAND); Small-angle neutron scattering (SANS); Molecular Dynamics simulations ID X-RAY-SCATTERING; A-BETA PEPTIDE; ALZHEIMERS-DISEASE; LIPID-BILAYERS; MODEL MEMBRANES; UNILAMELLAR VESICLES; NEUTRON-DIFFRACTION; CELL-MEMBRANE; DYNAMICS; SIMULATIONS AB The cell membrane plays an important role in the molecular mechanism of amyloid toxicity associated with Alzheimer's disease. The membrane's chemical composition and the incorporation of small molecules, such as melatonin and cholesterol, can alter its structure and physical properties, thereby affecting its interaction with amyloid peptides. Both melatonin and cholesterol have been recently linked to amyloid toxicity. Melatonin has been shown to have a protective role against amyloid toxicity. However, the underlying molecular mechanism of this protection is still not well understood, and cholesterol's role remains controversial. We used small-angle neutron diffraction (SAND) from oriented lipid multi-layers, small-angle neutron scattering (SANS) from unilamellar vesicles experiments and Molecular Dynamics (MD) simulations to elucidate non-specific interactions of melatonin and cholesterol with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) model membranes. We conclude that melatonin decreases the thickness of both model membranes by disordering the lipid hydrocarbon chains, thus increasing membrane fluidity. This result is in stark contrast to the much accepted ordering effect induced by cholesterol, which causes membranes to thicken. (C) 2013 Elsevier B.V. All rights reserved. C1 [Drolle, E.; Choi, Y.; Leonenko, Z.] Univ Waterloo, Dept Biol, Waterloo, ON N2L 3G1, Canada. [Drolle, E.; Choi, Y.; Karttunen, M.; Leonenko, Z.] Univ Waterloo, Waterloo Inst Nanotechnol, Waterloo, ON N2L 3G1, Canada. [Kucerka, N.; Katsaras, J.] Canadian Neutron Beam Ctr, Chalk River, ON, Canada. [Kucerka, N.] Comenius Univ, Dept Phys Chem Drugs, Bratislava 81806, Slovakia. [Hoopes, M. I.; Karttunen, M.] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada. [Katsaras, J.] Oak Ridge Natl Lab, Joint Inst Neutron Sci, Biol & Soft Matter Div, Oak Ridge, TN USA. [Leonenko, Z.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. RP Leonenko, Z (reprint author), Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. EM zleonenk@uwaterloo.ca RI Karttunen, Mikko/G-4531-2010; OI Karttunen, Mikko/0000-0002-8626-3033; Katsaras, John/0000-0002-8937-4177 FU Natural Science and Engineering Council of Canada (NSERC); Canadian Institute of Health Research (CIHR); University of Waterloo; NSERC Canada Graduate Scholarship; WIN Fellowship; CIHR; U.S. Department of Energy [DE-AC05-00OR2275]; ORNL's Laboratory Directed Research and Development (LDRD) program FX This work was supported by the Natural Science and Engineering Council of Canada (NSERC) [ZL, MK], Canadian Institute of Health Research (CIHR) [ZL], the University of Waterloo [MK, ZL], an NSERC Canada Graduate Scholarship and WIN Fellowship [ED], and a CIHR Graduate Scholarship and WIN Fellowship [YC]. The authors acknowledge the support of the Canadian Institute for Neutron Scattering (CINS) through the utilization of the Canadian Neutron Beam Centre (CNBC) facilities, and the office of Biological and Environmental Research at Oak Ridge National Laboratory's (ORNL) Center for Structural Molecular Biology (CSMB) through the utilization of facilities supported by the U.S. Department of Energy, managed by UT-Battelle, LLC under contract no. DE-AC05-00OR2275. JK is partially supported through ORNL's Laboratory Directed Research and Development (LDRD) program. NR 78 TC 21 Z9 21 U1 7 U2 82 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0005-2736 J9 BBA-BIOMEMBRANES JI Biochim. Biophys. Acta-Biomembr. PD SEP PY 2013 VL 1828 IS 9 BP 2247 EP 2254 DI 10.1016/j.bbamem.2013.05.015 PG 8 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 190PY UT WOS:000322353900026 PM 23714288 ER PT J AU Ren, K Gan, YX Young, TJ Moutassem, ZM Zhang, LH AF Ren, Kai Gan, Yong X. Young, Taurean J. Moutassem, Zald M. Zhang, Lihua TI Photoelectrochemical responses of doped and coated titanium dioxide composite nanotube anodes SO COMPOSITES PART B-ENGINEERING LA English DT Article DE Nano-structures; Electrical properties; Optical properties/techniques; Electron microscopy ID SENSITIZED SOLAR-CELLS; TIO2 NANOTUBES; THIN-FILMS; PHOTOCATALYTIC DEGRADATION; METHYL-ORANGE; HYDROGEN; WATER; NANOPARTICLES; CATALYST AB Nanostructured photoelectrochemical anodes were made from titanium dioxide nanotubes doped with various metals including Fe, Cu, Ni, Ag, and added with polyaniline to enhance the photosensitivity. The TiO2 nanotubes were obtained through electrochemical oxidation of Ti foil in a glycerol aqueous solution. Electroplating followed by high temperature treatment induced element substitution approach was used to achieve doping effect. Transmission electron microscopy and energy dispersive X-ray diffraction analysis were performed to reveal the structure and obtain the composition information. To examine the photoelectrochemical response, the anode was polarized at the constant bias voltages of 0.5, 1.0, 1.5, 2.0 V and under the exposure of both ultraviolet and visible light. Linear scan was also performed in the potential range of 0-2 V. It is found that Fe, Ni, and Cu doped and polyaniline covered nanotubes show obvious photoelectrochemical activities. Polyaniline covered nanotube anode has better performance than others. Cu-doped anode shows the highest current density in the linear scan voltage range. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Ren, Kai; Gan, Yong X.; Young, Taurean J.; Moutassem, Zald M.] Univ Toledo, Coll Engn, Dept Mech Ind & Mfg Engn, Toledo, OH 43606 USA. [Gan, Yong X.] Calif State Polytech Univ Pomona, Coll Engn, Dept Mech Engn, Pomona, CA 91768 USA. [Zhang, Lihua] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Gan, YX (reprint author), Calif State Polytech Univ Pomona, Coll Engn, Dept Mech Engn, 3801 W Temple Ave, Pomona, CA 91768 USA. EM yxgan@csupomona.edu RI Zhang, Lihua/F-4502-2014 FU U.S. Environmental Protection Agency [SU83529701]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Kellogg Foundation FX This work is supported by the U.S. Environmental Protection Agency under Grant No. SU83529701. The transmission electron microscopic (TEM) research carried out in the Center for Functional Nanomaterials at Brookhaven National Laboratory is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. YXG also acknowledges the generous support from Kellogg Foundation through a 2012-2013 PRSCA award. NR 35 TC 6 Z9 6 U1 1 U2 66 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1359-8368 J9 COMPOS PART B-ENG JI Compos. Pt. B-Eng. PD SEP PY 2013 VL 52 BP 292 EP 302 DI 10.1016/j.compositesb.2013.04.001 PG 11 WC Engineering, Multidisciplinary; Materials Science, Composites SC Engineering; Materials Science GA 182DS UT WOS:000321722500037 ER PT J AU Monti, HM Butt, AR Vazhkudai, SS AF Monti, Henry M. Butt, Ali R. Vazhkudai, Sudharshan S. TI On Timely Staging of HPC Job Input Data SO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS LA English DT Article DE High performance data management; data-staging; HPC center serviceability; end-user data delivery AB Innovative scientific applications and emerging dense data sources are creating a data deluge for high-end supercomputing systems. Modern applications are often collaborative in nature, with a distributed user base for input and output data sets. Processing such large input data typically involves copying (or staging) the data onto the supercomputer's specialized high-speed storage, scratch space, for sustained high I/O throughput. This copying is crucial as remotely accessing the data while an application executes results in unnecessary delays and consequently performance degradation. However, the current practice of conservatively staging data as early as possible makes the data vulnerable to storage failures, which may entail restaging and reduced job throughput. To address this, we present a timely staging framework that uses a combination of job start-up time predictions, user-specified volunteer or cloud-based intermediate storage nodes, and decentralized data delivery to coincide input data staging with job start-up. Evaluation of our approach using both PlanetLab and Azure cloud services, as well as simulations based on three years of Jaguar supercomputer (No. 3 in Top500) job logs show as much as 91.0 percent reduction in staging times compared to direct transfers, 75.2 percent reduction in wait time on scratch, and 2.4 percent reduction in usage/hour. (An earlier version of this paper appears in [30].) C1 [Monti, Henry M.; Butt, Ali R.] Virginia Tech, Dept Comp Sci, Blacksburg, VA 24061 USA. [Vazhkudai, Sudharshan S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Monti, HM (reprint author), Virginia Tech, Dept Comp Sci, 2202 Kraft Dr, Blacksburg, VA 24061 USA. EM hmonti@cs.vt.edu; butta@cs.vt.edu; vazhkudaiss@ornl.gov FU LDRD Program; NCCS of ORNL; US DOE [DE-AC05-00OR22725]; US NSF [CCF-0746832, CNS-1016793, CNS-1016408] FX This research was sponsored by the LDRD Program, and NCCS of ORNL, managed by UT-Battelle, LLC for the US DOE under contract no. DE-AC05-00OR22725, and by the US NSF Awards CCF-0746832, CNS-1016793, and CNS-1016408. NR 37 TC 0 Z9 0 U1 1 U2 9 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1045-9219 J9 IEEE T PARALL DISTR JI IEEE Trans. Parallel Distrib. Syst. PD SEP PY 2013 VL 24 IS 9 BP 1841 EP 1851 DI 10.1109/TPDS.2012.279 PG 11 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 192VV UT WOS:000322516200013 ER PT J AU Mayeur, JR Beyerlein, IJ Bronkhorst, CA Mourad, HM Hansen, BL AF Mayeur, J. R. Beyerlein, I. J. Bronkhorst, C. A. Mourad, H. M. Hansen, B. L. TI A crystal plasticity study of heterophase interface character stability of Cu/Nb bicrystals SO INTERNATIONAL JOURNAL OF PLASTICITY LA English DT Article DE Crystal plasticity; Layered composites; Rolling textures; Interface stability; Finite elements ID ROLLING TEXTURE DEVELOPMENT; NANOLAMELLAR COMPOSITES; SINGLE-CRYSTALS; DEFORMATION; EVOLUTION; FCC; NANOCOMPOSITE; MULTILAYERS; MECHANISMS; METALS AB It has recently been shown that a highly oriented microstructure develops during severe plastic rolling deformation of Cu/Nb (fcc/bcc) nanocomposites. The deformation textures significantly deviate from those expected when rolling Cu or Nb alone, and the Cu/Nb interfaces do not correspond to those with the lowest possible formation energies. Motivated by these experimental observations, we study the heterophase interface character (HIC) stability of specific Cu/Nb bicrystal configurations under rolling conditions using a finite element crystal plasticity model. In this work, the HIC stability refers to the stability of the 5-parameter character of the interface (the orientation relationship and the interface plane) under mechanical load. Specifically, we examine how slip activity and lattice reorientation are affected by the kinematic constraint imposed by the interface. Our results show that bicrystal stability is governed by the least stable crystal. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Mayeur, J. R.; Beyerlein, I. J.; Bronkhorst, C. A.; Mourad, H. M.; Hansen, B. L.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Mayeur, JR (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM jmayeur@lanl.gov RI Beyerlein, Irene/A-4676-2011; Bronkhorst, Curt/B-4280-2011 OI Bronkhorst, Curt/0000-0002-2709-1964 FU Los Alamos National Laboratory Directed Research and Development (LDRD) Project [DR20110029]; DOE [DE AC52 06NA25396] FX This work was funded through a Los Alamos National Laboratory Directed Research and Development (LDRD) Project DR20110029. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE AC52 06NA25396. NR 36 TC 25 Z9 25 U1 2 U2 43 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0749-6419 EI 1879-2154 J9 INT J PLASTICITY JI Int. J. Plast. PD SEP PY 2013 VL 48 BP 72 EP 91 DI 10.1016/j.ijplas.2013.02.006 PG 20 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA 191KY UT WOS:000322413100004 ER PT J AU Pan, WX Li, DS Tartakovsky, AM Ahzi, S Khraisheh, M Khaleel, M AF Pan, Wenxiao Li, Dongsheng Tartakovsky, Alexandre M. Ahzi, Said Khraisheh, Marwan Khaleel, Moe TI A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: Process modeling and simulation of microstructure evolution in a magnesium alloy SO INTERNATIONAL JOURNAL OF PLASTICITY LA English DT Article DE Friction stir welding; Smoothed particle hydrodynamics; Lagrangian particle method; Microstructure evolution ID TEXTURE EVOLUTION; AZ31B SHEET; MG ALLOY; DEFORMATION; SOLIDS; STRAIN AB We present a new smoothed particle hydrodynamics (SPH) model for friction stir welding (FSW). FSW has broad commercial application in the marine, aerospace, rail, and automotive industries. However, development of the FSW process for each new application has remained largely empirical. Few established numerical modeling techniques have been developed that can explain and predict important features of the process physics involved in FSW. This is particularly true in the areas of material flow and mixing mechanisms. In this paper, we present a novel modeling approach to simulate FSW that may have significant advantages over current finite element or finite difference based methods. Unlike traditional grid-based methods, Lagrangian particle methods such as SPH can simulate the dynamics of interfaces, large material deformations, and the material's strain and temperature history without employing complex tracking schemes. Three-dimensional simulations of FSW on AZ31 Mg alloy are performed. The temperature history and distribution, grain size, microhardness as well as the texture evolution are presented. Numerical results are found to be in good agreement with experimental observations. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Pan, Wenxiao; Li, Dongsheng; Tartakovsky, Alexandre M.; Khaleel, Moe] Pacific NW Natl Lab, CSMD, Richland, WA 99352 USA. [Ahzi, Said] Univ Strasbourg, IMFS CNRS, F-67000 Strasbourg, France. [Ahzi, Said] Georgia Inst Technol, MSE, Atlanta, GA 30332 USA. [Khraisheh, Marwan] Masdar Inst Sci & Technol, Abu Dhabi, U Arab Emirates. RP Pan, WX (reprint author), Pacific NW Natl Lab, CSMD, Richland, WA 99352 USA. EM wenxiao.pan@pnnl.gov OI khaleel, mohammad/0000-0001-7048-0749 FU Advanced Scientific Computing Research Program; Scientific Discovery through Advanced Computing Program of the Office of Science, U.S. Department of Energy at the Pacific Northwest National Laboratory; Vehicle Technologies Program, DOE Office of Energy Efficiency and Renewable Energy at the Pacific Northwest National Laboratory; U.S. Department of Energy [DE-AC05-76RL01830] FX This research was supported by the Advanced Scientific Computing Research Program and the Scientific Discovery through Advanced Computing Program of the Office of Science, U.S. Department of Energy at the Pacific Northwest National Laboratory. The work of texture evolution is funded by Vehicle Technologies Program, DOE Office of Energy Efficiency and Renewable Energy at the Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830. NR 43 TC 20 Z9 25 U1 8 U2 55 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0749-6419 EI 1879-2154 J9 INT J PLASTICITY JI Int. J. Plast. PD SEP PY 2013 VL 48 BP 189 EP 204 DI 10.1016/j.ijplas.2013.02.013 PG 16 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA 191KY UT WOS:000322413100010 ER PT J AU Balatsky, AV Graf, MJ Nussinov, Z Su, JJ AF Balatsky, A. V. Graf, M. J. Nussinov, Z. Su, J. -J. TI Defects and Glassy Dynamics in Solid He-4: Perspectives and Current Status SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Thermodynamics; Torsional oscillator; Shear modulus; Dielectric function; Glass; Viscoelastic; Electro-elastic; Supersolid; Solid helium ID NONCLASSICAL ROTATIONAL INERTIA; DIELECTRIC-CONSTANT; LOW-TEMPERATURES; HELIUM; SUPERFLUIDITY; TRANSITION; SEARCH; HEAT; SUPERSOLIDITY; DISLOCATIONS AB We review the anomalous behavior of solid He-4 at low temperatures with particular attention to the role of structural defects present in solid. The discussion centers around the possible role of two level systems and structural glassy components for inducing the observed anomalies. We propose that the origin of glassy behavior is due to the dynamics of defects like dislocations formed in He-4. Within the developed framework of glassy components in a solid, we give a summary of the results and predictions for the effects that cover the mechanical, thermodynamic, viscoelastic, and electro-elastic contributions of the glassy response of solid He-4. Our proposed glass model for solid He-4 has several implications: (1) The anomalous properties of He-4 can be accounted for by allowing defects to freeze out at lowest temperatures. The dynamics of solid He-4 is governed by glasslike (glassy) relaxation processes and the distribution of relaxation times varies significantly between different torsional oscillator, shear modulus, and dielectric function experiments. (2) Any defect freeze-out will be accompanied by thermodynamic signatures consistent with entropy contributions from defects. It follows that such entropy contribution is much smaller than the required superfluid fraction, yet it is sufficient to account for excess entropy at lowest temperatures. (3) We predict a Cole-Cole type relation between the real and imaginary part of the response functions for rotational and planar shear that is occurring due to the dynamics of defects. Similar results apply for other response functions. (4) Using the framework of glassy dynamics, we predict low-frequency yet to be measured electro-elastic features in defect rich He-4 crystals. These predictions allow one to directly test the ideas and very presence of glassy contributions in He-4. C1 [Balatsky, A. V.; Graf, M. J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Balatsky, A. V.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Nussinov, Z.] Washington Univ, Dept Phys, St Louis, MO 63160 USA. [Su, J. -J.] Natl Chiao Tung Unvers, Dept Electrophys, Hsinchu 30013, Taiwan. RP Balatsky, AV (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM balatsky@gmail.com FU US Dept. of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; Basic Energy Sciences Office; NSF [DMR-1106293] FX We are grateful to colleagues and collaborators who provided encouragement and constructive criticism of the ideas presented here, A. F. Andreev, P. W. Anderson, I. Beyerlein, J.C. Davis, A. Dorsey, C. Reichardt, B. Hunt, E. Pratt, V. Gadagkar, J. Reppy, M. Chan, N. Prokof'ev, B. Svistunov, D. Schmeltzer, A. Kuklov and E. Rudavsky. This work was supported by the US Dept. of Energy at Los Alamos National Laboratory under contract No. DE-AC52-06NA25396 and the Basic Energy Sciences Office. Z.N. was partially supported by the NSF grant Award No. DMR-1106293. We also acknowledge steady and generous support by the Aspen Center for Physics where parts of this review were written. NR 114 TC 1 Z9 1 U1 0 U2 9 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD SEP PY 2013 VL 172 IS 5-6 BP 388 EP 421 DI 10.1007/s10909-012-0766-5 PN 3 PG 34 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 185FU UT WOS:000321952600003 ER PT J AU Jiang, FX Feng, Q Quan, ZY Ma, RR Heald, SM Gehring, GA Xu, XH AF Jiang, Feng-Xian Feng, Qi Quan, Zhi-Yong Ma, Rong-Rong Heald, S. M. Gehring, G. A. Xu, Xiao-Hong TI The role of Cu codoping on the Fe metal clustering and ferromagnetism in Fe-doped In2O3 films SO MATERIALS RESEARCH BULLETIN LA English DT Article DE Oxides; Laser deposition; XAFS (EXAFS and XANES); Magnetic properties ID (IN1-XFEX)(2)O3-SIGMA; SPINTRONICS AB We have grown room temperature ferromagnetic Fe, and Fe,Cu-codoped In2O3 films on sapphire substrates by pulsed laser deposition. The magnetization of the Fe-doped In2O3 films was independent of the thickness and the observed ferromagnetism was almost homogeneous. The addition of Cu caused the films to exhibit obvious thickness dependent magnetization and the ferromagnetism became inhomogeneous. The temperature dependence of the magnetization, X-ray absorption fine structure and magnetic circular dichroism data, clearly established the presence of Fe metal clusters in Fe,Cu-codoped In2O3 films, which contribute to the inhomogeneous ferromagnetism. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Jiang, Feng-Xian; Quan, Zhi-Yong; Ma, Rong-Rong; Xu, Xiao-Hong] Shanxi Normal Univ, Sch Chem & Mat Sci, Minist Educ, Key Lab Magnet Mol & Magnet Informat Mat, Linfen 041004, Peoples R China. [Feng, Qi; Gehring, G. A.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Heald, S. M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Xu, XH (reprint author), Shanxi Normal Univ, Sch Chem & Mat Sci, Minist Educ, Key Lab Magnet Mol & Magnet Informat Mat, Linfen 041004, Peoples R China. EM xuxh@dns.sxnu.edu.cn FU NSFC [51025101, 11274214, 61204097]; Ministry of Education of China [20121404130001, 20121404110004, IRT1156]; special funds of Shanxi scholars program; YSFSX [2011021021-2]; U.S. DOE [DE-AC02-06CH11357] FX The work was supported by the NSFC (Nos. 51025101, 11274214 and 61204097), the Ministry of Education of China (20121404130001, 20121404110004, and IRT1156), the special funds of Shanxi scholars program, and the YSFSX (No. 2011021021-2). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was also supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 23 TC 5 Z9 6 U1 4 U2 33 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0025-5408 EI 1873-4227 J9 MATER RES BULL JI Mater. Res. Bull. PD SEP PY 2013 VL 48 IS 9 BP 3178 EP 3182 DI 10.1016/j.materresbull.2013.04.066 PG 5 WC Materials Science, Multidisciplinary SC Materials Science GA 190PZ UT WOS:000322354000032 ER PT J AU Visser, AE Bridges, NJ Tosten, MH AF Visser, Ann E. Bridges, Nicholas J. Tosten, Michael H. TI Can ionic liquids be used as templating agents for controlled design of uranium-containing nanomaterials? SO MATERIALS RESEARCH BULLETIN LA English DT Article DE Inorganic compounds; Nanostructures; Oxides; X-ray diffraction ID OXIDE NANOPARTICLES; FORMING MECHANISM; CATALYSTS; NANORODS AB Nanostructured uranium oxides have been prepared in ionic liquids as templating agents. Using the ionic liquids as reaction media for inorganic nanomaterials takes advantage of the pre-organized structure of the ionic liquids which in turn controls the morphology of the inorganic nanomaterials. Variation of ionic liquid cation structure was investigated to determine the impact on the uranium oxide morphologies. For two ionic liquid cations, increasing the alkyl chain length increases the aspect ratio of the resulting nanostructured oxides. Understanding the resulting metal oxide morphologies could enhance fuel stability and design. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Visser, Ann E.; Bridges, Nicholas J.; Tosten, Michael H.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Visser, AE (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM ann.visser@srnl.doe.gov FU SRNL Laboratory Directed Research and Development Program; US Department of Energy [DE-AC09-08SR22470] FX This project was funded through the SRNL Laboratory Directed Research and Development Program. This manuscript has been authored by Savannah River Nuclear Solutions, LLC under Contract No. DE-AC09-08SR22470 with the US Department of Energy. The United States Government retains and the publisher, by accepting this article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes NR 20 TC 1 Z9 1 U1 1 U2 26 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0025-5408 J9 MATER RES BULL JI Mater. Res. Bull. PD SEP PY 2013 VL 48 IS 9 BP 3630 EP 3632 DI 10.1016/j.materresbull.2013.04.065 PG 3 WC Materials Science, Multidisciplinary SC Materials Science GA 190PZ UT WOS:000322354000102 ER PT J AU Wu, W An, K Huang, L Lee, SY Liaw, PK AF Wu, Wei An, Ke Huang, Lu Lee, Soo Yeol Liaw, Peter K. TI Deformation dynamics study of a wrought magnesium alloy by real-time in situ neutron diffraction SO SCRIPTA MATERIALIA LA English DT Article DE Magnesium alloy; Neutron diffraction; Texture; Deformation mechanisms; Twinning ID STRESS-RELAXATION; BEHAVIOR; VULCAN; DIFFRACTOMETER; EVOLUTION; STRAIN; ZK60A; AZ31B; LOAD; SNS AB The deformation dynamics and the effect of deformation history on plastic deformation in a wrought magnesium alloy at room temperature have been studied by real-time in situ neutron diffraction measurements under a continuous loading condition. The experimental results reveal that no detwinning occurred during unloading after compression and even in an elastic region during reverse tension. It is found that the serration behavior is closely related to the twinning- and detwinning-dominated deformation. (c) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Wu, Wei; Huang, Lu; Liaw, Peter K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [An, Ke] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Lee, Soo Yeol] Chungnam Natl Univ, Dept Mat Sci & Engn, Taejon 305764, South Korea. RP An, K (reprint author), Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. EM kean@ornl.gov; pliaw@utk.edu RI Huang, Lu/L-4643-2013; An, Ke/G-5226-2011; Wu, Wei/G-3204-2014; Huang, Lu/H-5325-2012 OI Huang, Lu/0000-0001-8318-2687; An, Ke/0000-0002-6093-429X; Wu, Wei/0000-0002-8596-9253; Huang, Lu/0000-0001-8318-2687 FU Scientific User Facilities Division, Office of Basic Energy Sciences, Department of Energy; National Science Foundation [DMR-0909037, CMMI-0900271, CMI-1100080]; National Research Foundation of Korea [2012M2B2A4029572] FX Research conducted at SNS was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, Department of Energy. P.K.L. appreciates support from the National Science Foundation (DMR-0909037, CMMI-0900271, and CMI-1100080). S.Y.L. was supported by the National Research Foundation of Korea (No. 2012M2B2A4029572). NR 19 TC 13 Z9 14 U1 5 U2 44 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD SEP PY 2013 VL 69 IS 5 BP 358 EP 361 DI 10.1016/j.scriptamat.2013.05.008 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 191MF UT WOS:000322416500004 ER PT J AU Yu, KY Bufford, D Khatkhatay, F Wang, H Kirk, MA Zhang, X AF Yu, K. Y. Bufford, D. Khatkhatay, F. Wang, H. Kirk, M. A. Zhang, X. TI In situ studies of irradiation-induced twin boundary migration in nanotwinned Ag SO SCRIPTA MATERIALIA LA English DT Article DE Radiation damage; In situ irradiation; Nanotwinned Ag; Twin boundary migration ID STACKING-FAULT TETRAHEDRA; MOLECULAR-DYNAMICS SIMULATION; GRAIN-SIZE; NANOCRYSTALLINE METALS; RADIATION-DAMAGE; STAINLESS-STEEL; CUBIC METALS; COPPER; DISLOCATIONS; MECHANISMS AB Twin boundary migration is usually observed during annealing or plastic deformation. We report on in situ observation of Kr ion irradiation-induced microstructure evolution in epitaxial nanotwinned Ag films with an average twin thickness of 70 nm. Kr ion irradiation-induced defect clusters are absorbed by coherent and incoherent twin boundaries. Frequent interactions between defect clusters and twin boundaries lead to continuous migration of twin boundaries. The potential mechanisms of twin boundary migration are discussed. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Yu, K. Y.; Bufford, D.; Zhang, X.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [Yu, K. Y.; Bufford, D.; Zhang, X.] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA. [Khatkhatay, F.; Wang, H.] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. [Kirk, M. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Zhang, X (reprint author), Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. EM zhangx@tamu.edu RI Yu, Kaiyuan /B-8398-2014; Zhang, Xinghang/H-6764-2013; Wang, Haiyan/P-3550-2014 OI Yu, Kaiyuan /0000-0002-5442-2992; Zhang, Xinghang/0000-0002-8380-8667; Wang, Haiyan/0000-0002-7397-1209 FU US Army Research Office - Materials Science Division [W911NF-09-1-0223]; DOE-NEUP [DE-AC07-05ID14517-00088120]; NSF-DMR metallic materials and nanostructures program [0644835]; DOE-BES FX We acknowledge the financial support of US Army Research Office - Materials Science Division under contract no. W911NF-09-1-0223 and the partial support of DOE-NEUP under contract no. DE-AC07-05ID14517-00088120 and of NSF-DMR metallic materials and nanostructures program under grant no. 0644835. We also thank Edward A. Ryan and Peter M. Baldo at Argonne National Laboratory for their help during in situ experiments. The IVEM facility at Argonne National Laboratory is supported by DOE-BES. NR 33 TC 24 Z9 24 U1 4 U2 78 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD SEP PY 2013 VL 69 IS 5 BP 385 EP 388 DI 10.1016/j.scriptamat.2013.05.024 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 191MF UT WOS:000322416500011 ER PT J AU Lee, ES Pang, XF Hoffmann, S Goudey, H Thanachareonkit, A AF Lee, Eleanor S. Pang, Xiufeng Hoffmann, Sabine Goudey, Howdy Thanachareonkit, Anothai TI An empirical study of a full-scale polymer thermochromic window and its implications on material science development objectives SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Thermochromic; Windows; Solar control; Building energy efficiency ID SOLAR CONTROL AB Large-area polymer thermochromic (TC) laminated windows were evaluated in a full-scale testbed office. The TC interlayer film exhibited thermochromism through a ligand exchange process, producing a change in solar absorption primarily in the visible range while maintaining transparent, undistorted views through the material. The film had a broad switching temperature range and when combined to make an insulating window unit had center-of-glass properties of Tsol=0.12-0.03, Tvis=0.28-0.03 for a glass temperature range of 24-75 degrees C. Field test measurements enabled characterization of switching as a function of incident solar irradiance and outdoor air temperature, illustrating how radiation influences glass temperature and thus effectively lowers the critical switching temperature of TC devices. This was further supported by EnergyPlus building energy simulations. Both empirical and simulation data were used to illustrate how the ideal critical switching temperature or temperature range for TC devices should be based on zone heat balance, not ambient air temperature. Annual energy use data are given to illustrate the energy savings potential of this type of thermochromic. Based on observations in the field, a broad switching temperature range was found to be useful in ensuring a uniform appearance when incident irradiance is non-uniform across the facade. As indicated in prior research, a high visible transmittance in both the switched and unswitched state is also desirable to enable reduction of lighting energy use and enhance indoor environmental quality. Published by Elsevier B.V. C1 [Lee, Eleanor S.; Pang, Xiufeng; Hoffmann, Sabine; Goudey, Howdy; Thanachareonkit, Anothai] Univ Calif Berkeley, Bldg Technol & Urban Syst Dept, Environm Energy Technol Div, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Lee, ES (reprint author), Univ Calif Berkeley, Bldg Technol & Urban Syst Dept, Environm Energy Technol Div, Lawrence Berkeley Natl Lab, Mailstop 90-3111,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM eslee@lbl.gov FU Office of Building Technology, State and Community Programs, Office of Building Research and Standards of the U.S. Department of Energy [DE-AC02-05CH11231]; California Energy Commission FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs, Office of Building Research and Standards of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231 and by the California Energy Commission through its Public Interest Energy Research (PIER) Program on behalf of the citizens of California. NR 16 TC 13 Z9 13 U1 2 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD SEP PY 2013 VL 116 BP 14 EP 26 DI 10.1016/j.solmat.2013.03.043 PG 13 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 191PP UT WOS:000322425400003 ER PT J AU Wei, XY Gu, WY Shen, XB Strzalka, J Jiang, Z Russell, TP AF Wei, Xin-yu Gu, Wei-yin Shen, Xiao-bo Strzalka, Joseph Jiang, Zhang Russell, Thomas P. TI Deviations from bulk morphologies in thin films of block copolymer/additive binary blends SO CHINESE JOURNAL OF POLYMER SCIENCE LA English DT Article DE Block copolymer; Morphology; Thin film ID ORDERED POLYMER MELTS; DIBLOCK COPOLYMERS; PHASE-BEHAVIOR; TRANSITION BEHAVIOR; HOMOPOLYMER; PATTERNS; ORIENTATION; SCATTERING; SUBSTRATE AB Deviations from bulk morphologies in thin films of binary blends of alkyne-functionalized diblock copolymer poly(ethylene oxide)-block-poly(n-butyl methacrylate-random-propargyl methacrylate) (PEO-b-P(nBMA-r-PgMA)) and Rhodamine B azide are reported, where thermal click reaction between the two components leads to microphase separated morphologies. Both in the bulk and in thin films, increasing the azide loading ratio resulted in the transition from a lamellar microdomain morphology to a hexagonally packed cylindrical mircodomain morphology. However, in thin films the lamellae-cylinder transition was observed at a different azide loading ratio, which was determined by film thickness. As a result, significant deviations from the bulk morphology were observed. These results indicate that surface interactions and confined geometry can play an important role in dictating the morphology in thin films of BCP/additive binary blends. C1 [Wei, Xin-yu; Gu, Wei-yin; Shen, Xiao-bo; Russell, Thomas P.] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. [Strzalka, Joseph; Jiang, Zhang] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Russell, TP (reprint author), Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. EM russell@mail.pse.umass.edu RI Jiang, Zhang/A-3297-2012 OI Jiang, Zhang/0000-0003-3503-8909 FU Department of Energy Office of Basic Energy Science [DE-FG02-96ER45612]; NSF; U.S. DOE [DE-AC02-06CH11357]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was financially supported by the Department of Energy Office of Basic Energy Science under Contract No. DE-FG02-96ER45612(XW, TPR design of experiments, synthesis of BCP) and the NSF-supported Materials Research Science and Engineering Center and the NSF-supported Center for Hierarchical Manufacturing at University of Massachusetts Amherst(XS, WG, assistance with the GISAXS measurements). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. Use of the Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 56 TC 0 Z9 0 U1 0 U2 31 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0256-7679 J9 CHINESE J POLYM SCI JI Chin. J. Polym. Sci. PD SEP PY 2013 VL 31 IS 9 BP 1250 EP 1259 DI 10.1007/s10118-013-1320-x PG 10 WC Polymer Science SC Polymer Science GA 191ZM UT WOS:000322453700008 ER PT J AU Lange, KJ Sui, PC Djilali, N AF Lange, Kyle J. Sui, Pang-Chieh Djilali, Ned TI Using an ILU/Deflation Preconditioner for Simulation of a PEM Fuel Cell Cathode Catalyst Layer SO COMMUNICATIONS IN COMPUTATIONAL PHYSICS LA English DT Article DE Deflation; PEM fuel cell; catalyst layer; pore scale model; porous media; preconditioner ID POLYMER-ELECTROLYTE; TRANSPORT PHENOMENA; MATHEMATICAL-MODEL; AGGLOMERATE MODEL; ELLIPTIC PROBLEMS; POROUS-MEDIA; DIFFUSION; MEMBRANE; WATER; DEFLATION AB Numerical aspects of a pore scale model are investigated for the simulation of catalyst layers of polymer electrolyte membrane fuel cells. Coupled heat, mass and charged species transport together with reaction kinetics are taken into account using parallelized finite volume simulations for a range of nanostructured, computationally reconstructed catalyst layer samples. The effectiveness of implementing deflation as a second stage preconditioner generally improves convergence and results in better convergence behavior than more sophisticated first stage pre-conditioners. This behavior is attributed to the fact that the two stage preconditioner updates the preconditioning matrix at every GMRES restart, reducing the stalling effects that are commonly observed in restarted GMRES when a single stage preconditioner is used. In addition, the effectiveness of the deflation preconditioner is independent of the number of processors, whereas the localized block ILU preconditioner deteriorates in quality as the number of processors is increased. The total number of GMRES search directions required for convergence varies considerably depending on the preconditioner, but also depends on the catalyst layer microstructure, with low porosity microstructures requiring a smaller number of iterations. The improved model and numerical solution strategy should allow simulations for larger computational domains and improve the reliability of the predicted transport parameters. The preconditioning strategies presented in the paper are scalable and should prove effective for massively parallel simulations of other problems involving nonlinear equations. C1 [Lange, Kyle J.; Sui, Pang-Chieh; Djilali, Ned] Univ Victoria, Inst Integrated Energy Syst, Victoria, BC V8W 2Y2, Canada. [Djilali, Ned] Univ Victoria, Dept Mech Engn, Victoria, BC V8W 2Y2, Canada. RP Lange, KJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM lange9@llnl.gov; jsui@uvic.ca; ndjilali@uvic.ca RI Djilali, Ned/B-1232-2010 OI Djilali, Ned/0000-0002-9047-0289 FU Natural Science and Engineering Research Council (NSERC) Discovery Grant program; Canada Research Chairs Program FX This work was funded through the Natural Science and Engineering Research Council (NSERC) Discovery Grant program and the Canada Research Chairs Program. Computational resources were provided by WestGrid, a member of Compute Canada. NR 64 TC 3 Z9 3 U1 0 U2 16 PU GLOBAL SCIENCE PRESS PI WANCHAI PA ROOM 3208, CENTRAL PLAZA, 18 HARBOUR RD, WANCHAI, HONG KONG 00000, PEOPLES R CHINA SN 1815-2406 J9 COMMUN COMPUT PHYS JI Commun. Comput. Phys. PD SEP PY 2013 VL 14 IS 3 BP 537 EP 573 DI 10.4208/cicp.180412.301012a PG 37 WC Physics, Mathematical SC Physics GA 186UG UT WOS:000322070500001 ER PT J AU Shafii, S Obermaier, H Linn, R Koo, E Hlawitschka, M Garth, C Hamann, B Joy, KI AF Shafii, Sohail Obermaier, Herald Linn, Rodman Koo, Eunmo Hlawitschka, Mario Garth, Christoph Hamann, Bernd Joy, Kenneth I. TI Visualization and Analysis of Vortex-Turbine Intersections in Wind Farms SO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS LA English DT Article DE Flow visualization; applications; wind energy; turbulence; vortices ID FLOW VISUALIZATION; EXTRACTION AB Characterizing the interplay between the vortices and forces acting on a wind turbine's blades in a qualitative and quantitative way holds the potential for significantly improving large wind turbine design. This paper introduces an integrated pipeline for highly effective wind and force field analysis and visualization. We extract vortices induced by a turbine's rotation in a wind field, and characterize vortices in conjunction with numerically simulated forces on the blade surfaces as these vortices strike another turbine's blades downstream. The scientifically relevant issue to be studied is the relationship between the extracted, approximate locations on the blades where vortices strike the blades and the forces that exist in those locations. This integrated approach is used to detect and analyze turbulent flow that causes local impact on the wind turbine blade structure. The results that we present are based on analyzing the wind and force field data sets generated by numerical simulations, and allow domain scientists to relate vortex-blade interactions with power output loss in turbines and turbine life expectancy. Our methods have the potential to improve turbine design to save costs related to turbine operation and maintenance. C1 [Shafii, Sohail; Obermaier, Herald; Hamann, Bernd; Joy, Kenneth I.] Univ Calif Davis, Dept Comp Sci, Inst Data Anal & Visualizat, Davis, CA 95616 USA. [Linn, Rodman; Koo, Eunmo] Los Alamos Natl Lab, Computat Earth Sci Grp EES 16, Los Alamos, NM 87545 USA. [Hlawitschka, Mario] Univ Leipzig, Inst Informat, D-04009 Leipzig, Germany. [Garth, Christoph] Tech Univ Kaiserslautern, Fachbereich Informat, D-67653 Kaiserslautern, Germany. RP Shafii, S (reprint author), Univ Calif Davis, Dept Comp Sci, Inst Data Anal & Visualizat, 1 Shields Ave, Davis, CA 95616 USA. EM sohail.shafii@gmail.com; hobermaier@ucdavis.edu; rrl@lanl.gov; koo_e@lanl.gov; hlawitschka@informatik.uni-leipzig.de; garth@cs.uni-kl.de; hamann@cs.ucdavis.edu; kijoy@ucdavis.com OI Koo, Eunmo/0000-0001-9943-9694; Garth, Christoph/0000-0003-1669-8549 FU Materials Design Institute; UC Davis/Los Alamos National Laboratory Educational Research Collaboration (LANL) [75782-001-09]; LANL LDRD program [20100040DR]; National Science Foundation [IIS 0916289, IIS 1018097]; Office of Advanced Scientific Computing Research, Office of Science, of the US Department of Energy (DOE) through the SciDAC program VACET [DE-FC02-06ER25780]; Office of Advanced Scientific Computing Research, Office of Science, of the US Department of Energy (DOE) through SDAV Institute [DE-FC02-12ER26072] FX This work was partially supported by the Materials Design Institute, funded by the UC Davis/Los Alamos National Laboratory Educational Research Collaboration (LANL Agreement No. 75782-001-09). It was also supported by the LANL LDRD program under 20100040DR, by the National Science Foundation under contracts IIS 0916289 and IIS 1018097, the Office of Advanced Scientific Computing Research, Office of Science, of the US Department of Energy (DOE) under Contract No. DE-FC02-06ER25780 through the SciDAC programs VACET, and contract DE-FC02-12ER26072, SDAV Institute. LANL Institutional Computing provided computational resources for the numerical simulations for the data set used here. The authors thank our colleagues from LANL, Institute for Data Analysis and Visualization, UC Davis, and Simon Stegmaier for his code from [3]. NR 32 TC 1 Z9 1 U1 0 U2 15 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1077-2626 EI 1941-0506 J9 IEEE T VIS COMPUT GR JI IEEE Trans. Vis. Comput. Graph. PD SEP PY 2013 VL 19 IS 9 BP 1579 EP 1591 DI 10.1109/TVCG.2013.18 PG 13 WC Computer Science, Software Engineering SC Computer Science GA 186FK UT WOS:000322027300013 PM 23846101 ER PT J AU EL Bedewi, A Yousef, R Halim, DA Hegazy, R Willis, W Miller, LM EL Mofty, M AF EL Bedewi, Ahmed Yousef, Randa Halim, Dalia Abdel Hegazy, Rehab Willis, William Miller, Lisa M. EL Mofty, Medhat TI Amide 1 Expression in Psoriasis and Lichen Planus using Synchrotron Infrared Microspectroscopy SO INTERNATIONAL JOURNAL OF PEPTIDE RESEARCH AND THERAPEUTICS LA English DT Article DE Psoriasis; Lichen planus; Amide 1; Fourier-transform infra red micro-spectroscopy (FT-IRM); Fourier-transform infra red (FT-IR) ID PATHOGENESIS; DISEASE; CELLS; DERMATITIS AB Psoriasis vulgaris and, Lichen planus are cutaneous inflammatory conditions that usually exhibit distinctive morphology. Ten psoriasis vulgaris and, ten Lichen planus patients (mean age, 45 +/- A 10.27 years) with confirmed histopathological diagnoses were analyzed. In the current study synchrotron infrared (IR) microspectroscopy was used to differentiate between these two conditions based on their lymphocytic proteins analyses. It was found that beta-sheets protein structure, known to represent cell apoptosis, were expressed significantly in Lichen planus conditions than that of the psoriasis vulgaris when analyzed against the established normal control groups of five patients of comparable age and, genders (P = 0.001, 0.03 respectively). Also, the amide 1 protein type within the epidermis of Lichen planus were expressed in significant proportions as compared to psoriasis vulgaris (P < 0.001). On the contrary, the amide 1 protein structural types were found clustered in psoriasis vulgaris in different IR spectra than that in Lichen planus as observed in a number of patients during this study. These observations indicated that the concentration of amide 1 protein in psoriasis vulgaris varies to that of Lichen planus. In conclusion, both psoriasis vulgaris and, Lichen planus have different types of epidermal and, dermal protein structures and, this information can be of clinical diagnostic and therapeutic use for these cutaneous inflammatory conditions in near future. C1 [EL Bedewi, Ahmed] Natl Ctr Radiat Res & Technol, Cairo, Egypt. [EL Bedewi, Ahmed; Willis, William; Miller, Lisa M.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Yousef, Randa; Halim, Dalia Abdel; Hegazy, Rehab; EL Mofty, Medhat] Cairo Univ, Fac Med, Dept Dermatol, Cairo, Egypt. RP EL Bedewi, A (reprint author), Natl Ctr Radiat Res & Technol, Cairo, Egypt. EM aelbedewi@gmail.com FU US Department of Energy (DOE) Cooperative Research Program for SESAME FX Special thanks for the US Department of Energy (DOE) Cooperative Research Program for SESAME for supporting this work. NR 13 TC 0 Z9 0 U1 0 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1573-3149 J9 INT J PEPT RES THER JI Int. J. Pept. Res. Ther. PD SEP PY 2013 VL 19 IS 3 BP 203 EP 207 DI 10.1007/s10989-012-9335-7 PG 5 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 193AO UT WOS:000322529300004 ER PT J AU Bedewi, AEL Youssef, R Halim, DMA Hegazy, RA Willis, W Miller, LM Sayed, SS Mofty, MEL AF Bedewi, Ahmed E. L. Youssef, Randa Halim, Dalia M. Abdel Hegazy, Rehab A. Willis, William Miller, Lisa M. Sayed, Safinaz S. Mofty, Medhat E. L. TI Biochemical Changes Observed After PUVA Versus PUVA Plus Methotrexate Therapy in Mycosis Fungoides Using Synchrotron Infrared Microspectroscopy SO INTERNATIONAL JOURNAL OF PEPTIDE RESEARCH AND THERAPEUTICS LA English DT Article DE Mycosis fungoides; Cutaneous lymphoma; PUVA; Methotrexate; Synchrotron; FTIR ID T-CELL LYMPHOMA; MANAGEMENT AB Mycosis fungoides (MF) is the most common type of cutaneous T cell lymphoma in which the distinction between early stage MF and other inflammatory dermatosis remains difficult. Twenty patients of early stage MF and nine patients with psoriasis and lichen planus were included in this study. Ten MF patients were treated with psoralen plus UVA (PUVA) and the other 10 MF patients were treated with PUVA plus methotrexate (MTX) until complete clinical remission. Synchrotron infrared microspectroscopy (SIRM) found that MF lesions were biochemically different compared to inflammatory diseases. After treating MF with either therapeutic modality, the lymphocytic count decreased significantly in both the epidermis and dermis (P < 0.001) but no biochemical changes were observed in the remaining lymphocytes after treatment, indicating the disease process was slowed by treatment but not eradicated. In conclusion SIRM is a promising method for distinguishing MF from other inflammatory diseases such as psoriasis and lichen planus. A significant reduction in lymphocyte count indicated that PUVA therapy is an effective treatment for early stage MF, and MTX could be reserved for more advanced cases that are not PUVA responsive. However, SIRM evidence of persistent disease suggests that maintenance therapy is recommended after clinical remission. C1 [Bedewi, Ahmed E. L.] Natl Ctr Radiat Res & Technol, Cairo, Egypt. [Bedewi, Ahmed E. L.; Willis, William; Miller, Lisa M.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Youssef, Randa; Halim, Dalia M. Abdel; Hegazy, Rehab A.; Mofty, Medhat E. L.] Cairo Univ, Fac Med, Dept Dermatol, Cairo, Egypt. [Sayed, Safinaz S.] Cairo Univ, Fac Med, Dept Histol, Cairo, Egypt. RP Bedewi, AEL (reprint author), Natl Ctr Radiat Res & Technol, Cairo, Egypt. EM aelbedewi@gmail.com FU US Department of Energy (DOE) Cooperative Research Program for SESAME FX Special thanks for the US Department of Energy (DOE) Cooperative Research Program for SESAME for supporting this work. NR 16 TC 0 Z9 0 U1 0 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1573-3149 J9 INT J PEPT RES THER JI Int. J. Pept. Res. Ther. PD SEP PY 2013 VL 19 IS 3 BP 209 EP 215 DI 10.1007/s10989-012-9336-6 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 193AO UT WOS:000322529300005 ER PT J AU Luscher, DJ Bronkhorst, CA Alleman, CN Addessio, FL AF Luscher, Darby J. Bronkhorst, Curt A. Alleman, Coleman N. Addessio, Francis L. TI A model for finite-deformation nonlinear thermomechanical response of single crystal copper under shock conditions SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE Shock loading; Crystal anisotropy; Internal state variable; Equation of state; Copper ID PLATE IMPACT EXPERIMENTS; ELASTIC-CONSTANTS; ANISOTROPIC DESCRIPTION; PLASTICITY; TEMPERATURE; PRESSURE; DEPENDENCE; STRAIN; COMPUTATION; DERIVATIVES AB A physically consistent framework for combining pressure-volume-temperature equations of state with crystal plasticity models is developed for the application of modeling the response of single and polycrystals under shock conditions. The particular model is developed for copper, thus the approach focuses on crystals of cubic symmetry although many of the concepts in the approach are applicable to crystals of lower symmetry. We employ a multiplicative decomposition of the deformation gradient into isochoric elastic, thermoelastic dilation, and plastic parts leading to a definition of isochoric elastic Green-Lagrange strain. This finite deformation kinematic decomposition enables a decomposition of Helmholtz free-energy into terms reflecting dilatational thermoelasticity, strain energy due to long-range isochoric elastic deformation of the lattice and a term reflecting energy stored in short range elastic lattice deformation due to evolving defect structures. A model for the single crystal response of copper is implemented consistent with the framework into a three-dimensional Lagrangian finite element code. Simulations exhibit favorable agreement with single and bicrystal experimental data for shock pressures ranging from 3 to 110 GPa. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Luscher, Darby J.; Bronkhorst, Curt A.; Alleman, Coleman N.; Addessio, Francis L.] Los Alamos Natl Lab, Div Theoret, Fluid Dynam & Solid Mech Grp, Los Alamos, NM 87545 USA. [Alleman, Coleman N.] Johns Hopkins Univ, Whiting Sch Engn, Baltimore, MD 21218 USA. RP Luscher, DJ (reprint author), Los Alamos Natl Lab, Div Theoret, Fluid Dynam & Solid Mech Grp, Los Alamos, NM 87545 USA. EM djl@lanl.gov RI Bronkhorst, Curt/B-4280-2011; Alleman, Coleman/N-1219-2016 OI Bronkhorst, Curt/0000-0002-2709-1964; Alleman, Coleman/0000-0002-6227-2314 FU Material Strength and Damage project; Physics and Engineering Models program element of the Department of Energy's Advanced Simulation and Computing (ASC) program FX This work benefited from the support of the Material Strength and Damage project (Dr. Mark Schraad, leader) within the Physics and Engineering Models program element of the Department of Energy's Advanced Simulation and Computing (ASC) program. The authors express gratitude to Dr. Carl Greeff for discussing details of the equation-of-state, Dr. Ellen Cerreta and Carl Trujillo for providing experimental data and dimensions, and Dr. Jason Mayeur for discussions regarding the research. The authors also wish to acknowledge the enhancements to the original manuscript resulting from insightful comments provided by the reviewers. NR 39 TC 9 Z9 10 U1 1 U2 33 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 EI 1873-4782 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD SEP PY 2013 VL 61 IS 9 BP 1877 EP 1894 DI 10.1016/j.jmps.2013.05.002 PG 18 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA 189VR UT WOS:000322296900001 ER PT J AU Mayeur, JR McDowell, DL AF Mayeur, J. R. McDowell, D. L. TI An evaluation of higher-order single crystal strength models for constrained thin films subjected to simple shear SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE Strain gradient; Crystal plasticity; Micropolar; Geometrically necessary dislocations; Discrete dislocation dynamics; Thin films ID DISCRETE DISLOCATION PLASTICITY; STRAIN GRADIENT PLASTICITY; VISCOPLASTICITY; SIMULATIONS; FLOW AB An evaluation of different dislocation density-based strength models for a theory of micropolar single crystal plasticity is presented through detailed comparison with discrete dislocation dynamics simulations of a constrained thin film subjected to simple shear. The principal component of the evaluation is determining the most appropriate way to incorporate scale-dependent strengthening due to geometrically necessary dislocations (GNDs) within the model. We find that some models give results consistent with the discrete dislocation simulations, yet it is shown that models based on a generalized Taylor relation do not. Additionally, we briefly discuss the differences between models derived from unified (single) and independent (multiple) flow criteria, and demonstrate that single criterion models provide comparable predictive capability while introducing fewer nonlocal constitutive parameters. Published by Elsevier Ltd. C1 [Mayeur, J. R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [McDowell, D. L.] Georgia Inst Technol, Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. [McDowell, D. L.] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. RP Mayeur, JR (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM jmayeur@lanl.gov FU Sandia National Laboratories through the Enabling Predictive Simulation Research Institute (EPSRI); Laboratory Directed Research and Development program; U.S. Department of Energy's National Nuclear Security Administration under DOE [DE-AC04-94AL85000]; Los Alamos National Security LLC under DOE [DE-AC52-06NA25936]; NSF CMMI [1030103] FX The authors would like to thank the reviewers for their many comments that helped improve the clarity of the paper. This work benefited from the support of Sandia National Laboratories through the Enabling Predictive Simulation Research Institute (EPSRI), and the Laboratory Directed Research and Development program. Sandia is a multiprogram laboratory operated by the Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under DOE contract DE-AC04-94AL85000. JRM also acknowledges fruitful discussions with Dr. D.J. Luscher and the support of Los Alamos National Laboratory, operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25936. DLM gratefully acknowledges support of the Carter N. Paden, Jr. Distinguished Chair in Metals Processing in addition to NSF CMMI grant 1030103 on Methods for Atomistic Input into Initial Yield and Plastic Flow Criteria for Nanocrystalline Metals. NR 31 TC 6 Z9 6 U1 1 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD SEP PY 2013 VL 61 IS 9 BP 1935 EP 1954 DI 10.1016/j.jmps.2013.04.007 PG 20 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA 189VR UT WOS:000322296900004 ER PT J AU Oh, H Gennett, T Atanassov, P Kurttepeli, M Bals, S Hurst, KE Hirscher, M AF Oh, Hyunchul Gennett, Thomas Atanassov, Plamen Kurttepeli, Mert Bals, Sara Hurst, Katherine E. Hirscher, Michael TI Hydrogen adsorption properties of platinum decorated hierarchically structured templated carbons SO MICROPOROUS AND MESOPOROUS MATERIALS LA English DT Article DE Hydrogen storage; Hydrogen adsorption; Spillover; Adsorption kinetics ID METAL-ORGANIC FRAMEWORKS; CATALYST/MOF-5 MATERIALS; STORAGE PROPERTIES; SPILLOVER; SPECTROSCOPY; SILICA AB In this report, the possibility of Pt catalytic activity for the dissociation of hydrogen molecules and subsequent hydrogen adsorption on sucrose templated carbon at ambient temperature has been studied. In order to investigate Pt catalytic effect for hydrogen storage solely, 6.8 wt.% Pt-doped (Pt/TC) and pure templated carbon (TC) possessing almost identical specific surface area (SSA) and pore volume (Vp) have been successfully synthesized. Since both Pt/TC and TC shares for their textural properties (e.g. SSA and Vp), any difference of hydrogen adsorption characteristic and storage capacity can be ascribed to the presence of Pt nanoparticles. Both samples are characterized by various techniques such as powder Xray diffraction, ICP-OES, Raman spectroscopy, transmission electron microscopy, cryogenic thermal desorption spectroscopy, low-pressure high-resolution hydrogen and nitrogen BET and high-pressure hydrogen adsorption isotherms in a Sieverts' apparatus. By applying hydrogen and deuterium isotope mixture, cryogenic thermal desorption spectroscopy point to a Pt catalytic activity for the dissociation of hydrogen molecules. Furthermore, the hydrogen adsorption isotherms at RT indicate an enhancement of the initial hydrogen adsorption kinetics in Pt-doped system. However, the hydrogen storage capacity of Pt/TC exhibits a negligible enhancement with a strong hysteresis, suggesting no connection between the spillover effect and a feasible hydrogen storage enhancement. (C) 2013 Elsevier Inc. All rights reserved. C1 [Oh, Hyunchul; Hirscher, Michael] Max Planck Inst Intelligent Syst, D-70569 Stuttgart, Germany. [Gennett, Thomas; Hurst, Katherine E.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Atanassov, Plamen] Univ New Mexico, Dept Chem & Nucl Engn, Ctr Emerging Energy Technol, Albuquerque, NM 87131 USA. [Kurttepeli, Mert; Bals, Sara] Univ Antwerp, EMAT, B-2020 Antwerp, Belgium. RP Hirscher, M (reprint author), Max Planck Inst Intelligent Syst, Heisenbergstr 3, D-70569 Stuttgart, Germany. EM hirscher@is.mpg.de RI Kurttepeli, Mert/C-7373-2014; Hirscher, Michael/J-8030-2015; Bals, Sara/F-6963-2016 FU International Max Planck Research School for Advanced Materials (IMPRS-AM); U.S. DOE Hydrogen and Fuel Cells Program [IV.C.7]; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Program [DE-AC36-08-GO28308]; Integrated Infrastructure Initiative [262348]; COST action FX Special thanks go to A. Fuchs (N2 BET), G. Werner, S. Hammoud (ICP-OES) and A. Schulz (Raman spectroscopy) for the measurements. H. Oh is grateful for the scholarship from the International Max Planck Research School for Advanced Materials (IMPRS-AM). Partial funding by the U.S. DOE Hydrogen and Fuel Cells Program, project no IV.C.7 is gratefully acknowledged by authors. NREL authors gratefully acknowledge research support from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Program, under Contract No. DE-AC36-08-GO28308. M. Kurttepeli and S. Bals are grateful for the grant of the Integrated Infrastructure Initiative N. 262348 European Soft Matter Infrastructure (ESMI) and acknowledge the support of COST action on "Nanostructured materials for solid-state hydrogen storage". NR 31 TC 9 Z9 9 U1 0 U2 80 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-1811 J9 MICROPOR MESOPOR MAT JI Microporous Mesoporous Mat. PD SEP 1 PY 2013 VL 177 BP 66 EP 74 DI 10.1016/j.micromeso.2013.04.020 PG 9 WC Chemistry, Applied; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 189UE UT WOS:000322293000012 ER PT J AU Lu, CC Zhou, XS Zhang, KL AF Lu, Chung-Cheng Zhou, Xuesong Zhang, Kuilin TI Dynamic origin-destination demand flow estimation under congested traffic conditions SO TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES LA English DT Article DE OD demand estimation; Path flow estimator; Lagrangian relaxation; Newell's simplified kinematic wave theory ID MATRIX ESTIMATION PROBLEM; KINEMATIC WAVES; ASSIGNMENT; NETWORKS; HIGHWAY; COUNTS; MODEL; PREDICTION; ALGORITHM; TABLES AB This paper presents a single-level nonlinear optimization model to estimate dynamic origin destination (OD) demand. The model is a path flow-based optimization model, which incorporates heterogeneous sources of traffic measurements and does not require explicit dynamic link-path incidences. The objective is to minimize (i) the deviation between observed and estimated traffic states and (ii) the deviation between aggregated path flows and target OD flows, subject to the dynamic user equilibrium (DUE) constraint represented by a gap-function-based reformulation. A Lagrangian relaxation-based algorithm which dualizes the difficult DUE constraint to the objective function is proposed to solve the model. This algorithm integrates a gradient-projection-based path flow adjustment method within a column generation-based framework. Additionally, a dynamic network loading (DNL) model, based on Newell's simplified kinematic wave theory, is employed in the DUE assignment process to realistically capture congestion phenomena and shock wave propagation. This research also derives analytical gradient formulas for the changes in link flow and density due to the unit change of time-dependent path inflow in a general network under congestion conditions. Numerical experiments conducted on three different networks illustrate the effectiveness and shed some light on the properties of the proposed OD demand estimation method. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Lu, Chung-Cheng] Natl Chiao Tung Univ, Dept Transportat & Logist Management, Hsinchu 30050, Taiwan. [Zhou, Xuesong] Univ Utah, Dept Civil & Environm Engn, Salt Lake City, UT 84112 USA. [Zhang, Kuilin] Argonne Natl Lab, Div Energy Syst, Transportat Res & Anal Comp Ctr, Argonne, IL 60439 USA. RP Zhou, XS (reprint author), Univ Utah, Dept Civil & Environm Engn, Salt Lake City, UT 84112 USA. EM jasoncclu@gmail.com; zhou@eng.utah.edu; kzhang@anl.gov FU FHWA FX The second author of this paper is partially supported through a FHWA project titled "An Open-Source Dynamic Traffic Assignment Tool for Assessing the Effects of Roadway Pricing and Crash Reduction Strategies on Recurring and Non-Recurring Congestion". Special thanks to anonymous reviewers and our colleagues Anxi Jia and Nagui Rouphail at the North Carolina State University for their constructive comments. The work presented in this paper remains the sole responsibility of the authors. NR 46 TC 22 Z9 22 U1 6 U2 51 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0968-090X J9 TRANSPORT RES C-EMER JI Transp. Res. Pt. C-Emerg. Technol. PD SEP PY 2013 VL 34 BP 16 EP 37 DI 10.1016/j.trc.2013.05.006 PG 22 WC Transportation Science & Technology SC Transportation GA 191SF UT WOS:000322432200002 ER PT J AU Calvet, N Gomez, JC Faik, A Roddatis, VV Meffre, A Glatzmaier, GC Doppiu, S Py, X AF Calvet, Nicolas Gomez, Judith C. Faik, Abdessamad Roddatis, Vladimir V. Meffre, Antoine Glatzmaier, Greg C. Doppiu, Stefania Py, Xavier TI Compatibility of a post-industrial ceramic with nitrate molten salts for use as filler material in a thermocline storage system SO APPLIED ENERGY LA English DT Article; Proceedings Paper CT 12th International Conference on Energy Storage Innostock CY MAY 16-18, 2012 CL Lleida, SPAIN DE Concentrated solar power (CSP); Thermal energy storage (TES); Molten salt thermocline; Filler materials; Ceramic; Asbestos containing waste (ACW) ID THERMAL-ENERGY STORAGE; SOLAR POWER-PLANTS AB This paper demonstrates the potential of a post-industrial ceramic commercially called Cofalit (R) as a promising, sustainable, and cheap filler material in a molten salt direct thermocline storage system. This ceramic, which comes from industrial treatment of asbestos containing waste, demonstrates relevant properties to store thermal energy by sensible heat up to 1100 degrees C and is very inexpensive. In the present study, the compatibility of this ceramic with two different molten salts-the conventional binary Solar salt and a promising ternary nitrate salt also called HITEC XL-is tested at medium temperature (500 degrees C) under static state. The objective is to develop a molten salt thermocline direct storage system using low-cost shaped ceramic as filler material. It should significantly decrease the cost of parabolic trough storage systems and simultaneously increase the efficiency of the plants by producing superheated steam at higher temperature. (c) 2013 Elsevier Ltd. All rights reserved. C1 [Calvet, Nicolas; Faik, Abdessamad; Roddatis, Vladimir V.; Doppiu, Stefania] CIC Energigune, Minano 01510, Alava, Spain. [Calvet, Nicolas; Gomez, Judith C.; Glatzmaier, Greg C.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Meffre, Antoine; Py, Xavier] Univ Perpignan, PROMES CNRS, UPR8521, F-66100 Perpignan, France. RP Calvet, N (reprint author), CIC Energigune, Albert Einstein 48, Minano 01510, Alava, Spain. EM ncalvet@cicenergigune.com RI Roddatis, Vladimir/K-6528-2016 FU Department of Industry, Innovation, Commerce and Tourism of the Basque government through the ETORTEK CIC Energigune-research program; U.S. Department of Energy [DE-AC36-08-GO28308]; French government through the ANR research programs: ANR SESCO [ANR-09-STOCK-E-09-03] FX The work at CIC Energigune was supported by the Department of Industry, Innovation, Commerce and Tourism of the Basque government through the funding of the ETORTEK CIC Energigune-2011 research program.; The work at NREL was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308.; The work at the PROMES CNRS laboratory was supported by the French government through the funding of the ANR research programs: ANR SESCO (No. ANR-09-STOCK-E-09-03). NR 21 TC 25 Z9 26 U1 3 U2 41 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD SEP PY 2013 VL 109 SI SI BP 387 EP 393 DI 10.1016/j.apenergy.2012.12.078 PG 7 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 182EH UT WOS:000321724000044 ER PT J AU Zhu, DD Hong, TZ Yan, D Wang, C AF Zhu, Dandan Hong, Tianzhen Yan, Da Wang, Chuang TI A detailed loads comparison of three building energy modeling programs: EnergyPlus, DeST and DOE-2.1E SO BUILDING SIMULATION LA English DT Article DE building energy modeling program; building thermal loads; comparison; DeST; DOE-2.1E; EnergyPlus AB Building energy simulation is widely used to help design energy efficient building envelopes and HVAC systems, develop and demonstrate compliance of building energy codes, and implement building energy rating programs. However, large discrepancies exist between simulation results from different building energy modeling programs (BEMPs). This leads many users and stakeholders to lack confidence in the results from BEMPs and building simulation methods. This paper compared the building thermal load modeling capabilities and simulation results of three BEMPs: EnergyPlus, DeST and DOE-2.1E. Test cases, based upon the ASHRAE Standard 140 tests, were designed to isolate and evaluate the key influencing factors responsible for the discrepancies in results between EnergyPlus and DeST. This included the load algorithms and some of the default input parameters. It was concluded that there is little difference between the results from EnergyPlus and DeST if the input values are the same or equivalent despite there being many discrepancies between the heat balance algorithms. DOE-2.1E can produce large errors for cases when adjacent zones have very different conditions, or if a zone is conditioned part-time while adjacent zones are unconditioned. This was due to the lack of a strict zonal heat balance routine in DOE-2.1E, and the steady state handling of heat flow through interior walls and partitions. This comparison study did not produce another test suite, but rather a methodology to design tests that can be used to identify and isolate key influencing factors that drive the building thermal loads, and a process with which to carry them out. C1 [Zhu, Dandan; Yan, Da; Wang, Chuang] Tsinghua Univ, Dept Bldg Sci, Sch Architecture, Beijing 100084, Peoples R China. [Hong, Tianzhen] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Yan, D (reprint author), Tsinghua Univ, Dept Bldg Sci, Sch Architecture, Beijing 100084, Peoples R China. EM yanda@tsinghua.edu.cn FU Energy Foundation under China Sustainable Energy Program FX This study was a joint effort between Tsinghua University, China and Lawrence Berkeley National Laboratory, USA under the US-China Clean Energy Research Center on Building Energy Efficiency. It was co-sponsored by the Energy Foundation under the China Sustainable Energy Program. NR 28 TC 12 Z9 13 U1 5 U2 39 PU TSINGHUA UNIV PRESS PI BEIJING PA TSINGHUA UNIV, RM A703, XUEYAN BLDG, BEIJING, 10084, PEOPLES R CHINA SN 1996-3599 J9 BUILD SIMUL-CHINA JI Build. Simul. PD SEP PY 2013 VL 6 IS 3 BP 323 EP 335 DI 10.1007/s12273-013-0126-7 PG 13 WC Thermodynamics; Construction & Building Technology SC Thermodynamics; Construction & Building Technology GA 185JX UT WOS:000321965000009 ER PT J AU Ni, JE Case, ED Schmidt, RD Wu, CI Hogan, TP Trejo, RM Kirkham, MJ Lara-Curzio, E Kanatzidis, MG AF Ni, Jennifer E. Case, Eldon D. Schmidt, Robert D. Wu, Chun-I Hogan, Timothy P. Trejo, Rosa M. Kirkham, Melanie J. Lara-Curzio, Edgar Kanatzidis, Mercouri G. TI The thermal expansion coefficient as a key design parameter for thermoelectric materials and its relationship to processing-dependent bloating SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID TEMPERATURE MECHANICAL PROPERTIES; P-TYPE CE0.9FE3.5CO0.5SB12; ELASTIC PROPERTIES; CERAMIC MATERIALS; LEAD TELLURIDE; YOUNGS MODULUS; MICROSTRUCTURE; ALUMINA; CASTABLES; POWDERS AB The coefficient of thermal expansion (CTE) is a key design parameter for thermoelectric (TE) materials, especially in energy harvesting applications since stresses generated by CTE mismatch, thermal gradients, and thermal transients scale with the CTE of the TE material. For the PbTe-PbS-based TE material (Pb0.95Sn0.05Te)(0.92)(PbS)(0.08)-0.055 % PbI2 over the temperature ranges of 293-543 and 293-773 K, a CTE, alpha(avg), of 21.4 +/- A 0.3 x 10(-6) K-1 was measured using (1) dilatometry and (2) high-temperature X-ray diffraction (HT-XRD) for powder and bulk specimens. The CTE values measured via dilatometry and HT-XRD are similar to the literature values for other Pb-based chalcogenides. However, the processing technique was found to impact the thermal expansion such that bloating (which leads to a hysteresis in thermal expansion) occurred for hot pressed billets heated to temperatures > 603 K while specimens fabricated by pulsed electric current sintering and as-cast specimens did not show a bloating-modified thermal expansion even for temperatures up to 663 K. The relationship of bloating to the processing techniques is discussed, along with a possible mechanism for inhibiting bloating in powder processed specimens. C1 [Ni, Jennifer E.; Case, Eldon D.; Schmidt, Robert D.; Wu, Chun-I; Hogan, Timothy P.] Michigan State Univ, E Lansing, MI 48824 USA. [Trejo, Rosa M.; Kirkham, Melanie J.; Lara-Curzio, Edgar] Oak Ridge Natl Lab, High Temp Mat Lab, Oak Ridge, TN 37380 USA. [Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Case, ED (reprint author), Michigan State Univ, E Lansing, MI 48824 USA. EM casee@egr.msu.edu RI Kirkham, Melanie/B-6147-2011; Schmidt, Robert/I-8072-2016 OI Kirkham, Melanie/0000-0001-8411-9751; Schmidt, Robert/0000-0002-8838-8999 FU Office of Naval Research [N00014-08-1-0613]; Defense University Research Instrumentation Program (DURIP) [N00014-07-1-0735, N00014-09-1-0785]; US Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program; US Department of Energy, Office of Science, Office of Basic energy Sciences [DE-SC0001054] FX The authors acknowledge the financial support of Office of Naval Research Grant N00014-08-1-0613. Equipment purchases were funded by the Defense University Research Instrumentation Program (DURIP) Grant Number N00014-07-1-0735 (Resonant Ultrasound Spectroscopy apparatus and the laser scattering apparatus) and N00014-09-1-0785 (PECS apparatus) Office of Naval Research. Research through the Oak Ridge National Laboratory's High Temperature Materials Laboratory User Program was sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. The authors also acknowledge the Department of Energy, "Revolutionary Materials for Solid State Energy Conversion Center," an Energy Frontiers Research Center funded by the US Department of Energy, Office of Science, Office of Basic energy Sciences under award number DE-SC0001054 for financial support of Robert Schmidt for the powder processing done in this study as well as support of Jennifer Ni, Edgar Lara-Curzio, and Eldon Case for the data analysis and paper preparation stage of this research. The authors also acknowledge Ed Timm, Mechanical Engineering Department, Michigan State University and Karl Dersch, Computer and Electrical Engineering Department, for their assistance with hot pressing and cutting selected hot pressed specimens and PECS apparatus. All microscopy was performed at the Center for Advanced Microscopy at Michigan State University. NR 43 TC 8 Z9 8 U1 4 U2 61 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 J9 J MATER SCI JI J. Mater. Sci. PD SEP PY 2013 VL 48 IS 18 BP 6233 EP 6244 DI 10.1007/s10853-013-7421-7 PG 12 WC Materials Science, Multidisciplinary SC Materials Science GA 176EC UT WOS:000321285500017 ER PT J AU Herrera, G Jimenez-Mier, J Wilks, RG Moewes, A Yang, W Denlinger, J AF Herrera, G. Jimenez-Mier, J. Wilks, R. G. Moewes, A. Yang, W. Denlinger, J. TI Excited states in yttrium orthovanadate YVO4 measured by soft X-ray absorption spectroscopy SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID GEL ACRYLAMIDE POLYMERIZATION; TRANSITION-METAL COMPOUNDS; HYDROTHERMAL SYNTHESIS; ELECTRONIC-STRUCTURE; EMISSION SPECTROSCOPIES; LUMINESCENCE PROPERTIES; CRYSTAL-STRUCTURE; EU3+ ION; PHOSPHORS; SCATTERING AB We present the electronic structure of vanadium in YVO4 compound obtained by X-ray absorption (XAS) at the L-2,L-3 edge. We also performed a charge transfer multiplet calculation (CTM) to analyze the experimental results. YVO4 compound was synthesized by the polyacrylamide sol-gel method. For a comparative evaluation, YVO4 compound was prepared by solid-state reaction. XAS results show that the increase of heat treatment favored the presence of one oxidation state V5+. We observed a distinctive broadening at L-2 edge of vanadium due to the L(2)L(3)v Coster-Kronig process. We identify the excitations of 3d bonding orbitals by CTM on the XAS results. Tetragonal parameters (D (s) and D (t)) in D (4h) symmetry reveal a compression of the 3d orbitals in the z direction. C1 [Herrera, G.] Univ Valencia, Dept Inorgan Chem, Burjassot 46100, Valencia, Spain. [Herrera, G.] Univ Nacl Autonoma Mexico, ENP P7, Colegio Fis, Mexico City 15810, DF, Mexico. [Herrera, G.; Jimenez-Mier, J.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Wilks, R. G.] Helmholtz Zentrum Berlin Mat & Energie GmbH, Berlin, Germany. [Moewes, A.] Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada. [Yang, W.; Denlinger, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Herrera, G (reprint author), Univ Valencia, Dept Inorgan Chem, Calle Doctor Moliner 50, Burjassot 46100, Valencia, Spain. EM guillermo.herrera@nucleares.unam.mx RI Jimenez-Mier, Jose/A-5081-2009; Yang, Wanli/D-7183-2011 OI Jimenez-Mier, Jose/0000-0002-5939-9568; Yang, Wanli/0000-0003-0666-8063 FU Mexico-CONACyT [170588, 129569, 172529]; Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; [UNAM-PAPIIT IN109308]; [CONACyT U41007-F]; [56764] FX G. Herrera thanks the Mexico-CONACyT for the student fellowship Grant No. 170588; Posdoctoral Research Scholarship No. 129569 and No. 172529. G. Herrera would like to thank especially to Dr. E. Chavira for the facilities to prepare the samples; MSc. L. Banos, MSc. A. Tejeda-Cruz and Dr. J. Guzman for their assistance in XRD and SEM characterizations at the Instituto de Investigaciones en Materiales UNAM. GH wishes to thank Professor F. de Groot for discussions at the CTM4XAS workshop at ALBA. J. Jimenez-Mier acknowledges the support from grants UNAM-PAPIIT IN109308, CONACyT U41007-F and 56764. The ALS is supported by the Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 55 TC 2 Z9 2 U1 0 U2 27 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 J9 J MATER SCI JI J. Mater. Sci. PD SEP PY 2013 VL 48 IS 18 BP 6437 EP 6444 DI 10.1007/s10853-013-7445-z PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA 176EC UT WOS:000321285500039 ER PT J AU Syal, MB Dearborn, DSP Schultz, PH AF Syal, Megan Bruck Dearborn, David S. P. Schultz, Peter H. TI Limits on the use of nuclear explosives for asteroid deflection SO ACTA ASTRONAUTICA LA English DT Article DE Asteroid deflection; NEO mitigation; Planetary defense; Standoff nuclear explosion ID MATHILDE AB Recent studies by the US National Research Council identify nuclear explosives as the only current technology able to deflect large asteroids (those exceeding 500 m in diameter) or to mitigate impacts of smaller bodies when the warning time is short. Previous work predicts that either a standoff burst or a very low-yield surface burst is easily capable of deflecting a large (1 km) asteroid without fragmentation. Alternatively, large near-surface or just sub-surface bursts can sufficiently disrupt and disperse smaller bodies (300 m) to ensure that large fractions (in excess of 99.99%) miss the Earth entirely. Even for very short warning times (less than a month), more than 99.5% of a body's mass can be deflected off of an Earth-bound trajectory. However, successfully deflecting a small body, while avoiding fragmentation, becomes a challenging problem when the required kinetic energy increment is a substantial fraction of the body's potential. This paper addresses the challenge of preventing the production of substantial low-speed debris while deflecting small bodies with an impulsive method. (C) 2012 IAA. Published by Elsevier Ltd. All rights reserved. C1 [Syal, Megan Bruck; Schultz, Peter H.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Dearborn, David S. P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Syal, MB (reprint author), Brown Univ, Dept Geol Sci, 324 Brook St,Box 1846, Providence, RI 02912 USA. EM Megan_Syal@brown.edu FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA2734] FX This work performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA2734. NR 22 TC 2 Z9 2 U1 0 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 EI 1879-2030 J9 ACTA ASTRONAUT JI Acta Astronaut. PD SEP PY 2013 VL 90 IS 1 SI SI BP 103 EP 111 DI 10.1016/j.actaastro.2012.10.025 PG 9 WC Engineering, Aerospace SC Engineering GA 182EE UT WOS:000321723700014 ER PT J AU Kaplinger, B Wie, B Dearborn, D AF Kaplinger, Brian Wie, Bong Dearborn, David TI Nuclear fragmentation/dispersion modeling and simulation of hazardous near-Earth objects SO ACTA ASTRONAUTICA LA English DT Article DE Near-Earth objects; Nuclear fragmentation and dispersion; Subsurface explosion; Penetrating contact burst; GPU ID SMOOTHED PARTICLE HYDRODYNAMICS; DISRUPTION; ASTEROIDS; IMPACTS; BODIES AB This paper presents the development of simulation tools designed to be implemented as part of the mission design procedure for nuclear fragmentation and dispersion of a near-Earth object (NEO). A description of the methods used will be presented, followed by a discussion of the advanced GPU (Graphics Processing Unit) computing technology applied to accelerate computation. Preliminary results of a fragmented NEO dispersion scenario emphasize global parameter search methods for use in engineering mission analysis. A model of the NEO fragmentation process is presented for a subsurface nuclear explosion and penetrating contact burst. We conduct Monte Carlo simulation to establish a mean response of the target NEO to the fragmentation process. Resulting coherent masses are propagated through a model of solar system dynamics until the predetermined date of impact. On some orbits, the impacting mass can be reduced to lower than 0.1% of the NEO mass. (C) 2012 IAA. Published by Elsevier Ltd. All rights reserved. C1 [Kaplinger, Brian; Wie, Bong] Iowa State Univ, Asteroid Deflect Res Ctr, Ames, IA 50011 USA. [Dearborn, David] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Kaplinger, B (reprint author), Iowa State Univ, Asteroid Deflect Res Ctr, 2271 Howe Hall, Ames, IA 50011 USA. EM bdkaplin@iastate.edu OI Kaplinger, Brian/0000-0002-0329-2294 NR 20 TC 6 Z9 6 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD SEP PY 2013 VL 90 IS 1 SI SI BP 156 EP 164 DI 10.1016/j.actaastro.2012.10.013 PG 9 WC Engineering, Aerospace SC Engineering GA 182EE UT WOS:000321723700019 ER PT J AU Lu, B Ruggles, AE Francis, MW AF Lu, Bo Ruggles, Arthur E. Francis, Matthew W. TI Numerical study of helium solubility and helium bubble stability in mercury SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE Spallation neutron source; Mercury target; Cavitation damage; Gas solubility; Bubble injection ID SPALLATION NEUTRON SOURCE; LIQUID ALKALI-METALS; HEAT-TRANSFER AGENTS; INERT-GASES; HIGH-TEMPERATURES; PRESSURE WAVES; SODIUM; TARGET AB Dispersing small helium bubbles in the liquid mercury target of the high-power spallation neutron sources was proposed to add compressibility to the target made of liquid mercury. The pressure rise from proton beam deposition is reduced due to added compressibility, which in turn mitigates cavitation damage to the target boundary. A gas volume fraction of similar to 0.5% with a nominal bubble diameter of similar to 30 mu m is desired for optimal pressure pulse relaxation at the beam power of >1 MW. Initial gas injection experiments performed in the Oak Ridge National Laboratory encountered difficulty in obtaining the required volume fraction in mercury. Gas dissolution and diffusion in mercury were candidate mechanisms for this behavior. To clarify this, the solubility of helium in mercury is evaluated in this study and compared to the available experimental data. The results indicate that helium has very small solubility in mercury and that the solubility increases with system temperature. Based on the predicted solubility values, bubble size evolution due to mass diffusion is simulated numerically. Mass diffusion induced bubble size evolution does not significantly affect bubble behavior for conditions expected in high power spallation targets. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Lu, Bo] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China. [Ruggles, Arthur E.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Francis, Matthew W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Lu, B (reprint author), Chinese Acad Sci, Inst Plasma Phys, POB 1126, Hefei 230031, Anhui, Peoples R China. EM blu@ipp.ac.cn RI Lyu, Bo/G-6627-2011 OI Lyu, Bo/0000-0002-3916-6230 FU Oak Ridge National Laboratory through High Power Target Project at the University of Tennessee FX The authors are very thankful to E.V. Rezenova of Joint Institute for High Temperatures, Russian Academy of Sciences for sharing their calculation method and sample results. Financial support from the Oak Ridge National Laboratory through High Power Target Project at the University of Tennessee is also acknowledged. NR 26 TC 0 Z9 0 U1 1 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD SEP PY 2013 VL 59 BP 75 EP 79 DI 10.1016/j.anucene.2013.04.001 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 170FC UT WOS:000320834800010 ER PT J AU Jin, S Wu, AT Lu, XY Rimmer, RA Lin, L Zhao, K Mammosser, J Gao, J AF Jin, S. Wu, A. T. Lu, X. Y. Rimmer, R. A. Lin, L. Zhao, K. Mammosser, J. Gao, J. TI Effect of cathode shape on vertical buffered electropolishing for niobium SRF cavities SO APPLIED SURFACE SCIENCE LA English DT Article DE Niobium SRF cavities; Buffered electropolishing; Electropolishing; I-V characteristics ID FUNDAMENTAL-ASPECTS AB This paper reports the research results of the effect of cathode shape during vertical buffered electropolishing (BEP) by employing a demountable single cell niobium (Nb) superconducting radio frequency (SRF) cavity. Several different cathode shapes such as, for instance, bar, ball, ellipsoid, and wheels of different diameters have been tested. Detailed electropolishing parameters including I-V characteristic, removal rate, surface roughness, and polishing uniformity at different locations inside the demountable cavity are measured. Similar studies are also done on conventional electropolishing (EP) for comparison. It is revealed that cathode shape has dominant effects for BEP especially on the obtaining of a suitable polishing condition and a uniform polishing rate in an Nb SRF single cell cavity. EP appears to have the same tendency. This paper demonstrates that a more homogeneous polishing result can be obtained by optimizing the electric field distribution inside the cavity through the modification of the cathode shape given the conditions that temperature and electrolyte flow are kept constant. Electric field distribution and electrolyte flow patterns inside the cavity are simulated via Poisson-Superfish and Solidworks respectively. With the optimal cathode shape, BEP shows a much faster polishing rate of similar to 2.5 mu m/min and is able to produce a smoother surface finish in the treatments of single cell cavities in comparison with EP. C1 [Jin, S.; Lu, X. Y.; Lin, L.; Zhao, K.] Peking Univ, Sch Phys, Inst Heavy Ion Phys, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Jin, S.; Wu, A. T.; Rimmer, R. A.; Mammosser, J.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Jin, S.; Gao, J.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. RP Wu, AT (reprint author), Thomas Jefferson Natl Accelerator Facil, 600 Kelvin Dr,Postal Suite 8, Newport News, VA 23606 USA. EM andywu@jlab.org FU U.S. DOE [DE-AC05-06OR23177] FX Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes. NR 42 TC 2 Z9 2 U1 1 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD SEP 1 PY 2013 VL 280 BP 93 EP 103 DI 10.1016/j.apsusc.2013.04.102 PG 11 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 172ZE UT WOS:000321045700014 ER PT J AU Prager, J Najm, HN Sargsyan, K Safta, C Pitz, WJ AF Prager, Jens Najm, Habib N. Sargsyan, Khachik Safta, Cosmin Pitz, William J. TI Uncertainty quantification of reaction mechanisms accounting for correlations introduced by rate rules and fitted Arrhenius parameters SO COMBUSTION AND FLAME LA English DT Article DE Uncertainty quantification; Reaction mechanisms; Rate rules; Polynomial chaos; Bayesian inference ID PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; METHANE FLAME MODEL; PRESSURE RATE RULES; RANDOM INPUT DATA; RATE CONSTANTS; CHEMICAL-SYSTEMS; POLYNOMIAL CHAOS; DETAILED MECHANISM; ATOM ABSTRACTION AB We study correlations among uncertain Arrhenius rate parameters in a chemical model for hydrocarbon fuel-air combustion. We consider correlations induced by the use of rate rules for modeling reaction rate constants, as well as those resulting from fitting rate expressions to empirical measurements arriving at a joint probability density for all Arrhenius parameters. We focus on homogeneous ignition in a fuel-air mixture at constant-pressure. We outline a general methodology for this analysis using polynomial chaos and Bayesian inference methods. We examine the uncertainties in both the Arrhenius parameters and in predicted ignition time, outlining the role of correlations, and considering both accuracy and computational efficiency. (c) 2013 Elsevier Inc. All rights reserved. C1 [Prager, Jens; Najm, Habib N.; Sargsyan, Khachik; Safta, Cosmin] Sandia Natl Labs, Livermore, CA 94551 USA. [Pitz, William J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Najm, HN (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM hnnajm@sandia.gov FU US Department of Energy (DOE), Office of Basic Energy Sciences (BES) Division of Chemical Sciences, Geosciences, and Biosciences; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences (BES) Division of Chemical Sciences, Geosciences, and Biosciences. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. The work at LLNL was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 68 TC 14 Z9 14 U1 1 U2 36 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 EI 1556-2921 J9 COMBUST FLAME JI Combust. Flame PD SEP PY 2013 VL 160 IS 9 BP 1583 EP 1593 DI 10.1016/j.combustflame.2013.01.008 PG 11 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 175MK UT WOS:000321234600005 ER PT J AU Veloo, PS Dagaut, P Togbe, C Dayma, G Sarathy, SM Westbrook, CK Egolfopoulos, FN AF Veloo, Peter S. Dagaut, Philippe Togbe, Casimir Dayma, Guillaume Sarathy, S. Mani Westbrook, Charles K. Egolfopoulos, Fokion N. TI Experimental and modeling study of the oxidation of n- and iso-butanal SO COMBUSTION AND FLAME LA English DT Article DE Jet stirred reactor; Flame propagation; n-Butanal; iso-Butanal; Kinetics ID JET-STIRRED REACTOR; PARTICLE IMAGE VELOCIMETRY; COOL FLAME COMBUSTION; GAS-PHASE; CHEMICAL-KINETICS; AUTO-IGNITION; FUEL; CHEMISTRY; HYDROCARBONS; PROPAGATION AB Understanding the kinetics of large molecular weight aldehydes is essential in the context of both conventional and alternative fuels. For example, they are key intermediates formed during the low-temperature oxidation of hydrocarbons as well as during the high-temperature oxidation of oxygenated fuels such as alcohols. In this study, an experimental and kinetic modeling investigation of n-butanal (n-butyraldehyde) and iso-butanal (iso-butyraldehyde or 2-methylpropanal) oxidation kinetics was performed. Experiments were performed in a jet stirred reactor and in counterflow flames over a wide range of equivalence ratios, temperatures, and pressures. The jet stirred reactor was utilized to observe the evolution of stable intermediates and products for the oxidation of n- and iso-butanal at elevated pressures and low to intermediate temperatures. The counterflow configuration was utilized for the determination of laminar flame speeds. A detailed chemical kinetic interpretative model was developed and validated consisting of 244 species and 1198 reactions derived from a previous study of the oxidation of propanal (propionaldehyde). Extensive reaction pathway and sensitivity analysis was performed to provide detailed insight into the mechanisms governing low-, intermediate-, and high-temperature reactivity. The simulation results using the present model are in good agreement with the experimental laminar flame speeds and well within a factor of two of the speciation data obtained in the jet stirred reactor. (c) 2013 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Veloo, Peter S.] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA. [Dagaut, Philippe; Dayma, Guillaume] CNRS INSIS, F-45071 Orleans 2, France. [Togbe, Casimir] Univ Bielefeld, D-33615 Bielefeld, Germany. [Sarathy, S. Mani] King Abdullah Univ Sci & Technol, Clean Combust Res Ctr, Thuwal 239556900, Saudi Arabia. [Westbrook, Charles K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Egolfopoulos, Fokion N.] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. RP Veloo, PS (reprint author), Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA. EM pveloo@princeton.edu RI Veloo, Peter/G-1196-2010; Dagaut, Philippe/C-1709-2008; Sarathy, S. Mani/M-5639-2015; OI Veloo, Peter/0000-0003-1135-4018; Dagaut, Philippe/0000-0003-4825-3288; Sarathy, S. Mani/0000-0002-3975-6206; Egolfopoulos, Fokion/0000-0002-7115-5304; Dayma, Guillaume/0000-0003-2761-657X FU European Research Council under the European Community's Seventh Framework Programme (FP7)/ERC [291049 - 2G-CSafe]; CEFRC, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001198]; U.S. Department of Energy [DE-AC52-07NA27344]; Clean Combustion Research Center FX At CNRS, the research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 291049 - 2G-CSafe.; At USC and Princeton, this work is supported as part of the CEFRC, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001198.; The work at LLNL was performed under the auspices of the U.S. Department of Energy under Contract DE-AC52-07NA27344.; The research at KAUST was funded by the Clean Combustion Research Center. NR 75 TC 19 Z9 19 U1 7 U2 43 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD SEP PY 2013 VL 160 IS 9 BP 1609 EP 1626 DI 10.1016/j.combustflame.2013.03.018 PG 18 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 175MK UT WOS:000321234600007 ER PT J AU Shaddix, CR Holzleithner, F Geier, M Haynes, BS AF Shaddix, Christopher R. Holzleithner, Franz Geier, Manfred Haynes, Brian S. TI Numerical assessment of Tognotti determination of CO2/CO production ratio during char oxidation SO COMBUSTION AND FLAME LA English DT Article DE Char combustion; Kinetics; CO2/CO production ratio; Oxy-fuel ID MICROPOROUS SURFACE-AREA; CARBON GASIFICATION; BOUNDARY-LAYER; OXYGEN; COAL; COMBUSTION; COMPLEXES; PARTICLE AB A review of the experimental investigations of the CO2/CO production ratio during the high temperature oxidation of carbon reveals a wide variation in this critical parameter for determining the char combustion temperature and burning rate. Of the studies that have been performed, the experiment used by Tognotti et al. [5], with small, laser-heated, electrodynamically levitated Spherocarb particles in cool surroundings, appears to be the most promising for giving accurate results. Proper interpretation of the results from Tognotti's study requires assumptions of kinetically controlled combustion behavior, negligible CO conversion either within the particle pores or in the boundary layer, and a uniform particle temperature. To evaluate whether the Tognotti data in fact fulfill these assumptions, we have employed a detailed model of porous particle combustion to simulate the Tognotti experiments. The model results indicate that particle temperatures were uniform and there was negligible oxidation of CO either within the particle or in the particle boundary layer over the range of particle temperatures that was used to determine the Tognotti CO2/CO production ratio correlations. On the other hand, the model results show that O-2 diffusional resistance became important for temperatures greater than 1050 K in the Tognotti experiments. However, because of the low sensitivity of the observed CO2/CO production ratio to the local oxygen concentration, computational analysis also shows that the influence of this Zone II combustion behavior on the measured CO2/CO production ratio is quite minor. Therefore, it appears that the empirical correlation derived by Tognotti et al. [5] to describe the CO2/CO production ratio during high temperature char oxidation is credible, though its temperature range of empirical validation is limited to less than 1250 K. (C) 2013 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Shaddix, Christopher R.; Holzleithner, Franz; Geier, Manfred] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA. [Haynes, Brian S.] Univ Sydney, Sch Chem & Biomol Engn, Sydney, NSW 2006, Australia. RP Shaddix, CR (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA. EM crshadd@sandia.gov RI Haynes, Brian/I-2562-2013 OI Haynes, Brian/0000-0002-2024-039X FU U.S. Department of Energy through the National Energy Technology Laboratory's Cross-Cutting Research Program; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This research was sponsored by the U.S. Department of Energy through the National Energy Technology Laboratory's Cross-Cutting Research Program, managed by Dr. Robert Romanosky. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 36 TC 5 Z9 6 U1 2 U2 28 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD SEP PY 2013 VL 160 IS 9 BP 1827 EP 1834 DI 10.1016/j.combustflame.2013.03.019 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 175MK UT WOS:000321234600026 ER PT J AU Yarrington, CD Groven, LJ Reeves, RV Son, SF AF Yarrington, Cole D. Groven, Lori J. Reeves, Robert V. Son, Steven F. TI The effect of doping on the combustion and reaction kinetics of silicon reactives SO COMBUSTION AND FLAME LA English DT Article DE Silicon; Doping; Kinetics; Combustion ID THERMAL-CONDUCTIVITY; BEHAVIOR; OXIDE AB The influence of low levels of lattice doping in silicon on the combustion and reaction kinetics of silicon based reactives was investigated. Doped silicon powders were produced by ball milling intrinsic, As-, and B-doped silicon wafers. After morphological and physical characterization of the doped silicon powders, energetic composites consisting of silicon and polytetrafluoroethylene (PTFE) powder were produced and characterized by thermal analysis and combustion rate measurements. The apparent activation energy decreased from 283 +/- 3 to 243 +/- 25 kJ/mol as dopant concentration was increased, and burning rates increased from 1.94 +/- 0.05 mm/s to 3.04 +/- 0.10 mm/s. This appears to be caused by inclusion of the dopant atoms in the Si lattice as no burning rate change was observed for Si reactive mixtures with the same dopant element added as a bulk powder at the same atomic proportions. The ability to modify combustion behavior through low levels of doping is an intriguing observation, with implications in general burning rate modification and tuning, and the emerging study of silicon based integrated nanoenergetics. Published by Elsevier Inc. on behalf of The Combustion Institute. C1 [Yarrington, Cole D.; Groven, Lori J.; Reeves, Robert V.; Son, Steven F.] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA. RP Yarrington, CD (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM cdyarri@sandia.gov OI Son, Steven/0000-0001-7498-2922 FU Defense Threat Reduction Agency (DTRA), Counter-Weapons of Mass Destruction basic research program [HDTRA1-08-1-0006] FX The authors wish to acknowledge the funding of the Defense Threat Reduction Agency (DTRA), Counter-Weapons of Mass Destruction basic research program, Grant No. HDTRA1-08-1-0006. We also acknowledge the support of Professor Alexander Mukasyan and his students at Notre Dame University for providing Raman spectra of our samples. NR 19 TC 3 Z9 3 U1 1 U2 17 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD SEP PY 2013 VL 160 IS 9 BP 1835 EP 1841 DI 10.1016/j.combustflame.2013.03.012 PG 7 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 175MK UT WOS:000321234600027 ER PT J AU Wu, Y Liu, K Bamgbade, BA McHugh, MA AF Wu, Yue Liu, Kun Bamgbade, Babatunde A. McHugh, Mark A. TI Investigation on the solidification of several pure cyclic and aromatic hydrocarbons at pressures to 300 MPa SO FUEL LA English DT Article DE Melting points; Saturated cyclic hydrocarbon; Xylene; Aromatic; High pressure ID LIQUID-PHASE-EQUILIBRIA; N-ALKANE MIXTURES; THERMODYNAMIC MEASUREMENTS; WAX PRECIPITATION; SOLID-FLUID; EQUATION; SYSTEMS; PREDICTION; CRUDE; CRYSTALLIZATION AB The effect of pressure on the solidification of several saturated cyclic hydrocarbons and three xylene isomers are experimentally determined with a variable-volume view cell at pressures to 300 MPa and temperatures starting at 293.15 K. Solid-liquid transitions are observed for cyclooctane, cis-1,2-dimethylcyclohexane, trans-1,4-dimethylcyclohexane, p-xylene, o-xylene, and 2-methylnaphthalene. However, methylcyclohexane, ethylcyclohexane, cis-1,4-dimethylcyclohexane, and m-xylene remained liquid over the same operating pressure and temperature ranges. The experimental solid-liquid transition data are well represented with two empirical equations, the Simon equation and a 2nd-order polynomial equation. Data obtained in this study agree with literature data within +/-0.4% for 2-methylnaphthalene and +/-0.2% for p-xylene. (C) 2013 Elsevier Ltd. All rights reserved. C1 Off Res & Dev, Natl Energy Technol Lab, Pittsburgh, PA USA. [McHugh, Mark A.] Virginia Commonwealth Univ, Dept Chem & Life Sci Engn, Richmond, VA 23284 USA. RP Wu, Y (reprint author), Virginia Commonwealth Univ, Dept Chem & Life Sci Engn, 601 West Main St, Richmond, VA 23284 USA. EM wuy@vcu.edu FU Strategic Center for Natural Gas and Oil under RES [DE-FE0004000]; National Energy Technology Laboratory's Office of Research FX This technical effort was performed in support of the National Energy Technology Laboratory's Office of Research and Development support of the Strategic Center for Natural Gas and Oil under RES Contract DE-FE0004000. NR 49 TC 3 Z9 3 U1 1 U2 18 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 J9 FUEL JI Fuel PD SEP PY 2013 VL 111 BP 75 EP 80 DI 10.1016/j.fuel.2013.04.067 PG 6 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 172WT UT WOS:000321037600009 ER PT J AU Safari, I Walker, ME Hsieh, MK Dzombak, DA Liu, WS Vidic, RD Miller, DC Abbasian, J AF Safari, Iman Walker, Michael E. Hsieh, Ming-Kai Dzombak, David A. Liu, Wenshi Vidic, Radisav D. Miller, David C. Abbasian, Javad TI Utilization of municipal wastewater for cooling in thermoelectric power plants SO FUEL LA English DT Article DE Municipal wastewater; Cooling system; Thermoelectric power plant; Water Chemistry and Quality; Modeling and Simulation ID CARBONATE SCALE DEPOSITION; HEAT-TRANSFER SURFACES; MASS-TRANSFER; DIOXIDE; TOWER; AMMONIA; SYSTEMS; MODEL AB A process simulation model has been developed using Aspen Plus (R) with the OLI (OLI System, Inc.) water chemistry model to predict water quality in the recirculating cooling loop utilizing secondary-and tertiary-treated municipal wastewater as the source of makeup water. Simulation results were compared with pilot-scale experimental data on makeup water alkalinity, loop pH, and ammonia evaporation. The effects of various parameters including makeup water quality, salt formation, NH3 and CO2 evaporation mass transfer coefficients, heat load, and operating temperatures were investigated. The results indicate that, although the simulation model can capture the general trends in the loop pH, experimental data on the rates of salt precipitation in the system are needed for more accurate prediction of the loop pH. It was also found that stripping of ammonia and carbon dioxide in the cooling tower can influence the cooling loop pH significantly. The effects of the NH3 mass transfer coefficient on cooling loop pH appear to be more significant at lower values (e. g., k(NH3) < 4 x 10 (3) m/s) when the makeup water alkalinity is low (e. g., <90 mg/L as CaCO3). The effect of the CO2 mass transfer coefficient was found to be significant only at lower alkalinity values (e. g., k(CO2) < 4 x 10 (6) m/s). (C) 2013 Elsevier Ltd. All rights reserved. C1 [Safari, Iman; Walker, Michael E.; Abbasian, Javad] IIT, Chicago, IL 60616 USA. [Hsieh, Ming-Kai; Dzombak, David A.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Liu, Wenshi; Vidic, Radisav D.] Univ Pittsburgh, Pittsburgh, PA USA. [Miller, David C.] Natl Energy Technol Lab, Morgantown, WV USA. RP Abbasian, J (reprint author), IIT, Chicago, IL 60616 USA. EM abbasian@iit.edu OI Vidic, Radisav/0000-0001-7969-6845 FU United States Department of Energy, National Energy Technology Laboratory FX The financial support provided by the United States Department of Energy, National Energy Technology Laboratory for this study is greatly appreciated by the authors. NR 42 TC 4 Z9 4 U1 2 U2 32 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 J9 FUEL JI Fuel PD SEP PY 2013 VL 111 BP 103 EP 113 DI 10.1016/j.fuel.2013.03.062 PG 11 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 172WT UT WOS:000321037600013 ER PT J AU Peng, JH Bi, XT Sokhansanj, S Lim, CJ AF Peng, J. H. Bi, X. T. Sokhansanj, S. Lim, C. J. TI Torrefaction and densification of different species of softwood residues SO FUEL LA English DT Article DE Torrefaction; Densification; Fixed bed; Softwood; Torrefied pellets ID TORREFIED SAWDUST; WOOD PELLETS; BIOMASS; IMPACT AB Torrefaction and densification of British Columbia (BC) softwoods, including pine, fir, spruce, SPF (a mixture of spruce, pine and fir) and pine bark, have been conducted for the production of high quality torrefied wood pellets. A bench-scale fixed bed tubular reactor was used for the torrefaction test at temperatures of 240-340 degrees C. Densification was conducted in a press machine in order to identify the suitable conditions for making strong torrefied pellets. Results showed that the mass loss of BC softwood mainly depended on the torrefaction temperature and time. The heating value of torrefied sawdust particles had a close relationship with the mass loss, increasing with increasing the severity of torrefaction. It was more difficult to compress torrefied samples into strong pellets than the raw material under the same conditions as used for making the control (regular and non-torrefied) pellets, and either a higher die temperature or adding moisture into torrefied particles could improve the compression process. The moisture content of torrefied pellets prepared in this study was lower than control pellets, and the density of torrefied pellets was slightly lower than control pellets. At the same time, more energy was consumed for compacting torrefied softwood particles into pellets. Increasing torrefaction severity increased the heating value and decreased the moisture uptake of torrefied pellets, but decreased the energy yield and the hardness of torrefied pellets. Considering the quality of torrefied pellets, the optimal torrefaction condition appeared to be around 30% mass loss, which gave a 20% increase in pellet higher heating value and a reasonable low water update rate. The suitable densification conditions for torrefied softwoods corresponded to a die temperature of 170-230 degrees C for unconditioned samples, or about 110 degrees C for samples preconditioned to similar to 10% moisture content. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Peng, J. H.; Bi, X. T.; Sokhansanj, S.; Lim, C. J.] Univ British Columbia, Clean Energy Res Ctr, Vancouver, BC V5Z 1M9, Canada. [Sokhansanj, S.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Bi, XT (reprint author), Univ British Columbia, Clean Energy Res Ctr, Vancouver, BC V5Z 1M9, Canada. EM xbi@chbe.ubc.ca NR 33 TC 28 Z9 28 U1 0 U2 56 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 J9 FUEL JI Fuel PD SEP PY 2013 VL 111 BP 411 EP 421 DI 10.1016/j.fuel.2013.04.048 PG 11 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 172WT UT WOS:000321037600049 ER PT J AU Thomson, JK Pawel, SJ Wilson, DF AF Thomson, J. K. Pawel, S. J. Wilson, D. F. TI Susceptibility of aluminum alloys to corrosion in simulated fuel blends containing ethanol SO FUEL LA English DT Article DE Aluminum; Corrosion; Ethanol blended fuel; Water corrosion inhibition; Oxidation ID BEHAVIOR; GASOLINE AB The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Temperatures examined ranged between 20 degrees C and 200 degrees C and water content ranged between sub 50 ppm and 10% by volume. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (<50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined were accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Substantial corrosion was observed only at temperatures exceeding 78 degrees C, the boiling point of ethanol. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Thomson, J. K.; Pawel, S. J.; Wilson, D. F.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Thomson, JK (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd,POB 2008,MS-6156, Oak Ridge, TN 37831 USA. EM thomsonjk@ornl.gov FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program FX The research described here was undertaken as part of a Cooperative Research and Development Agreement with USCAR, LLC. The USCAR Partners provided in-kind support of the effort, and ORNL funding was provided by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program (Propulsion Materials, managed by J. Gibbs). A. Willoughby assisted with laboratory corrosion testing along with design of the experimental apparatus, control devices and data acquisition system. The program is managed at ORNL by A. Haynes. NR 13 TC 4 Z9 5 U1 2 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 J9 FUEL JI Fuel PD SEP PY 2013 VL 111 BP 592 EP 597 DI 10.1016/j.fuel.2013.04.047 PG 6 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 172WT UT WOS:000321037600070 ER PT J AU Cole, DP Smith, EA Dalluge, D Wilson, DM Heaton, EA Brown, RC Lee, YJ AF Cole, D. Paul Smith, Erica A. Dalluge, Dustin Wilson, Danielle M. Heaton, Emily A. Brown, Robert C. Lee, Young Jin TI Molecular characterization of nitrogen-containing species in switchgrass bio-oils at various harvest times SO FUEL LA English DT Article DE Bio-oil; Nitrogen; High resolution mass spectrometry; Imidazole; Switchgrass ID FAST PYROLYSIS; MASS-SPECTROMETRY; HYDROGENATION; FUNDAMENTALS; CATALYSTS AB Nitrogen-containing species in bio-oils obtained from fast pyrolysis of switchgrass were studied using high resolution mass spectrometry at various harvest times throughout the year. Almost three hundred chemical compositions of nitrogen species were determined through efficient ionization and accurate mass information. N-2 is the most abundant heteroatom class, followed by NO, N2O, NO2, and N-1 compounds. Nitrogen species, especially N-2 compounds, dominate the bio-oil spectra in early summer, but decrease significantly in later harvest times. From the contour plots of double bond equivalent versus carbon number and tandem mass spectrometric analysis, the major structural motif for N-1 and NO class compounds are assigned as pyridine and that of N-2 class compounds as imidazole. The dramatic decrease of N-2 class compounds in delayed harvest bio-oils is well correlated with the decomposition of proteins, represented by imidazole as a pyrolysis product of histidine, as the senescence of the perennial plant proceeds. Some of the heterocyclic aromatic compounds are also found in gas chromatography-mass spectrometry, further supporting our analysis. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Cole, D. Paul; Smith, Erica A.; Lee, Young Jin] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Cole, D. Paul; Smith, Erica A.; Lee, Young Jin] US DOE, Ames Lab, Ames, IA 50011 USA. [Dalluge, Dustin; Brown, Robert C.] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. [Dalluge, Dustin; Brown, Robert C.] Iowa State Univ, Ctr Sustainable Environm Technol, Ames, IA 50011 USA. [Wilson, Danielle M.; Heaton, Emily A.] Iowa State Univ, Dept Agron, Ames, IA 50011 USA. RP Lee, YJ (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM yjlee@iastate.edu RI Lee, Young Jin/F-2317-2011 OI Lee, Young Jin/0000-0002-2533-5371 FU Phillips66; U.S. Department of Education FX This work is supported by a grant from Phillips66. The authors thank Marjorie Rover for the elemental and GC-MS analysis. The authors are also grateful to David Stranz, Sierra Analytics, for providing an evaluator version of Composer software for this study. E.A.S. and D.P.C. acknowledge partial support from Graduate Assistance in Areas of National Need (GAANN) fellowship from the U.S. Department of Education. NR 28 TC 8 Z9 8 U1 1 U2 31 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 J9 FUEL JI Fuel PD SEP PY 2013 VL 111 BP 718 EP 726 DI 10.1016/j.fuel.2013.04.064 PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 172WT UT WOS:000321037600085 ER PT J AU Chen, CF Marksteiner, QR King, G Wynn, TA Treiman, MB Dalmas, DA Llobet, A Haynes, WB Guidry, DR Papin, PA AF Chen, Ching-Fong Marksteiner, Quinn R. King, Graham Wynn, Thomas A. Treiman, Michael B. Dalmas, Dale A. Llobet, Anna Haynes, William B. Guidry, Dennis R. Papin, Pallas A. TI Slip casting of sol-gel-synthesized barium strontium zirconium titanate ceramics SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID SOLITON GENERATION; TRANSMISSION-LINE; THIN-FILMS; MICROWAVE; FREQUENCY AB The sol-gel method was used to synthesize two different Ba0.75Sr0.25Ti0.95Zr0.05O3 powders: one of high purity and the other of low purity. These two sol-gel-synthesized powders show two distinct particle sizes and surface areas. The slip casting method was applied to these two sol-gel powders followed by a pressureless sintering, which shows large differences in sintered density and grain size for the pressureless sintered disks. Neutron powder diffraction shows a transition to the nonpolar cubic Pm-3m space group at higher temperatures for both materials. Pair distribution function analysis was used to examine the local displacements of the Ti4+ and Zr4+ cations. The dielectric constant, loss tangent, and bias were measured on these two materials. C1 [Chen, Ching-Fong; Wynn, Thomas A.; Guidry, Dennis R.; Papin, Pallas A.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Marksteiner, Quinn R.; Treiman, Michael B.; Dalmas, Dale A.; Haynes, William B.] Los Alamos Natl Lab, Accelerator Operat & Technol Div, Los Alamos, NM 87545 USA. [King, Graham; Llobet, Anna] Los Alamos Natl Lab, LANSCE, Lujan Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RP Chen, CF (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM cchen@lanl.gov RI King, Graham/E-3632-2010; Llobet, Anna/B-1672-2010 OI King, Graham/0000-0003-1886-7254; FU US Department of Energy through the LANL LDRD program; DOE Office of Basic Energy Sciences; Los Alamos National Security LLC under DOE [DE-AC52-06NA25396] FX The authors would like to thank Drs. M. Reiten, D. Shchegolkov, and F. Krawczyk for useful discussions. We gratefully acknowledge the support of the US Department of Energy through the LANL LDRD program for this study. In addition, this study has benefited from the use of HIPD at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. NR 27 TC 1 Z9 1 U1 0 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 J9 J MATER SCI JI J. Mater. Sci. PD SEP PY 2013 VL 48 IS 17 BP 5788 EP 5800 DI 10.1007/s10853-013-7371-0 PG 13 WC Materials Science, Multidisciplinary SC Materials Science GA 175YZ UT WOS:000321271100010 ER PT J AU Shyam, A Trejo, R McClurg, D Ladouceur, A Kirkham, M Song, XY Howe, J Lara-Curzio, E AF Shyam, Amit Trejo, Rosa McClurg, Dana Ladouceur, Alexander Kirkham, Melanie Song, Xueyan Howe, Jane Lara-Curzio, Edgar TI Microstructural evolution in two alkali multicomponent silicate glasses as a result of long-term exposure to solid oxide fuel cell environments SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID CERAMIC SEALANT; SEALING GLASS; PLANAR; SOFC; STABILITY; MG AB The microstructural evolution in two potential solid oxide fuel cell (SOFC) sealing glass materials exposed to air and a gas mixture of steam + H-2 + N-2 at 800 A degrees C up to 10000 h was determined. The glass exposures were performed on common SOFC substrates like alumina and zirconia. Characterization of the crystalline phases and pore size distribution was performed for the specimens with various exposure conditions. Comparison of the microstructural and chemical stability of the two glasses was performed based on known trends related to glass chemistry. It was observed that multicomponent glasses followed few rules for chemical and microstructural stability reported in the literature for glasses with fewer components. The two glasses examined in this study displayed adequate resistance to devitrification but marginal resistance to porosity changes in the SOFC environment exposure. The implications of the results for the design and long-term performance of SOFC seals are discussed. C1 [Shyam, Amit; Trejo, Rosa; McClurg, Dana; Ladouceur, Alexander; Kirkham, Melanie; Howe, Jane; Lara-Curzio, Edgar] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Song, Xueyan] W Virginia Univ, Morgantown, WV 26506 USA. RP Shyam, A (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM shyama@ornl.gov RI Kirkham, Melanie/B-6147-2011; OI Kirkham, Melanie/0000-0001-8411-9751; Shyam, Amit/0000-0002-6722-4709 FU US Department of Energy, Office of Fossil Energy, SECA Core Technology Program at ORNL FX This research work was sponsored by the US Department of Energy, Office of Fossil Energy, SECA Core Technology Program at ORNL. The authors are grateful for the support of NETL program managers Rin Burke, Wayne Surdoval, Travis Shultz and Shailesh Vora. The authors thank James Hemrick (ORNL) for reviewing the manuscript. NR 26 TC 5 Z9 5 U1 0 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 J9 J MATER SCI JI J. Mater. Sci. PD SEP PY 2013 VL 48 IS 17 BP 5880 EP 5898 DI 10.1007/s10853-013-7384-8 PG 19 WC Materials Science, Multidisciplinary SC Materials Science GA 175YZ UT WOS:000321271100021 ER PT J AU Wang, HH Yu, XH Isheim, D Seidman, D Babu, SS AF Wang, Honghong Yu, Xinghua Isheim, D. Seidman, D. Babu, S. S. TI High strength weld metal design through nanoscale copper precipitation SO MATERIALS & DESIGN LA English DT Article ID LOW-ALLOY STEEL; IN-SITU OBSERVATIONS; MECHANICAL-PROPERTIES; MARTENSITIC STEELS; MICROSTRUCTURE; TRANSFORMATION; AUSTENITE; BAINITE AB Deployment of advanced steels with superior yield and tensile strengths, as well as, toughness, ballistic and shock resistance is challenged by the lack of matching filler metals that can yield similar mechanical properties. In this research, strengthening of the weld metal through rapid formation of nanoscale copper precipitates, during reheating, within a ferrite matrix was proposed. A weld metal containing a nominal concentration of 2.49 wt.% Cu, without any precipitation reaction, was soft 300 HVN. On precipitation of nanoscale copper precipitates, with an average radius of 2.2 +/- 0.45 nm and a high number density of 2.9 x 10(23) m(-3), the hardness increased by 50-100 HVN. The magnitude of this increase was inversely related to the peak temperature. The precipitation and extent of strengthening was rationalized based on thermodynamic calculations and Russell-Brown model, respectively. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Wang, Honghong] Wuhan Univ Sci & Technol, Coll Sci, Wuhan 430081, Peoples R China. [Yu, Xinghua; Babu, S. S.] Ohio State Univ, Columbus, OH 43221 USA. [Yu, Xinghua] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Isheim, D.; Seidman, D.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. RP Wang, HH (reprint author), 947 Heping Ave, Wuhan 430081, Peoples R China. EM wanghonghong@wust.edu.cn RI Babu, Sudarsanam/D-1694-2010; Yu, Xinghua/E-2254-2017 OI Babu, Sudarsanam/0000-0002-3531-2579; Yu, Xinghua/0000-0001-9605-8239 NR 25 TC 5 Z9 5 U1 3 U2 21 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0261-3069 J9 MATER DESIGN JI Mater. Des. PD SEP PY 2013 VL 50 BP 962 EP 967 DI 10.1016/j.matdes.2013.03.093 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA 167EZ UT WOS:000320615300118 ER PT J AU Manandhar, K Walkosz, W Trenary, M Otani, S Zapol, P AF Manandhar, Kedar Walkosz, Weronika Trenary, Michael Otani, Shigeki Zapol, Peter TI Dissociative adsorption of ammonia on the ZrB2(0001) surface SO SURFACE SCIENCE LA English DT Article DE Zirconium diboride; Gallium nitride; Dissociative adsorption; X-ray photoelectron spectroscopy ID MOLECULAR-BEAM EPITAXY; THREADING DISLOCATIONS; GALLIUM NITRIDE; GAN; GROWTH; DEPOSITION; TAB2(0001); CHEMISTRY; SUBSTRATE; PT(111) AB Zirconium diboride has been proposed as a viable substrate for epitaxial growth of group III nitrides. In many methods of nitride growth on ZrB2 surfaces, ammonia gas is the nitrogen source. Here we use X-ray photoelectron spectroscopy at a series of fixed temperatures from room temperature to 535 degrees C and density functional theory to study the dissociative adsorption of ammonia on the ZrB2(0001) surface. A significant increase is observed between similar to 250 and similar to 400 degrees C for the deposition of nitrogen, which can be desorbed by annealing between 950 and 1150 degrees C. Two components of the N Is peak are observed and are associated with bonding of nitrogen to boron or to zirconium. Comparison of spectra obtained at two different emission angles suggests that more N is bonded to B than to Zr at the surface and when boron is bonded to nitrogen, it migrates towards the surface. This may be a factor in limiting group III nitride epitaxial growth on the ZrB2(0001) surface. (C) 2013 Elsevier B.V. All rights reserved. C1 [Manandhar, Kedar; Trenary, Michael] Univ Illinois, Dept Chem, Chicago, IL 60607 USA. [Walkosz, Weronika; Zapol, Peter] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Otani, Shigeki] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050044, Japan. RP Trenary, M (reprint author), Univ Illinois, Dept Chem, 845 W Taylor St, Chicago, IL 60607 USA. EM mtrenary@uic.edu RI Zapol, Peter/G-1810-2012 OI Zapol, Peter/0000-0003-0570-9169 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences-Materials Science [DE-AC02-06CH11357]; National Science Foundation [CHE-1012201] FX This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences-Materials Science under Contract No. DE-AC02-06CH11357. We acknowledge grants of computer time from ANL Computing Resource Center (LCRC), ANL Center for Nanoscale Materials and the National Energy Research Scientific Computing Center (NERSC). K.M. and M.T. also acknowledge partial support from the National Science Foundation under grant CHE-1012201. NR 38 TC 4 Z9 4 U1 1 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD SEP PY 2013 VL 615 BP 110 EP 118 DI 10.1016/j.susc.2013.04.012 PG 9 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 177XT UT WOS:000321409400015 ER PT J AU Sun, XG Liao, C Shao, N Bell, JR Guo, BK Luo, HM Jiang, DE Dai, S AF Sun, Xiao-Guang Liao, Chen Shao, Nan Bell, Jason R. Guo, Bingkun Luo, Huimin Jiang, De-en Dai, Sheng TI Bicyclic imidazolium ionic liquids as potential electrolytes for rechargeable lithium ion batteries SO JOURNAL OF POWER SOURCES LA English DT Article DE Lithium ion battery; 1-Ethyl-2,3-trimethyleneimidazolium bis(trifluoromethane sulfonyl)imide ([ETMIm][TFSI]); Solid electrolyte interphase (SEI); Impedance spectroscopy ID IN-SITU RAMAN; ROOM-TEMPERATURE; MOLTEN-SALTS; PHYSICOCHEMICAL PROPERTIES; GRAPHITE-ELECTRODES; CYCLING EFFICIENCY; LI/LI+ COUPLE; LI; INTERCALATION; COMPATIBILITY AB A bicyclic imidazolium ionic liquids, 1-ethyl-2,3-trimethyleneimidazolium bis(tri fluoromethane sulfonyl) imide ([ETMIm][TFSI]), and reference imidazolium compounds, 1-ethyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide ([EMIm][TFSI]) and 1, 2-dimethyl-3-butylimidazolium bis(trifluoromethane sulfonyl)imide ([DMBIm][TFSI]), were synthesized and investigated as solvents for lithium ion batteries. Although the alkylation at the C-2 position of the imidazolium ring does not affect the thermal stability of the ionic liquids, the stereochemical structure of the molecules has shown profound influences on the electrochemical properties of the corresponding ionic liquids. [ETMIm][TFSI] has better reduction stability than both [EMIm][TFSI] and [DMBIm][TFSI], as confirmed by both linear sweep voltammetry (LSV) and theoretical calculation. Also, a relatively stable solid electrolyte interphase (SEI) is formed in [ETMIm][TFSI], suggested by the time dependence of the impedance spectra of the Li parallel to Li cell. Furthermore, the Li parallel to graphite half-cell based on [BTMIm][TFSI] exhibits reversible capacity of 250 mA h g(-1) and 70 mA h g(-1) at 25 degrees C, which increases to 330 mA h g(-1), and 250 mA h g(-1) at 50 degrees C, under the current rate of C/20 and C/10, respectively. For comparison, the half-cell based on [DMBIm][TFSI] exhibits poor capacity retention under the same current rates at both temperatures. Published by Elsevier B.V. C1 [Sun, Xiao-Guang; Liao, Chen; Shao, Nan; Guo, Bingkun; Jiang, De-en; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Bell, Jason R.; Luo, Huimin] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. [Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Sun, XG (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM sunx@ornl.gov; dais@ornl.gov RI Jiang, De-en/D-9529-2011; Guo, Bingkun/J-5774-2014; Dai, Sheng/K-8411-2015; OI Jiang, De-en/0000-0001-5167-0731; Dai, Sheng/0000-0002-8046-3931; Liao, Chen/0000-0001-5168-6493 FU U.S. Department of Energy's Office of Basic Energy Science, Division of Materials Sciences and Engineering; U.S. Department of Energy, the Office of Nuclear Physics; Oak Ridge Associated Universities (ORAU) FX This research was supported by the U.S. Department of Energy's Office of Basic Energy Science, Division of Materials Sciences and Engineering. J.R.B and H.M.L were supported by the U.S. Department of Energy, the Office of Nuclear Physics. C.L, N.S, J.R.B, and B.K.G acknowledge the Oak Ridge Associated Universities (ORAU) for postdoctoral fellowship. NR 44 TC 16 Z9 17 U1 4 U2 97 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD SEP 1 PY 2013 VL 237 BP 5 EP 12 DI 10.1016/j.jpowsour.2013.02.061 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 173NH UT WOS:000321085700002 ER PT J AU Huang, K Singhal, SC AF Huang, Kevin Singhal, Subhash C. TI Cathode-supported tubular solid oxide fuel cell technology: A critical review SO JOURNAL OF POWER SOURCES LA English DT Review DE Solid oxide fuel cells; Power generation; Cathode; Tubular; Electrical performance ID LANTHANUM CHROMITE; SOFC TECHNOLOGY; POWER-SYSTEM; PERFORMANCE; TURBINE; DEGRADATION; OPERATION; FILMS AB Over the past half-century, Siemens/Westinghouse systematically developed the cathode-supported tubular solid oxide fuel cell (SOFC) technology and demonstrated the world's first highly efficient, longest running 100-kWe class solid oxide fuel cell/combined heat and power (SOFC/CHP) system and the first highest-efficiency, 220-kWe class pressurized SOFC/gas turbine (PSOFC/GT) hybrid system based on this technology. This review provides a broad overview on this technology from the perspectives of materials, manufacturing, cell design, system integration and electrical testing. It starts from the basic facts of a SOFC, where the working principle, advantages, types and applications of SOFCs are discussed. It then focuses on cathode-supported tubular SOFCs, one important type of SOFC design, by providing detailed technical information on engineering innovations, materials advances, manufacturing processes and electrical performance of Siemens/Westinghouse's cylindrical and flattened ribbed tubular cells. The review concludes with a high-level summary of the SOFC systems manufactured and demonstrated by Siemens/Westinghouse in the past few decades. (C) 2013 Elsevier B.V. All rights reserved. C1 [Huang, Kevin] Univ S Carolina, SmartState Ctr Solid Oxide Fuel Cells, Dept Mech Engn, Columbia, SC 29201 USA. [Singhal, Subhash C.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Huang, K (reprint author), Univ S Carolina, SmartState Ctr Solid Oxide Fuel Cells, Dept Mech Engn, Columbia, SC 29201 USA. EM kevin.huang@sc.edu; singhal@pnnl.gov NR 82 TC 28 Z9 28 U1 4 U2 158 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD SEP 1 PY 2013 VL 237 BP 84 EP 97 DI 10.1016/j.jpowsour.2013.03.001 PG 14 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 173NH UT WOS:000321085700014 ER PT J AU Kim, S Thomsen, E Xia, GG Nie, ZM Bao, J Recknagle, K Wang, W Viswanathan, V Luo, QT Wei, XL Crawford, A Coffey, G Maupin, G Sprenkle, V AF Kim, Soowhan Thomsen, Edwin Xia, Guanguang Nie, Zimin Bao, Jie Recknagle, Kurtis Wang, Wei Viswanathan, Vilayanur Luo, Qingtao Wei, Xiaoliang Crawford, Alasdair Coffey, Greg Maupin, Gary Sprenkle, Vincent TI 1 kW/1 kWh advanced vanadium redox flow battery utilizing mixed acid electrolytes SO JOURNAL OF POWER SOURCES LA English DT Article DE Advanced vanadium redox flow battery; Redox flow battery; Stack; Efficiency ID SCALE ENERGY-STORAGE; CELL AB This paper reports on the recent demonstration of an advanced vanadium redox flow battery (VRFB) using a newly developed mixed acid (sulfuric and hydrochloric acid) supporting electrolyte at a kW scale. The developed prototype VRFB system is capable of delivering more than 1.1 kW in the operation range of 15-85% state of charge (SOC) at 80 mA cm(-2) with an energy efficiency of 82% and energy content of 1.4 kWh. The system operated stably without any precipitation at electrolyte temperatures >45 degrees C. At similar electrolyte temperatures, tests with a conventional sulfuric acid electrolyte suffered from precipitation after 80 cycles. By operating stably at elevated temperatures (>40 degrees C), the mixed acid system enables significant advantages over the conventional sulfate system, namely; 1) high stack energy efficiency due to better kinetics and lower electrolyte resistance, 2) lower viscosity resulting in reduced pumping losses, 3) lower capital cost by elimination of heat exchanger, 4) higher system efficiency and 5) simplified system design and operation. Demonstration of the prototype stack with the mixed acid electrolyte has been shown to lower the cost of conventional VRFB systems for large-scale energy storage applications. (C) 2013 Elsevier B.V. All rights reserved. C1 [Kim, Soowhan; Thomsen, Edwin; Nie, Zimin; Bao, Jie; Recknagle, Kurtis; Wang, Wei; Viswanathan, Vilayanur; Luo, Qingtao; Wei, Xiaoliang; Crawford, Alasdair; Coffey, Greg; Maupin, Gary; Sprenkle, Vincent] Pacific NW Natl Lab, Richland, WA 99352 USA. [Xia, Guanguang] UniEnergy Technol LLC, Mukilteo, WA 98275 USA. RP Sprenkle, V (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM vincent.sprenkle@pnnl.gov RI Wang, Wei/F-4196-2010 OI Wang, Wei/0000-0002-5453-4695 FU Office of Electricity (OE Delivery & Energy Reliability (OE)), U.S. Department of Energy (DOE) [DE-AC05-76RL01830] FX The work is supported by the Office of Electricity (OE Delivery & Energy Reliability (OE)), U.S. Department of Energy (DOE) under contract DE-AC05-76RL01830. NR 15 TC 36 Z9 37 U1 5 U2 69 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD SEP 1 PY 2013 VL 237 BP 300 EP 309 DI 10.1016/j.jpowsour.2013.02.045 PG 10 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 173NH UT WOS:000321085700040 ER PT J AU Huang, Q Cosimbescu, L Koech, P Choi, D Lemmon, JP AF Huang, Qian Cosimbescu, Lelia Koech, Phillip Choi, Daiwon Lemmon, John P. TI Composite organic radical-inorganic hybrid cathode for lithium-ion batteries (vol 233, pg 69, 2013) SO JOURNAL OF POWER SOURCES LA English DT Correction C1 [Huang, Qian; Cosimbescu, Lelia; Koech, Phillip; Choi, Daiwon; Lemmon, John P.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Lemmon, JP (reprint author), Pacific NW Natl Lab, 908 Battelle Blvd,POB 999, Richland, WA 99354 USA. EM John.Lemmon@pnl.gov NR 1 TC 0 Z9 0 U1 1 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD SEP 1 PY 2013 VL 237 BP 332 EP 332 DI 10.1016/j.jpowsour.2013.04.021 PG 1 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 173NH UT WOS:000321085700043 ER PT J AU Olson, BV Gehlsen, MP Boggess, TF AF Olson, Benjamin V. Gehlsen, Michael P. Boggess, Thomas F. TI Nondegenerate two-photon absorption in GaSb SO OPTICS COMMUNICATIONS LA English DT Article DE Nondegenerate two-photon absorption; Optical nonlinearities; Nonlinear index of refraction; Time-resolved pump-probe; GaSb ID NONLINEAR-OPTICAL-PROPERTIES; SEMICONDUCTORS; COEFFICIENTS; ALLOYS; INAS; GAAS; INSB; GAP AB The nonlinear optical absorption of n-type GaSb at 77 K was investigated using time-resolved pump-probe techniques. By holding the pump wavelength constant and varying the probe wavelength, the nondegenerate two-photon absorption spectrum was measured for parallel and perpendicular polarization orientations between the pump and probe beams. The nondegenerate two-photon absorption coefficients, which were measured to be as large as 140 cm/GW, are found to be 2-3 times smaller for the perpendicularly polarized case than in the parallel polarization case. A Kramers-Kronig transformation allowed the determination of the dispersion of the nondegenerate nonlinear refractive index, which was found to be as large as 2 x 10(-3) cm(2)/GW. Published by Elsevier B.V. C1 Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. Univ Iowa, Opt Sci & Technol Ctr, Iowa City, IA 52242 USA. RP Olson, BV (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM benolso@sandia.gov; thomas-boggess@uiowa.edu NR 24 TC 1 Z9 1 U1 3 U2 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0030-4018 J9 OPT COMMUN JI Opt. Commun. PD SEP 1 PY 2013 VL 304 BP 54 EP 57 DI 10.1016/j.optcom.2013.04.035 PG 4 WC Optics SC Optics GA 174QU UT WOS:000321171300010 ER PT J AU Chen, ZZ Hendrix, W Guan, H Tetteh, IK Choudhary, A Semazzi, F Samatova, NF AF Chen, Zhengzhang Hendrix, William Guan, Hang Tetteh, Isaac K. Choudhary, Alok Semazzi, Fredrick Samatova, Nagiza F. TI Discovery of extreme events-related communities in contrasting groups of physical system networks SO DATA MINING AND KNOWLEDGE DISCOVERY LA English DT Article DE Spatio-temporal data mining; Complex network analysis; Community detection; Comparative analysis; Networkmotif detection; Extreme event prediction ID TROPICAL CYCLONE ACTIVITY; ABSOLUTE DEVIATION REGRESSION; ATLANTIC HURRICANE SEASON; BIOLOGICAL NETWORKS; CLIMATE VARIABILITY; OUTLIER DETECTION; COMPLEX NETWORKS; EL-NINO; PREDICTION; TEMPERATURE AB The latent behavior of a physical system that can exhibit extreme events such as hurricanes or rainfalls, is complex. Recently, a very promising means for studying complex systems has emerged through the concept of complex networks. Networks representing relationships between individual objects usually exhibit community dynamics. Conventional community detection methods mainly focus on either mining frequent subgraphs in a network or detecting stable communities in time-varying networks. In this paper, we formulate a novel problem-detection of predictive and phase-biased communities in contrasting groups of networks, and propose an efficient and effective machine learning solution for finding such anomalous communities. We build different groups of networks corresponding to different system's phases, such as higher or low hurricane activity, discover phase-related system components as seeds to help bound the search space of community generation in each network, and use the proposed contrast-based technique to identify the changing communities across different groups. The detected anomalous communities are hypothesized (1) to play an important role in defining the target system's state(s) and (2) to improve the predictive skill of the system's states when used collectively in the ensemble of predictive models. When tested on the two important extreme event problems-identification of tropical cyclone-related and of African Sahel rainfall-related climate indices-our algorithm demonstrated the superior performance in terms of various skill and robustness metrics, including 8-16 % accuracy increase, as well as physical interpretability of detected communities. The experimental results also show the efficiency of our algorithm on synthetic datasets. C1 [Chen, Zhengzhang; Hendrix, William; Tetteh, Isaac K.; Semazzi, Fredrick; Samatova, Nagiza F.] N Carolina State Univ, Raleigh, NC 27695 USA. [Chen, Zhengzhang; Samatova, Nagiza F.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Guan, Hang] Zhejiang Univ, Hangzhou 31000, Zhejiang, Peoples R China. [Choudhary, Alok] Northwestern Univ, Evanston, IL 60201 USA. RP Samatova, NF (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM samatova@csc.ncsu.edu RI Choudhary, Alok/C-5486-2009 FU U.S. Department of Energy, Office of Science; Office of Advanced Scientific Computing Research (ASCR); Office of Biological and Environmental Research (BER); U.S. National Science Foundation; LLC U.S. D.O.E. [DEAC05-00OR22725] FX The authors would like to thank the editor and the anonymous reviewers for their valuable comments and suggestions to improve the paper. This work was supported in part by the U.S. Department of Energy, Office of Science, the Office of Advanced Scientific Computing Research (ASCR) and the Office of Biological and Environmental Research (BER) and the U.S. National Science Foundation (Expeditions in Computing). Oak Ridge National Laboratory is managed by UT-Battelle for the LLC U.S. D.O.E. under contract no. DEAC05-00OR22725. NR 56 TC 4 Z9 4 U1 3 U2 24 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1384-5810 EI 1573-756X J9 DATA MIN KNOWL DISC JI Data Min. Knowl. Discov. PD SEP PY 2013 VL 27 IS 2 BP 225 EP 258 DI 10.1007/s10618-012-0289-3 PG 34 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems SC Computer Science GA 167WG UT WOS:000320665500003 ER PT J AU Cui, XH St Charles, J Potok, T AF Cui, Xiaohui St Charles, Jesse Potok, Thomas TI GPU enhanced parallel computing for large scale data clustering SO FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF GRID COMPUTING AND ESCIENCE LA English DT Article DE GPU; Swarm intelligence; Data clustering; CUDA AB Analyzing and clustering large scale data set is a complex problem. One explored method of solving this problem borrows from nature, imitating the flocking behavior of birds. One limitation of this method of data clustering is its complexity O(n(2)). As the number of data and feature dimensions grows, it becomes increasingly difficult to generate results in a reasonable amount of time. In the last few years, the graphics processing unit (GPU) has received attention for its ability to solve highly-parallel and semi-parallel problems much faster than the traditional sequential processor. In this paper, we have conducted research to exploit this architecture and apply its strengths to the flocking based high dimension data clustering problem. Using the CUDA platform from NVIDIA, we developed a Multiple Species Data Flocking implementation to be run on the NVIDIA GPU. Performance gains ranged from 30 to 60 times improvement of the GPU over the 3GHz CPU implementation. (c) 2012 Elsevier B.V. All rights reserved. C1 [Cui, Xiaohui] Oak Ridge Natl Lab, Dept Energy, Oak Ridge, TN 37831 USA. [Potok, Thomas] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [St Charles, Jesse] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cui, Xiaohui] New York Inst Technol, New York, NY 10023 USA. RP Cui, XH (reprint author), Oak Ridge Natl Lab, Dept Energy, Oak Ridge, TN 37831 USA. EM cuixhui@gmail.com OI Potok, Thomas/0000-0001-6687-3435 NR 11 TC 4 Z9 5 U1 1 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-739X J9 FUTURE GENER COMP SY JI Futur. Gener. Comp. Syst. PD SEP PY 2013 VL 29 IS 7 BP 1736 EP 1741 DI 10.1016/j.future.2012.07.009 PG 6 WC Computer Science, Theory & Methods SC Computer Science GA 167MI UT WOS:000320635700010 ER PT J AU Godfrey, BB Vay, JL AF Godfrey, Brendan B. Vay, Jean-Luc TI Numerical stability of relativistic beam multidimensional PIC simulations employing the Esirkepov algorithm SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Particle-in-cell; Esirkepov algorithm; Relativistic beam; Numerical stability ID NONSTANDARD FINITE-DIFFERENCES; IN-CELL SIMULATION; PARTICLE CODES; ACCELERATOR; INSTABILITIES; PLASMA AB Rapidly growing numerical instabilities routinely occur in multidimensional particle-in-cell computer simulations of plasma-based particle accelerators, astrophysical phenomena, and relativistic charged particle beams. Reducing instability growth to acceptable levels has necessitated higher resolution grids, high-order field solvers, current filtering, etc. except for certain ratios of the time step to the axial cell size, for which numerical growth rates and saturation levels are reduced substantially. This paper derives and solves the cold beam dispersion relation for numerical instabilities in multidimensional, relativistic, electromagnetic particle-in-cell programs employing either the standard or the Cole-Karkkainnen finite difference field solver on a staggered mesh and the common Esirkepov current-gathering algorithm. Good overall agreement is achieved with previously reported results of the WARP code. In particular, the existence of select time steps for which instabilities are minimized is explained. Additionally, an alternative field interpolation algorithm is proposed for which instabilities are almost completely eliminated for a particular time step in ultra-relativistic simulations. (c) 2013 Elsevier Inc. All rights reserved. C1 [Godfrey, Brendan B.] Univ Maryland, College Pk, MD 20742 USA. [Vay, Jean-Luc] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Godfrey, BB (reprint author), Univ Maryland, College Pk, MD 20742 USA. EM brendan.godfrey@ieee.org RI Godfrey, Brendan/D-8204-2011 OI Godfrey, Brendan/0000-0003-2311-7060 FU Office of Science, Office of High Energy Physics, U.S. Dept. of Energy [DE-AC02-05CH11231]; US-DOE SciDAC ComPASS collaboration FX We wish to thank Irving Haber for suggesting this collaboration and for many helpful recommendations. We also are indebted to David Grote for support in using the code WARP at the National Energy Research Supercomputing Center and to Andrew Moylan for advice on using Mathematica to find arrays of roots to transcendental equations. This work was supported in part by the Director, Office of Science, Office of High Energy Physics, U.S. Dept. of Energy under Contract No. DE-AC02-05CH11231 and the US-DOE SciDAC ComPASS collaboration, and used resources of the National Energy Research Scientific Computing Center. NR 27 TC 29 Z9 29 U1 0 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD SEP 1 PY 2013 VL 248 BP 33 EP 46 DI 10.1016/j.jcp.2013.04.006 PG 14 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 167CD UT WOS:000320607100002 ER PT J AU Chen, X Ng, B Sun, YW Tong, C AF Chen, Xiao Ng, Brenda Sun, Yunwei Tong, Charles TI A flexible uncertainty quantification method for linearly coupled multi-physics systems SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Uncertainty quantification; Polynomial chaos; Stochastic modeling; Reactive transport; Operator splitting ID POLYNOMIAL CHAOS; POROUS-MEDIA; TRANSPORT; FLOW; DECOMPOSITION; EFFICIENT AB This paper presents a novel approach to building an integrated uncertainty quantification (UQ) methodology suitable for modern-day component-based approach for multi-physics simulation development. Our "hybrid" UQ methodology supports independent development of the most suitable UQ method, intrusive or non-intrusive, for each physics module by providing an algorithmic framework to couple these "stochastic" modules for propagating "global" uncertainties. We address algorithmic and computational issues associated with the construction of this hybrid framework. We demonstrate the utility of such a framework on a practical application involving a linearly coupled multi-species reactive transport model. (c) 2013 Elsevier Inc. All rights reserved. C1 [Chen, Xiao; Ng, Brenda; Sun, Yunwei; Tong, Charles] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Chen, X (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM chen73@llnl.gov; tong10@llnl.gov RI Chen, Xiao/K-3070-2014; Sun, Yunwei/C-9751-2010 FU US Department of Energy Office of Advanced Scientific Computing Research Applied Mathematics Program; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This research was funded by US Department of Energy Office of Advanced Scientific Computing Research Applied Mathematics Program and performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 46 TC 5 Z9 5 U1 2 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD SEP 1 PY 2013 VL 248 BP 383 EP 401 DI 10.1016/j.jcp.2013.04.009 PG 19 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 167CD UT WOS:000320607100018 ER PT J AU Frank, M Hauck, CD Olbrant, E AF Frank, Martin Hauck, Cory D. Olbrant, Edgar TI PERTURBED, ENTROPY-BASED CLOSURE FOR RADIATIVE TRANSFER SO KINETIC AND RELATED MODELS LA English DT Article DE Radiative transfer; method of moments; entropy closure ID FINITE-ELEMENT-METHOD; DISCONTINUOUS GALERKIN METHOD; LIMITED NEUTRINO DIFFUSION; NAVIER-STOKES EQUATIONS; MAXIMUM-ENTROPY; CONSERVATION-LAWS; MOMENT CLOSURE; HYDRODYNAMICAL MODEL; CARRIER TRANSPORT; EDDINGTON FACTORS AB We derive a hierarchy of closures based on perturbations of well-known entropy-based closures; we therefore refer to them as perturbed entropy-based models. Our derivation reveals final equations containing an additional convective and diffusive term which are added to the flux term of the standard closure. We present numerical simulations for the simplest member of the hierarchy, the perturbed M-1 or PM1 model, in one spatial dimension. Simulations are performed using a Runge-Kutta discontinuous Galerkin method with special limiters that guarantee the realizability of the moment variables and the positivity of the material temperature. Improvements to the standard M 1 model are observed in cases where unphysical shocks develop in the M 1 model. C1 [Frank, Martin; Olbrant, Edgar] Rhein Westfal TH Aachen, Dept Math, D-52062 Aachen, Germany. [Frank, Martin; Olbrant, Edgar] Rhein Westfal TH Aachen, Ctr Computat Engn Sci, D-52062 Aachen, Germany. [Hauck, Cory D.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Frank, M (reprint author), Rhein Westfal TH Aachen, Dept Math, Schinkelstr 2, D-52062 Aachen, Germany. EM frank@mathcces.rwth-aachen.de; hauckc@ornl.gov; olbrant@mathcces.rwth-aachen.de RI Frank, Martin/F-2753-2011 FU U.S. Department of Energy; Office of Advanced Scientific Computing Research; [De-AC05-00OR22725] FX The research of the second author is sponsored by the Office of Advanced Scientific Computing Research; U.S. Department of Energy. The work was performed at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC under Contract No. De-AC05-00OR22725. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. NR 67 TC 4 Z9 4 U1 1 U2 9 PU AMER INST MATHEMATICAL SCIENCES-AIMS PI SPRINGFIELD PA PO BOX 2604, SPRINGFIELD, MO 65801-2604 USA SN 1937-5093 EI 1937-5077 J9 KINET RELAT MOD JI Kinet. Relat. Mod. PD SEP PY 2013 VL 6 IS 3 BP 557 EP 587 DI 10.3934/krm.2013.6.557 PG 31 WC Mathematics, Applied; Mathematics SC Mathematics GA 156GG UT WOS:000319809300006 ER PT J AU Hsiung, CHH Pyzik, AJ Gulsoy, EB De Carlo, F Xiao, X Faber, KT AF Hsiung, C-H. H. Pyzik, A. J. Gulsoy, E. B. De Carlo, F. Xiao, X. Faber, K. T. TI Impact of doping on the mechanical properties of acicular mullite SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY LA English DT Article DE Mechanical properties; Mullite; X-ray tomography; Porous ceramics ID DISSIMILAR ELASTIC-MATERIALS; CRACK DEFLECTION; FRACTURE ENERGY; MICROSTRUCTURE; INTERFACES AB Acicular mullite (ACM) is a highly porous ceramic with a needlelike microstructure. Next-generation ACM-based diesel particulate filters will require porosities >60%, making optimizing ACM's mechanical properties a key area of interest. A prior study determined that, for the range of microstructures evaluated, the elastic modulus, strength, and fracture toughness were largely functions of total porosity and not needle or pore size, consistent with the Gibson-Ashby foam model. Therefore, alternate strengthening and toughening methods were sought. Doping the ACM precursor with either MgO or Nd2O3 produced ACM microstructures that appeared similar but had differing bulk mechanical properties. The mechanical properties of the mullite needles, the intergranular glassy phase, and the mullite glass interface of the ACMs were investigated, but no major differences were found. Using X-ray computed tomography, a 3D imaging technique, it was found that MgO-doping of the ACM created a less uniform, and thus weaker, microstructure than Nd2O3-doping. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Hsiung, C-H. H.; Gulsoy, E. B.; Faber, K. T.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Pyzik, A. J.] Dow Chem Co USA, Midland, MI 48764 USA. [De Carlo, F.; Xiao, X.] Argonne Natl Lab, Adv Photon Source 2BM, Argonne, IL 60439 USA. RP Faber, KT (reprint author), Northwestern Univ, Dept Mat Sci & Engn, 2220 Campus Dr, Evanston, IL 60208 USA. EM k-faber@northwestern.edu RI Faber, Katherine/B-6741-2009; Gulsoy, Emine/A-1985-2011 OI Gulsoy, Emine/0000-0002-8182-2473 FU Dow Chemical Company; NSF-NSEC; NSF-MRSEC; Keck Foundation; State of Illinois; Northwestern University; U.S. DOE [DE-AC02-06CH11357] FX This work was funded by a research grant from The Dow Chemical Company. ACM processing and portions of the SEM microscopy were carried out at The Dow Chemical Company, and the authors would like to thank Kwanho Yang, Chan Han, Cliff Todd, Janet Goss, Sherry Allen, and Nick Shinkel from Core R&D of The Dow Chemical Company for their help and expertise. The mechanical property tests were done at the CLAMMP facility at Northwestern University (NSF DMR-0520513). Additional SEM microscopy was performed in the EPIC and Keck-II facilities of NUANCE at Northwestern University. NUANCE Center is supported by NSF-NSEC, NSF-MRSEC, Keck Foundation, the State of Illinois, and Northwestern University. Test sample preparation was carried out at the OMM facility of Northwestern University. X-ray computed tomography was done at the Advanced Photon Source. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. Finally, a special thanks to David Haberthur and Julie Fife for their help and training in 3D image analysis. NR 21 TC 3 Z9 3 U1 1 U2 36 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0955-2219 J9 J EUR CERAM SOC JI J. Eur. Ceram. Soc. PD SEP PY 2013 VL 33 IS 10 BP 1955 EP 1965 DI 10.1016/j.jeurceramsoc.2013.02.006 PG 11 WC Materials Science, Ceramics SC Materials Science GA 148GN UT WOS:000319232700042 ER PT J AU Zhai, P AF Zhai, Pei TI Analyzing solar energy policies using a three-tier model: A case study of photovoltaics adoption in Arizona, United States SO RENEWABLE ENERGY LA English DT Article DE Photovoltaics; Energy policy; Renewable portfolio Standard (RPS) ID RENEWABLE ENERGY; ELECTRICITY POLICIES; EXPERIENCE CURVES AB This study reveals the interrelationships among a variety of policies supporting solar energy adoption in the U.S. and then calculates the amount of financial subsidies required to support mandatory policies such as Renewable Portfolio Standard (RPS). To illuminate interrelationships among these policies, this study proposes three tiers of descriptive model: the top tier includes mandatory policies such as the Renewable Portfolio Standard (RPS); the middle tier is composed of financial support mechanisms, such as tax credit and rebates; and the bottom tier comprises policies that provide funding sources, such as Public Benefit funds. Based on our proposed model, this study further builds a model which calculates the amount of financial subsidies required to support RPS targets of distributed photovoltaics (PV) adoption. The model is applied to the case study of residential PV adoption in the state of Arizona by 2025. The financial requirements are calculated considering of the uncertainty of federal tax credits (extension or termination after 2016) and compared with planned funds that support PV adoption. This study points out that if states would pursue a sustainable PV adoption targets, they should make more efforts on financial support programs. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Zhai, Pei] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Zhai, P (reprint author), 438 Old Connecticut Path 2, Framingham, MA 01701 USA. EM clarezhai@gmail.com FU National Science Foundation Office of Emerging Frontiers in Research and Innovation (EFRI) [0836046] FX This research is supported by the National Science Foundation Office of Emerging Frontiers in Research and Innovation (EFRI) (grant #0836046). The author thanks Eric D. Williams and Peter Larsen for helpful discussions and comments. NR 25 TC 9 Z9 9 U1 2 U2 37 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0960-1481 J9 RENEW ENERG JI Renew. Energy PD SEP PY 2013 VL 57 BP 317 EP 322 DI 10.1016/j.renene.2013.01.058 PG 6 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA 145NZ UT WOS:000319025000038 ER PT J AU Mage, MG Dolan, MA Wang, R Boyd, LF Revilleza, MJ Robinson, H Natarajan, K Myers, NB Hansen, TH Margulies, DH AF Mage, Michael G. Dolan, Michael A. Wang, Rui Boyd, Lisa F. Revilleza, Maria Jamela Robinson, Howard Natarajan, Kannan Myers, Nancy B. Hansen, Ted H. Margulies, David H. TI A structural and molecular dynamics approach to understanding the peptide-receptive transition state of MHC-I molecules SO MOLECULAR IMMUNOLOGY LA English DT Review DE Antigen presentation; MHC-I structure and function; Peptide loading; X-ray crystallography; Molecular dynamics AB The mature conformation of major histocompatibility complex class I (MHC-I) proteins depends on the presence of bound peptides, permitting recognition at the cell surface by CD8(+) T lymphocytes. Newly synthesized MHC-I molecules in the endoplasmic reticulum are maintained in a peptide-receptive (PR) transition state by several chaperones until they are released concomitant with the loading of peptides. By determining the crystallographic structure of a region of an MHC-I molecule that is recognized by a unique monoclonal antibody and comparing this with docking and molecular dynamics simulations with the whole molecule, we demonstrate the movement of a hinged unit supporting the part of the binding groove that interacts with the amino terminal residues of the bound peptide. This unit contains a conserved 310 helix that flips from an exposed "open" position in the PR form to a "closed" position in the peptide-loaded (PL) mature molecule. These analyses indicate how this segment of the MHC-I molecule moves to help establish the A and B pockets critical for tight peptide binding and the stable structure required for antigen presentation and T cell recognition at the cell surface. Published by Elsevier Ltd. C1 [Mage, Michael G.; Wang, Rui; Boyd, Lisa F.; Revilleza, Maria Jamela; Natarajan, Kannan; Margulies, David H.] NIAID, Mol Biol Sect, Immunol Lab, NIH, Bethesda, MD 20892 USA. [Dolan, Michael A.] NIAID, Computat Biol Sect, Bioinformat & Computat Biosci Branch, NIH, Bethesda, MD 20892 USA. [Robinson, Howard] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Myers, Nancy B.; Hansen, Ted H.] Washington Univ, Sch Med, Dept Pathol & Immunol, St Louis, MO 63110 USA. RP Mage, MG (reprint author), NIAID, NIH, 10 Ctr Dr,Bldg 10,Room 11N311, Bethesda, MD 20892 USA. EM mmage@mail.nih.gov; dhm@nih.gov RI Margulies, David/H-7089-2013; OI Margulies, David/0000-0001-8530-7375 FU National Institute of Allergy and Infectious Diseases; National Institutes of Health [AI019687] FX This research was supported by the intramural research program of the National Institute of Allergy and Infectious Diseases as well as by National Institutes of Health Grant AI019687 (to T.H.H.). NR 6 TC 5 Z9 5 U1 1 U2 107 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0161-5890 J9 MOL IMMUNOL JI Mol. Immunol. PD SEP PY 2013 VL 55 IS 2 SI SI BP 123 EP 125 DI 10.1016/j.molimm.2012.10.021 PG 3 WC Biochemistry & Molecular Biology; Immunology SC Biochemistry & Molecular Biology; Immunology GA 129XI UT WOS:000317876900007 PM 23200143 ER PT J AU Chan, KT Malone, BD Cohen, ML AF Chan, Kevin T. Malone, Brad D. Cohen, Marvin L. TI Pressure dependence of superconductivity in simple cubic phosphorus SO PHYSICAL REVIEW B LA English DT Article ID STRONG-COUPLED SUPERCONDUCTORS; BLACK PHOSPHORUS; PHASE-TRANSITIONS; BAND-STRUCTURE; ANOMALOUS SUPERCONDUCTIVITY; SYNCHROTRON-RADIATION; WANNIER FUNCTIONS; ELECTRON-GAS; TOTAL-ENERGY; TEMPERATURE AB The electronic structure and lattice dynamics for simple cubic (sc) P are calculated over the pressure range 0-70 GPa from first principles using the local-density approximation. The R phonon mode is found to be unstable below 20 GPa in the harmonic approximation, but may be stable down to a pressure less than 20 GPa when anharmonicity is considered. The electron-phonon coupling is calculated for pressures above 20 GPa, and the superconducting transition temperature T-c is found to decrease with increasing pressure throughout this pressure range. The result is in agreement with experimental results above 30 GPa. In contrast to experiment, no evidence for a decrease in T-c with decreasing pressure below 30 GPa is found. The structural transition from rhombohedral A7 to sc is also investigated. An interesting two-step transition is found to occur theoretically which may have relevance for the pressure dependence of T-c. Possible explanations for the discrepancy with experiment are discussed. C1 [Chan, Kevin T.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Chan, KT (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. FU National Science Foundation [DMR10-1006184]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by National Science Foundation Grant No. DMR10-1006184 and by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Computational support was provided by NSF through XSEDE resources at NICS and by DOE at Lawrence Berkeley National Laboratory's NERSC facility. NR 75 TC 5 Z9 6 U1 5 U2 42 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG 30 PY 2013 VL 88 IS 6 AR 064517 DI 10.1103/PhysRevB.88.064517 PG 10 WC Physics, Condensed Matter SC Physics GA 259OB UT WOS:000327535100005 ER PT J AU Koshelev, AE AF Koshelev, A. E. TI Linear magnetoconductivity in multiband spin-density-wave metals with nonideal nesting SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM MAGNETORESISTANCE AB In several parent iron-pnictide compounds the resistivity has an extended range of linear magnetic field dependence. We argue that there is a simple and natural explanation of this behavior. Spin density wave transition leads to Fermi-surface reconstruction corresponding to strong modification of the electronic spectrum near the nesting points. It is difficult for quasiparticles to pass through these points during their orbital motion in magnetic field, because they must turn sharply. As the area of the Fermi surface affected by the nesting points increases proportionally to magnetic field, this mechanism leads to the linear magnetoresistance. The crossover between the quadratic and linear regimes takes place at the field scale set by the SDW gap and scattering rate. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Koshelev, AE (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Koshelev, Alexei/K-3971-2013 OI Koshelev, Alexei/0000-0002-1167-5906 FU UChicago Argonne, LLC, operator of Argonne National Laboratory, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX I would like to thank Vivek Mishra for useful discussions. This work was supported by UChicago Argonne, LLC, operator of Argonne National Laboratory, a U.S. Department of Energy Office of Science laboratory, operated under Contract No. DE-AC02-06CH11357. NR 26 TC 6 Z9 6 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG 30 PY 2013 VL 88 IS 6 AR 060412 DI 10.1103/PhysRevB.88.060412 PG 4 WC Physics, Condensed Matter SC Physics GA 259OB UT WOS:000327535100001 ER PT J AU Xu, Q Ding, SY Brunecky, R Bomble, YJ Himmel, ME Baker, JO AF Xu, Qi Ding, Shi-You Brunecky, Roman Bomble, Yannick J. Himmel, Michael E. Baker, John O. TI Improving activity of minicellulosomes by integration of intra- and intermolecular synergies SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Cellulosomes; Engineered minicellulosomes; Cellulase; Intra- and intermolecular synergies ID CLOSTRIDIUM-THERMOCELLUM; CELLULOSOME CHIMERAS; ETHANOL-PRODUCTION; BACILLUS-SUBTILIS; CELL-SURFACE; CELLULASE; CELLOBIOHYDROLASE; DEGRADATION; HYDROLYSIS; COMPLEX AB Background: Complete hydrolysis of cellulose to glucose requires the synergistic action of three general types of glycoside hydrolases; endoglucanases, exoglucanases, and cellobiases. Cellulases that are found in Nature vary considerably in their modular diversity and architecture. They include: non-complexed enzymes with single catalytic domains, independent single peptide chains incorporating multiple catalytic modules, and complexed, scaffolded structures, such as the cellulosome. The discovery of the latter two enzyme architectures has led to a generally held hypothesis that these systems take advantage of intramolecular and intermolecular proximity synergies, respectively, to enhance cellulose degradation. We use domain engineering to exploit both of these concepts to improve cellulase activity relative to the activity of mixtures of the separate catalytic domains. Results: We show that engineered minicellulosomes can achieve high levels of cellulose conversion on crystalline cellulose by taking advantage of three types of synergism; (1) a complementary synergy produced by interaction of endo- and exo-cellulases, (2) an intramolecular synergy of multiple catalytic modules in a single gene product (this type of synergism being introduced for the first time to minicellulosomes targeting crystalline cellulose), and (3) an intermolecular proximity synergy from the assembly of these cellulases into larger multi-molecular structures called minicellulosomes. The binary minicellulosome constructed in this study consists of an artificial multicatalytic cellulase (CBM4-Ig-GH9-X1(1)-X1(2)-GH8-Doc) and one cellulase with a single catalytic domain (a modified Cel48S with the structure CBM4-Ig-GH48-Doc), connected by a non-catalytic scaffoldin protein. The high level endo-exo synergy and intramolecular synergies within the artificial multifunctional cellulase have been combined with an additional proximity-dependent synergy produced by incorporation into a minicellulosome demonstrating high conversion of crystalline cellulose (Avicel). Our minicellulosome is the first engineered enzyme system confirmed by test to be capable of both operating at temperatures as high as 60 degrees C and converting over 60% of crystalline cellulose to fermentable sugars. Conclusion: When compared to previously reported minicellulosomes assembled from cellulases containing only one catalytic module each, our novel minicellulosome demonstrates a method for substantial reduction in the number of peptide chains required, permitting improved heterologous expression of minicellulosomes in microbial hosts. In addition, it has been shown to be capable of substantial conversion of actual crystalline cellulose, as well as of the less-well-ordered and more easily digestible fraction of nominally crystalline cellulose. C1 [Xu, Qi; Ding, Shi-You; Brunecky, Roman; Bomble, Yannick J.; Himmel, Michael E.; Baker, John O.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. RP Baker, JO (reprint author), Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. EM John.Baker@nrel.gov RI Ding, Shi-You/O-1209-2013 FU Department of Energy Office of Science through the BioEnergy Science Center (BESC) FX This work was supported by the Department of Energy Office of Science through the BioEnergy Science Center (BESC). NR 40 TC 10 Z9 10 U1 0 U2 36 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD AUG 30 PY 2013 VL 6 AR 126 DI 10.1186/1754-6834-6-126 PG 9 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 214KT UT WOS:000324132800001 PM 23987588 ER PT J AU Hamm, P Zewail, AH Fleming, GR AF Hamm, Peter Zewail, Ahmed H. Fleming, Graham R. TI A tribute to Robin Hochstrasser Preface SO CHEMICAL PHYSICS LA English DT Biographical-Item C1 [Hamm, Peter] Univ Zurich, Zurich, Switzerland. [Zewail, Ahmed H.] CALTECH, Pasadena, CA 91125 USA. [Fleming, Graham R.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Hamm, P (reprint author), Univ Zurich, Zurich, Switzerland. EM phamm@pci.uzh.ch RI Hamm, Peter/O-1247-2013 OI Hamm, Peter/0000-0003-1106-6032 NR 0 TC 0 Z9 0 U1 3 U2 45 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-0104 J9 CHEM PHYS JI Chem. Phys. PD AUG 30 PY 2013 VL 422 SI SI BP 1 EP 7 DI 10.1016/j.chemphys.2013.05.003 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 216UF UT WOS:000324309600001 ER PT J AU Nguyen, SC Lomont, JP Harris, CB AF Nguyen, Son C. Lomont, Justin P. Harris, Charles B. TI Mass effect on rotational diffusion of small solutes in solution SO CHEMICAL PHYSICS LA English DT Article DE Rotational correlation time; 2D-IR spectroscopy; Effect of mass on rotational diffusion; Non-hydrodynamic behavior ID MOLECULAR-REORIENTATION; TRACER DIFFUSION; METAL-COMPLEXES; SELF-DIFFUSION; LIQUIDS; DYNAMICS; SPECTROSCOPY; 25-DEGREES-C; CRYSTAL; BENZENE AB Rotational correlation times (tau(c)) of two pairs of small solutes, CpM(CO)(3) and M-2(CO)(10) (M = Mn, Re), are determined in various viscous alkane solutions by narrow-band IR pump broad-band IR probe spectroscopy. By choosing these pairs of molecules, which are significantly different in mass but almost identical in volume, shape and in their expected interactions with solvents, we isolate the effects of mass on tau(c). The effect of mass was observed clearly for these pairs of solute tracers, with heavier substitutions leading to larger tau(c) values. In the case of the CpM(CO)(3) pair, in which the moments of inertia do not change much, the effect of mass was seen in the sc vs. solvent viscosity plot as result of larger slope for heavier substitution, with no clear change in the intercept. For the M-2(CO)(10) pair, in which the moments of inertia change significantly, this mass effect can be observed through changes in both the slope and intercept. Published by Elsevier B.V. C1 [Harris, Charles B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Harris, CB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM cbharris@berkeley.edu FU NSF's Division of Physical Chemistry [CHE-0909632]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; VIED fellowship; NSF FX This work was supported by NSF's Division of Physical Chemistry (CHE-0909632). This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. S.C.N acknowledges support through an VIED fellowship. J.P.L. acknowledges support through an NSF graduate research fellowship. NR 38 TC 1 Z9 1 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-0104 EI 1873-4421 J9 CHEM PHYS JI Chem. Phys. PD AUG 30 PY 2013 VL 422 SI SI BP 31 EP 36 DI 10.1016/j.chemphys.2012.10.004 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 216UF UT WOS:000324309600005 ER PT J AU Sethi, A Anunciado, D Tian, JH Vu, DM Gnanakaran, S AF Sethi, Anurag Anunciado, Divina Tian, Jianhui Vu, Dung M. Gnanakaran, S. TI Deducing conformational variability of intrinsically disordered proteins from infrared spectroscopy with Bayesian statistics SO CHEMICAL PHYSICS LA English DT Article DE Intrinsically disordered proteins; Fourier transform-infrared spectrum; Bayesian analysis; Conformational ensembles ID BOUND ALPHA-SYNUCLEIN; AMIDE-I; PARKINSONS-DISEASE; SECONDARY STRUCTURES; FORCE-FIELD; VIBRATIONAL SPECTROSCOPY; N-METHYLACETAMIDE; DYNAMICS; SPECTRA; SIMULATION AB As it remains practically impossible to generate ergodic ensembles for large intrinsically disordered proteins (IDP) with molecular dynamics (MD) simulations, it becomes critical to compare spectroscopic characteristics of the theoretically generated ensembles to corresponding measurements. We develop a Bayesian framework to infer the ensemble properties of an IDP using a combination of conformations generated by MD simulations and its measured infrared spectrum. We performed 100 different MD simulations totaling more than 10 mu s to characterize the conformational ensemble of a-synuclein, a prototypical IDP, in water. These conformations are clustered based on solvent accessibility and helical content. We compute the amide-I band for these clusters and predict the thermodynamic weights of each cluster given the measured amide-I band. Bayesian analysis produces a reproducible and non-redundant set of thermodynamic weights for each cluster, which can then be used to calculate the ensemble properties. In a rigorous validation, these weights reproduce measured chemical shifts. (C) 2013 Elsevier B. V. All rights reserved. C1 [Sethi, Anurag; Anunciado, Divina; Tian, Jianhui; Vu, Dung M.; Gnanakaran, S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Sethi, Anurag] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Gnanakaran, S (reprint author), Los Alamos Natl Lab, MS K710 TA 3 T-6, Los Alamos, NM 87545 USA. EM gnana@lanl.gov RI Anunciado, Divina/D-3516-2014; Tian, Jianhui/F-7477-2014; OI Vu, Dung/0000-0002-3707-4439; Gnanakaran, S/0000-0002-9368-3044 FU LANL/LDRD; NIH [R37-GM035556]; Center for Nonlinear Studies FX This work was supported by a LANL/LDRD Grant, NIH Grant R37-GM035556, and LANL Institutional Computing for the super-computer time. A. S. was partially supported by a postdoctoral fellowship from the Center for Nonlinear Studies. We would like to thank Jennifer Mackie for editing. DMV would like to thank Timothy Causgrove for help with the experimental IR data analysis. NR 79 TC 3 Z9 3 U1 1 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-0104 J9 CHEM PHYS JI Chem. Phys. PD AUG 30 PY 2013 VL 422 SI SI BP 143 EP 155 DI 10.1016/j.chemphys.2013.05.005 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 216UF UT WOS:000324309600019 ER PT J AU Kocia, L Young, SM Kholod, YA Fayer, MD Gordon, MS Rappe, AM AF Kocia, Lucas Young, Steve M. Kholod, Yana A. Fayer, Michael D. Gordon, Mark S. Rappe, Andrew M. TI Theoretical examination of picosecond phenol migration dynamics in phenylacetylene solution SO CHEMICAL PHYSICS LA English DT Article DE Molecular dynamics; ab initio; Vibrational echo; Hydrogen bonding ID FRAGMENT POTENTIAL METHOD; LIQUID WATER; INFRARED-SPECTROSCOPY; MOLECULAR-DYNAMICS; HYDROGEN-BONDS; EXCHANGE; COMPLEXES; METHANOL; SYSTEMS; SITES AB The time-dependent dynamics of phenol dissolved in liquid phenylacetylene is theoretically investigated through first-principles calculations and molecular dynamics. By modeling the hydroxyl functional group with a Morse potential, the bond becomes site-sensitive, vibrating at distinct frequencies when bound at the phenylacetylene triple bond and aromatic ring. This can be exploited to simulate 2D-IR echo spectra using Fourier analysis. The resulting dynamics yields a phenol migration time between the two primary binding sites on phenylacetylene of 3-5 ps in excellent agreement with experiment. Furthermore, this study finds that the mechanism for this migration is strongly influenced by an indirect pathway, in contrast to prior experimental interpretation. The dynamics is found to be primarily dictated by van der Waals forces instead of hydrogen bonding forces, a conclusion that is supported by first principles calculations. (C) 2013 Elsevier B. V. All rights reserved. C1 [Kocia, Lucas; Young, Steve M.; Rappe, Andrew M.] Dept Chem, Makineni Theoret Labs, Philadelphia, PA 19104 USA. [Kocia, Lucas] Harvard Univ, Dept Chem, Cambridge, MA 02138 USA. [Kholod, Yana A.; Gordon, Mark S.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Kholod, Yana A.; Gordon, Mark S.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Kholod, Yana A.] Monmouth Univ, Dept Chem Med Technol & Phys, West Long Branch, NJ 07764 USA. [Fayer, Michael D.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. RP Young, SM (reprint author), Dept Chem, Makineni Theoret Labs, Philadelphia, PA 19104 USA. EM smyoung@sas.upenn.edu FU NSF [CBET-1159736, CHE-1157772]; DOE [DE-FG02-07ER46431]; AFOSR [FA9550-10-1-0248, FA9550-08-1-0034, FA9550-12-1-0050] FX L.K. was supported by the NSF under Grant No. CBET-1159736, S.M.Y was supported by the DOE under Grant No. DE-FG02-07ER46431, and A. M. R. was supported by the AFOSR under Grant No. FA9550-10-1-0248. M. S. G. and Y.K. were supported by the AFOSR Grant No. FA9550-08-1-0034. MDF thanks the NSF (Grant No. CHE-1157772) and the AFOSR (Grant No. FA9550-12-1-0050) for support. S.M.Y and A. M. R thank the HPCMO and NERSC for generous computational support. The authors also thank Daniel Rosenfeld for fruitful discussions on 2D-IR experiments. NR 35 TC 1 Z9 1 U1 2 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-0104 J9 CHEM PHYS JI Chem. Phys. PD AUG 30 PY 2013 VL 422 SI SI BP 175 EP 183 DI 10.1016/j.chemphys.2013.04.015 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 216UF UT WOS:000324309600022 ER PT J AU Tronin, A Chen, CH Gupta, S Worcester, D Lauter, V Strzalka, J Kuzmenko, I Blasie, JK AF Tronin, A. Chen, C. -H. Gupta, S. Worcester, D. Lauter, V. Strzalka, J. Kuzmenko, I. Blasie, J. K. TI Structural changes in single membranes in response to an applied transmembrane electric potential revealed by time-resolved neutron/X-ray interferometry SO CHEMICAL PHYSICS LA English DT Article DE Time-resolved neutron interferometry; Time-resolved X-ray interferometry; Multilayer substrate; Electrochemical cell; Hybrid bilayer; Reconstituted membrane; Voltage-sensor domain protein; Electric potential ID VOLTAGE-SENSOR AB The profile structure of a hybrid lipid bilayer, tethered to the surface of an inorganic substrate and fully hydrated with a bulk aqueous medium in an electrochemical cell, was investigated as a function of the applied transbilayer electric potential via time-resolved neutron reflectivity, enhanced by interferometry. Significant, and fully reversible structural changes were observed in the distal half (with respect to the substrate surface) of the hybrid bilayer comprised of a zwitterionic phospholipid in response to a +100 mV potential with respect to 0 mV. These arise presumably due to reorientation of the electric dipole present in the polar headgroup of the phospholipid and its resulting effect on the thickness of the phospholipid's hydrocarbon chain layer within the hybrid bilayer's profile structure. The profile structure of the voltage-sensor domain from a voltage-gated ion channel protein within a phospholipid bilayer membrane, tethered to the surface of an inorganic substrate and fully hydrated with a bulk aqueous medium in an electrochemical cell, was also investigated as a function of the applied transmembrane electric potential via time-resolved X-ray reflectivity, enhanced by interferometry. Significant, fully-reversible, and different structural changes in the protein were detected in response to +/- 100 mV potentials with respect to 0 mV. The approach employed is that typical of transient spectroscopy, shown here to be applicable to both neutron and X-ray reflectivity of thin films. (c) 2013 Elsevier B.V. All rights reserved. C1 [Tronin, A.; Chen, C. -H.; Gupta, S.; Blasie, J. K.] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA. [Worcester, D.] Univ Calif Irvine, Dept Physiol & Biophys, Irvine, CA 92697 USA. [Worcester, D.] Univ Missouri, Div Biol, Columbia, MO 65211 USA. [Lauter, V.] Oak Ridge Natl Lab, Neutron Sci Directorate, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Strzalka, J.; Kuzmenko, I.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Blasie, JK (reprint author), Univ Penn, Dept Chem, Philadelphia, PA 19104 USA. EM jkblasie@sas.upenn.edu FU National Institutes of Health [P01 GM86685]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We acknowledge C. Liu (X-ray Science Division, Argonne National Laboratory) for fabrication of the inorganic multilayer substrates, W. Pennie (Research Instrumentation Services, University of Pennsylvania) for fabrication of the electrochemical cells, R. Goyette & H. Ambaye (Spallation Neutron Source, Oak Ridge National Laboratory) for assistance with the reflectometer and data acquisition, and G. DasGupta & S.H. White (Medical School, University of California Irvine) for providing the VSD protein, and funding via the National Institutes of Health grant P01 GM86685. The Spallation Neutron Source at Oak Ridge National Laboratory is a user facility supported by the U.S. Department of Energy, Office of Basic Energy Sciences. The Advanced Photon Source at Argonne National Laboratory is also a user facility supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. NR 8 TC 3 Z9 3 U1 1 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-0104 J9 CHEM PHYS JI Chem. Phys. PD AUG 30 PY 2013 VL 422 SI SI BP 283 EP 289 DI 10.1016/j.chemphys.2013.01.016 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 216UF UT WOS:000324309600035 ER PT J AU Feiguin, AE Somma, RD Batista, CD AF Feiguin, Adrian E. Somma, Rolando D. Batista, Cristian D. TI Exact real-space renormalization method and applications SO PHYSICAL REVIEW B LA English DT Article ID GROUND-STATES; QUANTUM; HAMILTONIANS; SYSTEMS; FORM AB We present a numerical method based on real-space renormalization that outputs the exact ground space of "frustration-free" Hamiltonians. The complexity of our method is polynomial in the degeneracy of the ground spaces of the Hamiltonians involved in the renormalization steps. We apply the method to obtain the full ground spaces of two spin systems. The first system is a spin-1/2 Heisenberg model with four-spin cyclic-exchange interactions defined on a square lattice. In this case, we study finite lattices of up to 160 spins and find a triplet ground state that differs from the singlet ground states obtained by Batista and Trugman, [Phys. Rev. Lett. 93, 217202 (2004)]. We characterize such a triplet state as consisting of a triplon that propagates in a background of fluctuating singlet dimers. The second system is a family of spin-1/2 Heisenberg chains with uniaxial exchange anisotropy and next-nearest-neighbor interactions. In this case, the method finds a ground-space degeneracy that scales quadratically with the system size and outputs the full ground space efficiently. Our method can substantially outperform methods based on exact diagonalization and is more efficient than other renormalization methods when the ground-space degeneracy is large. C1 [Feiguin, Adrian E.] Northeastern Univ, Dept Phys, Boston, MA 02115 USA. [Somma, Rolando D.; Batista, Cristian D.] Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Feiguin, AE (reprint author), Northeastern Univ, Dept Phys, Boston, MA 02115 USA. EM a.feiguin@neu.edu; somma@lanl.gov; cdb@lanl.gov RI Batista, Cristian/J-8008-2016 FU U. S. DOE [DE-AC52-06NA25396]; NSF [DMR-1339564] FX Work at LANL was performed under the auspices of the U. S. DOE Contract No. DE-AC52-06NA25396 through the LDRD program. A. E. F. thanks NSF for funding under Grant No. DMR-1339564. NR 43 TC 2 Z9 2 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD AUG 30 PY 2013 VL 88 IS 7 AR 075145 DI 10.1103/PhysRevB.88.075145 PG 10 WC Physics, Condensed Matter SC Physics GA 208VR UT WOS:000323710000002 ER PT J AU Meehan, TF Vasilevsky, NA Mungall, CJ Dougall, DS Haendel, MA Blake, JA Diehl, AD AF Meehan, Terrence F. Vasilevsky, Nicole A. Mungall, Christopher J. Dougall, David S. Haendel, Melissa A. Blake, Judith A. Diehl, Alexander D. TI Ontology based molecular signatures for immune cell types via gene expression analysis SO BMC BIOINFORMATICS LA English DT Article ID B-CELLS; IN-VIVO; RASSF6; LYMPHOCYTES; SUBSETS; PATHWAY; PROTEIN; MARKER AB Background: New technologies are focusing on characterizing cell types to better understand their heterogeneity. With large volumes of cellular data being generated, innovative methods are needed to structure the resulting data analyses. Here, we describe an 'Ontologically BAsed Molecular Signature' (OBAMS) method that identifies novel cellular biomarkers and infers biological functions as characteristics of particular cell types. This method finds molecular signatures for immune cell types based on mapping biological samples to the Cell Ontology (CL) and navigating the space of all possible pairwise comparisons between cell types to find genes whose expression is core to a particular cell type's identity. Results: We illustrate this ontological approach by evaluating expression data available from the Immunological Genome project (IGP) to identify unique biomarkers of mature B cell subtypes. We find that using OBAMS, candidate biomarkers can be identified at every strata of cellular identity from broad classifications to very granular. Furthermore, we show that Gene Ontology can be used to cluster cell types by shared biological processes in order to find candidate genes responsible for somatic hypermutation in germinal center B cells. Moreover, through in silico experiments based on this approach, we have identified genes sets that represent genes overexpressed in germinal center B cells and identify genes uniquely expressed in these B cells compared to other B cell types. Conclusions: This work demonstrates the utility of incorporating structured ontological knowledge into biological data analysis - providing a new method for defining novel biomarkers and providing an opportunity for new biological insights. C1 [Meehan, Terrence F.] European Bioinformat Inst, European Mol Biol Lab, Cambridge CB10 1SD, England. [Vasilevsky, Nicole A.; Haendel, Melissa A.] Oregon Hlth & Sci Univ, Ontol Dev Grp, Portland, OR 97239 USA. [Mungall, Christopher J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. [Dougall, David S.] Baylor Inst Immunol Res, Dallas, TX 75204 USA. [Blake, Judith A.] Jackson Lab, Bar Harbor, ME 04609 USA. [Diehl, Alexander D.] SUNY Buffalo, Sch Med & Biomed Sci, Dept Neurol, Buffalo, NY 14203 USA. RP Diehl, AD (reprint author), SUNY Buffalo, Sch Med & Biomed Sci, Dept Neurol, 100 High St, Buffalo, NY 14203 USA. EM addiehl@buffalo.edu RI chen, zhu/K-5923-2013; Diehl, Alexander/G-9883-2016; OI Diehl, Alexander/0000-0001-9990-8331; Meehan, Terrence/0000-0003-1980-3228; Vasilevsky, Nicole/0000-0001-5208-3432 FU INCF; ARRA [HG002273-09Z]; "The Gene Ontology Consortium" NIH [NHGRI- HG002273] FX We would like to thank Richard H. Scheuermann for reviewing the manuscript. This work was supported by INCF and by an ARRA administrative supplement grant HG002273-09Z to the parent grant "The Gene Ontology Consortium" NIH, NHGRI- HG002273. NR 52 TC 3 Z9 3 U1 0 U2 6 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD AUG 30 PY 2013 VL 14 AR 263 DI 10.1186/1471-2105-14-263 PG 15 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA 214IS UT WOS:000324126600001 PM 24004649 ER PT J AU Moradmand, A Slaughter, DS Landers, AL Fogle, M AF Moradmand, A. Slaughter, D. S. Landers, A. L. Fogle, M. TI Dissociative-electron-attachment dynamics near the 8-eV Feshbach resonance of CO2 SO PHYSICAL REVIEW A LA English DT Article ID COLLISION AB We present experimental results for dissociative electron attachment to carbon dioxide near the 8-eV Feshbach resonance. In particular, the dissociation channel leading to O- production has been investigated with a momentum imaging technique that utilizes a supersonic gas jet to form a low-temperature, confined molecular target. Angular fragmentation and kinetic energy release distributions are compared to recent results by Slaughter et al. [J. Phys. B 44, 205203 (2012)] and Wu et al. [Phys. Rev. A 85, 052709 (2012)] using similar techniques. We show that careful attention to weighting of the O- fragmentation momentum space is required to interpret the kinetic energy release observations and that there is no appreciable change in the angular distribution of O- fragments at different energies around the resonance peak, as previously reported by Wu et al. The present O- momentum distribution and kinetic energy release differ from previous results and provide alternative guidance for the theoretical consideration of potential energy surface dynamics that takes place during attachment. C1 [Moradmand, A.; Landers, A. L.; Fogle, M.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Slaughter, D. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Moradmand, A (reprint author), Auburn Univ, Dept Phys, Auburn, AL 36849 USA. OI Slaughter, Daniel/0000-0002-4621-4552 NR 20 TC 5 Z9 5 U1 0 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD AUG 30 PY 2013 VL 88 IS 2 AR 022711 DI 10.1103/PhysRevA.88.022711 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 208VK UT WOS:000323709100007 ER PT J AU Abeykoon, AMM Bozin, ES Yin, WG Gu, GD Hill, JP Tranquada, JM Billinge, SJL AF Abeykoon, A. M. Milinda Bozin, Emil S. Yin, Wei-Guo Gu, Genda Hill, John P. Tranquada, John M. Billinge, Simon J. L. TI Evidence for Short-Range-Ordered Charge Stripes Far above the Charge-Ordering Transition in La1.67Sr0.33NiO4 SO PHYSICAL REVIEW LETTERS LA English DT Article ID FLUCTUATING STRIPES; NEUTRON-SCATTERING; SUPERCONDUCTORS; LA5/3SR1/3NIO4; PSEUDOGAP; PHASES AB The temperature evolution of structural effects associated with charge order (CO) and spin order in La1.67Sr0.33NiO4 has been investigated using neutron powder diffraction. We report an anomalous shrinking of the c / a lattice parameter ratio that correlates with T-CO. The sign of this change can be explained by the change in interlayer Coulomb energy between the static-stripe-ordered state and the fluctuating-stripe-ordered state or the charge-disordered state. In addition, we identify a contribution to the mean-square displacements of Ni and in-plane O atoms whose width correlates quite well with the size of the pseudogap extracted from the reported optical conductivity, with a non-Debye-like component that persists below and well above T-CO. We infer that dynamic charge-stripe correlations survive to T similar to 2T(CO). C1 [Abeykoon, A. M. Milinda; Bozin, Emil S.; Yin, Wei-Guo; Gu, Genda; Hill, John P.; Tranquada, John M.; Billinge, Simon J. L.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Billinge, Simon J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. RP Abeykoon, AMM (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RI Tranquada, John/A-9832-2009; Yin, Weiguo/A-9671-2014 OI Tranquada, John/0000-0003-4984-8857; Yin, Weiguo/0000-0002-4965-5329 FU Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, U.S. Department of Energy [DE-AC02-98CH10886]; DOE Office of Basic Energy Sciences; DOE [DE-AC52-06NA25396] FX This work was supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, U.S. Department of Energy through account No. DE-AC02-98CH10886. This work has benefited from the use of NPDF at LANSCE, funded by DOE Office of Basic Energy Sciences. LANL is operated by Los Alamos National Security LLC under DOE Contract No. DE-AC52-06NA25396. NR 43 TC 10 Z9 10 U1 3 U2 34 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 30 PY 2013 VL 111 IS 9 AR 096404 DI 10.1103/PhysRevLett.111.096404 PG 5 WC Physics, Multidisciplinary SC Physics GA 208XS UT WOS:000323716400005 PM 24033056 ER PT J AU Furukawa, H Cordova, KE O'Keeffe, M Yaghi, OM AF Furukawa, Hiroyasu Cordova, Kyle E. O'Keeffe, Michael Yaghi, Omar M. TI The Chemistry and Applications of Metal-Organic Frameworks SO SCIENCE LA English DT Review ID ZEOLITIC IMIDAZOLATE FRAMEWORKS; COORDINATION POLYMER CRYSTALS; HIGH PROTON CONDUCTIVITY; HIGH H-2 ADSORPTION; CARBON-DIOXIDE; SURFACE-AREAS; POSTSYNTHETIC MODIFICATION; HYDROGEN ADSORPTION; CATALYTIC-ACTIVITY; ROOM-TEMPERATURE AB Crystalline metal-organic frameworks (MOFs) are formed by reticular synthesis, which creates strong bonds between inorganic and organic units. Careful selection of MOF constituents can yield crystals of ultrahigh porosity and high thermal and chemical stability. These characteristics allow the interior of MOFs to be chemically altered for use in gas separation, gas storage, and catalysis, among other applications. The precision commonly exercised in their chemical modification and the ability to expand their metrics without changing the underlying topology have not been achieved with other solids. MOFs whose chemical composition and shape of building units can be multiply varied within a particular structure already exist and may lead to materials that offer a synergistic combination of properties. C1 [Furukawa, Hiroyasu; Cordova, Kyle E.; Yaghi, Omar M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Furukawa, Hiroyasu; Cordova, Kyle E.; Yaghi, Omar M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [O'Keeffe, Michael] Arizona State Univ, Dept Chem, Tempe, AZ 87240 USA. [O'Keeffe, Michael; Yaghi, Omar M.] NanoCentury KAIST Inst, Taejon 305701, South Korea. [O'Keeffe, Michael; Yaghi, Omar M.] World Class Univ, Grad Sch Energy Environm Water & Sustainabil, Taejon 305701, South Korea. RP Yaghi, OM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM yaghi@berkeley.edu RI EFRC, CGS/I-6680-2012; Cordova, Kyle/I-2556-2014; Stangl, Kristin/D-1502-2015; Furukawa, Hiroyasu/C-5910-2008; OI Cordova, Kyle/0000-0002-4988-0497; Furukawa, Hiroyasu/0000-0002-6082-1738; Yaghi, Omar/0000-0002-5611-3325 FU BASF SE (Ludwigshafen, Germany); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Energy Frontier Research Center [DE-SC0001015]; U.S. Department of Defense, Defense Threat Reduction Agency [HDTRA 1-12-1-0053]; Ministry of Education, Science and Technology (Korea), WCU Program [NRF R-31-2008-000-10055-0] FX We acknowledge the original contributions made by members of the Yaghi research group as cited in the references. In particular, preliminary work on this manuscript was done by W. Morris, F. Gandara, H. Deng, and Y. Zhang. Supported by BASF SE (Ludwigshafen, Germany); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Energy Frontier Research Center grant DE-SC0001015; U.S. Department of Defense, Defense Threat Reduction Agency grant HDTRA 1-12-1-0053; and the Ministry of Education, Science and Technology (Korea), WCU Program grant NRF R-31-2008-000-10055-0. NR 132 TC 1647 Z9 1656 U1 780 U2 3255 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD AUG 30 PY 2013 VL 341 IS 6149 BP 974 EP + DI 10.1126/science.1230444 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 208BZ UT WOS:000323652300033 ER PT J AU Reeves, GD Spence, HE Henderson, MG Morley, SK Friedel, RHW Funsten, HO Baker, DN Kanekal, SG Blake, JB Fennell, JF Claudepierre, SG Thorne, RM Turner, DL Kletzing, CA Kurth, WS Larsen, BA Niehof, JT AF Reeves, G. D. Spence, H. E. Henderson, M. G. Morley, S. K. Friedel, R. H. W. Funsten, H. O. Baker, D. N. Kanekal, S. G. Blake, J. B. Fennell, J. F. Claudepierre, S. G. Thorne, R. M. Turner, D. L. Kletzing, C. A. Kurth, W. S. Larsen, B. A. Niehof, J. T. TI Electron Acceleration in the Heart of the Van Allen Radiation Belts SO SCIENCE LA English DT Article ID 1997 MAGNETIC CLOUD; RELATIVISTIC ELECTRONS; GEOMAGNETIC STORMS; ULF; ENERGIZATION; MAGNETOSPHERE; CHORUS; POWER AB The Van Allen radiation belts contain ultrarelativistic electrons trapped in Earth's magnetic field. Since their discovery in 1958, a fundamental unanswered question has been how electrons can be accelerated to such high energies. Two classes of processes have been proposed: transport and acceleration of electrons from a source population located outside the radiation belts (radial acceleration) or acceleration of lower-energy electrons to relativistic energies in situ in the heart of the radiation belts (local acceleration). We report measurements from NASA's Van Allen Radiation Belt Storm Probes that clearly distinguish between the two types of acceleration. The observed radial profiles of phase space density are characteristic of local acceleration in the heart of the radiation belts and are inconsistent with a predominantly radial acceleration process. C1 [Reeves, G. D.; Henderson, M. G.; Morley, S. K.; Friedel, R. H. W.; Funsten, H. O.; Larsen, B. A.; Niehof, J. T.] Los Alamos Natl Lab, Space Sci & Applicat Grp, Los Alamos, NM 87545 USA. [Spence, H. E.] Univ New Hampshire, Each Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Baker, D. N.] Univ Colorado, Lab Atmospher & Space Res, Boulder, CO 80309 USA. [Kanekal, S. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.] Aerosp Corp, El Segundo, CA 90245 USA. [Thorne, R. M.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. [Turner, D. L.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. [Kletzing, C. A.; Kurth, W. S.] Univ Iowa, Dept Phys, Iowa City, IA 52242 USA. RP Reeves, GD (reprint author), Los Alamos Natl Lab, Space Sci & Applicat Grp, POB 1663, Los Alamos, NM 87545 USA. EM reeves@lanl.gov RI Morley, Steven/A-8321-2008; Turner, Drew/G-3224-2012; Friedel, Reiner/D-1410-2012; Funsten, Herbert/A-5702-2015; Larsen, Brian/A-7822-2011; Henderson, Michael/A-3948-2011 OI Reeves, Geoffrey/0000-0002-7985-8098; Morley, Steven/0000-0001-8520-0199; Kletzing, Craig/0000-0002-4136-3348; Spence, Harlan/0000-0002-2526-2205; Kurth, William/0000-0002-5471-6202; Friedel, Reiner/0000-0002-5228-0281; Funsten, Herbert/0000-0002-6817-1039; Larsen, Brian/0000-0003-4515-0208; Henderson, Michael/0000-0003-4975-9029 FU RBSP-Energetic Particle, Composition, and Thermal Plasma under NASA [NAS5-01072] FX This work was supported by RBSP-Energetic Particle, Composition, and Thermal Plasma funding under NASA's Prime contract no. NAS5-01072. All Van Allen Probes (RBSP) observations used in this study, along with display and analysis software, are publicly available at the Web site www.rbsp-ect.lanl.gov. NR 31 TC 146 Z9 148 U1 3 U2 20 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD AUG 30 PY 2013 VL 341 IS 6149 BP 991 EP 994 DI 10.1126/science.1237743 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 208BZ UT WOS:000323652300039 PM 23887876 ER PT J AU Hsu, YK Yu, CH Chen, YC Lin, YG AF Hsu, Yu-Kuei Yu, Chun-Hao Chen, Ying-Chu Lin, Yan-Gu TI Synthesis of novel Cu2O micro/nanostructural photocathode for solar water splitting SO ELECTROCHIMICA ACTA LA English DT Article DE Cuprous oxide; Photoelectrochemical; Hydrogen Generation; Water splitting ID THIN-FILMS; PHOTOELECTROCHEMICAL ACTIVITY; HYDROGEN GENERATION; CUO; FABRICATION; ELECTRODES; NANORODS; RATIOS AB The hierarchical p-type Cu2O micro/nanostructural film on copper foil is successfully fabricated via a facile and cost-effective template route through transformation of lotus-like CuO/Cu(OH)(2) nanosheet/nanowire structure for photoelectrochemical (PEC) hydrogen generation. Various size of Cu2O micro/nanostructure transfers from CuO nanosheets and Cu(OH)(2) nanowires by means of thermally reducing the oxides from Cu2+ to Cu1+ at temperature of 500 degrees C under nitrogen atmosphere. Mott-Schottky plot shows the flat band potential of the hierarchical Cu2O film to be -0.17 V vs. Ag/AgCl and a hole concentration of 5.7 x 10(19) cm(-3). Direct band gap of 2.03 eV in Cu2O film is determined via incident photon-to-electron conversion efficiency measurement. Significantly, this Cu2O hierarchical photocathode exhibits remarkable photocurrent of -1.6 mA cm(-2) at a potential of -0.6V vs. Ag/AgCl, corresponding to the solar conversion efficiency of 1.97%. These results demonstrate the Cu2O micro/nanostructural film have great potential in solar hydrogen applications. Crown Copyright (c) 2013 Published by Elsevier Ltd. All rights reserved. C1 [Hsu, Yu-Kuei; Yu, Chun-Hao] Natl Dong Hwa Univ, Dept Optoelect Engn, Hualien 97401, Taiwan. [Chen, Ying-Chu] Natl Taiwan Univ, Dept Chem Engn, Taipei 106, Taiwan. [Lin, Yan-Gu] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Hsu, YK (reprint author), Natl Dong Hwa Univ, Dept Optoelect Engn, Hualien 97401, Taiwan. EM ykhsu@mail.ndhu.edu.tw RI Hsu, Yu-Kuei/H-6591-2014 FU National Dong Hwa University; National Science Council of the Republic of China, Taiwan [NSC 101-2221-E-259-011] FX The authors would like to thank the National Dong Hwa University and the National Science Council of the Republic of China, Taiwan, for financially supporting this research under Contract No. NSC 101-2221-E-259-011. NR 24 TC 32 Z9 32 U1 20 U2 257 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD AUG 30 PY 2013 VL 105 BP 62 EP 68 DI 10.1016/j.electacta.2013.05.003 PG 7 WC Electrochemistry SC Electrochemistry GA 191LP UT WOS:000322414800009 ER PT J AU Gibson, QD Schoop, LM Weber, AP Ji, HW Nadj-Perge, S Drozdov, IK Beidenkopf, H Sadowski, JT Fedorov, A Yazdani, A Valla, T Cava, RJ AF Gibson, Q. D. Schoop, L. M. Weber, A. P. Ji, Huiwen Nadj-Perge, S. Drozdov, I. K. Beidenkopf, H. Sadowski, J. T. Fedorov, A. Yazdani, A. Valla, T. Cava, R. J. TI Termination-dependent topological surface states of the natural superlattice phase Bi4Se3 SO PHYSICAL REVIEW B LA English DT Article ID DIRAC CONE; INSULATORS; BI2TE3; BI2SE3 AB We describe the topological surface states of Bi4Se3, a compound in the infinitely adaptive Bi-2-Bi2Se3 natural superlattice phase series, determined by a combination of experimental and theoretical methods. Two observable cleavage surfaces, terminating at Bi or Se, are characterized by angle-resolved photoelectron spectroscopy and scanning tunneling microscopy, and modeled by ab initio density functional theory calculations. Topological surface states are observed on both surfaces, but with markedly different dispersions and Kramers point energies. Bi4Se3 therefore represents the only known compound with different topological states on differently terminated, easily distinguished and stable surfaces. C1 [Gibson, Q. D.; Schoop, L. M.; Ji, Huiwen; Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. [Weber, A. P.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Weber, A. P.] Univ Missouri, Dept Phys & Astron, Kansas City, MO 64110 USA. [Nadj-Perge, S.; Drozdov, I. K.; Beidenkopf, H.; Yazdani, A.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Sadowski, J. T.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Fedorov, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Valla, T.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Gibson, QD (reprint author), Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. EM rcava@princeton.edu RI Schoop, Leslie/A-4627-2013; Nadj-Perge, Stevan/G-4115-2013; Ji, Huiwen/O-5145-2014; Weber, Andrew/G-8148-2016; OI Schoop, Leslie/0000-0003-3459-4241; Nadj-Perge, Stevan/0000-0002-2916-360X; Weber, Andrew/0000-0002-7636-2572; Sadowski, Jerzy/0000-0002-4365-7796 FU National Science foundation [NSF-DMR-0819860, NSF-DMR-1104612]; DARPA-SPAWAR [N6601-11-1-4110]; ARO MURI program [W911NF-12-1-0461]; US Department of Energy (DOE), Office of Basic Energy Sciences [DE-AC02-98CH10886]; US DOE, Office of Basic Energy Sciences [DE-AC02-05CH11231]; European Community FX The authors acknowledge helpful discussions with B. A. Bernevig and F. Chen. The financial support of the National Science foundation, Grants No. NSF-DMR-0819860 and No. NSF-DMR-1104612, DARPA-SPAWAR Grant No. N6601-11-1-4110, and the ARO MURI program, Grant No. W911NF-12-1-0461, are gratefully acknowledged. The work at Brookhaven was carried out in part at the Center for Functional Nanomaterials and the National Synchrotron Light Source which are supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. The Advanced Light Source is supported by the US DOE, Office of Basic Energy Sciences, under Contract No. DE-AC02-05CH11231. One of the authors (S. N.-P.) acknowledges support of European Community through the Marie-Curie OEF fellowship. NR 27 TC 18 Z9 18 U1 8 U2 70 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 30 PY 2013 VL 88 IS 8 AR UNSP 081108 DI 10.1103/PhysRevB.88.081108 PG 5 WC Physics, Condensed Matter SC Physics GA 208WJ UT WOS:000323712400001 ER PT J AU Levitas, VI Roy, AM Preston, DL AF Levitas, Valery I. Roy, Arunabha M. Preston, Dean L. TI Multiple twinning and variant-variant transformations in martensite: Phase-field approach SO PHYSICAL REVIEW B LA English DT Article ID LARGE STRAINS; ENERGY AB A phase-field theory of transformations between martensitic variants and multiple twinning within martensitic variants is developed for large strains and lattice rotations. It resolves numerous existing problems. The model, which involves just one order parameter for the description of each variant-variant transformation and multiple twinnings within each martensitic variant, allows one to prescribe the twin interface energy and width, and to introduce interface stresses consistent with the sharp interface limit. A finite-element approach is developed and applied to the solution of a number of examples of twinning and combined austenite-martensite and martensite-martensite phase transformations (PTs) and nanostructure evolution. A similar approach can be developed for reconstructive, electric, and magnetic PTs. C1 [Levitas, Valery I.] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. [Levitas, Valery I.; Roy, Arunabha M.] Iowa State Univ, Dept Aerosp Engn, Ames, IA 50011 USA. [Levitas, Valery I.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Preston, Dean L.] Los Alamos Natl Lab, Computat Phys Div, Los Alamos, NM 87545 USA. RP Levitas, VI (reprint author), Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. EM vlevitas@iastate.edu OI Roy, Arunabha/0000-0002-2085-0841 FU LANL [104321]; Army Research Office [W911NF-12-1-0340]; National Science Foundation [CMMI-0969143]; DARPA [W31P4Q-13-1-0010]; Office of Naval Research [N00014-12-1-0525]; ISU FX The support of LANL (Contract No. 104321), Army Research Office (Grant No. W911NF-12-1-0340), National Science Foundation (Grant No. CMMI-0969143), DARPA (Grant No. W31P4Q-13-1-0010), Office of Naval Research (Grant No. N00014-12-1-0525), and ISU is gratefully acknowledged. NR 31 TC 15 Z9 15 U1 0 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 30 PY 2013 VL 88 IS 5 AR 054113 DI 10.1103/PhysRevB.88.054113 PG 8 WC Physics, Condensed Matter SC Physics GA 208VO UT WOS:000323709500001 ER PT J AU Refaely-Abramson, S Sharifzadeh, S Jain, M Baer, R Neaton, JB Kronik, L AF Refaely-Abramson, Sivan Sharifzadeh, Sahar Jain, Manish Baer, Roi Neaton, Jeffrey B. Kronik, Leeor TI Gap renormalization of molecular crystals from density-functional theory SO PHYSICAL REVIEW B LA English DT Article ID ULTRAVIOLET PHOTOELECTRON-SPECTROSCOPY; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; BAND-GAPS; DERIVATIVE DISCONTINUITIES; POLARIZATION ENERGIES; DIELECTRIC-CONSTANT; HYBRID FUNCTIONALS; OPTICAL-PROPERTIES; ORBITAL ENERGIES AB Fundamental gap renormalization due to electronic polarization is a basic phenomenon in molecular crystals. Despite its ubiquity and importance, all conventional approaches within density-functional theory completely fail to capture it, even qualitatively. Here, we present a new screened range-separated hybrid functional, which, through judicious introduction of the scalar dielectric constant, quantitatively captures polarization-induced gap renormalization, as demonstrated on the prototypical organic molecular crystals of benzene, pentacene, and C-60. This functional is predictive, as it contains system-specific adjustable parameters that are determined from first principles, rather than from empirical considerations. C1 [Refaely-Abramson, Sivan; Kronik, Leeor] Weizmann Inst Sci, Dept Mat & Interfaces, IL-76100 Rehovot, Israel. [Sharifzadeh, Sahar; Neaton, Jeffrey B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Jain, Manish] Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India. [Baer, Roi] Hebrew Univ Jerusalem, Fritz Haber Ctr Mol Dynam, Inst Chem, IL-91904 Jerusalem, Israel. RP Refaely-Abramson, S (reprint author), Weizmann Inst Sci, Dept Mat & Interfaces, IL-76100 Rehovot, Israel. RI Jain, Manish/A-8303-2010; Sharifzadeh, Sahar/L-9367-2013; Neaton, Jeffrey/F-8578-2015; Foundry, Molecular/G-9968-2014; Sharifzadeh, Sahar/P-4881-2016 OI Jain, Manish/0000-0001-9329-6434; Neaton, Jeffrey/0000-0001-7585-6135; Sharifzadeh, Sahar/0000-0003-4215-4668 FU European Research Council; Israel Science Foundation; United States-Israel Binational Science Foundation; Wolfson Foundation; US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (Theory FWP) [DE-AC02-05CH11231]; Scientific Discovery through Advanced Computing (SciDAC) Partnership program; US Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy FX This work was supported by the European Research Council, the Israel Science Foundation, the United States-Israel Binational Science Foundation, and the Wolfson Foundation. J.B.N. was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (Theory FWP) under Contract No. DE-AC02-05CH11231. S. S. was partially supported by the Scientific Discovery through Advanced Computing (SciDAC) Partnership program funded by US Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences. The work performed at the Molecular Foundry was also supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy. We thank the National Energy Research Scientific Computing center for computational resources. NR 86 TC 64 Z9 64 U1 8 U2 54 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 30 PY 2013 VL 88 IS 8 AR 081204 DI 10.1103/PhysRevB.88.081204 PG 5 WC Physics, Condensed Matter SC Physics GA 208WJ UT WOS:000323712400002 ER PT J AU Poudyal, N Chaubey, GS Rong, CB Cui, J Liu, JP AF Poudyal, Narayan Chaubey, Girija S. Rong, Chuan-Bing Cui, Jun Liu, J. Ping TI Synthesis of monodisperse FeCo nanoparticles by reductive salt-matrix annealing SO NANOTECHNOLOGY LA English DT Article ID FEPT NANOPARTICLES; MAGNETIC NANOPARTICLES; NANOCOMPOSITE MAGNETS; PARTICLES; MOMENT; ALLOY; PHASE; FENI AB We report here a novel synthetic method to prepare monodisperse air-stable FeCo nanoparticles with average sizes of 8, 12 and 20 nm. CoFe2O4 nanoparticles of different sizes were first synthesized by a chemical solution method. The as-synthesized CoFe2O4 nanoparticles were then mixed with ball-milled NaCl powders and heated to 400-500 degrees C in forming gas (Ar 93% + H-2 7%). The salt powder worked as a separating medium that prevents the CoFe2O4 nanoparticles from agglomerating during the heat treatment while the forming gas reduces the CoFe2O4 nanoparticles to FeCo nanoparticles. Monodisperse FeCo nanoparticles were recovered by dissolving the NaCl in water and subsequently washing with ethanol and acetone. Structural analyses confirmed that FeCo nanoparticles retained the same size as their oxide precursors. The size of the FeCo nanoparticles can be well tuned by controlling the size of the CoFe2O4 nanoparticles. The saturation magnetization of FeCo nanoparticles is size dependent and increases with size. C1 [Poudyal, Narayan; Chaubey, Girija S.; Rong, Chuan-Bing; Liu, J. Ping] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Cui, Jun] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. RP Poudyal, N (reprint author), Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. EM pliu@uta.edu FU US DoD DARPA/ARO [W911NF-08-1-0249]; DoD/ARO [W911NF-11-1-0507]; Center for Nanostructured Materials and the Characterization Center for Materials and Biology at the University of Texas at Arlington; MS3 Initiative at the Pacific Northwest National Laboratory FX This work has been supported by the US DoD DARPA/ARO under grant W911NF-08-1-0249 and DoD/ARO under grant W911NF-11-1-0507. This work has also been supported by the Center for Nanostructured Materials and the Characterization Center for Materials and Biology at the University of Texas at Arlington and by the MS3 Initiative at the Pacific Northwest National Laboratory. NR 36 TC 3 Z9 3 U1 2 U2 77 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD AUG 30 PY 2013 VL 24 IS 34 AR 345605 DI 10.1088/0957-4484/24/34/345605 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 194OP UT WOS:000322642900015 PM 23912629 ER PT J AU Zhang, P Shi, YF Chi, MF Park, JN Stucky, GD McFarland, EW Gao, L AF Zhang, Peng Shi, Yifeng Chi, Miaofang Park, Jung-Nam Stucky, Galen D. McFarland, Eric W. Gao, Lian TI Mesoporous delafossite CuCrO2 and spinel CuCr2O4: synthesis and catalysis SO NANOTECHNOLOGY LA English DT Article ID CARBON-MONOXIDE OXIDATION; SOLAR HYDROGEN-PRODUCTION; THIN-FILMS; OXIDE; COPPER; PHOTOCATALYST; WATER; NANOCOMPOSITES; CONDUCTIVITY; TRANSPARENT AB Delafossite CuCrO2 and spinel CuCr2O4 with mesoporous structures have been successfully synthesized using nanocasting methods based on a KIT-6 template. The functional activity of the mesoporous materials was evaluated in applications as heterogeneous catalysts. The activity for photocatalytic hydrogen production of the delafossite structures with different morphologies was characterized and the oxidation state changes associated with photocorrosion of Cu+ investigated using electron energy loss spectroscopy (EELS). Mg2+ doping was found to facilitate the casting of ordered structures for CuCrO2 and improves the photocorrosion resistance of delafossite structures. The mesoporous spinel CuCr2O4 nanostructures were found to be active for low temperature CO oxidation. C1 [Zhang, Peng; Gao, Lian] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China. [Shi, Yifeng; Stucky, Galen D.] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. [Chi, Miaofang] Oak Ridge Natl Lab, Div Mat Sci, Oak Ridge, TN 37830 USA. [Park, Jung-Nam; McFarland, Eric W.] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. RP Zhang, P (reprint author), Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China. EM ewmcfar@engineering.ucsb.edu; liangao@mail.sic.ac.cn RI Shi, Yifeng/A-7550-2008; Chi, Miaofang/Q-2489-2015 OI Shi, Yifeng/0000-0003-2299-1186; Chi, Miaofang/0000-0003-0764-1567 FU National Science Foundation of China [51172142, 21103038]; Third Phase of the 211 Project for Advanced Materials Science [WS3116205006, WS3116205007]; US DOE BES Program [DE-FG02-89ER140048] FX The authors gratefully acknowledge the financial support by the National Science Foundation of China (Nos 51172142, 21103038) and the Third Phase of the 211 Project for Advanced Materials Science (Nos WS3116205006 and WS3116205007), and support from the US DOE BES Program (DE-FG02-89ER140048) as well as partial support NR 37 TC 10 Z9 10 U1 6 U2 109 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD AUG 30 PY 2013 VL 24 IS 34 AR 345704 DI 10.1088/0957-4484/24/34/345704 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 194OP UT WOS:000322642900019 PM 23899503 ER PT J AU Moteabbed, M Niroula, M Raue, BA Weinstein, LB Adikaram, D Arrington, J Brooks, WK Lachniet, J Rimal, D Ungaro, M Afanasev, A Adhikari, KP Aghasyan, M Amaryan, MJ Pereira, SA Avakian, H Ball, J Baltzell, NA Battaglieri, M Batourine, V Bedlinskiy, I Bennett, RP Biselli, AS Bono, J Boiarinov, S Briscoe, WJ Burkert, VD Carman, DS Celentano, A Chandavar, S Cole, PL Collins, P Contalbrigo, M Cortes, O Crede, V D'Angelo, A Dashyan, N De Vita, R De Sanctis, E Deur, A Djalali, C Doughty, D Dupre, R Egiyan, H El Fassi, L Eugenio, P Fedotov, G Fegan, S Fersch, R Fleming, JA Gevorgyan, N Gilfoyle, GP Giovanetti, KL Girod, FX Goetz, JT Gohn, W Golovatch, E Gothe, RW Griffioen, KA Guidal, M Guler, N Guo, L Hafidi, K Hakobyan, H Hanretty, C Harrison, N Heddle, D Hicks, K Ho, D Holtrop, M Hyde, CE Ilieva, Y Ireland, DG Ishkhanov, BS Isupov, EL Jo, HS Joo, K Keller, D Khandaker, M Kim, A Klein, FJ Koirala, S Kubarovsky, A Kubarovsky, V Kuhn, SE Kuleshov, SV Lewis, S Lu, HY MacCormick, M MacGregor, IJD Martinez, D Mayer, M McKinnon, B Mineeva, T Mirazita, M Mokeev, V Montgomery, RA Moriya, K Moutarde, H Munevar, E Camacho, CM Nadel-Turonski, P Nasseripour, R Niccolai, S Niculescu, G Niculescu, I Osipenko, M Ostrovidov, AI Pappalardo, LL Paremuzyan, R Park, K Park, S Phelps, E Phillips, JJ Pisano, S Pogorelko, O Pozdniakov, S Price, JW Procureur, S Protopopescu, D Puckett, AJR Ripani, M Rosner, G Rossi, P Sabatie, F Saini, MS Salgado, C Schott, D Schumacher, RA Seder, E Seraydaryan, H Sharabian, YG Smith, ES Smith, GD Sober, DI Sokhan, D Stepanyan, S Strauch, S Tang, W Taylor, CE Tian, Y Tkachenko, S Voskanyan, H Voutier, E Walford, NK Wood, MH Zachariou, N Zana, L Zhang, J Zhao, ZW Zonta, I AF Moteabbed, M. Niroula, M. Raue, B. A. Weinstein, L. B. Adikaram, D. Arrington, J. Brooks, W. K. Lachniet, J. Rimal, Dipak Ungaro, M. Afanasev, A. Adhikari, K. P. Aghasyan, M. Amaryan, M. J. Pereira, S. Anefalos Avakian, H. Ball, J. Baltzell, N. A. Battaglieri, M. Batourine, V. Bedlinskiy, I. Bennett, R. P. Biselli, A. S. Bono, J. Boiarinov, S. Briscoe, W. J. Burkert, V. D. Carman, D. S. Celentano, A. Chandavar, S. Cole, P. L. Collins, P. Contalbrigo, M. Cortes, O. Crede, V. D'Angelo, A. Dashyan, N. De Vita, R. De Sanctis, E. Deur, A. Djalali, C. Doughty, D. Dupre, R. Egiyan, H. El Fassi, L. Eugenio, P. Fedotov, G. Fegan, S. Fersch, R. Fleming, J. A. Gevorgyan, N. Gilfoyle, G. P. Giovanetti, K. L. Girod, F. X. Goetz, J. T. Gohn, W. Golovatch, E. Gothe, R. W. Griffioen, K. A. Guidal, M. Guler, N. Guo, L. Hafidi, K. Hakobyan, H. Hanretty, C. Harrison, N. Heddle, D. Hicks, K. Ho, D. Holtrop, M. Hyde, C. E. Ilieva, Y. Ireland, D. G. Ishkhanov, B. S. Isupov, E. L. Jo, H. S. Joo, K. Keller, D. Khandaker, M. Kim, A. Klein, F. J. Koirala, S. Kubarovsky, A. Kubarovsky, V. Kuhn, S. E. Kuleshov, S. V. Lewis, S. Lu, H. Y. MacCormick, M. MacGregor, I. J. D. Martinez, D. Mayer, M. McKinnon, B. Mineeva, T. Mirazita, M. Mokeev, V. Montgomery, R. A. Moriya, K. Moutarde, H. Munevar, E. Camacho, C. Munoz Nadel-Turonski, P. Nasseripour, R. Niccolai, S. Niculescu, G. Niculescu, I. Osipenko, M. Ostrovidov, A. I. Pappalardo, L. L. Paremuzyan, R. Park, K. Park, S. Phelps, E. Phillips, J. J. Pisano, S. Pogorelko, O. Pozdniakov, S. Price, J. W. Procureur, S. Protopopescu, D. Puckett, A. J. R. Ripani, M. Rosner, G. Rossi, P. Sabatie, F. Saini, M. S. Salgado, C. Schott, D. Schumacher, R. A. Seder, E. Seraydaryan, H. Sharabian, Y. G. Smith, E. S. Smith, G. D. Sober, D. I. Sokhan, D. Stepanyan, S. Strauch, S. Tang, W. Taylor, C. E. Tian, Ye Tkachenko, S. Voskanyan, H. Voutier, E. Walford, N. K. Wood, M. H. Zachariou, N. Zana, L. Zhang, J. Zhao, Z. W. Zonta, I. CA CLAS Collaboration TI Demonstration of a novel technique to measure two-photon exchange effects in elastic e(+/-)p scattering SO PHYSICAL REVIEW C LA English DT Article ID ELECTRON-PROTON SCATTERING; ELECTROMAGNETIC FORM-FACTORS; POSITRON-PROTON; CLAS; SYSTEM; EP AB Background: The discrepancy between proton electromagnetic form factors extracted using unpolarized and polarized scattering data is believed to be a consequence of two-photon exchange (TPE) effects. However, the calculations of TPE corrections have significant model dependence, and there is limited direct experimental evidence for such corrections. Purpose: The TPE contributions depend on the sign of the lepton charge in e(+/-)p scattering, but the luminosities of secondary positron beams limited past measurement at large scattering angles, where the TPE effects are believe to be most significant. We present the results of a new experimental technique for making direct e(+/-)p comparisons, which has the potential to make precise measurements over a broad range in Q(2) and scattering angles. Methods: We use the Jefferson Laboratory electron beam and the Hall B photon tagger to generate a clean but untagged photon beam. The photon beam impinges on a converter foil to generate a mixed beam of electrons, positrons, and photons. A chicane is used to separate and recombine the electron and positron beams while the photon beam is stopped by a photon blocker. This provides a combined electron and positron beam, with energies from 0.5 to 3.2 GeV, which impinges on a liquid hydrogen target. The large acceptance CLAS detector is used to identify and reconstruct elastic scattering events, determining both the initial lepton energy and the sign of the scattered lepton. Results: The data were collected in two days with a primary electron beam energy of only 3.3 GeV, limiting the data from this run to smaller values of Q(2) and scattering angle. Nonetheless, this measurement yields a data sample for e(+/-)p with statistics comparable to those of the best previous measurements. We have shown that we can cleanly identify elastic scattering events and correct for the difference in acceptance for electron and positron scattering. Because we ran with only one polarity for the chicane, we are unable to study the difference between the incoming electron and positron beams. This systematic effect leads to the largest uncertainty in the final ratio of positron to electron scattering: R = 1.027 +/- 0.005 +/- 0.05 for < Q2 > = 0.206 GeV2 and 0.830 <= epsilon <= 0.943. Conclusions: We have demonstrated that the tertiary e(+/-) beam generated using this technique provides the opportunity for dramatically improved comparisons of e(paired left right arrows)p scattering, covering a significant range in both Q(2) and scattering angle. Combining data with different chicane polarities will allow for detailed studies of the difference between the incoming e(+) and e(-) beams. C1 [Moteabbed, M.; Raue, B. A.; Rimal, Dipak; Bono, J.; Guo, L.] Florida Int Univ, Miami, FL 33199 USA. [Niroula, M.; Weinstein, L. B.; Adikaram, D.; Lachniet, J.; Adhikari, K. P.; Amaryan, M. J.; Bennett, R. P.; Guler, N.; Hyde, C. E.; Koirala, S.; Kuhn, S. E.; Mayer, M.; Seraydaryan, H.; Tkachenko, S.; Zhang, J.] Old Dominion Univ, Norfolk, VA 23529 USA. [Arrington, J.; Baltzell, N. A.; El Fassi, L.; Hafidi, K.] Argonne Natl Lab, Argonne, IL 60439 USA. [Brooks, W. K.; Hakobyan, H.; Kuleshov, S. V.] Univ Tecn Federico Santa Maria, Valparaiso, Chile. [Ungaro, M.; Gohn, W.; Harrison, N.; Joo, K.; Kubarovsky, A.; Mineeva, T.; Seder, E.] Univ Connecticut, Storrs, CT 06269 USA. [Ungaro, M.; Avakian, H.; Batourine, V.; Boiarinov, S.; Burkert, V. D.; Carman, D. S.; Cole, P. L.; Deur, A.; Doughty, D.; Egiyan, H.; Girod, F. X.; Guo, L.; Heddle, D.; Kubarovsky, V.; Mokeev, V.; Munevar, E.; Nadel-Turonski, P.; Park, K.; Puckett, A. J. R.; Sharabian, Y. G.; Smith, E. S.; Stepanyan, S.; Zhang, J.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Collins, P.] Arizona State Univ, Tempe, AZ 85287 USA. [Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA. [Wood, M. H.] Canisius Coll, Buffalo, NY 14208 USA. [Ho, D.; Lu, H. Y.; Moriya, K.; Schumacher, R. A.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Collins, P.; Klein, F. J.; Sober, D. I.; Walford, N. K.] Catholic Univ Amer, Washington, DC 20064 USA. [Ball, J.; Girod, F. X.; Moutarde, H.; Procureur, S.; Sabatie, F.] CEA, Ctr Saclay, Irfu Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Doughty, D.; Heddle, D.] Christopher Newport Univ, Newport News, VA 23606 USA. [Fleming, J. A.; Sokhan, D.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA. [Crede, V.; Eugenio, P.; Hanretty, C.; Ostrovidov, A. I.; Park, S.; Saini, M. S.] Florida State Univ, Tallahassee, FL 32306 USA. [Afanasev, A.; Briscoe, W. J.; Ilieva, Y.; Munevar, E.; Nadel-Turonski, P.; Schott, D.] George Washington Univ, Washington, DC 20052 USA. [Cole, P. L.; Cortes, O.; Martinez, D.; Taylor, C. E.] Idaho State Univ, Pocatello, ID 83209 USA. [Contalbrigo, M.; Pappalardo, L. L.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Aghasyan, M.; Pereira, S. Anefalos; De Sanctis, E.; Mirazita, M.; Pisano, S.; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Battaglieri, M.; Celentano, A.; De Vita, R.; Fegan, S.; Osipenko, M.; Ripani, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [D'Angelo, A.; Zonta, I.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Dupre, R.; Guidal, M.; Jo, H. S.; MacCormick, M.; Camacho, C. Munoz; Niccolai, S.] Inst Phys Nucl ORSAY, Orsay, France. [Bedlinskiy, I.; Kuleshov, S. V.; Pogorelko, O.; Pozdniakov, S.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Giovanetti, K. L.; Nasseripour, R.; Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Kim, A.; Park, K.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Voutier, E.] Univ Grenoble 1, LPSC, CNRS IN2P3, INPG, Grenoble, France. [Egiyan, H.; Holtrop, M.; Zana, L.] Univ New Hampshire, Durham, NH 03824 USA. [Khandaker, M.; Salgado, C.] Norfolk State Univ, Norfolk, VA 23504 USA. [Chandavar, S.; Goetz, J. T.; Hicks, K.; Tang, W.] Ohio Univ, Athens, OH 45701 USA. [Kubarovsky, V.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Gilfoyle, G. P.] Univ Richmond, Richmond, VA 23173 USA. [D'Angelo, A.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Fedotov, G.; Golovatch, E.; Ishkhanov, B. S.; Isupov, E. L.; Kubarovsky, A.; Mokeev, V.] Skobeltsyn Nucl Phys Inst, Moscow 119899, Russia. [Baltzell, N. A.; Djalali, C.; Fedotov, G.; Gothe, R. W.; Ilieva, Y.; Lu, H. Y.; Nasseripour, R.; Phelps, E.; Strauch, S.; Tian, Ye; Wood, M. H.; Zachariou, N.; Zhao, Z. W.] Univ S Carolina, Columbia, SC 29208 USA. [Ireland, D. G.; Lewis, S.; MacGregor, I. J. D.; McKinnon, B.; Montgomery, R. A.; Phillips, J. J.; Protopopescu, D.; Rosner, G.; Smith, G. D.; Sokhan, D.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Hanretty, C.; Keller, D.; Tkachenko, S.; Zhao, Z. W.] Univ Virginia, Charlottesville, VA 22901 USA. [Fersch, R.; Griffioen, K. A.] Coll William & Mary, Williamsburg, VA 23187 USA. [Dashyan, N.; Gevorgyan, N.; Hakobyan, H.; Paremuzyan, R.; Voskanyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. RP Moteabbed, M (reprint author), Florida Int Univ, Miami, FL 33199 USA. RI Ireland, David/E-8618-2010; Arrington, John/D-1116-2012; MacGregor, Ian/D-4072-2011; Brooks, William/C-8636-2013; Sabatie, Franck/K-9066-2015; Osipenko, Mikhail/N-8292-2015; Zhang, Jixie/A-1461-2016; Adikaram, Dasuni/D-1539-2016; Adikaram, D/H-7128-2016; Celentano, Andrea/J-6190-2012; Schumacher, Reinhard/K-6455-2013; D'Angelo, Annalisa/A-2439-2012; OI Zonta, Irene/0000-0003-4952-2160; Ireland, David/0000-0001-7713-7011; Arrington, John/0000-0002-0702-1328; Brooks, William/0000-0001-6161-3570; Sabatie, Franck/0000-0001-7031-3975; Osipenko, Mikhail/0000-0001-9618-3013; Celentano, Andrea/0000-0002-7104-2983; Schumacher, Reinhard/0000-0002-3860-1827; D'Angelo, Annalisa/0000-0003-3050-4907; Afanasev, Andrei/0000-0003-0679-3307; Hyde, Charles/0000-0001-7282-8120 FU US Department of Energy [FB0821, DE-AC05-84ER40150]; National Science Foundation [ACT-119]; Israel Science Foundation [1120953]; US-Israeli Bi-national Science Foundation [11121448]; Chilean Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) [791100017]; French Centre National de la Recherche Scientifique and Commissariat a l'Energie Atomique; French-American Cultural Exchange (FACE); Italian Istituto Nazionale di Fisica Nucleare; National Research Foundation of Korea; United Kingdom's Science and Technology Facilities Council (STFC) FX We acknowledge the efforts of the staff of the accelerator and Physics Divisions at Jefferson Laboratory that made this experiment possible. We are especially grateful to the Hall B staff members who tirelessly reconfigured the beamline and stacked (and restacked) shielding blocks. Thanks also to Dave Kashy, who made the crucial suggestion of narrowing the post-chicane collimator. This work was supported by the US Department of Energy and National Science Foundation, the Israel Science Foundation, the US-Israeli Bi-national Science Foundation, the Chilean Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) (Grants No. FB0821, No. ACT-119, No. 1120953, No. 11121448, and No. 791100017), the French Centre National de la Recherche Scientifique and Commissariat a l'Energie Atomique, the French-American Cultural Exchange (FACE), the Italian Istituto Nazionale di Fisica Nucleare, the National Research Foundation of Korea, and the United Kingdom's Science and Technology Facilities Council (STFC). The Jefferson Science Associates (JSA) operates the Thomas Jefferson National Accelerator Facility for the U.S. Department of Energy under Contract No. DE-AC05-84ER40150. NR 83 TC 11 Z9 11 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD AUG 30 PY 2013 VL 88 IS 2 AR 025210 DI 10.1103/PhysRevC.88.025210 PG 13 WC Physics, Nuclear SC Physics GA 208WL UT WOS:000323712600008 ER PT J AU Dain, RP Gresham, G Groenewold, GS Steill, JD Oomens, J Van Stipdonk, MJ AF Dain, Ryan P. Gresham, Gary Groenewold, Gary S. Steill, Jeffrey D. Oomens, Jos Van Stipdonk, Michael J. TI Infrared multiple photon dissociation spectroscopy of group I and group II metal complexes with Boc-hydroxylamine SO RAPID COMMUNICATIONS IN MASS SPECTROMETRY LA English DT Article ID GAS-PHASE; MASS-SPECTROMETRY; VIBRATIONAL SPECTROSCOPY; IONS; PHOTODISSOCIATION; MOLECULES; SPECTRA; UO22+ AB RATIONALE Hydroxamates are essential growth factors for some microbes, acting primarily as siderophores that solubilize iron for transport into a cell. Here we determined the intrinsic structure of 1:1 complexes between Boc-protected hydroxylamine and group I ([M(L)](+)) and group II ([M(L-H)](+)) cations, where M and L are the cation and ligand, respectively, which are convenient models for the functional unit of hydroxamate siderphores. METHODS The relevant complex ions were generated by electrospray ionization (ESI) and isolated and stored in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Infrared spectra of the isolated complexes were collected by monitoring (infrared) photodissociation yield as a function of photon energy. Experimental spectra were then compared to those predicted by density functional theory (DFT) calculations. RESULTS The infrared multiple photon dissociation (IRMPD) spectra collected are in good agreement with those predicted to be lowest-energy by DFT. The spectra for the group I complexes contain six resolved absorptions that can be attributed to amide I and II type and hydroxylamine N-OH vibrations. Similar absorptions are observed for the group II cation complexes, with shifts of the amide I and amide II vibrations due to the change in structure with deprotonation of the hydroxylamine group. CONCLUSIONS IRMPD spectroscopy unequivocally shows that the intrinsic binding mode for the group I cations involves the O atoms of the amide carbonyl and hydroxylamine groups of Boc-hydroxylamine. A similar binding mode is preferred for the group II cations, except that in this case the metal ion is coordinated by the O atom of the deprotonated hydroxylamine group. Copyright (c) 2013 John Wiley & Sons, Ltd. C1 [Dain, Ryan P.; Van Stipdonk, Michael J.] Wichita State Univ, Dept Chem, Wichita, KS 67208 USA. [Gresham, Gary; Groenewold, Gary S.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Steill, Jeffrey D.; Oomens, Jos] Radboud Univ Nijmegen, Inst Mol & Mat, FELIX Facil, NL-6525 ED Nijmegen, Netherlands. [Oomens, Jos] Univ Amsterdam, NL-1098 XH Amsterdam, Netherlands. RP Van Stipdonk, MJ (reprint author), Lawrence Univ, Dept Chem, Appleton, WI 54912 USA. EM michael.j.vanstipdonk@lawrence.edu RI Oomens, Jos/F-9691-2015 FU U.S. National Science Foundation (NSF) [CAREER-0239800]; Fairmount College of Liberal Arts and Sciences of Wichita State University; NSF [EIA-0216178, EPS-0236913]; U.S. Department of Energy, Idaho National Laboratory, DOE Idaho Operations Office [DE AC07 05ID14517]; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO); National High Field FT-ICR Facility at the National High Magnetic Field Laboratory, Tallahassee, FL, USA [CHE-9909502] FX Work by RPD and MVS was supported in part by a grant from the U.S. National Science Foundation (NSF grant CAREER-0239800) and the Fairmount College of Liberal Arts and Sciences of Wichita State University. Density functional theory calculations were performed at Wichita State University using resources of the High-performance Computing Center (HIPECC), a facility supported by the NSF under Grants EIA-0216178 and EPS-0236913 and matching support from the State of Kansas and HIPECC. Work by GSG and GG (under the INL LDRD Program) is supported by the U.S. Department of Energy, Idaho National Laboratory, DOE Idaho Operations Office Contract DE AC07 05ID14517. JO and JDS are supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO). Construction and shipping of the FT-ICR-MS instrument was made possible through funding from the National High Field FT-ICR Facility (Grant CHE-9909502) at the National High Magnetic Field Laboratory, Tallahassee, FL, USA. The excellent support by Dr. B. Redlich and others of the FELIX staff is gratefully acknowledged. NR 20 TC 3 Z9 3 U1 1 U2 29 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0951-4198 J9 RAPID COMMUN MASS SP JI Rapid Commun. Mass Spectrom. PD AUG 30 PY 2013 VL 27 IS 16 BP 1867 EP 1872 DI 10.1002/rcm.6640 PG 6 WC Biochemical Research Methods; Chemistry, Analytical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA 182OH UT WOS:000321752900006 PM 23857932 ER PT J AU Feng, X Hashimoto, S Hotzel, G Jansen, K Petschlies, M Renner, DB AF Feng, Xu Hashimoto, Shoji Hotzel, Grit Jansen, Karl Petschlies, Marcus Renner, Dru B. TI Computing the hadronic vacuum polarization function by analytic continuation SO PHYSICAL REVIEW D LA English DT Article ID LATTICE QCD; QUARK MASSES AB We propose a method to compute the hadronic vacuum polarization function on the lattice at continuous values of photon momenta bridging between the spacelike and timelike regions. We provide two independent demonstrations to show that this method leads to the desired hadronic vacuum polarization function in Minkowski spacetime. We show with the example of the leading-order QCD correction to the muon anomalous magnetic moment that this approach can provide a valuable alternative method for calculations of physical quantities where the hadronic vacuum polarization function enters. C1 [Feng, Xu; Hashimoto, Shoji] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Hashimoto, Shoji] Grad Univ Adv Studies Sokendai, Sch High Energy Accelerator Sci, Tsukuba, Ibaraki 3050801, Japan. [Hotzel, Grit] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Jansen, Karl] DESY, NIC, D-15738 Zeuthen, Germany. [Jansen, Karl] Univ Cyprus, Dept Phys, CY-1678 Nicosia, Cyprus. [Petschlies, Marcus] Cyprus Inst, CY-1645 Nicosia, Cyprus. [Renner, Dru B.] Jefferson Lab, Newport News, VA 23606 USA. RP Feng, X (reprint author), High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. FU Japanese Ministry of Education [21674002]; Jefferson Science Associates, LLC, under U.S. DOE [DE-AC05-06OR23177]; German Academic National Foundation (Studienstiftung des deutschen Volkes e.V.); DFG [SFB/TR9]; Cyprus Research Promotion Foundation [PiPOSigmaEYSigmaH/EMEIPOSigma/0311/16] FX X. F. and S.H. are supported in part by the Grant-in-Aid of the Japanese Ministry of Education (Grant No. 21674002), and D.B.R. is supported in part by Jefferson Science Associates, LLC, under U.S. DOE Contract No. DE-AC05-06OR23177. G.H. gratefully acknowledges the support of the German Academic National Foundation (Studienstiftung des deutschen Volkes e. V.) and of the DFG-funded corroborative research center SFB/TR9. K.J. is supported in part by the Cyprus Research Promotion Foundation under Contract No. Pi PO Sigma EY Sigma H/EMEIPO Sigma/0311/16. The numerical computations have been performed on the SGI system HLRN-II at the HLRN Supercomputing Service Berlin-Hannover, FZJ/GCS, and BG/P at FZ-Julich. The analysis was performed on the computer centers of KEK, DESY Zeuthen, and Humboldt University Berlin. NR 23 TC 19 Z9 19 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD AUG 29 PY 2013 VL 88 IS 3 AR 034505 DI 10.1103/PhysRevD.88.034505 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 208WK UT WOS:000323712500005 ER PT J AU Kim, JB Hock, C Yacovitch, TI Neumark, DM AF Kim, Jongjin B. Hock, Christian Yacovitch, Tara I. Neumark, Daniel M. TI Slow Photoelectron Velocity-Map Imaging Spectroscopy of Cold Thiozonide (S-3(-)) SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID SULFUR VAPOR; CLUSTER ANIONS; BLUE SOLUTIONS; RAMAN-SPECTRA; NEGATIVE-IONS; S3 MOLECULE; SOLID ARGON; DETACHMENT; S-4; S4 AB We report high-resolution anion photoelectron spectra of thiozonide (S-3(-)) acquired by slow electron velocity-map imaging (SEVI). The ions were cryogenically cooled within an ion trap before photodetachment. We measure an electron affinity of 2.3630(9) eV, resolving discrepancies in previously reported photoelectron spectra that resulted from the presence of vibrational hot bands. The SEW spectrum shows well-resolved, extended vibrational progressions in the symmetric stretch and bending modes of S-3, yielding accurate frequencies for both. C1 [Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu RI Neumark, Daniel/B-9551-2009 OI Neumark, Daniel/0000-0002-3762-9473 FU Air Force Office of Scientific Research [FA9550-12-1-0160]; Defense University Research Instrumentation Program (DURIP) [FA9550-11-1-0300]; German Academic Exchange Service (DAAD); National Science and Engineering Research Council of Canada (NSERC) FX This research is funded by the Air Force Office of Scientific Research under Grant No. FA9550-12-1-0160 and the Defense University Research Instrumentation Program (DURIP) under Grant No. FA9550-11-1-0300. C.H. thanks the German Academic Exchange Service (DAAD) for a postdoctoral scholarship. T.I.Y. thanks the National Science and Engineering Research Council of Canada (NSERC) for a postgraduate scholarship. NR 54 TC 10 Z9 10 U1 0 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD AUG 29 PY 2013 VL 117 IS 34 BP 8126 EP 8131 DI 10.1021/jp401083u PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 211OD UT WOS:000323916800006 PM 23461601 ER PT J AU Steill, JD Kay, JJ Paterson, G Sharples, TR Klos, J Costen, ML Strecker, KE McKendrick, KG Alexander, MH Chandler, DW AF Steill, Jeffrey D. Kay, Jeffrey J. Paterson, Grant Sharples, Thomas R. Klos, Jacek Costen, Matthew L. Strecker, Kevin E. McKendrick, Kenneth G. Alexander, M. H. Chandler, David W. TI Rotational Alignment of NO (A(2)Sigma(+)) from Collisions with Ne SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID DIFFERENTIAL CROSS-SECTIONS; POTENTIAL-ENERGY SURFACES; INELASTIC-SCATTERING; MOLECULAR-COLLISIONS; ANGULAR-MOMENTUM; (2)PI)AR SYSTEM; AR; STATE; DEPOLARIZATION; POLARIZATION AB We report the direct angle-resolved measurement of collision-induced alignment of short-lived electronically excited molecules using crossed atomic and molecular beams. Utilizing velocity-mapped ion imaging, we measure the alignment of NO in its first electronically excited state (A(2)Sigma(+)) following single collisions with Ne atoms. We prepare A(2)Sigma(+) (nu = 0, N = 0, j = 0.5) and by comparing images obtained using orthogonal linear probe laser polarizations, we experimentally determine the degree of alignment induced by collisional rotational excitation for the final rotational states N' = 4, S, 7, and 9. The experimental results are compared to theoretical predictions using both a simple dassical hard-shell model and quantum scattering calculations on an ab initio potential energy surface (PES). The experimental results show overall trends in the scattering-angle dependent polarization sensitivity that are accounted for by the simple classical model, but structure in the scattering-angle dependence that is not. The quantum scattering calculations qualitatively reproduce this structure, and we demonstrate that the experimental measurements have the sensitivity to critique the best available potential surfaces. This sensitivity to the PES is in contrast to that predicted for ground-state NO(X) alignment. C1 [Steill, Jeffrey D.; Kay, Jeffrey J.; Strecker, Kevin E.; Chandler, David W.] Sandia Natl Labs, Livermore, CA 94550 USA. [Paterson, Grant; Sharples, Thomas R.; Costen, Matthew L.; McKendrick, Kenneth G.] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland. [Klos, Jacek; Alexander, M. H.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. RP Costen, ML (reprint author), Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland. EM m.l.costen@hw.ac.uk; mha@umd.edu; chand@sandia.gov RI McKendrick, Kenneth/C-7235-2014; Klos, Jacek/A-6457-2008; Sharples, Thomas/F-4521-2015; Costen, Matthew/K-5178-2012 OI McKendrick, Kenneth/0000-0001-8979-2195; Klos, Jacek/0000-0002-7407-303X; Sharples, Thomas/0000-0003-3772-083X; Costen, Matthew/0000-0002-6491-9812 FU Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; United States Department of Energy [DE-AC04-94AL85000]; Chemical, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy [DESC0002323]; EPSRC [EP/C015975/1, EP/J017973/1] FX J.D.S., J.J.K, K.E.S., and D.W.C. acknowledge funding for this work provided by the Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. J.K. and M.H.A acknowledge support by the Chemical, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, under Grant No. DESC0002323. K.G.M. and M.L.C. would like to thank the EPSRC for grants EP/C015975/1 and EP/J017973/1, which supported G.P. and T.R.S. The Edinburgh authors would also like to thank the School of Engineering and Physical Sciences at Heriot-Watt University for supporting the visits of M.L.C., G.P., and T.R.S. to Sandia. NR 60 TC 11 Z9 11 U1 3 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD AUG 29 PY 2013 VL 117 IS 34 BP 8163 EP 8174 DI 10.1021/jp402019s PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 211OD UT WOS:000323916800011 PM 23611173 ER PT J AU Smolentsev, G Guda, A Zhang, XY Haldrup, K Andreiadis, ES Chayarot-Kerlidou, M Canton, SE Nachtegaal, M Artero, V Sundstrom, V AF Smolentsev, Grigory Guda, Alexander Zhang, Xiaoyi Haldrup, Kristoffer Andreiadis, Eugen S. Chayarot-Kerlidou, Murielle Canton, Sophie E. Nachtegaal, Maarten Artero, Vincent Sundstrom, Villy TI Pump-Flow-Probe X-ray Absorption Spectroscopy as a Tool for Studying Intermediate States of Photocatalytic Systems SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID FINE-STRUCTURE; EXCITED-STATE; WATER; COBALT; SCATTERING; COMPLEXES; CATALYSTS; TRANSITION; DYNAMICS; DETECTOR AB A new setup for pump-flow-probe X-ray absorption spectroscopy has been implemented at the SuperXAS beamline of the Swiss Light Source. It allows recording X-ray absorption spectra with a time resolution of tens of microseconds and high detection efficiency for samples with sub-millimolar concentrations. A continuous wave laser is used for the photoexcitation, with the distance between laser and X-ray beams and velocity of liquid flow determining the time delay, while the focusing of both beams and the flow speed profile define the time resolution. This method is compared with the alternative measurement technique that utilizes a 1 kHz repetition rate laser and multiple X-ray probe pulses. Such an experiment was performed at beamline 11ID-D of the Advanced Photon Source. Advantages, limitations, and potential for improvement of the pump-flow-probe setup are discussed by analyzing the photon statistics. Both methods with Co K-edge probing were applied to the investigation of a cobaloxime-based photocatalytic reaction. The interplay between optimizing for efficient photoexcitation and time resolution as well and the effect of sample degradation for these two setups are discussed. C1 [Smolentsev, Grigory; Canton, Sophie E.; Sundstrom, Villy] Lund Univ, S-22100 Lund, Sweden. [Smolentsev, Grigory; Nachtegaal, Maarten] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Guda, Alexander] Southern Fed Univ, Res Ctr Nanoscale Struct Matter, Rostov Na Donu 344090, Russia. [Zhang, Xiaoyi] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Haldrup, Kristoffer] Tech Univ Denmark, NEXMAP Sect, Dept Phys, Ctr Mol Movies, DK-2800 Lyngby, Denmark. [Andreiadis, Eugen S.; Chayarot-Kerlidou, Murielle; Artero, Vincent] Univ Grenoble 1, CNRS, CEA, Lab Chem & Biol Met, Grenoble, France. RP Smolentsev, G (reprint author), Lund Univ, S-22100 Lund, Sweden. EM grigory.smolentsev@psi.ch RI Artero, Vincent/C-6853-2008; Andreiadis, Eugen/D-2932-2009; Haldrup, Kristoffer/J-6875-2013; Canton, Sophie/A-8432-2016; Guda, Alexander/A-3671-2015 OI Artero, Vincent/0000-0002-6148-8471; Andreiadis, Eugen/0000-0002-0617-5616; Haldrup, Kristoffer/0000-0002-0565-6397; Guda, Alexander/0000-0002-6941-4987 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; European Research Council under the European Union; ERC Advanced investigator grant [VISCHEM 226136]; ERC starting grant [photo-catH2ode 306398]; Swiss National Science Foundation [200021-135226]; Villum Foundation; Carlsberg Foundation; DANSCATT; Swedish Research Council; Ministry of education and science of Russia [11.519.11.3005] FX The authors thank M. Willimann and J. Szlachetko for their help during the experiments. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. This work is supported by the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) with an ERC Advanced investigator grant to V. Sundstrom (VISCHEM 226136) and an ERC starting grant to V. Artero (photo-catH2ode 306398). The COST Action CM1202 PERSPECT-H2O is also acknowledged. The Swiss Light Source is thanked for the provision of beam time. G.S. and M.N. thank the Swiss National Science Foundation (grant number 200021-135226) for funding of research. K.H. gratefully acknowledges support from the Villum and Carlsberg Foundations and from DANSCATT. S.E.C acknowledges funding from the Swedish Research Council, and A.G. thanks the Ministry of education and science of Russia for the financial support (project #11.519.11.3005). We thank three anonymous reviewers for their detailed and constructive comments that significantly improved the manuscript. NR 49 TC 12 Z9 13 U1 2 U2 85 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 29 PY 2013 VL 117 IS 34 BP 17367 EP 17375 DI 10.1021/jp4010554 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 211OG UT WOS:000323917300001 PM 24443663 ER PT J AU Wilson, AR Sun, KY Chi, MF White, RM LeBeau, JM Lamb, HH Wiley, BJ AF Wilson, Adria R. Sun, Keyi Chi, Miaofang White, Ryan M. LeBeau, James M. Lamb, H. Henry Wiley, Benjamin J. TI From Core-Shell to Alloys: The Preparation and Characterization of Solution-Synthesized AuPd Nanoparticle Catalysts SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID BIMETALLIC NANOPARTICLES; PALLADIUM CATALYSTS; PD CATALYSTS; FORMIC-ACID; OXIDATION; HYDROGENATION; ADSORPTION; ELECTROOXIDATION; TRANSFORMATION; AROMATICS AB This article describes the solution-phase synthesis of 4 nm gold nanoparticles with 0.7 atom-thick, 1.9 atom-thick, and 3.8 atom-thick layers of Pd on their surfaces. These well-defined core shell nanoparticles were deposited on a silica support, calcined, and reduced at 300 degrees C to create alloyed nanoparticles containing 10.9, 20.2, and 28.5% Pd (w/w). Monometallic Pd nanoparticles sintered during calcination at 300 degrees C, but no sintering was observed for AuPd nanoparticles. Diffuse reflectance infrared Fourier transform (DRIFT) spectra of adsorbed CO suggests that Au donates d electron density to Pd in the core shell and alloy structures and confirms the presence of Au and Pd atoms on the surface of the nanopartides after calcination and reduction. The properties of the AuPd alloy catalysts were tested in the vapor-phase conversion of alpha-limonene to p-c-ymene. AuPd nanoparticles containing 20% or more Pd per particle produced p-cymene yields greater than 80%, equivalent to conventional Pd catalysts prepared by incipient wetness and ion exchange methods. Very low yields of p-cymene were obtained from dehydrogenation of p-menthane under equivalent conditions, suggesting that the production of p-cymene from a-limonene proceeds through terpinene intermediates. C1 [Wilson, Adria R.; Wiley, Benjamin J.] Duke Univ, Dept Chem, Durham, NC 27708 USA. [Sun, Keyi; Lamb, H. Henry] N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA. [Chi, Miaofang] Oak Ridge Natl Lab, Microscopy Grp, Oak Ridge, TN 37831 USA. [White, Ryan M.; LeBeau, James M.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. RP Lamb, HH (reprint author), N Carolina State Univ, Dept Chem & Biomol Engn, Box 7905, Raleigh, NC 27695 USA. EM lamb@ncsu.edu; benjamin.wiley@duke.edu RI LeBeau, James/B-6370-2008; White, Ryan/L-5115-2013; Wiley, Benjamin/A-7003-2008; Chi, Miaofang/Q-2489-2015 OI White, Ryan/0000-0001-9023-4713; Chi, Miaofang/0000-0003-0764-1567 FU NSF EFRI HyBi grant [EFRI-0937721]; Duke University; ORNL's Share User Facility; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; National Science Foundation Graduate Research Fellow Program FX We acknowledge support from the NSF EFRI HyBi grant (EFRI-0937721), start-up funds from Duke University, and ORNL's Share User Facility, which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. A.R.W. is supported through the National Science Foundation Graduate Research Fellow Program. This work made use of the Analytical Instrumentation Facility at NCSU. NR 40 TC 17 Z9 17 U1 11 U2 128 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 29 PY 2013 VL 117 IS 34 BP 17557 EP 17566 DI 10.1021/jp404157m PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 211OG UT WOS:000323917300022 ER PT J AU Chase, ZA Fulton, JL Camaioni, DM Mei, DH Balasubramanian, M Pham, VT Zhao, C Weber, RS Wang, Y Lercher, JA AF Chase, Zizwe A. Fulton, John L. Camaioni, Donald M. Mei, Donghai Balasubramanian, Mahalingana Van-Thai Pham Zhao, Chen Weber, Robert S. Wang, Yong Lercher, Johannes A. TI State of Supported Pd during Catalysis in Water SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID X-RAY-ABSORPTION; SPACE GAUSSIAN PSEUDOPOTENTIALS; SMALL PALLADIUM PARTICLES; ETHENE-RICH STREAMS; SELECTIVE HYDROGENATION; HETEROGENEOUS CATALYSIS; NANOPARTICLES; SIZE; SPECTROSCOPY; HYDRODEOXYGENATION AB The structure and chemical state of supported Pd nanoparticles in contact with H-2 in the aqueous phase have been explored by X-ray absorption spectroscopy to better understand their surface reactivity in polar condensed media. The Pd-Pd distances at substantial H-2 pressures indicate the presence of sorbed hydrogen and point to the presence of Pd hydrides, proving that such nanoparticles are hardly influenced by the presence of water. During the hydrogenation of the reactants (phenol, cyclohexanone, and cyclohexene), the Pd-Pd bond length decreased, indicating a drastically lower concentration of sorbed H compared to Pd in the absence of the reactants. This steady state concentration of sorbed hydrogen is established by all reactions involving H-2, i.e., the sorption/desorption into the bulk, the adsorption at the surface, and the reaction with unsaturated reactants, but not by reaction with water. This demonstrates that neither the Pd particles nor the H/Pd ratio is influenced by water, but dynamically adapt to reaction conditions. Consistently, ab initio molecular dynamic simulations indicate that Pd-water interactions are relatively weak for Pd metal and that these interactions become even weaker, in the presence of H-2 and when hydrogen is incorporated into the metal particles. C1 [Fulton, John L.; Camaioni, Donald M.; Mei, Donghai; Van-Thai Pham; Weber, Robert S.; Wang, Yong; Lercher, Johannes A.] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Chase, Zizwe A.; Wang, Yong] Washington State Univ, Sch Chem & Biol Engn, Pullman, WA 99364 USA. [Balasubramanian, Mahalingana] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Zhao, Chen; Lercher, Johannes A.] Tech Univ Munich, Dept Chem, D-85748 Garching, Germany. [Zhao, Chen; Lercher, Johannes A.] Tech Univ Munich, Catalysis Res Inst, D-85748 Garching, Germany. RP Camaioni, DM (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, POB 999, Richland, WA 99352 USA. EM donald.camaioni@pnnl.gov; johannes.lercher@pnnl.gov RI Mei, Donghai/A-2115-2012; Mei, Donghai/D-3251-2011 OI Mei, Donghai/0000-0002-0286-4182; FU Technische Universitat Munchen; US Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences Biosciences; DOE by Battelle [DE-AC05-76RL01830]; DOE-BES; DOE by ANL [DE-AC02-06CH11357] FX Authors thank Junming Sun for the TEM measurements at the Franceschi Microscopy and Imaging Center at Washington State University. C.Z. thanks Technische Universitat Munchen in the framework of the European Graduate School for Sustainable Energy for support. This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for DOE by Battelle through Contract DE-AC05-76RL01830. The PNC/XSD facilities at the APS are supported by DOE-BES and its founding institutions. Use of the APS, an Office of Science User Facility operated for the DOE by ANL, was supported under Contract DE-AC02-06CH11357. NR 73 TC 12 Z9 12 U1 2 U2 81 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 29 PY 2013 VL 117 IS 34 BP 17603 EP 17612 DI 10.1021/jp404772p PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 211OG UT WOS:000323917300027 ER PT J AU Yang, L Tunega, D Xu, L Govind, N Sun, R Taylor, R Lischka, H DeJong, WA Hase, WL AF Yang, Li Tunega, Daniel Xu, Lai Govind, Niranjan Sun, Rui Taylor, Ramona Lischka, Hans DeJong, Wibe A. Hase, William L. TI Comparison of Cluster, Slab, and Analytic Potential Models for the Dimethyl Methylphosphonate (DMMP)/TiO2(110) Intermolecular Interaction SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID INITIO MOLECULAR-DYNAMICS; AUGMENTED-WAVE METHOD; TIO2 ANATASE 101; AB-INITIO; FUNCTIONAL THEORY; RUTILE 110; ADSORPTION; WATER; ENERGY; SURFACES AB In a previous study (J. Phys. Chem. C 2011, 115, 12403), cluster models for the TiO2 rutile(110) surface and MP2 calculations were used to develop an analytic potential energy function for dimethyl methylphosphonate (DMMP) interacting with this surface. In the work presented here, this analytic potential and MP2 cluster models are compared to DFT "slab" calculations for DMMP interacting with the TiO2(110) surface and with DFT cluster models for the TiO2(110) surface. The DFT slab calculations were performed with the PW91 and PBE functionals. The analytic potential gives DMMP/TiO2(110) potential energy curves in excellent agreement with those obtained from the slab calculations. The cluster models for the TiO2(110) surface, used for the MP2 calculations, were extended to DFT calculations with the B3LYP, PW91, and PBE functionals. These DFT calculations do not give DMMP/TiO2(110) interaction energies that agree with those from the DFT slab calculations. Analyses of the wave functions for these duster models show that they do not accurately represent the HOMO and LUMO for the surface, which should be 2p and 3d orbitals, respectively, and the models also do not give an accurate band gap. The MP2 duster models do not accurately represent the LUMO, and that they give accurate DMMP/TiO2(110) interaction energies is apparently fortuitous, arising from their highly inaccurate band gaps. To address this issue, accurate cluster models, consisting of 7, 10, and 15 Ti-atoms and that have the correct HOMO and LUMO properties, are proposed. The Ti-7-cluster model gives a DMMP + TiO2 rutile(110) potential energy curve, determined with DFT, which is consistent with those for the MP2 duster and DFT slab calculations and with the analytic potential energy function. DFT-D calculations, with a dispersion correction, give DMMP + TiO2 rutile(110) binding energies similar to 10-15 kcal/mol stronger than those obtained from pure DFT. The DMMP + TiO2 rutile(110) binding energy is found to depend on the size of the model used to represent the TiO2(110) surface. The work presented here illustrates that care must be taken in "constructing" duster models that accurately model surfaces. C1 [Yang, Li] Chinese Acad Sci, Tech Inst Phys & Chem, Beijing 100190, Peoples R China. [Tunega, Daniel] Univ Nat Resources & Life Sci, Inst Soil Res, A-1190 Vienna, Austria. [Xu, Lai; Sun, Rui; Lischka, Hans; Hase, William L.] Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA. [Govind, Niranjan; DeJong, Wibe A.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Taylor, Ramona] Spectral Sci Inc, Burlington, MA 01803 USA. RP Hase, WL (reprint author), Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA. EM bill.hase@ttu.edu RI Lischka, Hans/A-8802-2015 FU Army Research Office [HDTRA1-07-C-0098]; Robert A. Welch Foundation [D-0005]; High-Performance Computing Center (HPCC) at Texas Tech University; Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory; German Research Foundation [SPP 1315, GE1676/1-1] FX This material is based upon work supported by the Army Research Office under Contract HDTRA1-07-C-0098 and the Robert A. Welch Foundation under Grant D-0005. Support was also provided by the High-Performance Computing Center (HPCC) at Texas Tech University, under the direction of Dr. Philip W. Smith. The research was also performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. This work was also supported by a grant from the German Research Foundation, priority program SPP 1315, Project GE1676/1-1. We acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources that have contributed to the research results reported within this Article. NR 50 TC 3 Z9 3 U1 2 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 29 PY 2013 VL 117 IS 34 BP 17613 EP 17622 DI 10.1021/jp404898v PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 211OG UT WOS:000323917300028 ER PT J AU Wang, ZG Niu, XY Su, QL Deng, HQ Li, ZJ Hu, WY Gao, F AF Wang, Zhiguo Niu, Xinyue Su, Qiulei Deng, Huiqiu Li, Zhijie Hu, Wangyu Gao, Fei TI Transition Metal Adsorption Promotes Patterning and Doping of Graphene by Electron Irradiation SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID DENSITY-FUNCTIONAL THEORY; SUSPENDED GRAPHENE; ADATOM ADSORPTION; GAS AB We present an ab initio molecular dynamics study of the effect of transition metal (TM) adatoms (Sc-Zn) on the threshold displacement energy (TDE) of graphene. Our calculations predict that it is substantially easier to displace one of the carbon atoms near the adatoms. Substitutional TM atoms at carbon vacancies and Stone-Wales defects are the main defect structures formed after irradiation in the TM adatoms-graphene systems. Defect can be formed at low energy electron irradiation (electron energy below 55 keV for the V, Cr, Mn, Fe, and Co adatoms). Thus, the absorption of TM atoms on graphene enables patterning the graphene by controlling deposition and electron irradiation, as well as graphene modification under transmission electron microscope condition. Also, the result provides an easy pathway to dope the graphene with TM substitutional atoms for the spin-electronic devices through electron-beam or ion-beam lighography. C1 [Wang, Zhiguo; Niu, Xinyue; Li, Zhijie] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Su, Qiulei; Deng, Huiqiu; Hu, Wangyu] Hunan Univ, Dept Appl Phys, Changsha 410082, Hunan, Peoples R China. [Gao, Fei] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wang, ZG (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM zgwang@uestc.edu.cn; fei.gao@pnnl.gov RI Hu, Wangyu/B-5762-2009; Wang, Zhiguo/B-7132-2009; Deng, Huiqiu/A-9530-2009 OI Hu, Wangyu/0000-0001-7416-3994; Deng, Huiqiu/0000-0001-8986-104X FU Young Scientists Foundation of Sichuan [09ZQ026-029]; Hunan Provincial Natural Science Foundation [12JJ5014]; Fundamental Research Funds for the Central Universities, Hunan University; Materials Science and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE) [DE-AC05-76RL01830] FX Z.W. was financially supported by the Young Scientists Foundation of Sichuan (09ZQ026-029). H.D. was supported by the Hunan Provincial Natural Science Foundation (12JJ5014) and the Fundamental Research Funds for the Central Universities, Hunan University. F.G. was supported by the Materials Science and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE) under Contract DE-AC05-76RL01830. The authors thank the National Supercomputing Center in Changsha for the computing resources provided. NR 52 TC 3 Z9 3 U1 4 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 29 PY 2013 VL 117 IS 34 BP 17644 EP 17649 DI 10.1021/jp405104z PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 211OG UT WOS:000323917300031 ER PT J AU Kim, DH Shim, YS Moon, HG Chang, HJ Su, D Kim, SY Kim, JS Ju, BK Yoon, SJ Jang, HW AF Kim, Do Hong Shim, Young-Seok Moon, Hi Gyu Chang, Hye Jung Su, Dong Kim, Soo Young Kim, Jin-Sang Ju, Byeong Kwon Yoon, Seok-Jin Jang, Ho Won TI Highly Ordered TiO2 Nanotubes on Patterned Substrates: Synthesis-in-Place for Ultrasensitive Chemiresistors SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SENSITIZED SOLAR-CELLS; GAS-SENSING PROPERTIES; DOMINANT 001 FACETS; THIN-FILMS; TITANIA NANOTUBES; ARRAYS; OXIDE; ANODIZATION; SENSORS; ANATASE AB Integrating a highly ordered TiO2 nanotube array with patterned substrates is an effective design strategy for taking advantage of one-dimensional nanotube structures such as high surface-to-volume ratio and novel functionalities of TiO2, but many challenges remain in synthesis. Here we report a novel synthesis-in-place method for highly ordered vertical TiO2 nanotube films on various patterned substrates and the application of the films to chemiresistive sensors. A unique synthetic strategy, in which the Pt bottom electrodes were clamped during anodization, leads to the complete anodization of the Ti layer to TiO2 nanotubes not only on SiO2/Si substrates but also on glass and sapphire substrates, which can be used as chemiresistors without additional processes. TiO2 nanotube sensors on SiO2/Si substrates show unprecedentedly ultrahigh responses to ethanol and acetone with detection limits down to parts per billion levels. Beyond the high sensitivity, selective responses to ethanol and acetone create opportunities for application in breath analyzers to diagnose human respiratory diseases. C1 [Kim, Do Hong; Jang, Ho Won] Seoul Natl Univ, Res Inst Adv Mat, Dept Mat Sci & Engn, Seoul 151744, South Korea. [Chang, Hye Jung] Korea Inst Sci & Technol, Nanomat Anal Ctr, Seoul 136791, South Korea. [Su, Dong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Shim, Young-Seok; Moon, Hi Gyu; Kim, Jin-Sang; Yoon, Seok-Jin] Korea Inst Sci & Technol, Elect Mat Res Ctr, Seoul 136791, South Korea. [Ju, Byeong Kwon] Korea Univ, Coll Engn, Display & Nanosyst Lab, Seoul 136361, South Korea. [Kim, Soo Young] Chung Ang Univ, Sch Chem Engn & Mat Sci, Seoul 156756, South Korea. RP Jang, HW (reprint author), Seoul Natl Univ, Res Inst Adv Mat, Dept Mat Sci & Engn, Seoul 151744, South Korea. EM hwjang@snu.ac.kr RI Kim, Soo Young/B-4373-2015; Jang, Ho Won/D-9866-2011; Su, Dong/A-8233-2013 OI Kim, Soo Young/0000-0002-0685-7991; Jang, Ho Won/0000-0002-6952-7359; Su, Dong/0000-0002-1921-6683 FU Korea Institute of Science and Technology; Core Technology of Materials Research and Development Program; Korea Ministry of Environment; Fusion Research Program for Green Technologies through the National Research Foundation of Korea; Outstanding Young Researcher Program through the National Research Foundation of Korea FX This work was financially supported by a research program of the Korea Institute of Science and Technology, the Core Technology of Materials Research and Development Program, and a research program of the Korea Ministry of Environment. H.W.J. acknowledges the financial support of the Fusion Research Program for Green Technologies and the Outstanding Young Researcher Program through the National Research Foundation of Korea. NR 56 TC 11 Z9 11 U1 0 U2 63 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 29 PY 2013 VL 117 IS 34 BP 17824 EP 17831 DI 10.1021/jp405150b PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 211OG UT WOS:000323917300052 ER PT J AU Takei, K Kapadia, R Li, YJ Plis, E Krishna, S Javey, A AF Takei, Kuniharu Kapadia, Rehan Li, Yongjun Plis, E. Krishna, Sanjay Javey, Ali TI Surface Charge Transfer Doping of III-V Nanostructures SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID FIELD-EFFECT TRANSISTORS; COMPOUND SEMICONDUCTORS; NANOSCALE; MEMBRANES; SCALE AB Surface charge transfer is presented as an effective doping technique for III-V nanostructures. We generalize that the technique is applicable to nanoscale semiconductors in the limit where carriers are quantum confined. As a proof-of-concept, potassium surface charge transfer doping is carried out for one-dimensional (1D) and two-dimensional (2D) In As on Si/SiO2 substrates. Experiments and simulations show that equivalent dopant areal dose of up to similar to 2 x 10(12) cm(-2) is obtained, which is sufficient for degenerate doping of InAs nanostructures. This work presents a new pathway for controllable doping of inorganic semiconductors with limits fundamentally different from those of substitutional doping. C1 [Takei, Kuniharu; Kapadia, Rehan; Li, Yongjun; Javey, Ali] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Takei, Kuniharu; Kapadia, Rehan; Javey, Ali] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. [Takei, Kuniharu; Kapadia, Rehan; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Plis, E.; Krishna, Sanjay] Univ New Mexico, Albuquerque, NM 87106 USA. RP Javey, A (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. EM ajavey@eecs.berkeley.edu RI Javey, Ali/B-4818-2013 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC01-05CH11231]; World Class University program at Sunchon National University FX The materials processing and characterization of this work were supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under contract no. DE-AC01-05CH11231. The device fabrication was supported by NSF E3S Center. A.J. acknowledges support from the World Class University program at Sunchon National University. NR 22 TC 11 Z9 11 U1 2 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 29 PY 2013 VL 117 IS 34 BP 17845 EP 17849 DI 10.1021/jp406174r PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 211OG UT WOS:000323917300055 ER PT J AU Zhang, S Gilbert, I Nisoli, C Chern, GW Erickson, MJ O'Brien, L Leighton, C Lammert, PE Crespi, VH Schiffer, P AF Zhang, Sheng Gilbert, Ian Nisoli, Cristiano Chern, Gia-Wei Erickson, Michael J. O'Brien, Liam Leighton, Chris Lammert, Paul E. Crespi, Vincent H. Schiffer, Peter TI Crystallites of magnetic charges in artificial spin ice SO NATURE LA English DT Article ID MONOPOLES AB Artificial spin ice(1) is a class of lithographically created arrays of interacting ferromagnetic nanometre-scale islands. It was introduced to investigate many-body phenomena related to frustration and disorder in a material that could be tailored to precise specifications and imaged directly. Because of the large magnetic energy scales of these nanoscale islands, it has so far been impossible to thermally anneal artificial spin ice into desired thermodynamic ensembles; nearly all studies of artificial spin ice have either treated it as a granular material activated by alternating fields(2) or focused on the as-grown state of the arrays(3). This limitation has prevented experimental investigation of novel phases that can emerge from the nominal ground states of frustrated lattices. For example, artificial kagome spin ice, in which the islands are arranged on the edges of a hexagonal net, is predicted to support states with monopolar charge order at entropies below that of the previously observed pseudo-ice manifold(4). Here we demonstrate a method for thermalizing artificial spin ices with square and kagome lattices by heating above the Curie temperature of the constituent material. In this manner, artificial square spin ice achieves unprecedented thermal ordering of the moments. In artificial kagome spin ice, we observe incipient crystallization of the magnetic charges embedded in pseudo-ice, with crystallites of magnetic charges whose size can be controlled by tuning the lattice constant. We find excellent agreement between experimental data and Monte Carlo simulations of emergent charge-charge interactions. C1 [Zhang, Sheng; Lammert, Paul E.; Crespi, Vincent H.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Zhang, Sheng; Lammert, Paul E.; Crespi, Vincent H.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. [Gilbert, Ian; Schiffer, Peter] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Gilbert, Ian; Schiffer, Peter] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. [Nisoli, Cristiano; Chern, Gia-Wei] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Erickson, Michael J.; O'Brien, Liam; Leighton, Chris] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. [O'Brien, Liam] Univ Cambridge, Cavendish Lab, Dept Phys, Thin Film Magnetism Grp, Cambridge CB3 0HE, England. RP Schiffer, P (reprint author), Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. EM pschiffe@illinois.edu RI O'Brien, Liam/H-1994-2012; Zhang, Sheng/M-9238-2014; OI O'Brien, Liam/0000-0002-0136-8603; Zhang, Sheng/0000-0002-9710-6738; Gilbert, Ian/0000-0001-8259-0697; Schiffer, Peter/0000-0002-6430-6549; Crespi, Vincent/0000-0003-3846-3193; Nisoli, Cristiano/0000-0003-0053-1023 FU US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-SC0005313]; US Department of Energy at LANL [DE-AC52-06NA253962]; NSF MRSEC [DMR-0819885, DMR-0820404]; EU Marie Curie IOF [299376] FX This project was funded by the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under grant no. DE-SC0005313. Lithography was performed with the support of the National Nanotechnology Infrastructure Network. The work of C.N. and G.-W.C. was carried out under the auspices of the US Department of Energy at LANL under contract no. DE-AC52-06NA253962. Work at the University of Minnesota was supported by the NSF MRSEC under award DMR-0819885 and EU Marie Curie IOF project no. 299376. Certain theory elements were supported by the NSF MRSEC under award DMR-0820404. NR 30 TC 70 Z9 71 U1 6 U2 108 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD AUG 29 PY 2013 VL 500 IS 7464 BP 553 EP 557 DI 10.1038/nature12399 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 207TD UT WOS:000323625900029 PM 23985872 ER PT J AU Picon, A Ho, PJ Doumy, G Southworth, SH AF Picon, Antonio Ho, Phay J. Doumy, Gilles Southworth, Stephen H. TI Optically-dressed resonant Auger processes induced by high-intensity x-rays SO NEW JOURNAL OF PHYSICS LA English DT Article ID FREE-ELECTRON LASER; CROSS-SECTIONS; IONIZATION; ATOMS; SPECTROSCOPY; PULSES; IMPACT AB We have unveiled coherent multiphoton interferences originating from different quantum paths taken by the Auger electron induced by a high-intensity x-ray/extreme ultraviolet pulse under the presence of a strong optical field. These interferences give rise to a clear signature in the angle-resolved Auger electron spectrum: an asymmetry with respect to the energy of the Auger decay channel. In order to illustrate this effect we have considered the resonant Auger decay of the transition 2p(5) <-> 1s(-1)2p(6) in Ne+. The simulations show that these interferences are very sensitive to the parameters of the x-ray and optical fields. C1 [Picon, Antonio; Ho, Phay J.; Doumy, Gilles; Southworth, Stephen H.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Picon, A (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM apicon@anl.gov RI Picon Alvarez, Antonio/I-7268-2012 OI Picon Alvarez, Antonio/0000-0002-6142-3440 FU Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy [DE-AC02-06CH11357] FX This work was supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy, under contract no. DE-AC02-06CH11357. We acknowledge fruitful discussions with Bertold Krassig and Christian Buth. We thank Lahsen Assoufid for discussions of focusing optics. NR 59 TC 3 Z9 3 U1 1 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD AUG 29 PY 2013 VL 15 AR 083057 DI 10.1088/1367-2630/15/8/083057 PG 16 WC Physics, Multidisciplinary SC Physics GA 207WI UT WOS:000323635000002 ER PT J AU Simonson, JW Pezzoli, ME Garlea, VO Smith, GJ Grose, JE Misuraca, JC Kotliar, G Aronson, MC AF Simonson, J. W. Pezzoli, M. E. Garlea, V. O. Smith, G. J. Grose, J. E. Misuraca, J. C. Kotliar, G. Aronson, M. C. TI Local moments and suppression of antiferromagnetism in correlated Zr4Fe4Si7 SO PHYSICAL REVIEW B LA English DT Article ID HEAVY-FERMION; SUPERCONDUCTIVITY; SILICIDES; RESISTIVITY; MAGNETISM; SYSTEMS; METALS AB We report magnetic, transport, and neutron diffraction measurements as well as a doping study of the V-phase compound Zr4Fe4Si7. This compound exhibits collinear antiferromagnetic order below T-N = 98 +/- 1 K with a staggered moment of 0.57(3)mu(B)/Fe as T -> 0. The magnetic order can be quenched with Co substitution to the Fe site, but even then a 1.5 mu(B)/Fe paramagnetic moment remains. The resistivity and heat capacity of Zr4Fe4Si7 are Fermi-liquid-like below 16 and 7 K, respectively, and reveal correlations on the scale of those observed in superconducting Fe pnictides and chalcogenides. Electronic structure calculations overestimate the ordered moment, suggesting the importance of dynamical effects. The existence of magnetic order, electronic correlations, and spin fluctuations make Zr4Fe4Si7 distinct from the majority of Fe-Si compounds, fostering comparison instead with the parent compounds of Fe-based superconductors. C1 [Simonson, J. W.; Pezzoli, M. E.; Smith, G. J.; Grose, J. E.; Misuraca, J. C.; Aronson, M. C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Pezzoli, M. E.; Kotliar, G.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Garlea, V. O.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Aronson, M. C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Simonson, JW (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. EM jsimonson@bnl.gov RI Garlea, Vasile/A-4994-2016 OI Garlea, Vasile/0000-0002-5322-7271 FU Department of Defense National Security Science and Engineering Faculty Fellowship via Air Force Office of Scientific Research; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; US Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Work at Stony Brook University and Rutgers University was carried out under the auspices of a Department of Defense National Security Science and Engineering Faculty Fellowship via the Air Force Office of Scientific Research. Research at Oak Ridge National Laboratory's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. Research at the Center for Functional Nanomaterials, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 36 TC 0 Z9 0 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 29 PY 2013 VL 88 IS 8 AR 081107 DI 10.1103/PhysRevB.88.081107 PG 5 WC Physics, Condensed Matter SC Physics GA 208VB UT WOS:000323707800001 ER PT J AU Tseng, YC Paudyal, D Mudryk, Y Pecharsky, VK Gschneidner, KA Haskel, D AF Tseng, Y. C. Paudyal, D. Mudryk, Ya Pecharsky, V. K. Gschneidner, K. A., Jr. Haskel, D. TI Electronic contribution to the enhancement of the ferromagnetic ordering temperature by Si substitution in Gd-5(SixGe1-x)(4) SO PHYSICAL REVIEW B LA English DT Article ID GD-5(SI2GE2) AB By using a combination of x-ray spectroscopic and diffraction measurements at high pressures together with density functional theory (DFT) calculations, we show that the increase in Curie temperature T-C, induced by Si substitutions in Gd-5(SixGe1-x)(4) giant magnetocaloric materials is predominately electronically driven as opposed to lattice driven. Whereas, a lattice contraction with applied pressure increases the strength of exchange (magnetic) interactions between Gd spins, leading to a modest increase in T-C at a rate of 1.2 K/angstrom(3), much larger enhancements in T-C are obtained with Si doping for the same volume reduction (13.5 K/angstrom(3)), indicating that volume (lattice) effects are secondary. Similarly, an orthorhombic [O(II)] to monoclinic (M) structural phase transition is observed to take place with applied pressure in the paramagnetic state of a Gd-5(Si0.125Ge0.875)(4) sample at room temperature at a much smaller volume than needed to drive the same structural transition with Si doping, indicating that, even in the absence of magnetic order, electronic effects with Si doping dominate the energetics of structural transformations over lattice (volume) effects. DFT calculations show that the electronic mechanism behind this effect is a stronger Si 3p-Gd 5d than Ge 4p-Gd 5d hybridization, a critical ingredient in mediating indirect exchange interactions between localized Gd 4f spins. The results highlight the strong sensitivity of the magnetic ordering temperature to the nature of p-d hybridization, opening opportunities for tailoring the magnetocaloric properties of these compounds by substituting other p and rare-earth elements at the Si/Ge and Gd sites, respectively. C1 [Tseng, Y. C.] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu, Taiwan. [Tseng, Y. C.; Haskel, D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Paudyal, D.; Mudryk, Ya; Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, US Dept Energy, Ames Lab, Ames, IA 50011 USA. [Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Tseng, YC (reprint author), Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu, Taiwan. EM yctseng21@mail.nctu.edu.tw FU National Science Council of Taiwan [NSC 98-2112-M-009 022-MY3]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC-02-06CH11357]; U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering [DE-AC02-07CH11358]; Iowa State University FX Work at National Chiao Tung University was supported by the National Science Council of Taiwan under Grant No. NSC 98-2112-M-009 022-MY3. Work at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC-02-06CH11357. Work at Ames Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering under Contract No. DE-AC02-07CH11358 with Iowa State University. NR 28 TC 5 Z9 5 U1 0 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 29 PY 2013 VL 88 IS 5 AR 054428 DI 10.1103/PhysRevB.88.054428 PG 8 WC Physics, Condensed Matter SC Physics GA 208UT UT WOS:000323706900003 ER PT J AU Appleby, SA Linder, EV Weller, J AF Appleby, Stephen A. Linder, Eric V. Weller, Jochen TI Cluster probes of dark energy clustering SO PHYSICAL REVIEW D LA English DT Article ID MICROWAVE BACKGROUND ANISOTROPIES; MASS FUNCTION; NONLINEAR STRUCTURE; GROWTH; MATTER; CONSTRAINTS; COSMOLOGIES; TELESCOPE; EXPANSION; LIMITS AB Cluster abundances are oddly insensitive to canonical early dark energy. Early dark energy with sound speed equal to the speed of light cannot be distinguished from a quintessence model with the equivalent expansion history for z < 2 but negligible early dark energy density, despite the different early growth rate. However, cold early dark energy, with a sound speed much smaller than the speed of light, can give a detectable signature. Combining cluster abundances with cosmic microwave background (CMB) power spectra can determine the early dark energy fraction to 0.3% and distinguish a true sound speed of 0.1 from 1 at 99% confidence. We project constraints on early dark energy from the Euclid cluster survey, as well as the Dark Energy Survey, using both current and projected Planck CMB data, and assess the impact of cluster mass systematics. We also quantify the importance of dark energy perturbations, and the role of sound speed during a crossing of w = -1. C1 [Appleby, Stephen A.; Linder, Eric V.] Ewha Womans Univ, Inst Early Universe WCU, Seoul 120750, South Korea. [Linder, Eric V.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Linder, Eric V.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Weller, Jochen] Univ Munich, Univ Sternwarte Munchen, D-81679 Munich, Germany. [Weller, Jochen] Tech Univ Munich, D-85748 Garching, Germany. [Weller, Jochen] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. RP Appleby, SA (reprint author), Ewha Womans Univ, Inst Early Universe WCU, Seoul 120750, South Korea. OI Weller, Jochen/0000-0002-8282-2010 FU World Class University through the National Research Foundation, Ministry of Education, Science and Technology of Korea [R32-2009-000-10130-0]; Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231]; Trans-Regional Collaborative Research Center TRR 33 "The Dark Universe" of the Deutsche Forschungsgemeinschaft (DFG) FX We thank Andrea Biviano, Carlos Cunha, Alireza Hojjati, and Eduardo Rozo for helpful discussions. S. A. A. is grateful to the Berkeley Center for Cosmological Physics, and J. W. to the Institute for the Early Universe WCU, for hospitality. This work has been supported by World Class University Grant No. R32-2009-000-10130-0 through the National Research Foundation, Ministry of Education, Science and Technology of Korea, and in part by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. J. W. acknowledges support from the Trans-Regional Collaborative Research Center TRR 33 "The Dark Universe" of the Deutsche Forschungsgemeinschaft (DFG). NR 54 TC 7 Z9 7 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD AUG 29 PY 2013 VL 88 IS 4 AR 043526 DI 10.1103/PhysRevD.88.043526 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 208WM UT WOS:000323712700004 ER PT J AU Keiber, T Bridges, F Sales, BC AF Keiber, T. Bridges, F. Sales, B. C. TI Lead Is Not Off Center in PbTe: The Importance of r-Space Phase Information in Extended X-Ray Absorption Fine Structure Spectroscopy SO PHYSICAL REVIEW LETTERS LA English DT Article ID EXAFS; SCATTERING; TESTS AB PbTe is a well-known thermoelectric material. Recent x-ray total scattering studies suggest that Pb moves off center along 100 in PbTe, by similar to 0.2 angstrom at 300 K, producing a split Pb-Te pair distribution. We present an extended x-ray absorption fine structure spectroscopy (EXAFS) study of PbTe (and Tl doped PbTe) to determine if Pb or Te is off center. EXAFS provides sensitive r- or k-space phase information which can differentiate between a split peak for the Pb-Te distribution (indicative of off-center Pb) and a thermally broadened peak. We find no evidence for a split peak for Pb-Te or Te-Pb. At 300 K, the vibration amplitude for Pb-Te (or Te-Pb) is large; this thermally induced disorder is indicative of weak bonds, and the large disorder is consistent with the low thermal conductivity at 300 K. We also find evidence of an anharmonic potential for the nearest Pb-Te bonds, consistent with the overall anharmonicity found for the phonon modes. This effect is modeled by a "skew" factor (C3) which significantly improves the fit of the Pb-Te and Te-Pb peaks for the high temperature EXAFS data; C3 becomes significant above approximately 150-200 K. The consequences of these results will be discussed. C1 [Keiber, T.; Bridges, F.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Sales, B. C.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Keiber, T (reprint author), Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. EM tkeiber@ucsc.edu FU NSF [DMR1005568]; U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division FX The EXAFS work was supported under NSF Grant No. DMR1005568. The experiments were performed at Stanford Synchrotron Radiation Lightsource, operated by the DOE, Division of Chemical Sciences. Work at Oak Ridge was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 22 TC 27 Z9 27 U1 0 U2 48 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 29 PY 2013 VL 111 IS 9 AR 095504 DI 10.1103/PhysRevLett.111.095504 PG 5 WC Physics, Multidisciplinary SC Physics GA 208XP UT WOS:000323716100006 PM 24033047 ER PT J AU Li, C Wu, YL Pennycook, TJ Lupini, AR Leonard, DN Yin, WJ Paudel, N Al-Jassim, M Yan, YF Pennycook, SJ AF Li, Chen Wu, Yelong Pennycook, Timothy J. Lupini, Andrew R. Leonard, Donovan N. Yin, Wanjian Paudel, Naba Al-Jassim, Mowafak Yan, Yanfa Pennycook, Stephen J. TI Carrier Separation at Dislocation Pairs in CdTe SO PHYSICAL REVIEW LETTERS LA English DT Article ID SCANNING PROBE MICROSCOPY; SOLAR-CELLS; GRAIN-BOUNDARIES; EFFICIENCY; ENERGY; SEMICONDUCTORS; INSULATORS; CRYSTALS; STATES AB Through the use of aberration corrected scanning transmission electron microscopy, the atomic configuration of CdTe intragrain Shockley partial dislocation pairs has been determined: Single Cd and Te columns are present at opposite ends of both intrinsic and extrinsic stacking faults. These columns have threefold and fivefold coordination, indicating the presence of dangling bonds. Counterintuitively, density-functional theory calculations show that these dislocation cores do not act as recombination centers; instead, they lead to local band bending that separates electrons and holes and reduces undesirable carrier recombination. C1 [Li, Chen; Pennycook, Timothy J.; Lupini, Andrew R.; Leonard, Donovan N.; Pennycook, Stephen J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Li, Chen] Vanderbilt Univ, Dept Chem, Nashville, TN 37235 USA. [Wu, Yelong; Yin, Wanjian; Paudel, Naba; Yan, Yanfa] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. [Pennycook, Timothy J.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Al-Jassim, Mowafak] Natl Renewable Energy Lab, Measurements & Characterizat Grp, Golden, CO 80401 USA. RP Pennycook, SJ (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM pennycooksj@ornl.gov RI Wu, Yelong/G-1100-2010; Pennycook, Timothy/B-4946-2014; Li, Chen/C-4019-2014; Yin, Wanjian/F-6738-2013 OI Wu, Yelong/0000-0002-4211-911X; Pennycook, Timothy/0000-0002-0008-6516; Li, Chen/0000-0001-9839-6100; FU U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy, Foundational Program to Advance Cell Efficiency (F-PACE); Office of Basic Energy Sciences (BES), Materials Science and Engineering Division; U.S. DOE [DE-FG02-09ER46554]; BES Scientific User Facilities Division Shared Research Equipment (SHaRE) User Program at Oak Ridge National Laboratory; DOE Office of Science [DE-AC02-05CH11231] FX The authors are grateful to S. T. Pantelides for helpful suggestions on the manuscript. This research was supported by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy, Foundational Program to Advance Cell Efficiency (F-PACE), (C. L., Y. L. W., W. J. Y., N. P., M. A. J., Y. Y., S. J. P.), the Office of Basic Energy Sciences (BES), Materials Science and Engineering Division (A. R. L.), the U.S. DOE Grant No. DE-FG02-09ER46554 (T. J. P.), and by the BES Scientific User Facilities Division Shared Research Equipment (SHaRE) User Program (D. N. L.) at Oak Ridge National Laboratory. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the DOE Office of Science under Contract No. DE-AC02-05CH11231. NR 45 TC 20 Z9 20 U1 3 U2 55 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 29 PY 2013 VL 111 IS 9 AR 096403 DI 10.1103/PhysRevLett.111.096403 PG 5 WC Physics, Multidisciplinary SC Physics GA 208XP UT WOS:000323716100007 PM 24033055 ER PT J AU Dai, L Takahashi, K Wygant, JR Chen, L Bonnell, J Cattell, CA Thaller, S Kletzing, C Smith, CW MacDowall, RJ Baker, DN Blake, JB Fennell, J Claudepierre, S Funsten, HO Reeves, GD Spence, HE AF Dai, Lei Takahashi, Kazue Wygant, John R. Chen, Liu Bonnell, John Cattell, Cynthia A. Thaller, Scott Kletzing, Craig Smith, Charles W. MacDowall, Robert J. Baker, Daniel N. Blake, J. Bernard Fennell, Joseph Claudepierre, Seth Funsten, Herbert O. Reeves, Geoffrey D. Spence, Harlan E. TI Excitation of poloidal standing Alfven waves through drift resonance wave-particle interaction SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE drift resonance; poloidal standing wave; ring current ID FREQUENCY GEOMAGNETIC-PULSATIONS; RING-CURRENT; HYDROMAGNETIC-WAVES; GIANT PULSATIONS; MAGNETOSPHERE; BEHAVIOR; PLASMA; MODES; FIELD; ZONE AB Drift-resonance wave-particle interaction is a fundamental collisionless plasma process studied extensively in theory. Using cross-spectral analysis of electric field, magnetic field, and ion flux data from the Van Allen Probe (Radiation Belt Storm Probes) spacecraft, we present direct evidence identifying the generation of a fundamental mode standing poloidal wave through drift-resonance interactions in the inner magnetosphere. Intense azimuthal electric field (E) oscillations as large as 10mV/m are observed, associated with radial magnetic field (B-r) oscillations in the dawn-noon sector near but south of the magnetic equator at L approximate to 5. The observed wave period, E/B-r ratio and the 90 degrees phase lag between B-r and E are all consistent with fundamental mode standing Poloidal waves. Phase shifts between particle fluxes and wave electric fields clearly demonstrate a drift resonance with approximate to 90 keV ring current ions. The estimated earthward gradient of ion phase space density provides a free energy source for wave generation through the drift-resonance instability. A similar drift-resonance process should occur ubiquitously in collisionless plasma systems. One specific example is the fishbone instability in fusion plasma devices. In addition, our observations have important implications for the long-standing mysterious origin of Giant Pulsations. C1 [Dai, Lei; Wygant, John R.; Cattell, Cynthia A.; Thaller, Scott] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55414 USA. [Takahashi, Kazue] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Chen, Liu] Zhejiang Univ, Inst Fus Theory & Simulat, Hangzhou 310003, Zhejiang, Peoples R China. [Chen, Liu] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Bonnell, John] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Kletzing, Craig] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Smith, Charles W.; Spence, Harlan E.] Univ New Hampshire, Dept Phys, Inst Earth Oceans & Space, Durham, NH 03824 USA. [MacDowall, Robert J.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Baker, Daniel N.] Univ Colorado Boulder, Atmospher & Space Phys Lab, Boulder, CO USA. [Blake, J. Bernard; Fennell, Joseph; Claudepierre, Seth] Aerosp Corp, Los Angeles, CA 90009 USA. [Funsten, Herbert O.; Reeves, Geoffrey D.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Dai, L (reprint author), Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55414 USA. EM dai@physics.umn.edu RI chen, liu/I-2297-2013; Funsten, Herbert/A-5702-2015; Reeves, Geoffrey/E-8101-2011; OI Funsten, Herbert/0000-0002-6817-1039; Reeves, Geoffrey/0000-0002-7985-8098; Cattell, Cynthia/0000-0002-3805-320X; Kletzing, Craig/0000-0002-4136-3348; Spence, Harlan/0000-0002-2526-2205 FU APL; NASA [NNX10AK93G] FX Work at UMN was supported by a contract from APL for the development of RBSP/EFW. Work at JHUAPL was supported by NASA grant NNX10AK93G. L. D. thanks Kris Kersten, Aaron Breneman, Jianbao Tao, and Peter Schroeder for developing and testing analysis tools for EFW electric field data. NR 33 TC 38 Z9 38 U1 2 U2 20 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 28 PY 2013 VL 40 IS 16 BP 4127 EP 4132 DI 10.1002/grl.50800 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 219SI UT WOS:000324529000001 ER PT J AU Ferdowsi, B Griffa, M Guyer, RA Johnson, PA Marone, C Carmeliet, J AF Ferdowsi, B. Griffa, M. Guyer, R. A. Johnson, P. A. Marone, C. Carmeliet, J. TI Microslips as precursors of large slip events in the stick-slip dynamics of sheared granular layers: A discrete element model analysis SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE stick-slip dynamics; sheared granular layer; microslips; precursory activity; discrete element modeling ID LATTICE SOLID MODEL; LARGE EARTHQUAKES; FRICTION; PATTERNS; PHYSICS; PHASE AB We investigate the stick-slip behavior of a granular system confined and sheared by deformable solid blocks using three-dimensional discrete element method simulations. Our modeling results show that large slip events are preceded by a sequence of small slip eventsmicroslipswhose occurrence accelerates exponentially before the large slip event onset. Microslips exhibit energy release several orders of magnitude smaller than the large slip events. The microslip event rate is proposed as a measure of slip activity in the granular gouge layer. A statistical analysis shows that microslip event rate correlates well with large slip event onset and that variations in it can be used to predict large slip events. The emergence of microslips and their duration are found to be controlled by the value of the slipping contact ratio and are therefore related to the jamming/unjamming transition of frictional granular packings. C1 [Ferdowsi, B.] Swiss Fed Inst Technol Zurich, Dept Civil Environm & Geomat Engn, Zurich, Switzerland. [Ferdowsi, B.; Griffa, M.; Carmeliet, J.] Empa, ETH Domain, Swiss Fed Labs Mat Sci & Technol, Dubendorf, Switzerland. [Guyer, R. A.; Johnson, P. A.] Los Alamos Natl Lab, Solid Earth Geophys Grp, Los Alamos, NM USA. [Guyer, R. A.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Marone, C.] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA. [Marone, C.] Penn State Univ, Ctr G3, University Pk, PA 16802 USA. [Marone, C.] Penn State Univ, Energy Inst, University Pk, PA 16802 USA. [Carmeliet, J.] Swiss Fed Inst Technol Zurich, Chair Bldg Phys, Zurich, Switzerland. RP Ferdowsi, B (reprint author), Swiss Fed Inst Technol Zurich, Dept Civil Environm & Geomat Engn, Zurich, Switzerland. EM behrooz.ferdowsi@empa.ch OI Ferdowsi, Behrooz (Bruce)/0000-0003-3406-7273; Griffa, Michele/0000-0001-8407-9438; Johnson, Paul/0000-0002-0927-4003 FU Swiss National Science Foundation [206021-128754, 200021-135492] FX We thank D. Weatherley and S. Abe for support for the ESyS-Particle code and D. Passerone and C. Pignedoli for the help with the computational cluster of Empa, Ipazia. Our work has been supported by the Swiss National Science Foundation (projects 206021-128754 and 200021-135492) and by the LDRD Program (Institutional Support) at the Los Alamos National Laboratory, Department of Energy, USA. NR 37 TC 10 Z9 11 U1 1 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 28 PY 2013 VL 40 IS 16 BP 4194 EP 4198 DI 10.1002/grl.50813 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 219SI UT WOS:000324529000013 ER PT J AU Blisniuk, K Oskin, M Meriaux, AS Rockwell, T Finkel, RC Ryerson, FJ AF Blisniuk, Kimberly Oskin, Michael Meriaux, Anne-Sophie Rockwell, Thomas Finkel, Robert C. Ryerson, Frederick J. TI Stable, rapid rate of slip since inception of the San Jacinto fault, California SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE San Andreas fault; Long and short term slip rates; Time constant slip rates; San Jacinto fault; steady fault strength; long term fault behavior; San Andreas fault; Long and short term slip rates; Time constant slip rates; San Jacinto fault; steady fault strength; long term fault behavior ID SOUTHERN-CALIFORNIA; ANDREAS FAULT; EASTERN CALIFORNIA; STRIKE-SLIP; STRAIN ACCUMULATION; SHEAR ZONE; EARTHQUAKES; DEFORMATION; EVOLUTION; DYNAMICS AB In California, where the San Jacinto fault (SJF) and San Andreas fault (SAF) accommodate the majority of the dextral shear deformation between the Pacific and North American plates, initiation of the SJF led to an apparent decline in the slip rate of the SAF. Previous studies suggest that since then, slip rate has covaried between these faults (possibly due to changes in fault strength, variation in topographic loading along a fault, or the development of new faults) and that presently the SJF is the dominant plate boundary structure. However, we dated displaced sedimentary deposits and landforms over three distinct time intervals since similar to 700ka, and our results imply a constant slip rate of 12.1(+3.4/-2.6)mm/yr. This rate is similar to the fault's lifetime rate and from rates derived from geodesy, suggesting that since the SJF initiated, its slip rate has remained relatively stable and does not exceed that of the SAF. C1 [Blisniuk, Kimberly; Oskin, Michael] Univ Calif Davis, Dept Geol Sci, Davis, CA 95616 USA. [Meriaux, Anne-Sophie] Newcastle Univ, Sch Geog Polit & Sociol, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. [Rockwell, Thomas] San Diego State Univ, Dept Geol Sci, San Diego, CA 92182 USA. [Finkel, Robert C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ryerson, Frederick J.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Blisniuk, K (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94709 USA. EM kblisniuk@seismo.berkeley.edu OI Rockwell, Thomas/0000-0001-5319-6447 FU Southern California Earthquake Center; National Science Foundation [EAR-0529922]; U.S. Geological Survey [07HQAG0008] FX This research was supported by the Southern California Earthquake Center, which is funded by the National Science Foundation Cooperative Agreement EAR-0529922 and by the U.S. Geological Survey Cooperative Agreement 07HQAG0008. K. Blisniuk thanks G. Balco for his help in calculating the burial age. We thank R. Bennett and R. Arrowsmith for insightful and constructive reviews of the manuscript, and S. McGill and E. Kirby for reviewing an earlier version. NR 40 TC 6 Z9 6 U1 0 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 28 PY 2013 VL 40 IS 16 BP 4209 EP 4213 DI 10.1002/grl.50819 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 219SI UT WOS:000324529000016 ER PT J AU Yoon, H Dewers, TA AF Yoon, Hongkyu Dewers, Thomas A. TI Nanopore structures, statistically representative elementary volumes, and transport properties of chalk SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE statistical representive elementary volume; FIB-SEM; Lattice Boltzmann Method; 3DMA; nanopore; statistical representive elementary volume; FIB-SEM; Lattice Boltzmann Method; 3DMA; nanopore ID PORE-SCALE; SHALE AB Dual focused ion beam-scanning electron microscopy (FIB-SEM) is frequently being used to characterize nano-scale pore structures observed in carbonate and shale gas rocks. However, applications are limited to qualitative analysis of nanopore structures. Herein, the concept of statistical representative elementary volumes (SREV) is applied to FIB-SEM data of a Cretaceous chalk sample. Lattice-Boltzmann (LB) simulations with multiple relaxation time and topological analysis show that the size of the SREV for this chalk sample can be established at 10 microns based on anisotropic permeability, tortuosity, and specific surface area. This work confirms that the FIB-SEM technique can be used for the quantitative analysis of nanopore structures and highlights nano-scale basis for strong anisotropy in the presence of fractures. In addition, nanopores and pore throats are not resolved at voxel dimensions less than 80 nm, resulting in significant underestimation of surface area and permeability. C1 [Yoon, Hongkyu; Dewers, Thomas A.] Sandia Natl Labs, Geomech Dept, Albuquerque, NM 87185 USA. RP Yoon, H (reprint author), Sandia Natl Labs, Geomech Dept, POB 5800,1515 Eubank, Albuquerque, NM 87185 USA. EM hyoon@sandia.gov FU Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0001114]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This study was supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award Number DE-SC0001114. We thank G. Koperna and R. Petrusak of ARI, and R. Esposito of the Southern Company, for use of the Selma Chalk core, M. Rye for obtaining the FIB image data set, and J. Heath for help with core preparation. We thank the editor M. B. Cardenas and two anonymous reviewers for their constructive reviews. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 17 TC 14 Z9 15 U1 8 U2 58 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 28 PY 2013 VL 40 IS 16 BP 4294 EP 4298 DI 10.1002/grl.50803 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 219SI UT WOS:000324529000031 ER PT J AU Streets, DG Shindell, DT Lu, ZF Faluvegi, G AF Streets, David G. Shindell, Drew T. Lu, Zifeng Faluvegi, Greg TI Radiative forcing due to major aerosol emitting sectors in China and India SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE radiative forcing; aerosols; China; India; radiative forcing; aerosols; China; India ID FUTURE CLIMATE SIMULATIONS; REGIONAL EMISSIONS; IMPACTS; HEALTH; OZONE AB Understanding the radiative forcing caused by anthropogenic aerosol sources is essential for making effective emission control decisions to mitigate climate change. We examined the net direct plus indirect radiative forcing caused by carbonaceous aerosol and sulfur emissions in key sectors of China and India using the GISS-E2 chemistry-climate model. Diesel trucks and buses (67 mW m(-2)) and residential biofuel combustion (52 mW m(-2)) in India have the largest global mean, annual average forcings due mainly to the direct and indirect effects of BC. Emissions from these two sectors in China have near-zero net global forcings. Coal-fired power plants in both countries exert a negative forcing of about -30 mW m(-2) from production of sulfate. Aerosol forcings are largest locally, with direct forcings due to residential biofuel combustion of 580 mW m(-2) over India and 416 mW m(-2) over China, but they extend as far as North America, Europe, and the Arctic. C1 [Streets, David G.; Lu, Zifeng] Argonne Natl Lab, Argonne, IL 60439 USA. [Shindell, Drew T.; Faluvegi, Greg] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Shindell, Drew T.; Faluvegi, Greg] Columbia Univ, Columbia Earth Inst, New York, NY USA. RP Streets, DG (reprint author), Argonne Natl Lab, Decis & Informat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dstreets@anl.gov RI Lu, Zifeng/F-3266-2012; Shindell, Drew/D-4636-2012; OI Streets, David/0000-0002-0223-1350 FU U.S. Department of Energy, Office of Fossil Energy; U.S. Department of Energy [DE-AC02-06CH11357]; NASA Applied Sciences program FX The work performed at the Argonne National Laboratory was funded by the U.S. Department of Energy, Office of Fossil Energy. The authors gratefully acknowledge the support of Thomas Grahame in that office. Argonne National Laboratory is operated by UChicago Argonne, LLC, under contract no. DE-AC02-06CH11357 with the U.S. Department of Energy. The work performed at NASA/GISS was supported by the NASA Applied Sciences program and used NASA Center for Climate Simulation resources at GSFC. The authors thank George Milly for his assistance with the analysis of model output. NR 26 TC 7 Z9 7 U1 3 U2 34 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 28 PY 2013 VL 40 IS 16 BP 4409 EP 4414 DI 10.1002/grl.50805 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 219SI UT WOS:000324529000052 ER PT J AU Ovchinnikov, M Easter, RC Gustafson, WI AF Ovchinnikov, Mikhail Easter, Richard C. Gustafson, William I., Jr. TI Untangling dynamical and microphysical controls for the structure of stratocumulus SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE cloud microphysics; open cells; parcel model; precipitation; rain initiation; time scale ID SOUTHEAST PACIFIC STRATOCUMULUS; MESOSCALE CELLULAR CONVECTION; LARGE-EDDY SIMULATION; MARINE STRATOCUMULUS; OPEN CELLS; CLOUD; PRECIPITATION; AEROSOL; DRIZZLE AB Stratocumulus clouds can assume closed- or open-cell structures with strikingly different abilities to reflect solar radiation. While open cells have been linked to the presence of precipitation and low droplet concentrations, complete understanding of processes leading to their formation is lacking. Here we show that the structure of stratocumulus can be linked to two time scales: an updraft time scale (t(up)) and a rain initiation time scale (t(r)). When sufficient drizzle forms within updrafts (t(r)t(up)), cloud water in the outflow is depleted enough that an overcast cloud cannot be sustained. Using a simple parcel model, we relate these time scales to three observable parameters (droplet number concentration, cloud depth, and updraft speed) and derive a functional representation for the transition from closed to open cells. Eight well-documented observed and simulated cases of open- and closed-cell stratocumulus fit well into the classification based on our model. C1 [Ovchinnikov, Mikhail; Easter, Richard C.; Gustafson, William I., Jr.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Ovchinnikov, M (reprint author), Pacific NW Natl Lab, POB 999,MS IN K9-24, Richland, WA 99352 USA. EM mikhail@pnnl.gov RI Gustafson, William/A-7732-2008 OI Gustafson, William/0000-0001-9927-1393 FU U.S. National Oceanic and Atmospheric Administration (NOAA) Atmospheric Composition and Climate Program [NA10AANRG0083/56091]; DOE [DE-AC05-76RLO1830] FX This research was supported by the U.S. National Oceanic and Atmospheric Administration (NOAA) Atmospheric Composition and Climate Program (NA10AANRG0083/56091). The Pacific Northwest National Laboratory (PNNL) is operated by Battelle Memorial Institute for the DOE under contract DE-AC05-76RLO1830. The authors are grateful to Robert Wood and an anonymous reviewer for helping to improve the clarity of this letter. NR 16 TC 6 Z9 6 U1 1 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 28 PY 2013 VL 40 IS 16 BP 4432 EP 4436 DI 10.1002/grl.50810 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 219SI UT WOS:000324529000056 ER PT J AU Bostedt, C Bozek, JD Bucksbaum, PH Coffee, RN Hastings, JB Huang, Z Lee, RW Schorb, S Corlett, JN Denes, P Emma, P Falcone, RW Schoenlein, RW Doumy, G Kanter, EP Kraessig, B Southworth, S Young, L Fang, L Hoener, M Berrah, N Roedig, C DiMauro, LF AF Bostedt, C. Bozek, J. D. Bucksbaum, P. H. Coffee, R. N. Hastings, J. B. Huang, Z. Lee, R. W. Schorb, S. Corlett, J. N. Denes, P. Emma, P. Falcone, R. W. Schoenlein, R. W. Doumy, G. Kanter, E. P. Kraessig, B. Southworth, S. Young, L. Fang, L. Hoener, M. Berrah, N. Roedig, C. DiMauro, L. F. TI Ultra-fast and ultra-intense x-ray sciences: first results from the Linac Coherent Light Source free-electron laser SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID PROTEIN NANOCRYSTALLOGRAPHY; EXTREME-ULTRAVIOLET; SINGLE; IONIZATION; PULSES; ATOMS; REGION; SHELL; LCLS; FEL AB X-ray free-electron lasers (FELs) produce femtosecond x-ray pulses with unprecedented intensities that are uniquely suited for studying many phenomena in atomic, molecular, and optical (AMO) physics. A compilation of the current developments at the Linac Coherent Light Source (LCLS) and future plans for the LCLS-II and Next Generation Light Source (NGLS) are outlined. The AMO instrumentation at LCLS and its performance parameters are summarized. A few selected experiments representing the rapidly developing field of ultra-fast and peak intensity x-ray AMO sciences are discussed. These examples include fundamental aspects of intense x-ray interaction with atoms, nonlinear atomic physics in the x-ray regime, double core-hole spectroscopy, quantum control experiments with FELs and ultra-fast x-ray induced dynamics in clusters. These experiments illustrate the fundamental aspects of the interaction of intense short pulses of x-rays with atoms, molecules and clusters that are probed by electron and ion spectroscopies as well as ultra-fast x-ray scattering. C1 [Bostedt, C.; Bozek, J. D.; Bucksbaum, P. H.; Coffee, R. N.; Hastings, J. B.; Huang, Z.; Lee, R. W.; Schorb, S.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Corlett, J. N.; Denes, P.; Emma, P.; Falcone, R. W.; Schoenlein, R. W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Doumy, G.; Kanter, E. P.; Kraessig, B.; Southworth, S.; Young, L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Fang, L.; Hoener, M.; Berrah, N.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Roedig, C.; DiMauro, L. F.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. RP Bostedt, C (reprint author), SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM bostedt@slac.stanford.edu RI Schoenlein, Robert/D-1301-2014; Bozek, John/E-9260-2010 OI Schoenlein, Robert/0000-0002-6066-7566; Bozek, John/0000-0001-7486-7238 FU DOE, Office of Science, Basic Energy Science; Army Research Office; National Science Foundation FX The Linac Coherent Light Source is a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. The authors acknowledge funding by DOE, Office of Science, Basic Energy Science. LFD also acknowledges support from the Army Research Office and the National Science Foundation and continued support of Dr Edward and Sylvia Hagenlocker. NR 120 TC 85 Z9 86 U1 2 U2 82 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD AUG 28 PY 2013 VL 46 IS 16 SI SI AR 164003 DI 10.1088/0953-4075/46/16/164003 PG 21 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 201AM UT WOS:000323113100004 ER PT J AU Bucksbaum, P Moller, T Ueda, K AF Bucksbaum, Philip Moeller, Thomas Ueda, Kiyoshi TI Frontiers of free-electron laser science SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Editorial Material C1 [Bucksbaum, Philip] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Moeller, Thomas] Tech Univ Berlin, Inst Opt & Atomare Phys, D-10623 Berlin, Germany. [Ueda, Kiyoshi] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Aoba Ku, Sendai, Miyagi 9808577, Japan. RP Bucksbaum, P (reprint author), Stanford Linear Accelerator Ctr, 2575 Sand Hill Rd,Mailstop 69, Menlo Pk, CA 94025 USA. NR 0 TC 4 Z9 4 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD AUG 28 PY 2013 VL 46 IS 16 SI SI AR 160201 DI 10.1088/0953-4075/46/16/160201 PG 1 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 201AM UT WOS:000323113100001 ER PT J AU Jiang, YH Senftleben, A Kurka, M Rudenko, A Foucar, L Herrwerth, O Kling, MF Lezius, M Tilborg, JV Belkacem, A Ueda, K Rolles, D Treusch, R Zhang, YZ Liu, YF Schroter, CD Ullrich, J Moshammer, R AF Jiang, Y. H. Senftleben, A. Kurka, M. Rudenko, A. Foucar, L. Herrwerth, O. Kling, M. F. Lezius, M. Tilborg, J. V. Belkacem, A. Ueda, K. Rolles, D. Treusch, R. Zhang, Y. Z. Liu, Y. F. Schroeter, C. D. Ullrich, J. Moshammer, R. TI Ultrafast dynamics in acetylene clocked in a femtosecond XUV stopwatch SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID FREE-ELECTRON LASER; EXTREME-ULTRAVIOLET; MOLECULAR DISSOCIATION; SPECTROSCOPY; PHOTOIONIZATION; LOCALIZATION; VINYLIDENE; OPERATION; COHERENT; DICATION AB Few-photon induced ultrafast dynamics in acetylene (C2H2) leading to several dissociation channels-deprotonation (H++C2H+ and H++C2H2+), symmetric break-up (CH++CH+) and isomerization (C++CH2+)-were investigated employing the (XUV; extreme ultra-violet)-pump-(XUV; extreme ultra-violet)-probe scheme at the free-electron laser in Hamburg, combined with multi-hit coincidence detection. The kinetic energy releases and fragment-ion momentum distributions for various decay channels are presented. The C++CH2+ and H++C2H2+ channels reveal clear signatures of ultrafast molecular mechanisms, demonstrating potential applications of our pump-probe technique to complex systems in order to study a large variety of ultrafast phenomena in the XUV regime. C1 [Jiang, Y. H.; Zhang, Y. Z.; Liu, Y. F.] Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai 201210, Peoples R China. [Jiang, Y. H.] ShanghaiTech Univ, Shanghai 201210, Peoples R China. [Senftleben, A.; Kurka, M.; Schroeter, C. D.; Ullrich, J.; Moshammer, R.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Rudenko, A.; Kling, M. F.] Kansas State Univ, Dept Phys, JR MacDonald Lab, Manhattan, KS 66506 USA. [Rudenko, A.; Foucar, L.; Rolles, D.; Ullrich, J.; Moshammer, R.] Ctr Free Electron Laser Sci, Max Planck Adv Study Grp, D-22761 Hamburg, Germany. [Foucar, L.; Rolles, D.] Max Planck Inst Med Res, D-69120 Heidelberg, Germany. [Herrwerth, O.; Kling, M. F.; Lezius, M.] Max Planck Inst Quantum Opt, D-85748 Garching, Germany. [Tilborg, J. V.; Belkacem, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ueda, K.] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan. [Rolles, D.; Treusch, R.] DESY, D-22607 Hamburg, Germany. [Ullrich, J.] Phys Tech Bundesanstalt, D-38116 Braunschweig, Germany. RP Jiang, YH (reprint author), Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai 201210, Peoples R China. EM jiangyh@sari.ac.cn; moshamme@mpi-hd.mpg.de RI Zhang, Yizhu/C-3519-2013; Rudenko, Artem/C-7412-2009; Kling, Matthias/D-3742-2014; Treusch, Rolf/C-3935-2015; OI Zhang, Yizhu/0000-0003-2158-6541; Rudenko, Artem/0000-0002-9154-8463; Treusch, Rolf/0000-0001-8479-8862; Senftleben, Arne/0000-0003-0932-9892 FU National Basic Research Program of China (973 Program) [2013CB922200]; National Natural Science Foundation of China [11274232]; Shanghai Committee of Science and Technology [09DJ1400700]; Chinese Academy Sciences; DFG [Kl-1439/3, Kl-1439/5]; Cluster of Excellence: Munich Center for Advanced Photonics; Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy [DE-FG02-86ER13491]; Ministry of Education, Culture, Sports, Science and Technology of Japan FX The authors are greatly indebted to the scientific and technical team at FLASH. YHJ acknowledges support from the National Basic Research Program of China (973 Program) (grant 2013CB922200), the National Natural Science Foundation of China (grant 11274232), the Shanghai Committee of Science and Technology (grant 09DJ1400700) and One Hundred Person Project of the Chinese Academy Sciences, AR, ML, MFK from the DFG via grants Kl-1439/3, Kl-1439/5, the Cluster of Excellence: Munich Center for Advanced Photonics, the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy under DE-FG02-86ER13491, KU from the Ministry of Education, Culture, Sports, Science and Technology of Japan for support of the Xray Free-Electron Laser (XFEL) Utilization Research Project and the XFEL Priority Strategy Program. NR 40 TC 12 Z9 12 U1 2 U2 40 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 EI 1361-6455 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD AUG 28 PY 2013 VL 46 IS 16 SI SI AR 164027 DI 10.1088/0953-4075/46/16/164027 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 201AM UT WOS:000323113100028 ER PT J AU Larsson, M Salen, P van der Meulen, P Schmidt, HT Thomas, RD Feifel, R Piancastelli, MN Fang, L Murphy, BF Osipov, T Berrah, N Kukk, E Ueda, K Bozek, JD Bostedt, C Wada, S Richter, R Feyer, V Prince, KC AF Larsson, M. Salen, P. van der Meulen, P. Schmidt, H. T. Thomas, R. D. Feifel, R. Piancastelli, M. N. Fang, L. Murphy, B. F. Osipov, T. Berrah, N. Kukk, E. Ueda, K. Bozek, J. D. Bostedt, C. Wada, S. Richter, R. Feyer, V. Prince, K. C. TI Double core-hole formation in small molecules at the LCLS free electron laser SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID CHEMICAL-ANALYSIS; 1S PHOTOIONIZATION; DOUBLE VACANCIES; X-RAYS; SPECTROSCOPY; IONIZATION; SPECTRA AB We have investigated nonlinear processes in small molecules by x-ray photoelectron spectroscopy using the Linac Coherent Light Source free electron laser, and by simulations. The main focus of the experiments was the formation of the two-site double core-hole (tsDCH) states in the molecules CO2, N2O and N-2. These experiments are described in detail and the results are compared with simulations of the photoelectron spectra. The double core-hole states, and in particular the tsDCH states, have been predicted to be highly sensitive to the chemical environment. The theory behind this chemical sensitivity is validated by the experiments. Furthermore, our simulations of the relative integrated intensities of the peaks associated with the nonlinear processes show that this type of simulation, in combination with experimental data, provides a useful tool for estimating the duration of ultra-short x-ray pulses. C1 [Larsson, M.; Salen, P.; van der Meulen, P.; Schmidt, H. T.; Thomas, R. D.] Stockholm Univ, AlbaNova Univ Ctr, Dept Phys, S-10691 Stockholm, Sweden. [Feifel, R.; Piancastelli, M. N.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Fang, L.; Murphy, B. F.; Osipov, T.; Berrah, N.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Kukk, E.] Univ Turku, Dept Phys & Astron, FI-20014 Turku, Finland. [Ueda, K.] Tohoku Univ, IMRAM, Sendai, Miyagi 9808577, Japan. [Bozek, J. D.; Bostedt, C.; Wada, S.] LCLS, SLAC, Menlo Pk, CA 94025 USA. [Wada, S.] Hiroshima Univ, Dept Phys Sci, Higashihiroshima 7398526, Japan. [Richter, R.; Feyer, V.; Prince, K. C.] Sincrotrone Trieste, I-34149 Trieste, Italy. [Prince, K. C.] IOM CNR, I-34149 Trieste, Italy. RP Larsson, M (reprint author), Stockholm Univ, AlbaNova Univ Ctr, Dept Phys, S-10691 Stockholm, Sweden. EM ml@fysik.su.se RI Bozek, John/E-9260-2010; Feifel, Raimund/A-4441-2009; Schmidt, Henning/H-6277-2016; OI Bozek, John/0000-0001-7486-7238; Feifel, Raimund/0000-0001-5234-3935; RICHTER, Robert/0000-0001-8585-626X FU DOE, Office of Science, Basic Energy Science, Chemical, Geosciences, and Biological Divisions; MEXT; JST; JSPS, Japan; MIUR Italy [FIRB-RBAP045JF2, FIRB-RBAP06AWK3]; Swedish Research Council (VR) FX This work was funded in part by DOE, Office of Science, Basic Energy Science, Chemical, Geosciences, and Biological Divisions. Funding from MEXT, JST, JSPS, Japan, MIUR Italy (grants FIRB-RBAP045JF2, FIRB-RBAP06AWK3) and the Swedish Research Council (VR) is gratefully acknowledged. We thank M Tashiro, M Ehara and P Juranic for their participation and all of the LCLS support staff, in particular J C Castagna and M L Swiggers. NR 40 TC 6 Z9 6 U1 1 U2 23 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD AUG 28 PY 2013 VL 46 IS 16 SI SI AR 164030 DI 10.1088/0953-4075/46/16/164030 PG 10 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 201AM UT WOS:000323113100031 ER PT J AU Osipov, T Fang, L Murphy, B Tarantelli, F Hosler, ER Kukk, E Bozek, JD Bostedt, C Kanter, EP Berrah, N AF Osipov, T. Fang, L. Murphy, B. Tarantelli, F. Hosler, E. R. Kukk, E. Bozek, J. D. Bostedt, C. Kanter, E. P. Berrah, N. TI Sequential multiple ionization and fragmentation of SF6 induced by an intense free electron laser pulse SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID TRIPLE COINCIDENCE TECHNIQUE; DOUBLE PHOTOIONIZATION; ION COINCIDENCE; MOLECULES; DYNAMICS AB We investigate the multiphoton ionization and the subsequent fragmentation of SF6 molecules with intense x-ray-free electron laser pulses at different photon energies. We observe highly charged molecular and atomic ions which were absent in previous experiments with conventional x-ray sources. The observation of fully stripped fluorine ions suggests sequential multiphoton ionization processes with intermediate 1s electron excitation. We measure the average momentum and kinetic energy of each fragment, the comparison of which implies many-body fragmentation pathways of the molecular ions. The observed non-monotonic dependence of the kinetic energy on the charge states of fluorine indicates the multiphoton ionization of 'isolated' atomic neutral fluorine or fluorine ions resultant from bond cleavages and also implies the fragmentation of highly charged molecular ions that are produced at a later time during a single pulse. C1 [Osipov, T.; Fang, L.; Murphy, B.; Berrah, N.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Tarantelli, F.] Univ Perugia, Dept Chem, I-06123 Perugia, Italy. [Tarantelli, F.] Univ Perugia, ISTM CNR, I-06123 Perugia, Italy. [Hosler, E. R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Kukk, E.] Univ Turku, Dept Phys & Astron, FI-20014 Turku, Finland. [Bozek, J. D.; Bostedt, C.] SLAC, LCLS, Menlo Pk, CA 94025 USA. [Kanter, E. P.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Osipov, T (reprint author), Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. EM nora.berrah@wmich.edu RI Bozek, John/E-9260-2010; Tarantelli, Francesco/H-5798-2013 OI Bozek, John/0000-0001-7486-7238; Tarantelli, Francesco/0000-0002-1285-0606 FU US Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-FGO2-92ER14299.A002]; NSF ERC of EUV Science and Technology [EEC-0310717]; Academy of Finland; US Department of Energy by Argonne National Laboratory [DE-AC02-06CH11357, DE-FG02-04ER15614, DE-FG02-92ER14299]; DOE-BES FX We thank B McFarland, C Blaga, D Rolles, J Cryan, L DiMauro, M Glownia, M Guehr, M Hoener, M Messerschmidt, O Kornilov, O Gessner, PH Bucksbaum, R Coffee, SR Leone, ST Pratt and V Petrovic for their earlier contribution. This work was supported by the US Department of Energy (DE-FGO2-92ER14299.A002), Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. ERH acknowledges funding from the NSF ERC of EUV Science and Technology (no. EEC-0310717). EK acknowledges financial support from the Academy of Finland. EPK was supported by the US Department of Energy by Argonne National Laboratory (DE-AC02-06CH11357, DE-FG02-04ER15614, DE-FG02-92ER14299). The LCLS is funded by DOE-BES. We thank the LCLS staff for their assistance. NR 32 TC 4 Z9 4 U1 1 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD AUG 28 PY 2013 VL 46 IS 16 SI SI AR 164032 DI 10.1088/0953-4075/46/16/164032 PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 201AM UT WOS:000323113100033 ER PT J AU Pedersoli, E Loh, ND Capotondi, F Hampton, CY Sierra, RG Starodub, D Bostedt, C Bozek, J Nelson, AJ Aslam, M Li, S Dravid, VP Martin, AV Aquila, A Barty, A Fleckenstein, H Gumprecht, L Liang, M Nass, K Schulz, J White, TA Coppola, N Bajt, S Barthelmess, M Graafsma, H Hirsemann, H Wunderer, C Epp, SW Erk, B Rudek, B Rudenko, A Foucar, L Kassemeyer, S Lomb, L Rolles, D Shoeman, RL Steinbrener, J Hartmann, R Hartmann, A Hauser, G Holl, P Kimmel, N Reich, C Soltau, H Weidenspointner, G Benner, WH Farquar, GR Hau-Riege, SP Hunter, MS Ekeberg, T Hantke, M Maia, FRNC Tobias, HJ Marchesini, S Frank, M Struder, L Schlichting, I Ullrich, J Chapman, HN Bucksbaum, PH Kiskinova, M Bogan, MJ AF Pedersoli, E. Loh, N. D. Capotondi, F. Hampton, C. Y. Sierra, R. G. Starodub, D. Bostedt, C. Bozek, J. Nelson, A. J. Aslam, M. Li, S. Dravid, V. P. Martin, A. V. Aquila, A. Barty, A. Fleckenstein, H. Gumprecht, L. Liang, M. Nass, K. Schulz, J. White, T. A. Coppola, N. Bajt, S. Barthelmess, M. Graafsma, H. Hirsemann, H. Wunderer, C. Epp, S. W. Erk, B. Rudek, B. Rudenko, A. Foucar, L. Kassemeyer, S. Lomb, L. Rolles, D. Shoeman, R. L. Steinbrener, J. Hartmann, R. Hartmann, A. Hauser, G. Holl, P. Kimmel, N. Reich, C. Soltau, H. Weidenspointner, G. Benner, W. H. Farquar, G. R. Hau-Riege, S. P. Hunter, M. S. Ekeberg, T. Hantke, M. Maia, F. R. N. C. Tobias, H. J. Marchesini, S. Frank, M. Strueder, L. Schlichting, I. Ullrich, J. Chapman, H. N. Bucksbaum, P. H. Kiskinova, M. Bogan, M. J. TI Mesoscale morphology of airborne core-shell nanoparticle clusters: x-ray laser coherent diffraction imaging SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID FREE-ELECTRON LASER; IN-FLIGHT; SCATTERING AB Unraveling the complex morphology of functional materials like core-shell nanoparticles and its evolution in different environments is still a challenge. Only recently has the single-particle coherent diffraction imaging (CDI), enabled by the ultrabright femtosecond free-electron laser pulses, provided breakthroughs in understanding mesoscopic morphology of nanoparticulate matter. Here, we report the first CDI results for Co@SiO2 core-shell nanoparticles randomly clustered in large airborne aggregates, obtained using the x-ray free-electron laser at the Linac Coherent Light Source. Our experimental results compare favourably with simulated diffraction patterns for clustered Co@SiO2 nanoparticles with similar to 10 nm core diameter and similar to 30 nm shell outer diameter, which confirms the ability to resolve the mesoscale morphology of complex metastable structures. The findings in this first morphological study of core-shell nanomaterials are a solid base for future time-resolved studies of dynamic phenomena in complex nanoparticulate matter using x-ray lasers. C1 [Pedersoli, E.; Capotondi, F.; Kiskinova, M.] Elettra Sincrotrone Trieste, I-34149 Trieste, Italy. [Loh, N. D.; Hampton, C. Y.; Sierra, R. G.; Starodub, D.; Bucksbaum, P. H.; Bogan, M. J.] SLAC Natl Accelerator Lab, PULSE Inst, Menlo Pk, CA 94025 USA. [Bostedt, C.; Bozek, J.] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. [Nelson, A. J.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Aslam, M.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [Li, S.; Dravid, V. P.] Northwestern Univ, Int Inst Nanotechnol, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Martin, A. V.] Univ Melbourne, Sch Phys, ARC Ctr Excellence Coherent Xray Sci, Parkville, Vic 3010, Australia. [Aquila, A.; Barty, A.; Fleckenstein, H.; Gumprecht, L.; Liang, M.; Nass, K.; Schulz, J.; White, T. A.; Chapman, H. N.] DESY, Ctr Free Electron Laser Sci, D-22607 Hamburg, Germany. [Aquila, A.; Schulz, J.; Coppola, N.] European XFEL GmbH, D-22761 Hamburg, Germany. [Nass, K.; Chapman, H. N.] Univ Hamburg, D-22761 Hamburg, Germany. [Bajt, S.; Barthelmess, M.; Graafsma, H.; Hirsemann, H.; Wunderer, C.; Erk, B.; Rudek, B.; Rolles, D.] DESY, D-22607 Hamburg, Germany. [Epp, S. W.; Erk, B.; Rudek, B.; Foucar, L.; Rolles, D.] Ctr Free Electron Laser Sci, Max Planck Adv Study Grp, D-22607 Hamburg, Germany. [Epp, S. W.; Erk, B.; Rudek, B.; Foucar, L.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Rudenko, A.] Kansas State Univ, Dept Phys, JR Macdonald Lab, Manhattan, KS 66506 USA. [Kassemeyer, S.; Lomb, L.; Rolles, D.; Shoeman, R. L.; Steinbrener, J.; Schlichting, I.] Max Planck Inst Med Res, D-69120 Heidelberg, Germany. [Hartmann, R.; Hartmann, A.; Holl, P.; Reich, C.; Soltau, H.; Strueder, L.] PNSensor GmbH, D-81739 Munich, Germany. [Hauser, G.; Kimmel, N.; Weidenspointner, G.; Strueder, L.] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany. [Hauser, G.; Kimmel, N.; Weidenspointner, G.] Max Planck Inst Halbleiterlab, D-81739 Munich, Germany. [Benner, W. H.; Farquar, G. R.; Hau-Riege, S. P.; Hunter, M. S.; Frank, M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Ekeberg, T.; Hantke, M.; Maia, F. R. N. C.] Uppsala Univ, Dept Cell & Mol Biol, Lab Mol Biophys, SE-75124 Uppsala, Sweden. [Maia, F. R. N. C.] Natl Energy Res Sci Comp Ctr, Berkeley, CA 94720 USA. [Tobias, H. J.] Cornell Univ, Div Nutr Sci, Ithaca, NY 14853 USA. [Marchesini, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Ullrich, J.] Phys Tech Bundesanstalt, D-38116 Braunschweig, Germany. RP Pedersoli, E (reprint author), Elettra Sincrotrone Trieste, SS 14 Km 163-5 AREA Sci Pk, I-34149 Trieste, Italy. EM emanuele.pedersoli@elettra.trieste.it; duaneloh@slac.stanford.edu; flavio.capotondi@elettra.trieste.it RI Rudenko, Artem/C-7412-2009; Rocha Neves Couto Maia, Filipe/C-3146-2014; Bozek, John/E-9260-2010; Dravid, Vinayak/B-6688-2009; Barty, Anton/K-5137-2014; Frank, Matthias/O-9055-2014; Schlichting, Ilme/I-1339-2013; Bajt, Sasa/G-2228-2010; Loh, Duane/I-7371-2013; Chapman, Henry/G-2153-2010; Rudek, Benedikt/A-5100-2017 OI graafsma, heinz/0000-0003-2304-667X; MARTIN, ANDREW/0000-0003-3704-1829; Epp, Sascha/0000-0001-6366-9113; Rudenko, Artem/0000-0002-9154-8463; Rocha Neves Couto Maia, Filipe/0000-0002-2141-438X; Bozek, John/0000-0001-7486-7238; Barty, Anton/0000-0003-4751-2727; Loh, Duane/0000-0002-8886-510X; Chapman, Henry/0000-0002-4655-1743; FU Human Frontier Science Program; AMOS program within the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, US DOE; FERMI project of Elettra-Sincrotrone Trieste; Ministry of University and Research (Italy) [FIRB-RBAP045JF2, FIRB-RBAP06AWK3]; DOE through the SLAC Laboratory Directed Research and Development Program; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Max Planck Society; Hamburg Ministry of Science and Research; Joachim Herz Stiftung as part of the Hamburg Initiative for Excellence in Research (LEXI); Hamburg School for Structure and Dynamics in Infection; CBST at UC [PHY 0120999]; US DOE, National Nuclear Security Administration [DE-AC52-07NA27344]; University of California Laboratory Fee grant [09-LR-05-118036-BARA]; Swedish Research Council; European Research Council; Knut och Alice Wallenbergs Stiftelse; DFG Cluster of Excellence at the Munich Centre for Advanced Photonics FX Experiments were carried out at the LCLS, a national user facility operated by Stanford University on behalf of the US Department of Energy (DOE), Office of Basic Energy Sciences. We acknowledge support by the following: Human Frontier Science Program (NDL and MJB.); AMOS program within the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, US DOE (NDL., RGS, CYH, DS, MJB and PHB); FERMI project of Elettra-Sincrotrone Trieste, partially supported by the Ministry of University and Research (Italy) under grant numbers FIRB-RBAP045JF2 and FIRB-RBAP06AWK3; DOE through the SLAC Laboratory Directed Research and Development Program and by Lawrence Livermore National Laboratory under the contract DE-AC52-07NA27344; the Max Planck Society for funding the development and operation of the CAMP instrument within the ASG at CFEL; the Hamburg Ministry of Science and Research and Joachim Herz Stiftung as part of the Hamburg Initiative for Excellence in Research (LEXI); the Hamburg School for Structure and Dynamics in Infection; CBST at UC under cooperative agreement no PHY 0120999. Lawrence Livermore National Laboratory (LLNL) is operated by Lawrence Livermore National Security (LLC) for the US DOE, National Nuclear Security Administration under the contract DE-AC52-07NA27344. Work by LLNL has been supported, in part, by University of California Laboratory Fee grant 09-LR-05-118036-BARA. We thank the staff of the LCLS for their support in carrying out these experiments. We also acknowledge support from the Swedish Research Council, the European Research Council, Knut och Alice Wallenbergs Stiftelse, and the DFG Cluster of Excellence at the Munich Centre for Advanced Photonics. The Max Planck Advanced Study Group at CFEL acknowledges technical support by R Andritschke, K Gartner, O Halker, S Herrmann, A Homke, Ch Kaiser, K-U Kuhnel, W Leitenberger, D Miessner, D Pietschner, M Porro, R Richter, G Schaller, C Schmidt, F Schopper, C-D Schroter, Ch Thamm, A Walenta, A Ziegler, and H Gorke. NR 40 TC 8 Z9 8 U1 3 U2 24 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD AUG 28 PY 2013 VL 46 IS 16 SI SI AR 164033 DI 10.1088/0953-4075/46/16/164033 PG 10 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 201AM UT WOS:000323113100034 ER PT J AU Fan, XF Zheng, WT Kuo, JL Singh, DJ AF Fan, Xiaofeng Zheng, W. T. Kuo, Jer-Lai Singh, David J. TI Adsorption of Single Li and the Formation of Small Li Clusters on Graphene for the Anode of Lithium-Ion Batteries SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE first-principles calculations; graphene; rechargeable lithium-ion batteries; adsorption of Li; formation of Li cluster ID LAYER GRAPHENE; STORAGE; INTERCALATION; NANOSHEETS; GRAPHITE; SHEETS AB We analyzed the adsorption of Li on graphene in the context of anodes for lithium-ion batteries (LIBs) using first-principles methods including van der Waals interactions. We found that although Li can reside on the surface of defect-free graphene under favorable conditions, the binding is much weaker than to graphite and the concentration on a graphene surface is not higher than in graphite. At low concentration, Li ions spread out on graphene because of Coulomb repulsion. With increased Li content, we found that small Li clusters can be formed on graphene. Although this result suggests that graphene nanosheets can conceivably have a higher ultimate Li capacity than graphite, it should be noted that such nanoclusters can potentially nucleate Li dendrites, leading to failure. The implications for nanostructured carbon anodes in batteries are discussed. C1 [Fan, Xiaofeng; Zheng, W. T.] Jilin Univ, Coll Mat Sci & Engn, Changchun 130012, Peoples R China. [Fan, Xiaofeng; Zheng, W. T.] Jilin Univ, Key Lab Automobile Mat MOE, Changchun 130012, Peoples R China. [Kuo, Jer-Lai] Acad Sinica, Inst Atom & Mol Sci, Taipei 10617, Taiwan. [Singh, David J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Singh, David J.] Jilin Univ, Coll Mat Sci & Engn, Changchun 130012, Peoples R China. RP Fan, XF (reprint author), Jilin Univ, Coll Mat Sci & Engn, Changchun 130012, Peoples R China. EM xffan@jlu.edu.cn; singhdj@ornl.gov RI Kuo, Jer-Lai/F-5689-2010; Fan, Xiaofeng/B-9680-2011; OI Fan, Xiaofeng/0000-0001-6288-4866; zheng, weitao/0000-0002-9028-278X NR 35 TC 41 Z9 42 U1 10 U2 145 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD AUG 28 PY 2013 VL 5 IS 16 BP 7793 EP 7797 DI 10.1021/am401548c PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 211AF UT WOS:000323875800023 PM 23863039 ER PT J AU Lahiani, MH Dervishi, E Chen, JH Nima, Z Gaume, A Biris, AS Khodakovskaya, MV AF Lahiani, Mohamed H. Dervishi, Enkeleda Chen, Jihua Nima, Zeid Gaume, Alain Biris, Alexandra S. Khodakovskaya, Mariya V. TI Impact of Carbon Nanotube Exposure to Seeds of Valuable Crops SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE multiwalled carbon nanotubes; nanoparticles; germination; aerosol spray; aquaporins; Raman spectroscopy ID WATER CHANNEL PROTEINS; GERMINATION; EXPRESSION; AQUAPORINS; GROWTH; INHIBITION; TOMATO; SYSTEM; PLANTS; CELLS AB Multiwalled carbon nanotubes (MWCNTs) affected seed germination, growth, and the development of three important crops (barley, soybean, corn). Early seed germination and activation of growth in exposed seedlings was observed when MWCNTs were added to sterile agar medium. Similarly, seed germination was activated for all tested crop species when MWCNTs were deposited on seed surfaces. The ability of MWCNTs to penetrate the seed coats of corn, barley, and soybean was proven by detection of nanotube agglomerates inside MWCNT-exposed seeds using Raman spectroscopy and transmission electron microscopy (TEM). Reverse transcription polymerase chain reaction (RT-PCR) analysis revealed that the expression of genes encoding several types of water channel proteins was increased in soybean, corn, and barley seeds coated with MWCNTs compared with uncoated control seeds. Our results indicate that the positive effect of MWCNTs on the germination and growth of seedlings is reproducible between crop species and can be observed for different methods of delivering carbon nanotubes. Such studies could prove the significant potential of carbon nanotubes as regulators of germination and plant growth. C1 [Lahiani, Mohamed H.; Khodakovskaya, Mariya V.] Univ Arkansas, Dept Appl Sci, Little Rock, AR 72204 USA. [Dervishi, Enkeleda; Nima, Zeid; Biris, Alexandra S.] Univ Arkansas, Ctr Integrat Nanotechnol Sci, Little Rock, AR 72204 USA. [Biris, Alexandra S.] Univ Arkansas, Dept Syst Engn, Little Rock, AR 72204 USA. [Chen, Jihua] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Gaume, Alain] Syngenta Crop Protect AG, Basel, Switzerland. RP Khodakovskaya, MV (reprint author), Univ Arkansas, Dept Appl Sci, Little Rock, AR 72204 USA. EM mvkhodakovsk@ualr.edu RI Chen, Jihua/F-1417-2011 OI Chen, Jihua/0000-0001-6879-5936 FU Syngenta Crop Protection AG (Basel, Switzerland); Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. Department of Energy FX We are grateful to Syngenta Crop Protection AG (Basel, Switzerland) for financial support to conduct this research. We thank Mrs. Valerie K. Lapham (Center for Electron Microscopy, North Carolina State University) for the preparation of samples of seeds for TEM. A portion of this research (TEM imaging of seeds) was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. Department of Energy. The editorial assistance of Dr. Marinelle Ringer is also acknowledged. NR 32 TC 27 Z9 31 U1 6 U2 82 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD AUG 28 PY 2013 VL 5 IS 16 BP 7965 EP 7973 DI 10.1021/am402052x PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 211AF UT WOS:000323875800046 PM 23834323 ER PT J AU Kim, SH Shin, SJ Lenhardt, JM Braun, T Sain, JD Valdez, CA Leif, RN Kucheyev, SO Wu, KJJ Biener, J Satcher, JH Hamza, AV AF Kim, Sung Ho Shin, Swanee J. Lenhardt, Jeremy M. Braun, Tom Sain, John D. Valdez, Carlos A. Leif, Roald N. Kucheyev, Sergei O. Wu, Kuang Jen J. Biener, Juergen Satcher, Joe H., Jr. Hamza, Alex V. TI Deterministic Control over High-Z Doping of Polydicyclopentadiene-Based Aerogel Coatings SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE doping aerogels; ring-opening metathesis polymerization (ROMP); dicyclopentadiene; tin; iodine ID POLYMERIZATION; HYDROGENATION; POLYMERS; ACCESS AB We report on simple and efficient routes to dope polydicyclopentadiene (PDCPD)-based aerogels and their coatings with high-Z tracer elements. Initially, direct halogenation of PDCPD wet gels and aerogels with elemental iodine or bromine was studied. Although several pathways were identified that allowed doping of PDCPD aerogels by direct addition of bromine or iodine to the unsaturated polymer backbone, they all provided limited control over the amount and uniformity of doping, especially at very low dopant concentrations. Deterministic control over the doping level in polymeric aerogels and aerogel coatings was then achieved by developing a copolymerization approach with iodine and tin containing comonomers. Our results highlight the versatility of the ring-opening metathesis polymerization (ROMP)-based copolymerization approach in terms of functionalization and doping of low density polymeric aerogels and their coatings. C1 [Kim, Sung Ho; Lenhardt, Jeremy M.; Valdez, Carlos A.; Leif, Roald N.; Satcher, Joe H., Jr.] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94550 USA. [Kim, Sung Ho; Shin, Swanee J.; Braun, Tom; Sain, John D.; Kucheyev, Sergei O.; Wu, Kuang Jen J.; Biener, Juergen; Hamza, Alex V.] Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA. RP Kim, SH (reprint author), Lawrence Livermore Natl Lab, Div Chem Sci, 7000 East Ave, Livermore, CA 94550 USA. EM kim61@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. We thank Dr. Ian D. Hutcheon for his valuable help in the execution of the SEM experiment. NR 30 TC 2 Z9 2 U1 3 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD AUG 28 PY 2013 VL 5 IS 16 BP 8111 EP 8119 DI 10.1021/am4021878 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 211AF UT WOS:000323875800067 PM 23895541 ER PT J AU Khan, EH Langford, SC Dickinson, JT Boatner, LA AF Khan, Enamul H. Langford, S. C. Dickinson, J. T. Boatner, L. A. TI The interaction of 193-nm excimer laser radiation with single-crystal zinc oxide: The generation of atomic Zn line emission at laser fluences below breakdown SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID EXCITED-STATES; KNUDSEN-LAYER; RECOMBINATION; SPECTROSCOPY; SURFACES; MGO AB The production of gas phase atomic and ionic line spectra accompanying the high laser fluence irradiation of solid surfaces is well known and is most often due to the production and interaction of high densities of atoms, ions, and electrons generated from laser-induced breakdown. The resulting plasma expands and moves rapidly away from the irradiated spot and is accompanied by intense emission of light. This type of "plume" is well studied and is frequently exploited in the technique of chemical analysis known as laser induced breakdown spectroscopy. Here, we describe a similar but weaker emission of light generated in vacuum by the laser irradiation of single crystal ZnO at fluences well below breakdown; this emission consists entirely of optical line emission from excited atomic Zn. We compare the properties of the resulting laser-generated gas-phase light emission (above and below breakdown) and describe a mechanism for the production of the low-fluence optical emission resulting from a fortuitous choice of material and laser wavelength. (C) 2013 AIP Publishing LLC. C1 [Khan, Enamul H.; Langford, S. C.; Dickinson, J. T.] Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA. [Boatner, L. A.] Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. RP Dickinson, JT (reprint author), Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA. EM jtd@wsu.edu RI Boatner, Lynn/I-6428-2013 OI Boatner, Lynn/0000-0002-0235-7594 FU US Department of Energy [DE-FG02-04ER-15618]; U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division FX This work was supported by the US Department of Energy under Contract No. DE-FG02-04ER-15618. Research at the Oak Ridge National Laboratory (LAB) was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 27 TC 2 Z9 2 U1 2 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD AUG 28 PY 2013 VL 114 IS 8 AR 083102 DI 10.1063/1.4818833 PG 9 WC Physics, Applied SC Physics GA 211MD UT WOS:000323911100002 ER PT J AU Levin, EM Besser, MF Hanus, R AF Levin, E. M. Besser, M. F. Hanus, R. TI Electronic and thermal transport in GeTe: A versatile base for thermoelectric materials SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID PERFORMANCE BULK THERMOELECTRICS; PHASE-CHANGE MATERIALS; GERMANIUM TELLURIDE; PBTE; NANOSTRUCTURES; ENHANCEMENT; THERMOPOWER; SCATTERING; CRYSTALS; DESIGN AB GeTe is a narrow-band gap semiconductor, where Ge vacancies generate free charge carriers, holes, forming a self-dopant degenerate system with p-type conductivity, and serves as a base for high-performance multicomponent thermoelectric materials. There is a significant discrepancy between the electronic and thermal transport data for GeTe-based materials reported in the literature, which obscures the baseline knowledge and prevents a clear understanding of the effect of alloying GeTe with various elements. A comprehensive study including XRD, SEM, EDS, Seebeck coefficient, electrical resistivity, thermal conductivity, and Te-125 NMR of several GeTe samples was conducted. Similar Seebeck coefficient and electrical resistivity are observed for all GeTe samples used showing that the concentration of Ge vacancies generating charge carriers is constant along the ingot. Very short Te-125 NMR spin-relaxation time agrees well with high carrier concentration obtained from the Hall effect measurements. Our data show that at similar to 700 K, GeTe has a very large power factor, 42 mu Wcm(-1)K(-2), much larger than that of any high efficiency thermoelectric telluride at these temperatures. Electronic and thermal properties of GeTe are compared to PbTe, another well-known thermoelectric material, where free charge carriers, holes or electrons, are generated by vacancies on Pb or Te sites, respectively. Discrepancy in the data for GeTe reported in literature can be attributed to the variation in the Ge: Te ratio of solidified samples as well as to different conditions of measurements. (C) 2013 AIP Publishing LLC. C1 [Levin, E. M.; Besser, M. F.; Hanus, R.] Iowa State Univ, Ames Lab US DOE, Div Mat Sci & Engn, Ames, IA 50011 USA. [Levin, E. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Levin, EM (reprint author), Iowa State Univ, Ames Lab US DOE, Div Mat Sci & Engn, Ames, IA 50011 USA. EM levin@iastate.edu FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358] FX Authors thank H. Sailsbury (Materials Preparation Center, Ames Laboratory U. S. DOE), for preparation of the ingot, K. Schmidt-Rohr (Iowa State University and Ames Laboratory U. S. DOE) for interest in this work and useful discussions, W. E. Straszheim (Ames Laboratory U. S. DOE and Iowa State University) for SEM and EDS study, S. L. Bud'ko (Ames Laboratory U. S. DOE and Iowa State University) for Hall effect measurements, and J. D. Acton for help in experiment (Ames Laboratory U. S. DOE and Iowa State University). This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. The research was performed at the Ames Laboratory, which is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 47 TC 26 Z9 26 U1 6 U2 93 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD AUG 28 PY 2013 VL 114 IS 8 AR 083713 DI 10.1063/1.4819222 PG 9 WC Physics, Applied SC Physics GA 211MD UT WOS:000323911100055 ER PT J AU McCloy, JS Jiang, WL Droubay, TC Varga, T Kovarik, L Sundararajan, JA Kaur, M Qiang, Y Burks, EC Liu, K AF McCloy, John S. Jiang, Weilin Droubay, Timothy C. Varga, Tamas Kovarik, Libor Sundararajan, Jennifer A. Kaur, Maninder Qiang, You Burks, Edward C. Liu, Kai TI Ion irradiation of Fe-Fe oxide core-shell nanocluster films: Effect of interface on stability of magnetic properties SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID PHASE-TRANSFORMATION; IRON NANOPARTICLES; TRANSITION; NANOSTRUCTURES; NANOCOMPOSITE; REDUCTION; PRESSURE; GROWTH; FE2O3; NI AB A cluster deposition method was used to produce films of loosely aggregated nanoclusters (NCs) of Fe core-Fe3O4 shell or fully oxidized Fe3O4. Films of these NC on Si(100) or MgO(100)/Fe3O4(100) were irradiated to 10(16) Si2+/cm(2) near room temperature using an ion accelerator. Ion irradiation creates structural change in the NC film with corresponding chemical and magnetic changes which depend on the initial oxidation state of the cluster. Films were characterized using magnetometry (hysteresis, first order reversal curves), microscopy (transmission electron, helium ion), and x-ray diffraction. In all cases, the particle sizes increased due to ion irradiation, and when a core of Fe is present, irradiation reduces the oxide shells to lower valent Fe species. These results show that ion irradiated behavior of the NC films depends strongly on the initial nanostructure and chemistry, but in general saturation magnetization decreases slightly. (C) 2013 AIP Publishing LLC. C1 [McCloy, John S.; Jiang, Weilin; Droubay, Timothy C.; Varga, Tamas; Kovarik, Libor] Pacific NW Natl Lab, Richland, WA 99352 USA. [Sundararajan, Jennifer A.; Kaur, Maninder; Qiang, You] Univ Idaho, Dept Phys, Moscow, ID 83844 USA. [Burks, Edward C.; Liu, Kai] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP McCloy, JS (reprint author), Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. EM john.mccloy@wsu.edu RI Liu, Kai/B-1163-2008; McCloy, John/D-3630-2013; Droubay, Tim/D-5395-2016; Kovarik, Libor/L-7139-2016 OI Jiang, Weilin/0000-0001-8302-8313; Liu, Kai/0000-0001-9413-6782; McCloy, John/0000-0001-7476-7771; Droubay, Tim/0000-0002-8821-0322; FU Pacific Northwest National Laboratory (PNNL) directed research & development (LDRD); U.S. Department of Energy by Battelle [DE-AC05-76RL01830]; DOE [DE-FG02-07ER46386, DE-FG02-04ER46142]; DOE's Office of Biological and Environmental Research; NSF [DMR-1008791] FX This study was supported by the Pacific Northwest National Laboratory (PNNL) directed research & development (LDRD). The PNNL is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830. Samples were prepared at the University of Idaho, supported by DOE under Contracts DE-FG02-07ER46386 and DE-FG02-04ER46142. A portion of the research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. Work at UCD was supported by the NSF (DMR-1008791). NR 65 TC 8 Z9 8 U1 3 U2 27 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD AUG 28 PY 2013 VL 114 IS 8 AR 083903 DI 10.1063/1.4818309 PG 9 WC Physics, Applied SC Physics GA 211MD UT WOS:000323911100064 ER PT J AU Repins, IL Moutinho, H Choi, SG Kanevce, A Kuciauskas, D Dippo, P Beall, CL Carapella, J DeHart, C Huang, B Wei, SH AF Repins, I. L. Moutinho, H. Choi, S. G. Kanevce, A. Kuciauskas, D. Dippo, P. Beall, C. L. Carapella, J. DeHart, C. Huang, B. Wei, S. H. TI Indications of short minority-carrier lifetime in kesterite solar cells SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID EFFICIENCY LIMITATIONS; MATERIALS AVAILABILITY; CU(IN,GA)SE-2; PHOTOVOLTAICS AB Solar cells based on kesterite absorbers consistently show lower voltages than those based on chalcopyrites with the same bandgap. We use three different experimental methods and associated data analysis to determine minority-carrier lifetime in a 9.4%-efficient Cu2ZnSnSe4 device. The methods are cross-sectional electron-beam induced current, quantum efficiency, and time-resolved photoluminescence. These methods independently indicate minority-carrier lifetimes of a few nanoseconds. A comparison of current-voltage measurements and device modeling suggests that these short minority-carrier lifetimes cause a significant limitation on the voltage produced by the device. The comparison also implies that low minority-carrier lifetime alone does not account for all voltage loss in these devices. (C) 2013 AIP Publishing LLC. C1 [Repins, I. L.; Moutinho, H.; Choi, S. G.; Kanevce, A.; Kuciauskas, D.; Dippo, P.; Beall, C. L.; Carapella, J.; DeHart, C.; Huang, B.; Wei, S. H.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Repins, IL (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Huang, Bing/D-8941-2011; Choi, Sukgeun/J-2345-2014 OI Huang, Bing/0000-0001-6735-4637; FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. The authors thank the NREL Device Performance group for JV and QE measurements. NR 27 TC 28 Z9 28 U1 1 U2 40 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD AUG 28 PY 2013 VL 114 IS 8 AR 084507 DI 10.1063/1.4819849 PG 5 WC Physics, Applied SC Physics GA 211MD UT WOS:000323911100100 ER PT J AU Riviere, J Renaud, G Guyer, RA Johnson, PA AF Riviere, J. Renaud, G. Guyer, R. A. Johnson, P. A. TI Pump and probe waves in dynamic acousto-elasticity: Comprehensive description and comparison with nonlinear elastic theories (vol 114, 054905, 2013) SO JOURNAL OF APPLIED PHYSICS LA English DT Correction C1 [Riviere, J.; Guyer, R. A.; Johnson, P. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Renaud, G.] Erasmus MC, Thoraxctr, Dept Biomech Engn, NL-3000 CA Rotterdam, Netherlands. [Guyer, R. A.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. RP Riviere, J (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM riviere_jacques@yahoo.fr OI Johnson, Paul/0000-0002-0927-4003 NR 1 TC 0 Z9 0 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD AUG 28 PY 2013 VL 114 IS 8 AR 089903 DI 10.1063/1.4820251 PG 1 WC Physics, Applied SC Physics GA 211MD UT WOS:000323911100110 ER PT J AU Dang, LX Annapureddy, HVR AF Dang, Liem X. Annapureddy, Harsha V. R. TI Computational studies of water exchange around aqueous Li+ with polarizable potential models SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MANY-BODY POTENTIALS; MOLECULAR-DYNAMICS; SIMULATIONS; MECHANISMS; HYDRATION; LIQUID; NA+; MD AB To enhance our understanding of the mechanism of water-exchange around aqueous Li+, we carried out a systematic study on this system using molecular dynamics simulations with polarizable potential models. The mechanistic properties associated with the water-exchange process, such as potentials of mean force, time dependent transmission coefficients, and the corresponding rate constants, were examined using transition rate theory, the reactive flux method, and Grote-Hynes treatments of the dynamic response of the solvent. We compared the computed rate theory results with results from previous corresponding studies in which classical non-polarizable force fields were used. Our computed barrier heights for water exchange are significantly larger than those obtained using classical non-polarizable force fields. We also studied the effect of pressure on water-exchange rates and the corresponding activation volume. Our computed rate results for water exchange increase with pressure; therefore, a small negative activation volume is observed. (C) 2013 AIP Publishing LLC. C1 [Dang, Liem X.; Annapureddy, Harsha V. R.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Dang, LX (reprint author), Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (BES), of the U.S. Department of Energy (DOE) FX The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (BES), of the U.S. Department of Energy (DOE) funded this work. Battelle operates Pacific Northwest National Laboratory for DOE. The calculations were carried out using computer resources provided by BES. L.X.D. would like to thank Professor David E. Manolopoulos of Oxford University for many insightful comments. NR 22 TC 8 Z9 8 U1 0 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD AUG 28 PY 2013 VL 139 IS 8 AR UNSP 084506 DI 10.1063/1.4819135 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 211RO UT WOS:000323928000053 PM 24007017 ER PT J AU Kalkan, B Edwards, TG Raoux, S Sen, S AF Kalkan, B. Edwards, T. G. Raoux, S. Sen, S. TI Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID HIGH-PRESSURE; METAL TRANSITION; A-GASB; SEMICONDUCTORS; LIQUID; EXAFS; WATER AB The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the beta-Sn crystal structure near similar to 5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA. HDA transition. The morphous -> beta-Sn phase transition is found to be hysteretically reversible as the beta-Sn phase undergoes decompressive amorphization near similar to 2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression. (C) 2013 AIP Publishing LLC. C1 [Kalkan, B.] Lawrence Berkeley Lab, Adv Light Source, Washington, DC 20015 USA. [Edwards, T. G.; Sen, S.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Raoux, S.] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA. RP Kalkan, B (reprint author), Lawrence Berkeley Lab, Adv Light Source, Washington, DC 20015 USA. RI Raoux, Simone/G-3920-2016 FU NSF-DMR [NSF GOALI 1104869]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX S.S. and T.G.E. were supported by a research grant from NSF-DMR (NSF GOALI 1104869). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 27 TC 9 Z9 9 U1 7 U2 51 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD AUG 28 PY 2013 VL 139 IS 8 AR 084507 DI 10.1063/1.4818805 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 211RO UT WOS:000323928000054 PM 24007018 ER PT J AU Kershis, MD Wilson, DP White, MG John, JJ Nomerotski, A Brouard, M Lee, JWL Vallance, C Turchetta, R AF Kershis, Matthew D. Wilson, Daniel P. White, Michael G. John, Jaya John Nomerotski, Andrei Brouard, Mark Lee, Jason W. L. Vallance, Claire Turchetta, Renato TI Exploring surface photoreaction dynamics using pixel imaging mass spectrometry (PImMS) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID RESOLVED ANGULAR-DISTRIBUTIONS; ELECTRON-STIMULATED PROCESSES; FINAL-STATE DISTRIBUTIONS; LASER-INDUCED DESORPTION; NEUTRAL PRODUCTS; TIO2(110); PHOTOCATALYSIS; PT(111); PHOTODESORPTION; PHOTOOXIDATION AB A new technique for studying surface photochemistry has been developed using an ion imaging time-of-flight mass spectrometer in conjunction with a fast camera capable of multimass imaging. This technique, called pixel imaging mass spectrometry (PImMS), has been applied to the study of butanone photooxidation on TiO2(110). In agreement with previous studies of this system, it was observed that the main photooxidation pathway for butanone involves ejection of an ethyl radical into vacuum which, as confirmed by our imaging experiment, undergoes fragmentation after ionization in the mass spectrometer. This proof-of-principle experiment illustrates the usefulness and applicability of PImMS technology to problems of interest within the surface science community. (C) 2013 AIP Publishing LLC. C1 [Kershis, Matthew D.; Wilson, Daniel P.; White, Michael G.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [White, Michael G.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [John, Jaya John; Nomerotski, Andrei] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Nomerotski, Andrei] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Brouard, Mark] Univ Oxford, Dept Chem, Phys & Theoret Chem Lab, Oxford OX1 3QZ, England. [Lee, Jason W. L.; Vallance, Claire] Univ Oxford, Dept Chem, Chem Res Lab, Oxford OX1 3TA, England. [Turchetta, Renato] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. RP White, MG (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM mgwhite@bnl.gov RI Nomerotski, Andrei/A-5169-2010; Kershis, Matthew/K-4219-2016; OI Kershis, Matthew/0000-0002-8777-7976; John, Jaya/0000-0001-6831-6501 FU Chemistry Department at Brookhaven National Laboratory [DE-AC02-98CH10086]; (U.S.) Department of Energy (DOE) (Division of Chemical Sciences); Engineering and Physical Sciences Research Council (U.K.) EPSRC [EP/G00224X/1]; European Union (EU) [238671]; STFC through a PNPAS award; STFC [ST/J002895/1]; ERC; ISIS Innovation Ltd. FX The authors gratefully acknowledge Dr. Raj Rao and Dr. Joel Carney for their work with regard to the construction of the imaging TOF-MS and the development of the SIMION simulations. This work was carried out in the Chemistry Department at Brookhaven National Laboratory under Contract No. DE-AC02-98CH10086 with the (U.S.) Department of Energy (DOE) (Division of Chemical Sciences). The support of the Engineering and Physical Sciences Research Council (U.K.) EPSRC(GB) via Programme Grant No. EP/G00224X/1 (M. B. and C. V.), the European Union (EU) through grant FP7ITN "ICONIC" (Project Grant No. 238671 to M. B. and C. V.), STFC through a PNPAS award to A.N., M. B., C. V., and R. T., STFC through a mini-IPS grant ST/J002895/1 to A.N. and R. T., ERC through Starting Independent Researcher grant "ImageMS" (C. V.), and a "proof of concept" grant from ISIS Innovation Ltd. (M. B., C. V., and A.N.) are gratefully acknowledged. NR 32 TC 6 Z9 6 U1 1 U2 42 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD AUG 28 PY 2013 VL 139 IS 8 AR 084202 DI 10.1063/1.4818997 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 211RO UT WOS:000323928000024 PM 24006988 ER PT J AU Perry, JW Dawes, R Wagner, AF Thompson, DL AF Perry, Jamin W. Dawes, Richard Wagner, Albert F. Thompson, Donald L. TI A classical trajectory study of the intramolecular dynamics, isomerization, and unimolecular dissociation of HO2 SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID POTENTIAL-ENERGY SURFACE; CONFIGURATION-INTERACTION CALCULATIONS; DISCRETE VARIABLE REPRESENTATION; ACTIVE THERMOCHEMICAL TABLES; DIFFERENCE-FREQUENCY LASER; THEORETICAL CHARACTERIZATION; POLYATOMIC-MOLECULES; SPECTROSCOPY; STATES; DECOMPOSITION AB The classical dynamics and rates of isomerization and dissociation of HO2 have been studied using two potential energy surfaces (PESs) based on interpolative fittings of ab initio data: An interpolative moving least-squares (IMLS) surface [A. Li, D. Xie, R. Dawes, A. W. Jasper, J. Ma, and H. Guo, J. Chem. Phys. 133, 144306 (2010)] and the cubic-spline-fitted PES reported by Xu, Xie, Zhang, Lin, and Guo (XXZLG) [J. Chem. Phys. 127, 024304 (2007)]. Both PESs are based on similar, though not identical, internally contracted multi-reference configuration interaction with Davidson correction (icMRCI+Q) electronic structure calculations; the IMLS PES includes complete basis set (CBS) extrapolation. The coordinate range of the IMLS PES is limited to non-reactive processes. Surfaces-of-section show similar generally regular phase space structures for the IMLS and XXZLG PESs with increasing energy. The intramolecular vibrational energy redistribution (IVR) at energies above and below the threshold of isomerization is slow, especially for O-O stretch excitations, consistent with the regularity in the surfaces-of-section. The slow IVR rates lead to mode-specific effects that are prominent for isomerization (on both the IMLS and XXZLG) and modest for unimolecular dissociation to H + O-2 (accessible only on the XXZLG PES). Even with statistical distributions of initial energy, slow IVR rates result in double exponential decay for isomerization, with the slower rate correlated with slow IVR rates for O-O vibrational excitation. The IVR and isomerization rates computed for the IMLS and XXZLG PESs are quantitatively, but not qualitatively, different from one another with the largest differences ascribed to the similar to 2 kcal/mol difference in the isomerization barrier heights. The IMLS and XXZLG results are compared with those obtained using the global, semi-empirical double-many-body expansion DMBE-IV PES [M. R. Pastrana, L. A. M. Quintales, J. Brandao, and A. J. C. Varandas, J. Chem. Phys. 94, 8073 (1990)], for which the surfaces-of-section display more irregular phase space structure, much faster IVR rates, and significantly less mode-specific effects in isomerization and unimolecular dissociation. The calculated IVR results for all three PESs are reasonably well represented by an analytic, coupled three-mode energy transfer model. (C) 2013 AIP Publishing LLC. C1 [Perry, Jamin W.; Thompson, Donald L.] Univ Missouri, Dept Chem, Columbia, MO 65211 USA. [Dawes, Richard] Missouri Univ Sci & Technol, Dept Chem, Rolla, MO 65409 USA. [Wagner, Albert F.] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Perry, JW (reprint author), Univ Missouri, Dept Chem, Columbia, MO 65211 USA. RI Dawes, Richard/C-6344-2015 FU U. S. Army Research Office [W911NF-09-1-0199]; Office of Basic Energy Sciences, Division of Chemical Sciences, U.S. Department of Energy [DE-AC02-06CH11357] FX We thank Hua Guo for providing us with a version of the XXZLG potential and for helpful discussions. This work was supported by a grant from the U. S. Army Research Office under grant number W911NF-09-1-0199 and the Office of Basic Energy Sciences, Division of Chemical Sciences, U.S. Department of Energy under Contract No. DE-AC02-06CH11357. NR 80 TC 5 Z9 5 U1 0 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD AUG 28 PY 2013 VL 139 IS 8 AR 084319 DI 10.1063/1.4818879 PG 18 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 211RO UT WOS:000323928000045 PM 24007009 ER PT J AU Velarde, L Wang, HF AF Velarde, Luis Wang, Hong-fei TI Capturing inhomogeneous broadening of the -CN stretch vibration in a Langmuir monolayer with high-resolution spectra and ultrafast vibrational dynamics in sum-frequency generation vibrational spectroscopy (SFG-VS) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID AIR-WATER-INTERFACE; PHASE-TRANSITIONS; LIQUID-CRYSTAL; MOLECULAR-ORGANIZATION; BINARY-MIXTURES; 2-DIMENSIONAL FILMS; ORIENTATION; SURFACES; PULSES; PROBE AB While in principle the frequency-domain and time-domain spectroscopic measurements should generate identical information for a given molecular system, the inhomogeneous character of surface vibrations in sum-frequency generation vibrational spectroscopy (SFG-VS) studies has only been studied with time-domain SFG-VS by mapping the decay of the vibrational polarization using ultrafast lasers, this due to the lack of SFG vibrational spectra with high enough spectral resolution and accurate enough lineshape. Here, with the recently developed high-resolution broadband SFG-VS (HR-BB-SFG-VS) technique, we show that the inhomogeneous lineshape can be obtained in the frequency-domain for the anchoring CN stretch of the 4-n-octyl-4'-cyanobiphenyl (8CB) Langmuir monolayer at the air-water interface, and that an excellent agreement with the time-domain SFG free-induction-decay can be established. We found that the 8CB CN stretch spectrum consists of a single peak centered at 2234.00 +/- 0.01 cm(-1) with a total linewidth of 10.9 +/- 0.3 cm(-1) at half maximum. The Lorentzian contribution accounts only for 4.7 +/- 0.4 cm(-1) to this width and the Gaussian (inhomogeneous) broadening for as much as 8.1 +/- 0.2 cm(-1). Polarization analysis of the -CN spectra showed that the -CN group is tilted 57 degrees +/- 2 degrees from the surface normal. The large heterogeneity in the -CN spectrum is tentatively attributed to the -CN group interactions with the interfacial water molecules penetrated/accommodated into the 8CB monolayer, a unique phenomenon for the nCB Langmuir monolayers reported previously. (C) 2013 AIP Publishing LLC. C1 [Velarde, Luis; Wang, Hong-fei] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Wang, HF (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM hongfei.wang@pnnl.gov RI Wang, Hongfei/B-1263-2010; Velarde, Luis/D-4929-2011 OI Wang, Hongfei/0000-0001-8238-1641; Velarde, Luis/0000-0001-6329-3486 FU Pacific Northwest National Laboratory (PNNL) LDRD program; Department of Energy's Office of Biological and Environmental Research (BER) FX L.V. thanks Xian-yi Zhang and Zhou Lu for help in the early stage of the HR-BB-SFG-VS experiment. L. V. also thanks Xin Guo for his assistance in setting up the Langmuir through and with the surface pressure measurements. H. F. W. thanks valuable discussion with Martin Zanni. This work was supported by the Pacific Northwest National Laboratory (PNNL) LDRD program, and was conducted at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility located at the Pacific Northwest National Laboratory and sponsored by the Department of Energy's Office of Biological and Environmental Research (BER). NR 77 TC 23 Z9 23 U1 3 U2 58 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD AUG 28 PY 2013 VL 139 IS 8 AR 084204 DI 10.1063/1.4818996 PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 211RO UT WOS:000323928000026 PM 24006990 ER PT J AU Velizhanin, KA Piryatinski, A Chernyak, VY AF Velizhanin, Kirill A. Piryatinski, Andrei Chernyak, Vladimir Y. TI Low-temperature hopping dynamics with energy disorder: Renormalization group approach SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID TRANSPORT; DIFFUSION; MIGRATION; POLYMERS; AEROGELS; MEDIA; GELS AB We formulate a real-space renormalization group (RG) approach for efficient numerical analysis of the low-temperature hopping dynamics in energy-disordered lattices. The approach explicitly relies on the time-scale separation of the trapping/escape dynamics. This time-scale separation allows to treat the hopping dynamics as a hierarchical process, RG step being a transformation between the levels of the hierarchy. We apply the proposed RG approach to analyze hopping dynamics in one- and two-dimensional lattices with varying degrees of energy disorder, and find the approach to be accurate at low temperatures and computationally much faster than the brute-force direct diagonalization. Applicability criteria of the proposed approach with respect to the time-scale separation and the maximum number of hierarchy levels are formulated. RG flows of energy distribution and pre-exponential factors of the Miller-Abrahams model are analyzed. (C) 2013 AIP Publishing LLC. C1 [Velizhanin, Kirill A.; Piryatinski, Andrei; Chernyak, Vladimir Y.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Chernyak, Vladimir Y.] Wayne State Univ, Dept Chem, Detroit, MI 48202 USA. RP Velizhanin, KA (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM kirill@lanl.gov; chernyak@chem.wayne.edu RI Velizhanin, Kirill/C-4835-2008; Piryatinski, Andrei/B-5543-2009; Chernyak, Vladimir/F-5842-2016 OI Chernyak, Vladimir/0000-0003-4389-4238 FU National Nuclear Security Administration of the U.S. Department of Energy (DOE) [DE-AC52-06NA25396]; National Science Foundation (NSF) [CHE-1111350] FX K.A.V. is thankful to Y. Dubi, A. Zhugayevych, and J. Bjorgaard for useful discussions and comments on the manuscript. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy (DOE) under Contract No. DE-AC52-06NA25396. V. Y. C. acknowledges support by the National Science Foundation (NSF) under Grant No. CHE-1111350. NR 30 TC 1 Z9 1 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD AUG 28 PY 2013 VL 139 IS 8 AR 084118 DI 10.1063/1.4819197 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 211RO UT WOS:000323928000021 PM 24006985 ER PT J AU Watson, MC Morriss-Andrews, A Welch, PM Brown, FLH AF Watson, Max C. Morriss-Andrews, Alex Welch, Paul M. Brown, Frank L. H. TI Thermal fluctuations in shape, thickness, and molecular orientation in lipid bilayers. II. Finite surface tensions SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID COARSE-GRAINED MODEL; MEMBRANE-PROTEIN INTERACTIONS; FIXED PROJECTED AREA; ELASTIC PROPERTIES; FLUID MEMBRANES; DYNAMICS SIMULATIONS; PHASE-TRANSITIONS; CHANNEL LIFETIME; TILT; DEFORMATIONS AB We investigate the role of lipid chemical potential on the shape, thickness, and molecular orientation (lipid tilting relative to the monolayer surface normal) of lipid bilayers via a continuum-level model. We predict that decreasing the chemical potential at constant temperature, which is associated with an increase in surface tension via the Gibbs-Duhem relation, leads both to the well known reduction in thermal membrane undulations and also to increasing fluctuation amplitudes for bilayer thickness and molecular orientation. These trends are shown to be in good agreement with molecular simulations, however it is impossible to achieve full quantitative agreement between theory and simulation within the confines of the present model. We suggest that the assumption of lipid volume incompressibility, common to our theoretical treatment and other continuum models in the literature, may be partially responsible for the quantitative discrepancies between theory and simulation. (C) 2013 AIP Publishing LLC. C1 [Watson, Max C.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Watson, Max C.; Morriss-Andrews, Alex; Brown, Frank L. H.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Watson, Max C.; Welch, Paul M.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Brown, Frank L. H.] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. RP Watson, MC (reprint author), Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. OI Welch, Paul/0000-0001-5614-2065 FU Los Alamos National Laboratory Institute for Multiscale Materials Studies under the auspices of the National Nuclear Security Administration of the U. S. Department of Energy [DE-AC52-06NA25396]; National Science Foundation [NSF CHE-0848809, CHE-1153096, CNS-0960316] FX Some computing time was provided by the Los Alamos National Laboratory Institutional Computing Program. Financial support was provided by the Los Alamos National Laboratory Institute for Multiscale Materials Studies, operated under the auspices of the National Nuclear Security Administration of the U. S. Department of Energy under Contract No. DE-AC52-06NA25396 and the National Science Foundation (NSF CHE-0848809, CHE-1153096, and CNS-0960316). F.L.H.B. is a Camille Dreyfus Teacher-Scholar. NR 84 TC 13 Z9 13 U1 3 U2 40 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD AUG 28 PY 2013 VL 139 IS 8 AR 084706 DI 10.1063/1.4818530 PG 18 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 211RO UT WOS:000323928000064 PM 24007028 ER PT J AU Lian, YJ Hummel, JR Bergman, RG Ellman, JA AF Lian, Yajing Hummel, Joshua R. Bergman, Robert G. Ellman, Jonathan A. TI Facile Synthesis of Unsymmetrical Acridines and Phenazines by a Rh(III)-Catalyzed Amination/Cyclization/Aromatization Cascade SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID C-H BOND; CYCLIZATION DIRECT SYNTHESIS; INTERNAL ALKYNES; SULFONYL AZIDES; RHODIUM(III)-CATALYZED SYNTHESIS; INTRAMOLECULAR CYCLIZATION; CATALYZED ANNULATION; EFFICIENT SYNTHESIS; CINNOLINIUM SALTS; AROMATIC KETONES AB We report formal [3 + 3] annulations of aromatic azides with aromatic imines and azobenzenes to give acridines and phenazines, respectively. These transformations proceed through a cascade process of Rh(III)-catalyzed amination followed by intramolecular electrophilic aromatic substitution and aromatization. Acridines can be directly prepared from aromatic aldehydes by in situ imine formation using catalytic benzylamine. C1 [Lian, Yajing; Hummel, Joshua R.; Ellman, Jonathan A.] Yale Univ, Dept Chem, New Haven, CT 06520 USA. [Bergman, Robert G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Bergman, Robert G.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Ellman, JA (reprint author), Yale Univ, Dept Chem, 225 Prospect St, New Haven, CT 06520 USA. EM jonathan.ellman@yale.edu RI Ellman, Jonathan/C-7732-2013 FU NIH [GM069559]; DOE [DE-AC02-05CH11231] FX This work was supported by NIH (GM069559 to J.A.E.). R.G.B. was supported by DOE (DE-AC02-05CH11231). NR 69 TC 82 Z9 82 U1 1 U2 95 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD AUG 28 PY 2013 VL 135 IS 34 BP 12548 EP 12551 DI 10.1021/ja406131a PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 211AK UT WOS:000323876300015 PM 23957711 ER PT J AU Zhu, ZW Melaet, G Axnanda, S Alayoglu, S Liu, Z Salmeron, M Somorjai, GA AF Zhu, Zhongwei Melaet, Gerome Axnanda, Stephanus Alayoglu, Selim Liu, Zhi Salmeron, Miquel Somorjai, Gabor A. TI Structure and Chemical State of the Pt(557) Surface during Hydrogen Oxidation Reaction Studied by in Situ Scanning Tunneling Microscopy and X-ray Photoelectron Spectroscopy SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID NEAR-AMBIENT CONDITIONS; CATALYTIC-OXIDATION; CARBON-MONOXIDE; PT(100)-HEX SURFACE; PLATINUM; PT(111); WATER; CO; ADSORPTION; OXYGEN AB The surface structure of Pt(557) during the catalytic oxidation of hydrogen was studied with in situ scanning tunneling microscopy and X-ray photoelectron spectroscopy. At 298 K, the surface Pt oxide formed after exposing Pt(557) to approximately 1 Torr of O-2 can be readily removed by H-2, at H-2 partial pressures below SO mTorr. Water is detected as the product in the gas phase, which also coadsorbs with hydroxyl groups on the Pt(557) surface. C1 [Zhu, Zhongwei; Melaet, Gerome; Alayoglu, Selim; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Zhu, Zhongwei; Salmeron, Miquel; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Melaet, Gerome; Alayoglu, Selim] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Axnanda, Stephanus; Liu, Zhi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Salmeron, Miquel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Salmeron, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM mbsalmeron@lbl.gov; somorjai@berkeley.edu RI Liu, Zhi/B-3642-2009; Melaet, Gerome/N-4879-2015 OI Liu, Zhi/0000-0002-8973-6561; Melaet, Gerome/0000-0003-1414-1683 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 40 TC 12 Z9 12 U1 4 U2 58 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD AUG 28 PY 2013 VL 135 IS 34 BP 12560 EP 12563 DI 10.1021/ja406497s PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 211AK UT WOS:000323876300018 PM 23952637 ER PT J AU Moses-DeBusk, M Yoon, M Allard, LF Mullins, DR Wu, ZL Yang, XF Veith, G Stocks, GM Narula, CK AF Moses-DeBusk, Melanie Yoon, Mina Allard, Lawrence F. Mullins, David R. Wu, Zili Yang, Xiaofan Veith, Gabriel Stocks, G. Malcolm Narula, Chaitanya K. TI CO Oxidation on Supported Single Pt Atoms: Experimental and ab Initio Density Functional Studies of CO Interaction with Pt Atom on theta-Al2O3(010) Surface SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; TRANSITION-METAL ATOMS; AUGMENTED-WAVE METHOD; MOLECULAR-DYNAMICS; OXYGEN REDUCTION; CARBON-MONOXIDE; ACTIVE GOLD; PT(111); CLUSTERS; SPECTROSCOPY AB Although there are only a few known examples of supported single-atom catalysts, they are unique because they bridge the gap between homogeneous and heterogeneous catalysis. Here, we report the CO oxidation activity of monodisperse single Pt atoms supported on an inert substrate, theta-alumina (Al2O3), in the presence of stoichiometric oxygen. Since CO oxidation on single Pt atoms cannot occur via a conventional Langmuir-Hinshelwood scheme (L H scheme) which requires at least one Pt Pt bond, we carried out a first-principles density functional theoretical study of a proposed pathway which is a variation on the conventional L H scheme and inspired by the organometallic chemistry of platinum. We find that a single supported Pt atom prefers to bond to O-2 over CO. CO then bonds with the oxygenated Pt atom and forms a carbonate which dissociates to liberate CO2, leaving an oxygen atom on Pt. Subsequent reaction with another CO molecule regenerates the single-atom catalyst. The energetics of the proposed mechanism suggests that the single Pt atoms will get covered with CO3 unless the temperature is raised to eliminate CO2. We find evidence for CO3 coverage at room temperature supporting the proposed mechanism in an in situ diffuse reflectance infrared study of CO adsorption on the catalyst's supported single atoms. Thus, our results clearly show that supported Pt single atoms are catalytically active and that this catalytic activity can occur without involving the substrate. Characterization by electron microscopy and X-ray absorption studies of the monodisperse Pt/theta-Al2O3 are also presented. C1 [Moses-DeBusk, Melanie; Allard, Lawrence F.; Yang, Xiaofan; Veith, Gabriel; Stocks, G. Malcolm; Narula, Chaitanya K.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Yoon, Mina; Wu, Zili] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Mullins, David R.; Wu, Zili] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA. RP Narula, CK (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM narulack@ornl.gov RI Wu, Zili/F-5905-2012; Yoon, Mina/A-1965-2016; Stocks, George Malcollm/Q-1251-2016; OI Wu, Zili/0000-0002-4468-3240; Yoon, Mina/0000-0002-1317-3301; Stocks, George Malcollm/0000-0002-9013-260X; Moses-DeBusk, Melanie/0000-0003-0382-0824 FU U.S. Department of Energy, Office of Vehicle Technologies, as part of the Propulsion Materials Program; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences; U.S. Department of Energy [E-AC05-00OR22725]; UT-Battelle, LLC; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Synchrotron Catalysis Consortium [DE-FG02-05ER15688] FX This research was sponsored by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, as part of the Propulsion Materials Program (C.K.N., M.M.D., M.Y., L.F.A., X.Y.) and Division of Materials Sciences and Engineering, Office of Basic Energy Sciences (G.M.S., D.R.M.), U.S. Department of Energy, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. DRIFTS and chemisorption were performed at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (Z.W.). EXAFS experiments were conducted at the National Synchrotron Light Source, Brookhaven National Laboratory, supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886 with additional support through the Synchrotron Catalysis Consortium under grant DE-FG02-05ER15688. We thank Dr. V. Schwartz for assistance with chemisorption measurements. NR 67 TC 77 Z9 78 U1 47 U2 384 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD AUG 28 PY 2013 VL 135 IS 34 BP 12634 EP 12645 DI 10.1021/ja401847c PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA 211AK UT WOS:000323876300034 PM 23952672 ER PT J AU Vucicevic, J Terletska, H Tanaskovic, D Dobrosavljevic, V AF Vucicevic, J. Terletska, H. Tanaskovic, D. Dobrosavljevic, V. TI Finite-temperature crossover and the quantum Widom line near the Mott transition SO PHYSICAL REVIEW B LA English DT Article ID METAL-INSULATOR-TRANSITION; MEAN-FIELD THEORY; INFINITE DIMENSIONS; FERMION SYSTEMS; TRANSPORT-PROPERTIES; PHASE-TRANSITIONS; ORGANIC CONDUCTOR; CRITICAL-BEHAVIOR; LIQUID; UNIVERSALITY AB The experimentally established phase diagram of the half-filled Hubbard model features the existence of three distinct finite-temperature regimes, separated by extended crossover regions. A number of crossover lines can be defined to span those regions, which we explore in quantitative detail within the framework of dynamical mean-field theory. Most significantly, the high-temperature crossover between the bad metal and Mott-insulator regimes displays a number of phenomena marking the gradual development of the Mott insulating state. We discuss the quantum critical scaling behavior found in this regime, and propose methods to facilitate its possible experimental observation. We also introduce the concept of quantum Widom lines and present a detailed discussion that highlights its physical meaning when used in the context of quantum-phase transitions. C1 [Vucicevic, J.; Tanaskovic, D.] Univ Belgrade, Inst Phys Belgrade, Sci Comp Lab, Belgrade 11080, Serbia. [Terletska, H.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Dobrosavljevic, V.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Dobrosavljevic, V.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA. RP Vucicevic, J (reprint author), Univ Belgrade, Inst Phys Belgrade, Sci Comp Lab, Pregrev 118, Belgrade 11080, Serbia. FU Serbian Ministry of Education and Science [ON171017]; National High Magnetic Field Laboratory; NSF [DMR-1005751]; DOE BES CMCSN Grant [DE-AC02-98CH10886] FX We thank A. Georges, K. Kanoda, G. Kotliar, M. Rozenberg, G. Sordi, and J. M. Tremblay for useful discussions. The authors thank K. Haule for the usage of his CTQMC code. J. V. and D. T. acknowledge support from the Serbian Ministry of Education and Science under Project No. ON171017. V. D. was supported by the National High Magnetic Field Laboratory and the NSF Grant No. DMR-1005751, and H. T. by the DOE BES CMCSN Grant No. DE-AC02-98CH10886. Numerical simulations were run on the AEGIS e-Infrastructure, supported in part by FP7 Projects EGI-InSPIRE, PRACE-1IP, and HP-SEE. NR 66 TC 7 Z9 7 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG 28 PY 2013 VL 88 IS 7 AR 075143 DI 10.1103/PhysRevB.88.075143 PG 12 WC Physics, Condensed Matter SC Physics GA 208UO UT WOS:000323706300001 ER PT J AU Rahmani, A Chern, GW AF Rahmani, Armin Chern, Gia-Wei TI Universal Renyi mutual information in classical systems: The case of kagome ice SO PHYSICAL REVIEW B LA English DT Article ID TOPOLOGICAL QUANTUM ORDER; ENTANGLEMENT ENTROPY; MAGNETIC-FIELD; GROUND-STATE; SPIN; LATTICE; PHASE AB We study the Renyi mutual information of classical systems characterized by a transfer matrix. We first establish a general relationship between the Renyi mutual information of such classical mixtures of configuration states and the Renyi entropy of a corresponding Rokhsar-Kivelson-type quantum superposition. We then focus on chiral and nonchiral kagome-ice systems, classical spin liquids on the kagome lattice, which respectively have critical and short-range correlations. Through a mapping of the chiral kagome ice to the quantum Liftshitz critical field theory, we predict a universal subleading term in the Renyi mutual information of this classical spin liquid, which can be realized in the pyrochlore spin ice in a magnetic field. We verify our prediction with direct numerical transfer-matrix computations, and further demonstrate that the nonchiral kagome ice (and the corresponding quantum Rokhsar-Kivelson superposition) is a topologically trivial phase. Finally, we argue that the universal term in the mutual information of the chiral kagome ice is fragile against the presence of defects. C1 [Rahmani, Armin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA. RP Rahmani, A (reprint author), Los Alamos Natl Lab, Div Theoret, T-4, Los Alamos, NM 87545 USA. FU US DOE under the LANL/LDRD program FX We thank C. Batista, C. Castelnovo, C. Chamon, E. Fradkin, B. Hsu, and G. Misguich for helpful discussions and comments. We are especially grateful to I. Martin for collaboration in the early stages of this work and for several helpful suggestions. This work was supported by US DOE under the LANL/LDRD program. NR 54 TC 3 Z9 3 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 28 PY 2013 VL 88 IS 5 AR 054426 DI 10.1103/PhysRevB.88.054426 PG 8 WC Physics, Condensed Matter SC Physics GA 208UK UT WOS:000323705900003 ER PT J AU Aartsen, MG Abbasi, R Abdou, Y Ackermann, M Adams, J Aguilar, JA Ahlers, M Altmann, D Auffenberg, J Bai, X Baker, M Barwick, SW Baum, V Bay, R Beatty, JJ Bechet, S Tjus, JB Becker, KH Benabderrahmane, ML BenZvi, S Berghaus, P Berley, D Bernardini, E Bernhard, A Bertrand, D Besson, DZ Binder, G Bindig, D Bissok, M Blaufuss, E Blumenthal, J Boersma, DJ Bohaichuk, S Bohm, C Bose, D Boser, S Botner, O Brayeur, L Bretz, HP Brown, AM Bruijn, R Brunner, J Carson, M Casey, J Casier, M Chirkin, D Christov, A Christy, B Clark, K Clevermann, F Coenders, S Cohen, S Cowen, DF Silva, AHC Danninger, M Daughhetee, J Davis, JC De Clercq, C De Ridder, S Desiati, P de Vries, KD de With, M DeYoung, T Diaz-Velez, JC Dunkman, M Eagan, R Eberhardt, B Eisch, J Ellsworth, RW Euler, S Evenson, PA Fadiran, O Fazely, AR Fedynitch, A Feintzeig, J Feusels, T Filimonov, K Finley, C Fischer-Wasels, T Flis, S Franckowiak, A Frantzen, K Fuchs, T Gaisser, TK Gallagher, J Gerhardt, L Gladstone, L Glusenkamp, T Goldschmidt, A Golup, G Gonzalez, JG Goodman, JA Gora, D Grandmont, DT Grant, D Gross, A Ha, C Ismail, AH Hallen, P Hallgren, A Halzen, F Hanson, K Heereman, D Heinen, D Helbing, K Hellauer, R Hickford, S Hill, GC Hoffman, KD Hoffmann, R Homeier, A Hoshina, K Huelsnitz, W Hulth, PO Hultqvist, K Hussain, S Ishihara, A Jacobi, E Jacobsen, J Jagielski, K Japaridze, GS Jero, K Jlelati, O Kaminsky, B Kappes, A Karg, T Karle, A Kelley, JL Kiryluk, J Klas, J Klein, SR Kohne, JH Kohnen, G Kolanoski, H Kopke, L Kopper, C Kopper, S Koskinen, DJ Kowalski, M Krasberg, M Krings, K Kroll, G Kunnen, J Kurahashi, N Kuwabara, T Labare, M Landsman, H Larson, MJ Lesiak-Bzdak, M Leuermann, M Leute, J Lunemann, J Maciias, O Madsen, J Maggi, G Maruyama, R Mase, K Matis, HS McNally, F Meagher, K Merck, M Meures, T Miarecki, S Middell, E Milke, N Miller, J Mohrmann, L Montaruli, T Morse, R Nahnhauer, R Naumann, U Niederhausen, H Nowicki, SC Nygren, DR Obertacke, A Odrowski, S Olivas, A Omairat, A O'Murchadha, A Paul, L Pepper, JA de los Heros, CP Pfendner, C Pieloth, D Pinat, E Posselt, J Price, PB Przybylski, GT Radel, L Rameez, M Rawlins, K Redl, P Reimann, R Resconi, E Rhode, W Ribordy, M Richman, M Riedel, B Rodrigues, JP Rott, C Ruhe, T Ruzybayev, B Ryckbosch, D Saba, SM Salameh, T Sander, HG Santander, M Sarkar, S Schatto, K Scheriau, F Schmidt, T Schmitz, M Schoenen, S Schoneberg, S Schonwald, A Schukraft, A Schulte, L Schulz, O Seckel, D Sestayo, Y Seunarine, S Shanidze, R Sheremata, C Smith, MWE Soldin, D Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stasik, A Stezelberger, T Stokstad, RG Stossl, A Strahler, EA Strom, R Sullivan, GW Taavola, H Taboada, I Tamburro, A Tepe, A Ter-Antonyan, S Tesic, G Tilav, S Toale, PA Toscano, S Unger, E Usner, M Vallecorsa, S van Eijndhoven, N van Overloop, A van Santen, J Vehring, M Voge, M Vraeghe, M Walck, C Waldenmaier, T Wallraff, M Weaver, C Wellons, M Wendt, C Westerhoff, S Whitehorn, N Wiebe, K Wiebusch, CH Williams, DR Wissing, H Wolf, M Wood, TR Woschnagg, K Xu, C Xu, DL Xu, XW Yanez, JP Yodh, G Yoshida, S Zarzhitsky, P Ziemann, J Zierke, S Zoll, M AF Aartsen, M. G. Abbasi, R. Abdou, Y. Ackermann, M. Adams, J. Aguilar, J. A. Ahlers, M. Altmann, D. Auffenberg, J. Bai, X. Baker, M. Barwick, S. W. Baum, V. Bay, R. Beatty, J. J. Bechet, S. Tjus, J. Becker Becker, K. -H. Benabderrahmane, M. L. BenZvi, S. Berghaus, P. Berley, D. Bernardini, E. Bernhard, A. Bertrand, D. Besson, D. Z. Binder, G. Bindig, D. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. J. Bohaichuk, S. Bohm, C. Bose, D. Boeser, S. Botner, O. Brayeur, L. Bretz, H. -P. Brown, A. M. Bruijn, R. Brunner, J. Carson, M. Casey, J. Casier, M. Chirkin, D. Christov, A. Christy, B. Clark, K. Clevermann, F. Coenders, S. Cohen, S. Cowen, D. F. Silva, A. H. Cruz Danninger, M. Daughhetee, J. Davis, J. C. De Clercq, C. De Ridder, S. Desiati, P. de Vries, K. D. de With, M. DeYoung, T. Diaz-Velez, J. C. Dunkman, M. Eagan, R. Eberhardt, B. Eisch, J. Ellsworth, R. W. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Fedynitch, A. Feintzeig, J. Feusels, T. Filimonov, K. Finley, C. Fischer-Wasels, T. Flis, S. Franckowiak, A. Frantzen, K. Fuchs, T. Gaisser, T. K. Gallagher, J. Gerhardt, L. Gladstone, L. Gluesenkamp, T. Goldschmidt, A. Golup, G. Gonzalez, J. G. Goodman, J. A. Gora, D. Grandmont, D. T. Grant, D. Gross, A. Ha, C. Ismail, A. Haj Hallen, P. Hallgren, A. Halzen, F. Hanson, K. Heereman, D. Heinen, D. Helbing, K. Hellauer, R. Hickford, S. Hill, G. C. Hoffman, K. D. Hoffmann, R. Homeier, A. Hoshina, K. Huelsnitz, W. Hulth, P. O. Hultqvist, K. Hussain, S. Ishihara, A. Jacobi, E. Jacobsen, J. Jagielski, K. Japaridze, G. S. Jero, K. Jlelati, O. Kaminsky, B. Kappes, A. Karg, T. Karle, A. Kelley, J. L. Kiryluk, J. Klaes, J. Klein, S. R. Koehne, J. -H. Kohnen, G. Kolanoski, H. Koepke, L. Kopper, C. Kopper, S. Koskinen, D. J. Kowalski, M. Krasberg, M. Krings, K. Kroll, G. Kunnen, J. Kurahashi, N. Kuwabara, T. Labare, M. Landsman, H. Larson, M. J. Lesiak-Bzdak, M. Leuermann, M. Leute, J. Luenemann, J. Maciias, O. Madsen, J. Maggi, G. Maruyama, R. Mase, K. Matis, H. S. McNally, F. Meagher, K. Merck, M. Meures, T. Miarecki, S. Middell, E. Milke, N. Miller, J. Mohrmann, L. Montaruli, T. Morse, R. Nahnhauer, R. Naumann, U. Niederhausen, H. Nowicki, S. C. Nygren, D. R. Obertacke, A. Odrowski, S. Olivas, A. Omairat, A. O'Murchadha, A. Paul, L. Pepper, J. A. de los Heros, C. Perez Pfendner, C. Pieloth, D. Pinat, E. Posselt, J. Price, P. B. Przybylski, G. T. Raedel, L. Rameez, M. Rawlins, K. Redl, P. Reimann, R. Resconi, E. Rhode, W. Ribordy, M. Richman, M. Riedel, B. Rodrigues, J. P. Rott, C. Ruhe, T. Ruzybayev, B. Ryckbosch, D. Saba, S. M. Salameh, T. Sander, H. -G. Santander, M. Sarkar, S. Schatto, K. Scheriau, F. Schmidt, T. Schmitz, M. Schoenen, S. Schoeneberg, S. Schoenwald, A. Schukraft, A. Schulte, L. Schulz, O. Seckel, D. Sestayo, Y. Seunarine, S. Shanidze, R. Sheremata, C. Smith, M. W. E. Soldin, D. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stasik, A. Stezelberger, T. Stokstad, R. G. Stoessl, A. Strahler, E. A. Strom, R. Sullivan, G. W. Taavola, H. Taboada, I. Tamburro, A. Tepe, A. Ter-Antonyan, S. Tesic, G. Tilav, S. Toale, P. A. Toscano, S. Unger, E. Usner, M. Vallecorsa, S. van Eijndhoven, N. Van Overloop, A. van Santen, J. Vehring, M. Voge, M. Vraeghe, M. Walck, C. Waldenmaier, T. Wallraff, M. Weaver, Ch. Wellons, M. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebe, K. Wiebusch, C. H. Williams, D. R. Wissing, H. Wolf, M. Wood, T. R. Woschnagg, K. Xu, C. Xu, D. L. Xu, X. W. Yanez, J. P. Yodh, G. Yoshida, S. Zarzhitsky, P. Ziemann, J. Zierke, S. Zoll, M. CA IceCube Collaboration TI Measurement of the cosmic ray energy spectrum with IceTop-73 SO PHYSICAL REVIEW D LA English DT Article ID ICECUBE; ARRAY AB We report on the measurement of the all-particle cosmic ray energy spectrum with the IceTop air shower array in the energy range from 1.58 PeV to 1.26 EeV. The IceTop air shower array is the surface component of the IceCube Neutrino Observatory at the geographical South Pole. The analysis was performed using only information from IceTop. The data used in this work were taken from June 1, 2010 to May 13, 2011. During that period the IceTop array consisted of 73 stations, compared to 81 in its final configuration. The measured spectrum exhibits a clear deviation from a single power law above the knee around 4 PeV and below 1 EeV. We observe spectral hardening around 18 PeV and steepening around 130 PeV. C1 [Bissok, M.; Blumenthal, J.; Coenders, S.; Euler, S.; Hallen, P.; Heinen, D.; Jagielski, K.; Krings, K.; Leuermann, M.; Paul, L.; Raedel, L.; Reimann, R.; Schoenen, S.; Schukraft, A.; Vehring, M.; Wallraff, M.; Wiebusch, C. H.; Zierke, S.] Rhein Westfal TH Aachen, Phys Inst 3, D-52056 Aachen, Germany. [Aartsen, M. G.; Hill, G. C.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. [Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Bay, R.; Binder, G.; Filimonov, K.; Gerhardt, L.; Ha, C.; Klein, S. R.; Miarecki, S.; Price, P. B.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Binder, G.; Gerhardt, L.; Goldschmidt, A.; Ha, C.; Klein, S. R.; Matis, H. S.; Miarecki, S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Altmann, D.; de With, M.; Kappes, A.; Kolanoski, H.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Tjus, J. Becker; Fedynitch, A.; Saba, S. M.; Schoeneberg, S.; Unger, E.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Boeser, S.; Franckowiak, A.; Homeier, A.; Kowalski, M.; Schulte, L.; Stasik, A.; Usner, M.; Voge, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Bechet, S.; Bertrand, D.; Hanson, K.; Heereman, D.; Meures, T.; O'Murchadha, A.; Pinat, E.] Univ Libre Brussels, Fac Sci, B-1050 Brussels, Belgium. [Bose, D.; Brayeur, L.; Casier, M.; De Clercq, C.; de Vries, K. D.; Golup, G.; Kunnen, J.; Maggi, G.; Miller, J.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Ishihara, A.; Mase, K.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Adams, J.; Brown, A. M.; Hickford, S.; Maciias, O.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Berley, D.; Blaufuss, E.; Christy, B.; Ellsworth, R. W.; Goodman, J. A.; Hellauer, R.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Clevermann, F.; Frantzen, K.; Fuchs, T.; Koehne, J. -H.; Milke, N.; Pieloth, D.; Rhode, W.; Ruhe, T.; Scheriau, F.; Schmitz, M.; Ziemann, J.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Bohaichuk, S.; Grandmont, D. T.; Grant, D.; Nowicki, S. C.; Odrowski, S.; Sheremata, C.; Wood, T. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada. [Aguilar, J. A.; Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S.] Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland. [Abdou, Y.; Carson, M.; De Ridder, S.; Feusels, T.; Ismail, A. Haj; Jlelati, O.; Labare, M.; Ryckbosch, D.; Van Overloop, A.; Vraeghe, M.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Barwick, S. W.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bruijn, R.; Cohen, S.; Ribordy, M.] Ecole Polytech Fed Lausanne, High Energy Phys Lab, CH-1015 Lausanne, Switzerland. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Abbasi, R.; Ahlers, M.; Auffenberg, J.; Baker, M.; BenZvi, S.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Jero, K.; Karle, A.; Kelley, J. L.; Kopper, C.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; McNally, F.; Merck, M.; Morse, R.; Riedel, B.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Abbasi, R.; Ahlers, M.; Auffenberg, J.; Baker, M.; BenZvi, S.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Jero, K.; Karle, A.; Kelley, J. L.; Kopper, C.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; McNally, F.; Merck, M.; Morse, R.; Riedel, B.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA. [Baum, V.; Eberhardt, B.; Koepke, L.; Kroll, G.; Luenemann, J.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Bernhard, A.; Gross, A.; Leute, J.; Resconi, E.; Schulz, O.; Sestayo, Y.] Tech Univ Munich, D-85748 Garching, Germany. [Bai, X.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.; Xu, C.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Bai, X.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.; Xu, C.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Madsen, J.; Seunarine, S.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Univ Stockholm, Dept Phys, SE-10691 Stockholm, Sweden. [Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Univ Stockholm, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Kiryluk, J.; Lesiak-Bzdak, M.; Niederhausen, H.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Rott, C.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Larson, M. J.; Pepper, J. A.; Toale, P. A.; Williams, D. R.; Xu, D. L.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Cowen, D. F.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Clark, K.; Cowen, D. F.; DeYoung, T.; Dunkman, M.; Eagan, R.; Koskinen, D. J.; Salameh, T.; Smith, M. W. E.; Tesic, G.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Boersma, D. J.; Botner, O.; Hallgren, A.; de los Heros, C. Perez; Strom, R.; Taavola, H.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Becker, K. -H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Omairat, A.; Posselt, J.; Soldin, D.; Tepe, A.] Berg Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Ackermann, M.; Benabderrahmane, M. L.; Berghaus, P.; Bernardini, E.; Bretz, H. -P.; Brunner, J.; Silva, A. H. Cruz; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Kaminsky, B.; Karg, T.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Shanidze, R.; Spiering, C.; Stoessl, A.; Yanez, J. P.] DESY, D-15735 Zeuthen, Germany. [Bai, X.] South Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA. [Huelsnitz, W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Montaruli, T.] Sezione Ist Nazl Fis Nucl, Dipartimento Fis, I-70126 Bari, Italy. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Ruzybayev, B (reprint author), Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. EM bahtiyar@udel.edu RI Taavola, Henric/B-4497-2011; Tjus, Julia/G-8145-2012; Wiebusch, Christopher/G-6490-2012; Auffenberg, Jan/D-3954-2014; Koskinen, David/G-3236-2014; Brunner, Juergen/G-3540-2015; Aguilar Sanchez, Juan Antonio/H-4467-2015; Maruyama, Reina/A-1064-2013; Sarkar, Subir/G-5978-2011; Beatty, James/D-9310-2011; OI Taavola, Henric/0000-0002-2604-2810; Carson, Michael/0000-0003-0400-7819; Perez de los Heros, Carlos/0000-0002-2084-5866; Benabderrahmane, Mohamed Lotfi/0000-0003-4410-5886; Wiebusch, Christopher/0000-0002-6418-3008; Auffenberg, Jan/0000-0002-1185-9094; Koskinen, David/0000-0002-0514-5917; Brunner, Juergen/0000-0002-5052-7236; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Maruyama, Reina/0000-0003-2794-512X; Sarkar, Subir/0000-0002-3542-858X; Ter-Antonyan, Samvel/0000-0002-5788-1369; Schukraft, Anne/0000-0002-9112-5479; Beatty, James/0000-0003-0481-4952; Rott, Carsten/0000-0002-6958-6033 FU U.S. National Science Foundation-Office of Polar Programs; U.S. National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin - Madison; Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada; WestGrid; Compute/Calcul Canada; Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); Helmholtz Alliance for Astroparticle Physics (HAP); Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO Odysseus program; Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF) FX We acknowledge support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin - Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada, WestGrid, and Compute/Calcul Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus program, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF). NR 22 TC 44 Z9 44 U1 0 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 28 PY 2013 VL 88 IS 4 AR 042004 DI 10.1103/PhysRevD.88.042004 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 208WI UT WOS:000323712300001 ER PT J AU Ben-Naim, E Krapivsky, PL AF Ben-Naim, E. Krapivsky, P. L. TI Statistics of superior records SO PHYSICAL REVIEW E LA English DT Article ID EARTHQUAKES; DIFFUSION; SEQUENCE AB We study statistics of records in a sequence of random variables. These identical and independently distributed variables are drawn from the parent distribution rho. The running record equals the maximum of all elements in the sequence up to a given point. We define a superior sequence as one where all running records are above the average record expected for the parent distribution rho. We find that the fraction of superior sequences S-N decays algebraically with sequence length N, S-N similar to N-beta in the limit N -> infinity. Interestingly, the decay exponent beta is nontrivial, being the root of an integral equation. For example, when rho is a uniform distribution with compact support, we find beta = 0.450 265. In general, the tail of the parent distribution governs the exponent beta. We also consider the dual problem of inferior sequences, where all records are below average, and find that the fraction of inferior sequences I-N decays algebraically, albeit with a different decay exponent, I-N similar to N-alpha. We use the above statistical measures to analyze earthquake data. C1 [Ben-Naim, E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Ben-Naim, E.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Krapivsky, P. L.] Boston Univ, Dept Phys, Boston, MA 02215 USA. RP Ben-Naim, E (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Ben-Naim, Eli/C-7542-2009; Krapivsky, Pavel/A-4612-2014 OI Ben-Naim, Eli/0000-0002-2444-7304; FU DOE Grant [DE-AC52-06NA25396] FX We thank Joan Gomberg for useful discussions, Chunquan Wu for assistance with the earthquake data, and the IAS (University of Warwick) for hospitality, and we acknowledge DOE Grant No. DE-AC52-06NA25396 for support. NR 33 TC 6 Z9 6 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD AUG 28 PY 2013 VL 88 IS 2 AR 022145 DI 10.1103/PhysRevE.88.022145 PG 7 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 208WU UT WOS:000323713500003 PM 24032813 ER PT J AU MacLellan, DA Carroll, DC Gray, RJ Booth, N Burza, M Desjarlais, MP Du, F Gonzalez-Izquierdo, B Neely, D Powell, HW Robinson, APL Rusby, DR Scott, GG Yuan, XH Wahlstrom, CG McKenna, P AF MacLellan, D. A. Carroll, D. C. Gray, R. J. Booth, N. Burza, M. Desjarlais, M. P. Du, F. Gonzalez-Izquierdo, B. Neely, D. Powell, H. W. Robinson, A. P. L. Rusby, D. R. Scott, G. G. Yuan, X. H. Wahlstrom, C. -G. McKenna, P. TI Annular Fast Electron Transport in Silicon Arising from Low-Temperature Resistivity SO PHYSICAL REVIEW LETTERS LA English DT Article ID INITIO MOLECULAR-DYNAMICS; LASER-SOLID INTERACTIONS; TARGETS; PLASMAS AB Fast electron transport in Si, driven by ultraintense laser pulses, is investigated experimentally and via 3D hybrid particle-in-cell simulations. A transition from a Gaussian-like to an annular fast electron beam profile is demonstrated and explained by resistively generated magnetic fields. The results highlight the potential to completely transform the beam transport pattern by tailoring the resistivity-temperature profile at temperatures as low as a few eV. C1 [MacLellan, D. A.; Carroll, D. C.; Gray, R. J.; Gonzalez-Izquierdo, B.; Powell, H. W.; Rusby, D. R.; Scott, G. G.; McKenna, P.] Univ Strathclyde, SUPA, Dept Phys, Glasgow G4 0NG, Lanark, Scotland. [Booth, N.; Neely, D.; Robinson, A. P. L.; Rusby, D. R.; Scott, G. G.] STFC Rutherford Appleton Lab, Cent Laser Facil, Didcot OX11 0QX, Oxon, England. [Burza, M.; Wahlstrom, C. -G.] Lund Univ, Dept Phys, S-22100 Lund, Sweden. [Desjarlais, M. P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Du, F.] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Yuan, X. H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200240, Peoples R China. [Yuan, X. H.] Shanghai Jiao Tong Univ, Minist Educ, Key Lab Laser Plasmas, Shanghai 200240, Peoples R China. RP MacLellan, DA (reprint author), Univ Strathclyde, SUPA, Dept Phys, Glasgow G4 0NG, Lanark, Scotland. EM paul.mckenna@strath.ac.uk RI yuan, xiaohui/O-4622-2015; McKenna, Paul/B-9764-2009 OI yuan, xiaohui/0000-0001-8924-4682; McKenna, Paul/0000-0001-8061-7091 FU EPSRC [EP/J003832/1]; Swedish Research Council; National Science Foundation of China [11205100] FX We acknowledge the expert support of the staff at the Central Laser Facility of the Rutherford Appleton Laboratory and the use of computing resources provided by the STFC e-Science Facility. This work is supported by EPSRC (Grant No. EP/J003832/1), the Swedish Research Council, and by the National Science Foundation of China (Grant No. 11205100). NR 28 TC 14 Z9 14 U1 0 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 28 PY 2013 VL 111 IS 9 AR 095001 DI 10.1103/PhysRevLett.111.095001 PG 5 WC Physics, Multidisciplinary SC Physics GA 208XK UT WOS:000323715500006 PM 24033041 ER PT J AU Drocco, JA Reichhardt, CJO Reichhardt, C Bishop, AR AF Drocco, J. A. Reichhardt, C. J. Olson Reichhardt, C. Bishop, A. R. TI Static and dynamic phases for magnetic vortex matter with attractive and repulsive interactions SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID SUPERCONDUCTORS; LATTICES; VORTICES; SYSTEMS; ARRAYS; FILMS AB Exotic vortex states with long range attraction and short range repulsion have recently been proposed to arise in certain superconducting hybrid structures such as type-I/type-II layered systems as well as multi-band superconductors. In previous work it has been shown that such systems can form clump or phase separated states, but little is known about how they behave in the presence of pinning and under an applied drive. Using large scale simulations we examine the static and dynamic properties of such vortex states interacting with random and periodic pinning. In the absence of pinning this system does not form patterns but instead undergoes complete phase separation. When pinning is present there is a transition from inhomogeneous to homogeneous vortex configurations similar to a wetting phenomenon. Under an applied drive, a dynamical dewetting process can occur from a strongly pinned homogeneous state into pattern forming states, such as moving stripes that are aligned with the direction of drive or moving labyrinth or clump phases. We show that a signature of the exotic vortex interactions observable with transport measurements is a robust double peak feature in the differential resistance curves. Our results should be valuable for determining whether such vortex interactions are occurring in these systems and also for addressing the general problem of systems with competing interactions in the presence of random and periodic pinning. C1 [Drocco, J. A.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Drocco, JA (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. EM cjrx@lanl.gov OI Reichhardt, Cynthia/0000-0002-3487-5089 FU NNSA of the US DoE at LANL [DE-AC52-06NA25396] FX We thank E Babaev for helpful comments regarding the applicability of pairwise vortex interactions to multi-band superconductors. This work was carried out under the auspices of the NNSA of the US DoE at LANL under Contract No. DE-AC52-06NA25396. NR 52 TC 15 Z9 15 U1 0 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD AUG 28 PY 2013 VL 25 IS 34 AR 345703 DI 10.1088/0953-8984/25/34/345703 PG 8 WC Physics, Condensed Matter SC Physics GA 198XG UT WOS:000322956200013 PM 23912884 ER PT J AU Lipp, MJ Kono, Y Jenei, Z Cynn, H Aracne-Ruddle, C Park, C Kenney-Benson, C Evans, WJ AF Lipp, M. J. Kono, Y. Jenei, Zs Cynn, H. Aracne-Ruddle, C. Park, C. Kenney-Benson, C. Evans, W. J. TI Strength and Debye temperature measurements of cerium across the gamma -> alpha volume collapse: the lattice contribution SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID TRANSITION; CE AB The longitudinal and transverse sound speeds, c(L) and c(T), of polycrystalline cerium were measured under pressure across the iso-structural gamma-alpha phase transition at 0.75 GPa to beyond 3 GPa. In contrast to previous methods all quantities were directly obtained and no assumptions were made about the size of the volume collapse. Up to the transition our values for c(L) are in excellent agreement with previous ones, while our values for c(T) are significantly lower. We deduce values for the adiabatic bulk modulus B-S, the shear modulus G = rho c(T)(2), and the pressure dependent Debye temperature, Theta(D)(p). Theta(D)(p) is in good agreement with recent results derived from phonon dispersion measurements on single crystals. The ratio of the Debye temperature values bracketing the transition indicates a lattice contribution to the entropy change across the volume collapse, Delta S-vib(gamma -> alpha) approximate to (0.68 +/- 0.06)k(B), consistent with previous results obtained by neutron scattering, but significantly larger than other previously determined values. C1 [Lipp, M. J.; Jenei, Zs; Cynn, H.; Aracne-Ruddle, C.; Evans, W. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Kono, Y.; Park, C.; Kenney-Benson, C.] Carnegie Inst Sci, Geophys Lab, HPCAT, Argonne, IL 60439 USA. RP Lipp, MJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM lipp1@llnl.gov RI Jenei, Zsolt/B-3475-2011; Park, Changyong/A-8544-2008 OI Park, Changyong/0000-0002-3363-5788 FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development Program at LLNL [12-LW-014]; DOE-NNSA [DE-NA0001974]; DOE-BES [DE-FG02-99ER45775, DE-AC02-06CH11357]; NSF FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 12-LW-014. Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357. NR 29 TC 7 Z9 8 U1 2 U2 26 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD AUG 28 PY 2013 VL 25 IS 34 AR 345401 DI 10.1088/0953-8984/25/34/345401 PG 6 WC Physics, Condensed Matter SC Physics GA 198XG UT WOS:000322956200006 PM 23884010 ER PT J AU Beller, HR Zhou, P Legler, TC Chakicherla, A Kane, S Letain, TE O'Day, PA AF Beller, Harry R. Zhou, Peng Legler, Tina C. Chakicherla, Anu Kane, Staci Letain, Tracy E. O'Day, Peggy A. TI Genorne-enabled studies of anaerobic, nitrate-dependent iron oxidation in the chemolithoautotrophic bacterium Thiobacillus denitrificans SO FRONTIERS IN MICROBIOLOGY LA English DT Article DE iron oxidation; nitrate-dependent; anaerobic; Thiobacillus denitrificans; chemolithoautotrophic; reverse electron transfer ID PHOTOTROPHIC FE(II) OXIDATION; NITRIC-OXIDE REDUCTASE; U(IV) OXIDATION; DENITRIFYING CONDITIONS; RHODOBACTER-CAPSULATUS; REDUCING CONDITIONS; STRAIN 2002; URANIUM; REOXIDATION; OXIDOREDUCTASE AB Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV) oxidation in T denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II) oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II)-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(I I) oxidation, namely (a) whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV) oxides as electron donors under denitrifying conditions], (b) Fe(II) oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c) random transposon-mutagenesis studies with screening for Fe(II) oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II) oxidation. The non-defective mutants included the c(1)-cytochrome subunit of the cytochrome bc(1) complex (complex III), which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(I I) oxidation and to current concepts of reverse electron transfer. A transposon mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I) was similar to 35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(I I) oxidation in T denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV) oxidation, nor have other c-type cytochromes yet been implicated in the process. C1 [Beller, Harry R.; Zhou, Peng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Earth Sci Div, Berkeley, CA 94720 USA. [Zhou, Peng; O'Day, Peggy A.] Univ Calif, Merced, CA USA. [Legler, Tina C.; Chakicherla, Anu; Kane, Staci; Letain, Tracy E.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Beller, HR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Earth Sci Div, 1 Cyclotron Rd,MS 70A-3317, Berkeley, CA 94720 USA. EM hrbeller@lbl.gov RI Beller, Harry/H-6973-2014 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231, DOE-SBR DE-SC0005479] FX We thank Steven Singer (LBNL) for providing helpful comments on the manuscript. This work was supported as part of the Subsurface Biogeochemical Research Scientific Focus Area funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under Award Number DE-AC02-05CH11231 (LBNL) and DOE-SBR DE-SC0005479 (U.C. Merced). NR 57 TC 4 Z9 4 U1 3 U2 47 PU FRONTIERS RESEARCH FOUNDATION PI LAUSANNE PA PO BOX 110, LAUSANNE, 1015, SWITZERLAND SN 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD AUG 27 PY 2013 VL 4 AR 249 DI 10.3389/fmicb.2013.00249 PG 16 WC Microbiology SC Microbiology GA AA9FT UT WOS:000331399900001 PM 24065960 ER PT J AU Hsu, JN Prather, MJ Bergmann, D Cameron-Smith, P AF Hsu, Juno Prather, Michael J. Bergmann, Dan Cameron-Smith, Philip TI Sensitivity of stratospheric dynamics to uncertainty in O-3 production SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE uncertainty in O-2 cross sections; ozone production; Brewer-Dobson circulation; the annual cycle of the lower stratosphere; tropical tropopause layer; climate-chemistry interaction ID BREWER-DOBSON CIRCULATION; INTERCOMPARISON PROJECT ACCMIP; EARTH SYSTEM MODEL; ATMOSPHERIC CHEMISTRY; ANNUAL CYCLE; TROPOSPHERE EXCHANGE; MIDDLE ATMOSPHERE; SEASONAL CYCLE; OZONE; CLIMATE AB Some key photochemical uncertainties that cannot be readily eliminated by current observations translate into a range of stratospheric O-3 abundances in the tens of percent. The uncertainty in O-3 production due to that in the cross sections for O-2 in the Hertzberg continuum is studied here with the NCAR Community Atmosphere Model, which allows for interactive climate and ozone chemistry. A min-max range in the O-2 cross sections of 30%, consistent with current uncertainties, changes O-3 abundances in the lower tropical stratosphere by up to 30%, with a relatively smaller and opposite change above 30 hPa. Here we have systematically examined the changes in the time-mean state, the seasonal cycle, and the interannual variability of the temperature and circulation associated with the 30% change in O-2 cross sections. This study points to the important role of O-3 in the lower tropical stratosphere in determining the physical characteristics of the tropical tropopause layer. Reducing O-2 cross sections by 30% increases ozone abundances which warms the lower stratosphere (60 degrees S -60 degrees N; 2 K maximum at equator) and lowers the tropopause height by 100-200 m (30 degrees S -30 degrees N). The large-scale warming leads to enhanced stratification near the tropopause which reduces upward wave propagation everywhere except for high latitudes. The lowermost tropical stratosphere is better ventilated during austral winter. The annual cycle of ozone is amplified. The interannual variability of the winter stratospheric polar vortices also increases, but the mechanism involves wave-mean flow interaction, and the exact role of ozone in it needs further investigation. C1 [Hsu, Juno; Prather, Michael J.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Bergmann, Dan; Cameron-Smith, Philip] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Hsu, JN (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. EM junoh@uci.edu RI Bergmann, Daniel/F-9801-2011; Cameron-Smith, Philip/E-2468-2011 OI Bergmann, Daniel/0000-0003-4357-6301; Cameron-Smith, Philip/0000-0002-8802-8627 FU Office of Science (BER); Lawrence Livermore National Laboratory (LLNL), U.S. Department of Energy [DE-AC52-07NA27344, DE-AC02-05CH11231, DE-SC0007021] FX We owe this project to a bet made many years ago between one author (M.J.P.) and J.R. Holton regarding ozone in the middle stratosphere. The observed latitudinal gradient of ozone from tropics to midlatitudes was generally flat while that of other chemical species like nitric acid was sharp, indicating a mixing barrier. Did the circulation respond to maintain this ozone flat gradient on the basis of heating gradients, or was it an accident? Here we found the latter. Jim was right; we miss you. This research was supported by the Office of Science (BER) and Lawrence Livermore National Laboratory (LLNL), U.S. Department of Energy under contracts DE-AC52-07NA27344, DE-AC02-05CH11231 (LLNL authors), and DE-SC0007021 (all authors). The numerical simulations were carried out using resources of the National Energy Research Scientific Computing Center (NERSC) at LLNL. J.H. would like to thank three anonymous reviewers for their comments and Francois Primeau for his help on the Bayesian statistics analysis. NR 52 TC 2 Z9 2 U1 1 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 27 PY 2013 VL 118 IS 16 BP 8984 EP 8999 DI 10.1002/jgrd.50689 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 225AE UT WOS:000324933900016 ER PT J AU Khain, A Prabha, TV Benmoshe, N Pandithurai, G Ovchinnikov, M AF Khain, A. Prabha, Thara V. Benmoshe, Nir Pandithurai, G. Ovchinnikov, M. TI The mechanism of first raindrops formation in deep convective clouds SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE first raindrop formation; adiabatic cores; dilution of cloud volumes; droplet size distributions in deep convective clouds; numerical modeling ID ENVIRONMENT INTERFACE INSTABILITY; ENHANCEMENT EXPERIMENT CAIPEEX; PRECIPITATION FORMATION; AEROSOL INTERACTION; SPATIAL DIMENSIONS; MODEL DESCRIPTION; CUMULUS CLOUD; PART I; MICROPHYSICS; EVOLUTION AB The formation of first raindrops in deep convective clouds is investigated. A combination of observational data analysis and 2D and 3D simulations of deep convective clouds suggests that the first raindrops form at the top of undiluted or slightly diluted cores. It is shown that droplet size distributions in these regions are wider and contain more large droplets than in diluted volumes. The results of the study suggest that the initial raindrop formation is determined by the basic microphysical processes within ascending adiabatic volumes. It allows one to predict the height of the formation of first raindrops considering the processes of cloud condensation nuclei activation, droplet diffusion growth, and coalescence growth. The results obtained in the study explain observational results through which the in-cloud height of first raindrop formation depends linearly on the droplet number concentration at cloud base. The results also explain why a simple adiabatic parcel model can reproduce this dependence. The present study provides a physical basis for retrieval algorithms of cloud microphysical properties and aerosol properties using satellites. The study indicates that the role of mixing and entrainment in the formation of the first raindrops is not of crucial importance. It is also shown that low variability of effective and mean volume radii along horizontal traverses, as regularly observed by in situ measurements, can be simulated by high-resolution cloud models in which mixing is parameterized by a traditional 1.5 order turbulence closure scheme. C1 [Khain, A.; Benmoshe, Nir] Hebrew Univ Jerusalem, Dept Atmospher Sci, IL-91904 Jerusalem, Israel. [Prabha, Thara V.; Pandithurai, G.] Indian Inst Trop Meteorol, Pune, Maharashtra, India. [Ovchinnikov, M.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Khain, A (reprint author), Hebrew Univ Jerusalem, Dept Atmospher Sci, IL-91904 Jerusalem, Israel. EM Khain@vms.huji.ac.il OI Pandithurai, G/0000-0001-7324-3773 FU U.S. Department of Energy's Atmospheric Science Program Atmospheric System Research, an Office of Science, Office of Biological and Environmental Research program [DE-SC0006788]; Binational US-Israel Science Foundation [2010446]; Ministry of Earth Sciences, the Government of India, New Delhi; DOE [DE-AC06-76RLO 1830]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This research was supported by the U.S. Department of Energy's Atmospheric Science Program Atmospheric System Research, an Office of Science, Office of Biological and Environmental Research program, under grant DE-SC0006788, and the Binational US-Israel Science Foundation (grant 2010446). The CAIPEEX project and IITM are fully funded by the Ministry of Earth Sciences, the Government of India, New Delhi. The authors acknowledge with gratitude that the team effort and the dedication of the IITM scientists made CAIPEEX a great success. The Pacific Northwest National Laboratory (PNNL) is operated by Battelle for the DOE under contract DE-AC06-76RLO 1830. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH11231. NR 45 TC 16 Z9 16 U1 1 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 27 PY 2013 VL 118 IS 16 BP 9123 EP 9140 DI 10.1002/jgrd.50641 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 225AE UT WOS:000324933900026 ER PT J AU Liu, JJ Li, ZQ Zheng, YF Chiu, JC Zhao, FS Cadeddu, M Weng, FZ Cribb, M AF Liu, Jianjun Li, Zhanqing Zheng, Youfei Chiu, J. Christine Zhao, Fengsheng Cadeddu, Maria Weng, Fuzhong Cribb, Maureen TI Cloud optical and microphysical properties derived from ground-based and satellite sensors over a site in the Yangtze Delta region SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE cloud properties; eastern China ID DROPLET EFFECTIVE RADIUS; LIQUID WATER PATH; VERTICAL VARIATION; DEPTH; MODIS; THICKNESS; RETRIEVALS; TEMPERATURE; CALIBRATION; RADIOMETER AB Comprehensive surface-based retrievals of cloud optical and microphysical properties were made at Taihu, a highly polluted site in the central Yangtze Delta region, during a research campaign from May 2008 to December 2009. Cloud optical depth (COD), effective radius (R-e), and liquid water path (LWP) were retrieved from measurements made with a suite of ground-based and spaceborne instruments, including an Analytical Spectral Devices spectroradiometer, a multifilter rotating shadowband radiometer, a multichannel microwave radiometer profiler, and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua satellites. Retrievals from zenith radiance measurements capture better the temporal variation of cloud properties than do retrievals from hemispherical fluxes. Annual mean LWP, COD, and R-e are 115.890.8g/m(2), 28.519.2, and 6.94.2 mu m. Over 90% of LWP values are less than 250g/m(2). Most of the COD values (>90%) fall between 5 and 60, and similar to 80% of R-e values are less than 10 mu m. Maximum (minimum) values of LWP and R-e occur in summer (winter); COD is highest in winter and spring. Raining and nonraining clouds have significant differences in LWP, COD, and R-e. Rainfall frequency is best correlated with LWP, followed by COD and R-e. Cloud properties retrieved from multiple ground-based instruments are also compared with those from satellite retrievals. On average, relative to surface retrievals, mean differences of satellite retrievals in cloud LWP, COD, and R-e were -33.6g/m(2) (-26.4%), -5.8 (-31.4%), and 2.9 mu m (29.3%) for 11 MODIS-Terra overpasses and -43.3 g/m(2) (-22.3%), -3.0 (-10.0%), and -1.3 mu m (-12.0%) for 8 MODIS-Aqua overpasses, respectively. These discrepancies indicate that MODIS cloud products still suffer from large uncertainties in this region. C1 [Liu, Jianjun; Li, Zhanqing] Beijing Normal Univ, State Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China. [Liu, Jianjun; Li, Zhanqing] Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Beijing 100875, Peoples R China. [Liu, Jianjun; Li, Zhanqing; Zhao, Fengsheng; Cribb, Maureen] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Liu, Jianjun; Li, Zhanqing; Zhao, Fengsheng; Cribb, Maureen] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Liu, Jianjun; Zheng, Youfei] Nanjing Univ Informat Sci & Technol, Jiangsu Key Lab Atmospher Environm Monitoring & P, Nanjing, Jiangsu, Peoples R China. [Chiu, J. Christine] Univ Reading, Dept Meteorol, Reading, Berks, England. [Cadeddu, Maria] Argonne Natl Lab, Lemont, IL USA. [Weng, Fuzhong] NOAA, Ctr Satellite Applicat & Res, College Pk, MD USA. RP Li, ZQ (reprint author), Beijing Normal Univ, State Lab Earth Surface Proc & Resource Ecol, Xinjiekouwai St 19, Beijing 100875, Peoples R China. EM zli@atmos.umd.edu RI Chiu, Christine/E-5649-2013; Liu, Jianjun/F-4673-2014; Weng, Fuzhong/F-5633-2010; Li, Zhanqing/F-4424-2010; Cribb, Maureen/K-1341-2013 OI Chiu, Christine/0000-0002-8951-6913; Weng, Fuzhong/0000-0003-0150-2179; Li, Zhanqing/0000-0001-6737-382X; Cribb, Maureen/0000-0002-9745-3676 FU Ministry of Science and Technology of China [2012AA120901, 2013CB955802, 2013CB955804]; National Science Foundation of China [41175019, 40637035]; U.S. National Science Foundation [AGS1118325]; Department of Energy [ER65319, DE-SC0006001]; NASA [NNX08AH71G]; Key University Science Research Project of Jiangsu Province [09KJA17004]; National Natural Science Foundation of China [41075114]; Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-06CH11357] FX This study was supported by numerous grants from the Ministry of Science and Technology of China (2012AA120901, 2013CB955802, 2013CB955804) and National Science Foundation of China (41175019,40637035) for Jianjun Liu, Fengsheng Zhao, and Zhanqing Li; the U.S. National Science Foundation (AGS1118325) for Zhanqing Li; Department of Energy (ER65319) and NASA (NNX08AH71G) for Zhanqing Li and Department of Energy (DE-SC0006001) for J. Christine Chiu; and the Key University Science Research Project of Jiangsu Province (09KJA17004) and National Natural Science Foundation of China (41075114) for Youfei Zheng. Argonne National Laboratory's work was supported by the Department of Energy, Office of Science, Office of Biological and Environmental Research, under contract DE-AC02-06CH11357. NR 63 TC 9 Z9 9 U1 1 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 27 PY 2013 VL 118 IS 16 BP 9141 EP 9152 DI 10.1002/jgrd.50648 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 225AE UT WOS:000324933900027 ER PT J AU Thorsen, TJ Fu, Q Comstock, JM Sivaraman, C Vaughan, MA Winker, DM Turner, DD AF Thorsen, Tyler J. Fu, Qiang Comstock, Jennifer M. Sivaraman, Chitra Vaughan, Mark A. Winker, David M. Turner, David D. TI Macrophysical properties of tropical cirrus clouds from the CALIPSO satellite and from ground-based micropulse and Raman lidars SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE CALIPSO; MPL; Raman; cirrus; tropics; diurnal ID RADIATION MEASUREMENT PROGRAM; WATER-VAPOR; LOWER STRATOSPHERE; UPPER TROPOSPHERE; MASS FLUXES; TROPOPAUSE; ALGORITHM; PROFILES; BALANCE; PERFORMANCE AB Lidar observations of cirrus cloud macrophysical properties over the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program Darwin, Australia, site are compared from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, the ground-based ARM micropulse lidar (MPL), and the ARM Raman lidar (RL). Comparisons are made using the subset of profiles where the lidar beam is not fully attenuated. Daytime measurements using the RL are shown to be relatively unaffected by the solar background and are therefore suited for checking the validity of diurnal cycles. RL and CALIPSO cloud fraction profiles show good agreement while the MPL detects significantly less cirrus, particularly during the daytime. Both MPL and CALIPSO observations show that cirrus clouds occur less frequently during the day than at night at all altitudes. In contrast, the RL diurnal cycle is significantly different from zero only below about 11km; where it is of opposite sign (i.e., more clouds during the daytime). For cirrus geometrical thickness, the MPL and CALIPSO observations agree well and both data sets have significantly thinner clouds during the daytime than the RL. From the examination of hourly MPL and RL cirrus cloud thickness and through the application of daytime detection limits to all CALIPSO data, we find that the decreased MPL and CALIPSO cloud thickness during the daytime is very likely a result of increased daytime noise. This study highlights the significant improvement the RL provides (compared to the MPL) in the ARM program's ability to observe tropical cirrus clouds and will help improve our understanding of these clouds. The RL also provides a valuable ground-based lidar data set for the evaluation of CALIPSO observations. C1 [Thorsen, Tyler J.; Fu, Qiang] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Comstock, Jennifer M.; Sivaraman, Chitra] Pacific NW Natl Lab, Richland, WA 99352 USA. [Vaughan, Mark A.; Winker, David M.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Turner, David D.] NOAA, Natl Severe Storms Lab, Norman, OK 73069 USA. RP Thorsen, TJ (reprint author), Univ Washington, Dept Atmospher Sci, ATG 408,Box 351640, Seattle, WA 98195 USA. EM tylert@atmos.washington.edu FU Office of Science (BER), U.S. Department of Energy [DE-FG02-09ER64769]; NASA [NNX13AN49G]; DOE ASR program; DOE ARM program FX The micropulse and Raman lidar data sets were obtained from the ARM data archive: www.archive.arm.gov. The CALIPSO data sets were obtained from the NASA Langley Research Center Atmospheric Science Data Center. This research was supported by the Office of Science (BER), U.S. Department of Energy, grant DE-FG02-09ER64769 and by NASA grant NNX13AN49G. J.M. Comstock was supported by both DOE ASR and ARM programs. NR 49 TC 11 Z9 11 U1 0 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 27 PY 2013 VL 118 IS 16 BP 9209 EP 9220 DI 10.1002/jgrd.50691 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 225AE UT WOS:000324933900032 ER PT J AU Gustafson, WI Ma, PL Xiao, H Singh, B Rasch, PJ Fast, JD AF Gustafson, William I., Jr. Ma, Po-Lun Xiao, Heng Singh, Balwinder Rasch, Philip J. Fast, Jerome D. TI The Separate Physics and Dynamics Experiment (SPADE) framework for determining resolution awareness: A case study of microphysics SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE resolution aware; scale aware; multiresolution; microphysics; parameterization; SPADE ID COMMUNITY ATMOSPHERE MODEL; STOCHASTIC MIXING MODEL; HORIZONTAL RESOLUTION; CLOUD MICROPHYSICS; CONVECTIVE PARAMETERIZATION; CLIMATE SIMULATIONS; RADIATIVE-TRANSFER; VERSION 3; PRECIPITATION; CONVERGENCE AB Multiresolution dynamical cores for weather and climate modeling are pushing the atmospheric community toward developing scale aware or, more specifically, resolution aware parameterizations that function properly across a range of grid spacings. Determining resolution dependence of specific model parameterizations is difficult due to resolution dependencies in many model components. This study presents the Separate Physics and Dynamics Experiment (SPADE) framework for isolating resolution dependent behavior of specific parameterizations without conflating resolution dependencies from other portions of the model. To demonstrate SPADE, the resolution dependence of the Morrison microphysics, from the Weather Research and Forecasting model, and the Morrison-Gettelman microphysics, from the Community Atmosphere Model, are compared for grid spacings spanning the cloud modeling gray zone. It is shown that the Morrison scheme has stronger resolution dependence than Morrison-Gettelman, and the partial cloud fraction capability of Morrison-Gettelman is not the primary reason for this difference. C1 [Gustafson, William I., Jr.; Ma, Po-Lun; Xiao, Heng; Singh, Balwinder; Rasch, Philip J.; Fast, Jerome D.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. RP Gustafson, WI (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, POB 999,MSIN K9-30, Richland, WA 99352 USA. EM William.Gustafson@pnnl.gov RI Gustafson, William/A-7732-2008; Ma, Po-Lun/G-7129-2015 OI Gustafson, William/0000-0001-9927-1393; Ma, Po-Lun/0000-0003-3109-5316 FU U.S. Department of Energy (DOE); PNNL Laboratory Directed Research and Development program; DOE Office of Science Biological and Environmental Research Program through its Earth System Modeling program; Battelle Memorial Institute [DE-AC05-76RL01830] FX The authors thank Elaine Chapman and Matus Martini for their input on this paper. Funding for SPADE and this paper has been provided by a U.S. Department of Energy (DOE) Early Career grant awarded to William I. Gustafson Jr. Additional funding for the porting of CAM physics into WRF was provided by the PNNL Laboratory Directed Research and Development program and the DOE Office of Science Biological and Environmental Research Program through its Earth System Modeling program. A portion of the research was performed using PNNL Institutional Computing at Pacific Northwest National Laboratory. Data were used from the Southern Great Plains site of the U.S. DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility. NLDAS-2 data used in this study were acquired as part of the mission of NASA's Earth Science Division and archived and distributed by the Goddard Earth Sciences Data and Information Services Center. The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute under contract DE-AC05-76RL01830. NR 46 TC 7 Z9 7 U1 1 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 27 PY 2013 VL 118 IS 16 BP 9258 EP 9276 DI 10.1002/jgrd.50711 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 225AE UT WOS:000324933900035 ER PT J AU Ma, XW Whalen, JB Cao, HB Latturner, SE AF Ma, Xiaowei Whalen, Jeffrey B. Cao, Huibo Latturner, Susan E. TI Competing Phases, Complex Structure, and Complementary Diffraction Studies of R(3-delta)FeAl(4-x)Mg(x)Tt(2) Intermetallics (R = Y, Dy, Er, Yb; Tt = Si or Ge; x < 0.5) SO CHEMISTRY OF MATERIALS LA English DT Article DE metal flux; intermetallics; antiferromagnetism; neutron diffraction; silicide ID CRYSTAL-STRUCTURE; AL FLUX; NEUTRON-DIFFRACTION; MAGNETIC-PROPERTIES; LIQUID ALUMINUM; SM; SILICIDES; GALLIUM; FRAMEWORK; ELECTRON AB Four new intermetallic phases R3-delta FeAl4-xMgxSi2 (R = Yb, Dy) and R3-delta FeAl4-xMgxGe2 (R = Er, Y) were synthesized in Mg/Al (1:1 mol ratio) molten flux. These phases have a new structure type in tetragonal space group P4/mbm (a = 13.3479(9) angstrom, c = 4.0996(3) angstrom, z = 4, and R1 = 0.0176 for Yb2.77FeAl3.72Mg0.28Si2). The structure features iron in trigonal prismatic coordination by aluminum atoms. The prisms share trigonal faces to form chains running along the c-axis, similar to the chains seen in several related structures, including that of the previously reported competing phases R5Mg5Fe4Al12Si6 (R = Gd, Dy, and Y). Occupancies of Mg, Al, and Si sites in Yb2.77FeAl3.72Mg0.28Si2 were determined by single crystal X-ray and neutron diffraction, bond length analysis, and comparison to atom positions and bond lengths in the isostructural germanides. Electronic structure calculations indicate these phases are polar intermetallics with pseudogaps near the Fermi level. The magnetic properties of these phases are determined by the rare earth ions. Y3-delta FeAl4-xMgxGe2 is Pauli paramagnetic; the Yb3+ cations in Yb2.77FeAl3.72Mg0.28Si2 exhibit Curie-Weiss behavior with no ordering in the temperature range observed.. Er3-delta FeAl4-xMgxGe2 and Dy3.8FeAl4-xMgxSi2 order antiferromagnetically at T-N = 2.8 and 4.0 Ki respectively; the former undergoes a spin reorientation at,,,4400 similar to 4400 G according to the ac field dependence of magnetization. C1 [Ma, Xiaowei; Whalen, Jeffrey B.; Latturner, Susan E.] Florida State Univ, Dept Chem & Biochem, Tallahassee, FL 32306 USA. [Whalen, Jeffrey B.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA. [Cao, Huibo] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. RP Latturner, SE (reprint author), Florida State Univ, Dept Chem & Biochem, Tallahassee, FL 32306 USA. EM latturne@chem.fsu.edu RI Cao, Huibo/A-6835-2016 OI Cao, Huibo/0000-0002-5970-4980 FU National Science Foundation (Division of Materials Research) [DMR-11-06150]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This research was supported by funding from the National Science Foundation (Division of Materials Research) through Grant DMR-11-06150. This work made use of the XPS and SEM Facilities of the FSU Physics Department. The research at ORNL's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 43 TC 3 Z9 3 U1 0 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD AUG 27 PY 2013 VL 25 IS 16 BP 3363 EP 3372 DI 10.1021/cm401976s PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 210DZ UT WOS:000323810800011 ER PT J AU De Trizio, L Buonsanti, R Schimpf, AM Llordes, A Gamelin, DR Simonutti, R Milliron, DJ AF De Trizio, Luca Buonsanti, Raffaella Schimpf, Alina M. Llordes, Anna Gamelin, Daniel R. Simonutti, Roberto Milliron, Delia J. TI Nb-Doped Colloidal TiO2 Nanocrystals with Tunable Infrared Absorption SO CHEMISTRY OF MATERIALS LA English DT Article DE doping titanium oxide; plasmonic nanocrystals; transparent conducting oxide; metal oxide ID TRANSPARENT CONDUCTING OXIDES; SENSITIZED SOLAR-CELLS; ANATASE TIO2; ZINC-OXIDE; THIN-FILMS; SEMICONDUCTOR NANOCRYSTALS; OPTICAL-PROPERTIES; LIGHT-SCATTERING; NIOBIUM; NANOPARTICLES AB We report a new colloidal synthesis of niobiumdoped TiO2 anatase nanocrystals (NCs) that allows for the preparation of similar to 10 nm NCs with control over the amount of Nb doping up to similar to 14%. The incorporation of niobium ions leads to the appearance of a tunable, broad absorption peak that ranges from the visible range to the mid-infrared. This optical behavior is attributed to the substitution of Nb5+ on Ti4+ sites generating free carriers inside the conduction band of the TiO2 NCs as supported by optical and electron paramagnetic resonance spectroscopic investigations. At the same time, the incorporation of progressively more niobium ions drives an evolution of the shape of the NCs from tetragonal platelets to "peanutlike" rods. C1 [De Trizio, Luca; Simonutti, Roberto] Univ Milano Bicocca, Dept Mat Sci, I-20125 Milan, Italy. [Buonsanti, Raffaella; Llordes, Anna; Milliron, Delia J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Schimpf, Alina M.; Gamelin, Daniel R.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. RP Milliron, DJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM dmilliron@lbl.gov RI Foundry, Molecular/G-9968-2014; Milliron, Delia/D-6002-2012; Llordes, Anna/H-2370-2015 OI Llordes, Anna/0000-0003-4169-9156 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; DOE Early Career Research Program Award; U.S. National Science Foundation [CHE 1151726, DGE-0718124] FX This research was carried out primary at the Molecular Foundry, Lawrence Berkeley National Laboratory, a user facility supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy (DOE) under contract No. DE-AC02-05CH11231. D. J. M. was supported by a DOE Early Career Research Program Award under the same contract. Additional funding was provided by the U.S. National Science Foundation (CHE 1151726 to D. R. G. and Graduate Research Fellowship DGE-0718124 to A. M. S.). The authors thank M. V. Altoe for helpful advice regarding XPS and STEM-EDS measurements. NR 68 TC 50 Z9 50 U1 10 U2 154 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD AUG 27 PY 2013 VL 25 IS 16 BP 3383 EP 3390 DI 10.1021/cm402396c PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 210DZ UT WOS:000323810800013 ER PT J AU Murphy, J Tanatar, MA Kim, H Kwok, W Welp, U Graf, D Brooks, JS Bud'ko, SL Canfield, PC Prozorov, R AF Murphy, J. Tanatar, M. A. Kim, Hyunsoo Kwok, W. Welp, U. Graf, D. Brooks, J. S. Bud'ko, S. L. Canfield, P. C. Prozorov, R. TI Effect of heavy-ion irradiation on London penetration depth in overdoped Ba(Fe1-xCox)(2)As-2 SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; CRITICAL FIELD; UNCONVENTIONAL SUPERCONDUCTIVITY; DEPENDENCE; SCATTERING; KFE2AS2 AB Irradiation with 1.4 GeV Pb-208 ions was used to induce artificial disorder in single crystals of iron-arsenide superconductor Ba(Fe1-xCox)(2)As-2 and to study its effects on the temperature-dependent London penetration depth and transport properties. A study was undertaken on overdoped single crystals with x = 0.108 and x = 0.127 characterized by notable modulation of the superconducting gap. Irradiation corresponding to the matching fields of B-phi = 6 T and 6.5 T with doses 2.22 x 10(11) d/cm(2) and 2.4 x 10(11) d/cm(2), respectively, suppresses the superconducting T-c by approximately 0.3 to 1 K. The variation of the low-temperature penetration depth in both pristine and irradiated samples is well described by the power law Delta lambda(T) = AT(n). Irradiation increases the magnitude of the prefactor A and decreases the exponent n, similar to the effect of irradiation in optimally-doped samples. This finding supports universal s(+/-) pairing in Ba(Fe1-xCox)(2)As-2 compounds for the entire Co doping range. C1 [Murphy, J.; Tanatar, M. A.; Kim, Hyunsoo; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Murphy, J.; Tanatar, M. A.; Kim, Hyunsoo; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kwok, W.; Welp, U.] Argonne Natl Lab, Argonne, IL 60439 USA. [Graf, D.; Brooks, J. S.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. RP Murphy, J (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Canfield, Paul/H-2698-2014 FU US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-07CH11358]; Center for Emergent Superconductivity, an Energy Frontier Research Center; US Department of Energy, Office of Science, Office of Basic Energy Sciences [AC0298CH1088]; NSF [DMR0654118]; state of Florida FX Work at Ames Laboratory was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-07CH11358. Work at Argonne was supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DE-AC0298CH1088. Work at the National High Magnetic Field Laboratory is supported by the NSF Cooperative Agreement No. DMR0654118 and by the state of Florida. We thank Rebecca A. Shivvers for careful reading of the manuscript. NR 61 TC 8 Z9 8 U1 0 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD AUG 27 PY 2013 VL 88 IS 5 AR 054514 DI 10.1103/PhysRevB.88.054514 PG 8 WC Physics, Condensed Matter SC Physics GA 207NL UT WOS:000323608200002 ER PT J AU Agnese, R Ahmed, Z Anderson, AJ Arrenberg, S Balakishiyeva, D Thakur, RB Bauer, DA Borgland, A Brandt, D Brink, PL Bruch, T Bunker, R Cabrera, B Caldwell, DO Cerdeno, DG Chagani, H Cooley, J Cornell, B Crewdson, CH Cushman, P Daal, M Dejongh, F Di Tefano, PCF Silva, EDE Doughty, T Esteban, L Fallows, S Figueroa-Feliciano, E Filippini, J Fox, J Fritts, M Godfrey, GL Golwala, SR Hall, J Harris, RH Hertel, SA Hofer, T Holmgren, D Hsu, L Huber, ME Jastram, A Kamaev, O Kara, B Kelsey, MH Kennedy, A Kim, P Kiveni, M Koch, K Kos, M Leman, SW Lopez-Asamar, E Mahapatra, R Mandic, V Martinez, C McCarthy, KA Mirabolfathi, N Moffatt, RA Moore, DC Nadeau, P Nelson, RH Page, K Partridge, R Pepin, M Phipps, A Prasad, K Pyle, M Qiu, H Rau, W Redl, P Reisetter, A Ricci, Y Saab, T Sadoulet, B Sander, J Schneck, K Schnee, RW Scorza, S Serfass, B Shank, B Speller, D Sundqvist, KM Villano, AN Welliver, B Wright, DH Yellin, S Yen, JJ Yoo, J Young, BA Zhang, J AF Agnese, R. Ahmed, Z. Anderson, A. J. Arrenberg, S. Balakishiyeva, D. Thakur, R. Basu Bauer, D. A. Borgland, A. Brandt, D. Brink, P. L. Bruch, T. Bunker, R. Cabrera, B. Caldwell, D. O. Cerdeno, D. G. Chagani, H. Cooley, J. Cornell, B. Crewdson, C. H. Cushman, P. Daal, M. Dejongh, F. Di Tefano, P. C. F. do Couto e Silva, E. Doughty, T. Esteban, L. Fallows, S. Figueroa-Feliciano, E. Filippini, J. Fox, J. Fritts, M. Godfrey, G. L. Golwala, S. R. Hall, J. Harris, R. H. Hertel, S. A. Hofer, T. Holmgren, D. Hsu, L. Huber, M. E. Jastram, A. Kamaev, O. Kara, B. Kelsey, M. H. Kennedy, A. Kim, P. Kiveni, M. Koch, K. Kos, M. Leman, S. W. Lopez-Asamar, E. Mahapatra, R. Mandic, V. Martinez, C. McCarthy, K. A. Mirabolfathi, N. Moffatt, R. A. Moore, D. C. Nadeau, P. Nelson, R. H. Page, K. Partridge, R. Pepin, M. Phipps, A. Prasad, K. Pyle, M. Qiu, H. Rau, W. Redl, P. Reisetter, A. Ricci, Y. Saab, T. Sadoulet, B. Sander, J. Schneck, K. Schnee, R. W. Scorza, S. Serfass, B. Shank, B. Speller, D. Sundqvist, K. M. Villano, A. N. Welliver, B. Wright, D. H. Yellin, S. Yen, J. J. Yoo, J. Young, B. A. Zhang, J. CA CDMS Collaboration TI Silicon detector results from the first five-tower run of CDMS II SO PHYSICAL REVIEW D LA English DT Article ID DARK-MATTER SEARCH; CONSTRAINTS; CANDIDATES AB We report results of a search for weakly interacting massive particles (WIMPs) with the Si detectors of the CDMS II experiment. This report describes a blind analysis of the first data taken with CDMS II's full complement of detectors in 2006-2007; results from this exposure using the Ge detectors have already been presented. We observed no candidate WIMP-scattering events in an exposure of 55.9 kg-days before analysis cuts, with an expected background of similar to 1.1 events. The exposure of this analysis is equivalent to 10.3 kg-days over a recoil energy range of 7-100 keV for an ideal Si detector and a WIMP mass of 10 GeV/c(2). These data set an upper limit of 1.7 x 10(-41) cm(2) on the WIMP-nucleon spin-independent cross section of a 10 GeV/c(2) WIMP. These data exclude parameter space for spin-independent WIMP-nucleon elastic scattering that is relevant to recent searches for low-mass WIMPs. C1 [Ahmed, Z.; Cornell, B.; Filippini, J.; Golwala, S. R.; Moore, D. C.; Nelson, R. H.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Thakur, R. Basu; Bauer, D. A.; Dejongh, F.; Holmgren, D.; Hsu, L.; Yoo, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Sadoulet, B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Anderson, A. J.; Figueroa-Feliciano, E.; Hertel, S. A.; Leman, S. W.; McCarthy, K. A.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Hall, J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Crewdson, C. H.; Di Tefano, P. C. F.; Fox, J.; Kamaev, O.; Martinez, C.; Nadeau, P.; Page, K.; Rau, W.; Ricci, Y.] Queens Univ, Dept Phys, Kingston, ON K7L 3N6, Canada. [Young, B. A.] Santa Clara Univ, Dept Phys, Santa Clara, CA 95053 USA. [Borgland, A.; Brandt, D.; Brink, P. L.; do Couto e Silva, E.; Godfrey, G. L.; Kelsey, M. H.; Kim, P.; Partridge, R.; Schneck, K.; Wright, D. H.] Kavli Inst Particle Astrophys & Cosmol, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Cooley, J.; Qiu, H.; Scorza, S.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Cabrera, B.; Moffatt, R. A.; Redl, P.; Shank, B.; Yellin, S.; Yen, J. J.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Bunker, R.; Kiveni, M.; Kos, M.; Schnee, R. W.] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA. [Harris, R. H.; Jastram, A.; Mahapatra, R.; Prasad, K.; Sander, J.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Esteban, L.; Lopez-Asamar, E.] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain. [Cerdeno, D. G.; Esteban, L.; Lopez-Asamar, E.] Univ Autonoma Madrid, Inst Fis Teor, UAM, CSIC, E-28049 Madrid, Spain. [Daal, M.; Doughty, T.; Mirabolfathi, N.; Phipps, A.; Pyle, M.; Sadoulet, B.; Serfass, B.; Speller, D.; Sundqvist, K. M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Caldwell, D. O.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Huber, M. E.] Univ Colorado Denver, Dept Phys, Denver, CO 80217 USA. [Reisetter, A.] Univ Evansville, Dept Phys, Evansville, IN 47722 USA. [Agnese, R.; Balakishiyeva, D.; Saab, T.; Welliver, B.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Chagani, H.; Cushman, P.; Fallows, S.; Fritts, M.; Hofer, T.; Kennedy, A.; Koch, K.; Mandic, V.; Pepin, M.; Villano, A. N.; Zhang, J.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Arrenberg, S.; Bruch, T.] Univ Zurich, Inst Phys, CH-8057 Zurich, Switzerland. RP Agnese, R (reprint author), Univ Florida, Dept Phys, Gainesville, FL 32611 USA. RI Pyle, Matt/E-7348-2015; Hall, Jeter/E-9294-2015; Yoo, Jonghee/K-8394-2016; OI Pyle, Matt/0000-0002-3490-6754; Cerdeno, David G./0000-0002-7649-1956 FU National Science Foundation [AST-9978911, NSF-1102795, PHY-0542066, PHY-0503729, PHY-0503629, PHY-0503641, PHY-0504224, PHY-0705052, PHY-0801708, PHY-0801712, PHY-0802575, PHY-0847342, PHY-0855299, PHY-0855525, PHY-1151869, PHY-1205898]; Department of Energy [DE-AC03-76SF00098, DE-FG02-92ER40701, DE-FG03-90ER40569, DE-FG03-91ER40618, DE-SC0004022]; Swiss National Foundation (SNF) [20-118119]; NSERC Canada [SAPIN 341314, SAPPJ 386399]; MULTIDARK [CSD2009-00064, FPA2012-34694]; Fermi Research Alliance, LLC [De-AC02-07CH11359]; U.S. Department of Energy; [DE-AC02-76SF00515] FX The CDMS Collaboration gratefully acknowledges the contributions of numerous engineers and technicians; we would like to especially thank Dennis Seitz, Jim Beaty, Bruce Hines, Larry Novak, Richard Schmitt and Astrid Tomada. In addition, we gratefully acknowledge assistance from the staff of the Soudan Underground Laboratory and the Minnesota Department of Natural Resources. This work is supported in part by the National Science Foundation (Grants No. AST-9978911, No. NSF-1102795, No. PHY-0847342, No. PHY-0542066, No. PHY-0503729, No. PHY-0503629, No. PHY-0503641, No. PHY-0504224, No. PHY-0705052, No. PHY-0801708, No. PHY-0801712, No. PHY-0802575, No. PHY-0847342, No. PHY-0855299, No. PHY-0855525, No. PHY-1151869, and No. PHY-1205898), by the Department of Energy (Contracts No. DE-AC03-76SF00098, No. DE-FG02-92ER40701, No. DE-FG03-90ER40569, No. DE-FG03-91ER40618, and No. DE-SC0004022), by the Swiss National Foundation (SNF Grant No. 20-118119), by NSERC Canada (Grants No. SAPIN 341314 and No. SAPPJ 386399), and by MULTIDARK CSD2009-00064 and FPA2012-34694. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359, while SLAC is operated under Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy. NR 37 TC 42 Z9 42 U1 5 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 27 PY 2013 VL 88 IS 3 AR 031104 DI 10.1103/PhysRevD.88.031104 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 207NY UT WOS:000323609500001 ER PT J AU Lees, JP Poireau, V Tisserand, V Grauges, E Palano, A Eigen, G Stugu, B Brown, DN Kerth, LT Kolomensky, YG Lee, MJ Lynch, G Koch, H Schroeder, T Hearty, C Mattison, TS McKenna, JA So, RY Khan, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Yushkov, AN Kirkby, D Lankford, AJ Mandelkern, M Dey, B Gary, JW Long, O Vitug, GM Campagnari, C Sevilla, MF Hong, TM Kovalskyi, D Richman, JD West, CA Eisner, AM Lockman, WS Martinez, AJ Schumm, BA Seiden, A Chao, DS Cheng, CH Echenard, B Flood, KT Hitlin, DG Ongmongkolkul, P Porter, FC Andreassen, R Huard, Z Meadows, BT Pushpawela, BG Sokoloff, MD Sun, L Bloom, PC Ford, WT Gaz, A Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Spaan, B Schwierz, R Bernard, D Verderi, M Playfer, S Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Fioravanti, E Garzia, I Luppi, E Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Martellotti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Bhuyan, B Prasad, V Morii, M Adametz, A Uwer, U Lacker, HM Dauncey, PD Mallik, U Chen, C Cochran, J Meyer, WT Prell, S Rubin, AE Gritsan, AV Arnaud, N Davier, M Derkach, D Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Roudeau, P Stocchi, A Wang, LL Wormser, G Lange, DJ Wright, DM Coleman, JP Fry, JR Gabathuler, E Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Cowan, G Bougher, J Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Griessinger, K Hafner, A Prencipe, E Schubert, K Barlow, RJ Lafferty, GD Behn, E Cenci, R Hamilton, B Jawahery, A Roberts, DA Cowan, R Dujmic, D Sciolla, G Cheaib, R Patel, PM Robertson, SH Biassoni, P Neri, N Palombo, F Cremaldi, L Godang, R Sonnek, P Summers, DJ Nguyen, X Simard, M Taras, P De Nardo, G Monorchio, D Onorato, G Sciacca, C Martinelli, M Raven, G Jessop, CP LoSecco, JM Honscheid, K Kass, R Brau, J Frey, R Sinev, NB Strom, D Torrence, E Feltresi, E Margoni, M Morandin, M Posocco, M Rotondo, M Simi, G Simonetto, F Stroili, R Akar, S Ben-Haim, E Bomben, M Bonneaud, GR Briand, H Calderini, G Chauveau, J Leruste, P Marchiori, G Ocariz, J Sitt, S Biasini, M Manoni, E Pacetti, S Rossi, A Angelini, C Batignani, G Bettarini, S Carpinelli, M Casarosa, G Cervelli, A Forti, F Giorgi, MA Lusiani, A Oberhof, B Paoloni, E Perez, A Rizzo, G Walsh, JJ Egna, DL Olsen, J Smith, AJS Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Piredda, G Buenger, C Gruenberg, O Hartmann, T Leddig, T Voss, C Waldi, R Adye, T Olaiya, EO Wilson, FF Emery, S de Monchenault, GH Vasseur, G Yeche, C Anulli, F Aston, D Bard, DJ Benitez, JF Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Ebert, M Field, RC Fulsom, BG Gabareen, AM Graham, MT Hast, C Innes, WR Kim, P Kocian, ML Leith, DWGS Lewis, P Lindemann, D Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Muller, DR Neal, H Nelson, S Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Snyder, A Su, D Sullivan, MK Va'vra, J Wagner, AP Wang, WF Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Ziegler, V Park, W Purohit, MV White, RM Wilson, JR Randle-Conde, A Sekula, SJ Bellis, M Burchat, PR Miyashita, TS Puccio, EMT Alam, MS Ernst, JA Gorodeisky, R Guttman, N Peimer, DR Soffer, A Spanier, SM Ritchie, JL Ruland, AM Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F De Mori, F Filippi, A Gamba, D Zambito, S Lanceri, L Vitale, L Martinez-Vidal, F Oyanguren, A Villanueva-Perez, P Ahmed, H Albert, J Banerjee, S Bernlochner, FU Choi, HHF King, GJ Kowalewski, R Lewczuk, MJ Lueck, T Nugent, IM Roney, JM Sobie, RJ Tasneem, N Gershon, TJ Harrison, PF Latham, TE Band, HR Dasu, S Pan, Y Prepost, R Wu, SL AF Lees, J. P. Poireau, V. Tisserand, V. Grauges, E. Palano, A. Eigen, G. Stugu, B. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lee, M. J. Lynch, G. Koch, H. Schroeder, T. Hearty, C. Mattison, T. S. McKenna, J. A. So, R. Y. Khan, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Kravchenko, E. A. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Yushkov, A. N. Kirkby, D. Lankford, A. J. Mandelkern, M. Dey, B. Gary, J. W. Long, O. Vitug, G. M. Campagnari, C. Sevilla, M. Franco Hong, T. M. Kovalskyi, D. Richman, J. D. West, C. A. Eisner, A. M. Lockman, W. S. Martinez, A. J. Schumm, B. A. Seiden, A. Chao, D. S. Cheng, C. H. Echenard, B. Flood, K. T. Hitlin, D. G. Ongmongkolkul, P. Porter, F. C. Andreassen, R. Huard, Z. Meadows, B. T. Pushpawela, B. G. Sokoloff, M. D. Sun, L. Bloom, P. C. Ford, W. T. Gaz, A. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Spaan, B. Schwierz, R. Bernard, D. Verderi, M. Playfer, S. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Fioravanti, E. Garzia, I. Luppi, E. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Martellotti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Bhuyan, B. Prasad, V. Morii, M. Adametz, A. Uwer, U. Lacker, H. M. Dauncey, P. D. Mallik, U. Chen, C. Cochran, J. Meyer, W. T. Prell, S. Rubin, A. E. Gritsan, A. V. Arnaud, N. Davier, M. Derkach, D. Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Roudeau, P. Stocchi, A. Wang, L. L. Wormser, G. Lange, D. J. Wright, D. M. Coleman, J. P. Fry, J. R. Gabathuler, E. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Cowan, G. Bougher, J. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Griessinger, K. Hafner, A. Prencipe, E. Schubert, K. Barlow, R. J. Lafferty, G. D. Behn, E. Cenci, R. Hamilton, B. Jawahery, A. Roberts, D. A. Cowan, R. Dujmic, D. Sciolla, G. Cheaib, R. Patel, P. M. Robertson, S. H. Biassoni, P. Neri, N. Palombo, F. Cremaldi, L. Godang, R. Sonnek, P. Summers, D. J. Nguyen, X. Simard, M. Taras, P. De Nardo, G. Monorchio, D. Onorato, G. Sciacca, C. Martinelli, M. Raven, G. Jessop, C. P. LoSecco, J. M. Honscheid, K. Kass, R. Brau, J. Frey, R. Sinev, N. B. Strom, D. Torrence, E. Feltresi, E. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simi, G. Simonetto, F. Stroili, R. Akar, S. Ben-Haim, E. Bomben, M. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Leruste, Ph. Marchiori, G. Ocariz, J. Sitt, S. Biasini, M. Manoni, E. Pacetti, S. Rossi, A. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Oberhof, B. Paoloni, E. Perez, A. Rizzo, G. Walsh, J. J. Egna, D. Lopes Olsen, J. Smith, A. J. S. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Piredda, G. Buenger, C. Gruenberg, O. Hartmann, T. Leddig, T. Voss, C. Waldi, R. Adye, T. Olaiya, E. O. Wilson, F. F. Emery, S. de Monchenault, G. Hamel Vasseur, G. Yeche, Ch. Anulli, F. Aston, D. Bard, D. J. Benitez, J. F. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Ebert, M. Field, R. C. Fulsom, B. G. Gabareen, A. M. Graham, M. T. Hast, C. Innes, W. R. Kim, P. Kocian, M. L. Leith, D. W. G. S. Lewis, P. Lindemann, D. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Muller, D. R. Neal, H. Nelson, S. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Snyder, A. Su, D. Sullivan, M. K. Va'vra, J. Wagner, A. P. Wang, W. F. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Ziegler, V. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Randle-Conde, A. Sekula, S. J. Bellis, M. Burchat, P. R. Miyashita, T. S. Puccio, E. M. T. Alam, M. S. Ernst, J. A. Gorodeisky, R. Guttman, N. Peimer, D. R. Soffer, A. Spanier, S. M. Ritchie, J. L. Ruland, A. M. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. De Mori, F. Filippi, A. Gamba, D. Zambito, S. Lanceri, L. Vitale, L. Martinez-Vidal, F. Oyanguren, A. Villanueva-Perez, P. Ahmed, H. Albert, J. Banerjee, Sw. Bernlochner, F. U. Choi, H. H. F. King, G. J. Kowalewski, R. Lewczuk, M. J. Lueck, T. Nugent, I. M. Roney, J. M. Sobie, R. J. Tasneem, N. Gershon, T. J. Harrison, P. F. Latham, T. E. Band, H. R. Dasu, S. Pan, Y. Prepost, R. Wu, S. L. CA BaBaR Collaboration TI Precision measurement of the e(+)e(-) -> K+K-(gamma) cross section with the initial-state radiation method at BABAR SO PHYSICAL REVIEW D LA English DT Article ID FORM-FACTORS; QUANTUM CHROMODYNAMICS; MAGNETIC-MOMENT; PAIR PRODUCTION; TAGGED PHOTONS; MONTE-CARLO; MUON; PION; DETECTOR; DECAYS AB A precise measurement of the cross section for the process e(+)e(-) -> K+K-(gamma) from threshold to an energy of 5 GeV is obtained with the initial-state radiation (ISR) method using 232 fb(-1) of data collected with the BABAR detector at e(+)e(-) center-of-mass energies near 10.6 GeV. The measurement uses the effective ISR luminosity determined from the e(+)e(-) -> mu(+)mu(-)(gamma)gamma(ISR) process with the same data set. The corresponding lowest-order contribution to the hadronic vacuum polarization term in the muon magnetic anomaly is found to be a(mu)(KK,LO) = (22.93 +/- 0.18(stat) +/- 0.22(syst)) x 10(-10). The charged kaon form factor is extracted and compared to previous results. Its magnitude at large energy significantly exceeds the asymptotic QCD prediction, while the measured slope is consistent with the prediction. C1 [Lees, J. P.; Poireau, V.; Tisserand, V.] Univ Savoie, LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Palano, A.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Palano, A.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lee, M. J.; Lynch, G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lee, M. J.; Lynch, G.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.] Budker Inst Nucl Phys SB RAS, Novosibirsk 630090, Russia. [Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Blinov, V. E.; Onuchin, A. P.] Novosibirsk State Tech Univ, Novosibirsk 630092, Russia. [Kirkby, D.; Lankford, A. J.; Mandelkern, M.] Univ Calif Irvine, Irvine, CA 92697 USA. [Dey, B.; Gary, J. W.; Long, O.; Vitug, G. M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Campagnari, C.; Sevilla, M. Franco; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Lockman, W. S.; Martinez, A. J.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Huard, Z.; Meadows, B. T.; Pushpawela, B. G.; Sokoloff, M. D.; Sun, L.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Spaan, B.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, F-91128 Palaiseau, France. [Playfer, S.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44122 Ferrara, Italy. [Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.; Prasad, V.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Meyer, W. T.; Prell, S.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gritsan, A. V.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Stocchi, A.; Wang, L. L.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Stocchi, A.; Wang, L. L.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.] Univ London, London E1 4NS, England. [Cowan, G.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Bougher, J.; Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Prencipe, E.; Schubert, K.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Barlow, R. J.; Lafferty, G. D.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Behn, E.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.] Univ Maryland, College Pk, MD 20742 USA. [Cowan, R.; Dujmic, D.; Sciolla, G.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Cheaib, R.; Patel, P. M.; Robertson, S. H.; Summers, D. J.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Neri, N.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Sonnek, P.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Martinelli, M.; Raven, G.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Honscheid, K.; Kass, R.] Ohio State Univ, Columbus, OH 43210 USA. [Brau, J.; Frey, R.; Sinev, N. B.; Strom, D.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Feltresi, E.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simi, G.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Feltresi, E.; Margoni, M.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Sitt, S.] Univ Denis Diderot Paris7, Univ Paris 06, Lab Phys Nucl & Hautes Energies, CNRS,IN2P3, F-75252 Paris, France. [Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Biasini, M.; Pacetti, S.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Oberhof, B.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Egna, D. Lopes; Olsen, J.; Smith, A. J. S.] Princeton Univ, Princeton, NJ 08544 USA. [Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Piredda, G.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Faccini, R.; Ferroni, F.; Gaspero, M.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Buenger, C.; Gruenberg, O.; Hartmann, T.; Leddig, T.; Voss, C.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch.] CEA, Ctr Saclay, SPP, Irfu, F-91191 Gif Sur Yvette, France. [Adametz, A.; Anulli, F.; Aston, D.; Bard, D. J.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Hast, C.; Innes, W. R.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Lindemann, D.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wagner, A. P.; Wang, W. F.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Randle-Conde, A.; Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Miyashita, T. S.; Puccio, E. M. T.] Stanford Univ, Stanford, CA 94305 USA. [Alam, M. S.; Ernst, J. A.] SUNY Albany, Albany, NY 12222 USA. [Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Ritchie, J. L.; Ruland, A. M.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.; Zambito, S.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; De Mori, F.; Gamba, D.; Zambito, S.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Martinez-Vidal, F.; Oyanguren, A.; Villanueva-Perez, P.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Ahmed, H.; Albert, J.; Banerjee, Sw.; Bernlochner, F. U.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lueck, T.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Latham, T. E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Peruzzi, I. M.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Wang, L. L.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Lees, JP (reprint author), Univ Savoie, LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. RI Rizzo, Giuliana/A-8516-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Di Lodovico, Francesca/L-9109-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Monge, Maria Roberta/G-9127-2012; Forti, Francesco/H-3035-2011; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Kravchenko, Evgeniy/F-5457-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Patrignani, Claudia/C-5223-2009 OI Cibinetto, Gianluigi/0000-0002-3491-6231; Pacetti, Simone/0000-0002-6385-3508; Rizzo, Giuliana/0000-0003-1788-2866; Faccini, Riccardo/0000-0003-2613-5141; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Di Lodovico, Francesca/0000-0003-3952-2175; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Paoloni, Eugenio/0000-0001-5969-8712; Martinelli, Maurizio/0000-0003-4792-9178; Lanceri, Livio/0000-0001-8220-3095; Sciacca, Crisostomo/0000-0002-8412-4072; Ebert, Marcus/0000-0002-3014-1512; Monge, Maria Roberta/0000-0003-1633-3195; Forti, Francesco/0000-0001-6535-7965; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Patrignani, Claudia/0000-0002-5882-1747 FU SLAC; US Department of Energy; US National Science Foundation; Natural Sciences and Engineering Research Council (Canada); Commissariat a l'Energie Atomique; Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung (Germany); Deutsche Forschungsgemeinschaft (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (The Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation; Ministerio de Economia y Competitividad (Spain); Science and Technology Facilities Council (United Kingdom); Marie-Curie IEF program (European Union); A. P. Sloan Foundation (USA) FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Economia y Competitividad (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation (USA). NR 39 TC 29 Z9 33 U1 2 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 27 PY 2013 VL 88 IS 3 DI 10.1103/PhysRevD.88.032013 PG 28 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 207NY UT WOS:000323609500003 ER PT J AU Lees, JP Poireau, V Tisserand, V Grauges, E Palano, A Eigen, G Stugu, B Brown, DN Kerth, LT Kolomensky, YG Lynch, G Koch, H Schroeder, T Hearty, C Mattison, TS McKenna, JA So, RY Khan, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Yushkov, AN Kirkby, D Lankford, AJ Mandelkern, M Dey, B Gary, JW Long, O Vitug, GM Campagnari, C Sevilla, MF Hong, TM Kovalskyi, D Richman, JD West, CA Eisner, AM Lockman, WS Martinez, AJ Schumm, BA Seiden, A Chao, DS Cheng, CH Echenard, B Flood, KT Hitlin, DG Ongmongkolkul, P Porter, FC Andreassen, R Huard, Z Meadows, BT Sokoloff, MD Sun, L Bloom, PC Ford, WT Gaz, A Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Spaan, B Schubert, KR Schwierz, R Bernard, D Verderi, M Playfer, S Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Fioravanti, E Garzia, I Luppi, E Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Martellotti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Bhuyan, B Prasad, V Morii, M Adametz, A Uwer, U Lacker, HM Dauncey, PD Mallik, U Chen, C Cochran, J Meyer, WT Prell, S Rubin, AE Gritsan, AV Arnaud, N Davier, M Derkach, D Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Roudeau, P Stocchi, A Wormser, G Lange, DJ Wright, DM Coleman, JP Fry, JR Gabathuler, E Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Cowan, G Bougher, J Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Griessinger, K Hafner, A Prencipe, E Barlow, RJ Lafferty, GD Behn, E Cenci, R Hamilton, B Jawahery, A Roberts, DA Cowan, R Dujmic, D Sciolla, G Cheaib, R Patel, PM Robertson, SH Biassoni, P Neri, N Palombo, F Cremaldi, L Godang, R Sonnek, P Summers, DJ Nguyen, X Simard, M Taras, P De Nardo, G Monorchio, D Onorato, G Sciacca, C Martinelli, M Raven, G Jessop, CP LoSecco, JM Honscheid, K Kass, R Brau, J Frey, R Sinev, NB Strom, D Torrence, E Feltresi, E Margoni, M Morandin, M Posocco, M Rotondo, M Simi, G Simonetto, F Stroili, R Akar, S Ben-Haim, E Bomben, M Bonneaud, GR Briand, H Calderini, G Chauveau, J Leruste, P Marchiori, G Ocariz, J Sitt, S Biasini, M Manoni, E Pacetti, S Rossi, A Angelini, C Batignani, G Bettarini, S Carpinelli, M Casarosa, G Cervelli, A Forti, F Giorgi, MA Lusiani, A Oberhof, B Paoloni, E Perez, A Rizzo, G Walsh, JJ Pegna, DL Olsen, J Smith, AJS Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Piredda, G Bunger, C Grunberg, O Hartmann, T Leddig, T Voss, C Waldi, R Adye, T Olaiya, EO Wilson, FF Emery, S de Monchenault, GH Vasseur, G Yeche, C Anulli, F Aston, D Bard, DJ Benitez, JF Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Ebert, M Field, RC Fulsom, BG Gabareen, AM Graham, MT Hast, C Innes, WR Kim, P Kocian, ML Leith, DWGS Lewis, P Lindemann, D Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Muller, DR Neal, H Nelson, S Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Snyder, A Su, D Sullivan, MK Va'vra, J Wagner, AP Wang, WF Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Ziegler, V Park, W Purohit, MV White, RM Wilson, JR Randle-Conde, A Sekula, SJ Bellis, M Burchat, PR Miyashita, TS Puccio, EMT Alam, MS Ernst, JA Gorodeisky, R Guttman, N Peimer, DR Soffer, A Spanier, SM Ritchie, JL Ruland, AM Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F De Mori, F Filippi, A Gamba, D Zambito, S Lanceri, L Vitale, L Martinez-Vidal, F Oyanguren, A Villanueva-Perez, P Ahmed, H Albert, J Banerjee, S Bernlochner, FU Choi, HHF King, GJ Kowalewski, R Lewczuk, MJ Lueck, T Nugent, IM Roney, JM Sobie, RJ Tasneem, N Gershon, TJ Harrison, PF Latham, TE Band, HR Dasu, S Pan, Y Prepost, R Wu, SL AF Lees, J. P. Poireau, V. Tisserand, V. Grauges, E. Palano, A. Eigen, G. Stugu, B. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Koch, H. Schroeder, T. Hearty, C. Mattison, T. S. McKenna, J. A. So, R. Y. Khan, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Kravchenko, E. A. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Yushkov, A. N. Kirkby, D. Lankford, A. J. Mandelkern, M. Dey, B. Gary, J. W. Long, O. Vitug, G. M. Campagnari, C. Sevilla, M. Franco Hong, T. M. Kovalskyi, D. Richman, J. D. West, C. A. Eisner, A. M. Lockman, W. S. Martinez, A. J. Schumm, B. A. Seiden, A. Chao, D. S. Cheng, C. H. Echenard, B. Flood, K. T. Hitlin, D. G. Ongmongkolkul, P. Porter, F. C. Andreassen, R. Huard, Z. Meadows, B. T. Sokoloff, M. D. Sun, L. Bloom, P. C. Ford, W. T. Gaz, A. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Spaan, B. Schubert, K. R. Schwierz, R. Bernard, D. Verderi, M. Playfer, S. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Fioravanti, E. Garzia, I. Luppi, E. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Martellotti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Bhuyan, B. Prasad, V. Morii, M. Adametz, A. Uwer, U. Lacker, H. M. Dauncey, P. D. Mallik, U. Chen, C. Cochran, J. Meyer, W. T. Prell, S. Rubin, A. E. Gritsan, A. V. Arnaud, N. Davier, M. Derkach, D. Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Roudeau, P. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Coleman, J. P. Fry, J. R. Gabathuler, E. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Cowan, G. Bougher, J. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Griessinger, K. Hafner, A. Prencipe, E. Barlow, R. J. Lafferty, G. D. Behn, E. Cenci, R. Hamilton, B. Jawahery, A. Roberts, D. A. Cowan, R. Dujmic, D. Sciolla, G. Cheaib, R. Patel, P. M. Robertson, S. H. Biassoni, P. Neri, N. Palombo, F. Cremaldi, L. Godang, R. Sonnek, P. Summers, D. J. Nguyen, X. Simard, M. Taras, P. De Nardo, G. Monorchio, D. Onorato, G. Sciacca, C. Martinelli, M. Raven, G. Jessop, C. P. LoSecco, J. M. Honscheid, K. Kass, R. Brau, J. Frey, R. Sinev, N. B. Strom, D. Torrence, E. Feltresi, E. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simi, G. Simonetto, F. Stroili, R. Akar, S. Ben-Haim, E. Bomben, M. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Leruste, Ph. Marchiori, G. Ocariz, J. Sitt, S. Biasini, M. Manoni, E. Pacetti, S. Rossi, A. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Oberhof, B. Paoloni, E. Perez, A. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Olsen, J. Smith, A. J. S. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Piredda, G. Buenger, C. Gruenberg, O. Hartmann, T. Leddig, T. Voss, C. Waldi, R. Adye, T. Olaiya, E. O. Wilson, F. F. Emery, S. de Monchenault, G. Hamel Vasseur, G. Yeche, Ch. Anulli, F. Aston, D. Bard, D. J. Benitez, J. F. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Ebert, M. Field, R. C. Fulsom, B. G. Gabareen, A. M. Graham, M. T. Hast, C. Innes, W. R. Kim, P. Kocian, M. L. Leith, D. W. G. S. Lewis, P. Lindemann, D. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Muller, D. R. Neal, H. Nelson, S. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Snyder, A. Su, D. Sullivan, M. K. Va'vra, J. Wagner, A. P. Wang, W. F. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Ziegler, V. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Randle-Conde, A. Sekula, S. J. Bellis, M. Burchat, P. R. Miyashita, T. S. Puccio, E. M. T. Alam, M. S. Ernst, J. A. Gorodeisky, R. Guttman, N. Peimer, D. R. Soffer, A. Spanier, S. M. Ritchie, J. L. Ruland, A. M. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. De Mori, F. Filippi, A. Gamba, D. Zambito, S. Lanceri, L. Vitale, L. Martinez-Vidal, F. Oyanguren, A. Villanueva-Perez, P. Ahmed, H. Albert, J. Banerjee, Sw. Bernlochner, F. U. Choi, H. H. F. King, G. J. Kowalewski, R. Lewczuk, M. J. Lueck, T. Nugent, I. M. Roney, J. M. Sobie, R. J. Tasneem, N. Gershon, T. J. Harrison, P. F. Latham, T. E. Band, H. R. Dasu, S. Pan, Y. Prepost, R. Wu, S. L. CA BaBaR Collaboration TI Search for the rare decays B -> pi l(+)l(-) and B-0 -> eta l(+)l(-) SO PHYSICAL REVIEW D LA English DT Article ID MODEL; PHYSICS AB We present the results of a search for the rare flavor-changing neutral-current decays B -> pi l(+)l(-) (pi = pi(+), pi(0) and l = e, mu) and B-0 -> eta l(+)l(-) using a sample of e(+)e(-) -> Upsilon(4S) -> B (B) over bar decays corresponding to 428 fb(-1) of integrated luminosity collected by the BABAR detector. No significant signal is observed, and we set an upper limit on the isospin and lepton-flavor averaged branching fraction of B(B -> pi l(+)l(-)) < 5.9 x 10(-8) and a lepton-flavor averaged upper limit of B(B-0 -> eta l(+)l(-)) < 6.4 x 10(-8), both at the 90% confidence level. We also report 90% confidence level branching fraction upper limits for the individual modes B+ -> pi(+)e(+)e(-), B-0 -> pi(0)e(+)e(-), B-0 -> pi(+)mu(+)mu(-), B-0 -> pi(+)mu(+)mu(-), B-0 -> pi(0)mu(+)mu(-), B-0 -> eta e(+)e(-), and B-0 ->eta mu(+)mu(-). C1 [Lees, J. P.; Poireau, V.; Tisserand, V.] Univ Savoie, LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Palano, A.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Palano, A.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.] Budker Inst Nucl Phys SB RAS, Novosibirsk 630090, Russia. [Kirkby, D.; Lankford, A. J.; Mandelkern, M.] Univ Calif Irvine, Irvine, CA 92697 USA. [Dey, B.; Gary, J. W.; Long, O.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sevilla, M. Franco; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Lockman, W. S.; Martinez, A. J.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Huard, Z.; Meadows, B. T.; Sokoloff, M. D.; Sun, L.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Spaan, B.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Playfer, S.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44122 Ferrara, Italy. [Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.; Prasad, V.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Meyer, W. T.; Prell, S.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gritsan, A. V.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.] Univ London, London E1 4NS, England. [Cowan, G.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Bougher, J.; Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Prencipe, E.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Barlow, R. J.; Lafferty, G. D.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Behn, E.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.] Univ Maryland, College Pk, MD 20742 USA. [Cowan, R.; Dujmic, D.; Sciolla, G.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Cheaib, R.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Neri, N.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Sonnek, P.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Martinelli, M.; Raven, G.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Honscheid, K.; Kass, R.] Ohio State Univ, Columbus, OH 43210 USA. [Brau, J.; Frey, R.; Sinev, N. B.; Strom, D.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Feltresi, E.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simi, G.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Feltresi, E.; Margoni, M.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, Lab Phys Nucl & Hautes Energies, CNRS,IN2P3, F-75252 Paris, France. [Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Pacetti, S.; Rossi, A.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Oberhof, B.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Olsen, J.; Smith, A. J. S.] Princeton Univ, Princeton, NJ 08544 USA. [Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Piredda, G.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Faccini, R.; Ferroni, F.; Gaspero, M.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Buenger, C.; Gruenberg, O.; Hartmann, T.; Leddig, T.; Voss, C.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch.] CEA, Irfu, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Anulli, F.; Aston, D.; Bard, D. J.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Hast, C.; Innes, W. R.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Lindemann, D.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wagner, A. P.; Wang, W. F.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Randle-Conde, A.; Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Miyashita, T. S.; Puccio, E. M. T.] Stanford Univ, Stanford, CA 94305 USA. [Alam, M. S.; Ernst, J. A.] SUNY Albany, Albany, NY 12222 USA. [Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Ritchie, J. L.; Ruland, A. M.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.; Zambito, S.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; De Mori, F.; Gamba, D.; Zambito, S.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Martinez-Vidal, F.; Oyanguren, A.; Villanueva-Perez, P.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Ahmed, H.; Albert, J.; Banerjee, Sw.; Bernlochner, F. U.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lueck, T.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Latham, T. E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. RP Lees, JP (reprint author), Univ Savoie, LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. RI Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Di Lodovico, Francesca/L-9109-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Forti, Francesco/H-3035-2011; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Kravchenko, Evgeniy/F-5457-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015 OI Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Di Lodovico, Francesca/0000-0003-3952-2175; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Forti, Francesco/0000-0001-6535-7965; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288 FU SLAC; U.S. Department of Energy and National Science Foundation; Natural Sciences and Engineering Research Council (Canada); Commissariat a l'Energie Atomique; Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung (Germany); Deutsche Forschungsgemeinschaft (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation; Ministerio de Economia y Competitividad (Spain); Science and Technology Facilities Council (United Kingdom); Marie-Curie IEF program (European Union); A. P. Sloan Foundation (USA) FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the U.S. Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Economia y Competitividad (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation (USA). NR 38 TC 4 Z9 4 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG 27 PY 2013 VL 88 IS 3 AR 032012 DI 10.1103/PhysRevD.88.032012 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 207NY UT WOS:000323609500002 ER PT J AU Choi, WS Jeen, H Lee, JH Seo, SSA Cooper, VR Rabe, KM Lee, HN AF Choi, Woo Seok Jeen, Hyoungjeen Lee, Jun Hee Seo, S. S. Ambrose Cooper, Valentino R. Rabe, Karin M. Lee, Ho Nyung TI Reversal of the Lattice Structure in SrCoOx Epitaxial Thin Films Studied by Real-Time Optical Spectroscopy and First-Principles Calculations SO PHYSICAL REVIEW LETTERS LA English DT Article ID NB-DOPED SRTIO3; TRANSPORT-PROPERTIES; PEROVSKITE OXIDES; TEMPERATURES; DIFFUSION; REDUCTION; OXIDATION; BATTERIES AB Using real-time spectroscopic ellipsometry, we directly observed a reversible lattice and electronic structure evolution in SrCoOx (x = 2.5-3) epitaxial thin films. Drastically different electronic ground states, which are extremely susceptible to the oxygen content x, are found in the two topotactic phases: i.e., the brownmillerite SrCoO2.5 and the perovskite SrCoO3. First-principles calculations confirmed substantial differences in the electronic structure, including a metal-insulator transition, which originate from the modification in the Co valence states and crystallographic structures. More interestingly, the two phases can be reversibly controlled by changing the ambient pressure at greatly reduced temperatures. Our finding provides an important pathway to understanding the novel oxygen-content-dependent phase transition uniquely found in multivalent transition metal oxides. C1 [Choi, Woo Seok; Jeen, Hyoungjeen; Cooper, Valentino R.; Lee, Ho Nyung] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Lee, Jun Hee] Princeton Univ, Dept Chem, Frick Lab, Princeton, NJ 08544 USA. [Seo, S. S. Ambrose] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. [Rabe, Karin M.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. RP Choi, WS (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM hnlee@ornl.gov RI Seo, Sung Seok/B-6964-2008; Choi, Woo Seok/G-8783-2014; Cooper, Valentino /A-2070-2012; Lee, Ho Nyung/K-2820-2012 OI Seo, Sung Seok/0000-0002-7055-5314; Cooper, Valentino /0000-0001-6714-4410; Lee, Ho Nyung/0000-0002-2180-3975 FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF [EPS-0814194]; Center for Advanced Materials; Kentucky Science and Engineering Foundation; Kentucky Science and Technology Corporation [KSEF-148-502-12-303] FX We thank D. Shin for helpful discussions. This work was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division (W. S. C., H. J., V. R. C., and H. N. L.). This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 (V. R. C.). The work at the University of Kentucky was supported by the NSF through Grant No. EPS-0814194, the Center for Advanced Materials, and the Kentucky Science and Engineering Foundation with the Kentucky Science and Technology Corporation through Grant Agreement No. KSEF-148-502-12-303 (S. S. A. S.). W. S. C. and H. J. contributed equally to this work. NR 25 TC 16 Z9 16 U1 6 U2 89 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 27 PY 2013 VL 111 IS 9 AR 097401 DI 10.1103/PhysRevLett.111.097401 PG 5 WC Physics, Multidisciplinary SC Physics GA 207OJ UT WOS:000323610800031 PM 24033069 ER PT J AU Cloet, IC Chang, L Roberts, CD Schmidt, SM Tandy, PC AF Cloet, I. C. Chang, L. Roberts, C. D. Schmidt, S. M. Tandy, P. C. TI Pion Distribution Amplitude from Lattice QCD SO PHYSICAL REVIEW LETTERS LA English DT Article ID DYSON-SCHWINGER EQUATIONS; FORM-FACTOR; ASYMPTOTIC-BEHAVIOR; EXCLUSIVE PROCESSES; WAVE-FUNCTION; SYMMETRY; PHYSICS; THEOREM; MESONS AB A method is explained through which a pointwise accurate approximation to the pion's valence-quark distribution amplitude (PDA) may be obtained from a limited number of moments. In connection with the single nontrivial moment accessible in contemporary simulations of lattice-regularized QCD, the method yields a PDA that is a broad concave function whose pointwise form agrees with that predicted by Dyson-Schwinger equation analyses of the pion. Under leading-order evolution, the PDA remains broad to energy scales in excess of 100 GeV, a feature which signals persistence of the influence of dynamical chiral symmetry breaking. Consequently, the asymptotic distribution phi(asy)(pi)(x) is a poor approximation to the pion's PDA at all such scales that are either currently accessible or foreseeable in experiments on pion elastic and transition form factors. Thus, related expectations based on phi(asy)(pi)(x)should be revised. C1 [Cloet, I. C.; Roberts, C. D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Chang, L.] Forschungszentrum Julich, Inst Kernphys, D-52425 Julich, Germany. [Schmidt, S. M.] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany. [Schmidt, S. M.] JARA, D-52425 Julich, Germany. [Tandy, P. C.] Kent State Univ, Dept Phys, Ctr Nucl Res, Kent, OH 44242 USA. RP Cloet, IC (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. FU Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357]; Forschungszentrum Julich GmbH; National Science Foundation [NSF-PHY1206187] FX We thank S. J. Brodsky and R. J. Holt for valuable comments. Work supported by Department of Energy, Office of Nuclear Physics, Contract No. DE-AC02-06CH11357, Forschungszentrum Julich GmbH, and National Science Foundation, Grant No. NSF-PHY1206187. NR 60 TC 30 Z9 30 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 27 PY 2013 VL 111 IS 9 AR 092001 DI 10.1103/PhysRevLett.111.092001 PG 5 WC Physics, Multidisciplinary SC Physics GA 207OJ UT WOS:000323610800010 PM 24033026 ER PT J AU Fujii, J Salles, BR Sperl, M Ueda, S Kobata, M Kobayashi, K Yamashita, Y Torelli, P Utz, M Fadley, CS Gray, AX Braun, J Ebert, H Di Marco, I Eriksson, O Thunstrom, P Fecher, GH Stryhanyuk, H Ikenaga, E Minar, J Back, CH van der Laan, G Panaccione, G AF Fujii, J. Salles, B. R. Sperl, M. Ueda, S. Kobata, M. Kobayashi, K. Yamashita, Y. Torelli, P. Utz, M. Fadley, C. S. Gray, A. X. Braun, J. Ebert, H. Di Marco, I. Eriksson, O. Thunstroem, P. Fecher, G. H. Stryhanyuk, H. Ikenaga, E. Minar, J. Back, C. H. van der Laan, G. Panaccione, G. TI Identifying the Electronic Character and Role of the Mn States in the Valence Band of (Ga,Mn)As SO PHYSICAL REVIEW LETTERS LA English DT Article ID DILUTE MAGNETIC SEMICONDUCTORS; ANGLE-RESOLVED PHOTOEMISSION; GA1-XMNXAS; BULK; TEMPERATURE; LEVEL AB We report high-resolution hard x-ray photoemission spectroscopy results on (Ga,Mn)As films as a function of Mn doping. Supported by theoretical calculations we identify, for both low (1%) and high (13%) Mn doping values, the electronic character of the states near the top of the valence band. Magnetization and temperature-dependent core-level photoemission spectra reveal how the delocalized character of the Mn states enables the bulk ferromagnetic properties of (Ga,Mn)As. C1 [Fujii, J.; Salles, B. R.; Torelli, P.; Panaccione, G.] CNR, IOM, Lab TASC, I-34149 Trieste, Italy. [Sperl, M.; Utz, M.; Back, C. H.] Univ Regensburg, Inst Expt Phys, D-93040 Regensburg, Germany. [Ueda, S.; Kobata, M.; Kobayashi, K.; Yamashita, Y.] Natl Inst Mat Sci, NIMS Beamline Stn, SPring 8, Sayo, Hyogo 6795148, Japan. [Kobayashi, K.] Japan Atom Energy Agcy, Sayo, Hyogo 6795148, Japan. [Kobayashi, K.] Hiroshima Univ, Hiroshima Synchrotron Radiat Ctr, Higashihiroshima 7390046, Japan. [Yamashita, Y.] Natl Inst Mat Sci, Adv Elect Mat Ctr, Tsukuba, Ibaraki 3050044, Japan. [Fadley, C. S.; Gray, A. X.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Fadley, C. S.; Gray, A. X.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Gray, A. X.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Braun, J.; Ebert, H.; Minar, J.] Univ Munich, Dept Chem, D-81377 Munich, Germany. [Di Marco, I.; Eriksson, O.] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden. [Thunstroem, P.] Vienna Univ Technol, Inst Solid State Phys, A-1040 Vienna, Austria. [Fecher, G. H.; Stryhanyuk, H.] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany. [Ikenaga, E.] Japan Synchrotron Radiat Res Inst, SPring 8, Kobe, Hyogo 6795198, Japan. [van der Laan, G.] Diamond Light Source, Didcot OX11 0DE, Oxon, England. RP Fujii, J (reprint author), CNR, IOM, Lab TASC, Area Sci Pk,SS 14,Km 163-5, I-34149 Trieste, Italy. EM panaccioneg@elettra.trieste.it RI YAMASHITA, Yoshiyuki/H-2704-2011; Rache Salles, Benjamin/I-4803-2012; Eriksson, Olle/E-3265-2014; Fecher, Gerhard/H-2470-2011; Back, Christian/A-8969-2012; Di Marco, Igor/O-5190-2014; UEDA, Shigenori/H-2991-2011; Minar, Jan/O-3186-2013; van der Laan, Gerrit/Q-1662-2015 OI TORELLI, PIERO/0000-0001-9300-9685; Jun, Fujii/0000-0003-3208-802X; Eriksson, Olle/0000-0001-5111-1374; Back, Christian/0000-0003-3840-0993; Di Marco, Igor/0000-0003-1714-0942; Minar, Jan/0000-0001-9735-8479; van der Laan, Gerrit/0000-0001-6852-2495 FU U.S. Department of Energy [DE-AC02-05CH11231]; DFG [FOR 1346, SFB 689, EB 154/23, 18]; German ministry BMBF [05K10WMA]; Austrian Science Fund (FWF) [I597-N16] FX Two of us (A. X. G. and C. S. F.) gratefully acknowledge the support of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Financial support from the German funding agencies DFG (FOR 1346, SFB 689, EB 154/23 and 18), the German ministry BMBF (05K10WMA), and the Austrian Science Fund (FWF project ID I597-N16) is also gratefully acknowledged (J. M., J. B., H. E., and P. T.). I. D. M. and O. E. are grateful to the Swedish Research Council (VR), Energimyndigheten (STEM), the KAW Foundation, and ERC (247062-ASD). We like to thank M. I. Katsnelson for useful discussions. NR 31 TC 17 Z9 17 U1 2 U2 53 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 27 PY 2013 VL 111 IS 9 AR 097201 DI 10.1103/PhysRevLett.111.097201 PG 5 WC Physics, Multidisciplinary SC Physics GA 207OJ UT WOS:000323610800027 PM 24033065 ER PT J AU Gilbert, MR Schuck, P Sadigh, B Marian, J AF Gilbert, M. R. Schuck, P. Sadigh, B. Marian, J. TI Free Energy Generalization of the Peierls Potential in Iron SO PHYSICAL REVIEW LETTERS LA English DT Article ID SCREW DISLOCATIONS; SINGLE-CRYSTALS; FLOW-STRESS; STRAIN-RATE; ALPHA-IRON; BCC FE; TEMPERATURE; 1ST-PRINCIPLES; SIMULATIONS; DYNAMICS AB In body-centered-cubic (bcc) crystals, 1/2 < 111 > screw dislocations exhibit high intrinsic lattice friction as a consequence of their nonplanar core structure, which results in a periodic energy landscape known as the Peierls potential U-P. The main features determining plastic flow, including its stress and temperature dependences, can be derived directly from this potential, hence its importance. In this Letter, we use thermodynamic integration to provide a full thermodynamic extension of U-P for bcc Fe. We compute the Peierls free energy path as a function of stress and temperature and show that the critical stress vanishes at 700 K, supplying the qualitative elements that explain plastic behavior in the athermal limit. C1 [Gilbert, M. R.] EURATOM CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Schuck, P.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Sadigh, B.; Marian, J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Marian, J (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM marian1@llnl.gov OI Gilbert, Mark/0000-0001-8935-1744 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; RCUK Energy Programme [EP/I501045]; European Community FX The authors gratefully acknowledge helpful discussions with D. Rodney, S. Dudarev, and P. Derlet. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. This work was partially funded by the RCUK Energy Programme under Grant No. EP/I501045 and the European Communities under the contract of association between EURATOM and CCFE. The views and opinions expressed herein do not necessarily reflect those of the European Commission. NR 24 TC 9 Z9 9 U1 2 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 27 PY 2013 VL 111 IS 9 AR 095502 DI 10.1103/PhysRevLett.111.095502 PG 5 WC Physics, Multidisciplinary SC Physics GA 207OJ UT WOS:000323610800019 PM 24033045 ER PT J AU Lovato, A Gandolfi, S Butler, R Carlson, J Lusk, E Pieper, SC Schiavilla, R AF Lovato, A. Gandolfi, S. Butler, Ralph Carlson, J. Lusk, Ewing Pieper, Steven C. Schiavilla, R. TI Charge Form Factor and Sum Rules of Electromagnetic Response Functions in C-12 SO PHYSICAL REVIEW LETTERS LA English DT Article ID MONTE-CARLO CALCULATIONS; COULOMB SUM; ELECTRON-SCATTERING; NUCLEI AB An ab initio calculation of the C-12 elastic form factor and sum rules of longitudinal and transverse response functions measured in inclusive (e, e') scattering are reported, based on realistic nuclear potentials and electromagnetic currents. The longitudinal elastic form factor and sum rule are found to be in satisfactory agreement with available experimental data. A direct comparison between theory and experiment is difficult for the transverse sum rule. However, it is shown that the calculated transverse sum rule has large contributions from two-body currents, indicating that these mechanisms lead to a significant enhancement of the quasielastic transverse response. This fact may have implications for the anomaly observed in recent neutrino quasielastic charge-changing scattering experiments on C-12. C1 [Lovato, A.] Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA. [Lovato, A.; Pieper, Steven C.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Gandolfi, S.; Carlson, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Butler, Ralph] Middle Tennessee State Univ, Dept Comp Sci, Murfreesboro, TN 37132 USA. [Lusk, Ewing] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Schiavilla, R.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Schiavilla, R.] Jefferson Lab, Newport News, VA 23606 USA. RP Lovato, A (reprint author), Argonne Natl Lab, Argonne Leadership Comp Facil, 9700 S Cass Ave, Argonne, IL 60439 USA. OI Lovato, Alessandro/0000-0002-2194-4954 FU U.S. Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357, DE-AC02-05CH11231, DE-AC05-06OR23177]; NUCLEI SciDAC Program; LANL LDRD Program; Early-Science time on Mira, Argonne's IBM Blue Gene/Q FX We thank D. Day, J. Jourdan, and, particularly, I. Sick for providing us with the data on the elastic form factor and inclusive response functions of 12C, and for correspondence in reference to various aspects of the analysis of these data. We also thank S. Pastore and R. B. Wiringa for advice in the early phases of this work. The calculations were performed with a grant of Early-Science time on Mira, Argonne's IBM Blue Gene/Q, and also used resources provided by Los Alamos Open Supercomputing and by the National Energy Research Scientific Computing Center (NERSC). This research is supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contracts No. DE-AC02-06CH11357 (A. L. and S. C. P.), No. DE-AC02-05CH11231 (S. G. and J. C.), and No. DE-AC05-06OR23177 (R. S.), by the NUCLEI SciDAC Program, and by the LANL LDRD Program. NR 36 TC 33 Z9 33 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 27 PY 2013 VL 111 IS 9 AR 092501 DI 10.1103/PhysRevLett.111.092501 PG 5 WC Physics, Multidisciplinary SC Physics GA 207OJ UT WOS:000323610800011 PM 24033027 ER PT J AU Park, JK Jeon, YM Menard, JE Ko, WH Lee, SG Bae, YS Joung, M You, KI Lee, KD Logan, N Kim, K Ko, JS Yoon, SW Hahn, SH Kim, JH Kim, WC Oh, YK Kwak, JG AF Park, J. -K. Jeon, Y. M. Menard, J. E. Ko, W. H. Lee, S. G. Bae, Y. S. Joung, M. You, K. -I. Lee, K. -D. Logan, N. Kim, K. Ko, J. S. Yoon, S. W. Hahn, S. H. Kim, J. H. Kim, W. C. Oh, Y. -K. Kwak, J. -G. TI Rotational Resonance of Nonaxisymmetric Magnetic Braking in the KSTAR Tokamak SO PHYSICAL REVIEW LETTERS LA English DT Article ID TOROIDAL-MOMENTUM DISSIPATION; TRANSPORT AB One of the important rotational resonances in nonaxisymmetric neoclassical transport has been experimentally validated in the KSTAR tokamak by applying highly nonresonant n = 1 magnetic perturbations to rapidly rotating plasmas. These so-called bounce-harmonic resonances are expected to occur in the presence of magnetic braking perturbations when the toroidal rotation is fast enough to resonate with periodic parallel motions of trapped particles. The predicted and observed resonant peak along with the toroidal rotation implies that the toroidal rotation in tokamaks can be controlled naturally in favorable conditions to stability, using nonaxisymmetric magnetic perturbations. C1 [Park, J. -K.; Menard, J. E.; Logan, N.; Kim, K.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Jeon, Y. M.; Ko, W. H.; Lee, S. G.; Bae, Y. S.; Joung, M.; You, K. -I.; Lee, K. -D.; Ko, J. S.; Yoon, S. W.; Hahn, S. H.; Kim, J. H.; Kim, W. C.; Oh, Y. -K.; Kwak, J. -G.] Natl Fus Res Inst, Taejon 305333, South Korea. RP Park, JK (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. OI Menard, Jonathan/0000-0003-1292-3286 FU Korean Ministry of Education, Science and Technology; DOE (PPPL) [DE-AC02-09CH11466] FX The authors would like to thank to S. P. Gerhardt in PPPL for reading the Letter. This work was supported by the Korean Ministry of Education, Science and Technology, and by DOE Contract No. DE-AC02-09CH11466 (PPPL). NR 29 TC 11 Z9 11 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 27 PY 2013 VL 111 IS 9 AR 095002 DI 10.1103/PhysRevLett.111.095002 PG 4 WC Physics, Multidisciplinary SC Physics GA 207OJ UT WOS:000323610800017 PM 24033042 ER PT J AU Samal, D Tan, HY Molegraaf, H Kuiper, B Siemons, W Bals, S Verbeeck, J Van Tendeloo, G Takamura, Y Arenholz, E Jenkins, CA Rijnders, G Koster, G AF Samal, D. Tan, Haiyan Molegraaf, H. Kuiper, B. Siemons, W. Bals, Sara Verbeeck, Jo Van Tendeloo, Gustaaf Takamura, Y. Arenholz, Elke Jenkins, Catherine A. Rijnders, G. Koster, Gertjan TI Experimental Evidence for Oxygen Sublattice Control in Polar Infinite Layer SrCuO2 SO PHYSICAL REVIEW LETTERS LA English DT Article ID X-RAY-ABSORPTION; ELECTRONIC-STRUCTURE; SUPERCONDUCTIVITY; OXIDES; INTERFACES; STEM AB A recent theoretical study [Phys. Rev. B 85, 121411(R) (2012)] predicted a thickness limit below which ideal polar cuprates turn nonpolar driven by the associated electrostatic instability. Here we demonstrate this possibility by inducing a structural transformation from the bulk planar to chainlike structure upon reducing the SrCuO2 repeat thickness in SrCuO2/SrTiO3 superlattices with unit-cell precision. Our results, based on structural investigation by x-ray diffraction and high resolution scanning transmission electron microscopy, demonstrate that the oxygen sublattice can essentially be built by design. In addition, the electronic structure of the chainlike structure, as studied by x-ray absorption spectroscopy, shows the signature for preferential hole occupation in the Cu 3d(3z2-r2) orbital, which is different from the planar case. C1 [Samal, D.; Molegraaf, H.; Kuiper, B.; Rijnders, G.; Koster, Gertjan] Univ Twente, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands. [Tan, Haiyan; Bals, Sara; Verbeeck, Jo; Van Tendeloo, Gustaaf] Univ Antwerp, EMAT, B-2020 Antwerp, Belgium. [Takamura, Y.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Siemons, W.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Arenholz, Elke; Jenkins, Catherine A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Samal, D (reprint author), Univ Twente, MESA Inst Nanotechnol, POB 217, NL-7500 AE Enschede, Netherlands. EM g.koster@utwente.nl RI Koster, Gertjan/H-3800-2011; Tan, Haiyan/G-4426-2015; Bals, Sara/F-6963-2016 OI Koster, Gertjan/0000-0001-5478-7329; Tan, Haiyan/0000-0002-1407-9587; FU AFOSR; EOARD [FA8655-10-1-3077]; European Research Council [246791-COUNTATOMS, 278510 VORTEX]; Flemish Government; European Union Council [NMP3-LA-2010-246102 IFOX]; European Union [312483-ESTEEM2]; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; National Science Foundation [DMR-0747896]; US DOE, Basic Energy Sciences, Materials Sciences and Engineering Division FX This work was carried out with financial support from AFOSR and EOARD project (Project No. FA8655-10-1-3077) and also supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC Grant No. 246791-COUNTATOMS and ERC Starting Grant No. 278510 VORTEX. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. This work was partially funded by the European Union Council under the 7th Framework Program (FP7) Grant No. NMP3-LA-2010-246102 IFOX. The authors acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure No. 312483-ESTEEM2. Advanced Light Source is supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. Y. T. acknowledges support from the National Science Foundation (DMR-0747896). W. S. was supported by the US DOE, Basic Energy Sciences, Materials Sciences and Engineering Division. D. S. thanks Z. Zhong from Vienna University of Technology, Austria for scientific discussion. NR 27 TC 10 Z9 10 U1 3 U2 51 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 27 PY 2013 VL 111 IS 9 AR 096102 DI 10.1103/PhysRevLett.111.096102 PG 5 WC Physics, Multidisciplinary SC Physics GA 207OJ UT WOS:000323610800023 PM 24033050 ER PT J AU Shannon, SR Payne, AJ Bartholomew, ID van den Broeke, MR Edwards, TL Fettweis, X Gagliardini, O Gillet-Chaulet, F Goelzer, H Hoffman, MJ Huybrechts, P Mair, DWF Nienow, PW Perego, M Price, SF Smeets, CJPP Sole, AJ van de Wal, RSW Zwinger, T AF Shannon, Sarah R. Payne, Antony J. Bartholomew, Ian D. van den Broeke, Michiel R. Edwards, Tamsin L. Fettweis, Xavier Gagliardini, Olivier Gillet-Chaulet, Fabien Goelzer, Heiko Hoffman, Matthew J. Huybrechts, Philippe Mair, Douglas W. F. Nienow, Peter W. Perego, Mauro Price, Stephen F. Smeets, C. J. P. Paul Sole, Andrew J. van de Wal, Roderik S. W. Zwinger, Thomas TI Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article ID CLIMATE MODEL MAR; SUBGLACIAL DRAINAGE; SURFACE MELT; ACCELERATION; SIMULATIONS; GLACIER; SYSTEM; FLOW AB We assess the effect of enhanced basal sliding on the flow and mass budget of the Greenland ice sheet, using a newly developed parameterization of the relation between meltwater runoff and ice flow. A wide range of observations suggest that water generated by melt at the surface of the ice sheet reaches its bed by both fracture and drainage through moulins. Once at the bed, this water is likely to affect lubrication, although current observations are insufficient to determine whether changes in subglacial hydraulics will limit the potential for the speedup of flow. An uncertainty analysis based on our best-fit parameterization admits both possibilities: continuously increasing or bounded lubrication. We apply the parameterization to four higher-order ice-sheet models in a series of experiments forced by changes in both lubrication and surface mass budget and determine the additional mass loss brought about by lubrication in comparison with experiments forced only by changes in surface mass balance. We use forcing from a regional climate model, itself forced by output from the European Centre Hamburg Model (ECHAM5) global climate model run under scenario A1B. Although changes in lubrication generate widespread effects on the flow and form of the ice sheet, they do not affect substantial net mass loss; increase in the ice sheet's contribution to sea-level rise from basal lubrication is projected by all models to be no more than 5% of the contribution from surface mass budget forcing alone. C1 [Shannon, Sarah R.; Payne, Antony J.; Edwards, Tamsin L.] Univ Bristol, Dept Geog Sci, Bristol BS8 1SS, Avon, England. [Bartholomew, Ian D.; Nienow, Peter W.] Univ Edinburgh, Sch Geosci, Edinburgh EH8 9XP, Midlothian, Scotland. [van den Broeke, Michiel R.; Smeets, C. J. P. Paul; van de Wal, Roderik S. W.] Univ Utrecht, Inst Marine & Atmospher Res Utrecht, NL-3508 TA Utrecht, Netherlands. [Fettweis, Xavier] Univ Liege, Dept Geog 2, B-4000 Liege, Belgium. [Gagliardini, Olivier; Gillet-Chaulet, Fabien] Univ Grenoble 1, Lab Glaciol & Geophys Environm, CNRS, UMR5183, F-38402 St Martin Dheres, France. [Gagliardini, Olivier] Inst Univ France, F-75005 Paris, France. [Goelzer, Heiko; Huybrechts, Philippe] Vrije Univ Brussel, B-1050 Brussels, Belgium. [Goelzer, Heiko; Huybrechts, Philippe] Vrije Univ Brussel, Dept Geog, B-1050 Brussels, Belgium. [Hoffman, Matthew J.; Price, Stephen F.] Los Alamos Natl Lab, Fluid Dynam & Solid Mech Grp, Div Theoret, Los Alamos, NM 87545 USA. [Mair, Douglas W. F.] Univ Aberdeen, Sch Geosci, Dept Geog & Environm, Aberdeen AB24 3UF, Scotland. [Perego, Mauro] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA. [Sole, Andrew J.] Univ Sheffield, Dept Geog, Sheffield S10 2TN, S Yorkshire, England. [Zwinger, Thomas] Informat Technol Ctr Sci Ltd, Ctr Comp Sci, FI-02101 Espoo, Finland. RP Shannon, SR (reprint author), Univ Bristol, Dept Geog Sci, Bristol BS8 1SS, Avon, England. EM sarah.shannon@bristol.ac.uk RI van de wal, roderik/D-1705-2011; payne, antony/A-8916-2008; Price, Stephen /E-1568-2013; Van den Broeke, Michiel/F-7867-2011; Geophysical Equipment Facility, NERC/G-5260-2010; Goelzer, Heiko/M-2367-2016; OI payne, antony/0000-0001-8825-8425; Price, Stephen /0000-0001-6878-2553; Van den Broeke, Michiel/0000-0003-4662-7565; Goelzer, Heiko/0000-0002-5878-9599; Fettweis, Xavier/0000-0002-4140-3813; Edwards, Tamsin/0000-0002-4760-4704; Sole, Andrew/0000-0001-5290-8967; Zwinger, Thomas/0000-0003-3360-4401 FU European Commission [226375]; Grand Equipement National de Calcul Intensif - Centre Informatique National de l'Enseignement Superieur [2011016066]; US Department of Energy (DOE) Office of Science, Advanced Scientific Computing Research and Biological and Environmental Research programs; Center for Remote Sensing of Ice Sheets at the University of Kansas through US National Science Foundation [ANT-0424589]; DOE's Office of Science [DE-AC02-05CH11231, DE-AC05-00OR22725]; UK National Centre for Earth Observation; Netherlands Polar Program of the Netherlands Organization for Scientific Research; Natural Environment Research Council FX This research was funded by the European Commission's Seventh Framework Programme through Grant 226375 (ice2sea manuscript no. 121). Elmer/Ice simulations were performed using high performance computing resources from Grand Equipement National de Calcul Intensif - Centre Informatique National de l'Enseignement Superieur (Grant/2011016066/) and from the Service Commun de Calcul Intensif de l'Observatoire de Grenoble. S.F.P., M.J.H., and M.P. were supported by the US Department of Energy (DOE) Office of Science, Advanced Scientific Computing Research and Biological and Environmental Research programs. M.J.H. was partially supported by the Center for Remote Sensing of Ice Sheets at the University of Kansas through US National Science Foundation Grant ANT-0424589. Simulations were conducted at the National Energy Research Scientific Computing Center (supported by DOE's Office of Science under Contract DE-AC02-05CH11231) and at the Oak Ridge National Laboratory (supported by DOE's Office of Science under Contract DE-AC05-00OR22725). The Community Ice Sheet Model (CISM) version 2.0 development and simulations relied on additional support by K. J. Evans, P. H. Worley, and J. A. Nichols (all of Oak Ridge National Laboratory) and by A. G. Salinger (Sandia National Laboratories). We acknowledge the substantial work by teams from the Universities of Edinburgh and Aberdeen (supported by the Natural Environment Research Council) and Utrecht University in gathering the field data used in this study. Work at the University of Bristol was partly supported by the UK National Centre for Earth Observation. Work at Utrecht University was supported by The Netherlands Polar Program of the Netherlands Organization for Scientific Research. NR 31 TC 37 Z9 38 U1 4 U2 68 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD AUG 27 PY 2013 VL 110 IS 35 BP 14156 EP 14161 DI 10.1073/pnas.1212647110 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 206ZC UT WOS:000323564600025 PM 23940337 ER PT J AU Smith, SJ Mizrahi, A AF Smith, Steven J. Mizrahi, Andrew TI Near-term climate mitigation by short-lived forcers SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article ID EMISSIONS; METHANE; CONSTRAINTS; SCENARIOS; HEALTH AB Emissions reductions focused on anthropogenic climate-forcing agents with relatively short atmospheric lifetimes, such as methane (CH4) and black carbon, have been suggested as a strategy to reduce the rate of climate change over the next several decades. We find that reductions of methane and black carbon would likely have only a modest impact on near-term global climate warming. Even with maximally feasible reductions phased in from 2015 to 2035, global mean temperatures in 2050 would be reduced by 0.16 degrees C, with a range of 0.04-0.35 degrees C because of uncertainties in carbonaceous aerosol emissions and aerosol forcing per unit of emissions. The high end of this range is only possible if total historical aerosol forcing is relatively small. More realistic emission reductions would likely provide an even smaller climate benefit. We find that the climate benefit from reductions in short-lived forcing agents are smaller than previously estimated. These near-term climate benefits of targeted reductions in short-lived forcers are not substantially different in magnitude from the benefits from a comprehensive climate policy. C1 [Smith, Steven J.; Mizrahi, Andrew] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. RP Smith, SJ (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. EM ssmith@pnnl.gov FU US DOE [DE-AC05-76RL01830]; Climate Change Division, US Environmental Protection Agency FX We thank Stephanie Waldhoff for helpful comments. Research support was provided by the Climate Change Division, US Environmental Protection Agency. Long-term support for Global Change Assessment Model (GCAM) development was provided by the Integrated Assessment Research Program in the Office of Science of the US Department of Energy (DOE). The Pacific Northwest National Laboratory is operated by Battelle for the US DOE under Contract DE-AC05-76RL01830. NR 27 TC 31 Z9 31 U1 3 U2 50 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD AUG 27 PY 2013 VL 110 IS 35 BP 14202 EP 14206 DI 10.1073/pnas.1308470110 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 206ZC UT WOS:000323564600033 PM 23940357 ER PT J AU Roslyak, O Fingerhut, BP Bennett, K Mukamel, S AF Roslyak, Oleksiy Fingerhut, Benjamin P. Bennett, Kochise Mukamel, Shaul TI Quasiparticle representation of coherent nonlinear optical signals of multi-excitons SO NEW JOURNAL OF PHYSICS LA English DT Article ID COMPOSITE BOSONS; ELECTRONIC EXCITATIONS; QUANTUM-WELLS; SEMICONDUCTOR; SPECTROSCOPY; NANOSTRUCTURES; MOLECULES AB Multi-exciton Green's functions and scattering matrices in many-fermion systems are calculated using a quasiparticle approach based on a generalized Bethe-Salpeter equation. The simulation protocol only requires numerical diagonalization of the single-exciton manifold. Using coboson algebra all many-body effects are recast in terms of two tetradic exciton-exciton interactions: direct Coulomb scattering and Pauli exchange. The tedious equations-of-motion derivations and calculations of multi-exciton manifolds are avoided. The approach is applied to calculate the third-and fifth-order signals generated by sequences of femtosecond optical pulses. Several coherent fifth order optical signals that directly probe three-exciton states and their projections on double and single-exciton states are predicted. C1 [Roslyak, Oleksiy] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Roslyak, Oleksiy; Fingerhut, Benjamin P.; Bennett, Kochise; Mukamel, Shaul] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. RP Roslyak, O (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM avroslyak@lanl.gov; bfingerh@uci.edu; kcbennet@uci.edu; smukamel@uci.edu OI Fingerhut, Benjamin/0000-0002-8532-6899 FU National Science Foundation (NSF) [CHE-1058791]; Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, (US) Department of Energy (DOE); Alexander-von-Humboldt Foundation FX We gratefully acknowledge the support of the National Science Foundation (NSF) through grant no. CHE-1058791 and from Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, (US) Department of Energy (DOE). BPF gratefully acknowledges support from the Alexander-von-Humboldt Foundation through the Feodor-Lynen program. NR 37 TC 0 Z9 0 U1 1 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD AUG 27 PY 2013 VL 15 AR 083049 DI 10.1088/1367-2630/15/8/083049 PG 43 WC Physics, Multidisciplinary SC Physics GA 206QI UT WOS:000323536800001 ER PT J AU Sharma, R Cao, PJ Jung, KH Sharma, MK Ronald, PC AF Sharma, Rita Cao, Peijian Jung, Ki-Hong Sharma, Manoj K. Ronald, Pamela C. TI Construction of a rice glycoside hydrolase phylogenomic database and identification of targets for biofuel research SO FRONTIERS IN PLANT SCIENCE LA English DT Article DE biofuel; cell wall; database; duplication; glycoside hydrolase; Rice Net; stress ID SEQUENCE-BASED CLASSIFICATION; SECONDARY CELL-WALL; MICROARRAY EXPERIMENTS; ARABIDOPSIS-THALIANA; EXPRESSION ANALYSIS; TAGGING LINES; GENE; GENOME; PLANTS; ACID AB Glycoside hydrolases (GH) catalyze the hydrolysis of glycosidic bonds in cell wall polymers and can have major effects on cell wall architecture. Taking advantage of the massive datasets available in public databases, we have constructed a rice phylogenomic database of GHs (http://ricephylogenomics.ucdavis.edu/cellwalls/gh/). This database integrates multiple data types including the structural features, orthologous relationships, mutant availability, and gene expression patterns for each GH family in a phylogenomic context. The rice genome encodes 437 GH genes classified into 34 families. Based on pairwise comparison with eight dicot and four monocot genomes, we identified 138 GH genes that are highly diverged between monocots and dicots, 57 of which have diverged further in rice as compared with four monocot genomes scanned in this study. Chromosomal localization and expression analysis suggest a role for both whole-genome and localized gene duplications in expansion and diversification of GH families in rice. We examined the meta-profiles of expression patterns of GH genes in twenty different anatomical tissues of rice. Transcripts of 51 genes exhibit tissue or developmental stage-preferential expression, whereas, seventeen other genes preferentially accumulate in actively growing tissues. When queried in Rice Net, a probabilistic functional gene network that facilitates functional gene predictions, nine out of seventeen genes form a regulatory network with the well-characterized genes involved in biosynthesis of cell wall polymers including cellulose synthase and cellulose synthase-like genes of rice. Two-thirds of the GH genes in rice are up regulated in response to biotic and abiotic stress treatments indicating a role in stress adaptation. Our analyses identify potential GH targets for cell wall modification. C1 [Sharma, Rita; Cao, Peijian; Jung, Ki-Hong; Sharma, Manoj K.; Ronald, Pamela C.] Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA. [Sharma, Rita; Cao, Peijian; Jung, Ki-Hong; Sharma, Manoj K.; Ronald, Pamela C.] Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA. [Sharma, Rita; Sharma, Manoj K.; Ronald, Pamela C.] Joint BioEnergy Inst, Feedstocks Div, Emeryville, CA USA. [Cao, Peijian] Zhengzhou Tobacco Res Inst, China Tobacco Gene Res Ctr, Zhengzhou, Peoples R China. [Jung, Ki-Hong; Ronald, Pamela C.] Kyung Hee Univ, Dept Plant Mol Syst Biotechnol, Yongin, South Korea. [Jung, Ki-Hong; Ronald, Pamela C.] Kyung Hee Univ, Crop Biotech Inst, Yongin, South Korea. RP Ronald, PC (reprint author), Univ Calif Davis, Dept Plant Pathol, 1 Shields Ave, Davis, CA 95616 USA. EM pcronald@ucdavis.edu FU Office of Biological and Environmental Research of the United States DOE [DE-AC0205CH11231]; United States Department of Agriculture National Institute of Food and Agriculture [2011-67009-30153]; Next-Generation BioGreen 21 Program of South Korea [PJ008079] FX Financial support was provided by the Office of Biological and Environmental Research of the United States DOE contract no. DE-AC0205CH11231 to the Joint BioEnergy Institute, the United States Department of Agriculture National Institute of Food and Agriculture agreement No. 2011-67009-30153 to Pamela C. Ronald and the Next-Generation BioGreen 21 Program of South Korea No. PJ008079 to Ki-Hong Jung. We thank Dr. Belinda Martineau for editorial assistance. NR 78 TC 8 Z9 8 U1 0 U2 12 PU FRONTIERS RESEARCH FOUNDATION PI LAUSANNE PA PO BOX 110, LAUSANNE, 1015, SWITZERLAND SN 1664-462X J9 FRONT PLANT SCI JI Front. Plant Sci. PD AUG 26 PY 2013 VL 4 AR 330 DI 10.3389/fpls.2013.00330 PG 15 WC Plant Sciences SC Plant Sciences GA AA4HV UT WOS:000331057600001 PM 23986771 ER PT J AU Wen, Y Zhu, YJ Langrock, A Manivannan, A Ehrman, SH Wang, CS AF Wen, Yang Zhu, Yujie Langrock, Alex Manivannan, Ayyakkannu Ehrman, Sheryl H. Wang, Chunsheng TI Graphene-Bonded and -Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes SO SMALL LA English DT Article DE silicon; graphene; lithium-ion batteries; aerosols; nanocomposites ID HIGH-CAPACITY; COMPOSITE ELECTRODE; OXIDE AB Silicon (Si) has been considered a very promising anode material for lithium ion batteries due to its high theoretical capacity. However, high-capacity Si nanoparticles usually suffer from low electronic conductivity, large volume change, and severe aggregation problems during lithiation and delithiation. In this paper, a unique nanostructured anode with Si nanoparticles bonded and wrapped by graphene is synthesized by a one-step aerosol spraying of surface-modified Si nanoparticles and graphene oxide suspension. The functional groups on the surface of Si nanoparticles (50-100 nm) not only react with graphene oxide and bind Si nanoparticles to the graphene oxide shell, but also prevent Si nanoparticles from aggregation, thus contributing to a uniform Si suspension. A homogeneous graphene-encapsulated Si nanoparticle morphology forms during the aerosol spraying process. The open-ended graphene shell with defects allows fast electrochemical lithiation/delithiation, and the void space inside the graphene shell accompanied by its strong mechanical strength can effectively accommodate the volume expansion of Si upon lithiation. The graphene shell provides good electronic conductivity for Si nanoparticles and prevents them from aggregating during charge/discharge cycles. The functionalized Si encapsulated by graphene sample exhibits a capacity of 2250 mAh g(-1) (based on the total mass of graphene and Si) at 0.1C and 1000 mAh g(-1) at 10C, and retains 85% of its initial capacity even after 120 charge/discharge cycles. The exceptional performance of graphene-encapsulated Si anodes combined with the scalable and one-step aerosol synthesis technique makes this material very promising for lithium ion batteries. C1 [Wen, Yang; Zhu, Yujie; Langrock, Alex; Ehrman, Sheryl H.; Wang, Chunsheng] Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA. [Manivannan, Ayyakkannu] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Wang, CS (reprint author), Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA. EM cswang@umd.edu RI Wang, Chunsheng/H-5767-2011; Langrock, Alex/E-8567-2015 OI Wang, Chunsheng/0000-0002-8626-6381; FU Department of Energy [DESC0001160]; Maryland NanoCenter and its NispLab; Exploratory Technology Research FX The authors acknowledge financial support from the Department of Energy (DESC0001160) under the project science of precision multifunctional nanostructures for electrical energy storage, the Exploratory Technology Research. We also acknowledge the support of the Maryland NanoCenter and its NispLab. NR 26 TC 69 Z9 69 U1 18 U2 256 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1613-6810 EI 1613-6829 J9 SMALL JI Small PD AUG 26 PY 2013 VL 9 IS 16 BP 2810 EP 2816 DI 10.1002/smll.201202512 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 262MD UT WOS:000327738600021 PM 23440956 ER PT J AU Kim, Y Lu, XL Jesse, S Hesse, D Alexe, M Kalinin, SV AF Kim, Yunseok Lu, Xiaoli Jesse, Stephen Hesse, Dietrich Alexe, Marin Kalinin, Sergei V. TI Universality of Polarization Switching Dynamics in Ferroelectric Capacitors Revealed by 5D Piezoresponse Force Microscopy SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article DE ferroelectrics; polarization switching dynamics; ferroelectric nanocapacitors; piezoresponse force microscopy ID DIELECTRIC-RELAXATION; SPIN POLARIZATION; REVERSAL; DEPENDENCE; BEHAVIOR; SOLIDS; ARRAYS; FILMS AB Ferroelectric polarization switching is sensitively affected by phenomena on multiple length scales, giving rise to complex voltage- and time-controlled behaviors. Here, spatially resolved switching dynamics in ferroelectric nanocapacitors are explored as a function of voltage pulse time and magnitude. A remarkable persistence of formal macroscopic scaling laws for polarization switching based on classical models down to nanoscale volumes is observed. These observations illustrate the persistence of the return point memory in the material and allow the thermodynamic parameters of defects controlling switching to be estimated. C1 [Kim, Yunseok; Jesse, Stephen; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Kim, Yunseok] Sungkyunkwan Univ, Sch Adv Mat Sci & Engn, Suwon 440746, South Korea. [Lu, Xiaoli; Hesse, Dietrich; Alexe, Marin] Max Planck Inst Microstruct Phys, D-06120 Halle, Salle, Germany. [Lu, Xiaoli] Xidian Univ, Sch Microelect, State Key Discipline Lab Wide Band Gap Semicond T, Xian 710071, Peoples R China. RP Kim, Y (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM yunseokkim@skku.edu; sergei2@ornl.gov RI Lu, Xiaoli/C-1297-2011; Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016; Alexe, Marin/K-3882-2016 OI Lu, Xiaoli/0000-0003-3689-5996; Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483; Alexe, Marin/0000-0002-0386-3026 FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; Center for Nanophase Materials Sciences; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; German Science Foundation (DFG) [SFB762]; Alexander von Humboldt Foundation; National Natural Science Foundation of China [51202176] FX Research was supported (S.V.K., Y.K.) by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. The development of SDS-PFM was supported by the Center for Nanophase Materials Sciences (S.J.), which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. This work was partly supported by the German Science Foundation (DFG) through SFB762. X.L. acknowledges the financial support of the Alexander von Humboldt Foundation and the National Natural Science Foundation of China (Contract No. 51202176). The authors gratefully acknowledge multiple discussions with Y. Genenko (University of Tehcnology Darmstadt) and S. Trolier-McKinstry (Pennsylvania State University) that have considerably contributed to this manuscript. NR 60 TC 12 Z9 12 U1 5 U2 77 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD AUG 26 PY 2013 VL 23 IS 32 BP 3971 EP 3979 DI 10.1002/adfm.201300079 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 258XI UT WOS:000327491600004 ER PT J AU Wang, H Sun, K Tao, F Stacchiola, DJ Hu, YH AF Wang, Hui Sun, Kai Tao, Franklin Stacchiola, Dario J. Hu, Yun Hang TI 3D Honeycomb-Like Structured Graphene and Its High Efficiency as a Counter-Electrode Catalyst for Dye-Sensitized Solar Cells SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE counter electrodes; dye-sensitized solar cells; graphene; honeycomb structure; lithium oxide ID GRAPHITE OXIDE; FUNCTIONALIZED GRAPHENE; DOPED GRAPHENE; CARBON-FILMS; PERFORMANCE; SUPERCAPACITORS; SHEETS; ENERGY; FRAMEWORKS; REDUCTION C1 [Wang, Hui; Hu, Yun Hang] Michigan Technol Univ, Dept Mat Sci & Engn, Houghton, MI 49931 USA. [Sun, Kai] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Tao, Franklin] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. [Stacchiola, Dario J.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Hu, YH (reprint author), Michigan Technol Univ, Dept Mat Sci & Engn, 1400 Townsend Dr, Houghton, MI 49931 USA. EM yunhangh@mtu.edu RI Stacchiola, Dario/B-1918-2009; Wang, Hui/O-6288-2014; Wang, Hui/N-7246-2015 OI Stacchiola, Dario/0000-0001-5494-3205; FU U.S. National Science Foundation [NSF-CBET-0931587]; ACS Petroleum Research Fund [PRF-51799-ND10] FX This work was partially supported by the U.S. National Science Foundation (NSF-CBET-0931587) and the ACS Petroleum Research Fund (PRF-51799-ND10). NR 35 TC 120 Z9 121 U1 23 U2 313 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1433-7851 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD AUG 26 PY 2013 VL 52 IS 35 BP 9210 EP 9214 DI 10.1002/anie.201303497 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 204TS UT WOS:000323393100032 PM 23897636 ER PT J AU Grover, S Li, JV Young, DL Stradins, P Branz, HM AF Grover, Sachit Li, Jian V. Young, David L. Stradins, Paul Branz, Howard M. TI Reformulation of solar cell physics to facilitate experimental separation of recombination pathways SO APPLIED PHYSICS LETTERS LA English DT Article ID EFFICIENCY AB Experimentally identifying the spatial distribution of recombination in a solar cell is challenging, with only semi-quantitative information available from conventional characterization techniques. We develop a formulation of solar cell physics, based upon well-justified analytic approximations, to quantitatively extract information about recombination in different cell regions. We derive the dependence of V-OC on light-intensity, temperature, and strength of recombination in the space-charge, quasi-neutral, and interface regions. Expanding the scope and utility of commonly used characterization techniques, we apply this formulation to evaluate the spatial distribution of recombination in exemplary crystalline silicon heterojunction and polycrystalline Cu(In,Ga)Se-2 solar cells. (C) 2013 AIP Publishing LLC. C1 [Grover, Sachit; Li, Jian V.; Young, David L.; Stradins, Paul; Branz, Howard M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Grover, S (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Li, Jian/B-1627-2016 FU US DOE SETP program [DE-AC36-08GO28308] FX This work is done under the US DOE SETP program (#DE-AC36-08GO28308). We thank Miguel Contreras and Kannan Ramanathan for providing CIGS devices and Charles Teplin for helpful comments on the manuscript. NR 15 TC 6 Z9 6 U1 0 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 26 PY 2013 VL 103 IS 9 AR 093502 DI 10.1063/1.4819728 PG 5 WC Physics, Applied SC Physics GA 210PQ UT WOS:000323846900062 ER PT J AU Bud'ko, SL Ran, S Canfield, PC AF Bud'ko, Sergey L. Ran, Sheng Canfield, Paul C. TI Thermal expansion of CaFe2As2: Effect of cobalt doping and postgrowth thermal treatment SO PHYSICAL REVIEW B LA English DT Article ID SUPERCONDUCTIVITY; BAFE2AS2 AB We report thermal expansion measurements on Ca(Fe1-xCox)(2)As-2 single crystals with different thermal treatment, with samples chosen to represent four different ground states observed in this family. For all samples, thermal expansion is anisotropic with different signs of the in-plane and c-axis thermal expansion coefficients in the high temperature, tetragonal phase. The features in thermal expansion associated with the phase transitions are of opposite signs as well, pointing to a different response of transition temperatures to the in-plane and the c-axis stress. These features, and consequently the inferred pressure derivatives, are very large, clearly and substantially exceeding those in the Ba(Fe1-xCox)(2)As-2 family. For all transitions the c-axis response is dominant. C1 [Bud'ko, Sergey L.] US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Bud'ko, SL (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. RI Canfield, Paul/H-2698-2014 FU US Department of Energy, Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-07CH11358]; State of Iowa through the Iowa State University FX We are indebted to George M. Schmiedeshoff as well as Wilbur and Olivia Porci for their help in establishing the dilatometry technique in the Ames Laboratory/Iowa State University Novel Materials and Ground States Group and for much propitious advice. Work at the Ames Laboratory was supported by the US Department of Energy, Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-07CH11358. S. L. B. acknowledges partial support from the State of Iowa through the Iowa State University. NR 28 TC 7 Z9 7 U1 0 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 26 PY 2013 VL 88 IS 6 AR 064513 DI 10.1103/PhysRevB.88.064513 PG 7 WC Physics, Condensed Matter SC Physics GA 207BY UT WOS:000323572900015 ER PT J AU Fabbris, G Hucker, M Gu, GD Tranquada, JM Haskel, D AF Fabbris, G. Huecker, M. Gu, G. D. Tranquada, J. M. Haskel, D. TI Local structure, stripe pinning, and superconductivity in La1.875Ba0.125CuO4 at high pressure SO PHYSICAL REVIEW B LA English DT Article ID X-RAY-ABSORPTION; OCTAHEDRAL TILTS; LA2-XBAXCUO4; IFEFFIT; PHASE; XAFS AB The interplay between stripe correlations, local structure, and superconductivity in La1.875Ba0.125CuO4 is studied with concomitant polarized x-ray absorption fine structure (XAFS) and x-ray diffraction measurements at high pressure. Long-range order of the CuO6 octahedral tilt pattern that pins charge-stripe order vanishes at a pressure-induced structural transition (P = 1.8 GPa at T = 5 K). Diffraction shows that static charge stripe and associated octahedral tilt correlations which survive in the high-pressure phase are effectively suppressed above 3.5 GPa. In contrast, XAFS analysis shows that instantaneous local correlations of the characteristic octahedral tilt pattern remain robust to at least 5 GPa. The decreasing local tilt angle is well correlated with a gradual increase in the superconducting transition temperature, suggesting that orientational pinning of charge correlations can survive the loss of static stripe order. C1 [Fabbris, G.; Haskel, D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Fabbris, G.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Huecker, M.; Gu, G. D.; Tranquada, J. M.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Fabbris, G (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM haskel@aps.anl.gov RI Tranquada, John/A-9832-2009; Fabbris, Gilberto/F-3244-2011 OI Tranquada, John/0000-0003-4984-8857; Fabbris, Gilberto/0000-0001-8278-4985 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357 (DE-AC02-98CH10886)] FX Work at Argonne National Laboratory (Brookhaven National Laboratory) is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 (DE-AC02-98CH10886). We would like to thank Yejun Feng for his valuable advice and help during the experiment. NR 30 TC 5 Z9 5 U1 2 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 26 PY 2013 VL 88 IS 6 AR 060507 DI 10.1103/PhysRevB.88.060507 PG 5 WC Physics, Condensed Matter SC Physics GA 207BY UT WOS:000323572900002 ER PT J AU Hinton, JP Koralek, JD Lu, YM Vishwanath, A Orenstein, J Bonn, DA Hardy, WN Liang, RX AF Hinton, J. P. Koralek, J. D. Lu, Y. M. Vishwanath, A. Orenstein, J. Bonn, D. A. Hardy, W. N. Liang, Ruixing TI New collective mode in YBa2Cu3O6+x observed by time-domain reflectometry SO PHYSICAL REVIEW B LA English DT Article ID CHARGE-DENSITY WAVES; CUPRATE SUPERCONDUCTOR; COHERENT PHONONS; HETERODYNE-DETECTION; RAMAN-SCATTERING; SPECTROSCOPY; EXCITATIONS; YBA2CU3O7-DELTA; FLUCTUATIONS; PARTICLES AB We report the observation of coherent oscillations associated with charge-density-wave (CDW) order in the underdoped cuprate superconductor YBa2Cu3O6+x by time-resolved optical reflectivity. Oscillations with frequency 1.87 THz onset at approximately 105 and 130 K for dopings of x = 0.67 (ortho-VIII) and x = 0.75 (ortho-III), respectively. Upon cooling below the superconducting critical temperature (T-c), the oscillation amplitude is enhanced, the phase shifts by pi, and the frequency softens by delta nu/nu approximate to 7%. A biquadratically coupled Landau-Ginzburg model qualitatively describes this behavior as arising from competition between superconducting and CDW orders. C1 [Hinton, J. P.; Koralek, J. D.; Lu, Y. M.; Vishwanath, A.; Orenstein, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Hinton, J. P.; Lu, Y. M.; Vishwanath, A.; Orenstein, J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bonn, D. A.; Hardy, W. N.; Liang, Ruixing] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V62 1Z4, Canada. [Bonn, D. A.; Hardy, W. N.; Liang, Ruixing] Canadian Inst Adv Resarch, Toronto, ON M5G 178, Canada. RP Hinton, JP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM jhinton@berkeley.edu RI Orenstein, Joseph/I-3451-2015; Lu, Yuan-Ming/D-7554-2017 OI Lu, Yuan-Ming/0000-0001-6275-739X FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, the US Department of Energy [DE-AC02-05CH11231] FX The work in Berkeley was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, the US Department of Energy, under Contract No. DE-AC02-05CH11231. NR 40 TC 35 Z9 35 U1 2 U2 40 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 26 PY 2013 VL 88 IS 6 AR 060508 DI 10.1103/PhysRevB.88.060508 PG 5 WC Physics, Condensed Matter SC Physics GA 207BY UT WOS:000323572900003 ER PT J AU Singh, DJ AF Singh, David J. TI Itinerant origin of the ferromagnetic quantum critical point in Fe(Ga,Ge)(3) SO PHYSICAL REVIEW B LA English DT Article ID INTERMETALLIC COMPOUNDS; RUTHENATE SR3RU2O7; RUGA3; FEGA3 AB The electronic structure and magnetic properties of FeGa3 and doped FeGa3 are studied using density functional calculations. An itinerant mechanism for ferromagnetism is found both for n-type doping with Ge and also for p-type doping. Boltzmann transport calculations of the thermopower are also reported. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Singh, DJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. FU Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division FX Work at ORNL was supported by the Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 46 TC 12 Z9 12 U1 2 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD AUG 26 PY 2013 VL 88 IS 6 AR 064422 DI 10.1103/PhysRevB.88.064422 PG 7 WC Physics, Condensed Matter SC Physics GA 207BY UT WOS:000323572900012 ER PT J AU Li, ZL Chen, CH Hegg, EL Hodge, DB AF Li, Zhenglun Chen, Charles H. Hegg, Eric L. Hodge, David B. TI Rapid and effective oxidative pretreatment of woody biomass at mild reaction conditions and low oxidant loadings SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Biofuels; Bioenergy; Chemical pretreatment; Hybrid poplar; Copper; Cu(bpy); Lignin; Oxidation; Hydrogen peroxide ID ALKALINE HYDROGEN-PEROXIDE; ANAEROBIC CELLULOLYTIC BACTERIA; RESPONSE-SURFACE METHODOLOGY; WHITE-ROT FUNGI; ENZYMATIC-HYDROLYSIS; WHEAT-STRAW; CORN STOVER; HYBRID POPLAR; DILUTE-ACID; LIGNIN AB Background: One route for producing cellulosic biofuels is by the fermentation of lignocellulose-derived sugars generated from a pretreatment that can be effectively coupled with an enzymatic hydrolysis of the plant cell wall. While woody biomass exhibits a number of positive agronomic and logistical attributes, these feedstocks are significantly more recalcitrant to chemical pretreatments than herbaceous feedstocks, requiring higher chemical and energy inputs to achieve high sugar yields from enzymatic hydrolysis. We previously discovered that alkaline hydrogen peroxide (AHP) pretreatment catalyzed by copper(II) 2,2'-bipyridine complexes significantly improves subsequent enzymatic glucose and xylose release from hybrid poplar heartwood and sapwood relative to uncatalyzed AHP pretreatment at modest reaction conditions (room temperature and atmospheric pressure). In the present work, the reaction conditions for this catalyzed AHP pretreatment were investigated in more detail with the aim of better characterizing the relationship between pretreatment conditions and subsequent enzymatic sugar release. Results: We found that for a wide range of pretreatment conditions, the catalyzed pretreatment resulted in significantly higher glucose and xylose enzymatic hydrolysis yields (as high as 80% for both glucose and xylose) relative to uncatalyzed pretreatment (up to 40% for glucose and 50% for xylose). We identified that the extent of improvement in glucan and xylan yield using this catalyzed pretreatment approach was a function of pretreatment conditions that included H2O2 loading on biomass, catalyst concentration, solids concentration, and pretreatment duration. Based on these results, several important improvements in pretreatment and hydrolysis conditions were identified that may have a positive economic impact for a process employing a catalyzed oxidative pretreatment. These improvements include identifying that: (1) substantially lower H2O2 loadings can be used that may result in up to a 50-65% decrease in H2O2 application (from 100 mg H2O2/g biomass to 35-50 mg/g) with only minor losses in glucose and xylose yield, (2) a 60% decrease in the catalyst concentration from 5.0 mM to 2.0 mM (corresponding to a catalyst loading of 25 mu mol/g biomass to 10 mu mol/g biomass) can be achieved without a subsequent loss in glucose yield, (3) an order of magnitude improvement in the time required for pretreatment (minutes versus hours or days) can be realized using the catalyzed pretreatment approach, and (4) enzyme dosage can be reduced to less than 30 mg protein/g glucan and potentially further with only minor losses in glucose and xylose yields. In addition, we established that the reaction rate is improved in both catalyzed and uncatalyzed AHP pretreatment by increased solids concentrations. Conclusions: This work explored the relationship between reaction conditions impacting a catalyzed oxidative pretreatment of woody biomass and identified that significant decreases in the H2O2, catalyst, and enzyme loading on the biomass as well as decreases in the pretreatment time could be realized with only minor losses in the subsequent sugar released enzymatically. Together these changes would have positive implications for the economics of a process based on this pretreatment approach. C1 [Li, Zhenglun; Chen, Charles H.; Hodge, David B.] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. [Li, Zhenglun; Chen, Charles H.; Hegg, Eric L.; Hodge, David B.] Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Hegg, Eric L.] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. [Hodge, David B.] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. [Hodge, David B.] Lulea Univ Technol, Dep Civil Environm & Nat Resources Engn, S-95187 Lulea, Sweden. RP Hegg, EL (reprint author), Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. EM erichegg@msu.edu; hodgeda@egr.msu.edu FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494] FX This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). NR 48 TC 12 Z9 13 U1 3 U2 62 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD AUG 26 PY 2013 VL 6 AR 119 DI 10.1186/1754-6834-6-119 PG 9 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 207SL UT WOS:000323624000001 PM 23971902 ER PT J AU Bera, S Maloney, J Lurio, LB Mulders, N Cheng, ZG Chan, MHW Burns, CA Zhang, Z AF Bera, S. Maloney, J. Lurio, L. B. Mulders, N. Cheng, Z. G. Chan, M. H. W. Burns, C. A. Zhang, Z. TI Pressure-dependent phase transformation of solid helium confined within a nanoporous material SO PHYSICAL REVIEW B LA English DT Article ID HE-4; MIXTURES; LIQUID AB Transmission x-ray diffraction experiments have been carried out on solid helium grown in porous Vycor glass. Measurements were made at temperatures near 0.7 K and at pressures up to 162 bars. The crystalline phases of solid helium in Vycor are found to differ significantly from the bulk. At pressures from 70 bars through 98 bars the helium is polycrystalline and displays a single size broadened scattering peak. Above 98 bars the peak splits into three close peaks. No higher order peaks are seen at any pressure, indicating significant reduction in intensity due to disorder. A broad peak is present at all pressures, which may indicate the presence of amorphous solid. We tentatively identify the low-pressure phase as bcc and the high-pressure phase as coexistence between bcc and hcp. Size broadening indicates an average grain size of approximately 5 nm, comparable to the Vycor pore size. C1 [Bera, S.; Maloney, J.; Lurio, L. B.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Mulders, N.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Cheng, Z. G.; Chan, M. H. W.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Burns, C. A.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Zhang, Z.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Lurio, LB (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. EM llurio@niu.edu RI Cheng, Zhigang/G-9146-2012; Zhang, Zhan/A-9830-2008 OI Cheng, Zhigang/0000-0002-9449-6734; Zhang, Zhan/0000-0002-7618-6134 FU National Science Foundation Division of Materials Research [DMR-0804591, DMR-0804725, DMR-1103159, DMR-0804643]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We would like to acknowledge support from the National Science Foundation Division of Materials Research, Grants No. DMR-0804591, No. DMR-0804725, No. DMR-1103159, and No. DMR-0804643. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 24 TC 3 Z9 3 U1 2 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD AUG 26 PY 2013 VL 88 IS 5 AR 054512 DI 10.1103/PhysRevB.88.054512 PG 7 WC Physics, Condensed Matter SC Physics GA 207BV UT WOS:000323572600007 ER PT J AU Ito, TM Seidel, GM AF Ito, T. M. Seidel, G. M. TI Scintillation of liquid helium for low-energy nuclear recoils SO PHYSICAL REVIEW C LA English DT Article ID MOLECULAR METASTABLE STATES; BOMBARDED SUPERFLUID-HELIUM; HE+-HE COLLISIONS; CROSS-SECTIONS; DOUBLE-IONIZATION; ELECTRON PRODUCTION; INELASTIC-SCATTERING; ALPHA-PARTICLES; GASES; IONS AB The scintillation properties of liquid helium upon the recoil of a low-energy helium atom are discussed in the context of the possible use of this medium as a detector of dark matter. It is found that the prompt scintillation yield in the range of recoil energies from a few keV to 100 keV is somewhat higher than that obtained by a linear extrapolation from the measured yield for a 5-MeV alpha particle. A comparison is made of both the scintillation yield and the charge separation by an electric field for nuclear recoils and for electrons stopped in helium. C1 [Ito, T. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Seidel, G. M.] Brown Univ, Dept Phys, Providence, RI 02912 USA. RP Seidel, GM (reprint author), Brown Univ, Dept Phys, Providence, RI 02912 USA. EM ito@lanl.gov; george_seidel@brown.edu OI Ito, Takeyasu/0000-0003-3494-6796 FU U.S. Department of Energy; National Science Foundation FX We appreciate receiving a copy of a preprint of a paper by W. Guo an D. N. McKinsey [82] that covers some of the material discussed here. This work was supported by the U.S. Department of Energy and the National Science Foundation. NR 80 TC 2 Z9 2 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD AUG 26 PY 2013 VL 88 IS 2 AR 025805 DI 10.1103/PhysRevC.88.025805 PG 13 WC Physics, Nuclear SC Physics GA 207CU UT WOS:000323575500003 ER PT J AU Dobrescu, BA Yu, F AF Dobrescu, Bogdan A. Yu, Felix TI Coupling-mass mapping of dijet peak searches SO PHYSICAL REVIEW D LA English DT Article ID ROOT-S=7 TEV; PP COLLISIONS; FINAL-STATE; P(P)OVER-BAR COLLISIONS; HADRON COLLIDERS; PAIR PRODUCTION; STANDARD MODEL; ATLAS DETECTOR; GAUGE BOSON; QUARK AB We study hypothetical gauge bosons that may produce dijet resonances at the LHC. Simple renormalizable models include leptophobic Z' bosons or colorons that have flavor-independent couplings and decay into a color-singlet or -octet quark-antiquark pair, respectively. We present the experimental results on dijet resonances at hadron colliders as limits in the coupling-versus-mass plane of a gauge boson associated with baryon number. This theoretical framework facilitates a direct comparison of dijet resonance searches performed at different center-of-mass energies or at different colliders. C1 [Dobrescu, Bogdan A.; Yu, Felix] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. RP Yu, F (reprint author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. EM bdob@fnal.gov; felixyu@fnal.gov FU United States Department of Energy [De-AC02-07CH11359] FX We would like to thank Sekhar Chivukula, Arsham Farzinnia, Robert Harris, Olivier Mattelaer, Elizabeth Simmons, and Ciaran Williams for useful communications. Fermilab is operated by the Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. NR 66 TC 48 Z9 48 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 26 PY 2013 VL 88 IS 3 AR 035021 DI 10.1103/PhysRevD.88.035021 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 207CZ UT WOS:000323576100005 ER PT J AU Huang, JR Nelson, AE AF Huang, Jinrui Nelson, Ann E. TI MeV dark matter in the 3+1+1 model SO PHYSICAL REVIEW D LA English DT Article ID BARYON ACOUSTIC-OSCILLATIONS; BIG-BANG NUCLEOSYNTHESIS; DIGITAL SKY SURVEY; 511 KEV LINE; STERILE NEUTRINOS; HUBBLE CONSTANT; GALAXY; TELESCOPE; BOUNDS; EMISSION AB The existence of light sterile neutrinos in the eV mass range with relatively large mixing angles with the active neutrinos has been proposed for a variety of reasons, including to improve the fit to the LSND and MiniBooNE neutrino oscillation experiments, and reactor disappearance experiments. A. E. Nelson [Phys. Rev. D 84, 053001 (2011)] showed that neutrino mixing with a heavier sterile neutrino, in the mass range between 33 eV and several GeV, could significantly affect and improve the agreement between neutrino oscillation models with light sterile neutrinos and short baseline experimental results, allowing for a new source of charge parity violation in appearance experiments and for different apparent mixing angles in appearance and disappearance experiments. However E. Kuflik, S. D. McDermott, and K. M. Zurek [Phys. Rev. D 86, 033015 (2012)], and J. Fan and P. Langacker [J. High Energy Phys. 04 (2012) 083], showed that various collider experiments, supernovae, and cosmological constraints can eliminate most of the parameter region where such a heavy sterile neutrino can have a significant effect on neutrino oscillations. In this paper we consider the effects of allowing a new light scalar in the MeV mass region, which is a potential dark matter candidate, to interact with the sterile neutrinos, and show that the resulting model is a consistent theory of neutrino oscillation anomalies and dark matter which can also potentially explain the INTEGRAL excess of 511 keV gamma rays in the central region of the galaxy. C1 [Huang, Jinrui] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Nelson, Ann E.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Huang, JR (reprint author), Los Alamos Natl Lab, Div Theoret, T-2,MS B285, Los Alamos, NM 87545 USA. EM jinruih@lanl.gov; aenelson@u.washington.edu RI Huang, Jinrui/O-2439-2013 FU DOE Office of Science; LANL LDRD program; Department of Energy [DE-FG02-96ER40956] FX J. H. is supported by the DOE Office of Science and the LANL LDRD program. J. H. thanks Zhongbo Kang and Haibo Yu for helpful discussions and the hospitality of the University of Washington in Seattle where part of the work was done. A. E. N. acknowledges partial support from the Department of Energy under Grant No. DE-FG02-96ER40956. NR 63 TC 12 Z9 12 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG 26 PY 2013 VL 88 IS 3 AR 033016 DI 10.1103/PhysRevD.88.033016 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 207CZ UT WOS:000323576100004 ER PT J AU Lees, JP Poireau, V Tisserand, V Grauges, E Palano, A Eigen, G Stugu, B Brown, DN Kerth, LT Kolomensky, YG Lee, M Lynch, G Koch, H Schroeder, T Hearty, C Mattison, TS McKenna, JA So, RY Khan, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Yushkov, AN Kirkby, D Lankford, AJ Mandelkern, M Buchanan, C Hartfiel, B Dey, B Gary, JW Long, O Vitug, GM Campagnari, C Sevilla, MF Hong, TM Kovalskyi, D Richman, JD West, CA Eisner, AM Lockman, WS Martinez, AJ Schumm, BA Seiden, A Chao, DS Cheng, CH Echenard, B Flood, KT Hitlin, DG Ongmongkolkul, P Porter, FC Andreassen, R Huard, Z Meadows, BT Sokoloff, MD Sun, L Bloom, PC Ford, WT Gaz, A Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Spaan, B Schubert, KR Schwierz, R Bernard, D Verderi, M Playfer, S Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Fioravanti, E Garzia, I Luppi, E Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Martellotti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Bhuyan, B Prasad, V Morii, M Adametz, A Uwer, U Lacker, HM Dauncey, PD Mallik, U Chen, C Cochran, J Meyer, WT Prell, S Rubin, AE Gritsan, AV Arnaud, N Davier, M Derkach, D Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Roudeau, P Stocchi, A Wormser, G Lange, DJ Wright, DM Coleman, JP Fry, JR Gabathuler, E Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Cowan, G Bougher, J Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Griessinger, K Hafner, A Prencipe, E Barlow, RJ Lafferty, GD Behn, E Cenci, R Hamilton, B Jawahery, A Roberts, DA Cowan, R Dujmic, D Sciolla, G Cheaib, R Patel, PM Robertson, SH Biassoni, P Neri, N Palombo, F Cremaldi, L Godang, R Sonnek, P Summers, DJ Nguyen, X Simard, M Taras, P De Nardo, G Monorchio, D Onorato, G Sciacca, C Martinelli, M Raven, G Jessop, CP LoSecco, JM Honscheid, K Kass, R Brau, J Frey, R Sinev, NB Strom, D Torrence, E Feltresi, E Margoni, M Morandin, M Posocco, M Rotondo, M Simi, G Simonetto, F Stroili, R Akar, S Ben-Haim, E Bomben, M Bonneaud, GR Briand, H Calderini, G Chauveau, J Leruste, P Marchiori, G Ocariz, J Sitt, S Biasini, M Manoni, E Pacetti, S Rossi, A Angelini, C Batignani, G Bettarini, S Carpinelli, M Casarosa, G Cervelli, A Forti, F Giorgi, MA Lusiani, A Oberhof, B Paoloni, E Perez, A Rizzo, G Walsh, JJ Pegna, DL Olsen, J Smith, AJS Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Piredda, G Bunger, C Christ, S Grunberg, O Hartmann, T Leddig, T Schroder, H Voss, C Waldi, R Adye, T Olaiya, EO Wilson, FF Emery, S de Monchenault, GH Vasseur, G Yeche, C Anulli, F Aston, D Bard, DJ Benitez, JF Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Ebert, M Field, RC Fulsom, BG Gabareen, AM Graham, MT Haas, T Hadig, T Hast, C Innes, WR Kim, P Kocian, ML Leith, DWGS Lewis, P Lindemann, D Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Muller, DR Neal, H Nelson, S Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Va'vra, J Wagner, AP Wang, WF Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Ziegler, V Park, W Purohit, MV White, RM Wilson, JR Randle-Conde, A Sekula, SJ Bellis, M Burchat, PR Miyashita, TS Puccio, EMT Alam, MS Ernst, JA Gorodeisky, R Guttman, N Peimer, DR Soffer, A Spanier, SM Ritchie, JL Ruland, AM Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F De Mori, F Filippi, A Gamba, D Zambito, S Lanceri, L Vitale, L Martinez-Vidal, F Oyanguren, A Villanueva-Perez, P Ahmed, H Albert, J Banerjee, S Bernlochner, FU Choi, HHF King, GJ Kowalewski, R Lewczuk, MJ Lueck, T Nugent, IM Roney, JM Sobie, RJ Tasneem, N Gershon, TJ Harrison, PF Latham, TE Band, HR Dasu, S Pan, Y Prepost, R Wu, SL AF Lees, J. P. Poireau, V. Tisserand, V. Grauges, E. Palano, A. Eigen, G. Stugu, B. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lee, M. Lynch, G. Koch, H. Schroeder, T. Hearty, C. Mattison, T. S. McKenna, J. A. So, R. Y. Khan, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Kravchenko, E. A. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Yushkov, A. N. Kirkby, D. Lankford, A. J. Mandelkern, M. Buchanan, C. Hartfiel, B. Dey, B. Gary, J. W. Long, O. Vitug, G. M. Campagnari, C. Sevilla, M. Franco Hong, T. M. Kovalskyi, D. Richman, J. D. West, C. A. Eisner, A. M. Lockman, W. S. Martinez, A. J. Schumm, B. A. Seiden, A. Chao, D. S. Cheng, C. H. Echenard, B. Flood, K. T. Hitlin, D. G. Ongmongkolkul, P. Porter, F. C. Andreassen, R. Huard, Z. Meadows, B. T. Sokoloff, M. D. Sun, L. Bloom, P. C. Ford, W. T. Gaz, A. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Spaan, B. Schubert, K. R. Schwierz, R. Bernard, D. Verderi, M. Playfer, S. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Fioravanti, E. Garzia, I. Luppi, E. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Martellotti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Bhuyan, B. Prasad, V. Morii, M. Adametz, A. Uwer, U. Lacker, H. M. Dauncey, P. D. Mallik, U. Chen, C. Cochran, J. Meyer, W. T. Prell, S. Rubin, A. E. Gritsan, A. V. Arnaud, N. Davier, M. Derkach, D. Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Roudeau, P. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Coleman, J. P. Fry, J. R. Gabathuler, E. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Cowan, G. Bougher, J. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Griessinger, K. Hafner, A. Prencipe, E. Barlow, R. J. Lafferty, G. D. Behn, E. Cenci, R. Hamilton, B. Jawahery, A. Roberts, D. A. Cowan, R. Dujmic, D. Sciolla, G. Cheaib, R. Patel, P. M. Robertson, S. H. Biassoni, P. Neri, N. Palombo, F. Cremaldi, L. Godang, R. Sonnek, P. Summers, D. J. Nguyen, X. Simard, M. Taras, P. De Nardo, G. Monorchio, D. Onorato, G. Sciacca, C. Martinelli, M. Raven, G. Jessop, C. P. LoSecco, J. M. Honscheid, K. Kass, R. Brau, J. Frey, R. Sinev, N. B. Strom, D. Torrence, E. Feltresi, E. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simi, G. Simonetto, F. Stroili, R. Akar, S. Ben-Haim, E. Bomben, M. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Leruste, Ph. Marchiori, G. Ocariz, J. Sitt, S. Biasini, M. Manoni, E. Pacetti, S. Rossi, A. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Oberhof, B. Paoloni, E. Perez, A. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Olsen, J. Smith, A. J. S. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Piredda, G. Buenger, C. Christ, S. Gruenberg, O. Hartmann, T. Leddig, T. Schroeder, H. Voss, C. Waldi, R. Adye, T. Olaiya, E. O. Wilson, F. F. Emery, S. de Monchenault, G. Hamel Vasseur, G. Yeche, Ch. Anulli, F. Aston, D. Bard, D. J. Benitez, J. F. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Ebert, M. Field, R. C. Fulsom, B. G. Gabareen, A. M. Graham, M. T. Haas, T. Hadig, T. Hast, C. Innes, W. R. Kim, P. Kocian, M. L. Leith, D. W. G. S. Lewis, P. Lindemann, D. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Muller, D. R. Neal, H. Nelson, S. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Va'vra, J. Wagner, A. P. Wang, W. F. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Ziegler, V. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Randle-Conde, A. Sekula, S. J. Bellis, M. Burchat, P. R. Miyashita, T. S. Puccio, E. M. T. Alam, M. S. Ernst, J. A. Gorodeisky, R. Guttman, N. Peimer, D. R. Soffer, A. Spanier, S. M. Ritchie, J. L. Ruland, A. M. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. De Mori, F. Filippi, A. Gamba, D. Zambito, S. Lanceri, L. Vitale, L. Martinez-Vidal, F. Oyanguren, A. Villanueva-Perez, P. Ahmed, H. Albert, J. Banerjee, Sw. Bernlochner, F. U. Choi, H. H. F. King, G. J. Kowalewski, R. Lewczuk, M. J. Lueck, T. Nugent, I. M. Roney, J. M. Sobie, R. J. Tasneem, N. Gershon, T. J. Harrison, P. F. Latham, T. E. Band, H. R. Dasu, S. Pan, Y. Prepost, R. Wu, S. L. CA BABAR Collaboration TI Production of charged pions, kaons, and protons in e(+)e(-) annihilations into hadrons at root s=10.54 GeV SO PHYSICAL REVIEW D LA English DT Article ID INCLUSIVE PARTICLE SPECTRA; CROSS-SECTIONS; E+E ANNIHILATION; UPSILON DECAYS; MONTE-CARLO; QCD JETS; ENERGY; BABAR; SIMULATION; PI(+/-) AB Inclusive production cross sections of pi(+/-), K-+/- and p/(p) over bar per hadronic e(+)e(-) annihilation event are measured at a center-of-mass energy of 10.54 GeV, using a relatively small sample of very high quality data from the BABAR experiment at the PEP-II B-factory at the SLAC National Accelerator Laboratory. The drift chamber and Cherenkov detector provide clean samples of identified pi(+/-), K-+/-, and p/(p) over bar over a wide range of momenta. Since the center-of-mass energy is below the threshold to produce a B (B) over bar pair, with B a bottom-quark meson, these data represent a pure e(+)e(-) -> q (q) over bar sample with four quark flavors, and are used to test QCD predictions and hadronization models. Combined with measurements at other energies, in particular at the Z(0) resonance, they also provide precise constraints on the scaling properties of the hadronization process over a wide energy range. C1 [Lees, J. P.; Poireau, V.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France. [Grauges, E.] Univ Barcelona, Fac Fis, Dept Estruct & Constituents Mat, E-08028 Barcelona, Spain. [Palano, A.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Palano, A.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lee, M.; Lynch, G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lee, M.; Lynch, G.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.] Budker Inst Nucl Phys SB RAS, Novosibirsk 630090, Russia. [Kirkby, D.; Lankford, A. J.; Mandelkern, M.] Univ Calif Irvine, Irvine, CA 92697 USA. [Buchanan, C.; Hartfiel, B.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Dey, B.; Gary, J. W.; Long, O.; Vitug, G. M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Campagnari, C.; Sevilla, M. Franco; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Lockman, W. S.; Martinez, A. J.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Huard, Z.; Meadows, B. T.; Sokoloff, M. D.; Sun, L.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Spaan, B.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Playfer, S.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Piemontese, L.; Santoro, V.] INFN, Sez Ferrara, I-44122 Ferrara, Italy. [Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.; Prasad, V.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Meyer, W. T.; Prell, S.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gritsan, A. V.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.] Univ London, London E1 4NS, England. [Cowan, G.] Univ London, Egham TW20 0EX, Surrey, England. [Bougher, J.; Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Prencipe, E.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Barlow, R. J.; Lafferty, G. D.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Behn, E.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.] Univ Maryland, College Pk, MD 20742 USA. [Cowan, R.; Dujmic, D.; Sciolla, G.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Cheaib, R.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Neri, N.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Sonnek, P.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] INFN, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Martinelli, M.; Raven, G.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Honscheid, K.; Kass, R.] Ohio State Univ, Columbus, OH 43210 USA. [Brau, J.; Frey, R.; Sinev, N. B.; Strom, D.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Feltresi, E.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simi, G.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Feltresi, E.; Margoni, M.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Sitt, S.] Univ Paris 07, CNRS, Univ Paris 06, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Pacetti, S.; Rossi, A.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Oberhof, B.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Olsen, J.; Smith, A. J. S.] Princeton Univ, Princeton, NJ 08544 USA. [Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Piredda, G.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Faccini, R.; Ferroni, F.; Gaspero, M.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Buenger, C.; Christ, S.; Gruenberg, O.; Hartmann, T.; Leddig, T.; Schroeder, H.; Voss, C.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch.] CEA, Irfu, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Anulli, F.; Aston, D.; Bard, D. J.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Haas, T.; Hadig, T.; Hast, C.; Innes, W. R.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Lindemann, D.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wagner, A. P.; Wang, W. F.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Randle-Conde, A.; Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Miyashita, T. S.; Puccio, E. M. T.] Stanford Univ, Stanford, CA 94305 USA. [Alam, M. S.; Ernst, J. A.] SUNY Albany, Albany, NY 12222 USA. [Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Ritchie, J. L.; Ruland, A. M.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.; Zambito, S.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; De Mori, F.; Gamba, D.; Zambito, S.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Martinez-Vidal, F.; Oyanguren, A.; Villanueva-Perez, P.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Ahmed, H.; Albert, J.; Banerjee, Sw.; Bernlochner, F. U.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lueck, T.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Latham, T. E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Lees, JP (reprint author), Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France. RI Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Rizzo, Giuliana/A-8516-2015; Lusiani, Alberto/N-2976-2015; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Forti, Francesco/H-3035-2011; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Kravchenko, Evgeniy/F-5457-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012 OI Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Pacetti, Simone/0000-0002-6385-3508; Paoloni, Eugenio/0000-0001-5969-8712; Cibinetto, Gianluigi/0000-0002-3491-6231; Rizzo, Giuliana/0000-0003-1788-2866; Faccini, Riccardo/0000-0003-2613-5141; Lusiani, Alberto/0000-0002-6876-3288; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Forti, Francesco/0000-0001-6535-7965; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480 FU U.S. Department of Energy and National Science Foundation; Natural Sciences and Engineering Research Council (Canada); Commissariat a l'Energie Atomique; Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung; Deutsche Forschungsgemeinschaft (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (The Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation; Ministerio de Economia y Competitividad Council (United Kingdom); Curie IEF program (European Union); A. P. Sloan Foundation (USA) FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the U.S. Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the (Spain), and the Science and Technology Facilities Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Economia y Competitividad Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation (USA). NR 52 TC 24 Z9 24 U1 0 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 26 PY 2013 VL 88 IS 3 AR 032011 DI 10.1103/PhysRevD.88.032011 PG 26 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 207CZ UT WOS:000323576100003 ER PT J AU Diallo, SO Jazdzewska, M Palmer, JC Mamontov, E Gubbins, KE Sliwinska-Bartkowiak, M AF Diallo, S. O. Jazdzewska, M. Palmer, J. C. Mamontov, E. Gubbins, K. E. Sliwinska-Bartkowiak, M. TI Dynamics of nanoconfined water under pressure SO PHYSICAL REVIEW E LA English DT Article ID NEUTRON-SCATTERING; SUPERCOOLED WATER; CARBON; CONFINEMENT; TRANSITION AB We report a study of the effects of pressure on the diffusivity of water molecules confined in single-wall carbon nanotubes (SWNT) with average mean pore diameter of similar to 16 angstrom. The measurements were carried out using high-resolution neutron scattering, over the temperature range 220 <= T <= 260 K, and at two pressure conditions: ambient and elevated pressure. The high pressure data were collected at constant volume on cooling, with P varying from similar to 1.92 kbar at temperature T = 260 K to similar to 1.85 kbar at T = 220 K. Analysis of the observed dynamic structure factor S(Q,E) reveals the presence of two relaxation processes, a faster diffusion component (FC) associated with the motion of "caged" or restricted molecules, and a slower component arising from the free water molecules diffusing within the SWNT matrix. While the temperature dependence of the slow relaxation time exhibits a Vogel-Fulcher-Tammann law and is non-Arrhenius in nature, the faster component follows an Arrhenius exponential law at both pressure conditions. The application of pressure remarkably slows down the overall molecular dynamics, in agreement with previous observations, but most notably affects the slow relaxation. The faster relaxation shows marginal or no change with pressure within the experimental conditions. C1 [Diallo, S. O.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Jazdzewska, M.; Sliwinska-Bartkowiak, M.] Adam Mickiewicz Univ, Fac Phys, PL-61614 Poznan, Poland. [Palmer, J. C.; Gubbins, K. E.] N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA. [Mamontov, E.] Oak Ridge Natl Lab, Chem & Engn Sci Div, Oak Ridge, TN 37831 USA. RP Diallo, SO (reprint author), Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. EM omardiallos@ornl.gov; msb@amu.edu.pl RI Mamontov, Eugene/Q-1003-2015; Diallo, Souleymane/B-3111-2016 OI Mamontov, Eugene/0000-0002-5684-2675; Diallo, Souleymane/0000-0002-3369-8391 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; NSF [CBET-1160151] FX It is a pleasure to acknowledge S. Elorfi, R. Mills, and M. Loguillo at SNS for valuable technical support. We acknowledge stimulating discussion with A. Kolesnikov. Work at ORNL and SNS is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. J.C.P. and K.E.G. thank the NSF for support under Grant No. CBET-1160151. NR 26 TC 0 Z9 0 U1 5 U2 49 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD AUG 26 PY 2013 VL 88 IS 2 AR 022316 DI 10.1103/PhysRevE.88.022316 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 207DC UT WOS:000323576400008 PM 24032841 ER PT J AU Huang, QJ Sun, H Huang, N Maitz, MF Brown, IG AF Huang, Q. J. Sun, H. Huang, N. Maitz, M. F. Brown, I. G. TI Formation of microcraters on plant cell wall by plasma immersion ion implantation SO SURFACE & COATINGS TECHNOLOGY LA English DT Article DE Cell wall; Microcrater; Ion implantation; Plasma immersion AB Ion bombardment of biological cellular material has been used as a tool for the transfer of exogenous DNA macromolecules into the cell interior region. The precise physical mechanisms associated with this transfer of macromolecules through the cell envelope remain unexplained, however it has been observed that the ion bombardment is accompanied by the formation of "microcraters" on the wall of plant cells, and it is possible that these features provide channels for the macromolecule transfer. Thus the nature and origin of the microcraters are of importance to understanding the DNA transfer phenomenon as well as being of fundamental interest. We report here on the formation of microcraters on onion skin cell walls by plasma immersion ion implantation (Pill) using similar to 20 key Ar+ ions at a dose of about 1x10(15)ions/cm(2). The results indicate that Pill provides a tool for carrying out ion bombardment of living biological materials previously done using beam-line implantation methods. (C) 2012 Elsevier B.V. All rights reserved. C1 [Huang, Q. J.; Sun, H.; Huang, N.; Maitz, M. F.] Southwest Jiaotong Univ, Sch Mat Sci & Engn, Chengdu 610031, Peoples R China. [Maitz, M. F.] Max Bergmann Ctr Biomat, Leibniz Inst Polymer Res Dresden, Dresden, Germany. [Brown, I. G.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Huang, N (reprint author), Southwest Jiaotong Univ, Sch Mat Sci & Engn, Chengdu 610031, Peoples R China. EM nhuang@263.net RI Maitz, Manfred/E-6749-2010; Umlauf, Ursula/D-3356-2014 OI Maitz, Manfred/0000-0002-0671-048X; FU Key Basic Research Project [2005CB623904, 2011CB606204]; National Natural Science Foundation of China [30900295] FX This work was supported in part by Key Basic Research Project (No. 2005CB623904 and No. 2011CB606204), and the National Natural Science Foundation of China (No. 30900295). NR 28 TC 0 Z9 0 U1 2 U2 5 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD AUG 25 PY 2013 VL 229 BP 197 EP 199 DI 10.1016/j.surfcoat.2012.05.047 PG 3 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 200TT UT WOS:000323094500040 ER PT J AU Boyle, TJ Velazquez, AT Yonemoto, DT Alam, TM Moore, C Rheingold, AL AF Boyle, Timothy J. Velazquez, Andrew T. Yonemoto, Daniel T. Alam, Todd M. Moore, Curtis Rheingold, Arnold L. TI Synthesis and characterization of a family of solvated sodium aryloxide compounds SO INORGANICA CHIMICA ACTA LA English DT Article DE Sodium alkoxide; 23-Na NMR; Crystal structure ID X-RAY STRUCTURES; STRUCTURAL DIVERSITY; CRYSTAL-STRUCTURES; TERT-BUTOXIDE; LITHIUM; COMPLEXES; REACTIVITY; SERIES; ALKOXIDES; RB AB A family of crystallographically characterized solvated sodium alkoxides ([(solv)(x)Na(OR)](n)) was synthesized from the reaction of sodium bis(trimethylsilyl)amide with a series of sterically varied aryl alcohols (H-OAr): 2-alkyl phenol [alkyl = methyl (oMP), iso-propyl (oPP), and tert-butyl (oBP)] or 2,6-di-alkyl phenol [alkyl = methyl (DMP), iso-propyl (DIP), and tert-butyl (DBP)]. Single crystal X-ray experiments revealed the structure of the products to be highly dependent on the ligand set employed and the solvent used (THF or py). The [(solv)(x)Na(OAr)](n) products were identified as: [(THF)Na(mu(3)-oMP)](6) (1), [(THF)(4)Na-6(mu(3)-oPP)(4)(mu(4)-PP)(2)] (2), [(THF)Na(mu(3)-oBP)](4) (3).THF, [(THF)Na(mu(3)-DMP)](4) (4), [(THF)(2)Na(mu(3)-DIP)](2) (5), [(THF)(2)Na(mu-DBP)](2) (6), {[Na(mu-DPhP-eta(x))](2)}(n) (7), [(py)(5)Na-6(mu(3)-oMP)(4)(mu(4)-oMP)(2)](2)[(py)(4)Na-6(mu(3)-oMP)(4)(mu(4)-oMP)(2)] (5), [(py)(6)Na-4(mu(3)-oPP)(4)] (5) py, [(py)Na(mu(3)-DMP)](4) (11), [(py)(2)Na(mu-DIP)](2) (12), [(py)(4)Na(DBP)] (13). Crystals could not be isolated for the Na/oBP/py (10) system but the powder was assigned the '[(py)Na(oBP)](4)' structure based on the available analytical data. In addition, under similar conditions, the neo-pentoxide (ONep) derivatives were isolated and characterized as [(solv)(4)Na-6(mu(3)-ONep)(4)(mu(4)-ONep)(2)] (solv = THF, 14; py 15). A number of complex structures (monomers, squares, cubes, fused-cubes, hexagons) were observed for this family of [(solv)(x)Na(OAr)](n) compounds. The solution behaviors of these compounds were studied using heteronuclear Na-23 NMR. A comparison of these [(solv)(x)A(OR)](n) A = Li, Na, K, Rb, Cs structural motifs is also presented. (C) 2013 Elsevier B.V. All rights reserved. C1 [Boyle, Timothy J.; Velazquez, Andrew T.; Yonemoto, Daniel T.; Alam, Todd M.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. [Moore, Curtis; Rheingold, Arnold L.] Univ Calif San Diego, Dept Chem & Biochem, San Diego, CA 92093 USA. RP Boyle, TJ (reprint author), Sandia Natl Labs, Adv Mat Lab, 1001 Univ Blvd SE, Albuquerque, NM 87106 USA. EM tjboyle@Sandia.gov FU National Science Foundation CRIF:MU award [CHE04-43580]; U.S. Department of Energy, Office of Electricity [DE-AC04-94AL85000] FX The authors would like to thank Ms. L. Steele for technical assistance and for support of this research the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories, the grateful use of the Bruker X-ray diffractometer purchased via the National Science Foundation CRIF:MU award to Prof Kemp of the University of New Mexico (CHE04-43580), and the U.S. Department of Energy, Office of Electricity under Contract DE-AC04-94AL85000. Sandia is a multiprogramming laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy. NR 34 TC 3 Z9 3 U1 1 U2 9 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0020-1693 J9 INORG CHIM ACTA JI Inorg. Chim. Acta PD AUG 24 PY 2013 VL 405 BP 374 EP 386 DI 10.1016/j.ica.2013.06.015 PG 13 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 215PQ UT WOS:000324223200054 ER PT J AU Yang, SH Guarnieri, MT Smolinski, S Ghirardi, M Pienkos, PT AF Yang, Shihui Guarnieri, Michael T. Smolinski, Sharon Ghirardi, Maria Pienkos, Philip T. TI De novo transcriptomic analysis of hydrogen production in the green alga Chlamydomonas moewusii through RNA-Seq SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article ID SNF1 PROTEIN-KINASE; SULFUR DEPRIVATION RESPONSES; CHLORELLA-VARIABILIS NC64A; PYRUVATE FORMATE LYASE; H-2 PRODUCTION; SACCHAROMYCES-CEREVISIAE; PHOTOSYNTHETIC ORGANISMS; DIFFERENTIAL EXPRESSION; FUNCTIONAL ANNOTATION; ZYMOMONAS-MOBILIS AB Background: Microalgae can make a significant contribution towards meeting global renewable energy needs in both carbon-based and hydrogen (H-2) biofuel. The development of energy-related products from algae could be accelerated with improvements in systems biology tools, and recent advances in sequencing technology provide a platform for enhanced transcriptomic analyses. However, these techniques are still heavily reliant upon available genomic sequence data. Chlamydomonas moewusii is a unicellular green alga capable of evolving molecular H-2 under both dark and light anaerobic conditions, and has high hydrogenase activity that can be rapidly induced. However, to date, there is no systematic investigation of transcriptomic profiling during induction of H-2 photoproduction in this organism. Results: In this work, RNA-Seq was applied to investigate transcriptomic profiles during the dark anaerobic induction of H-2 photoproduction. 156 million reads generated from 7 samples were then used for de novo assembly after data trimming. BlastX results against NCBI database and Blast2GO results were used to interpret the functions of the assembled 34,136 contigs, which were then used as the reference contigs for RNA-Seq analysis. Our results indicated that more contigs were differentially expressed during the period of early and higher H-2 photoproduction, and fewer contigs were differentially expressed when H-2-photoproduction rates decreased. In addition, C. moewusii and C. reinhardtii share core functional pathways, and transcripts for H-2 photoproduction and anaerobic metabolite production were identified in both organisms. C. moewusii also possesses similar metabolic flexibility as C. reinhardtii, and the difference between C. moewusii and C. reinhardtii on hydrogenase expression and anaerobic fermentative pathways involved in redox balancing may explain their different profiles of hydrogenase activity and secreted anaerobic metabolites. Conclusions: Herein, we have described a workflow using commercial software to analyze RNA-Seq data without reference genome sequence information, which can be applied to other unsequenced microorganisms. This study provided biological insights into the anaerobic fermentation and H-2 photoproduction of C. moewusii, and the first transcriptomic RNA-Seq dataset of C. moewusii generated in this study also offer baseline data for further investigation (e.g. regulatory proteins related to fermentative pathway discussed in this study) of this organism as a H-2-photoproduction strain. C1 [Yang, Shihui; Guarnieri, Michael T.; Pienkos, Philip T.] Natl Bioenergy Ctr, Golden, CO USA. [Smolinski, Sharon; Ghirardi, Maria] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. RP Yang, SH (reprint author), Natl Bioenergy Ctr, Golden, CO USA. EM Shihui.Yang@nrel.gov OI Yang, Shihui/0000-0002-9394-9148 FU Laboratory Directed Research and Development (LDRD) Program at the National Renewable Energy Laboratory (NREL), LDRD [06510901] FX Funding for this work was provided by the Laboratory Directed Research and Development (LDRD) Program at the National Renewable Energy Laboratory (NREL), LDRD #06510901. The authors wish to acknowledge Dr. Anis Karimpour-Fard at University of Colorado, Denver for preliminary results from assembly and annotation of the RNA-Seq data. NR 92 TC 9 Z9 10 U1 2 U2 49 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD AUG 23 PY 2013 VL 6 AR 118 DI 10.1186/1754-6834-6-118 PG 17 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 216JK UT WOS:000324278300001 PM 23971877 ER PT J AU Hosler, ER Leone, SR AF Hosler, Erik R. Leone, Stephen R. TI Characterization of vibrational wave packets by core-level high-harmonic transient absorption spectroscopy SO PHYSICAL REVIEW A LA English DT Article ID REAL-TIME OBSERVATION; INTENSE LASER FIELDS; ELECTRON LOCALIZATION; IONIZATION; MOLECULES; ALIGNMENT; DYNAMICS; SYSTEM AB The ground-state vibrational wave packet produced by strong-field ionization of Br-2 is characterized by femtosecond high-harmonic transient absorption spectroscopy. Vibrational motion is observed in time by a change in the 3d core-level transition energy with bond length 0.14 eV/pm to higher energies at shorter bond lengths. The wave packet has the expected period of 104 fs for the predominant upsilon(0)upsilon(1) vibrational quantum beat, which is prepared near the outer turning point with a phase of 0.21 pi +/- 0.05 pi due to the preferential ionization at short bond lengths. Simultaneous observation of a wave packet on the Br-2(+) (2)Pi(g),(3/2) ground state, prepared at the equilibrium bond distance of the ion, confirms preferential ionization near the inner turning point of the neutral. The Br2 ground-state wave packet has a degree of coherence ranging between 0.19 and 0.24, where unity is perfect coherence. The results utilize the sensitivity of core-level transient absorption spectroscopy to bond length and charge state, providing a means to analyze the formation and evolution of vibrational wave packets. C1 [Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Leone, SR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM srl@berkeley.edu FU NSF ERC of EUV Science and Technology [EEC0310717]; Department of Energy via the LBNL Chemical Sciences Division [DE-AC02-05-CH11231]; DoD NSSEFF FX We thank Scott G. Sayres for numerous fruitful discussions, and Andrew R. Attar and Josh Vura-Weis for experimental contributions. We also thank James S. Prell for the careful reading of this manuscript. This work was supported by the NSF ERC of EUV Science and Technology (Grant No. EEC0310717) with funding for materials and equipment provided through the Department of Energy Grant No. DE-AC02-05-CH11231 via the LBNL Chemical Sciences Division. S. R. L. acknowledges support of the DoD NSSEFF. NR 36 TC 13 Z9 13 U1 4 U2 37 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD AUG 23 PY 2013 VL 88 IS 2 AR 023420 DI 10.1103/PhysRevA.88.023420 PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 207AZ UT WOS:000323570100009 ER PT J AU Zenker, B Fehske, H Beck, H Monney, C Bishop, AR AF Zenker, B. Fehske, H. Beck, H. Monney, C. Bishop, A. R. TI Chiral charge order in 1T-TiSe2: Importance of lattice degrees of freedom SO PHYSICAL REVIEW B LA English DT Article ID FALICOV-KIMBALL MODEL; EXCITONIC INSULATOR; TISE2; INSTABILITY; TRANSITION; STATE AB We address the question of the origin of the recently discovered chiral property of the charge-density-wave phase in 1T-TiSe2, which so far lacks a microscopic understanding. We argue that the lattice degrees of freedom seem to be crucial for this novel phenomenon. We motivate a theoretical model that takes into account one valence and three conduction bands, a strongly screened Coulomb interaction between the electrons, as well as the coupling of the electrons to a transverse optical phonon mode. The Falicov-Kimball model extended in this way possesses a charge-density-wave state at low temperatures, which is accompanied by a periodic lattice distortion. The charge ordering is driven by a lattice deformation and electron-hole pairing (excitonic) instability in combination. We show that both electron-phonon interaction and phonon-phonon interaction must be taken into account at least up to quartic order in the lattice displacement to achieve a stable chiral charge order. The chiral property is exhibited in the ionic displacements. Furthermore, we provide the ground-state phase diagram of the model and give an estimate of the electron-electron and electron-phonon interaction constants for 1T-TiSe2. C1 [Zenker, B.; Fehske, H.] Ernst Moritz Arndt Univ Greifswald, Inst Phys, D-17489 Greifswald, Germany. [Beck, H.] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland. [Beck, H.] Univ Fribourg, Fribourg Ctr Nanomat, CH-1700 Fribourg, Switzerland. [Monney, C.] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany. [Bishop, A. R.] Los Alamos Natl Lab, Theory Simulat & Computat Directorate, Los Alamos, NM 87545 USA. RP Zenker, B (reprint author), Ernst Moritz Arndt Univ Greifswald, Inst Phys, D-17489 Greifswald, Germany. RI Monney, Claude/C-5553-2011 FU Deutsche Forschungsgemeinschaft [SFB 652]; Fonds National Suisse pour la Recherche Scientifique through Div. II; Swiss National Center of Competence in Research MaNEP; US Department of Energy; Fonds National Suisse pour la Recherche Scientifique [PA00P2-142054] FX We thank P. Aebi, K. W. Becker, F. X. Bronold, D. Ihle, G. Monney, and N. V. Phan for valuable discussions. This work is supported by the Deutsche Forschungsgemeinschaft through SFB 652 (project B5), by the Fonds National Suisse pour la Recherche Scientifique through Div. II, the Swiss National Center of Competence in Research MaNEP, and the US Department of Energy. C.M. acknowledges also support by the Fonds National Suisse pour la Recherche Scientifique under grant PA00P2-142054. NR 56 TC 15 Z9 15 U1 3 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 23 PY 2013 VL 88 IS 7 AR 075138 DI 10.1103/PhysRevB.88.075138 PG 12 WC Physics, Condensed Matter SC Physics GA 207BL UT WOS:000323571500001 ER PT J AU Aaltonen, T Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Appel, JA Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Auerbach, B Aurisano, A Azfar, F Badgett, W Bae, T Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauce, M Bedeschi, F Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Bland, KR Blumenfeld, B Bocci, A Bodek, A Bortoletto, D Boudreau, J Boveia, A Brigliadori, L Bromberg, C Brucken, E Budagov, J Budd, HS Burkett, K Busetto, G Bussey, P Butti, P Buzatu, A Calamba, A Camarda, S Campanelli, M Canelli, F Carls, B Carlsmith, D Carosi, R Carrillo, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chen, YC Chertok, M Chiarelli, G Chlachidze, G Cho, K Chokheli, D Ciocci, MA Clark, A Clarke, C Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Cremonesi, M Cruz, D Cuevas, J Culbertson, R d'Ascenzo, N Datta, M De Barbaro, P Demortier, L Deninno, M d'Errico, M Devoto, F Di Canto, A Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dorigo, M Driutti, A Ebina, K Edgar, R Elagin, A Erbacher, R Errede, S Esham, B Eusebi, R Farrington, S Ramos, JPF Field, R Flanagan, G Forrest, R Franklin, M Freeman, JC Frisch, H Funakoshi, Y Garfinkel, AF Garosi, P Gerberich, H Gerchtein, E Giagu, S Giakoumopoulou, V Gibson, K Ginsburg, CM Giokaris, N Giromini, P Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldin, D Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Lopez, OG Gorelov, I Goshaw, AT Goulianos, K Gramellini, E Grinstein, S Grosso-Pilcher, C Group, RC da Costa, JG Hahn, SR Han, JY Happacher, F Hara, K Hare, M Harr, RF Harrington-Taber, T Hatakeyama, K Hays, C Heinrich, J Herndon, M Hocker, A Hong, Z Hopkins, W Hou, S Hughes, RE Husemann, U Hussein, M Huston, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jindariani, S Jones, M Joo, KK Jun, SY Junk, TR Kambeitz, M Kamon, T Karchin, PE Kasmi, A Kato, Y Ketchum, W Keung, J Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YJ Kim, YK Kimura, N Kirby, M Knoepfel, K Kondo, K Kong, DJ Konigsberg, J Kotwal, AV Kreps, M Kroll, J Kruse, M Kuhr, T Kurata, M Laasanen, AT Lammel, S Lancaster, M Lannon, K Latino, G Lee, HS Lee, JS Leo, S Leone, S Lewis, JD Limosani, A Lipeles, E Lister, A Liu, H Liu, Q Liu, T Lockwitz, S Loginov, A Luca, A Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R Madrak, R Maestro, P Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, P Martinez, M Matera, K Mattson, ME Mazzacane, A Mazzanti, P McNulty, R Mehta, A Mehtala, P Mesropian, C Miao, T Mietlicki, D Mitra, A Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, MJ Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakano, I Napier, A Nett, J Neu, C Nigmanov, T Nodulman, L Noh, SY Norniella, O Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Ortolan, L Pagliarone, C Palencia, E Palni, P Papadimitriou, V Parker, W Pauletta, G Paulini, M Paus, C Phillips, TJ Piacentino, G Pianori, E Pilot, J Pitts, K Plager, C Pondrom, L Poprocki, S Potamianos, K Pranko, A Prokoshin, F Ptohos, F Punzi, G Ranjan, N Fernandez, IR Renton, P Rescigno, M Rimondi, F Ristori, L Robson, A Rodriguez, T Rolli, S Ronzani, M Roser, R Rosner, JL Ruffini, F Ruiz, A Russ, J Rusu, V Sakumoto, WK Sakurai, Y Santi, L Sato, K Saveliev, V Savoy-Navarro, A Schlabach, P Schmidt, EE Schwarz, T Scodellaro, L Scuri, F Seidel, S Seiya, Y Semenov, A Sforza, F Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shochet, M Shreyber-Tecker, I Simonenko, A Sinervo, P Sliwa, K Smith, JR Snider, FD Song, H Sorin, V Stancari, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Sudo, Y Sukhanov, A Suslov, I Takemasa, K Takeuchi, Y Tang, J Tecchio, M Teng, PK Thom, J Thomson, E Thukral, V Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Ukegawa, F Uozumi, S Vazquez, F Velev, G Vellidis, C Vernieri, C Vidal, M Vilar, R Vizan, J Vogel, M Volpi, G Wagner, P Wallny, R Wang, SM Warburton, A Waters, D Wester, WC Whiteson, D Wicklund, AB Wilbur, S Williams, HH Wilson, JS Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, H Wright, T Wu, X Wu, Z Yamamoto, K Yamato, D Yang, T Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Zanetti, AM Zeng, Y Zhou, C Zucchelli, S AF Aaltonen, T. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Appel, J. A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Auerbach, B. Aurisano, A. Azfar, F. Badgett, W. Bae, T. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauce, M. Bedeschi, F. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Bland, K. R. Blumenfeld, B. Bocci, A. Bodek, A. Bortoletto, D. Boudreau, J. Boveia, A. Brigliadori, L. Bromberg, C. Brucken, E. Budagov, J. Budd, H. S. Burkett, K. Busetto, G. Bussey, P. Butti, P. Buzatu, A. Calamba, A. Camarda, S. Campanelli, M. Canelli, F. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Cho, K. Chokheli, D. Ciocci, M. A. Clark, A. Clarke, C. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Cremonesi, M. Cruz, D. Cuevas, J. Culbertson, R. d'Ascenzo, N. Datta, M. De Barbaro, P. Demortier, L. Deninno, M. d'Errico, M. Devoto, F. Di Canto, A. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dorigo, M. Driutti, A. Ebina, K. Edgar, R. Elagin, A. Erbacher, R. Errede, S. Esham, B. Eusebi, R. Farrington, S. Fernandez Ramos, J. P. Field, R. Flanagan, G. Forrest, R. Franklin, M. Freeman, J. C. Frisch, H. Funakoshi, Y. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerchtein, E. Giagu, S. Giakoumopoulou, V. Gibson, K. Ginsburg, C. M. Giokaris, N. Giromini, P. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldin, D. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez Lopez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gramellini, E. Grinstein, S. Grosso-Pilcher, C. Group, R. C. da Costa, J. Guimaraes Hahn, S. R. Han, J. Y. Happacher, F. Hara, K. Hare, M. Harr, R. F. Harrington-Taber, T. Hatakeyama, K. Hays, C. Heinrich, J. Herndon, M. Hocker, A. Hong, Z. Hopkins, W. Hou, S. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jindariani, S. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kambeitz, M. Kamon, T. Karchin, P. E. Kasmi, A. Kato, Y. Ketchum, W. Keung, J. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. J. Kim, Y. K. Kimura, N. Kirby, M. Knoepfel, K. Kondo, K. Kong, D. J. Konigsberg, J. Kotwal, A. V. Kreps, M. Kroll, J. Kruse, M. Kuhr, T. Kurata, M. Laasanen, A. T. Lammel, S. Lancaster, M. Lannon, K. Latino, G. Lee, H. S. Lee, J. S. Leo, S. Leone, S. Lewis, J. D. Limosani, A. Lipeles, E. Lister, A. Liu, H. Liu, Q. Liu, T. Lockwitz, S. Loginov, A. Luca, A. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. Madrak, R. Maestro, P. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, P. Martinez, M. Matera, K. Mattson, M. E. Mazzacane, A. Mazzanti, P. McNulty, R. Mehta, A. Mehtala, P. Mesropian, C. Miao, T. Mietlicki, D. Mitra, A. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Mukherjee, A. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakano, I. Napier, A. Nett, J. Neu, C. Nigmanov, T. Nodulman, L. Noh, S. Y. Norniella, O. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Ortolan, L. Pagliarone, C. Palencia, E. Palni, P. Papadimitriou, V. Parker, W. Pauletta, G. Paulini, M. Paus, C. Phillips, T. J. Piacentino, G. Pianori, E. Pilot, J. Pitts, K. Plager, C. Pondrom, L. Poprocki, S. Potamianos, K. Pranko, A. Prokoshin, F. Ptohos, F. Punzi, G. Ranjan, N. Redondo Fernandez, I. Renton, P. Rescigno, M. Rimondi, F. Ristori, L. Robson, A. Rodriguez, T. Rolli, S. Ronzani, M. Roser, R. Rosner, J. L. Ruffini, F. Ruiz, A. Russ, J. Rusu, V. Sakumoto, W. K. Sakurai, Y. Santi, L. Sato, K. Saveliev, V. Savoy-Navarro, A. Schlabach, P. Schmidt, E. E. Schwarz, T. Scodellaro, L. Scuri, F. Seidel, S. Seiya, Y. Semenov, A. Sforza, F. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shochet, M. Shreyber-Tecker, I. Simonenko, A. Sinervo, P. Sliwa, K. Smith, J. R. Snider, F. D. Song, H. Sorin, V. Stancari, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Sudo, Y. Sukhanov, A. Suslov, I. Takemasa, K. Takeuchi, Y. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thomson, E. Thukral, V. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Ukegawa, F. Uozumi, S. Vazquez, F. Velev, G. Vellidis, C. Vernieri, C. Vidal, M. Vilar, R. Vizan, J. Vogel, M. Volpi, G. Wagner, P. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Wester, W. C., III Whiteson, D. Wicklund, A. B. Wilbur, S. Williams, H. H. Wilson, J. S. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, H. Wright, T. Wu, X. Wu, Z. Yamamoto, K. Yamato, D. Yang, T. Yang, U. K. Yang, Y. C. Yao, W. -M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Zanetti, A. M. Zeng, Y. Zhou, C. Zucchelli, S. CA CDF Collaboration TI Signature-based search for delayed photons in exclusive photon plus missing transverse energy events from p(p)over-bar collisions with root s=1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID SUSY BREAKING TOPOLOGIES; CDF; SUPERSYMMETRY; MODEL; TRACKER; MASS AB We present the first signature-based search for delayed photons using an exclusive photon plus missing transverse energy final state. Events are reconstructed in a data sample from the CDF II detector corresponding to 6: 3 fb(-1) of integrated luminosity from root s = 1.96 TeV proton-antiproton collisions. Candidate events are selected if they contain a photon with an arrival time in the detector larger than expected from a promptly produced photon. The mean number of events from standard model sources predicted by the data-driven background model based on the photon timing distribution is 286 +/- 24. A total of 322 events are observed. A p value of 12% is obtained, showing consistency of the data with standard model predictions. C1 [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Auerbach, B.; Nodulman, L.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.] Univ Athens, GR-15771 Athens, Greece. [Camarda, S.; Cavalli-Sforza, M.; Grinstein, S.; Martinez, M.; Ortolan, L.; Sorin, V.] Univ Autonoma Barcelona, ICREA, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Bland, K. R.; Dittmann, J. R.; Hatakeyama, K.; Kasmi, A.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Gramellini, E.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Shalhout, S. Z.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Casal, B.; Cuevas, J.; Gomez, G.; Palencia, E.; Ruiz, A.; Scodellaro, L.; Vilar, R.; Vizan, J.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Calamba, A.; Jang, D.; Jun, S. Y.; Paulini, M.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Boveia, A.; Canelli, F.; Frisch, H.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Rosner, J. L.; Shochet, M.; Tang, J.; Wilbur, S.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Goshaw, A. T.; Kotwal, A. V.; Kruse, M.; Limosani, A.; Oh, S. H.; Phillips, T. J.; Yu, G. B.; Zeng, Y.; Zhou, C.] Duke Univ, Durham, NC 27708 USA. [Anastassov, A.; Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Behari, S.; Beretvas, A.; Burkett, K.; Canelli, F.; Chlachidze, G.; Convery, M. E.; Corbo, M.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; Di Ruzza, B.; Flanagan, G.; Freeman, J. C.; Gerchtein, E.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harrington-Taber, T.; Hocker, A.; Hopkins, W.; James, E.; Jayatilaka, B.; Jindariani, S.; Junk, T. R.; Kilminster, B.; Kirby, M.; Knoepfel, K.; Lammel, S.; Lewis, J. D.; Liu, T.; Lukens, P.; Madrak, R.; Mazzacane, A.; Miao, T.; Moed, S.; Moon, C. S.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Poprocki, S.; Ristori, L.; Roser, R.; Rusu, V.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Snider, F. D.; Stancari, M.; Stentz, D.; Sukhanov, A.; Thom, J.; Tonelli, D.; Torretta, D.; Velev, G.; Vellidis, C.; Wester, W. C., III; Wilson, P.; Wittich, P.; Wolbers, S.; Yang, T.; Yeh, G. P.; Yi, K.; Yoh, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Konigsberg, J.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Luca, A.; Ptohos, F.; Torre, S.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Buzatu, A.; Robson, A.; St Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Catastini, P.; Franklin, M.; da Costa, J. Guimaraes] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Carls, B.; Cavaliere, V.; Errede, S.; Esham, B.; Gerberich, H.; Matera, K.; Norniella, O.; Pitts, K.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Blumenfeld, B.; Giurgiu, G.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Kambeitz, M.; Kreps, M.; Kuhr, T.; Lueck, J.; Muller, Th.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Ewha Womans Univ, Seoul 120750, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Lujan, P.; Lys, J.; Potamianos, K.; Pranko, A.; Yao, W. -M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [D'Onofrio, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Campanelli, M.; Cerrito, L.; Lancaster, M.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez Ramos, J. P.; Gonzalez Lopez, O.; Redondo Fernandez, I.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Gomez-Ceballos, G.; Goncharov, M.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Edgar, R.; Mietlicki, D.; Schwarz, T.; Tecchio, M.; Wilson, J. S.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Hussein, M.; Huston, J.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber-Tecker, I.] ITEP, Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Palni, P.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Hughes, R. E.; Lannon, K.; Pilot, J.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Yamamoto, K.; Yamato, D.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Oakes, L.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bauce, M.; Busetto, G.; d'Errico, M.; Lucchesi, D.; Totaro, P.] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Bauce, M.; Busetto, G.; d'Errico, M.; Lucchesi, D.] Univ Padua, I-35131 Padua, Italy. [Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Pianori, E.; Rodriguez, T.; Thomson, E.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Butti, P.; Carosi, R.; Chiarelli, G.; Ciocci, M. A.; Cremonesi, M.; Di Canto, A.; Donati, S.; Garosi, P.; Introzzi, G.; Latino, G.; Leo, S.; Leone, S.; Maestro, P.; Marino, P.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Ronzani, M.; Ruffini, F.; Scuri, F.; Sforza, F.; Trovato, M.; Vernieri, C.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Butti, P.; Di Canto, A.; Donati, S.; Punzi, G.; Ronzani, M.; Sforza, F.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Ciocci, M. A.; Garosi, P.; Latino, G.; Maestro, P.; Ruffini, F.] Univ Siena, I-56127 Pisa, Italy. [Marino, P.; Morello, M. J.; Trovato, M.; Vernieri, C.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Introzzi, G.] Ist Nazl Fis Nucl, I-27100 Pavia, Italy. [Introzzi, G.] Univ Pavia, I-27100 Pavia, Italy. [Boudreau, J.; Gibson, K.; Nigmanov, T.; Shepard, P. F.; Song, H.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Barnes, V. E.; Bortoletto, D.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Liu, Q.; Ranjan, N.; Vidal, M.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Budd, H. S.; De Barbaro, P.; Han, J. Y.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA. [Giagu, S.; Iori, M.; Margaroli, F.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Asaadi, J.; Aurisano, A.; Cruz, D.; Elagin, A.; Eusebi, R.; Goldin, D.; Hong, Z.; Kamon, T.; Nett, J.; Thukral, V.; Toback, D.] Texas A&M Univ, Mitchell Inst Fundamental Phys & Astron, College Stn, TX 77843 USA. [Casarsa, M.; Cauz, D.; Dorigo, M.; Driutti, A.; Pagliarone, C.; Pauletta, G.; Santi, L.; Zanetti, A. M.] Ist Nazl Fis Nucl Trieste Udine, I-34127 Trieste, Italy. [Dorigo, M.] Univ Trieste, I-34127 Trieste, Italy. [Pauletta, G.] Univ Udine, I-33100 Udine, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Sato, K.; Shimojima, M.; Sudo, Y.; Takemasa, K.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.] Tufts Univ, Medford, MA 02155 USA. [Group, R. C.; Liu, H.; Neu, C.; Oksuzian, I.] Univ Virginia, Charlottesville, VA 22906 USA. [Arisawa, T.; Ebina, K.; Funakoshi, Y.; Kimura, N.; Kondo, K.; Naganoma, J.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Clarke, C.; Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Herndon, M.; Parker, W.; Pondrom, L.] Univ Wisconsin, Madison, WI 53706 USA. [Husemann, U.; Lockwitz, S.; Loginov, A.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Marino, Pietro/N-7030-2015; song, hao/I-2782-2012; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Martinez, Mario /I-3549-2015; Russ, James/P-3092-2014; vilar, rocio/P-8480-2014; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Robson, Aidan/G-1087-2011; maestro, paolo/E-3280-2010; Chiarelli, Giorgio/E-8953-2012; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Punzi, Giovanni/J-4947-2012; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014 OI ciocci, maria agnese /0000-0003-0002-5462; Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924; Marino, Pietro/0000-0003-0554-3066; song, hao/0000-0002-3134-782X; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Russ, James/0000-0001-9856-9155; Warburton, Andreas/0000-0002-2298-7315; maestro, paolo/0000-0002-4193-1288; Chiarelli, Giorgio/0000-0001-9851-4816; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Punzi, Giovanni/0000-0002-8346-9052; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787 FU U.S. Department of Energy; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean World Class University Program; National Research Foundation of Korea; Science and Technology Facilities Council; Royal Society, United Kingdom; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion; Programa Consolider-Ingenio, Spain; Slovak RD Agency; Academy of Finland; Australian Research Council (ARC); EU community Marie Curie Fellowship [302103]; National Science Foundation FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, United Kingdom; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; the Australian Research Council (ARC); and the EU community Marie Curie Fellowship Contract No. 302103. NR 35 TC 3 Z9 3 U1 3 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 23 PY 2013 VL 88 IS 3 AR 031103 DI 10.1103/PhysRevD.88.031103 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 207BX UT WOS:000323572800001 ER PT J AU Chen, CY Dev, PSB Mohapatra, RN AF Chen, Chien-Yi Dev, P. S. Bhupal Mohapatra, R. N. TI Probing heavy-light neutrino mixing in left-right seesaw models at the LHC SO PHYSICAL REVIEW D LA English DT Article ID LEFT-RIGHT SYMMETRY; DOUBLE-BETA DECAY; MAJORANA NEUTRINOS; LEPTON NUMBER; SPONTANEOUS VIOLATION; CP VIOLATION; PARITY; MASS; SEARCH; SCALE AB We show that in TeV scale left-right (L-R) symmetric seesaw models, there are new dominant contributions to the collider signals of heavy Majorana neutrinos arising from the heavy-light neutrino mixing, which directly probe the seesaw matrix in a certain class of models. We propose a way to distinguish this contribution from the widely discussed one that only probes the Majorana nature of the heavy right-handed neutrinos, by analyzing some simple kinematical variables. We find that in this class of L-R seesaw models the existing LHC data already yield slightly stronger constraints on the heavy-light neutrino mixing than those derived for standard seesaw models, and the improvement will be significant as more data are collected. C1 [Chen, Chien-Yi] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Dev, P. S. Bhupal] Univ Manchester, Sch Phys & Astron, Consortium Fundamental Phys, Manchester M13 9PL, Lancs, England. [Mohapatra, R. N.] Univ Maryland, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. [Mohapatra, R. N.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. RP Chen, CY (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. OI Dev, Bhupal/0000-0003-4655-2866 FU U.S. Department of Energy [DE-AC02-98CH10886]; Lancaster-Manchester-Sheffield Consortium for Fundamental Physics under STFC [ST/J000418/1]; National Science Foundation [PHY-0968854] FX C.-Y.C and P. S. B. D. thank Ian Lewis and Apostolos Pilaftsis for helpful discussions. P. S. B. D. also thanks the High Energy Theory group at BNL for hospitality where part of this work was carried out. The work of C.-Y.C. is supported by the U.S. Department of Energy under Grant No. DE-AC02-98CH10886, P. S. B. D. is supported by the Lancaster-Manchester-Sheffield Consortium for Fundamental Physics under STFC Grant No. ST/J000418/1, and R. N. M. is supported by National Science Foundation Grant No. PHY-0968854. NR 66 TC 43 Z9 43 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD AUG 23 PY 2013 VL 88 IS 3 AR 033014 DI 10.1103/PhysRevD.88.033014 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 207BX UT WOS:000323572800004 ER PT J AU Lamoreaux, SK van Bibber, KA Lehnert, KW Carosi, G AF Lamoreaux, S. K. van Bibber, K. A. Lehnert, K. W. Carosi, G. TI Analysis of single-photon and linear amplifier detectors for microwave cavity dark matter axion searches SO PHYSICAL REVIEW D LA English DT Article ID RYDBERG ATOMS; QUANTUM-NOISE; CIRCUIT AB We show that at higher frequencies, and thus higher axion masses, single-photon detectors become competitive and ultimately favored, when compared to quantum-limited linear amplifiers, as the detector technology in microwave cavity experimental searches for galactic halo dark matter axions. The crossover point in this comparison is of order 10 GHz (similar to 40 mu eV), not far above the frequencies of current searches. C1 [Lamoreaux, S. K.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [van Bibber, K. A.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Lehnert, K. W.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Lehnert, K. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Lehnert, K. W.] NIST, Boulder, CO 80309 USA. [Carosi, G.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Lamoreaux, SK (reprint author), Yale Univ, Dept Phys, POB 208120, New Haven, CT 06520 USA. EM steve.lamoreaux@yale.edu RI Lehnert, Konrad/B-7577-2009 OI Lehnert, Konrad/0000-0002-0750-9649 FU National Science Foundation [PHY-1067242, PHY-1306729]; U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was supported under the auspices of the National Science Foundation, under Grants No. PHY-1067242 and No. PHY-1306729, and the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 15 TC 7 Z9 7 U1 1 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 23 PY 2013 VL 88 IS 3 AR 035020 DI 10.1103/PhysRevD.88.035020 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 207BX UT WOS:000323572800007 ER PT J AU Tiburzi, BC AF Tiburzi, B. C. TI Chiral symmetry restoration from a boundary SO PHYSICAL REVIEW D LA English DT Article ID PERTURBATION-THEORY; QCD; HADRONS; QUARKS AB The boundary of a manifold can alter the phase of a theory in the bulk. We explore the possibility of a boundary-induced phase transition for the chiral symmetry of QCD. In particular, we investigate the consequences of imposing homogeneous Dirichlet boundary conditions on the quark fields. Such boundary conditions are sometimes employed in lattice gauge theory computations, for example, when including external electromagnetic fields, or when computing quark propagators with a reduced temporal extent. Homogeneous Dirichlet boundary conditions force the chiral condensate to vanish at the boundary, and thereby obstruct the spontaneous breaking of chiral symmetry in the bulk. We show the restoration of chiral symmetry due to a boundary is a nonperturbative phenomenon depending upon the mechanism of spontaneous symmetry breaking, and utilize the sigma model to exemplify the issues. Within this model, we find that chiral symmetry is completely restored if the length of the compact direction is less than 2.0 fm. For lengths greater than about 4 fm, an approximately uniform chiral condensate forms centered about the midpoint of the compact direction. While the volume-averaged condensate approaches the infinite volume value as the compact direction becomes very long, the finite-size corrections are shown to be power law rather than exponential. C1 [Tiburzi, B. C.] CUNY City Coll, Dept Phys, New York, NY 10031 USA. [Tiburzi, B. C.] CUNY Grad Sch & Univ Ctr, New York, NY 10016 USA. [Tiburzi, B. C.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Tiburzi, B. C.] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. RP Tiburzi, BC (reprint author), CUNY City Coll, Dept Phys, New York, NY 10031 USA. EM btiburzi@ccny.cuny.edu OI Tiburzi, Brian/0000-0001-8696-2902 FU CCNY-RBRC; PSC-CUNY; CUNY-JFRASE; U.S. National Science Foundation [PHY12-05778, PHY11-25915] FX Work supported in part by a joint CCNY-RBRC fellowship, a PSC-CUNY grant, a CUNY-JFRASE grant, and by the U.S. National Science Foundation, under Grant No. PHY12-05778. Completion of this work was carried out at the KITP, whose hospitality and partial support through the U.S. National Science Foundation, under Grant No. PHY11-25915, are gratefully acknowledged. Furthermore, we thank W. Detmold for useful comments. NR 36 TC 4 Z9 4 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 23 PY 2013 VL 88 IS 3 AR 034027 DI 10.1103/PhysRevD.88.034027 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 207BX UT WOS:000323572800005 ER PT J AU van der Drift, D Klein, SR AF van der Drift, Don Klein, Spencer R. TI Double neutrino production and detection in neutrino detectors SO PHYSICAL REVIEW D LA English DT Article ID HIGH-ENERGIES; KM3NET AB Large, high-energy (E > 100 GeV) cosmic neutrino telescopes are now quite mature. IceCube, for example, observes about 50 000 well-reconstructed single atmospheric neutrino events/year, with energies above 100 GeV. Although the neutrino detection probability is small, current detectors are large enough so that it is possible to detect two neutrinos from the same cosmic-ray interaction. In this paper, we calculate the expected rate of double-neutrino interactions from a single cosmic-ray air shower. The rate is small, about 0: 07 events/year for a 1 km(3) detector like IceCube, with only a small dependence on the assumed cosmic-ray composition and hadronic interaction model. For a larger detector, like the proposed KM3Net, the rate is about 0: 8 events/year, high enough to be easily observable. These double neutrino interactions are the major irreducible background to searches for pairs of supersymmetric particles produced in neutrino or cosmic-ray air-shower interactions. Other standard model backgrounds are considered, and found to be small. C1 [Klein, Spencer R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Klein, SR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM srklein@lbl.gov FU U.S. National Science Foundation [0653266]; U.S. Department of Energy [DE-AC-76SF00098] FX We thank Lisa Gerhardt for help with the Monte Carlo simulations and numerous useful discussions and Dave Seckel and Klaus Helbing for their insightful comments on an early draft of this paper. This work was supported in part by U.S. National Science Foundation under Grant No. 0653266 and the U.S. Department of Energy under Contract No. DE-AC-76SF00098. NR 25 TC 0 Z9 0 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG 23 PY 2013 VL 88 IS 3 AR 033013 DI 10.1103/PhysRevD.88.033013 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 207BX UT WOS:000323572800003 ER PT J AU Bazavov, A Ding, HT Hegde, P Kaczmarek, O Karsch, F Laermann, E Maezawa, Y Mukherjee, S Ohno, H Petreczky, P Schmidt, C Sharma, S Soeldner, W Wagner, M AF Bazavov, A. Ding, H. -T. Hegde, P. Kaczmarek, O. Karsch, F. Laermann, E. Maezawa, Y. Mukherjee, Swagato Ohno, H. Petreczky, P. Schmidt, C. Sharma, S. Soeldner, W. Wagner, M. TI Strangeness at High Temperatures: From Hadrons to Quarks SO PHYSICAL REVIEW LETTERS LA English DT Article ID GLUON PLASMA; PB COLLISIONS; QCD; TRANSITION; LHC AB Appropriate combinations of up to fourth order cumulants of net strangeness fluctuations and their correlations with net baryon number and electric charge fluctuations, obtained from lattice QCD calculations, have been used to probe the strangeness carrying degrees of freedom at high temperatures. For temperatures up to the chiral crossover, separate contributions of strange mesons and baryons can be well described by an uncorrelated gas of hadrons. Such a description breaks down in the chiral crossover region, suggesting that the deconfinement of strangeness takes place at the chiral crossover. On the other hand, the strangeness carrying degrees of freedom inside the quark gluon plasma can be described by a weakly interacting gas of quarks only for temperatures larger than twice the chiral crossover temperature. In the intermediate temperature window, these observables show considerably richer structures, indicative of the strongly interacting nature of the quark gluon plasma. C1 [Bazavov, A.; Ding, H. -T.; Karsch, F.; Maezawa, Y.; Mukherjee, Swagato; Petreczky, P.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Ding, H. -T.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Hegde, P.] Natl Taiwan Univ, High Energy Phys Lab, Dept Phys R518, Taipei 10617, Taiwan. [Kaczmarek, O.; Karsch, F.; Laermann, E.; Ohno, H.; Schmidt, C.; Sharma, S.; Wagner, M.] Univ Bielefeld, Fak Phys, D-33615 Bielefeld, Germany. [Soeldner, W.] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany. RP Bazavov, A (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. OI Mukherjee, Swagato/0000-0002-3824-1008; Ding, Heng-Tong/0000-0003-0590-081X; Schmidt, Christian/0000-0002-9071-4757 FU U.S. Department of Energy through the Scientific Discovery through Advanced Computing (SciDAC) Program; U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Nuclear Physics; BMBF [05P12PBCTA]; DFG [GRK 881]; EU [283286]; GSI BILAER; [DE-AC02-98CH10886] FX This work has been supported in part through Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy, through the Scientific Discovery through Advanced Computing (SciDAC) Program funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Nuclear Physics, the BMBF under Grant No. 05P12PBCTA, the DFG under Grant No. GRK 881, the EU under Grant No. 283286, and the GSI BILAER Grant. Numerical calculations have been performed using the USQCD GPU Clusters at JLab, the Bielefeld GPU Cluster, and the NYBlue at the NYCCS. We also thank Nvidia for supporting the code development for the Bielefeld GPU Cluster. NR 37 TC 51 Z9 51 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 23 PY 2013 VL 111 IS 8 AR 082301 DI 10.1103/PhysRevLett.111.082301 PG 5 WC Physics, Multidisciplinary SC Physics GA 207CM UT WOS:000323574600003 PM 24010429 ER PT J AU Becattini, F Bleicher, M Kollegger, T Schuster, T Steinheimer, J Stock, R AF Becattini, Francesco Bleicher, Marcus Kollegger, Thorsten Schuster, Tim Steinheimer, Jan Stock, Reinhard TI Hadron Formation in Relativistic Nuclear Collisions and the QCD Phase Diagram SO PHYSICAL REVIEW LETTERS LA English DT Article ID HEAVY-ION COLLISIONS; PB-PB COLLISIONS; TRANSITION; MODEL; LHC AB We study particle production in ultrarelativistic nuclear collisions at CERN SPS and LHC energies and the conditions of chemical freeze-out. We determine the effect of the inelastic reactions between hadrons occurring after hadronization and before chemical freeze-out employing the ultrarelativistic quantum molecular dynamics hybrid model. The differences between the initial and the final hadronic multiplicities after the rescattering stage resemble the pattern of data deviation from the statistical equilibrium calculations. By taking these differences into account in the statistical model analysis of the data, we are able to reconstruct the original hadrochemical equilibrium points in the (T, mu(B)) plane which significantly differ from chemical freeze-out ones and closely follow the parton-hadron phase boundary recently predicted by lattice quantum chromodynamics. C1 [Becattini, Francesco] Univ Florence, I-50019 Florence, Italy. [Becattini, Francesco] INFN Sez Firenze, I-50019 Florence, Italy. [Bleicher, Marcus; Kollegger, Thorsten; Stock, Reinhard] FIAS, D-60438 Frankfurt, Germany. [Schuster, Tim] Yale Univ, New Haven, CT 06520 USA. [Steinheimer, Jan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Stock, Reinhard] Goethe Univ Frankfurt, Inst Kernphys, D-60438 Frankfurt, Germany. RP Becattini, F (reprint author), Univ Florence, I-50019 Florence, Italy. RI Becattini, Francesco/I-6435-2012 FU Hessian LOEWE initiative through HIC for FAIR; Istituto Nazionale di Fisica Nucleare (INFN); U.S. DOE [DESC004168] FX We express our gratitude to the ALICE and NA49 collaborations for providing their preliminary data. This work was supported by the Hessian LOEWE initiative through HIC for FAIR, by the Istituto Nazionale di Fisica Nucleare (INFN), and in part by the U.S. DOE under Grant No. DESC004168. We are also grateful to the Center for Scientific Computing (CSC) at Frankfurt and to the INFN Sezione di Firenze for providing the computing resources. J. S. and T. S. were supported in part by the Alexander von Humboldt Foundation as Feodor Lynen Fellows. NR 41 TC 58 Z9 59 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 23 PY 2013 VL 111 IS 8 AR 082302 DI 10.1103/PhysRevLett.111.082302 PG 5 WC Physics, Multidisciplinary SC Physics GA 207CM UT WOS:000323574600004 PM 24010430 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Aguilo, E Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hammer, J Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Knunz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Pernicka, M Rahbaran, B Rohringer, C Rohringer, H Schofbeck, R Strauss, J Taurok, A Waltenberger, W Walzel, G Widl, E Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Bansal, M Bansal, S Cornelis, T De Wolf, EA Janssen, X Luyckx, S Mucibello, L Ochesanu, S Roland, B Rougny, R Selvaggi, M Staykova, Z Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Suarez, RG Kalogeropoulos, A Maes, M Olbrechts, A Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Clerbaux, B De Lentdecker, G Dero, V Gay, APR Hreus, T Leonard, A Marage, PE Mohammadi, A Reis, T Thomas, L Marcken, GV Velde, CV Vanlaer, P Wang, J Adler, V Beernaert, K Cimmino, A Costantini, S Garcia, G Grunewald, M Klein, B Lellouch, J Marinov, A Mccartin, J Rios, AAO Ryckbosch, D Strobbe, N Thyssen, F Tytgat, M Verwilligen, P Walsh, S Yazgan, E Zaganidis, N Basegmez, S Bruno, G Castello, R Ceard, L Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Lemaitre, V Liao, J Militaru, O Nuttens, C Pagano, D Pin, A Piotrzkowski, K Schul, N Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alves, GA Martins, M Martins, T Pol, ME Souza, MHG Alda, WL Carvalho, W Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Figueirodo, DM Mundim, L Nogima, H Oguri, V Da Silva, WLP Santoro, A Jorge, LS Sznajder, A Anjos, TS Bernardes, CA Dias, FA Tomei, TRP Gregores, EM Lagana, C Marinho, F Mercadante, PG Novaes, SF Padula, SS Genchev, V Iaydjiev, P Piperov, S Rodozov, M Stoykova, S Sultanov, G Tcholakov, V Trayanov, R Vutova, M Dimitrov, A Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Meng, X Tao, J Wang, J Wang, X Wang, Z Xiao, H Xu, M Zang, J Zhang, Z Asawatangtrakuldee, C Ban, Y Guo, Y Li, W Liu, S Mao, Y Qian, SJ Teng, H Wang, D Zhang, L Zou, W Avila, C Gomez, JP Moreno, BG Oliveros, AFO Sanabria, JC Godinovic, N Lelas, D Plestina, R Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Duric, S Kadija, K Luetic, J Morovic, S Attikis, A Galanti, M Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Finger, M Finger, M Assran, Y Elgammal, S Kamel, AE Mahmoud, MA Radi, A Kadastik, M Muntel, M Raidal, M Rebane, L Tiko, A Eerola, P Fedi, G Voutilainen, M Harkkonen, J Heikkinen, A Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Ungaro, D Wendland, L Banzuzi, K Karjalainen, A Korpela, A Tuuva, T Besancon, M Choudhury, S Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Millischer, L Nayak, A Rander, J Rosowsky, A Shreyber, I Titov, M Baffioni, S Beaudette, F Benhabib, L Bianchini, L Bluj, M Broutin, C Busson, P Charlot, C Daci, N Dahms, T Dalchenko, M Dobrzynski, L De Cassagnac, RG Haguenauer, M Mine, P Mironov, C Naranjo, IN Nguyen, M Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Veelken, C Zabi, A Agram, JL Andrea, J Bloch, D Bodin, D Brom, JM Cardaci, M Chabert, EC Collard, C Conte, E Drouhin, F Ferro, C Fontaine, JC Gele, D Goerlach, U Juillot, P Le Bihan, AC Van Hove, P Fassi, F Mercier, D Beauceron, S Beaupere, N Bondu, O Boudoul, G Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Sgandurra, L Sordini, V Tschudi, Y Verdier, P Viret, S Tsamalaidze, Z Anagnostou, G Autermann, C Beranek, S Edelhoff, M Feld, L Heracleous, N Hindrichs, O Jussen, R Klein, K Merz, J Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Wittmer, B Zhukov, V Ata, M Caudron, J Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Kreuzer, P Merschmeyer, M Meyer, A Olschewski, M Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Steggemann, J Teyssier, D Weber, M Bontenackels, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Lingemann, J Nowack, A Perchalla, L Pooth, O Sauerland, P Stahl, A Martin, MA Behr, J Behrenhoff, W Behrens, U Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Castro, E Costanza, F Dammann, D Pardos, CD Eckerlin, G Eckstein, D Flucke, G Geiser, A Glushkov, I Gunnellini, P Habib, S Hauk, J Hellwig, G Jung, H Kasemann, M Katsas, P Kleinwort, C Kluge, H Knutsson, A Kramer, M Krucker, D Kuznetsova, E Lange, W Lohmann, W Lutz, B Mankel, R Marfin, I Marienfeld, M Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Naumann-Emme, S Novgorodova, O Olzem, J Perrey, H Petrukhin, A Pitzl, D Raspereza, A Cipriano, PMR Riedl, C Ron, E Rosin, M Salfeld-Nebgen, J Schmidt, R Schoerner-Sadenius, T Sen, N Spiridonov, A Stein, M Walsh, R Wissing, C Blobel, V Draeger, J Enderle, H Erfle, J Gebbert, U Gornner, M Hermanns, T Hoing, RS Kaschube, K Kaussen, G Kirschenmann, H Klanner, R Lange, J Mura, B Nowak, F Peiffer, T Pietsch, N Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Schroder, M Schum, T Seidel, M Sibille, J Sola, V Stadie, H Steinbruck, G Thomsen, J Vanelderen, L Barth, C Berger, J Boser, C Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Guthoff, M Hackstein, C Hartmann, F Hauth, T Heinrich, M Held, H Hoffmann, KH Husemann, U Katkov, I Komaragiri, JR Pardo, PL Martschei, D Mueller, S Muller, T Niegel, M Nurnberg, A Oberst, O Oehler, A Ott, J Quast, G Rabbertz, K Ratnikov, F Ratnikova, N Rocker, S Schilling, FP Schott, G Simonis, HJ Stober, FM Troendle, D Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Zeise, M Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Manolakos, I Markou, A Markou, C Mavrommatis, C Ntomari, E Gouskos, L Mertzimekis, TJ Panagiotou, A Saoulidou, N Evangelou, I Foudas, C Kokkas, P Manthos, N Papadopoulos, I Patras, V Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Beni, N Czellar, S Molnar, J Palinkas, J Szillasi, Z Karancsi, J Raics, P Trocsanyi, ZL Ujvari, B Beri, SB Bhatnagar, V Dhingra, N Gupta, R Kaur, M Mehta, MZ Nishu, N Saini, LK Sharma, A Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Malhotra, S Naimuddin, M Ranjan, K Sharma, V Shivpuri, RK Banerjee, S Bhattacharya, S Dutta, S Gomber, B Jain, S Jain, S Khurana, R Sarkar, S Sharan, M Abdulsalam, A Choudhury, RK Dutta, D Kailas, S Kumar, V Mehta, P Mohanty, AK Pant, LM Shukla, P Aziz, T Ganguly, S Guchait, M Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Banerjee, S Dugad, S Arfaei, H Bakhshiansohi, H Etesami, SM Fahim, A Hashemi, M Hesari, H Jafari, A Khakzad, M Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M Marangelli, B My, S Nuzzo, S Pacifico, N Pompili, A Pugliese, G Selvaggi, G Silvestris, L Singh, G Venditti, R Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Capiluppi, P Castro, A Cavallo, FR Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, GP Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Gonzi, S Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Colafranceschi, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Tosi, S Benaglia, A De Guio, F Di Matteo, L Fiorendi, S Gennai, S Ghezzi, A Malvezzi, S Manzoni, RA Martelli, A Massironi, A Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N Sala, S de Fatis, TT Buontempo, S Montoya, CAC Cavallo, N De Cosa, A Dogangun, O Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Bisello, D Branca, A Carlin, R Checchia, P Dorigo, T Gasparini, F Gasparini, U Gozzelino, A Kanishchev, K Lacaprara, S Lazzizzera, I Margoni, M Meneguzzo, AT Pazzini, J Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Vanini, S Zotto, P Zucchetta, A Zumerle, G Gabusi, M Ratti, SP Riccardi, C Torre, P Vitulo, P Biasini, M Bilei, GM Fano, L Lariccia, P Mantovani, G Menichelli, M Nappi, A Romeo, F Saha, A Santocchia, A Spiezia, A Taroni, S Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R D'Agnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Rizzi, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Del Re, D Diemoz, M Fanelli, C Grassi, M Longo, E Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Sigamani, M Soffi, L Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Cartiglia, N Costa, M Demaria, N Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Pereira, AV Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B Marone, M Montanino, D Penzo, A Schizzi, A Heo, SG Kim, TY Nam, SK Chang, S Kim, DH Kim, GN Kong, DJ Park, H Ro, SR Son, DC Son, T Kim, JY Kim, ZJ Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, TJ Lee, KS Moon, DH Park, SK Choi, M Kim, JH Park, C Park, IC Park, S Ryu, G Cho, Y Choi, Y Choi, YK Goh, J Kim, MS Kwon, E Lee, B Lee, J Lee, S Seo, H Yu, I Bilinskas, MJ Grigelionis, I Janulis, M Juodagalvis, A Castilla-Valdez, H De La Cruz-Burelo, E Heredia-de La Cruz, I Lopez-Fernandez, R Villalba, RM Martinez-Ortega, J Sanchez-Hernandez, A Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Krofcheck, D Bell, AJ Butler, PH Doesburg, R Reucroft, S Silverwood, H Ahmad, M Ansari, MH Asghar, MI Butt, J Hoorani, HR Khalid, S Khan, WA Khurshid, T Qazi, S Shah, MA Shoaib, M Bialkowska, H Boimska, B Frueboes, T Gokieli, R Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Almeida, N Bargassa, P David, A Faccioli, P Parracho, PGF Gallinaro, M Seixas, J Varela, J Vischia, P Belotelov, I Bunin, P Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Kozlov, G Lanev, A Malakhov, A Moisenz, P Palichik, V Perelygin, V Savina, M Shmatov, S Smirnov, V Volodko, A Zarubin, A Evstyukhin, S Golovtsov, V Ivanov, Y Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Matveev, V Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Erofeeva, M Gavrilov, V Kossov, M Lychkovskaya, N Popov, V Safronov, G Semenov, S Stolin, V Vlasov, E Zhokin, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Markina, A Obraztsov, S Perfilov, M Petrushanko, S Popov, A Sarycheva, L Savrin, V Snigirev, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Azhgirey, I Bayshev, I Bitioukov, S Grishin, V Kachanov, V Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Ekmedzic, M Krpic, D Milosevic, J Aguilar-Benitez, M Maestre, JA Arce, P Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De la Cruz, B Peris, AD Vazquez, D Bedoya, CF Ramos, JP Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G Pelayo, JP Olmeda, AQ Redondo, I Romero, L Santaolalla, J Soares, MS Willmott, C Codispoti, G de Troconiz, JF Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Gomez, JP Cifuentes, JAB Cabrillo, IJ Calderon, A Chuang, SH Campderros, JD Felcini, M Fernandez, M Gomez, G Sanchez, JG Graziano, A Jorda, C Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Benitez, JF Bernet, C Bianchi, G Bloch, P Bocci, A Bonato, A Botta, C Breuker, H Camporesi, T Cerminara, G Christiansen, T Perez, JAC D'Enterria, D Dabrowski, A De Roeck, A Di Guida, S Dobson, M Dupont-Sagorin, N Elliott-Peisert, A Frisch, B Funk, W Georgiou, G Giffels, M Gigi, D Gill, K Giordano, D Girone, M Giunta, M Glege, F Garrido, RGR Govoni, P Gowdy, S Guida, R Hansen, M Harris, P Hartl, C Harvey, J Hegner, B Hinzmann, A Innocente, V Janot, P Kaadze, K Karavakis, E Kousouris, K Lecoq, P Lee, YJ Lenzi, P Lourenco, C Magini, N Maki, T Malberti, M Malgeri, L Mannelli, M Masetti, L Meijers, F Mersi, S Meschi, E Moser, R Mozer, MU Mulders, M Musella, P Nesvold, E Orimoto, T Orsini, L Cortezon, EP Perez, E Perrozzi, L Petrilli, A Pfeiffer, A Pierini, M Pimia, M Piparo, D Polese, G Quertenmont, L Racz, A Reece, W Antunes, JR Rolandi, G Rovelli, C Rovere, M Sakulin, H Santanastasio, F Schafter, C Schwick, C Segoni, I Sekmen, S Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Tsirou, A Veres, GI Vlimant, JR Wohri, HK Worm, SD Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Meier, F Renker, D Rohe, T Bani, L Bortignon, P Buchmann, MA Casal, B Chanon, N Deisher, A Dissertori, G Dittmar, M Donega, M Dunser, M Eugster, J Freudenreich, K Grab, C Hits, D Lecomte, P Lustermann, W Marini, AC del Arbol, PMR Mohr, N Moortgat, F Nageli, C Nef, P Nessi-Tedaldi, F Pandolfi, F Pape, L Pauss, F Peruzzi, M Ronga, FJ Rossini, M Sala, L Sanchez, AK Starodumov, A Stieger, B Takahashi, M Tauscher, L Thea, A Theofilatos, K Treille, D Urscheler, C Wallny, R Weber, HA Wehrli, L Amsler, C Chiochia, V De Visscher, S Favaro, C Rikova, MI Mejias, BM Otiougova, P Robmann, P Snoek, H Tupputi, S Verzetti, M Chang, YH Chen, KH Kuo, CM Li, SW Lin, W Liu, ZK Lu, YJ Mekterovic, D Singh, AP Volpe, R Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Dietz, C Grundler, U Hou, WS Hsiung, Y Kao, KY Lei, YJ Lu, RS Majumder, D Petrakou, E Shi, X Shiu, JG Tzeng, YM Wan, X Wang, M Asavapibhop, B Srimanobhas, N Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Karaman, T Karapinar, G Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Vergili, LN Vergili, M Akin, IV Aliev, T Bilin, B Bilmis, S Deniz, M Gamsizkan, H Guler, AM Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yalvac, M Yildirim, E Zeyrek, M Gulmez, E Isildak, B Kaya, M Kaya, O Ozkorucuklu, S Sonmez, N Cankocak, K Levchuk, L Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Kreczko, L Metson, S Newbold, DM Nirunpong, K Poll, A Senkin, S Smith, VJ Williams, T Basso, L Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Jackson, J Kennedy, BW Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Bainbridge, R Ball, G Beuselinck, R Buchmuller, O Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Ferguson, W Fulcher, J Futyan, D Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Lyons, L Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Papageorgiou, A Pela, J Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rose, A Ryan, MJ Seez, C Sharp, P Sparrow, A Stoye, M Tapper, A Acosta, MV Virdee, T Wakefield, S Wardle, N Whyntie, T Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Hatakeyama, K Liu, H Scarborough, T Charaf, O Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Heister, A St John, J Lawson, P Lazic, D Rohlf, J Sperka, D Sulak, L Alimena, J Bhattacharya, S Cutts, D Demiragli, Z Ferapontov, A Garabedian, A Heintz, U Jabeen, S Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Nguyen, D Segala, M Sinthuprasith, T Speer, T Tsang, KV Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Dolen, J Erbacher, R Gardner, M Houtz, R Ko, W Kopecky, A Lander, R Mall, O Miceli, T Pellett, D Ricci-Tam, F Rutherford, B Searle, M Smith, J Squires, M Tripathi, M Sierra, RV Yohay, R Andreev, V Cline, D Cousins, R Duris, J Erhan, S Everaerts, P Farrell, C Hauser, J Ignatenko, M Jarvis, C Plager, C Rakness, G Schlein, P Traczyk, P Valuev, V Weber, M Babb, J Clare, R Dinardo, ME Ellison, J Gary, JW Giordano, F Hanson, G Jeng, GY Liu, H Long, OR Luthra, A Nguyen, H Paramesvaran, S Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S Evans, D Golf, F Holzner, A Kelley, R Lebourgeois, M Letts, J Macneill, I Mangano, B Padhi, S Palmer, C Petrucciani, G Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Wasserbaech, S Wurthwein, F Yagil, A Yoo, J Barge, D Bellan, R Campagnari, C D'Alfonso, M Danielson, T Flowers, K Geffert, P Incandela, J Justus, C Kalavase, P Koay, SA Kovalskyi, D Krutelyov, V Lowette, S Mccoll, N Pavlunin, V Rebassoo, F Ribnik, J Richman, J Rossin, R Stuart, D To, W West, C Apresyan, A Bornheim, A Chen, Y Di Marco, E Duarte, J Gataullin, M Ma, Y Mott, A Newman, HB Rogan, C Spiropulu, M Timciuc, V Veverka, J Wilkinson, R Xie, S Yang, Y Zhu, RY Akgun, B Azzolini, V Calamba, A Carroll, R Ferguson, T Iiyama, Y Jang, DW Liu, YF Paulini, M Vogel, H Vorobiev, I Cumalat, JP Drell, BR Ford, WT Gaz, A Lopez, EL Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Eggert, N Gibbons, LK Heltsley, B Khukhunaishvili, A Kreis, B Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Sun, W Teo, WD Thom, J Thompson, J Tucker, J Vaughan, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bloch, I Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Elvira, VD Fisk, I Freeman, J Gao, Y Green, D Gutsche, O Hanlon, J Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Kilminster, B Klima, B Kunori, S Kwan, S Leonidopoulos, C Linacre, J Lincoln, D Lipton, R Lykken, J Maeshima, K Marraffino, JM Maruyama, S Mason, D McBride, P Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Prokofyev, O Sexton-Kennedy, E Sharma, S Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yang, F Yumiceva, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Cheng, T Das, S De Gruttola, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fisher, M Fu, Y Furic, IK Gartner, J Hugon, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Park, M Remington, R Rinkevicius, A Sellers, P Skhirtladze, N Snowball, M Yelton, J Zakaria, M Gaultney, V Hewamanage, S Lebolo, LM Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Jenkins, M Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Dorney, B Hohlmann, M Kalakhety, H Vodopiyanov, I Adams, MR Anghel, IM Apanasevich, L Bai, Y Bazterra, VE Betts, RR Bucinskaite, I Callner, J Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Lacroix, F Malek, M O'Brien, C Silkworth, C Strom, D Turner, P Varelas, N Akgun, U Albayrak, EA Bilki, B Clarida, W Duru, F Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Norbeck, E Onel, Y Ozok, F Sen, S Tan, P Tiras, E Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Giurgiu, G Gritsan, AV Guo, ZJ Hu, G Maksimovic, P Rappoccio, S Swartz, M Whitbeck, A Baringer, P Bean, A Benelli, G Kenny, RP Murray, M Noonan, D Sanders, S Stringer, R Tinti, G Wood, JS Zhukova, V Barfuss, AF Bolton, T Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Shrestha, S Svintradze, I Gronberg, J Lange, D Wright, D Baden, A Boutemeur, M Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kirn, M Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Skuja, A Temple, J Tonjes, MB Tonwar, SC Twedt, E Apyan, A Bauer, G Bendavid, J Busza, W Butz, E Cali, IA Chan, M Dutta, V Ceballos, GG Goncharov, M Hahn, KA Kim, Y Klute, M Krajczar, K Luckey, PD Ma, T Nahn, S Paus, C Ralph, D Roland, C Roland, G Rudolph, M Stephans, GSF Stockli, F Sumorok, K Sung, K Velicanu, D Wenger, EA Wolf, R Wyslouch, B Yang, M Yilmaz, Y Yoon, AS Zanetti, M Cooper, SI Dahmes, B De Benedetti, A Franzoni, G Gude, A Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Sasseville, M Singovsky, A Tambe, N Turkewitz, J Cremaldi, LM Kroeger, R Perera, L Rahmat, R Sanders, DA Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Eads, M Keller, J Kravchenko, I Lazo-Flores, J Malbouisson, H Malik, S Snow, GR Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Nash, D Trocino, D Wood, D Zhang, J Anastassov, A Kubik, A Lusito, L Mucia, N Odell, N Ofierzynski, RA Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Antonelli, L Berry, D Brinkerhoff, A Chan, KM Hildreth, M Jessop, C Karmgard, DJ Kolb, J Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Planer, M Ruchti, R Slaunwhite, J Valls, N Wayne, M Wolf, M Bylsma, B Durkin, LS Hill, C Hughes, R Kotov, K Ling, TY Puigh, D Rodenburg, M Vuosalo, C Williams, G Winer, BL Adam, N Berry, E Elmer, P Gerbaudo, D Halyo, V Hebda, P Hegeman, J Hunt, A Jindal, P Pegna, DL Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Raval, A Safdi, B Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Brownson, E Lopez, A Mendez, H Vargas, JER Alagoz, E Barnes, VE Benedetti, D Bolla, G Bortoletto, D De Mattia, M Everett, A Hu, Z Jones, M Koybasi, O Kress, M Laasanen, AT Leonardo, N Maroussov, V Merkel, P Miller, DH Neumeister, N Shipsey, I Silvers, D Svyatkovskiy, A Marono, MV Yoo, HD Zablocki, J Zheng, Y Guragain, S Parashar, N Adair, A Boulahouache, C Ecklund, KM Geurts, FJM Li, W Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Chung, YS Covarelli, R De Barbaro, P Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Miner, DC Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Malik, S Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Lath, A Panwalkar, S Park, M Patel, R Rekovic, V Robles, J Rose, K Salur, S Schnetzer, S Seitz, C Somalwar, S Stone, R Thomas, S Walker, M Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Safonov, A Sakuma, T Sengupta, S Suarez, I Tatarinov, A Toback, D Akchurin, N Damgov, J Dragoiu, C Dudero, PR Jeong, C Kovitanggoon, K Lee, SW Libeiro, T Roh, Y Volobouev, I Appelt, E Delannoy, AG Florez, C Greene, S Gurrola, A Johns, W Kurt, P Maguire, C Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Balazs, M Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Lin, C Neu, C Wood, J Gollapinni, S Harr, R Karchin, PE Don, CKK Lamichhane, P Sakharov, A Anderson, M Belknap, DA Borrello, L Carlsmith, D Cepeda, M Dasu, S Friis, E Gray, L Grogg, KS Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Klukas, J Lanaro, A Lazaridis, C Leonard, J Loveless, R Mohapatra, A Ojalvo, I Palmonari, F Pierro, GA Ross, I Savin, A Smith, WH Swanson, J AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Aguilo, E. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruhwirth, R. Ghete, V. M. Hammer, J. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Kratschmer, I. Liko, D. Mikulec, I. Pernicka, M. Rahbaran, B. Rohringer, C. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Waltenberger, W. Walzel, G. Widl, E. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Bansal, M. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Luyckx, S. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Selvaggi, M. Staykova, Z. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Suarez, R. Gonzalez Kalogeropoulos, A. Maes, M. Olbrechts, A. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Clerbaux, B. De Lentdecker, G. Dero, V. Gay, A. P. R. Hreus, T. Leonard, A. Marage, P. E. Mohammadi, A. Reis, T. Thomas, L. Marcken, G. Vander Velde, C. Vander Vanlaer, P. Wang, J. Adler, V. Beernaert, K. Cimmino, A. Costantini, S. Garcia, G. Grunewald, M. Klein, B. Lellouch, J. Marinov, A. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Strobbe, N. Thyssen, F. Tytgat, M. Verwilligen, P. Walsh, S. Yazgan, E. Zaganidis, N. Basegmez, S. Bruno, G. Castello, R. Ceard, L. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Lemaitre, V. Liao, J. Militaru, O. Nuttens, C. Pagano, D. Pin, A. Piotrzkowski, K. Schul, N. Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alves, G. A. Correa Martins Junior, M. Martins, T. Pol, M. E. Souza, M. H. G. Alda Junior, W. L. Carvalho, W. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Matos Figueirodo, D. Mundim, L. Nogima, H. Oguri, V. Prado Da Silva, W. L. Santoro, A. Soares Jorge, L. Sznajder, A. Anjos, T. S. Bernardes, C. A. Dias, F. A. Fernandez Perez Tomei, T. R. Gregores, E. M. Lagana, C. Marinho, F. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Genchev, V. Iaydjiev, P. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Tcholakov, V. Trayanov, R. Vutova, M. Dimitrov, A. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Meng, X. Tao, J. Wang, J. Wang, X. Wang, Z. Xiao, H. Xu, M. Zang, J. Zhang, Z. Asawatangtrakuldee, C. Ban, Y. Guo, Y. Li, W. Liu, S. Mao, Y. Qian, S. J. Teng, H. Wang, D. Zhang, L. Zou, W. Avila, C. Gomez, J. P. Gomez Moreno, B. Osorio Oliveros, A. F. Sanabria, J. C. Godinovic, N. Lelas, D. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Duric, S. Kadija, K. Luetic, J. Morovic, S. Attikis, A. Galanti, M. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Finger, M. Finger, M., Jr. Assran, Y. Elgammal, S. Kamel, A. Ellithi Mahmoud, M. A. Radi, A. Kadastik, M. Muentel, M. Raidal, M. Rebane, L. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Harkkonen, J. Heikkinen, A. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Ungaro, D. Wendland, L. Banzuzi, K. Karjalainen, A. Korpela, A. Tuuva, T. Besancon, M. Choudhury, S. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Millischer, L. Nayak, A. Rander, J. Rosowsky, A. Shreyber, I. Titov, M. Baffioni, S. Beaudette, F. Benhabib, L. Bianchini, L. Bluj, M. Broutin, C. Busson, P. Charlot, C. Daci, N. Dahms, T. Dalchenko, M. Dobrzynski, L. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Naranjo, I. N. Nguyen, M. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Veelken, C. Zabi, A. Agram, J. -L. Andrea, J. Bloch, D. Bodin, D. Brom, J. -M. Cardaci, M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Ferro, C. Fontaine, J. -C. Gele, D. Goerlach, U. Juillot, P. Le Bihan, A. -C. Van Hove, P. Fassi, F. Mercier, D. Beauceron, S. Beaupere, N. Bondu, O. Boudoul, G. Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Sgandurra, L. Sordini, V. Tschudi, Y. Verdier, P. Viret, S. Tsamalaidze, Z. Anagnostou, G. Autermann, C. Beranek, S. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Jussen, R. Klein, K. Merz, J. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Caudron, J. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Kreuzer, P. Merschmeyer, M. Meyer, A. Olschewski, M. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Steggemann, J. Teyssier, D. Weber, M. Bontenackels, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Lingemann, J. Nowack, A. Perchalla, L. Pooth, O. Sauerland, P. Stahl, A. Martin, M. Aldaya Behr, J. Behrenhoff, W. Behrens, U. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Castro, E. Costanza, F. Dammann, D. Pardos, C. Diez Eckerlin, G. Eckstein, D. Flucke, G. Geiser, A. Glushkov, I. Gunnellini, P. Habib, S. Hauk, J. Hellwig, G. Jung, H. Kasemann, M. Katsas, P. Kleinwort, C. Kluge, H. Knutsson, A. Kraemer, M. Kruecker, D. Kuznetsova, E. Lange, W. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Marienfeld, M. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Naumann-Emme, S. Novgorodova, O. Olzem, J. Perrey, H. Petrukhin, A. Pitzl, D. Raspereza, A. Cipriano, P. M. Ribeiro Riedl, C. Ron, E. Rosin, M. Salfeld-Nebgen, J. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Spiridonov, A. Stein, M. Walsh, R. Wissing, C. Blobel, V. Draeger, J. Enderle, H. Erfle, J. Gebbert, U. Goernner, M. Hermanns, T. Hoeing, R. S. Kaschube, K. Kaussen, G. Kirschenmann, H. Klanner, R. Lange, J. Mura, B. Nowak, F. Peiffer, T. Pietsch, N. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Schroeder, M. Schum, T. Seidel, M. Sibille, J. Sola, V. Stadie, H. Steinbrueck, G. Thomsen, J. Vanelderen, L. Barth, C. Berger, J. Boeser, C. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Guthoff, M. Hackstein, C. Hartmann, F. Hauth, T. Heinrich, M. Held, H. Hoffmann, K. H. Husemann, U. Katkov, I. Komaragiri, J. R. Pardo, P. Lobelle Martschei, D. Mueller, S. Mueller, Th. Niegel, M. Nuernberg, A. Oberst, O. Oehler, A. Ott, J. Quast, G. Rabbertz, K. Ratnikov, F. Ratnikova, N. Roecker, S. Schilling, F. -P. Schott, G. Simonis, H. J. Stober, F. M. Troendle, D. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Zeise, M. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Manolakos, I. Markou, A. Markou, C. Mavrommatis, C. Ntomari, E. Gouskos, L. Mertzimekis, T. J. Panagiotou, A. Saoulidou, N. Evangelou, I. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Patras, V. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Beni, N. Czellar, S. Molnar, J. Palinkas, J. Szillasi, Z. Karancsi, J. Raics, P. Trocsanyi, Z. L. Ujvari, B. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Kaur, M. Mehta, M. Z. Nishu, N. Saini, L. K. Sharma, A. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Malhotra, S. Naimuddin, M. Ranjan, K. Sharma, V. Shivpuri, R. K. Banerjee, S. Bhattacharya, S. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Sarkar, S. Sharan, M. Abdulsalam, A. Choudhury, R. K. Dutta, D. Kailas, S. Kumar, V. Mehta, P. Mohanty, A. K. Pant, L. M. Shukla, P. Aziz, T. Ganguly, S. Guchait, M. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Arfaei, H. Bakhshiansohi, H. Etesami, S. M. Fahim, A. Hashemi, M. Hesari, H. Jafari, A. Khakzad, M. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pompili, A. Pugliese, G. Selvaggi, G. Silvestris, L. Singh, G. Venditti, R. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Capiluppi, P. Castro, A. Cavallo, F. R. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. P. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Gonzi, S. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Colafranceschi, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Tosi, S. Benaglia, A. De Guio, F. Di Matteo, L. Fiorendi, S. Gennai, S. Ghezzi, A. Malvezzi, S. Manzoni, R. A. Martelli, A. Massironi, A. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. Sala, S. de Fatis, T. Tabarelli Buontempo, S. Montoya, C. A. Carrillo Cavallo, N. De Cosa, A. Dogangun, O. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dorigo, T. Gasparini, F. Gasparini, U. Gozzelino, A. Kanishchev, K. Lacaprara, S. Lazzizzera, I. Margoni, M. Meneguzzo, A. T. Pazzini, J. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Vanini, S. Zotto, P. Zucchetta, A. Zumerle, G. Gabusi, M. Ratti, S. P. Riccardi, C. Torre, P. Vitulo, P. Biasini, M. Bilei, G. M. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Nappi, A. Romeo, F. Saha, A. Santocchia, A. Spiezia, A. Taroni, S. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. D'Agnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Rizzi, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Del Re, D. Diemoz, M. Fanelli, C. Grassi, M. Longo, E. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Sigamani, M. Soffi, L. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Cartiglia, N. Costa, M. Demaria, N. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Pereira, A. Vilela Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. Marone, M. Montanino, D. Penzo, A. Schizzi, A. Heo, S. G. Kim, T. Y. Nam, S. K. Chang, S. Kim, D. H. Kim, G. N. Kong, D. J. Park, H. Ro, S. R. Son, D. C. Son, T. Kim, J. Y. Kim, Zero J. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, T. J. Lee, K. S. Moon, D. H. Park, S. K. Choi, M. Kim, J. H. Park, C. Park, I. C. Park, S. Ryu, G. Cho, Y. Choi, Y. Choi, Y. K. Goh, J. Kim, M. S. Kwon, E. Lee, B. Lee, J. Lee, S. Seo, H. Yu, I. Bilinskas, M. J. Grigelionis, I. Janulis, M. Juodagalvis, A. Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-de La Cruz, I. Lopez-Fernandez, R. Magana Villalba, R. Martinez-Ortega, J. Sanchez-Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Vazquez Valencia, F. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Reyes-Santos, M. A. Krofcheck, D. Bell, A. J. Butler, P. H. Doesburg, R. Reucroft, S. Silverwood, H. Ahmad, M. Ansari, M. H. Asghar, M. I. Butt, J. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Qazi, S. Shah, M. A. Shoaib, M. Bialkowska, H. Boimska, B. Frueboes, T. Gokieli, R. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Almeida, N. Bargassa, P. David, A. Faccioli, P. Parracho, P. G. Ferreira Gallinaro, M. Seixas, J. Varela, J. Vischia, P. Belotelov, I. Bunin, P. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Kozlov, G. Lanev, A. Malakhov, A. Moisenz, P. Palichik, V. Perelygin, V. Savina, M. Shmatov, S. Smirnov, V. Volodko, A. Zarubin, A. Evstyukhin, S. Golovtsov, V. Ivanov, Y. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Matveev, V. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Erofeeva, M. Gavrilov, V. Kossov, M. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Stolin, V. Vlasov, E. Zhokin, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Markina, A. Obraztsov, S. Perfilov, M. Petrushanko, S. Popov, A. Sarycheva, L. Savrin, V. Snigirev, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Grishin, V. Kachanov, V. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Ekmedzic, M. Krpic, D. Milosevic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Arce, P. Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De la Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Santaolalla, J. Soares, M. S. Willmott, C. Codispoti, G. de Troconiz, J. F. Brun, H. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Piedra Gomez, J. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Chuang, S. H. Duarte Campderros, J. Felcini, M. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Graziano, A. Jorda, C. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Benitez, J. F. Bernet, C. Bianchi, G. Bloch, P. Bocci, A. Bonato, A. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa D'Enterria, D. Dabrowski, A. De Roeck, A. Di Guida, S. Dobson, M. Dupont-Sagorin, N. Elliott-Peisert, A. Frisch, B. Funk, W. Georgiou, G. Giffels, M. Gigi, D. Gill, K. Giordano, D. Girone, M. Giunta, M. Glege, F. Garrido, R. Gomez-Reino Govoni, P. Gowdy, S. Guida, R. Hansen, M. Harris, P. Hartl, C. Harvey, J. Hegner, B. Hinzmann, A. Innocente, V. Janot, P. Kaadze, K. Karavakis, E. Kousouris, K. Lecoq, P. Lee, Y. -J. Lenzi, P. Lourenco, C. Magini, N. Maeki, T. Malberti, M. Malgeri, L. Mannelli, M. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mozer, M. U. Mulders, M. Musella, P. Nesvold, E. Orimoto, T. Orsini, L. Cortezon, E. Palencia Perez, E. Perrozzi, L. Petrilli, A. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Polese, G. Quertenmont, L. Racz, A. Reece, W. Antunes, J. Rodrigues Rolandi, G. Rovelli, C. Rovere, M. Sakulin, H. Santanastasio, F. Schaefter, C. Schwick, C. Segoni, I. Sekmen, S. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Tsirou, A. Veres, G. I. Vlimant, J. R. Woehri, H. K. Worm, S. D. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Meier, F. Renker, D. Rohe, T. Baeni, L. Bortignon, P. Buchmann, M. A. Casal, B. Chanon, N. Deisher, A. Dissertori, G. Dittmar, M. Donega, M. Duenser, M. Eugster, J. Freudenreich, K. Grab, C. Hits, D. Lecomte, P. Lustermann, W. Marini, A. C. del Arbol, P. Martinez Ruiz Mohr, N. Moortgat, F. Naegeli, C. Nef, P. Nessi-Tedaldi, F. Pandolfi, F. Pape, L. Pauss, F. Peruzzi, M. Ronga, F. J. Rossini, M. Sala, L. Sanchez, A. K. Starodumov, A. Stieger, B. Takahashi, M. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Urscheler, C. Wallny, R. Weber, H. A. Wehrli, L. Amsler, C. Chiochia, V. De Visscher, S. Favaro, C. Rikova, M. Ivova Mejias, B. Millan Otiougova, P. Robmann, P. Snoek, H. Tupputi, S. Verzetti, M. Chang, Y. H. Chen, K. H. Kuo, C. M. Li, S. W. Lin, W. Liu, Z. K. Lu, Y. J. Mekterovic, D. Singh, A. P. Volpe, R. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Dietz, C. Grundler, U. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lu, R. -S. Majumder, D. Petrakou, E. Shi, X. Shiu, J. G. Tzeng, Y. M. Wan, X. Wang, M. Asavapibhop, B. Srimanobhas, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Karaman, T. Karapinar, G. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, L. N. Vergili, M. Akin, I. V. Aliev, T. Bilin, B. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yalvac, M. Yildirim, E. Zeyrek, M. Gulmez, E. Isildak, B. Kaya, M. Kaya, O. Ozkorucuklu, S. Sonmez, N. Cankocak, K. Levchuk, L. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Kreczko, L. Metson, S. Newbold, D. M. Nirunpong, K. Poll, A. Senkin, S. Smith, V. J. Williams, T. Basso, L. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Jackson, J. Kennedy, B. W. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Bainbridge, R. Ball, G. Beuselinck, R. Buchmuller, O. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Lyons, L. Magnan, A. -M. Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Papageorgiou, A. Pela, J. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rose, A. Ryan, M. J. Seez, C. Sharp, P. Sparrow, A. Stoye, M. Tapper, A. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Whyntie, T. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Hatakeyama, K. Liu, H. Scarborough, T. Charaf, O. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Heister, A. St John, J. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. Sulak, L. Alimena, J. Bhattacharya, S. Cutts, D. Demiragli, Z. Ferapontov, A. Garabedian, A. Heintz, U. Jabeen, S. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Nguyen, D. Segala, M. Sinthuprasith, T. Speer, T. Tsang, K. V. Breedon, R. Breto, G. Sanchez, M. Calderon De La Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Dolen, J. Erbacher, R. Gardner, M. Houtz, R. Ko, W. Kopecky, A. Lander, R. Mall, O. Miceli, T. Pellett, D. Ricci-Tam, F. Rutherford, B. Searle, M. Smith, J. Squires, M. Tripathi, M. Sierra, R. Vasquez Yohay, R. Andreev, V. Cline, D. Cousins, R. Duris, J. Erhan, S. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Jarvis, C. Plager, C. Rakness, G. Schlein, P. Traczyk, P. Valuev, V. Weber, M. Babb, J. Clare, R. Dinardo, M. E. Ellison, J. Gary, J. W. Giordano, F. Hanson, G. Jeng, G. Y. Liu, H. Long, O. R. Luthra, A. Nguyen, H. Paramesvaran, S. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. Evans, D. Golf, F. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Macneill, I. Mangano, B. Padhi, S. Palmer, C. Petrucciani, G. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Wuerthwein, F. Yagil, A. Yoo, J. Barge, D. Bellan, R. Campagnari, C. D'Alfonso, M. Danielson, T. Flowers, K. Geffert, P. Incandela, J. Justus, C. Kalavase, P. Koay, S. A. Kovalskyi, D. Krutelyov, V. Lowette, S. Mccoll, N. Pavlunin, V. Rebassoo, F. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. West, C. Apresyan, A. Bornheim, A. Chen, Y. Di Marco, E. Duarte, J. Gataullin, M. Ma, Y. Mott, A. Newman, H. B. Rogan, C. Spiropulu, M. Timciuc, V. Veverka, J. Wilkinson, R. Xie, S. Yang, Y. Zhu, R. Y. Akgun, B. Azzolini, V. Calamba, A. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Liu, Y. F. Paulini, M. Vogel, H. Vorobiev, I. Cumalat, J. P. Drell, B. R. Ford, W. T. Gaz, A. Lopez, E. Luiggi Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Eggert, N. Gibbons, L. K. Heltsley, B. Khukhunaishvili, A. Kreis, B. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Vaughan, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bloch, I. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Green, D. Gutsche, O. Hanlon, J. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Kilminster, B. Klima, B. Kunori, S. Kwan, S. Leonidopoulos, C. Linacre, J. Lincoln, D. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Maruyama, S. Mason, D. McBride, P. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Sexton-Kennedy, E. Sharma, S. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yang, F. Yumiceva, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Cheng, T. Das, S. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Gartner, J. Hugon, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Park, M. Remington, R. Rinkevicius, A. Sellers, P. Skhirtladze, N. Snowball, M. Yelton, J. Zakaria, M. Gaultney, V. Hewamanage, S. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Jenkins, M. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Dorney, B. Hohlmann, M. Kalakhety, H. Vodopiyanov, I. Adams, M. R. Anghel, I. M. Apanasevich, L. Bai, Y. Bazterra, V. E. Betts, R. R. Bucinskaite, I. Callner, J. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Lacroix, F. Malek, M. O'Brien, C. Silkworth, C. Strom, D. Turner, P. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Clarida, W. Duru, F. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Norbeck, E. Onel, Y. Ozok, F. Sen, S. Tan, P. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Giurgiu, G. Gritsan, A. V. Guo, Z. J. Hu, G. Maksimovic, P. Rappoccio, S. Swartz, M. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Kenny, R. P., III Murray, M. Noonan, D. Sanders, S. Stringer, R. Tinti, G. Wood, J. S. Zhukova, V. Barfuss, A. F. Bolton, T. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Shrestha, S. Svintradze, I. Gronberg, J. Lange, D. Wright, D. Baden, A. Boutemeur, M. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kirn, M. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Twedt, E. Apyan, A. Bauer, G. Bendavid, J. Busza, W. Butz, E. Cali, I. A. Chan, M. Dutta, V. Ceballos, G. Gomez Goncharov, M. Hahn, K. A. Kim, Y. Klute, M. Krajczar, K. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Ralph, D. Roland, C. Roland, G. Rudolph, M. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Sung, K. Velicanu, D. Wenger, E. A. Wolf, R. Wyslouch, B. Yang, M. Yilmaz, Y. Yoon, A. S. Zanetti, M. Cooper, S. I. Dahmes, B. De Benedetti, A. Franzoni, G. Gude, A. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Sasseville, M. Singovsky, A. Tambe, N. Turkewitz, J. Cremaldi, L. M. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Eads, M. Keller, J. Kravchenko, I. Lazo-Flores, J. Malbouisson, H. Malik, S. Snow, G. R. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Nash, D. Trocino, D. Wood, D. Zhang, J. Anastassov, A. Kubik, A. Lusito, L. Mucia, N. Odell, N. Ofierzynski, R. A. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Antonelli, L. Berry, D. Brinkerhoff, A. Chan, K. M. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Planer, M. Ruchti, R. Slaunwhite, J. Valls, N. Wayne, M. Wolf, M. Bylsma, B. Durkin, L. S. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Vuosalo, C. Williams, G. Winer, B. L. Adam, N. Berry, E. Elmer, P. Gerbaudo, D. Halyo, V. Hebda, P. Hegeman, J. Hunt, A. Jindal, P. Pegna, D. Lopes Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Raval, A. Safdi, B. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Brownson, E. Lopez, A. Mendez, H. Vargas, J. E. Ramirez Alagoz, E. Barnes, V. E. Benedetti, D. Bolla, G. Bortoletto, D. De Mattia, M. Everett, A. Hu, Z. Jones, M. Koybasi, O. Kress, M. Laasanen, A. T. Leonardo, N. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Shipsey, I. Silvers, D. Svyatkovskiy, A. Marono, M. Vidal Yoo, H. D. Zablocki, J. Zheng, Y. Guragain, S. Parashar, N. Adair, A. Boulahouache, C. Ecklund, K. M. Geurts, F. J. M. Li, W. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Chung, Y. S. Covarelli, R. De Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Miner, D. C. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Malik, S. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Lath, A. Panwalkar, S. Park, M. Patel, R. Rekovic, V. Robles, J. Rose, K. Salur, S. Schnetzer, S. Seitz, C. Somalwar, S. Stone, R. Thomas, S. Walker, M. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Safonov, A. Sakuma, T. Sengupta, S. Suarez, I. Tatarinov, A. Toback, D. Akchurin, N. Damgov, J. Dragoiu, C. Dudero, P. R. Jeong, C. Kovitanggoon, K. Lee, S. W. Libeiro, T. Roh, Y. Volobouev, I. Appelt, E. Delannoy, A. G. Florez, C. Greene, S. Gurrola, A. Johns, W. Kurt, P. Maguire, C. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Balazs, M. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Wood, J. Gollapinni, S. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sakharov, A. Anderson, M. Belknap, D. A. Borrello, L. Carlsmith, D. Cepeda, M. Dasu, S. Friis, E. Gray, L. Grogg, K. S. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Leonard, J. Loveless, R. Mohapatra, A. Ojalvo, I. Palmonari, F. Pierro, G. A. Ross, I. Savin, A. Smith, W. H. Swanson, J. CA CMS Collaboration TI Inclusive Search for Supersymmetry Using Razor Variables in pp Collisions at root s=7 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID MISSING TRANSVERSE-MOMENTUM; DETECTOR ATLAS COLLABORATION; PROTON-PROTON COLLISIONS; JETS; EVENTS; EXTENSION; NEUTRINO; SQUARKS; GLUINOS; PROGRAM AB An inclusive search is presented for new heavy particle pairs produced in root s = 7 TeV proton-proton collisions at the LHC using 4.7 +/- 0.1 fb(-1) of integrated luminosity. The selected events are analyzed in the 2D razor space of M-R, an event-by-event indicator of the heavy particle mass scale, and R, a dimensionless variable related to the missing transverse energy. The third-generation sector is probed using the event heavy-flavor content. The search is sensitive to generic supersymmetry models with minimal assumptions about the superpartner decay chains. No excess is observed in the number of events beyond that predicted by the standard model. Exclusion limits are derived in the CMSSM framework as well as for simplified models. Within the CMSSM parameter space considered, gluino masses up to 800 GeV and squark masses up to 1.35 TeV are excluded at 95% confidence level depending on the model parameters. The direct production of pairs of top or bottom squarks is excluded for masses as high as 400 GeV. C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruhwirth, R.; Ghete, V. M.; Hammer, J.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kratschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Suarez, R. Gonzalez; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Leonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Marcken, G. Vander; Velde, C. Vander; Vanlaer, P.; Wang, J.; Demaria, N.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Garcia, J. M. Vizan] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Alda Junior, W. L.; Carvalho, W.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueirodo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.] Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. [Dias, F. A.; Fernandez Perez Tomei, T. R.; Lagana, C.; Marinho, F.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Anjos, T. S.; Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.; Assran, Y.] Charles Univ Prague, Prague, Czech Republic. [Elgammal, S.; Kamel, A. Ellithi; Mahmoud, M. A.; Radi, A.] Egyptian Network High Energy Phys, Acad Sci Res & Technol Arab Republ Egypt, Cairo, Egypt. [Kadastik, M.; Muentel, M.; Raidal, M.; Rebane, L.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkkonen, J.; Heikkinen, A.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Colafranceschi, S.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Bernet, C.] Ecole Polytech, CNRS IN2P3, Lab Leprince Ringuet, Palaiseau, France. [Agram, J. -L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Juillot, P.; Le Bihan, A. -C.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS IN2P3, Strasbourg, France. [Fassi, F.; Mercier, D.] Inst Natl Phys Nucl & Phys Particules, CNRS IN2P3, Ctr Calcul, Villeurbanne, France. [Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.] Univ Lyon 1, Inst Phys Nucl Lyon, CNRS IN2P3, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Anagnostou, G.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Weber, M.; Abdulsalam, A.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bontenackels, M.; Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Martin, M. Aldaya; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Pardos, C. Diez; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kraemer, M.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Cipriano, P. M. Ribeiro; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Blobel, V.; Draeger, J.; Enderle, H.; Erfle, J.; Gebbert, U.; Goernner, M.; Hermanns, T.; Hoeing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Mura, B.; Nowak, F.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schroeder, M.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrueck, G.; Thomsen, J.; Vanelderen, L.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Berger, J.; Boeser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Pardo, P. Lobelle; Martschei, D.; Mueller, S.; Mueller, Th.; Niegel, M.; Nuernberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Roecker, S.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece. [Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.] Univ Athens, Athens, Greece. [Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Krajczar, K.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Assran, Y.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, H-4012 Debrecen, Hungary. [Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mehta, P.; Mohanty, A. K.; Pant, L. M.; Shukla, P.] Bhabha Atom Res Ctr, Mumbai 400085, Maharashtra, India. [Aziz, T.; Ganguly, S.; Guchait, M.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res EHEP, Bombay, Maharashtra, India. [Conte, E.; Drouhin, F.; Banerjee, S.; Dugad, S.] Tata Inst Fundamental Res HECR, Bombay, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Zito, G.] INFN Sez Bari, Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Marangelli, B.; Pacifico, N.; Pompili, A.; Selvaggi, G.; Singh, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Travaglini, R.] INFN Sez Bologna, Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cuffiani, M.; Fanfani, A.; Guiducci, L.; Meneghelli, M.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] INFN Sez Catania, Catania, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] INFN Sez Firenze, Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.; Tropiano, A.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.] INFN Lab Nazl Frascati, Frascati, Italy. [Fabbricatore, P.; Musenich, R.; Tosi, S.] INFN Sez Genova, Genoa, Italy. [Tosi, S.] Univ Genoa, Genoa, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fatis, T. Tabarelli] INFN Sez Milano Bicocca, Milan, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Ghezzi, A.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Montoya, C. A. Carrillo; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] INFN Sez Napoli, Naples, Italy. [De Cosa, A.; Dogangun, O.; Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata Potenza, Naples, Italy. [Meola, S.] Univ G Marconi Roma, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zucchetta, A.; Zumerle, G.] INFN Sez Padova, Padua, Italy. [Bisello, D.; Branca, A.; Carlin, R.; Gasparini, F.; Gasparini, U.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy. [Kanishchev, K.; Lazzizzera, I.] Univ Trent, Padua, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.] INFN Sez Pavia, Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.; Azzurri, P.] INFN Sez Perugia, Perugia, Italy. [Biasini, M.; Fano, L.; Lariccia, P.; Mantovani, G.; Nappi, A.; Romeo, F.; Santocchia, A.; Spiezia, A.; Taroni, S.] Univ Perugia, I-06100 Perugia, Italy. [Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] INFN Sez Pisa, Pisa, Italy. [Fiori, F.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Broccolo, G.; D'Agnolo, R. T.; Foa, L.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Sigamani, M.; Soffi, L.] INFN Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Fanelli, C.; Grassi, M.; Longo, E.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Rahatlou, S.; Soffi, L.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Costa, M.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Pereira, A. Vilela] INFN Sez Torino, Turin, Italy. [Amapane, N.; Argiro, S.; Costa, M.; Migliore, E.; Monaco, V.; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.] INFN Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; Marone, M.; Montanino, D.; Schizzi, A.] Univ Trieste, Trieste, Italy. [Heo, S. G.; Kim, T. Y.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Chang, S.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D. C.; Son, T.; Kamon, T.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Kim, J. Y.; Kim, Zero J.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.] Korea Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Cho, Y.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.] Vilnius State Univ, Vilnius, Lithuania. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Lopez-Fernandez, R.; Magana Villalba, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] Ctr Invest & Estudios Avanzados IPN, Mexico City, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Ansari, M. H.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bluj, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Gokieli, R.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.] Univ Warsaw, Fac Phys, Inst Expt Phys, Warsaw, Poland. [Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Tsamalaidze, Z.; Belotelov, I.; Bunin, P.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Zhukov, V.; Katkov, I.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Popov, A.; Sarycheva, L.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De la Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Codispoti, G.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] CSIC Univ Cantabria, Inst Fis Cantabria IFCA, Santander, Spain. [Chierici, R.; Lingemann, J.; Guthoff, M.; Hauth, T.; Mohanty, A. K.; Calabria, C.; De Filippis, N.; Meneghelli, M.; Di Matteo, L.; Massironi, A.; De Cosa, A.; Paolucci, P.; Bacchetta, N.; Branca, A.; D'Agnolo, R. T.; Fiori, F.; Squillacioti, P.; Grassi, M.; Meridiani, P.; Mariotti, C.; Marone, M.; Montanino, D.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; D'Enterria, D.; Dabrowski, A.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Garrido, R. Gomez-Reino; Govoni, P.; Gowdy, S.; Guida, R.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lee, Y. -J.; Lenzi, P.; Lourenco, C.; Magini, N.; Maeki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Musella, P.; Nesvold, E.; Orimoto, T.; Orsini, L.; Cortezon, E. Palencia; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Antunes, J. Rodrigues; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schaefter, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Woehri, H. K.; Worm, S. D.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Baeni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donega, M.; Duenser, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Mohr, N.; Moortgat, F.; Naegeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Rikova, M. Ivova; Mejias, B. Millan; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.] Univ Zurich, Zurich, Switzerland. [Chang, Y. H.; Chen, K. H.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Singh, A. P.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Srimanobhas, N.] Chulalongkorn Univ, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Karapinar, G.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, L. N.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.; Gulmez, E.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey. [Cankocak, K.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Basso, L.] Univ Bristol, Bristol, Avon, England. [Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.] Univ London Imperial Coll Sci Technol & Med, London, England. [Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Hatakeyama, K.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; St John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Alimena, J.; Bhattacharya, S.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Pellett, D.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Felcini, M.; Andreev, V.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wuerthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dias, F. A.; Dubinin, M.; Apresyan, A.; Bornheim, A.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Akgun, B.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kilminster, B.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Park, M.; Remington, R.; Rinkevicius, A.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; Malek, M.; O'Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.] UIC, Chicago, IL USA. [Ozturk, S.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD USA. [Sibille, J.; Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Zhukova, V.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Boutemeur, M.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Kim, Y.; Klute, M.; Krajczar, K.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.] MIT, Cambridge, MA 02139 USA. [Cooper, S. I.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Adair, A.] Univ Minnesota, Minneapolis, MN USA. [Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malbouisson, H.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Anastassov, A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Antonelli, L.; Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Pegna, D. Lopes; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Raval, A.; Safdi, B.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Brownson, E.; Lopez, A.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA. [Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Marono, M. Vidal; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Guragain, S.; Parashar, N.] Purdue Univ Calumet, Hammond, IN USA. [Adair, A.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; De Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY USA. [Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Roh, Y.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Delannoy, A. G.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN USA. [Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sakharov, A.] Wayne State Univ, Detroit, MI USA. [Anderson, M.; Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Palmonari, F.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.] Univ Wisconsin, Madison, WI USA. [Fabjan, C.; Fruhwirth, R.; Jeitler, M.; Krammer, M.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Giammanco, A.; Genchev, V.; Iaydjiev, P.; Puljak, I.; Gennai, S.; Musich, M.] NICPB, Tallinn, Estonia. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Elgammal, S.] Zewail City Sci & Technol, Zewail, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Radi, A.] British Univ Egypt, Cairo, Egypt. [Conte, E.; Drouhin, F.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Arfaei, H.; Fahim, A.] Sharif Univ Technol, Tehran, Iran. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Safarzadeh, B.] Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Meola, S.] Univ Guglielmo Marconi, Rome, Italy. [Martini, L.] Univ Siena, I-53100 Siena, Italy. [Serban, A. T.] Univ Bucharest, Fac Phys, Bucharest, Romania. [Rolandi, G.] Scuola Normale, Pisa, Italy. [Rolandi, G.] Sezione Ist Nazl Fis Nucl, Pisa, Italy. [Rovelli, C.] Univ Rome, INFN Sezi Roma, Rome, Italy. [Sphicas, P.] Univ Athens, Athens, Greece. [Worm, S. D.; Newbold, D. M.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey. [Sonmez, N.] Ege Univ, Izmir, Turkey. [Basso, L.; Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Pioppi, M.] Univ Perugia, INFN Sez Perugia, I-06100 Perugia, Italy. [Jeng, G. Y.] Univ Sydney, Sydney, NSW 2006, Australia. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Bargassa, Pedrame/O-2417-2016; Rolandi, Luigi (Gigi)/E-8563-2013; Sguazzoni, Giacomo/J-4620-2015; Fassi, Farida/F-3571-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Gerbaudo, Davide/J-4536-2012; Menasce, Dario Livio/A-2168-2016; Dubinin, Mikhail/I-3942-2016; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Seixas, Joao/F-5441-2013; Sznajder, Andre/L-1621-2016; Vilela Pereira, Antonio/L-4142-2016; Haj Ahmad, Wael/E-6738-2016; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Matorras, Francisco/I-4983-2015; My, Salvatore/I-5160-2015; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Azarkin, Maxim/N-2578-2015; Flix, Josep/G-5414-2012; Della Ricca, Giuseppe/B-6826-2013; Tomei, Thiago/E-7091-2012; Calderon, Alicia/K-3658-2014; da Cruz e Silva, Cristovao/K-7229-2013; Grandi, Claudio/B-5654-2015; Bernardes, Cesar Augusto/D-2408-2015; Raidal, Martti/F-4436-2012; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Stahl, Achim/E-8846-2011; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Hernandez Calama, Jose Maria/H-9127-2015; Scodellaro, Luca/K-9091-2014; Arce, Pedro/L-1268-2014; Josa, Isabel/K-5184-2014; Calvo Alamillo, Enrique/L-1203-2014; Paulini, Manfred/N-7794-2014; Vogel, Helmut/N-8882-2014; Ferguson, Thomas/O-3444-2014; Ragazzi, Stefano/D-2463-2009; Benussi, Luigi/O-9684-2014; Leonidov, Andrey/P-3197-2014; vilar, rocio/P-8480-2014; Dahms, Torsten/A-8453-2015; Janssen, Xavier/E-1915-2013; Novaes, Sergio/D-3532-2012; Hill, Christopher/B-5371-2012; Bartalini, Paolo/E-2512-2014; Alves, Gilvan/C-4007-2013; Ligabue, Franco/F-3432-2014; Wulz, Claudia-Elisabeth/H-5657-2011; Codispoti, Giuseppe/F-6574-2014; Tinti, Gemma/I-5886-2013; Montanari, Alessandro/J-2420-2012; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; de la Cruz, Begona/K-7552-2014; Marlow, Daniel/C-9132-2014; Lokhtin, Igor/D-7004-2012; Liu, Sheng/K-2815-2013; de Jesus Damiao, Dilson/G-6218-2012; Oguri, Vitor/B-5403-2013; Zhukov, Valery/K-3615-2013; Venturi, Andrea/J-1877-2012; Wimpenny, Stephen/K-8848-2013; Markina, Anastasia/E-3390-2012; Petrushanko, Sergey/D-6880-2012; Dudko, Lev/D-7127-2012; Dermenev, Alexander/M-4979-2013; Tinoco Mendes, Andre David/D-4314-2011 OI Ghezzi, Alessio/0000-0002-8184-7953; bianco, stefano/0000-0002-8300-4124; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235; Ciulli, Vitaliano/0000-0003-1947-3396; Fiorendi, Sara/0000-0003-3273-9419; Martelli, Arabella/0000-0003-3530-2255; Gonzi, Sandro/0000-0003-4754-645X; Levchenko, Petr/0000-0003-4913-0538; Bargassa, Pedrame/0000-0001-8612-3332; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Safdi, Benjamin R./0000-0001-9531-1319; Lloret Iglesias, Lara/0000-0002-0157-4765; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Sguazzoni, Giacomo/0000-0002-0791-3350; Casarsa, Massimo/0000-0002-1353-8964; Diemoz, Marcella/0000-0002-3810-8530; Tricomi, Alessia Rita/0000-0002-5071-5501; Fassi, Farida/0000-0002-6423-7213; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Gerbaudo, Davide/0000-0002-4463-0878; Vieira de Castro Ferreira da Silva, Pedro Manuel/0000-0002-5725-041X; Bean, Alice/0000-0001-5967-8674; Longo, Egidio/0000-0001-6238-6787; Di Matteo, Leonardo/0000-0001-6698-1735; Baarmand, Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Dubinin, Mikhail/0000-0002-7766-7175; Paganoni, Marco/0000-0003-2461-275X; Gulmez, Erhan/0000-0002-6353-518X; Seixas, Joao/0000-0002-7531-0842; Sznajder, Andre/0000-0001-6998-1108; Vilela Pereira, Antonio/0000-0003-3177-4626; Haj Ahmad, Wael/0000-0003-1491-0446; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Matorras, Francisco/0000-0003-4295-5668; My, Salvatore/0000-0002-9938-2680; Rovelli, Tiziano/0000-0002-9746-4842; TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; Flix, Josep/0000-0003-2688-8047; Della Ricca, Giuseppe/0000-0003-2831-6982; Tomei, Thiago/0000-0002-1809-5226; Grandi, Claudio/0000-0001-5998-3070; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Stahl, Achim/0000-0002-8369-7506; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Scodellaro, Luca/0000-0002-4974-8330; Arce, Pedro/0000-0003-3009-0484; Calvo Alamillo, Enrique/0000-0002-1100-2963; Paulini, Manfred/0000-0002-6714-5787; Vogel, Helmut/0000-0002-6109-3023; Ferguson, Thomas/0000-0001-5822-3731; Ragazzi, Stefano/0000-0001-8219-2074; Benussi, Luigi/0000-0002-2363-8889; Dahms, Torsten/0000-0003-4274-5476; Novaes, Sergio/0000-0003-0471-8549; Hill, Christopher/0000-0003-0059-0779; Ligabue, Franco/0000-0002-1549-7107; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Codispoti, Giuseppe/0000-0003-0217-7021; Montanari, Alessandro/0000-0003-2748-6373; Cerrada, Marcos/0000-0003-0112-1691; de Jesus Damiao, Dilson/0000-0002-3769-1680; Wimpenny, Stephen/0000-0003-0505-4908; Dudko, Lev/0000-0002-4462-3192; Tinoco Mendes, Andre David/0000-0001-5854-7699 FU BMWF (Austria); FWF (Austria); FNRS (Belgium); FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPESP (Brazil); MEYS (Bulgaria); CERN (China); CAS (China); MoST (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER (Estonia) [SF0690030s09]; ERDF (Estonia); Academy of Finland (Finland); MEC (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); HGF (Germany); GSRT (Greece); OTKA (Hungary); NKTH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Republic of Korea); WCU (Republic of Korea); LAS (Lithuania); CINVESTAV (Mexico); CONACYT (Mexico); SEP (Mexico); UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE (Poland); NSC (Poland); FCT (Portugal); JINR (Armenia); JINR (Belarus); JINR (Georgia); JINR (Ukraine); JINR (Uzbekistan); MON (Russia); RosAtom (Russia); RAS (Russia); RFBR (Russia); MSTD (Serbia); SEIDI (Spain); CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter (Thailand); IPST (Thailand); NSTDA (Thailand); TUBITAK (Turkey); TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE (USA); NSF (USA); Marie-Curie program; European Research Council (European Union); Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of Czech Republic; Council of Science and Industrial Research, India; Compagnia di San Paolo (Torino); Weston Havens Foundation (US); HOMING PLUS program of Foundation for Polish Science; European Union, Regional Development Fund FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS, and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); the Weston Havens Foundation (US) and the HOMING PLUS program of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund. NR 65 TC 47 Z9 47 U1 2 U2 135 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 23 PY 2013 VL 111 IS 8 AR 081802 DI 10.1103/PhysRevLett.111.081802 PG 17 WC Physics, Multidisciplinary SC Physics GA 207CM UT WOS:000323574600002 PM 24010428 ER PT J AU Hernandez-Garcia, C Picon, A San Roman, J Plaja, L AF Hernandez-Garcia, Carlos Picon, Antonio San Roman, Julio Plaja, Luis TI Attosecond Extreme Ultraviolet Vortices from High-Order Harmonic Generation SO PHYSICAL REVIEW LETTERS LA English DT Article ID ORBITAL ANGULAR-MOMENTUM; NONLINEAR OPTICS; RARE-GASES; LIGHT; VORTEX; PHYSICS; ATOMS; IONIZATION; REGIME; PULSES AB We present a theoretical study of high-order harmonic generation (HHG) and propagation driven by an infrared field carrying orbital angular momentum (OAM). Our calculations unveil the following relevant phenomena: extreme-ultraviolet harmonic vortices are generated and survive to the propagation effects, vortices transport high-OAM multiples of the corresponding OAM of the driving field and, finally, the different harmonic vortices are emitted with similar divergence. We also show the possibility of combining OAM and HHG phase locking to produce attosecond pulses with helical pulse structure. C1 [Hernandez-Garcia, Carlos; San Roman, Julio; Plaja, Luis] Univ Salamanca, Grp Invest & Opt Extrema, E-37008 Salamanca, Spain. [Picon, Antonio] Argonne Natl Lab, Argonne, IL 60439 USA. [Hernandez-Garcia, Carlos] Univ Colorado, JILA, Boulder, CO 80309 USA. [Hernandez-Garcia, Carlos] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. RP Hernandez-Garcia, C (reprint author), Univ Salamanca, Grp Invest & Opt Extrema, E-37008 Salamanca, Spain. EM carloshergar@usal.es RI Picon Alvarez, Antonio/I-7268-2012; Plaja, Luis/K-8701-2014; San Roman, Julio/K-7218-2012; Hernandez-Garcia, Carlos/G-3681-2011 OI Picon Alvarez, Antonio/0000-0002-6142-3440; Plaja, Luis/0000-0001-8709-7295; San Roman, Julio/0000-0002-2645-7039; Hernandez-Garcia, Carlos/0000-0002-6153-2647 FU Spanish MINECO [FIS2009-09522]; Centro de Laseres Pulsados (CLPU); Marie Curie International Outgoing Fellowship within the EU [328334]; U.S. Department of Energy, Basic Energy Sciences, Office of Science [DE-AC02-06CH11357] FX We acknowledge I. J. Sola for valuable discussions, and support from Spanish MINECO (FIS2009-09522) and Centro de Laseres Pulsados (CLPU). C. H.-G. acknowledges support by a Marie Curie International Outgoing Fellowship within the EU Seventh Framework Programme for Research and Technological Development (2007-2013), under REA grant Agreement No. 328334. A. P. acknowledges fruitful discussions with I. McNulty and S. H. Southworth, and the financial support of the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under Contract No. DE-AC02-06CH11357. NR 51 TC 37 Z9 37 U1 3 U2 48 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 23 PY 2013 VL 111 IS 8 AR 083602 DI 10.1103/PhysRevLett.111.083602 PG 5 WC Physics, Multidisciplinary SC Physics GA 207CM UT WOS:000323574600005 PM 24010438 ER PT J AU Ma, T Patel, PK Izumi, N Springer, PT Key, MH Atherton, LJ Benedetti, LR Bradley, DK Callahan, DA Celliers, PM Cerjan, CJ Clark, DS Dewald, EL Dixit, SN Doppner, T Edgell, DH Epstein, R Glenn, S Grim, G Haan, SW Hammel, BA Hicks, D Hsing, WW Jones, OS Khan, SF Kilkenny, JD Kline, JL Kyrala, GA Landen, OL Le Pape, S MacGowan, BJ Mackinnon, AJ MacPhee, AG Meezan, NB Moody, JD Pak, A Parham, T Park, HS Ralph, JE Regan, SP Remington, BA Robey, HF Ross, JS Spears, BK Smalyuk, V Suter, LJ Tommasini, R Town, RP Weber, SV Lindl, JD Edwards, MJ Glenzer, SH Moses, EI AF Ma, T. Patel, P. K. Izumi, N. Springer, P. T. Key, M. H. Atherton, L. J. Benedetti, L. R. Bradley, D. K. Callahan, D. A. Celliers, P. M. Cerjan, C. J. Clark, D. S. Dewald, E. L. Dixit, S. N. Doeppner, T. Edgell, D. H. Epstein, R. Glenn, S. Grim, G. Haan, S. W. Hammel, B. A. Hicks, D. Hsing, W. W. Jones, O. S. Khan, S. F. Kilkenny, J. D. Kline, J. L. Kyrala, G. A. Landen, O. L. Le Pape, S. MacGowan, B. J. Mackinnon, A. J. MacPhee, A. G. Meezan, N. B. Moody, J. D. Pak, A. Parham, T. Park, H. -S. Ralph, J. E. Regan, S. P. Remington, B. A. Robey, H. F. Ross, J. S. Spears, B. K. Smalyuk, V. Suter, L. J. Tommasini, R. Town, R. P. Weber, S. V. Lindl, J. D. Edwards, M. J. Glenzer, S. H. Moses, E. I. TI Onset of Hydrodynamic Mix in High-Velocity, Highly Compressed Inertial Confinement Fusion Implosions SO PHYSICAL REVIEW LETTERS LA English DT Article ID NATIONAL IGNITION FACILITY; RAYLEIGH-TAYLOR EXPERIMENTS; INSTABILITY; TARGETS; NOVA AB Deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility have demonstrated yields ranging from 0.8 to 7 x 10(14), and record fuel areal densities of 0.7 to 1.3 g/cm(2). These implosions use hohlraums irradiated with shaped laser pulses of 1.5-1.9 MJ energy. The laser peak power and duration at peak power were varied, as were the capsule ablator dopant concentrations and shell thicknesses. We quantify the level of hydrodynamic instability mix of the ablator into the hot spot from the measured elevated absolute x-ray emission of the hot spot. We observe that DT neutron yield and ion temperature decrease abruptly as the hot spot mix mass increases above several hundred ng. The comparison with radiation-hydrodynamic modeling indicates that low mode asymmetries and increased ablator surface perturbations may be responsible for the current performance. C1 [Ma, T.; Patel, P. K.; Izumi, N.; Springer, P. T.; Key, M. H.; Atherton, L. J.; Benedetti, L. R.; Bradley, D. K.; Callahan, D. A.; Celliers, P. M.; Cerjan, C. J.; Clark, D. S.; Dewald, E. L.; Dixit, S. N.; Doeppner, T.; Glenn, S.; Haan, S. W.; Hammel, B. A.; Hicks, D.; Hsing, W. W.; Jones, O. S.; Khan, S. F.; Landen, O. L.; Le Pape, S.; MacGowan, B. J.; Mackinnon, A. J.; MacPhee, A. G.; Meezan, N. B.; Moody, J. D.; Pak, A.; Parham, T.; Park, H. -S.; Ralph, J. E.; Remington, B. A.; Robey, H. F.; Ross, J. S.; Spears, B. K.; Smalyuk, V.; Suter, L. J.; Tommasini, R.; Town, R. P.; Weber, S. V.; Lindl, J. D.; Edwards, M. J.; Glenzer, S. H.; Moses, E. I.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Edgell, D. H.; Epstein, R.; Regan, S. P.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Grim, G.; Kline, J. L.; Kyrala, G. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kilkenny, J. D.] Gen Atom Co, San Diego, CA 92186 USA. RP Ma, T (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Ma, Tammy/F-3133-2013; MacKinnon, Andrew/P-7239-2014; Hicks, Damien/B-5042-2015; lepape, sebastien/J-3010-2015; Patel, Pravesh/E-1400-2011; IZUMI, Nobuhiko/J-8487-2016; Tommasini, Riccardo/A-8214-2009 OI Kline, John/0000-0002-2271-9919; Ma, Tammy/0000-0002-6657-9604; MacKinnon, Andrew/0000-0002-4380-2906; Hicks, Damien/0000-0001-8322-9983; IZUMI, Nobuhiko/0000-0003-1114-597X; Tommasini, Riccardo/0000-0002-1070-3565 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We wish to thank the NIF operations team. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 43 TC 91 Z9 94 U1 4 U2 54 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 23 PY 2013 VL 111 IS 8 AR 085004 DI 10.1103/PhysRevLett.111.085004 PG 5 WC Physics, Multidisciplinary SC Physics GA 207CM UT WOS:000323574600006 PM 24010449 ER PT J AU Gooch, M Doan, P Tang, ZJ Lorenz, B Guloy, AM Chu, PCW AF Gooch, Melissa Doan, Phuong Tang, Zhongjia Lorenz, Bernd Guloy, Arnold M. Chu, Paul C. W. TI Weak coupling BCS-like superconductivity in the pnictide oxide Ba1-xNaxTi2Sb2O (x=0 and 0.15) SO PHYSICAL REVIEW B LA English DT Article ID NA2TI2SB2O; TEMPERATURE; TRANSITION; SPIN AB We report the results of low-temperature heat capacity measurements of the pnictide oxide superconductor BaTi2Sb2O doped with sodium. The temperature-and field-dependent heat capacity data are well described by a single-gap BCS theory. The estimated values for the normal-state Sommerfeld constant, the heat capacity jump at T-c, and the electron-phonon coupling constant are in favor of a conventional weak coupling superconductivity mediated by electron-phonon interaction. The results are discussed with regard to and compared with recent first-principles calculations. C1 [Gooch, Melissa; Doan, Phuong; Tang, Zhongjia; Lorenz, Bernd; Guloy, Arnold M.; Chu, Paul C. W.] Univ Houston, TCSUH, Houston, TX 77204 USA. [Gooch, Melissa; Lorenz, Bernd; Chu, Paul C. W.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Doan, Phuong; Tang, Zhongjia; Guloy, Arnold M.] Univ Houston, Dept Chem, Houston, TX 77204 USA. [Chu, Paul C. W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Gooch, M (reprint author), Univ Houston, TCSUH, Houston, TX 77204 USA. FU U.S. Air Force Office of Scientific Research; Robert A. Welch Foundation [E-1297]; T. L. L. Temple Foundation; J. J. and R. Moores Endowment; State of Texas through the TCSUH; DOE at LBNL FX This work is supported in part by the U.S. Air Force Office of Scientific Research, the Robert A. Welch Foundation (Grant No. E-1297), the T. L. L. Temple Foundation, the J. J. and R. Moores Endowment, the State of Texas through the TCSUH, and at LBNL by the DOE. NR 29 TC 12 Z9 12 U1 2 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 23 PY 2013 VL 88 IS 6 AR 064510 DI 10.1103/PhysRevB.88.064510 PG 5 WC Physics, Condensed Matter SC Physics GA 207BG UT WOS:000323571000003 ER PT J AU Stilp, E Suter, A Prokscha, T Morenzoni, E Keller, H Wojek, BM Luetkens, H Gozar, A Logvenov, G Bozovic, I AF Stilp, E. Suter, A. Prokscha, T. Morenzoni, E. Keller, H. Wojek, B. M. Luetkens, H. Gozar, A. Logvenov, G. Bozovic, I. TI Magnetic phase diagram of low-doped La2-xSrxCuO4 thin films studied by low-energy muon-spin rotation SO PHYSICAL REVIEW B LA English DT Article ID SUPERCONDUCTING-TRANSITION-TEMPERATURE; HEISENBERG-ANTIFERROMAGNET; QUANTUM ANTIFERROMAGNETS; EPITAXIAL-STRAIN; LA2CUO4; DYNAMICS; NQR; CUPRATE; SR; LA1.85SR0.15CUO4 AB The magnetic phase diagram of La2-xSrxCuO4 thin films grown on single-crystal LaSrAlO4 substrates has been determined by low-energy muon-spin rotation. The diagram shows the same features as the one of bulk La2-xSrxCuO4, but the transition temperatures between distinct magnetic states are significantly different. In the antiferromagnetic phase the Neel temperature T-N is strongly reduced, and no hole spin freezing is observed at low temperatures. In the disordered magnetic phase (x greater than or similar to 0.02) the transition temperature to the cluster spin-glass state T-g is enhanced. Possible reasons for the pronounced differences between the magnetic phase diagrams of thin-film and bulk samples are discussed. C1 [Stilp, E.; Suter, A.; Prokscha, T.; Morenzoni, E.; Wojek, B. M.; Luetkens, H.] Paul Scherrer Inst, Lab Muon Spin Spect, CH-5232 Villigen, Switzerland. [Stilp, E.; Keller, H.; Wojek, B. M.] Univ Zurich, Inst Phys, CH-8057 Zurich, Switzerland. [Gozar, A.; Logvenov, G.; Bozovic, I.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Stilp, E (reprint author), Paul Scherrer Inst, Lab Muon Spin Spect, CH-5232 Villigen, Switzerland. RI Luetkens, Hubertus/G-1831-2011; OI Wojek, Bastian M./0000-0002-8216-5321 FU Swiss National Science Foundation; US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division FX We gratefully acknowledge Hans-Peter Weber for his excellent technical support. This work was partly supported by the Swiss National Science Foundation. Research at Brookhaven was supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 61 TC 8 Z9 8 U1 2 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 23 PY 2013 VL 88 IS 6 AR 064419 DI 10.1103/PhysRevB.88.064419 PG 11 WC Physics, Condensed Matter SC Physics GA 207BG UT WOS:000323571000002 ER PT J AU Kalinin, SV Spaldin, NA AF Kalinin, Sergei V. Spaldin, Nicola A. TI Functional Ion Defects in Transition Metal Oxides SO SCIENCE LA English DT Editorial Material ID CHEMICAL EXPANSION; CHALLENGES; LEVEL C1 [Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Spaldin, Nicola A.] ETH, CH-8093 Zurich, Switzerland. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM sergei2@ornl.gov; nicola.spaldin@mat.ethz.ch RI Spaldin, Nicola/A-1017-2010; Kalinin, Sergei/I-9096-2012 OI Spaldin, Nicola/0000-0003-0709-9499; Kalinin, Sergei/0000-0001-5354-6152 NR 17 TC 61 Z9 61 U1 14 U2 180 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD AUG 23 PY 2013 VL 341 IS 6148 BP 858 EP 859 DI 10.1126/science.1243098 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 204MY UT WOS:000323370600032 PM 23970692 ER PT J AU Kong, XQ Deng, HX Yan, FY Kim, J Swisher, JA Smit, B Yaghi, OM Reimer, JA AF Kong, Xueqian Deng, Hexiang Yan, Fangyong Kim, Jihan Swisher, Joseph A. Smit, Berend Yaghi, Omar M. Reimer, Jeffrey A. TI Mapping of Functional Groups in Metal-Organic Frameworks SO SCIENCE LA English DT Article ID ECHO DOUBLE-RESONANCE; NMR-SPECTROSCOPY; REDOR NMR AB We determined the heterogeneous mesoscale spatial apportionment of functional groups in a series of multivariate metal-organic frameworks (MTV-MOF-5) containing BDC (1,4-benzenedicarboxylate) linkers with different functional groups-B (BDC-NH2), E (BDC-NO2), F [(BDC-(CH3)(2)], H [BDC-(OC3H5)(2)], and I [BDC-(OC7H7)(2)]-using solid-state nuclear magnetic resonance measurements combined with molecular simulations. Our analysis reveals that these methods discern between random (EF), alternating (EI and EHI), and various cluster (BF) forms of functional group apportionments. This combined synthetic, characterization, and computational approach predicts the adsorptive properties of crystalline MTV-MOF systems. This methodology, developed in the context of ordered frameworks, is a first step in resolving the more general problem of spatial disorder in other ordered materials, including mesoporous materials, functionalized polymers, and defect distributions within crystalline solids. C1 [Kong, Xueqian; Yan, Fangyong; Swisher, Joseph A.; Smit, Berend; Reimer, Jeffrey A.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Kong, Xueqian; Reimer, Jeffrey A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Deng, Hexiang; Smit, Berend; Yaghi, Omar M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Deng, Hexiang; Yan, Fangyong; Kim, Jihan; Swisher, Joseph A.; Smit, Berend; Yaghi, Omar M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Yaghi, Omar M.] NanoCentury KAIST Inst, Taejon 305701, South Korea. [Yaghi, Omar M.] World Class Univ, Grad Sch Energy Environm Water & Sustainabil, Taejon 305701, South Korea. RP Yaghi, OM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM yaghi@berkeley.edu; reimer@berkeley.edu RI Smit, Berend/B-7580-2009; EFRC, CGS/I-6680-2012; Kim, Jihan/H-8002-2013; Stangl, Kristin/D-1502-2015 OI Yaghi, Omar/0000-0002-5611-3325; Smit, Berend/0000-0003-4653-8562; FU Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001015]; BASF SE (Ludwigshafen, Germany) FX This research was supported through the Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award DE-SC0001015, and the synthesis effort (H.D.) was partially supported by BASF SE (Ludwigshafen, Germany). For all computations, we used the resources of the National Energy Research Scientific Computing Center (NERSC). We thank W. Morris, C. Stevens, and H. Furukawa for their invaluable assistance. NR 12 TC 102 Z9 102 U1 56 U2 593 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD AUG 23 PY 2013 VL 341 IS 6148 BP 882 EP 885 DI 10.1126/science.1238339 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 204MY UT WOS:000323370600041 PM 23887875 ER PT J AU Wallace, AF Hedges, LO Fernandez-Martinez, A Raiteri, P Gale, JD Waychunas, GA Whitelam, S Banfield, JF De Yoreo, JJ AF Wallace, Adam F. Hedges, Lester O. Fernandez-Martinez, Alejandro Raiteri, Paolo Gale, Julian D. Waychunas, Glenn A. Whitelam, Stephen Banfield, Jillian F. De Yoreo, James J. TI Microscopic Evidence for Liquid-Liquid Separation in Supersaturated CaCO3 Solutions SO SCIENCE LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; AMORPHOUS CALCIUM-CARBONATE; NONCLASSICAL NUCLEATION; ISING-MODEL; CLUSTERS; GROWTH; THERMODYNAMICS; WATER AB Recent experimental observations of the onset of calcium carbonate (CaCO3) mineralization suggest the emergence of a population of clusters that are stable rather than unstable as predicted by classical nucleation theory. This study uses molecular dynamics simulations to probe the structure, dynamics, and energetics of hydrated CaCO3 clusters and lattice gas simulations to explore the behavior of cluster populations before nucleation. Our results predict formation of a dense liquid phase through liquid-liquid separation within the concentration range in which clusters are observed. Coalescence and solidification of nanoscale droplets results in formation of a solid phase, the structure of which is consistent with amorphous CaCO3. The presence of a liquid-liquid binodal enables a diverse set of experimental observations to be reconciled within the context of established phase-separation mechanisms. C1 [Wallace, Adam F.; Hedges, Lester O.; Fernandez-Martinez, Alejandro; Waychunas, Glenn A.; Banfield, Jillian F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Wallace, Adam F.; Hedges, Lester O.; Whitelam, Stephen; De Yoreo, James J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Wallace, Adam F.] Univ Delaware, Dept Geol Sci, Newark, DE 19716 USA. [Fernandez-Martinez, Alejandro] Univ Grenoble 1, CNRS, Inst Sci Terre ISTerre, F-38041 Grenoble, France. [Raiteri, Paolo; Gale, Julian D.] Curtin Univ, Dept Chem, Nanochem Res Inst, Perth, WA 6845, Australia. [Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [De Yoreo, James J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [De Yoreo, James J.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Wallace, AF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM afw@udel.edu; james.deyoreo@pnnl.gov RI Gale, Julian/B-7987-2009; Raiteri, Paolo/E-1465-2011; Fernandez-Martinez, Alejandro/B-4042-2010; Foundry, Molecular/G-9968-2014 OI Gale, Julian/0000-0001-9587-9457; Raiteri, Paolo/0000-0003-0692-0505; Fernandez-Martinez, Alejandro/0000-0001-5073-9629; FU Center for Nanoscale Control of Geologic CO2, an Energy Frontier Research Center; U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences [DE-AC02-05CH11231]; DOE [DE-AC02-06CH11357]; Office of Science of the DOE [DE-AC02-05CH1123]; Office of Science, Office of Basic Energy Sciences, of the DOE [DE-AC02-05CH11231]; Australian Research Council [DP0986999] FX This work was performed at the Lawrence Berkeley National Laboratory in support of the Center for Nanoscale Control of Geologic CO2, an Energy Frontier Research Center, and was carried out at the Molecular Foundry, a Scientific User Facility, both of which are funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences under contract DE-AC02-05CH11231. Use of the Advanced Photon Source, an Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory, was supported by the DOE under contract DE-AC02-06CH11357. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the DOE under contract DE-AC02-05CH1123 and the Lawrencium computational cluster resource provided by the IT Division at the Lawrence Berkeley National Laboratory (supported by the Director, Office of Science, Office of Basic Energy Sciences, of the DOE under contract DE-AC02-05CH11231). J.D.G. and P.R. thank the Australian Research Council for funding under grant DP0986999 and iVEC/National Computational Infrastructure for computing resources. NR 29 TC 129 Z9 131 U1 31 U2 300 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD AUG 23 PY 2013 VL 341 IS 6148 BP 885 EP 889 DI 10.1126/science.1230915 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 204MY UT WOS:000323370600042 PM 23970697 ER PT J AU Ziegler, D Meyer, TR Farnham, R Brune, C Bertozzi, AL Ashby, PD AF Ziegler, Dominik Meyer, Travis R. Farnham, Rodrigo Brune, Christoph Bertozzi, Andrea L. Ashby, Paul D. TI Improved accuracy and speed in scanning probe microscopy by image reconstruction from non-gridded position sensor data SO NANOTECHNOLOGY LA English DT Article ID ATOMIC-FORCE MICROSCOPY AB Scanning probe microscopy (SPM) has facilitated many scientific discoveries utilizing its strengths of spatial resolution, non-destructive characterization and realistic in situ environments. However, accurate spatial data are required for quantitative applications but this is challenging for SPM especially when imaging at higher frame rates. We present a new operation mode for scanning probe microscopy that uses advanced image processing techniques to render accurate images based on position sensor data. This technique, which we call sensor inpainting, frees the scanner to no longer be at a specific location at a given time. This drastically reduces the engineering effort of position control and enables the use of scan waveforms that are better suited for the high inertia nanopositioners of SPM. While in raster scanning, typically only trace or retrace images are used for display, in Archimedean spiral scans 100% of the data can be displayed and at least a two-fold increase in temporal or spatial resolution is achieved. In the new mode, the grid size of the final generated image is an independent variable. Inpainting to a few times more pixels than the samples creates images that more accurately represent the ground truth. C1 [Ziegler, Dominik; Ashby, Paul D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Meyer, Travis R.; Bertozzi, Andrea L.] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA. [Farnham, Rodrigo] Calif State Univ Long Beach, Dept Math & Stat, Long Beach, CA 90840 USA. [Brune, Christoph] Univ Munster, Dept Math & Comp Sci, D-48149 Munster, Germany. RP Ziegler, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM pdashby@lbl.gov RI Bertozzi, Andrea/A-1831-2012; Foundry, Molecular/G-9968-2014; Brune, Christoph/C-1700-2013 OI Bertozzi, Andrea/0000-0003-0396-7391; Brune, Christoph/0000-0003-0145-5069 FU National Science Foundation Cyber Enabled Discovery and Innovation [940417]; W M Keck Foundation; German Research Foundation DFG [BU 2327/6-1]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX We gratefully acknowledge helpful discussions with Yifei Lou, Nen Huynh, Alex Chen, and Jen-Mei Chang. This work was supported by the National Science Foundation Cyber Enabled Discovery and Innovation under Contract No. 940417. AB is also supported by the W M Keck Foundation and CB acknowledges support by the German Research Foundation DFG through project BU 2327/6-1. Data collection and instrumentation support funded by Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 40 TC 9 Z9 9 U1 0 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD AUG 23 PY 2013 VL 24 IS 33 AR 335703 DI 10.1088/0957-4484/24/33/335703 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 190XU UT WOS:000322377600015 PM 23892397 ER PT J AU Yurkovetskiy, L Burrows, M Khan, AA Graham, L Volchkov, P Becker, L Antonopoulos, D Umesaki, Y Chervonsky, AV AF Yurkovetskiy, Leonid Burrows, Michael Khan, Aly A. Graham, Laura Volchkov, Pavel Becker, Lev Antonopoulos, Dionysios Umesaki, Yoshinori Chervonsky, Alexander V. TI Gender Bias in Autoimmunity Is Influenced by Microbiota SO IMMUNITY LA English DT Article ID NONOBESE DIABETIC MICE; PANCREATIC LYMPH-NODES; SEGMENTED FILAMENTOUS BACTERIA; T-CELLS; SEX-DIFFERENCES; GUT MICROBIOME; B-LYMPHOCYTES; MOUSE; MACROPHAGES; ACTIVATION AB Gender bias and the role of sex hormones in autoimmune diseases are well established. In specific pathogen-free nonobese diabetic (NOD) mice, females have 1.3-4.4 times higher incidence of type 1 diabetes (T1D). Germ-free (GF) mice lost the gender bias (female-to-male ratio 1.1-1.2). Gut microbiota differed in males and females, a trend reversed by male castration, confirming that androgens influence gut microbiota. Colonization of GF NOD mice with defined microbiota revealed that some, but not all, lineages overrepresented in male mice supported a gender bias in T1D. Although protection of males did not correlate with blood androgen concentration, hormone-supported expansion of selected microbial lineages may work as a positive-feedback mechanism contributing to the sexual dimorphism of autoimmune diseases. Gene-expression analysis suggested pathways involved in protection of males from T1D by microbiota. Our results favor a two-signal model of gender bias, in which hormones and microbes together trigger protective pathways. C1 [Yurkovetskiy, Leonid] Univ Chicago, Comm Microbiol, Chicago, IL 60637 USA. [Yurkovetskiy, Leonid; Burrows, Michael; Graham, Laura; Volchkov, Pavel; Chervonsky, Alexander V.] Univ Chicago, Dept Pathol, Chicago, IL 60637 USA. [Burrows, Michael; Chervonsky, Alexander V.] Univ Chicago, Comm Immunol, Chicago, IL 60637 USA. [Khan, Aly A.; Antonopoulos, Dionysios] Univ Chicago, Inst Genom & Syst Biol, Chicago, IL 60637 USA. [Khan, Aly A.] Univ Chicago, Dept Human Genet, Chicago, IL 60637 USA. [Becker, Lev] Univ Chicago, Dept Pediat, Chicago, IL 60637 USA. [Antonopoulos, Dionysios] Argonne Natl Lab, Lemont, IL 60439 USA. [Umesaki, Yoshinori] Yakult Cent Inst Microbiol Res, Kunitachi, Tokyo 1868650, Japan. RP Chervonsky, AV (reprint author), Univ Chicago, Dept Pathol, 5841 S Maryland Ave, Chicago, IL 60637 USA. EM achervon@bsd.uchicago.edu OI Chervonsky, Alexander/0000-0001-7547-871X FU National Institutes of Health [AI082418]; Juvenile Diabetes Research Foundation [17-2011-519]; NIH/NIDDK Digestive Disease Research Core Center [DK42086]; Molecular and Cellular Biology training grant [T32 GM007183]; Clinical Translational Science Award TL1 training grant [TL1TR000432]; NIH [p50 GM081892]; Searle Funds at the Chicago Community Trust FX We thank Claudio De Simone for his help with VSL3, Anuradha Nadimpalli and Sarah Owens for help with sequencing sample preparations, and Joseph Pickard for editing the manuscript. A.V.C. is supported by National Institutes of Health grant AI082418 and by the Juvenile Diabetes Research Foundation grant 17-2011-519. A.V.C. and D.A. are supported by NIH/NIDDK Digestive Disease Research Core Center grant DK42086. L.Y. and M.B. were supported by Molecular and Cellular Biology training grant (T32 GM007183) and Clinical Translational Science Award TL1 training grant (TL1TR000432), respectively. A.A.K. is supported by NIH grant p50 GM081892 and the Chicago Biomedical Consortium supported by Searle Funds at the Chicago Community Trust. NR 51 TC 124 Z9 128 U1 4 U2 54 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1074-7613 EI 1097-4180 J9 IMMUNITY JI Immunity PD AUG 22 PY 2013 VL 39 IS 2 BP 400 EP 412 DI 10.1016/j.immuni.2013.08.013 PG 13 WC Immunology SC Immunology GA AA2UE UT WOS:000330948800020 PM 23973225 ER PT J AU Leikoski, N Liu, LW Jokela, J Wahlsten, M Gugger, M Calteau, A Permi, P Kerfeld, CA Sivonen, K Fewer, DP AF Leikoski, Niina Liu, Liwei Jokela, Jouni Wahlsten, Matti Gugger, Muriel Calteau, Alexandra Permi, Perttu Kerfeld, Cheryl A. Sivonen, Kaarina Fewer, David P. TI Genome Mining Expands the Chemical Diversity of the Cyanobactin Family to Include Highly Modified Linear Peptides SO CHEMISTRY & BIOLOGY LA English DT Article ID MICROCYSTIS-AERUGINOSA; LISSOCLINUM-PATELLA; PROCHLORON-DIDEMNI; CYCLIC-PEPTIDES; BIOSYNTHESIS; SEQUENCE; HETEROCYCLIZATION; METABOLITE; ASCIDIANS; SYMPLOCA AB Ribosomal peptides are produced through the posttranslational modification of short precursor peptides. Cyanobactins are a growing family of cyclic ribosomal peptides produced by cyanobacteria. However, a broad systematic survey of the genetic capacity to produce cyanobactins is lacking. Here we report the identification of 31 cyanobactin gene clusters from 126 genomes of cyanobacteria. Genome mining suggested a complex evolutionary history defined by horizontal gene transfer and rapid diversification of precursor genes. Extensive chemical analyses demonstrated that some cyanobacteria produce short linear cyanobactins with a chain length ranging from three to five amino acids. The linear peptides were N-prenylated and O-methylated on the N and C termini, respectively, and named aeruginosamide and viridisamide. These findings broaden the structural diversity of the cyanobactin family to include highly modified linear peptides with rare posttranslational modifications. C1 [Leikoski, Niina; Liu, Liwei; Jokela, Jouni; Sivonen, Kaarina; Fewer, David P.] Univ Helsinki, Div Microbiol & Biotechnol, Dept Food & Environm Sci, Viikki Bioctr, FIN-00014 Helsinki, Finland. [Gugger, Muriel] Inst Pasteur, F-75724 Paris 15, France. [Calteau, Alexandra] CEA, DSV, IG, F-91057 Evry, France. [Permi, Perttu] CNRS, Lab Anal Bioinformat Genom & Metabolisme LABGeM, F-91057 Evry, France. [Kerfeld, Cheryl A.] Univ Helsinki, Inst Biotechnol NMR Lab, Program Struct Biol & Biophys, FI-00014 Helsinki, Finland. [Kerfeld, Cheryl A.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Fewer, DP (reprint author), Univ Helsinki, Div Microbiol & Biotechnol, Dept Food & Environm Sci, Viikki Bioctr, POB 56,Viikinkaari 9, FIN-00014 Helsinki, Finland. EM david.fewer@helsinki.fi RI Fewer, David/A-8704-2008; OI Fewer, David/0000-0003-3978-4845; CALTEAU, Alexandra/0000-0002-5871-9347; Wahlsten, Matti/0000-0002-4107-1695; Jokela, Jouni/0000-0001-5096-3575 FU Academy of Finland [118637, 258827, 259505]; Helsinki University [788/51/2010]; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX This research was supported by grants from the Academy of Finland to K.S. (118637, 258827) and D.P.F. (259505), and a Helsinki University Research grant (788/51/2010) to D.P.F.. N.L. is a student and L.L. is a matching funds student at Viikki Doctoral Programme in Molecular Biosciences. The work conducted by the US Department of Energy Joint Genome Institute is supported by the Office of Science of the US Department of Energy under contract no. DE-AC02-05CH11231. We are grateful to Lyudmila Saari for her valuable help in handling the cultures. NR 43 TC 31 Z9 31 U1 2 U2 21 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1074-5521 EI 1879-1301 J9 CHEM BIOL JI Chem. Biol. PD AUG 22 PY 2013 VL 20 IS 8 BP 1033 EP 1043 DI 10.1016/j.chembiol.2013.06.015 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 297RB UT WOS:000330271500009 PM 23911585 ER PT J AU Parayil, SK Kibombo, HS Wu, CM Peng, R Kindle, T Mishra, S Ahrenkiel, SP Baltrusaitis, J Dimitrijevic, NM Rajh, T Koodali, RT AF Parayil, Sreenivasan Koliyat Kibombo, Harrison S. Wu, Chia-Ming Peng, Rui Kindle, Trevor Mishra, Srujan Ahrenkiel, S. Phil Baltrusaitis, Jonas Dimitrijevic, Nada M. Rajh, Tijana Koodali, Ranjit T. TI Synthesis-Dependent Oxidation State of Platinum on TiO2 and Their Influences on the Solar Simulated Photocatalytic Hydrogen Production from Water SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID VISIBLE-LIGHT IRRADIATION; METAL-SEMICONDUCTOR INTERFACE; PT/TIO2 CATALYSTS; TITANIUM-DIOXIDE; MESOPOROUS TIO2; LOADED TIO2; OXIDE; PARTICLES; PHOTODEGRADATION; NANOPARTICLES AB Platinized TiO2 photocatalysts of different compositions of Pt-0 and PtO2 were prepared by modifying the synthesis procedures. The physicochemical properties of the composite materials were characterized by X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. Energy dispersive X-ray spectroscopy measurements confirmed the presence of Pt species existing as PtO2 and/or mixtures of Pt-0 and PtO2. The composite material, Pt-TiO2-2%H, contained a high amount of metallic Pt-0 and PtO2 in close proximity with TiO2 that promoted an enhanced photocatalytic hydrogen evolution activity under simulated solar light irradiation. Although Pt-TiO2-2%C and Pt-TiO2-2%T consisted of similar compositions of PtO2, these oxidized platinum species seem to appear further apart from TiO2 in Pt-TiO2-2%C than Pt-TiO2-2%T. This caused dramatic variation in their optical behaviors such as strong fluorescence quenching and lower photocatalytic hydrogen evolution activity in the former photocatalyst. A photocatalyst prepared by the conventional photodeposition method was also prepared, characterized, and its photocatalytic activity assessed. This work provides an opportunity to understand the role of PtO2 for photocatalytic production of hydrogen from platinized TiO2 composites and the importance of heterojunctions in such photocatalysts for solar energy conversion. C1 [Parayil, Sreenivasan Koliyat; Kibombo, Harrison S.; Wu, Chia-Ming; Peng, Rui; Kindle, Trevor; Koodali, Ranjit T.] Univ S Dakota, Dept Chem, Vermillion, SD 57069 USA. [Mishra, Srujan; Ahrenkiel, S. Phil] South Dakota Sch Mines & Technol, Nanosci & Nanoengn PhD Program, Rapid City, SD 57701 USA. [Baltrusaitis, Jonas] Univ Twente, Dept Chem Engn, NL-7522 NB Enschede, Netherlands. [Dimitrijevic, Nada M.; Rajh, Tijana] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Dimitrijevic, Nada M.; Rajh, Tijana] Argonne Natl Lab, Argonne, IL 60439 USA. RP Koodali, RT (reprint author), Univ S Dakota, Dept Chem, Vermillion, SD 57069 USA. EM ranjit.koodali@usd.edu RI Koodali, Ranjit/E-5595-2011; Peng, Rui/J-3781-2016 OI Baltrusaitis, Jonas/0000-0001-5634-955X; Koodali, Ranjit/0000-0002-2790-3053; Peng, Rui/0000-0002-1686-9574 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; [DE-EE 0000270]; [NSF-CHE 0840507]; [NSF-CHE 0722632]; [NSF-EPS 0903804] FX This work was supported by DE-EE 0000270, NSF-CHE 0840507, NSF-CHE 0722632, and NSF-EPS 0903804. We are thankful to Dr. C. Jiang for Raman and Dr. J. Hoefelmeyer for TEM analysis. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 61 TC 13 Z9 13 U1 4 U2 73 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 22 PY 2013 VL 117 IS 33 BP 16850 EP 16862 DI 10.1021/jp405727k PG 13 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 207IW UT WOS:000323593100012 ER PT J AU Shi, Y Choi, BY Salmeron, M AF Shi, Yu Choi, Byoung Y. Salmeron, Miquel TI Water Chains Guide the Growth of Monoatomic Copper Wires on Cu(110) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; METAL-SURFACES; PRESSURE GAP; ADSORPTION; RECONSTRUCTION; DISSOCIATION; MOLECULES; COVERAGE; SULFUR; CO AB This article reports the formation of monatomic copper wires on Cu(110) following reaction with adsorbed water in the temperature range of 180-340 K. Scanning tunneling microscopy (STM) revealed that the wires grow out of the step edges and extend into the lower terraces along [1 (1) over bar0] directions. The density and length of the monatomic wires correlate with the extent of the dissociation reaction of water leading to formation of one-dimensional mixed H2O-OH chains. The chains decorate and guide the growth of the copper wires. C1 [Shi, Yu; Choi, Byoung Y.; Salmeron, Miquel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Shi, Yu; Salmeron, Miquel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Salmeron, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM mbsalmeron@lbl.gov FU Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. DOE [DE-AC02-05CH11231] FX This work was supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. DOE under Contract No. DE-AC02-05CH11231. NR 16 TC 5 Z9 5 U1 3 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 22 PY 2013 VL 117 IS 33 BP 17119 EP 17122 DI 10.1021/jp4057434 PG 4 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 207IW UT WOS:000323593100042 ER PT J AU Zhang, B Johnson, JK AF Zhang, Bo Johnson, J. Karl TI Properties of Weakly Bound Molecular Oxygen on the Rutile TiO2(110) Surface from Density Functional Theory SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; TITANIUM-DIOXIDE; TIO2 SURFACES; BASIS-SET; OXIDATION; O-2; CO; POLARIZATION; ADSORPTION AB We have used density functional theory with van der Waals (vdW) corrections to study the energetics, structure, and vibrational modes of physisorbed O-2 on the rutile TiO2(110) surface. We find that vdW interactions dominate the adsorption energy of physisorbed O-2 molecules. We have identified the ground state geometry for physisorbed O-2 on the TiO2(110) surface from the vdW corrected potential energy surface. We have computed the vibrational frequencies of O-2 molecules in various physisorbed conformations from the partial dynamical matrix of O-2 and have identified conformations that have frequencies close to the gas phase Raman displacement of O-2, in agreement with recent experimental infrared (IR) measurements of physisorbed O-2 on TiO2 [J. Phys. Chem. C 2010, 114, 11924]. The intensities of the modes were calculated through dipole moment displacements and were found to be in qualitative agreement with experimental findings. Our calculations show that the appearance of IR modes for physisorbed O-2 on the TiO2(110) surface is due to charge transfer within the O-2 molecule caused by the electric field of the TiO2 surface. We predict that the ground state structure of O-2 physisorbed on the TiO2(110) surface has a vibrational frequency red-shifted by about 17 cm(-1) from the gas phase value and that experiments carried out at low temperatures should be able to observe this shift. C1 [Zhang, Bo; Johnson, J. Karl] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Zhang, Bo; Johnson, J. Karl] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. RP Johnson, JK (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM karlj@pitt.edu RI Johnson, Karl/E-9733-2013; OI Johnson, Karl/0000-0002-3608-8003; Zhang, Bo/0000-0001-6184-3130 FU National Energy Technology Laboratory (NETL) [DE-FE0004000] FX This technical effort was performed with the support of the National Energy Technology Laboratory (NETL) through its ongoing research program into CO2 capture (RES contract DE-FE0004000). We thank J. T. Yates, Jr., for many helpful discussions. Calculations were performed at the University of Pittsburgh Center for Simulation and Modeling. NR 54 TC 1 Z9 1 U1 2 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 22 PY 2013 VL 117 IS 33 BP 17151 EP 17158 DI 10.1021/jp4059142 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 207IW UT WOS:000323593100046 ER PT J AU Jeon, S Haley, J Flikkema, J Nalla, V Wang, M Sfeir, M Tan, LS Cooper, T Ji, W Hamblin, MR Chiang, LY AF Jeon, Seaho Haley, Joy Flikkema, Jonathan Nalla, Venkatram Wang, Min Sfeir, Matthew Tan, Loon-Seng Cooper, Thomas Ji, Wei Hamblin, Michael R. Chiang, Long Y. TI Linear and Nonlinear Optical Properties of Photoresponsive [60]Fullerene Hybrid Triads and Tetrads with Dual NIR Two-Photon Absorption Characteristics SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID C-60-DIPHENYLAMINOFLUORENE DYAD; LIMITING PROPERTIES; ENERGY-TRANSFER; C-60; ENHANCEMENT; DIPHENYLAMINOFLUORENE; FULLERENES; MECHANISM; DEVICES AB Two C-60-(antenna)(x) analogous compounds having branched hybrid triad C-60(>DPAF-C-18)(>CPAF-C-2M) and tetrad C-60(>DPAF-C-18) (>CPAF-C-2M)(2) nanostructures were synthesized and characterized. The structural design was intended to facilitate the ultrafast femtosecond intramolecular energy transfer from photoexcited C-60[>(1)(DPAF)*-C-18](>CPAF-C-2M)(1 or 2) or C-60(>DPAF-C-18)[>(1)(CPAF)*-C-2M](1 or 2) to the C-60> cage moiety upon two-photon pumping at either 780 or 980 nm, respectively. The latter nanostructure showed approximately equal extinction coefficients of optical absorption over 400-550 nm that corresponds to near-IR two-photon-based excitation wavelengths at 780-1100 nm for broadband nonlinear optical (NLO) applications. Aside from their enhanced two-photon absorption (2PA) activity at 780 nm, we also demonstrated ultrafast photoresponses at 980 nm showing 2PA cross-section (sigma(2)) values of 995-1100 GM for the hybrid tetrad. These sigma(2) values were correlated to the observed good efficiency in reducing femtosecond light-transmittance down to 3596 at the light intensity of 110 GW/cm(2). Accordingly, 2PA characteristics of these nanostructures at multiple NIR wavelengths provided support for their suitability in uses as broadband NLO nanomaterials at 600-1100 nm that includes the 2PA ability of two antenna, DPAF (700-850 nm) and CPAF (850-1100 nm), and the fullerene cage at shorter wavelengths (600-700 nm). C1 [Jeon, Seaho; Wang, Min; Chiang, Long Y.] Univ Massachusetts, Inst Nanosci & Engn Technol, Dept Chem, Lowell, MA 01854 USA. [Haley, Joy; Flikkema, Jonathan; Tan, Loon-Seng; Cooper, Thomas] Air Force Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA. [Flikkema, Jonathan] Southwestern Ohio Council Higher Educ, Dayton, OH 45420 USA. [Nalla, Venkatram; Ji, Wei] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore. [Sfeir, Matthew] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Hamblin, Michael R.] Harvard Univ, Sch Med, Dept Dermatol, Wellman Ctr Photomed,Massachusetts Gen Hosp, Boston, MA 02114 USA. [Hamblin, Michael R.] MIT, Harvard Mit Div Hlth Sci & Technol, Cambridge, MA 02139 USA. RP Chiang, LY (reprint author), Univ Massachusetts, Inst Nanosci & Engn Technol, Dept Chem, Lowell, MA 01854 USA. EM long_chiang@uml.edu RI Nalla, Venkatram/A-2139-2009; JI, WEI/H-5795-2015; Tan, Loon-Seng/F-6985-2012; OI Nalla, Venkatram/0000-0003-4535-290X; JI, WEI/0000-0003-0303-0830; Tan, Loon-Seng/0000-0002-2134-9290; Sfeir, Matthew/0000-0001-5619-5722; Hamblin, Michael/0000-0001-6431-4605 FU Air Force Office of Scientific Research (AFOSR) [FA9550-09-1-0380, FA9550-09-1-0183]; National Institutes of Health (NIH) [4R01CA137108, R01AI058075]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX We at UML thank the Air Force Office of Scientific Research (AFOSR) under grant numbers FA9550-09-1-0380 and FA9550-09-1-0183 and National Institutes of Health (NIH) under grant number 4R01CA137108 for financial support. M.R.H. was supported by NIH R01AI058075.; Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 37 TC 5 Z9 6 U1 0 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 22 PY 2013 VL 117 IS 33 BP 17186 EP 17195 DI 10.1021/jp405424q PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 207IW UT WOS:000323593100050 PM 24163713 ER PT J AU Rowland, CE Schaller, RD AF Rowland, Clare E. Schaller, Richard D. TI Exciton Fate in Semiconductor Nanocrystals at Elevated Temperatures: Hole Trapping Outcompetes Exciton Deactivation SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID COLLOIDAL QUANTUM DOTS; LIGHT-EMITTING-DIODES; SOLAR-CELLS; EMISSION; PHOTOLUMINESCENCE; DEPENDENCE; DECAY; DARK AB The tens-of-percent photoluminescence (PL) quantum yields routinely obtained for colloidally prepared CdSe semiconductor nanocrystals (NCs) decrease substantially with temperature elevation. While such PL efficiency loss has direct consequences for applications ranging from light-emitting diodes and lasers to photovoltaics under solar concentration, the origin of this loss is currently not established, hindering synthetic efforts to design materials with robust performance. Here, for the first time, we utilize transient absorption and ultrafast PL in addition to static PL and time-correlated single photon counting, to characterize CdSe core-only and CdSe/ZnS core/shell NCs up to temperatures as high as 800 K. For multiple particle sizes, loss of PL efficiency as a function of temperature elevation is more severe and less reversible for core-only NCs than for core/shell NCs. Ultrafast measurements performed at elevated sample temperatures indicate that thermally activated trapping of individual carriers dominates the nonradiative loss of excitons. Through a combination of spectroscopic techniques, we identify the primary carrier loss process as hole trapping in particular. These findings support the notion that extrinsic trapping effects out-compete intrinsic exciton deactivation at high temperature and point to realizable improvements in thermally robust optoelectronic performance. C1 [Rowland, Clare E.; Schaller, Richard D.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Schaller, Richard D.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Schaller, RD (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM schaller@anl.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; National Science Foundation [DGE-0824162] FX Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We thank Dr. Yuzi Liu for assistance with TEM. C.E.R acknowledges support by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-0824162. NR 36 TC 13 Z9 13 U1 1 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 EI 1932-7455 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 22 PY 2013 VL 117 IS 33 BP 17337 EP 17343 DI 10.1021/jp405616u PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 207IW UT WOS:000323593100066 ER PT J AU Cook, AR Bird, MJ Asaoka, S Miller, JR AF Cook, Andrew R. Bird, Matthew J. Asaoka, Sadayuki Miller, John R. TI Rapid "Step Capture" of Holes in Chloroform during Pulse Radiolysis SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID DIFFUSION-LIMITED REACTIONS; PICOSECOND TIME RESOLUTION; HIGH-ENERGY ELECTRON; TO-SOLVENT DYNAMICS; NMR SELF-DIFFUSION; CHARGE-TRANSFER; AROMATIC-HYDROCARBONS; CONJUGATED POLYMERS; LIQUID CYCLOHEXANE; HYDRATED ELECTRON AB The fundamental process of hole capture in solution was investigated following pulse radiolysis with polyfluorene and 4-cyano-4 ''-pentyl-p-terphenyl scavengers. Contrary to expectation, a large fraction of holes were captured in experimental time-resolution limited similar to 20 ps steps, by a process much faster than diffusion of the initially formed solvent molecular cation. At the highest concentrations, 1.92 mM for a 52 unit long polyfluorene and 800 mM for 4-cyano-4 ''-pentyl-p-terphenyl, 66% and 99%, respectively, of the initially formed holes were captured by 20 ps, with radiation chemical yield G = 1.2 x 10(-7) and 1.7 x 10(-7) mol J(-1). The data can be explained by capture of presolvated holes, analogous to presolvated electrons, possibly possessing extended wave functions, high mobilities, or excess kinetic energy for the first few picoseconds after their creation. Such a process is not generally known in solution; however, the observed step capture as a function of solute concentration is shown to be well explained by this model. In addition to understanding the capture process in solution, the very large step yields formed in 20 ps will provide the ability to resolve subsequent hole transfer on the polymers with >2 orders of magnitude better time resolution than expected. C1 [Cook, Andrew R.; Bird, Matthew J.; Miller, John R.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11793 USA. [Asaoka, Sadayuki] Tokyo Inst Technol, Chem Resources Lab, Yokohama, Kanagawa 2268503, Japan. RP Cook, AR (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11793 USA. EM acook@bnl.gov RI Bird, Matthew/B-5832-2013; OI Bird, Matthew/0000-0002-6819-5380; Cook, Andrew/0000-0001-6633-3447 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-98-CH10886] FX We gratefully acknowledge support of the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy through Grant #DE-AC02-98-CH10886 to all authors and for use of the LEAF Facility of the BNL Accelerator Center for Energy Research. NR 75 TC 0 Z9 0 U1 2 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD AUG 22 PY 2013 VL 117 IS 33 BP 7712 EP 7720 DI 10.1021/jp405349u PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 207JC UT WOS:000323593700008 PM 23875890 ER PT J AU Johnson, PM Sears, TJ AF Johnson, Philip M. Sears, Trevor J. TI Enhancement of Triplet Stability in Benzene by Substituents with Triple Bonds SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID LARGE MOLECULES; RADIATIONLESS TRANSITIONS; NONEXPONENTIAL DECAYS; STATES; PHENYLACETYLENE; FLUORESCENCE; SPECTROSCOPY; PYRIMIDINE; EXCITATION; PYRAZINE AB Excitation of phenylacetylene (PA) and benzonitrile to their lowest singlet states in a molecular beam has previously been shown to immediately (only during the 8 ns laser pulse) result in long-lived species with low ionization potentials (Hofstein, J.; Xu, H.; Sears, T.; Johnson, P.M. J. Phys. Chem. A 2008, 112, 1195-1201). Using the fragmentation of ions produced by photoionization at various times after initial excitation as a diagnostic for molecular geometry evolution, the long-lived species in phenylacetylene is shown to be a PA state (most likely a triplet) rather than an isomer. Delayed fluorescence and a delayed photoelectron signal indicative of S-1 are also seen, indicating a singlet-triplet mixing process that is not quite in the statistical-coupling limit and is parallel to the long-lived species channel. Electronic structure calculations indicate that the lowest triplet state of phenylacetylene is nonplanar with the ethynyl group bent in a trans-configuration out of the plane of the ring. The substituent pi-electrons are significantly conjugated into the ring, resulting in a tendency toward a quinoidal structure, which may be related to the unusual excited state stability. These molecules constitute the first members of a new class of excited state behaviors. C1 [Johnson, Philip M.; Sears, Trevor J.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Sears, Trevor J.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Johnson, PM (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM Philip.johnson@sunysb.edu RI Sears, Trevor/B-5990-2013 OI Sears, Trevor/0000-0002-5559-0154 FU U.S. Department of Energy [DE-AC02-98CH10886]; Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences FX We gratefully acknowledge G. V. Lopez for his contributions to some of the early experimental measurements and calculations, and valuable discussions with Prof. Thomas Weinacht concerning the dynamics of molecular excited states. Work at Brookhaven National Laboratory was carried out under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. NR 21 TC 1 Z9 1 U1 0 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD AUG 22 PY 2013 VL 117 IS 33 BP 7786 EP 7793 DI 10.1021/jp403727f PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 207JC UT WOS:000323593700015 PM 23899004 ER PT J AU Zhang, J Hrovat, DA Sun, ZR Bao, XG Borden, WT Wang, XB AF Zhang, Jian Hrovat, David A. Sun, Zhenrong Bao, Xiaoguang Borden, Weston Thatcher Wang, Xue-Bin TI The Ground State of (CS)(4) Is Different from That of (CO)(4): An Experimental Test of a Computational Prediction by Negative Ion Photoelectron Spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID WAVE-FUNCTIONS; SQUARIC ACID; HUNDS RULE; BASIS-SETS; DENSITY; SINGLET; CYCLOBUTANETETRAONE; VIOLATIONS; STABILITY; HYDROGEN AB Cyclobutane-1,2,3,4-tetrathione, (CS)(4), has recently been calculated to have a singlet ground state, (1)A(1g), in which the highest b(2g) sigma MO is doubly occupied and the lowest a(2u) pi MO is empty. Thus, (CS)(4) is predicted to have a different ground state than its lighter congener, (CO)(4), which has a triplet ground state, B-3(1u), which these two MOs are each singly occupied. Here, we report the results of a negative ion photoelectron spectroscopy (NIPES) study of the radical anion (CS)(4)(center dot-), designed to test the prediction that (CS)(4) has a singlet ground state. The NIPE spectrum reveals that (CS)(4) does, indeed, have a singlet ground state with electron affinity (EA) = 3.75 eV. The lowest triplet state is found to lie 0.31 eV higher in energy than the ground state, and the open-shell singlet is 0.14 eV higher in energy than the triplet state. Calculations at the (U)CCSD(T)/aug-cc-pVTZ//(U)B3LYP/6-311+G(2df) level support the spectral assignments, giving EA = 3.71 eV and Delta E-ST = 0.44 eV. These calculated values are, respectively, 0.04 eV (0.9 kcal/mol) smaller and 0.13 eV (3.0 kcal/mol) larger than the corresponding experimental values. In addition, RASPT2 calculations with various active spaces and basis sets converge on a B-1(1u)-B-3(1u) energy gap of 0.137 eV, in excellent agreement with the 0.14 eV energy difference obtained from the NIPE spectrum. Finally, calculations of the Franck-Condon factors for transitions from the ground state of (CS)(4)(center dot-) to the ground ((1)A(1g)) and two excited states (B-3(1u), B-1(1u)) of (CS)(4) account for all of the major spectral peaks and nicely reproduce the vibrational structure observed in each electronic transition. The close correspondence between the calculated and the observed features in the NIPE spectrum of (CS)(4)(center dot-) provides unequivocal proof that (CS)(4), unlike (CO)(4), has a singlet ground state. C1 [Zhang, Jian; Sun, Zhenrong] E China Normal Univ, State Key Lab Precis Spect, Shanghai 200062, Peoples R China. [Hrovat, David A.; Borden, Weston Thatcher] Univ N Texas, Dept Chem, Denton, TX 76203 USA. [Hrovat, David A.; Borden, Weston Thatcher] Univ N Texas, Ctr Adv Sci Comp & Modeling, Denton, TX 76203 USA. [Bao, Xiaoguang] Soochow Univ, Coll Chem Chem Engn & Mat Sci, Suzhou 215123, Jiangsu, Peoples R China. [Zhang, Jian; Wang, Xue-Bin] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Bao, XG (reprint author), Soochow Univ, Coll Chem Chem Engn & Mat Sci, 199 Ren Ai Rd,Suzhou Ind Pk, Suzhou 215123, Jiangsu, Peoples R China. EM xgbao@suda.edu.cn; borden@unt.edu; xuebin.wang@pnnl.gov FU National Science Foundation [CHE-0910527]; Robert A. Welch Foundation [B0027]; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy (DOE); DOE's Office of Biological and Environmental Research FX The calculations at UNT were supported by Grant CHE-0910527 from the National Science Foundation and Grant B0027 from the Robert A. Welch Foundation to W.T.B. The NIPES experiments at PNNL were supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy (DOE). The experiments were performed at EMSL, a national scientific user facility, sponsored by DOE's Office of Biological and Environmental Research, located at PNNL and operated by Battelle for DOE. NR 37 TC 8 Z9 8 U1 1 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD AUG 22 PY 2013 VL 117 IS 33 BP 7841 EP 7846 DI 10.1021/jp406160d PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 207JC UT WOS:000323593700022 PM 23886029 ER PT J AU Adare, A Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Al-Bataineh, H Alexander, J Angerami, A Aoki, K Apadula, N Aramaki, Y Atomssa, ET Averbeck, R Awes, TC Azmoun, B Babintsev, V Bai, M Baksay, G Baksay, L Barish, KN Bassalleck, B Basye, AT Bathe, S Baublis, V Baumann, C Bazilevsky, A Belikov, S Belmont, R Bennett, R Berdnikov, A Berdnikov, Y Bhom, JH Bickley, AA Blau, DS Bok, JS Boyle, K Brooks, ML Buesching, H Bumazhnov, V Bunce, G Butsyk, S Camacho, CM Campbell, S Caringi, A Chen, CH Chi, CY Chiu, M Choi, IJ Choi, JB Choudhury, RK Christiansen, P Chujo, T Chung, P Chvala, O Cianciolo, V Citron, Z Cole, BA del Valle, ZC Connors, M Constantin, P Csanad, M Csorgo, T Dahms, T Dairaku, S Danchev, I Das, K Datta, A David, G Dayananda, MK Denisov, A Deshpande, A Desmond, EJ Dharmawardane, KV Dietzsch, O Dion, A Donadelli, M Drapier, O Drees, A Drees, KA Durham, JM Durum, A Dutta, D D'Orazio, L Edwards, S Efremenko, YV Ellinghaus, F Engelmore, T Enokizono, A En'yo, H Esumi, S Fadem, B Fields, DE Finger, M Finger, M Fleuret, F Fokin, SL Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fujiwara, K Fukao, Y Fusayasu, T Garishvili, I Glenn, A Gong, H Gonin, M Goto, Y de Cassagnac, RG Grau, N Greene, SV Grim, G Perdekamp, MG Gunji, T Gustafsson, HA Haggerty, JS Hahn, KI Hamagaki, H Hamblen, J Han, R Hanks, J Hartouni, EP Haslum, E Hayano, R He, X Heffner, M Hemmick, TK Hester, T Hill, JC Hohlmann, M Holzmann, W Homma, K Hong, B Horaguchi, T Hornback, D Huang, S Ichihara, T Ichimiya, R Ide, J Ikeda, Y Imai, K Inaba, M Isenhower, D Ishihara, M Isobe, T Issah, M Isupov, A Ivanischev, D Iwanaga, Y Jacak, BV Jia, J Jiang, X Jin, J Johnson, BM Jones, T Joo, KS Jouan, D Jumper, DS Kajihara, F Kametani, S Kamihara, N Kamin, J Kang, JH Kapustinsky, J Karatsu, K Kasai, M Kawall, D Kawashima, M Kazantsev, AV Kempel, T Khanzadeev, A Kijima, KM Kikuchi, J Kim, A Kim, BI Kim, DH Kim, DJ Kim, E Kim, EJ Kim, SH Kim, YJ Kinney, E Kiriluk, K Kiss, A Kistenev, E Kleinjan, D Kochenda, L Komkov, B Konno, M Koster, J Kotchetkov, D Kozlov, A Kral, A Kravitz, A Kunde, GJ Kurita, K Kurosawa, M Kwon, Y Kyle, GS Lacey, R Lai, YS Lajoie, JG Lebedev, A Lee, DM Lee, J Lee, K Lee, KB Lee, KS Leitch, MJ Leite, MAL Leitner, E Lenzi, B Li, X Lichtenwalner, P Liebing, P Levy, LAL Liska, T Litvinenko, A Liu, H Liu, MX Love, B Luechtenborg, R Lynch, D Maguire, CF Makdisi, YI Malakhov, A Malik, MD Manko, VI Mannel, E Mao, Y Masui, H Matathias, F McCumber, M McGaughey, PL McGlinchey, D Means, N Meredith, B Miake, Y Mibe, T Mignerey, AC Mikes, P Miki, K Milov, A Mishra, M Mitchell, JT Mohanty, AK Moon, HJ Morino, Y Morreale, A Morrison, DP Moukhanova, TV Murakami, T Murata, J Nagamiya, S Nagle, JL Naglis, M Nagy, MI Nakagawa, I Nakamiya, Y Nakamura, KR Nakamura, T Nakano, K Nam, S Newby, J Nguyen, M Nihashi, M Nouicer, R Nyanin, AS Oakley, C O'Brien, E Oda, SX Ogilvie, CA Oka, M Okada, K Onuki, Y Oskarsson, A Ouchida, M Ozawa, K Pak, R Pantuev, V Papavassiliou, V Park, IH Park, J Park, SK Park, WJ Pate, SF Pei, H Peng, JC Pereira, H Peresedov, V Peressounko, DY Petti, R Pinkenburg, C Pisani, RP Proissl, M Purschke, ML Purwar, AK Qu, H Rak, J Rakotozafindrabe, A Ravinovich, I Read, KF Rembeczki, S Reygers, K Riabov, V Riabov, Y Richardson, E Roach, D Roche, G Rolnick, SD Rosati, M Rosen, CA Rosendahl, SSE Rosnet, P Rukoyatkin, P Ruzicka, P Sahlmueller, B Saito, N Sakaguchi, T Sakashita, K Samsonov, V Sano, S Sato, T Sawada, S Sedgwick, K Seele, J Seidl, R Semenov, AY Seto, R Sharma, D Shein, I Shibata, TA Shigaki, K Shimomura, M Shoji, K Shukla, P Sickles, A Silva, CL Silvermyr, D Silvestre, C Sim, KS Singh, BK Singh, CP Singh, V Slunecka, M Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Sparks, NA Stankus, PW Stenlund, E Stoll, SP Sugitate, T Sukhanov, A Sziklai, J Takagui, EM Taketani, A Tanabe, R Tanaka, Y Taneja, S Tanida, K Tannenbaum, MJ Tarafdar, S Taranenko, A Tarjan, P Themann, H Thomas, D Thomas, TL Togawa, M Toia, A Tomasek, L Torii, H Towell, RS Tserruya, I Tsuchimoto, Y Vale, C Valle, H van Hecke, HW Vazquez-Zambrano, E Veicht, A Velkovska, J Vertesi, R Vinogradov, AA Virius, M Vrba, V Vznuzdaev, E Wang, XR Watanabe, D Watanabe, K Watanabe, Y Wei, F Wei, R Wessels, J White, SN Winter, D Wood, JP Woody, CL Wright, RM Wysocki, M Xie, W Yamaguchi, YL Yamaura, K Yang, R Yanovich, A Ying, J Yokkaichi, S You, Z Young, GR Younus, I Yushmanov, IE Zajc, WA Zhang, C Zhou, S Zolin, L AF Adare, A. Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Al-Bataineh, H. Alexander, J. Angerami, A. Aoki, K. Apadula, N. Aramaki, Y. Atomssa, E. T. Averbeck, R. Awes, T. C. Azmoun, B. Babintsev, V. Bai, M. Baksay, G. Baksay, L. Barish, K. N. Bassalleck, B. Basye, A. T. Bathe, S. Baublis, V. Baumann, C. Bazilevsky, A. Belikov, S. Belmont, R. Bennett, R. Berdnikov, A. Berdnikov, Y. Bhom, J. H. Bickley, A. A. Blau, D. S. Bok, J. S. Boyle, K. Brooks, M. L. Buesching, H. Bumazhnov, V. Bunce, G. Butsyk, S. Camacho, C. M. Campbell, S. Caringi, A. Chen, C. -H. Chi, C. Y. Chiu, M. Choi, I. J. Choi, J. B. Choudhury, R. K. Christiansen, P. Chujo, T. Chung, P. Chvala, O. Cianciolo, V. Citron, Z. Cole, B. A. del Valle, Z. Conesa Connors, M. Constantin, P. Csanad, M. Csoergo, T. Dahms, T. Dairaku, S. Danchev, I. Das, K. Datta, A. David, G. Dayananda, M. K. Denisov, A. Deshpande, A. Desmond, E. J. Dharmawardane, K. V. Dietzsch, O. Dion, A. Donadelli, M. Drapier, O. Drees, A. Drees, K. A. Durham, J. M. Durum, A. Dutta, D. D'Orazio, L. Edwards, S. Efremenko, Y. V. Ellinghaus, F. Engelmore, T. Enokizono, A. En'yo, H. Esumi, S. Fadem, B. Fields, D. E. Finger, M. Finger, M., Jr. Fleuret, F. Fokin, S. L. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fujiwara, K. Fukao, Y. Fusayasu, T. Garishvili, I. Glenn, A. Gong, H. Gonin, M. Goto, Y. de Cassagnac, R. Granier Grau, N. Greene, S. V. Grim, G. Perdekamp, M. Grosse Gunji, T. Gustafsson, H. -A. Haggerty, J. S. Hahn, K. I. Hamagaki, H. Hamblen, J. Han, R. Hanks, J. Hartouni, E. P. Haslum, E. Hayano, R. He, X. Heffner, M. Hemmick, T. K. Hester, T. Hill, J. C. Hohlmann, M. Holzmann, W. Homma, K. Hong, B. Horaguchi, T. Hornback, D. Huang, S. Ichihara, T. Ichimiya, R. Ide, J. Ikeda, Y. Imai, K. Inaba, M. Isenhower, D. Ishihara, M. Isobe, T. Issah, M. Isupov, A. Ivanischev, D. Iwanaga, Y. Jacak, B. V. Jia, J. Jiang, X. Jin, J. Johnson, B. M. Jones, T. Joo, K. S. Jouan, D. Jumper, D. S. Kajihara, F. Kametani, S. Kamihara, N. Kamin, J. Kang, J. H. Kapustinsky, J. Karatsu, K. Kasai, M. Kawall, D. Kawashima, M. Kazantsev, A. V. Kempel, T. Khanzadeev, A. Kijima, K. M. Kikuchi, J. Kim, A. Kim, B. I. Kim, D. H. Kim, D. J. Kim, E. Kim, E. -J. Kim, S. H. Kim, Y. -J. Kinney, E. Kiriluk, K. Kiss, A. Kistenev, E. Kleinjan, D. Kochenda, L. Komkov, B. Konno, M. Koster, J. Kotchetkov, D. Kozlov, A. Kral, A. Kravitz, A. Kunde, G. J. Kurita, K. Kurosawa, M. Kwon, Y. Kyle, G. S. Lacey, R. Lai, Y. S. Lajoie, J. G. Lebedev, A. Lee, D. M. Lee, J. Lee, K. Lee, K. B. Lee, K. S. Leitch, M. J. Leite, M. A. L. Leitner, E. Lenzi, B. Li, X. Lichtenwalner, P. Liebing, P. Levy, L. A. Linden Liska, T. Litvinenko, A. Liu, H. Liu, M. X. Love, B. Luechtenborg, R. Lynch, D. Maguire, C. F. Makdisi, Y. I. Malakhov, A. Malik, M. D. Manko, V. I. Mannel, E. Mao, Y. Masui, H. Matathias, F. McCumber, M. McGaughey, P. L. McGlinchey, D. Means, N. Meredith, B. Miake, Y. Mibe, T. Mignerey, A. C. Mikes, P. Miki, K. Milov, A. Mishra, M. Mitchell, J. T. Mohanty, A. K. Moon, H. J. Morino, Y. Morreale, A. Morrison, D. P. Moukhanova, T. V. Murakami, T. Murata, J. Nagamiya, S. Nagle, J. L. Naglis, M. Nagy, M. I. Nakagawa, I. Nakamiya, Y. Nakamura, K. R. Nakamura, T. Nakano, K. Nam, S. Newby, J. Nguyen, M. Nihashi, M. Nouicer, R. Nyanin, A. S. Oakley, C. O'Brien, E. Oda, S. X. Ogilvie, C. A. Oka, M. Okada, K. Onuki, Y. Oskarsson, A. Ouchida, M. Ozawa, K. Pak, R. Pantuev, V. Papavassiliou, V. Park, I. H. Park, J. Park, S. K. Park, W. J. Pate, S. F. Pei, H. Peng, J. -C. Pereira, H. Peresedov, V. Peressounko, D. Yu. Petti, R. Pinkenburg, C. Pisani, R. P. Proissl, M. Purschke, M. L. Purwar, A. K. Qu, H. Rak, J. Rakotozafindrabe, A. Ravinovich, I. Read, K. F. Rembeczki, S. Reygers, K. Riabov, V. Riabov, Y. Richardson, E. Roach, D. Roche, G. Rolnick, S. D. Rosati, M. Rosen, C. A. Rosendahl, S. S. E. Rosnet, P. Rukoyatkin, P. Ruzicka, P. Sahlmueller, B. Saito, N. Sakaguchi, T. Sakashita, K. Samsonov, V. Sano, S. Sato, T. Sawada, S. Sedgwick, K. Seele, J. Seidl, R. Semenov, A. Yu. Seto, R. Sharma, D. Shein, I. Shibata, T. -A. Shigaki, K. Shimomura, M. Shoji, K. Shukla, P. Sickles, A. Silva, C. L. Silvermyr, D. Silvestre, C. Sim, K. S. Singh, B. K. Singh, C. P. Singh, V. Slunecka, M. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Sparks, N. A. Stankus, P. W. Stenlund, E. Stoll, S. P. Sugitate, T. Sukhanov, A. Sziklai, J. Takagui, E. M. Taketani, A. Tanabe, R. Tanaka, Y. Taneja, S. Tanida, K. Tannenbaum, M. J. Tarafdar, S. Taranenko, A. Tarjan, P. Themann, H. Thomas, D. Thomas, T. L. Togawa, M. Toia, A. Tomasek, L. Torii, H. Towell, R. S. Tserruya, I. Tsuchimoto, Y. Vale, C. Valle, H. van Hecke, H. W. Vazquez-Zambrano, E. Veicht, A. Velkovska, J. Vertesi, R. Vinogradov, A. A. Virius, M. Vrba, V. Vznuzdaev, E. Wang, X. R. Watanabe, D. Watanabe, K. Watanabe, Y. Wei, F. Wei, R. Wessels, J. White, S. N. Winter, D. Wood, J. P. Woody, C. L. Wright, R. M. Wysocki, M. Xie, W. Yamaguchi, Y. L. Yamaura, K. Yang, R. Yanovich, A. Ying, J. Yokkaichi, S. You, Z. Young, G. R. Younus, I. Yushmanov, I. E. Zajc, W. A. Zhang, C. Zhou, S. Zolin, L. CA PHENIX Collaboration TI Spectra and ratios of identified particles in Au plus Au and d plus Au collisions at root s(NN)=200 GeV SO PHYSICAL REVIEW C LA English DT Article ID QUARK-GLUON PLASMA; ENERGY NUCLEAR COLLISIONS; LARGE TRANSVERSE-MOMENTUM; ANGULAR-CORRELATIONS; LONG-RANGE; PHENIX; COLLABORATION; STRANGENESS; PERSPECTIVE; DETECTOR AB The transverse momentum (p(T)) spectra and ratios of identified charged hadrons (pi(+/-), K-+/-, p, (p) over bar) produced in root s(NN) = 200 GeV Au + Au and d + Au collisions are reported in five different centrality classes for each collision species. The measurements of pions and protons are reported up to p(T) = 6 GeV/c (5 GeV/c), and the measurements of kaons are reported up to p(T) = 4 GeV/c (3.5 GeV/c) in Au + Au (d + Au) collisions. In the intermediate p(T) region, between 2 and 5 GeV/c, a significant enhancement of baryon-to-meson ratios compared to those measured in p + p collisions is observed. This enhancement is present in both Au + Au and d + Au collisions and increases as the collisions become more central. We compare a class of peripheral Au + Au collisions with a class of central d + Au collisions which have a comparable number of participating nucleons and binary nucleon-nucleon collisions. The p(T)-dependent particle ratios for these classes display a remarkable similarity, which is then discussed. C1 [Adare, A.; Bickley, A. A.; Ellinghaus, F.; Glenn, A.; Kinney, E.; Kiriluk, K.; Levy, L. A. Linden; McGlinchey, D.; Nagle, J. L.; Rosen, C. A.; Seele, J.; Wysocki, M.] Univ Colorado, Boulder, CO 80309 USA. [Grau, N.] Augustana Coll, Dept Phys, Sioux Falls, SD 57197 USA. [Mishra, M.; Singh, B. K.; Singh, C. P.; Singh, V.; Tarafdar, S.] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. [Choudhury, R. K.; Dutta, D.; Mohanty, A. K.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Bathe, S.] CUNY Bernard M Baruch Coll, New York, NY 10010 USA. [Bai, M.; Drees, K. A.; Makdisi, Y. I.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Azmoun, B.; Bazilevsky, A.; Belikov, S.; Buesching, H.; Bunce, G.; Chiu, M.; David, G.; Desmond, E. J.; Franz, A.; Haggerty, J. S.; Jia, J.; Johnson, B. M.; Kistenev, E.; Lynch, D.; Milov, A.; Mitchell, J. T.; Morrison, D. P.; Nouicer, R.; O'Brien, E.; Pak, R.; Pinkenburg, C.; Pisani, R. P.; Purschke, M. L.; Sakaguchi, T.; Sickles, A.; Sourikova, I. V.; Stoll, S. P.; Sukhanov, A.; Tannenbaum, M. J.; Vale, C.; White, S. N.; Woody, C. L.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Barish, K. N.; Bathe, S.; Chvala, O.; Hester, T.; Kleinjan, D.; Morreale, A.; Rolnick, S. D.; Sedgwick, K.; Seto, R.] Univ Calif Riverside, Riverside, CA 92521 USA. [Finger, M.; Finger, M., Jr.; Mikes, P.; Slunecka, M.] Charles Univ Prague, CR-11636 Prague, Czech Republic. [Choi, J. B.; Kim, E. -J.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Li, X.; Zhou, S.] China Inst Atom Energy, Sci & Technol Nucl Data Lab, Beijing 102413, Peoples R China. [Aramaki, Y.; Gunji, T.; Hamagaki, H.; Hayano, R.; Isobe, T.; Kajihara, F.; Morino, Y.; Oda, S. X.; Ozawa, K.; Sano, S.; Yamaguchi, Y. L.] Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Bunkyo Ku, Tokyo 1130033, Japan. [Basye, A. T.; Isenhower, D.; Jones, T.; Jumper, D. S.; Sparks, N. A.; Thomas, D.; Towell, R. S.; Wood, J. P.; Wright, R. M.] Abilene Christian Univ, Abilene, TX 79699 USA. [Angerami, A.; Chi, C. Y.; Cole, B. A.; Engelmore, T.; Grau, N.; Hanks, J.; Holzmann, W.; Jin, J.; Kravitz, A.; Lai, Y. S.; Mannel, E.; Matathias, F.; Vazquez-Zambrano, E.; Winter, D.; Zajc, W. A.] Columbia Univ, New York, NY 10027 USA. [Angerami, A.; Chi, C. Y.; Cole, B. A.; Engelmore, T.; Grau, N.; Hanks, J.; Holzmann, W.; Jin, J.; Kravitz, A.; Lai, Y. S.; Mannel, E.; Matathias, F.; Vazquez-Zambrano, E.; Winter, D.; Zajc, W. A.] Nevis Labs, Irvington, NY 10533 USA. [Kral, A.; Liska, T.; Virius, M.] Czech Tech Univ, Prague 16636 6, Czech Republic. [Pereira, H.; Silvestre, C.] CEA Saclay, Dapnia, F-91191 Gif Sur Yvette, France. [Tarjan, P.; Vertesi, R.] Debrecen Univ, H-4010 Debrecen, Hungary. [Csanad, M.; Kiss, A.; Nagy, M. I.] Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. [Hahn, K. I.; Kim, A.; Lee, J.; Nam, S.; Park, I. H.] Ewha Womans Univ, Seoul 120750, South Korea. [Baksay, G.; Baksay, L.; Hohlmann, M.; Rembeczki, S.] Florida Inst Technol, Melbourne, FL 32901 USA. [Das, K.; Edwards, S.; Frawley, A. D.; McGlinchey, D.] Florida State Univ, Tallahassee, FL 32306 USA. [Dayananda, M. K.; He, X.; Oakley, C.; Qu, H.; Ying, J.] Georgia State Univ, Atlanta, GA 30303 USA. [Homma, K.; Horaguchi, T.; Iwanaga, Y.; Kijima, K. M.; Nakamiya, Y.; Nakamura, T.; Nihashi, M.; Ouchida, M.; Shigaki, K.; Sugitate, T.; Torii, H.; Tsuchimoto, Y.; Watanabe, D.; Yamaura, K.] Hiroshima Univ, Higashihiroshima 7398526, Japan. [Babintsev, V.; Bumazhnov, V.; Denisov, A.; Durum, A.; Shein, I.; Yanovich, A.] Inst High Energy Phys, State Res Ctr Russian Federat, IHEP Protvino, Protvino 142281, Russia. [Perdekamp, M. Grosse; Kim, Y. -J.; Koster, J.; Meredith, B.; Peng, J. -C.; Seidl, R.; Veicht, A.; Yang, R.] Univ Illinois, Urbana, IL 61801 USA. [Pantuev, V.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Mikes, P.; Ruzicka, P.; Tomasek, L.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. [Dion, A.; Hill, J. C.; Kempel, T.; Lajoie, J. G.; Lebedev, A.; Ogilvie, C. A.; Pei, H.; Rosati, M.; Semenov, A. Yu.; Silva, C. L.; Vale, C.; Wei, F.] Iowa State Univ, Ames, IA 50011 USA. [Imai, K.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. [Afanasiev, S.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Zolin, L.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. [Kim, D. J.; Rak, J.] Helsinki Inst Phys, FI-40014 Jyvaskyla, Finland. [Kim, D. J.; Rak, J.] Univ Jyvaskyla, FI-40014 Jyvaskyla, Finland. [Mibe, T.; Nagamiya, S.; Nakamura, T.; Saito, N.; Sawada, S.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Hong, B.; Kim, B. I.; Lee, K. B.; Lee, K. S.; Park, S. K.; Park, W. J.; Sim, K. S.] Korea Univ, Seoul 136701, South Korea. [Blau, D. S.; Fokin, S. L.; Kazantsev, A. V.; Manko, V. I.; Moukhanova, T. V.; Nyanin, A. S.; Peressounko, D. Yu.; Vinogradov, A. A.; Yushmanov, I. E.] Russian Res Ctr, Kurchatov Inst, Moscow 123098, Russia. [Aoki, K.; Dairaku, S.; Imai, K.; Karatsu, K.; Murakami, T.; Nakamura, K. R.; Shoji, K.; Tanida, K.; Togawa, M.] Kyoto Univ, Kyoto 6068502, Japan. [Atomssa, E. T.; del Valle, Z. Conesa; Drapier, O.; Fleuret, F.; Gonin, M.; de Cassagnac, R. Granier; Rakotozafindrabe, A.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Younus, I.] Lahore Univ Management Sci, Dept Phys, Lahore, Pakistan. [Enokizono, A.; Glenn, A.; Hartouni, E. P.; Heffner, M.; Newby, J.; Soltz, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Brooks, M. L.; Butsyk, S.; Camacho, C. M.; Constantin, P.; Durham, J. M.; Grim, G.; Jiang, X.; Kapustinsky, J.; Kunde, G. J.; Lee, D. M.; Leitch, M. J.; Liu, H.; Liu, M. X.; McGaughey, P. L.; Purwar, A. K.; Sondheim, W. E.; van Hecke, H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Roche, G.; Rosnet, P.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, F-63177 Aubiere, France. [Christiansen, P.; Gustafsson, H. -A.; Haslum, E.; Oskarsson, A.; Rosendahl, S. S. E.; Stenlund, E.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden. [D'Orazio, L.; Mignerey, A. C.; Richardson, E.] Univ Maryland, College Pk, MD 20742 USA. [Aidala, C.; Datta, A.; Kawall, D.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Aidala, C.; Belmont, R.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Baumann, C.; Luechtenborg, R.; Reygers, K.; Sahlmueller, B.; Wessels, J.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Caringi, A.; Fadem, B.; Ide, J.; Lichtenwalner, P.] Muhlenberg Coll, Allentown, PA 18104 USA. [Joo, K. S.; Kim, D. H.; Moon, H. J.] Myongji Univ, Yongin 449728, Kyonggido, South Korea. [Fusayasu, T.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Bassalleck, B.; Fields, D. E.; Kotchetkov, D.; Malik, M. D.; Thomas, T. L.; Younus, I.] Univ New Mexico, Albuquerque, NM 87131 USA. [Al-Bataineh, H.; Dharmawardane, K. V.; Kyle, G. S.; Liu, H.; Papavassiliou, V.; Pate, S. F.; Wang, X. R.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Frantz, J. E.] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. [Awes, T. C.; Cianciolo, V.; Efremenko, Y. V.; Enokizono, A.; Read, K. F.; Silvermyr, D.; Stankus, P. W.; Young, G. R.; Zhang, C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Jouan, D.] Univ Paris 11, CNRS, IN2P3, IPN Orsay, F-91406 Orsay, France. [Han, R.; Mao, Y.; You, Z.] Peking Univ, Beijing 100871, Peoples R China. [Baublis, V.; Ivanischev, D.; Khanzadeev, A.; Kochenda, L.; Komkov, B.; Riabov, V.; Riabov, Y.; Samsonov, V.; Vznuzdaev, E.] Petersburg Nucl Phys Inst, PNPI, Gatchina 188300, Leningrad Regio, Russia. [Akiba, Y.; Aoki, K.; Aramaki, Y.; Dairaku, S.; En'yo, H.; Fujiwara, K.; Fukao, Y.; Goto, Y.; Ichihara, T.; Ichimiya, R.; Imai, K.; Ishihara, M.; Isobe, T.; Kametani, S.; Karatsu, K.; Kasai, M.; Kawashima, M.; Kurita, K.; Kurosawa, M.; Mao, Y.; Miki, K.; Murata, J.; Nakagawa, I.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Onuki, Y.; Ouchida, M.; Sakashita, K.; Shibata, T. -A.; Shoji, K.; Taketani, A.; Tanida, K.; Togawa, M.; Watanabe, Y.; Yokkaichi, S.] RIKEN, Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan. [Akiba, Y.; Bathe, S.; Bunce, G.; Deshpande, A.; En'yo, H.; Goto, Y.; Perdekamp, M. Grosse; Ichihara, T.; Kamihara, N.; Kawall, D.; Liebing, P.; Nakagawa, I.; Okada, K.; Seidl, R.; Taketani, A.; Tanida, K.; Togawa, M.; Watanabe, Y.; Xie, W.; Yokkaichi, S.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Kasai, M.; Kawashima, M.; Kurita, K.; Murata, J.] Rikkyo Univ, Dept Phys, Toshima Ku, Tokyo 1718501, Japan. [Berdnikov, A.; Berdnikov, Y.] St Petersburg State Polytech Univ, St Petersburg 195251, Russia. [Dietzsch, O.; Donadelli, M.; Leite, M. A. L.; Lenzi, B.; Silva, C. L.; Takagui, E. M.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Kim, E.; Lee, K.; Park, J.] Seoul Natl Univ, Seoul, South Korea. [Ajitanand, N. N.; Alexander, J.; Chung, P.; Jia, J.; Lacey, R.; Taranenko, A.; Wei, R.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Apadula, N.; Averbeck, R.; Bennett, R.; Boyle, K.; Campbell, S.; Chen, C. -H.; Citron, Z.; Connors, M.; Dahms, T.; Deshpande, A.; Dion, A.; Drees, A.; Durham, J. M.; Frantz, J. E.; Gong, H.; Hemmick, T. K.; Jacak, B. V.; Kamin, J.; McCumber, M.; Means, N.; Nguyen, M.; Pantuev, V.; Petti, R.; Proissl, M.; Sahlmueller, B.; Taneja, S.; Themann, H.; Toia, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Garishvili, I.; Hamblen, J.; Hornback, D.; Read, K. F.; Sorensen, S. P.] Univ Tennessee, Knoxville, TN 37996 USA. [Nakano, K.; Sakashita, K.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Chujo, T.; Esumi, S.; Ikeda, Y.; Inaba, M.; Konno, M.; Masui, H.; Miake, Y.; Miki, K.; Oka, M.; Sato, T.; Shimomura, M.; Tanabe, R.; Watanabe, K.] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. [Belmont, R.; Danchev, I.; Greene, S. V.; Huang, S.; Issah, M.; Leitner, E.; Love, B.; Maguire, C. F.; Roach, D.; Valle, H.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Kikuchi, J.; Sano, S.] Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan. [Fraenkel, Z.; Kozlov, A.; Naglis, M.; Ravinovich, I.; Sharma, D.; Tserruya, I.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Csoergo, T.; Nagy, M. I.; Sziklai, J.; Vertesi, R.] Hungarian Acad Sci, Wigner Res Ctr Phys, Inst Nucl & Particle Phys, Wigner RCP,RMKI, H-1525 Budapest, Hungary. [Bhom, J. H.; Bok, J. S.; Choi, I. J.; Kang, J. H.; Kim, S. H.; Kwon, Y.] Yonsei Univ, IPAP, Seoul 120749, South Korea. RP Adare, A (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM morrison@bnl.gov; jamie.nagle@colorado.edu RI Tomasek, Lukas/G-6370-2014; Blau, Dmitry/H-4523-2012; Dahms, Torsten/A-8453-2015; En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017; Taketani, Atsushi/E-1803-2017 OI Tomasek, Lukas/0000-0002-5224-1936; Dahms, Torsten/0000-0003-4274-5476; Hayano, Ryugo/0000-0002-1214-7806; Sorensen, Soren /0000-0002-5595-5643; Taketani, Atsushi/0000-0002-4776-2315 FU Office of Nuclear Physics in the Office of Science of the Department of Energy (USA); National Science Foundation (USA); Abilene Christian University Research Council (USA); Research Foundation of SUNY (USA); Ministry of Education, Culture, Sports, Science, and Technology (Japan); Japan Society for the Promotion of Science (Japan); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (Brazil); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Brazil); Natural Science Foundation of China (People's Republic of China); Ministry of Education, Youth and Sports (Czech Republic); Centre National de la Recherche Scientifique (France); Commissariat a l'Energie Atomique (France); Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung (Germany); Deutscher Akademischer Austausch Dienst (Germany); Alexander von Humboldt Stiftung (Germany); Hungarian National Science Fund, OTKA(Hungary); Department of Atomic Energy (India); Department of Science and Technology (India); Israel Science Foundation (Israel); National Research Foundation (Korea); WCU program of the Ministry Education Science and Technology (Korea); Ministry of Education and Science (Russia); Russian Academy of Sciences (Russia); Federal Agency of Atomic Energy (Russia); VR (Sweden); Wallenberg Foundation (Sweden); US Civilian Research and Development Foundation for the Independent States of the Former Soviet Union; US-Hungarian Fulbright Foundation for Educational Exchange; US-Israel Binational Science Foundation FX We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, Abilene Christian University Research Council, Research Foundation of SUNY, and the Dean of the College of Arts and Sciences, Vanderbilt University (USA); Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Brazil); Natural Science Foundation of China (People's Republic of China); Ministry of Education, Youth and Sports (Czech Republic); Centre National de la Recherche Scientifique, Commissariat a l'Energie Atomique, and Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany); Hungarian National Science Fund, OTKA(Hungary); Department of Atomic Energy and Department of Science and Technology (India); Israel Science Foundation (Israel); National Research Foundation and the WCU program of the Ministry Education Science and Technology (Korea); Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia); VR and Wallenberg Foundation (Sweden); the US Civilian Research and Development Foundation for the Independent States of the Former Soviet Union; the US-Hungarian Fulbright Foundation for Educational Exchange; and the US-Israel Binational Science Foundation. NR 60 TC 56 Z9 56 U1 7 U2 60 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD AUG 22 PY 2013 VL 88 IS 2 AR 024906 DI 10.1103/PhysRevC.88.024906 PG 16 WC Physics, Nuclear SC Physics GA 206AK UT WOS:000323487400003 ER PT J AU Merritt, EC Moser, AL Hsu, SC Loverich, J Gilmore, M AF Merritt, E. C. Moser, A. L. Hsu, S. C. Loverich, J. Gilmore, M. TI Experimental Characterization of the Stagnation Layer between Two Obliquely Merging Supersonic Plasma Jets SO PHYSICAL REVIEW LETTERS LA English DT Article ID COLLIDING PLASMAS; INTERPENETRATION; THERMALIZATION; SIMULATIONS; COLLISION; SHOCK AB We present spatially resolved measurements characterizing the stagnation layer between two obliquely merging supersonic plasma jets. Intrajet collisionality is very high, but the interjet ion-ion mean free path is of the order of the stagnation layer thickness of a few centimeters. Fast-framing camera images show a double-peaked emission profile transverse to the stagnation layer, with the central emission dip consistent with a density dip in the interferometer data. We demonstrate that our observations are consistent with collisional oblique shocks. C1 [Merritt, E. C.; Moser, A. L.; Hsu, S. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Merritt, E. C.; Gilmore, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Loverich, J.] Tech X Corp, Boulder, CO 80303 USA. RP Merritt, EC (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM scotthsu@lanl.gov OI Hsu, Scott/0000-0002-6737-4934 FU U.S. Department of Energy FX We acknowledge J. Dunn for experimental support, S. Brockington and F. D. Witherspoon for advice on rail gun operation, and C. Thoma and J. Cassibry for discussions regarding the simulations. This work was supported by the U.S. Department of Energy. NR 46 TC 20 Z9 20 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 22 PY 2013 VL 111 IS 8 AR 085003 DI 10.1103/PhysRevLett.111.085003 PG 5 WC Physics, Multidisciplinary SC Physics GA 206BG UT WOS:000323490300006 PM 24010448 ER PT J AU Wang, D Pan, K Subedi, R Deng, X Ahmed, Z Allada, K Aniol, KA Armstrong, DS Arrington, J Bellini, V Beminiwattha, R Benesch, J Benmokhtar, F Camsonne, A Canan, M Cates, GD Chen, JP Chudakov, E Cisbani, E Dalton, MM De Jager, CW De Leo, R Deconinck, W Deur, A Dutta, C El Fassi, L Flay, D Franklin, GB Friend, M Frullani, S Garibaldi, F Giusa, A Glamazdin, A Golge, S Grimm, K Hafidi, K Hansen, O Higinbotham, DW Holmes, R Holmstrom, T Holt, RJ Huang, J Hyde, CE Jen, CM Jones, D Kang, H King, P Kowalski, S Kumar, KS Lee, JH LeRose, JJ Liyanage, N Long, E McNulty, D Margaziotis, DJ Meddi, F Meekins, DG Mercado, L Meziani, ZE Michaels, R Mihovilovic, M Muangma, N Myers, KE Nanda, S Narayan, A Nelyubin, V Nuruzzaman Oh, Y Parno, D Paschke, KD Phillips, SK Qian, X Qiang, Y Quinn, B Rakhman, A Reimer, PE Rider, K Riordan, S Roche, J Rubin, J Russo, G Saenboonruang, K Saha, A Sawatzky, B Shahinyan, A Silwal, R Sirca, S Souder, PA Suleiman, R Sulkosky, V Sutera, CM Tobias, WA Urciuoli, GM Waidyawansa, B Wojtsekhowski, B Ye, L Zhao, B Zheng, X AF Wang, D. Pan, K. Subedi, R. Deng, X. Ahmed, Z. Allada, K. Aniol, K. A. Armstrong, D. S. Arrington, J. Bellini, V. Beminiwattha, R. Benesch, J. Benmokhtar, F. Camsonne, A. Canan, M. Cates, G. D. Chen, J. -P. Chudakov, E. Cisbani, E. Dalton, M. M. De Jager, C. W. De Leo, R. Deconinck, W. Deur, A. Dutta, C. El Fassi, L. Flay, D. Franklin, G. B. Friend, M. Frullani, S. Garibaldi, F. Giusa, A. Glamazdin, A. Golge, S. Grimm, K. Hafidi, K. Hansen, O. Higinbotham, D. W. Holmes, R. Holmstrom, T. Holt, R. J. Huang, J. Hyde, C. E. Jen, C. M. Jones, D. Kang, H. King, P. Kowalski, S. Kumar, K. S. Lee, J. H. LeRose, J. J. Liyanage, N. Long, E. McNulty, D. Margaziotis, D. J. Meddi, F. Meekins, D. G. Mercado, L. Meziani, Z. -E. Michaels, R. Mihovilovic, M. Muangma, N. Myers, K. E. Nanda, S. Narayan, A. Nelyubin, V. Nuruzzaman Oh, Y. Parno, D. Paschke, K. D. Phillips, S. K. Qian, X. Qiang, Y. Quinn, B. Rakhman, A. Reimer, P. E. Rider, K. Riordan, S. Roche, J. Rubin, J. Russo, G. Saenboonruang, K. Saha, A. Sawatzky, B. Shahinyan, A. Silwal, R. Sirca, S. Souder, P. A. Suleiman, R. Sulkosky, V. Sutera, C. M. Tobias, W. A. Urciuoli, G. M. Waidyawansa, B. Wojtsekhowski, B. Ye, L. Zhao, B. Zheng, X. TI Measurements of Parity-Violating Asymmetries in Electron-Deuteron Scattering in the Nucleon Resonance Region SO PHYSICAL REVIEW LETTERS LA English DT Article ID STRANGE FORM-FACTORS; QUARK-HADRON DUALITY; PROTON-SCATTERING; NON-CONSERVATION; MAGNETIC-MOMENT; HALL-A; WEAK; ELECTROPRODUCTION; POLARIZATION; CONSTRAINTS AB We report on parity-violating asymmetries in the nucleon resonance region measured using inclusive inelastic scattering of 5-6 GeV longitudinally polarized electrons off an unpolarized deuterium target. These results are the first parity-violating asymmetry data in the resonance region beyond the Delta (1232). They provide a verification of quark-hadron duality-the equivalence of the quark- and hadron-based pictures of the nucleon-at the (10-15)% level in this electroweak observable, which is dominated by contributions from the nucleon electroweak gamma Z interference structure functions. In addition, the results provide constraints on nucleon resonance models relevant for calculating background corrections to elastic parity-violating electron scattering measurements. C1 Univ Virginia, Charlottesville, VA 22904 USA. [Pan, K.; Huang, J.; Kowalski, S.; Muangma, N.; Sulkosky, V.] MIT, Cambridge, MA 02139 USA. [Ahmed, Z.; Holmes, R.; Jen, C. M.; Rakhman, A.; Souder, P. A.] Syracuse Univ, Syracuse, NY 13244 USA. [Allada, K.; Dutta, C.] Univ Kentucky, Lexington, KY 40506 USA. [Aniol, K. A.; Margaziotis, D. J.] Calif State Univ Los Angeles, Los Angeles, CA 90032 USA. [Armstrong, D. S.; Deconinck, W.; Lee, J. H.; Zhao, B.] Coll William & Mary, Williamsburg, VA 23187 USA. [Arrington, J.; Hafidi, K.; Holt, R. J.; Reimer, P. E.; Rubin, J.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Bellini, V.; Giusa, A.; Russo, G.; Sutera, C. M.] Univ Catania, Dipartmento Fis, Ist Nazl Fis Nucl, I-95123 Catania, Italy. [Beminiwattha, R.; King, P.; Lee, J. H.; Roche, J.; Waidyawansa, B.] Ohio Univ, Athens, OH 45701 USA. [Benesch, J.; Camsonne, A.; Chen, J. -P.; Chudakov, E.; De Jager, C. W.; Deur, A.; Hansen, O.; Higinbotham, D. W.; LeRose, J. J.; Meekins, D. G.; Michaels, R.; Nanda, S.; Saha, A.; Sawatzky, B.; Suleiman, R.; Wojtsekhowski, B.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Benmokhtar, F.; Franklin, G. B.; Friend, M.; Parno, D.; Quinn, B.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Canan, M.; Golge, S.; Hyde, C. E.] Old Dominion Univ, Norfolk, VA 23529 USA. [Cisbani, E.; Frullani, S.; Garibaldi, F.] Ist Nazl Fis Nucl, Sezione Roma, Grp Sanita, I-00161 Rome, Italy. [Cisbani, E.; Frullani, S.; Garibaldi, F.] Ist Super Sanita, I-00161 Rome, Italy. [De Leo, R.] Univ Bari, I-70126 Bari, Italy. [El Fassi, L.] Rutgers State Univ, Newark, NJ 07102 USA. [Flay, D.; Meziani, Z. -E.] Temple Univ, Philadelphia, PA 19122 USA. [Glamazdin, A.] Kharkov Inst Phys & Technol, UA-61108 Kharkov, Ukraine. [Grimm, K.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Holmstrom, T.; Rider, K.] Longwood Univ, Farmville, VA 23909 USA. [Hyde, C. E.] Univ Clermont Ferrand, Clermont Univ, CNRS, IN2P3,Lab Phys Corpusculaire, FR-63000 Clermont Ferrand, France. [Kang, H.; Oh, Y.] Seoul Natl Univ, Seoul 151742, South Korea. [Kumar, K. S.; McNulty, D.; Mercado, L.] Univ Massachusetts, Amherst, MA 01003 USA. [Long, E.] Kent State Univ, Kent, OH 44242 USA. [Meddi, F.; Urciuoli, G. M.] Ist Nazl Fis Nucl, Sezione Roma, I-00161 Rome, Italy. [Meddi, F.; Urciuoli, G. M.] Sapienza Univ Roma, I-00161 Rome, Italy. [Mihovilovic, M.; Sirca, S.] Jozef Stefan Inst, SI-1001 Ljubljana, Slovenia. [Myers, K. E.] George Washington Univ, Washington, DC 20052 USA. [Narayan, A.; Nuruzzaman] Mississippi State Univ, Mississippi State, MS 39762 USA. [Phillips, S. K.] Univ New Hampshire, Durham, NH 03824 USA. [Qian, X.; Qiang, Y.] Duke Univ, Durham, NC 27708 USA. [Shahinyan, A.] Yerevan Phys Inst, Yerevan 0036, Armenia. [Ye, L.] China Inst Atom Energy, Beijing 102413, Peoples R China. RP Zheng, X (reprint author), Univ Virginia, Charlottesville, VA 22904 USA. EM xiaochao@jlab.org RI Quinn, Brian/N-7343-2014; Arrington, John/D-1116-2012; Beminiwattha, Rakitha/K-5685-2013; Giusa, Antonio/G-5508-2012; Higinbotham, Douglas/J-9394-2014; Mesick, Katherine/M-3495-2014; Franklin, Gregg/N-7743-2014; BELLINI, Vincenzo/B-1239-2012; Rakhman, Adurahim/K-8146-2012; Cisbani, Evaristo/C-9249-2011; Dalton, Mark/B-5380-2016; Pan, Kai/D-4241-2016; Narayan, Amrendra/Q-3243-2016; Parno, Diana/B-7546-2017; OI Quinn, Brian/0000-0003-2800-986X; Arrington, John/0000-0002-0702-1328; Beminiwattha, Rakitha/0000-0002-1473-1651; Giusa, Antonio/0000-0002-5142-0043; Higinbotham, Douglas/0000-0003-2758-6526; Mesick, Katherine/0000-0001-6138-1474; Franklin, Gregg/0000-0003-4176-1378; BELLINI, Vincenzo/0000-0001-6906-7463; Rakhman, Adurahim/0000-0002-9880-6074; Cisbani, Evaristo/0000-0002-6774-8473; Dalton, Mark/0000-0001-9204-7559; Pan, Kai/0000-0001-9930-5063; Qian, Xin/0000-0002-7903-7935; Narayan, Amrendra/0000-0003-3814-9559; Parno, Diana/0000-0002-9363-0401; Glamazdin, Alexander/0000-0002-4172-7324; King, Paul/0000-0002-3448-2306; Jen, Chun-Min/0000-0003-4070-8866; Deconinck, Wouter/0000-0003-4033-6716; Hyde, Charles/0000-0001-7282-8120 FU Jeffress Memorial Trust [J-836]; U.S. National Science Foundation [0653347]; U.S. Department of Energy [DE-SC0003885, DE-AC02-06CH11357]; U.S. DOE [DE-AC05-06OR23177] FX The authors would like to thank the personnel of Jefferson Lab for their efforts which resulted in the successful completion of the experiment, and T.-S. H. Lee, T. Sato, M. Gorshteyn, N. Hall, W. Melnitchouk, and their collaborators for carrying out the nucleon resonance calculations. X. Zheng would like to thank the Medium Energy Physics Group at the Argonne National Lab for supporting her during the initial work of this experiment. This work was supported in part by the Jeffress Memorial Trust under Grant No. J-836, the U.S. National Science Foundation under Grant No. 0653347, and the U.S. Department of Energy under Awards No. DE-SC0003885 and No. DE-AC02-06CH11357. Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce this manuscript for U.S. Government purposes. NR 82 TC 18 Z9 18 U1 2 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 22 PY 2013 VL 111 IS 8 AR UNSP 082501 DI 10.1103/PhysRevLett.111.082501 PG 7 WC Physics, Multidisciplinary SC Physics GA 206BG UT WOS:000323490300004 PM 24016222 ER PT J AU Jankowski, MD Williams, CJ Fair, JM Owen, JC AF Jankowski, Mark D. Williams, Christopher J. Fair, Jeanne M. Owen, Jennifer C. TI Birds Shed RNA-Viruses According to the Pareto Principle SO PLOS ONE LA English DT Article ID WEST-NILE-VIRUS; ESCHERICHIA-COLI O157; AVIAN INFLUENZA-VIRUS; STARLINGS STURNUS-VULGARIS; INFECTIOUS-DISEASES; EQUINE ENCEPHALOMYELITIS; RECRUDESCENCE HYPOTHESIS; MIGRATORY BIRDS; GRAY CATBIRDS; TRANSMISSION AB A major challenge in disease ecology is to understand the role of individual variation of infection load on disease transmission dynamics and how this influences the evolution of resistance or tolerance mechanisms. Such information will improve our capacity to understand, predict, and mitigate pathogen-associated disease in all organisms. In many host-pathogen systems, particularly macroparasites and sexually transmitted diseases, it has been found that approximately 20% of the population is responsible for approximately 80% of the transmission events. Although host contact rates can account for some of this pattern, pathogen transmission dynamics also depend upon host infectiousness, an area that has received relatively little attention. Therefore, we conducted a meta-analysis of pathogen shedding rates of 24 host (avian) - pathogen (RNA-virus) studies, including 17 bird species and five important zoonotic viruses. We determined that viral count data followed the Weibull distribution, the mean Gini coefficient (an index of inequality) was 0.687 (0.036 SEM), and that 22.0% (0.90 SEM) of the birds shed 80% of the virus across all studies, suggesting an adherence of viral shedding counts to the Pareto Principle. The relative position of a bird in a distribution of viral counts was affected by factors extrinsic to the host, such as exposure to corticosterone and to a lesser extent reduced food availability, but not to intrinsic host factors including age, sex, and migratory status. These data provide a quantitative view of heterogeneous virus shedding in birds that may be used to better parameterize epidemiological models and understand transmission dynamics. C1 [Jankowski, Mark D.] US Fish & Wildlife Serv, Pocatello, ID USA. [Jankowski, Mark D.] Univ Wisconsin, Dept Zool, Madison, WI 53706 USA. [Williams, Christopher J.] Univ Idaho, Dept Stat, Moscow, ID 83843 USA. [Fair, Jeanne M.] Los Alamos Natl Lab, Los Alamos, NM USA. [Owen, Jennifer C.] Michigan State Univ, Dept Fisheries & Wildlife, E Lansing, MI 48824 USA. [Owen, Jennifer C.] Michigan State Univ, Dept Large Anim Clin Sci, E Lansing, MI 48824 USA. RP Owen, JC (reprint author), Michigan State Univ, Dept Fisheries & Wildlife, E Lansing, MI 48824 USA. EM owenj@msu.edu NR 59 TC 5 Z9 5 U1 1 U2 21 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD AUG 21 PY 2013 VL 8 IS 8 AR e72611 DI 10.1371/journal.pone.0072611 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 218YW UT WOS:000324470100108 PM 23991129 ER PT J AU El-Khoury, PZ Hess, WP AF El-Khoury, Patrick Z. Hess, Wayne P. TI Raman scattering from 1,3-propanedithiol at a hot spot: Theory meets experiment SO CHEMICAL PHYSICS LETTERS LA English DT Article ID OPTICAL-ACTIVITY AB Using tools of density functional theory, we compute the Raman spectra of 1,3-propanedithiol (PDT) isolated in the gas phase, solvated in methanol, tethered either to the face or vertex of a tetrahedral Ag-20 cluster, and bridging two Ag20 clusters. The derived molecular polarizability derivative tensors are used to simulate molecular orientation-dependent Raman scattering, achieved by rotating the polarizability tensors relative to vector components of the incident/scattered radiation fields. Our framework is weighed against SERS experiments which probe the optical response at a hotspot formed by an Ag surface coated with PDT and a single 60-nm Ag nanosphere. (C) 2013 Elsevier B.V. All rights reserved. C1 [El-Khoury, Patrick Z.; Hess, Wayne P.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP El-Khoury, PZ (reprint author), Pacific NW Natl Lab, Div Phys Sci, POB 999, Richland, WA 99352 USA. EM patrick.elkhoury@pnnl.gov; wayne.hess@pnnl.gov FU US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences; Department of Energy's Office of Biological and Environmental Research; US Department of Energy [DE-AC05-76RL01830]; NSF [OCI-1053575]; Linus Pauling Distinguished Postdoctoral Fellowship program; Laboratory Directed Research and Development Program at PNNL FX This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. The experiments were performed at EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research. EMSL is located at PNNL, a multi-program national laboratory operated by the Battelle Memorial Institute under Contract No. DE-AC05-76RL01830 for the US Department of Energy. P.Z.E acknowledges an allocation of computing time from NSF through TeraGrid (TG-CHE130003), the use of the Extreme Science and Engineering Discovery Environment (XSEDE), supported by the NSF Grant number OCI-1053575, and support through the Linus Pauling Distinguished Postdoctoral Fellowship program. The research described in this paper was in part supported by the Laboratory Directed Research and Development Program at PNNL. NR 18 TC 8 Z9 8 U1 1 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD AUG 21 PY 2013 VL 581 BP 57 EP 63 DI 10.1016/j.cplett.2013.05.066 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 210DQ UT WOS:000323809900011 ER PT J AU Gel, A Li, TW Gopalan, B Shahnam, M Syamlal, M AF Gel, Aytekin Li, Tingwen Gopalan, Balaji Shahnam, Mehrdad Syamlal, Madhava TI Validation and Uncertainty Quantification of a Multiphase Computational Fluid Dynamics Model SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID VERIFICATION; JACKKNIFE; BOOTSTRAP; ERROR; FLOW; CFD; BED AB We describe the application of a validation and uncertainty quantification methodology to multiphase computational fluid dynamics modeling, demonstrating the methodology with simulations of a pilot-scale circulating fluidized bed. The overall pressure drop is used as the quantity of interest (QoI); the solids circulation rate and the superficial gas velocity are chosen as the uncertain input quantities. The uncertainty in the QoI, caused by uncertainties in input parameters, surrogate model, spatial discretization, and time averaging, is calculated, and the model form uncertainty is estimated by comparing simulation results with experimental data. The spatial discretization error was determined to be the most dominant source of uncertainty, but the applicability of the method used to calculate that uncertainty needs to be further investigated. The results of the analysis are expressed as a probability box (p-box) plot. A p-box similarly constructed for predictive simulations will give the design engineer information about the confidence in the predicted values. C1 [Gel, Aytekin; Li, Tingwen; Gopalan, Balaji; Shahnam, Mehrdad; Syamlal, Madhava] Natl Energy Technol Lab, Morgantown, WV 26505 USA. [Gel, Aytekin] ALPEMI Consulting LLC, Phoenix, AZ 85044 USA. [Li, Tingwen] URS Corp, Morgantown, WV 26505 USA. RP Syamlal, M (reprint author), Natl Energy Technol Lab, Morgantown, WV 26505 USA. EM madhava.syamlal@netl.doe.gov OI GEL, Aytekin/0000-0002-1661-2859 FU National Energy Technology Laboratory [DE-AC26-04NT41817]; National Energy Technology Laboratory by Oak Ridge Institute for Science and Education FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in multiphase flows under the RDS contract DE-AC26-04NT41817. The authors acknowledge Charles Tong (Lawrence Livermore National Lab), Esma Gel (Arizona State University), Chris Roy (Virginia Tech), Vladik Kreinovich (University of Texas at El Paso), and Scott Person (Applied Biomathematics) for useful discussions and suggestions provided, Lawrence Shade, and Rupendranath Panday for providing the detailed experimental data and useful discussions. T.L. thanks Jean Dietiker and Justin Weber for their help on data postprocessing. This research was supported in part by an appointment to US Department of Energy postgraduate program at the National Energy Technology Laboratory by Oak Ridge Institute for Science and Education. NR 30 TC 12 Z9 12 U1 2 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD AUG 21 PY 2013 VL 52 IS 33 BP 11424 EP 11435 DI 10.1021/ie303469f PG 12 WC Engineering, Chemical SC Engineering GA 206QA UT WOS:000323536000020 ER PT J AU Wu, Y Bamgbade, BA Baled, H Enick, RM Burgess, WA Tapriyal, D McHugh, MA AF Wu, Yue Bamgbade, Babatunde A. Baled, Hseen Enick, Robert M. Burgess, Ward A. Tapriyal, Deepak McHugh, Mark A. TI Liquid Densities of Xylene Isomers and 2-Methylnaphthalene at Temperatures to 523 K and Pressures to 265 MPa: Experimental Determination and Equation of State Modeling SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID PERTURBED-CHAIN SAFT; PLUS ACETIC-ACID; P-XYLENE; AROMATIC-HYDROCARBONS; ULTRASONIC SPEEDS; BINARY-MIXTURES; VISCOSITY; VOLUME; THERMODYNAMICS; PREDICTIONS AB Experimental density data for o-xylene, m-xylene, p-xylene, and 2-methylnaphthalene, are reported at pressures (P) to 265 MPa and temperatures (T) to 525 K using a variable-volume, high-pressure cell. The reported data agree to within +/- 0.4% of available literature data. o-Xylene has the largest densities and p-xylene has the smallest densities in the P-T range investigated in this study although the 525 K isotherms for all three aromatics virtually superpose at high pressures. The aromatic densities are modeled using the Peng-Robinson (PR), high-temperature, high-pressure, volume-translated Peng-Robinson (HTHP VT-PR), and perturbed chain statistical associating fluid theory (PC-SAFT) equations of state (EoS). Generally, the PC-SAFT EoS gives the best predictions of the HTHP density data with mean absolute percent deviations (delta) within 1.0%, even though the pure-component parameters are fitted to low-pressure vapor pressure and saturated liquid density data. delta decreases to 0.4% for calculations with a new set of PC-SAFT parameters obtained from a fit of the HTHP experimental density data obtained in this study. C1 [Wu, Yue; Bamgbade, Babatunde A.; Burgess, Ward A.; Tapriyal, Deepak; McHugh, Mark A.] Natl Energy Technol Lab, Off Res & Dev, Dept Energy, Pittsburgh, PA 15236 USA. [Wu, Yue; Bamgbade, Babatunde A.; McHugh, Mark A.] Virginia Commonwealth Univ, Dept Chem & Life Sci Engn, Richmond, VA 23284 USA. [Baled, Hseen; Enick, Robert M.] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15261 USA. [Baled, Hseen; Enick, Robert M.] NETL RUA, Pittsburgh, PA 15236 USA. [Tapriyal, Deepak] URS, Pittsburgh, PA 15236 USA. RP Wu, Y (reprint author), Natl Energy Technol Lab, Off Res & Dev, Dept Energy, Pittsburgh, PA 15236 USA. EM wuy@vcu.edu FU Strategic Center for Natural Gas and Oil under RES [DE-FE0004000] FX This technical effort was performed in support of the National Energy Technology Laboratory's Office of Research and Development support of the Strategic Center for Natural Gas and Oil under RES Contract DE-FE0004000. We appreciate technical discussions and helpful suggestions by Isaac K. Gamwo of National Energy Technology Laboratory, Department of Energy, Pittsburgh, PA. NR 39 TC 4 Z9 4 U1 3 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD AUG 21 PY 2013 VL 52 IS 33 BP 11732 EP 11740 DI 10.1021/ie400805y PG 9 WC Engineering, Chemical SC Engineering GA 206QA UT WOS:000323536000052 ER PT J AU Brodin, J Krishnamoorthy, M Athreya, G Fischer, W Hraber, P Gleasner, C Green, L Korber, B Leitner, T AF Brodin, Johanna Krishnamoorthy, Mohan Athreya, Gayathri Fischer, Will Hraber, Peter Gleasner, Cheryl Green, Lance Korber, Bette Leitner, Thomas TI A multiple-alignment based primer design algorithm for genetically highly variable DNA targets SO BMC BIOINFORMATICS LA English DT Article DE Primer design; DNA sequencing; Amplicon sequencing; Next-generation sequencing; PCR; Primer dimer; Bio-barcodes; Multiplex ID PARAMETERS; EPIDEMIC; SOFTWARE; DIMER AB Background: Primer design for highly variable DNA sequences is difficult, and experimental success requires attention to many interacting constraints. The advent of next-generation sequencing methods allows the investigation of rare variants otherwise hidden deep in large populations, but requires attention to population diversity and primer localization in relatively conserved regions, in addition to recognized constraints typically considered in primer design. Results: Design constraints include degenerate sites to maximize population coverage, matching of melting temperatures, optimizing de novo sequence length, finding optimal bio-barcodes to allow efficient downstream analyses, and minimizing risk of dimerization. To facilitate primer design addressing these and other constraints, we created a novel computer program (PrimerDesign) that automates this complex procedure. We show its powers and limitations and give examples of successful designs for the analysis of HIV-1 populations. Conclusions: PrimerDesign is useful for researchers who want to design DNA primers and probes for analyzing highly variable DNA populations. It can be used to design primers for PCR, RT-PCR, Sanger sequencing, next-generation sequencing, and other experimental protocols targeting highly variable DNA samples. C1 [Brodin, Johanna; Krishnamoorthy, Mohan; Athreya, Gayathri; Fischer, Will; Hraber, Peter; Korber, Bette; Leitner, Thomas] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Brodin, Johanna] Karolinska Inst, Dept Microbiol Tumor & Cell Biol, SE-17177 Stockholm, Sweden. [Gleasner, Cheryl; Green, Lance] Los Alamos Natl Lab, Div Biol, Los Alamos, NM 87545 USA. RP Leitner, T (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM tkl@lanl.gov OI Fischer, Will/0000-0003-4579-4062; Korber, Bette/0000-0002-2026-5757; Hraber, Peter/0000-0002-2920-4897 FU Los Alamos National Laboratory Directed Research grant; NIH grant [AI087520]; NIH-DOE [Y1-AI-8309] FX We thank George Shaw, Beatrice Hahn, Brandon Keele, and Shuyi Wang for providing full-length genome sequences and amplicons from subject CH40. We thank Cliff S. Han and Jennifer P. Macke for valuable discussions and comments. This work was supported by a Los Alamos National Laboratory Directed Research grant, a NIH grant (AI087520), and a NIH-DOE interagency agreement (Y1-AI-8309). NR 32 TC 5 Z9 5 U1 0 U2 17 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD AUG 21 PY 2013 VL 14 AR UNSP 255 DI 10.1186/1471-2105-14-255 PG 9 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA 209WC UT WOS:000323790300001 PM 23965160 ER PT J AU Christian, TM Beaton, DA Mukherjee, K Alberi, K Fitzgerald, EA Mascarenhas, A AF Christian, Theresa M. Beaton, Daniel A. Mukherjee, Kunal Alberi, Kirstin Fitzgerald, Eugene A. Mascarenhas, Angelo TI Amber-green light-emitting diodes using order-disorder AlxIn1-xP heterostructures SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID GROWTH-RATE; GAINP; GA0.5IN0.5P; EPITAXY; ALLOYS AB We demonstrate amber-green emission from AlxIn1-xP light-emitting diodes (LEDs) with luminescence peaked at 566 nm and 600 nm. The LEDs are metamorphically grown on GaAs substrates via a graded InyGa1-yAs buffer layer and feature electron confinement based on the control of AlxIn1-xP CuPt atomic ordering. A control sample fabricated without order-disorder carrier confinement is used to illustrate device improvement up to a factor of 3 in light output due to confinement at drive currents of 40 A/cm(2). The light output at room temperature from our AlxIn1-xP LED structure emitting at 600 nm is 39% as bright as a GaxIn1-xP LED emitting at 650 nm. (C) 2013 AIP Publishing LLC. C1 [Christian, Theresa M.; Beaton, Daniel A.; Alberi, Kirstin; Mascarenhas, Angelo] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Christian, Theresa M.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Mukherjee, Kunal; Fitzgerald, Eugene A.] MIT, Cambridge, MA 02139 USA. RP Christian, TM (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. FU DOE/NETL Solid-State Lighting Program [DE-FC26-0NT20286]; DOE, Office of Basic Energy Sciences [DE-AC36-08GO28308]; National Science Foundation [DMR-08-19762]; Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF) FX Research was supported by the DOE/NETL Solid-State Lighting Program under DE-FC26-0#NT20286 (device characterization and development); the DOE, Office of Basic Energy Sciences under DE-AC36-08GO28308 (material growth and ordering investigation); and the National Science Foundation under Award No. DMR-08-19762 (characterization at the MRSEC Shared Experimental Facilities at MIT). T. C. acknowledges support from the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under Control No. DEAC05-06OR23100. NR 26 TC 10 Z9 10 U1 1 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD AUG 21 PY 2013 VL 114 IS 7 AR 074505 DI 10.1063/1.4818477 PG 6 WC Physics, Applied SC Physics GA 206HV UT WOS:000323510900075 ER PT J AU Sahoo, SK Patel, RP Wolden, CA AF Sahoo, S. K. Patel, R. P. Wolden, C. A. TI Hybrid nanolaminate dielectrics engineered for frequency and bias stability SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MIM CAPACITORS; THIN-FILMS; PERFORMANCE; TRANSISTORS; DEPOSITION; INSULATOR AB Metal-insulator-metal capacitors were fabricated from hybrid alumina-silicone nanolaminates deposited by plasma-enhanced chemical vapor deposition. These two materials have complementary properties that produce dielectrics that are exceptionally stable with respect to frequency and dc bias. 50% alumina-silicone nanolaminates displayed low dielectric loss (tan delta = 0.04) and a negligible quadratic voltage coefficient (alpha = 7 ppm/V-2). Both of these values are exceptionally improved over the properties of the individual components. This performance was achieved in 165 nm thick films that provide both high specific capacitance (30 nF/cm(2)) and extremely low leakage (similar to 10(-9) A/cm(2) at 1 MV/cm). (C) 2013 AIP Publishing LLC. C1 [Sahoo, S. K.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Patel, R. P.; Wolden, C. A.] Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA. RP Sahoo, SK (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM santoshiitk@gmail.com FU National Science Foundation [CMMI-0826323, CBET 1033203] FX We gratefully acknowledge the National Science Foundation for the support of this work through Award Nos. CMMI-0826323 and CBET 1033203. We would like to thank the National Renewable Energy Laboratory, Golden, Colorado for using their electrical and dielectric measurement facilities. NR 24 TC 0 Z9 0 U1 0 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD AUG 21 PY 2013 VL 114 IS 7 AR 074101 DI 10.1063/1.4818831 PG 5 WC Physics, Applied SC Physics GA 206HV UT WOS:000323510900049 ER PT J AU Bylaska, EJ Weare, JQ Weare, JH AF Bylaska, Eric J. Weare, Jonathan Q. Weare, John H. TI Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID PARTIAL-DIFFERENTIAL EQUATIONS; ORBITAL METHODS; BASIS-SET; DYNAMICS SIMULATIONS; PARAREAL; WATER; IMPLEMENTATION; CLUSTERS; SYSTEM; DISCRETIZATION AB Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f (e. g., Verlet algorithm), is available to propagate the system from time t(i) (trajectory positions and velocities x(i) = (r(i), v(i))) to time t(i) + 1 (x(i+1)) by x(i+1) = f(i) (x(i)), the dynamics problem spanning an interval from t(0) ... t(M) can be transformed into a root finding problem, F(X) = [x(i) - f(x((i-1))](i=1, M) = 0, for the trajectory variables. The root finding problem is solved using a variety of root finding techniques, including quasi-Newton and preconditioned quasi-Newton schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed, and the effectiveness of various approaches to solving the root finding problem is tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations, such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl + 4H(2)O AIMD simulation at the MP2 level. The maximum speedup (serial execution time/parallel execution time) obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations, the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a distributed computing environment using very slow transmission control protocol/Internet protocol networks. Scripts written in Python that make calls to a precompiled quantum chemistry package (NWChem) are demonstrated to provide an actual speedup of 8.2 for a 2.5 ps AIMD simulation of HCl + 4H(2)O at the MP2/6-31G* level. Implemented in this way these algorithms can be used for long time high-level AIMD simulations at a modest cost using machines connected by very slow networks such as WiFi, or in different time zones connected by the Internet. The algorithms can also be used with programs that are already parallel. Using these algorithms, we are able to reduce the cost of a MP2/6-311++ G(2d, 2p) simulation that had reached its maximum possible speedup in the parallelization of the electronic structure calculation from 32 s/time step to 6.9 s/time step. (C) 2013 AIP Publishing LLC. C1 [Bylaska, Eric J.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Weare, Jonathan Q.] Univ Chicago, Dept Math, Chicago, IL 60637 USA. [Weare, John H.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. RP Bylaska, EJ (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, POB 999, Richland, WA 99352 USA. EM Eric.Bylaska@pnnl.gov; weare@uchicago.edu; jweare@ucsd.edu FU ASCR Petascale Tools program; BES Geosciences program of the U.S. Department of Energy, Office of Science [DE-AC0676RLO 1830]; DOE's Office of Biological and Environmental Research; NSF [DMS-1109731] FX We would like to acknowledge Raymond Atta-Fynn for explaining to us how to compute Stillinger-Weber potentials. This research was supported by the ASCR Petascale Tools program and the BES Geosciences program of the U.S. Department of Energy, Office of Science Grant No. DE-AC0676RLO 1830. The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute. We wish to thank the Scientific Computing Staff, Office of Energy Research, and the U.S. Department of Energy for a grant of computer time at the National Energy Research Scientific Computing Center (Berkeley, CA). Some of the calculations were performed on the Chinook and Spokane computing systems at the Molecular Science Computing Facility in theWilliam R. Wiley Environmental Molecular Sciences Laboratory (EMSL) at PNNL. EMSL operations are supported by the DOE's Office of Biological and Environmental Research. J. H. W. also acknowledges support by the ASCR Petascale Tools program and the BES Geosciences program of the U.S. Department of Energy, Office of Science Grant No. DE-FG02-05ER25707. The efforts of J. Q. W. were supported by NSF award DMS-1109731. NR 73 TC 5 Z9 5 U1 3 U2 36 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD AUG 21 PY 2013 VL 139 IS 7 AR 074114 DI 10.1063/1.4818328 PG 15 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 206HN UT WOS:000323509900018 PM 23968079 ER PT J AU Feibelman, PJ AF Feibelman, Peter J. TI K+-hydration in a low-energy two-dimensional wetting layer on the basal surface of muscovite SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; MOLECULAR-DYNAMICS SIMULATION; DENSITY-FUNCTIONAL THEORY; AUGMENTED-WAVE METHOD; MICA SURFACE; ROOM-TEMPERATURE; THIN-FILMS; BASIS-SET; WATER; PSEUDOPOTENTIALS AB Density Functional Theory points to a key role of K+ solvation in the low-energy two-dimensional arrangement of water molecules on the basal surface of muscovite. At a coverage of 9 water molecules per 2 surface potassium ions, there is room to accommodate the ions into wetting layers wherein half of them are hydrated by 3 and the other half by 4 water molecules, with no broken H-bonds, or wherein all are hydrated by 4. Relative to the "fully connected network of H-bonded water molecules" that Odelius et al. found to form "a cage around the potassium ions," the hydrating arrangements are several tens of meV/H2O better bound. Thus, low-temperature wetting on muscovite is not driven towards "ice-like" hexagonal coordination. Instead, solvation forces dominate. (C) 2013 AIP Publishing LLC. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Feibelman, PJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM pjfeibe@sandia.gov FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Many thanks are due P. A. Schultz for tutorials on the use of SeqQuest. I am also grateful to R. T. Cygan, M. Odelius, and A. Meleshyn for coordinate data files used to initialize various of the calculations. VASP was originally developed at the Institut fur Theoretische Physik of the Technische Universitat Wien and is under continuing development in the Physics Department of the Universitat Wien, Austria. The present research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Work performed at Sandia was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 55 TC 2 Z9 2 U1 3 U2 29 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD AUG 21 PY 2013 VL 139 IS 7 AR 074705 DI 10.1063/1.4818587 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 206HN UT WOS:000323509900044 PM 23968105 ER PT J AU Roy, S Mujica, V Ratner, MA AF Roy, Sharani Mujica, Vladimiro Ratner, Mark A. TI Chemistry at molecular junctions: Rotation and dissociation of O-2 on the Ag(110) surface induced by a scanning tunneling microscope SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; OXYGEN-ADSORPTION; CHEMISORBED OXYGEN; METAL TIP; BASIS-SET; SINGLE; STM; DYNAMICS; EXCHANGE AB The scanning tunneling microscope (STM) is a fascinating tool used to perform chemical processes at the single-molecule level, including bond formation, bond breaking, and even chemical reactions. Hahn and Ho [J. Chem. Phys. 123, 214702 (2005)] performed controlled rotations and dissociations of single O-2 molecules chemisorbed on the Ag(110) surface at precise bias voltages using STM. These threshold voltages were dependent on the direction of the bias voltage and the initial orientation of the chemisorbed molecule. They also observed an interesting voltage-direction-dependent and orientation-dependent pathway selectivity suggestive of mode-selective chemistry at molecular junctions, such that in one case the molecule underwent direct dissociation, whereas in the other case it underwent rotation-mediated dissociation. We present a detailed, first-principles-based theoretical study to investigate the mechanism of the tunneling-induced O-2 dynamics, including the origin of the observed threshold voltages, the pathway dependence, and the rate of O-2 dissociation. Results show a direct correspondence between the observed threshold voltage for a process and the activation energy for that process. The pathway selectivity arises from a competition between the voltage-modified barrier heights for rotation and dissociation, and the coupling strength of the tunneling electrons to the rotational and vibrational modes of the adsorbed molecule. Finally, we explore the "dipole" and "resonance" mechanisms of inelastic electron tunneling to elucidate the energy transfer between the tunneling electrons and chemisorbed O-2. (C) 2013 AIP Publishing LLC. C1 [Roy, Sharani; Mujica, Vladimiro; Ratner, Mark A.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Mujica, Vladimiro] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. [Mujica, Vladimiro] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Roy, S (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. FU Non-Equilibrium Energy Research Center (NERC), an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0000989]; chemistry division of the National Science Foundation [CHE-1058896] FX This work was supported by the Non-Equilibrium Energy Research Center (NERC), which is an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DE-SC0000989. M.A.R. thanks the chemistry division of the National Science Foundation (CHE-1058896) for support. S.R. thanks Peter Saalfrank, John Tully, Neil Shenvi, and Abraham Nitzan for insightful discussions. NR 69 TC 7 Z9 7 U1 2 U2 73 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD AUG 21 PY 2013 VL 139 IS 7 AR 074702 DI 10.1063/1.4818163 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 206HN UT WOS:000323509900041 PM 23968102 ER PT J AU Senesi, R Flammini, D Kolesnikov, AI Murray, ED Galli, G Andreani, C AF Senesi, Roberto Flammini, Davide Kolesnikov, Alexander I. Murray, Eamonn D. Galli, Giulia Andreani, Carla TI The quantum nature of the OH stretching mode in ice and water probed by neutron scattering experiments SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID RADIAL-DISTRIBUTION FUNCTIONS; DENSITY-OF-STATES; MOMENTUM DISTRIBUTION; VIBRATIONAL DENSITY; MULTIPLE-SCATTERING; SUPERCRITICAL WATER; CONDENSED MATTER; LIQUID WATER; IH; DYNAMICS AB The OH stretching vibrational spectrum of water was measured in a wide range of temperatures across the triple point, 269 K < T < 296 K, using Inelastic Neutron Scattering (INS). The hydrogen projected density of states and the proton mean kinetic energy, < E-K >(OH), were determined for the first time within the framework of a harmonic description of the proton dynamics. We found that in the liquid the value of < E-K >(OH) is nearly constant as a function of T, indicating that quantum effects on the OH stretching frequency are weakly dependent on temperature. In the case of ice, ab initio electronic structure calculations, using non-local van der Waals functionals, provided < E-K >(OH) values in agreement with INS experiments. We also found that the ratio of the stretching (< E-K >(OH)) to the total (< E-K >(exp)) kinetic energy, obtained from the present measurements, increases in going from ice, where hydrogen bonding is the strongest, to the liquid at ambient conditions and then to the vapour phase, where hydrogen bonding is the weakest. The same ratio was also derived from the combination of previous deep inelastic neutron scattering data, which does not rely upon the harmonic approximation, and the present measurements. We found that the ratio of stretching to the total kinetic energy shows a minimum in the metastable liquid phase. This finding suggests that the strength of intermolecular interactions increases in the supercooled phase, with respect to that in ice, contrary to the accepted view that supercooled water exhibits weaker hydrogen bonding than ice. (C) 2013 AIP Publishing LLC. C1 [Senesi, Roberto; Flammini, Davide; Andreani, Carla] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Senesi, Roberto; Flammini, Davide; Andreani, Carla] Univ Roma Tor Vergata, Ctr NAST, I-00133 Rome, Italy. [Senesi, Roberto] CNR, IPCF, Sez Messina, I-00185 Rome, Italy. [Kolesnikov, Alexander I.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Murray, Eamonn D.; Galli, Giulia] Univ Calif Davis, Davis, CA 95616 USA. RP Senesi, R (reprint author), Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, I-00133 Rome, Italy. EM roberto.senesi@uniroma2.it RI senesi, roberto/C-9472-2013; andreani, carla/E-9507-2012; Murray, Eamonn/J-8476-2014; Kolesnikov, Alexander/I-9015-2012 OI senesi, roberto/0000-0002-5620-1165; Murray, Eamonn/0000-0003-1526-663X; Kolesnikov, Alexander/0000-0003-1940-4649 FU CNR-STFC [06/20018]; Consiglio Nazionale delle Ricerche; META project - Materials Enhancement for Technological Applications; Scientific User Facility Division, Office of Basic Energy Sciences, (U.S.) Department of Energy (DOE); (U.S.) Department of Energy [DE-AC0500OR22725]; DOE-CMSN [DE-SC0005180] FX This work was supported within the CNR-STFC Agreement No. 06/20018 concerning collaboration in scientific research at the spallation neutron source ISIS. The work was supported by the Consiglio Nazionale delle Ricerche and by META project - Materials Enhancement for Technological Applications - FP7-PEOPLE-2010-IRSES. The work at Spallation Neutron Source was supported by the Scientific User Facility Division, Office of Basic Energy Sciences, (U.S.) Department of Energy (DOE). ORNL is managed by UT-Battelle, LLC under contract DE-AC0500OR22725 for the (U.S.) Department of Energy. E.M. and G.G. gratefully acknowledge DOE-CMSN, under Grant No. DE-SC0005180. NR 56 TC 13 Z9 13 U1 2 U2 27 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD AUG 21 PY 2013 VL 139 IS 7 AR 074504 DI 10.1063/1.4818494 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 206HN UT WOS:000323509900038 PM 23968099 ER PT J AU Fowler, DA Rathnayake, AS Kennedy, S Kumari, H Beavers, CM Teat, SJ Atwood, JL AF Fowler, Drew A. Rathnayake, Asanka S. Kennedy, Stuart Kumari, Harshita Beavers, Christine M. Teat, Simon J. Atwood, Jerry L. TI Introducing Defects into Metal-Seamed Nanocapsules Using Mixed Macrocycles SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MOLECULAR CAPSULES; GUEST; INTERIOR AB The synthesis and single-crystal X-ray diffraction structure of a dimeric zinc-seamed nanocapsule using a mixed pyrogallol/resorcinol[4]arene are presented. The use of "mixed" macrocycles results in an incomplete seam of coordination bonds around the nanocapsule's typically octa-metalated belt. The self-assembly of the nanocapsule occurs such that the single resorcinol moiety of each macrocycle aligns transversely. This yields a hepta-metalated capsule where the defect occurs in such a way as to provide minimal disruption to the overall structure of the nanocapsule. C1 [Fowler, Drew A.; Rathnayake, Asanka S.; Kennedy, Stuart; Kumari, Harshita; Atwood, Jerry L.] Univ Missouri, Dept Chem, Columbia, MO 65211 USA. [Beavers, Christine M.; Teat, Simon J.] Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Atwood, JL (reprint author), Univ Missouri, Dept Chem, 601 South Coll Ave, Columbia, MO 65211 USA. EM atwoodj@missouri.edu RI Kennedy, Stuart/D-5248-2014; Beavers, Christine/C-3539-2009 OI Kennedy, Stuart/0000-0002-1769-8797; Beavers, Christine/0000-0001-8653-5513 FU NSF; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank the NSF for financial support of this work. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 24 TC 13 Z9 13 U1 2 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD AUG 21 PY 2013 VL 135 IS 33 BP 12184 EP 12187 DI 10.1021/ja404392m PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 206QB UT WOS:000323536100009 PM 23909241 ER PT J AU Louie, MW Bell, AT AF Louie, Mary W. Bell, Alexis T. TI An Investigation of Thin-Film Ni-Fe Oxide Catalysts for the Electrochemical Evolution of Oxygen SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID TRANSITION-METAL ELECTRODES; ALKALINE WATER ELECTROLYSIS; NICKEL-OXIDE; RAMAN-SPECTROSCOPY; IRON; HYDROXIDE; BEHAVIOR; GOLD; ELECTROCATALYSTS; BETA-NI(OH)(2) AB A detailed investigation has been carried out of the structure and electrochemical activity of electrodeposited Ni-Fe films for the oxygen evolution reaction (OER) in alkaline electrolytes. Ni-Fe films with a bulk and surface composition of 40% Fe exhibit OER activities that are roughly 2 orders of magnitude higher than that of a freshly deposited Ni film and about 3 orders of magnitude higher than that of an Fe film. The freshly deposited Ni film increases in activity by as much as 20-fold during exposure to the electrolyte (KOH); however, all films containing Fe are stable as deposited. The oxidation of Ni(OH)(2) to NiOOH in Ni films occurs at potentials below the onset of the OER. Incorporation of Fe into the film increases the potential at which Ni(OH)(2)/NiOOH redox occurs and decreases the average oxidation state of Ni in NiOOH. The Tafel slope (40 mV dec(-1)) and reaction order in OH- (1) for the mixed Ni-Fe films (containing up to 95% Fe) are the same as those for aged Ni films. In situ Raman spectra acquired in 0.1 M KOH at OER potentials show two bands characteristic of NiOOH. The relative intensities of these bands vary with Fe content, indicating a change in the local environment of Ni-O. Similar changes in the relative intensities of the bands and an increase in OER activity are observed when pure Ni films are aged. These observations suggest that the OER is catalyzed by Ni in Ni-Fe films and that the presence of Fe alters the redox properties of Ni, causing a positive shift in the potential at which Ni(OH)(2)/NiOOH redox occurs, a decrease in the average oxidation state of the Ni sites, and a concurrent increase in the activity of Ni cations for the OER. C1 [Bell, Alexis T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. RP Bell, AT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. EM bell@cchem.berkeley.edu OI Bell, Alexis/0000-0002-5738-4645 FU Office of Science of the U.S. Department of Energy [DE-SC0004993]; University of California FX This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993. M.W.L. is supported by the University of California President's Postdoctoral Fellowship Program. We gratefully acknowledge Ian D. Sharp (Joint Center for Artificial Photosynthesis) for valuable discussion and assistance with XPS analysis of the electrocatalysts used in this study, and Elena Kreimer (University of California, Berkeley, College of Chemistry) for assistance with elemental analysis. We also thank Eric Granlund (University of California, Berkeley, College of Chemistry) as well as James Wu and Doug Jamieson (Lawrence Berkeley National Laboratory, Materials Science Division) for the fabrication of our electrodes and electrochemical cells. NR 47 TC 337 Z9 340 U1 93 U2 589 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD AUG 21 PY 2013 VL 135 IS 33 BP 12329 EP 12337 DI 10.1021/ja405351s PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 206QB UT WOS:000323536100031 PM 23859025 ER PT J AU Bonfiglio, D Veranda, M Cappello, S Escande, DF Chacon, L AF Bonfiglio, D. Veranda, M. Cappello, S. Escande, D. F. Chacon, L. TI Experimental-like Helical Self-Organization in Reversed-Field Pinch Modeling SO PHYSICAL REVIEW LETTERS LA English DT Article ID PLASMAS; SINGLE; MHD; FLUCTUATIONS; STELLARATOR; SUSTAINMENT; BIFURCATION; DYNAMO; RFX AB We report the first nonlinear three-dimensional magnetohydrodynamic (MHD) numerical simulations of the reversed-field pinch (RFP) that exhibit a systematic repetition of quasisingle helicity states with the same dominant mode in between reconnection events. This distinctive feature of experimental self-organized helical RFP plasmas is reproduced in MHD simulations at low dissipation by allowing a helical modulation of the plasma magnetic boundary similar to the experimental one. Realistic mode amplitudes and magnetic topology are also found. C1 [Bonfiglio, D.; Veranda, M.; Cappello, S.; Escande, D. F.] Assoc Euratom ENEA Fus, Consorzio RFX, I-35127 Padua, Italy. [Escande, D. F.] Aix Marseille Univ, CNRS, PIIM, UMR 7345, F-13013 Marseille, France. [Chacon, L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Bonfiglio, D (reprint author), Assoc Euratom ENEA Fus, Consorzio RFX, I-35127 Padua, Italy. EM daniele.bonfiglio@igi.cnr.it RI Bonfiglio, Daniele/I-9398-2012; Cappello, Susanna/H-9968-2013; OI Bonfiglio, Daniele/0000-0003-2638-317X; Cappello, Susanna/0000-0002-2022-1113; Escande, Dominique/0000-0002-0460-8385; Chacon, Luis/0000-0002-4566-8763 FU Euratom Communities FX This work was supported by the Euratom Communities under the contract of Association between EURATOM/ENEA. The views and opinions expressed herein do not necessarily reflect those of the European Commission. NR 70 TC 13 Z9 13 U1 2 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 21 PY 2013 VL 111 IS 8 AR 085002 DI 10.1103/PhysRevLett.111.085002 PG 5 WC Physics, Multidisciplinary SC Physics GA 205FH UT WOS:000323427600002 PM 24010447 ER PT J AU Grutter, AJ Yang, H Kirby, BJ Fitzsimmons, MR Aguiar, JA Browning, ND Jenkins, CA Arenholz, E Mehta, VV Alaan, US Suzuki, Y AF Grutter, A. J. Yang, H. Kirby, B. J. Fitzsimmons, M. R. Aguiar, J. A. Browning, N. D. Jenkins, C. A. Arenholz, E. Mehta, V. V. Alaan, U. S. Suzuki, Y. TI Interfacial Ferromagnetism in LaNiO3/CaMnO3 Superlattices SO PHYSICAL REVIEW LETTERS LA English DT Article ID OXIDE SUPERLATTICES; STATES; PEROVSKITES; TRANSITION; EELS; MN AB We observe interfacial ferromagnetism in superlattices of the paramagnetic metal LaNiO3 and the antiferromagnetic insulator CaMnO3. LaNiO3 exhibits a thickness dependent metal-insulator transition and we find the emergence of ferromagnetism to be coincident with the conducting state of LaNiO3. That is, only superlattices in which the LaNiO3 layers are metallic exhibit ferromagnetism. Using several magnetic probes, we have determined that the ferromagnetism arises in a single unit cell of CaMnO3 at the interface. Together these results suggest that ferromagnetism can be attributed to a double exchange interaction among Mn ions mediated by the adjacent itinerant metal. C1 [Grutter, A. J.; Mehta, V. V.; Alaan, U. S.; Suzuki, Y.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Grutter, A. J.; Mehta, V. V.; Suzuki, Y.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Grutter, A. J.; Alaan, U. S.; Suzuki, Y.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Grutter, A. J.; Alaan, U. S.; Suzuki, Y.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Yang, H.] Univ Calif Davis, Dept Mat Sci & Chem Engn, Davis, CA 95616 USA. [Kirby, B. J.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Fitzsimmons, M. R.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. [Aguiar, J. A.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87544 USA. [Browning, N. D.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. [Jenkins, C. A.; Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Grutter, AJ (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. OI Browning, Nigel/0000-0003-0491-251X; Aguiar, Jeffery/0000-0001-6101-4762; Alaan, Urusa/0000-0003-1109-3399 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-05CH11231, DESC0008505, DE-AC05-76RL01830]; DOE [DE-AC52-06NA25396]; Office of Naval Research [N00014-10-1-0226]; U.S. Department of Energy [DE-AC05-76RL01830]; Department of Energy's Office of Biological and Environmental Research FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contracts No. DE-AC02-05CH11231 (Berkeley & ALS), No. DESC0008505 (Stanford), and No. DE-AC05-76RL01830 (H. Y.). Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract No. DE-AC52-06NA25396. U. S. A. is supported by the Office of Naval Research (Contract No. N00014-10-1-0226). Work at Pacific Northwest National Lab was supported by the U.S. Department of Energy under Contract No. DE-AC05-76RL01830. A portion of the PNNL research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research. NR 23 TC 27 Z9 27 U1 3 U2 80 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 21 PY 2013 VL 111 IS 8 AR 087202 DI 10.1103/PhysRevLett.111.087202 PG 5 WC Physics, Multidisciplinary SC Physics GA 205FH UT WOS:000323427600006 PM 24010469 ER PT J AU Wandkowsky, N Drexlin, G Frankle, FM Gluck, F Groh, S Mertens, S AF Wandkowsky, N. Drexlin, G. Fraenkle, F. M. Glueck, F. Groh, S. Mertens, S. TI Modeling of electron emission processes accompanying radon-alpha-decays within electrostatic spectrometers SO NEW JOURNAL OF PHYSICS LA English DT Article ID SHELL COSTER-KRONIG; INTERNAL-CONVERSION; FLUORESCENCE YIELDS; RADIATIVE RATES; AUGER; SPECTROSCOPY; IONIZATION; FIELD AB Electrostatic spectrometers utilized in high-resolution beta-spectroscopy studies such as in the Karlsruhe Tritium Neutrino (KATRIN) experiment have to operate with a background level of less than 10(-2) counts per second. This limit can be exceeded by even a small number of Rn-219,Rn-220 atoms being emanated into the volume and undergoing alpha-decay there. In this paper we present a detailed model of the underlying background-generating processes via electron emission by internal conversion, shake-off and relaxation processes in the atomic shells of the Po-215,Po-216 daughters. The model yields electron energy spectra up to 400 keV and electron multiplicities of up to 20 which are compared to experimental data. C1 [Wandkowsky, N.; Drexlin, G.; Fraenkle, F. M.; Glueck, F.; Groh, S.; Mertens, S.] Karlsruhe Inst Technol, KCETA, D-76131 Karlsruhe, Germany. [Fraenkle, F. M.] Univ N Carolina, Dept Phys, Chapel Hill, NC USA. [Glueck, F.] Res Inst Nucl & Particle Phys, Theory Dept, Budapest, Hungary. [Mertens, S.] Lawrence Berkeley Natl Lab, Inst Nucl & Particle Astrophys, Berkeley, CA USA. RP Wandkowsky, N (reprint author), Karlsruhe Inst Technol, KCETA, D-76131 Karlsruhe, Germany. EM nancy.wandkowsky@kit.edu FU Bundesministerium fur Bildung und Forschung (BMBF) [05A08VK2]; Deutsche Forschungsgemeinschaft (DFG) [Transregio 27]; Karlsruhe House of Young Scientists (KHYS) of KIT; Open Access Publishing Fund of Karlsruhe Institute of Technology FX This work was supported in parts by the Bundesministerium fur Bildung und Forschung (BMBF) with project number 05A08VK2 and the Deutsche Forschungsgemeinschaft (DFG) via Transregio 27 'Neutrinos and beyond'. We thank the Karlsruhe House of Young Scientists (KHYS) of KIT for their support (SG, SM, NW). We acknowledge support by DFG and Open Access Publishing Fund of Karlsruhe Institute of Technology. NR 38 TC 1 Z9 1 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD AUG 21 PY 2013 VL 15 AR 083040 DI 10.1088/1367-2630/15/8/083040 PG 16 WC Physics, Multidisciplinary SC Physics GA 203UX UT WOS:000323320600001 ER PT J AU Beane, SR Chang, E Cohen, SD Detmold, W Junnarkar, P Lin, HW Luu, TC Orginos, K Parreno, A Savage, MJ Walker-Loud, A AF Beane, S. R. Chang, E. Cohen, S. D. Detmold, W. Junnarkar, P. Lin, H. W. Luu, T. C. Orginos, K. Parreno, A. Savage, M. J. Walker-Loud, A. CA NPLQCD Collaboration TI Nucleon-nucleon scattering parameters in the limit of SU(3) flavor symmetry SO PHYSICAL REVIEW C LA English DT Article ID LATTICE QCD SIMULATIONS; EFFECTIVE-FIELD THEORY; CHIRAL LAGRANGIANS; 2-NUCLEON SYSTEMS; H-DIBARYON; FORCES; DEPENDENCE; STATES; LENGTHS AB The scattering lengths and effective ranges that describe low-energy nucleon-nucleon scattering are calculated in the limit of SU(3)-flavor symmetry at the physical strange-quark mass with lattice quantum chromodynamics. The calculations are performed with an isotropic clover discretization of the quark action in three volumes with spatial extents of L similar to 3.4 fm, 4.5 fm, and 6.7 fm, and with a lattice spacing of b similar to 0.145 fm. With determinations of the energies of the two-nucleon systems (both of which contain bound states at these up and down quark masses) at rest and moving in the lattice volume, Luscher's method is used to determine the low-energy phase shifts in each channel, from which the scattering length and effective range are obtained. The scattering parameters, in the S-1(0) channel are found to be m(pi)a((1S0)) = 9.50(-0.69-0.80)(+0.78+1.10) and m(pi)r((1S0)) = 4.61(-0.31-0.26)(+0.29+0.24), and in the S-3(1) channel are m(pi)a((3S1)) = 7.45(-0.53-0.49)(+0.57+ 0.71) and m(pi)r((3S1)) = 3.71(-0.31-0.35)(+0.28+0.28). These values are consistent with the two-nucleon system exhibiting Wigner's supermultiplet symmetry, which becomes exact in the limit of large N-c. In both spin channel s, the phase shifts change sign at higher momentum, near the start of the t-channel cut, indicating that the nuclear interactions have a repulsive core even at the SU(3)-symmetric point. C1 [Beane, S. R.; Savage, M. J.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys Theorie, D-53115 Bonn, Germany. [Chang, E.; Cohen, S. D.; Lin, H. W.; Savage, M. J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Detmold, W.] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. [Junnarkar, P.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Luu, T. C.] Lawrence Livermore Natl Lab, N Sect, Livermore, CA 94551 USA. [Orginos, K.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Orginos, K.] Jefferson Lab, Newport News, VA 23606 USA. [Parreno, A.] Univ Barcelona, ICC, Dept Estruct & Constituents Mat, E-08028 Barcelona, Spain. [Walker-Loud, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Walker-Loud, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Beane, SR (reprint author), Univ Bonn, Helmholtz Inst Strahlen & Kernphys Theorie, D-53115 Bonn, Germany. OI Detmold, William/0000-0002-0400-8363 FU NSF through XSEDE [TG-MCA06N025]; NSF [PHY1206498]; MEC (Spain) [FIS2011-24154]; FEDER; DOE [DE-FG03-97ER4014, DE-AC05-06OR23177, DE-FG02-04ER41302, DE-SC000-1784]; NSF MRI [PHY-0922770]; US Department of Energy [DE-FG02-94ER40818]; US Department of Energy by LLNL [DE-AC52-07NA27344]; Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the US DOE [DE-AC02-05CH11231]; Alexander von Humboldt foundation FX We thank R. Edwards and B. Joo for help with QDP++ and CHROMA [57]. We acknowledge computational support from the USQCD SciDAC project, the National Energy Research Scientific Computing Center (NERSC, Office of Science of the US DOE, DE-AC02-05CH11231), the UW HYAK facility, LLNL, the PRACE Research Infrastructure resource CURIE based in France at the Tres Grand Centre de Calcul, TGCC, and the NSF through XSEDE resources under Grant No. TG-MCA06N025. S. R. B. and P.J. were partially supported by NSF continuing Grant No. PHY1206498. In addition, S. R. B. gratefully acknowledges the hospitality of HISKP and the Mercator program of the Deutsche Forschungsgemeinschaft. The work of A. P. is supported by Contract No. FIS2011-24154 from MEC (Spain) and FEDER. H.-W.L. and M.J.S. were supported in part by the DOE Grant No. DE-FG03-97ER4014 and by the NSF MRI Grant No. PHY-0922770 (HYAK). K.O. was supported in part by DOE Grants No. DE-AC05-06OR23177 (JSA) and No. DE-FG02-04ER41302. W. D. was supported by the US Department of Energy under cooperative research agreement Contract No. DE-FG02-94ER40818 and by the DOE with the Outstanding Junior Investigator program, No. DE-SC000-1784. The work of T. L. was performed under the auspices of the US Department of Energy by LLNL under Contract No. DE-AC52-07NA27344. The work of A. W. L. was supported in part by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the US DOE under Contract No. DE-AC02-05CH11231. M.J.S. thanks the Alexander von Humboldt foundation for the award that enabled his visit to the University of Bonn, and the kind hospitality of Ulf Meissner and the Helmhotz-Institut fur Strahlen- und Kernphysik at the University of Bonn. NR 56 TC 35 Z9 35 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG 21 PY 2013 VL 88 IS 2 AR 024003 DI 10.1103/PhysRevC.88.024003 PG 10 WC Physics, Nuclear SC Physics GA 205DI UT WOS:000323421200001 ER PT J AU Dumitru, A Fujii, H Nara, Y AF Dumitru, Adrian Fujii, Hirotsugu Nara, Yasushi TI Magnetic screening in high-energy heavy-ion collisions SO PHYSICAL REVIEW D LA English DT Article ID GLUON DISTRIBUTION-FUNCTIONS; LARGE NUCLEI; FIELD CORRELATORS; SMALL X; GLASMA AB We show that classical chromomagnetic fields produced coherently in the initial stage of a heavy-ion collision exhibit screening. From the two-point field strength correlator we determine the magnetic mass for SU(2) to be m(M) similar or equal to 5 times the saturation scale. Magnetic screening leads to an intuitive understanding of the area law scaling of spatial Wilson loops observed previously. The presence of screening effects in the initial state provides a basis for defining kinetic processes in the early stage of heavy-ion collisions, with electric and magnetic masses of the same order. C1 [Dumitru, Adrian] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Dumitru, Adrian] CUNY, Baruch Coll, Dept Nat Sci, New York, NY 10010 USA. [Dumitru, Adrian] CUNY, Grad Sch, New York, NY 10016 USA. [Dumitru, Adrian] CUNY, Univ Ctr, New York, NY 10016 USA. [Fujii, Hirotsugu] Univ Tokyo, Inst Phys, Tokyo 1538902, Japan. [Nara, Yasushi] Akita Int Univ, Akita 0101292, Japan. RP Dumitru, A (reprint author), Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. FU DOE Office of Nuclear Physics [DE-FG02-09ER41620]; City University of New York through the PSC-CUNY Research Award Program [65041-00 43, 66514-00 44] FX A. D. gratefully acknowledges support by the DOE Office of Nuclear Physics through Grant No. DE-FG02-09ER41620; and from The City University of New York through the PSC-CUNY Research Award Program, Grants No. 65041-00 43 and No. 66514-00 44. NR 25 TC 5 Z9 5 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 21 PY 2013 VL 88 IS 3 AR 031503 DI 10.1103/PhysRevD.88.031503 PG 3 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 205DJ UT WOS:000323421400001 ER PT J AU Saracco, F Tomasiello, A Torroba, G AF Saracco, Fabio Tomasiello, Alessandro Torroba, Gonzalo TI Topological resolution of gauge theory singularities SO PHYSICAL REVIEW D LA English DT Article ID CHERN-SIMONS COEFFICIENT; FIELD-THEORIES; NONINVARIANCE; MONOPOLES; MATTER AB Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric SU(2) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity. C1 [Saracco, Fabio; Tomasiello, Alessandro] Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy. [Saracco, Fabio; Tomasiello, Alessandro] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20126 Milan, Italy. [Torroba, Gonzalo] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA. [Torroba, Gonzalo] Stanford Univ, SLAC, Stanford, CA 94305 USA. RP Saracco, F (reprint author), Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy. RI Tomasiello, Alessandro/J-1326-2014; Saracco, Fabio/O-5295-2015 OI Tomasiello, Alessandro/0000-0002-5772-5729; Saracco, Fabio/0000-0003-0812-5927 FU INFN; MIUR-FIRB [RBFR10QS5J]; MIUR-PRIN [2009-KHZKRX]; ERC [307286 (XD-STRING)]; National Science Foundation [PHY-0756174] FX We are grateful to M. S. Bianchi, G. Dunne, S. Kachru, C. Oleari, M. Peskin, S. Penati, D. Rosa, and M. Siani for helpful discussions. A. T. and F. S. have been supported in part by INFN, by the MIUR-FIRB Grant No. RBFR10QS5J "String Theory and Fundamental Interactions," and by the MIUR-PRIN Contract No. 2009-KHZKRX. The research of A. T. is also supported by the ERC Starting Grant No. 307286 (XD-STRING). The research of G. T. is supported in part by the National Science Foundation under Grant No. PHY-0756174. NR 34 TC 1 Z9 1 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 21 PY 2013 VL 88 IS 4 AR 045018 DI 10.1103/PhysRevD.88.045018 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 205DL UT WOS:000323421600010 ER PT J AU Rahmani, A Muniz, RA Martin, I AF Rahmani, Armin Muniz, Rodrigo A. Martin, Ivar TI Anyons in Integer Quantum Hall Magnets SO PHYSICAL REVIEW X LA English DT Article ID PHASE-TRANSITIONS; 2 DIMENSIONS; SPIN; STATISTICS; SOLITONS; LATTICE; SYSTEM; STATES; SUPERCONDUCTIVITY; ANTIFERROMAGNET AB Strongly correlated fractional quantum Hall liquids support fractional excitations, which can be understood in terms of adiabatic flux insertion arguments. A second route to fractionalization is through the coupling of weakly interacting electrons to topologically nontrivial backgrounds such as in polyacetylene. Here, we demonstrate that electronic fractionalization combining features of both these mechanisms occurs in noncoplanar itinerant magnetic systems, where integer quantum Hall physics arises from the coupling of electrons to the magnetic background. The topologically stable magnetic vortices in such systems carry fractional (in general, irrational) electronic quantum numbers and exhibit Abelian anyonic statistics. We analyze the properties of these topological defects by mapping the distortions of the magnetic texture onto effective non-Abelian vector potentials. We support our analytical results with extensive numerical calculations. C1 [Rahmani, Armin; Muniz, Rodrigo A.; Martin, Ivar] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Muniz, Rodrigo A.] Int Inst Phys UFRN, BR-59078400 Natal, RN, Brazil. [Martin, Ivar] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Rahmani, A (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. FU National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396]; LANL/LDRD Program; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; CNPq (Brazil) FX We thank C. Batista, C. Chamon, C.-Y. Hou, D. Ivanov, A. Morpurgo, D. Podolsky, S. Ryu, S. Sachdev, and L. Santos for helpful discussions. Work performed at Los Alamos National Laboratory was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396 and supported by the LANL/LDRD Program. Work performed at Argonne National Laboratory is supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. R. M. also thanks CNPq (Brazil) for financial support. NR 52 TC 9 Z9 9 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2160-3308 J9 PHYS REV X JI Phys. Rev. X PD AUG 21 PY 2013 VL 3 IS 3 AR 031008 DI 10.1103/PhysRevX.3.031008 PG 16 WC Physics, Multidisciplinary SC Physics GA 205DR UT WOS:000323422300001 ER PT J AU Watts, C Udintsev, V Andrew, P Vayakis, G Van Zeeland, M Brower, D Feder, R Mukhin, E Tolstakov, S AF Watts, Christopher Udintsev, Victor Andrew, Philip Vayakis, George Van Zeeland, Michael Brower, David Feder, Russell Mukhin, Eugene Tolstakov, Sergey TI Electron density measurements in the ITER fusion plasma SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 2nd International Conference on Frontiers in Diagnostic Technologies (FDT) CY NOV 28-30, 2011 CL Frascati, ITALY SP Italian Agcy Energy New Technol & Sustainable Dev (ENEA), Italian Inst Nucl Phys (INFN) ID LARGE HELICAL DEVICE; REFLECTOMETRY; POLARIMETRY; TOKAMAK AB The operation of ITER requires high-quality estimates of the plasma electron density over multiple regions in the plasma for plasma evaluation, plasma control and machine protection purposes. Although the density regimes of ITER are not very different from those of existing tokamaks (10(18)-10(21) m(-3)), the severe conditions of the fusion plasma environment present particular challenges to implementing these density diagnostics. In this paper we present an overview of the array of ITER electron density diagnostics designed to measure over the entire ITER domain: plasma core, pedestal, edge, scrape-off layer and divertor. It will focus on the challenges faced in making these measurements, and the technical solutions of the current designs. (C) 2012 Elsevier B.V. All rights reserved. C1 [Watts, Christopher; Udintsev, Victor; Andrew, Philip; Vayakis, George] ITER Org, F-13115 St Paul Les Durance, France. [Van Zeeland, Michael] Gen Atom Co, San Diego, CA 92186 USA. [Brower, David] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. [Feder, Russell] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Mukhin, Eugene; Tolstakov, Sergey] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. RP Watts, C (reprint author), ITER Org, F-13115 St Paul Les Durance, France. EM christopher.watts@iter.org NR 16 TC 1 Z9 1 U1 1 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 21 PY 2013 VL 720 BP 7 EP 10 DI 10.1016/j.nima.2012.12.048 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 166YU UT WOS:000320597900003 ER PT J AU Fair, JM Ryder, TB Loiselle, BA Blake, JG Larson, TE Davis, P Syme, J Perkins, GB Heikoop, JM AF Fair, Jeanne M. Ryder, Thomas B. Loiselle, Bette A. Blake, John G. Larson, Toti E. Davis, Paul Syme, James Perkins, George B. Heikoop, Jeffrey M. TI Estimates of dietary overlap for six species of Amazonian manakin birds using stable isotopes SO ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES LA English DT Article; Proceedings Paper CT 8th International Conference on Applications of Stable Isotope Techniques to Ecological Studies (ISOECOL) CY AUG 20-24, 2012 CL Brest, FRANCE DE birds; carbon-13; diet; feather; isotope ecology; manakin; Monte Carlo models; moult; nitrogen-15 ID INCORPORATING CONCENTRATION-DEPENDENCE; FRUIT-EATING BIRDS; INDIVIDUAL SPECIALIZATION; SEASONAL-CHANGES; NITROGEN ISOTOPES; FORAGING ECOLOGY; CLIMATE-CHANGE; MIXING MODELS; NESTLING DIET; CARBON AB We used stable isotope ratios to determine the metabolic routing fraction of carbon and nitrogen in feathers in addition to faecal analysis to estimate diet overlap of six sympatric species of manakins in the eastern lowland forest of Ecuador. Collectively, all species varied from-23.7 to-32.7 parts per thousand for C-13, and from 6.0 to 9.9 parts per thousand for N-15, with Machaeropterus regulus showing isotopic differences from the other species. We developed a mixing model that explicitly addresses the routing of carbon and nitrogen to feathers. Interestingly, these results suggest a higher proportion of nitrogen and carbon derived from insects than anticipated based on feeding observations and faecal analysis. A concentration-dependent mixing isotopic model was also used to look at dietary proportions. While larvae and arachnids had higher N-15 values, these two groups may also be preferred prey of manakins and may be more assimilated into tissues, leading to a potential overestimation of the contribution to diet. This study supports the finding that manakin species, previously thought be primarily frugivorous, contain a significant amount of arthropods in their diet. C1 [Fair, Jeanne M.] Los Alamos Natl Lab, Environm Stewardship, Los Alamos, NM USA. [Ryder, Thomas B.] Smithsonian Inst, Natl Zool Pk, Smithsonian Migratory Bird Ctr, Washington, DC 20008 USA. [Loiselle, Bette A.; Blake, John G.] Univ Florida, Dept Wildlife Ecol & Conservat, Gainesville, FL USA. [Larson, Toti E.; Perkins, George B.; Heikoop, Jeffrey M.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Davis, Paul; Syme, James] EnviroLogic Inc, Durango, CO USA. RP Fair, JM (reprint author), Los Alamos Natl Lab, Environm Stewardship, Los Alamos, NM USA. EM jmfair@lanl.gov RI Heikoop, Jeffrey/C-1163-2011; Loiselle, Bette/O-7106-2016; OI Loiselle, Bette/0000-0003-1434-4173; Larson, Toti/0000-0002-2291-5979; Heikoop, Jeffrey/0000-0001-7648-3385 FU National Science Foundation [IBN 0235141, IOB 0508189, OISE 0513341]; International Center for Tropical Ecology at the University of Missouri, St Louis; Association of Field Ornithologist's Alexander Bergstrom Award; National Geographic Society [7113-01] FX Thanks to R. Duraes, W. P. Tori, J. R. Hidalgo, and F. Narvaez who helped collect the data. We give special thanks to David and Consuelo Romo, Kelly Swing, Jaime Guerra, and all the TBS staff for their logistical and field support. IACUC protocol number 5-12-20. This research was conducted in accordance with permit number 13-IC-FAU-DFN, Distrito Forestal Napo, Tena, Ecuador. We are grateful to Terry Erwin of the Smithsonian National Museum of Natural History for collecting and donating the arthropod samples from TBS. We thank the Ministerio de Ambiente for allowing us to conduct our research at the TBS. Funding was provided by the National Science Foundation (IBN 0235141, IOB 0508189, OISE 0513341), the International Center for Tropical Ecology at the University of Missouri, St Louis, the Association of Field Ornithologist's Alexander Bergstrom Award, and the National Geographic Society (7113-01). We also thank L. Marsh and H. Hinojosa for comments on an earlier draft. NR 70 TC 3 Z9 3 U1 4 U2 36 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1025-6016 EI 1477-2639 J9 ISOT ENVIRON HEALT S JI Isot. Environ. Health Stud. PD AUG 20 PY 2013 VL 49 IS 3 BP 420 EP 435 DI 10.1080/10256016.2013.784702 PG 16 WC Chemistry, Inorganic & Nuclear; Environmental Sciences SC Chemistry; Environmental Sciences & Ecology GA 266HV UT WOS:000328015600014 PM 23781884 ER PT J AU Dera, P Zhuravlev, K Prakapenka, V Rivers, ML Finkelstein, GJ Grubor-Urosevic, O Tschauner, O Clark, SM Downs, RT AF Dera, Przemyslaw Zhuravlev, Kirill Prakapenka, Vitali Rivers, Mark L. Finkelstein, Gregory J. Grubor-Urosevic, Ognjen Tschauner, Oliver Clark, Simon M. Downs, Robert T. TI High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software SO HIGH PRESSURE RESEARCH LA English DT Article DE single-crystal X-ray diffraction; high pressure; diamond anvil cell; area detectors ID DIAMOND-ANVIL CELL; COMPRESSIBILITY; DETECTOR; CRYSTALLOGRAPHY; REFINEMENT; TRANSITION; BEHAVIOR; H2O; GPA AB GSE_ADA/RSV is a free software package for custom analysis of single-crystal micro X-ray diffraction (SCXRD) data, developed with particular emphasis on data from samples enclosed in diamond anvil cells and subject to high pressure conditions. The package has been in extensive use at the high pressure beamlines of Advanced Photon Source (APS), Argonne National Laboratory and Advanced Light Source (ALS), Lawrence Berkeley National Laboratory. The software is optimized for processing of wide-rotation images and includes a variety of peak intensity corrections and peak filtering features, which are custom-designed to make processing of high pressure SCXRD easier and more reliable. C1 [Dera, Przemyslaw; Zhuravlev, Kirill; Prakapenka, Vitali; Rivers, Mark L.] Univ Chicago, Argonne Natl Lab, Ctr Adv Radiat Sources, Argonne, IL USA. [Dera, Przemyslaw] Univ Hawaii Manoa, Sch Ocean & Earth Sci & Technol, Hawaii Inst Geophys & Planetol, Honolulu, HI USA. [Finkelstein, Gregory J.] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. [Grubor-Urosevic, Ognjen; Tschauner, Oliver] Univ Nevada, High Pressure Sci & Technol Ctr, Las Vegas, NV 89154 USA. [Clark, Simon M.] Macquarie Univ, Dept Earth & Planetary Sci, N Ryde, NSW, Australia. [Downs, Robert T.] Univ Arizona, Dept Geol, Tucson, AZ USA. RP Dera, P (reprint author), Univ Chicago, Argonne Natl Lab, Ctr Adv Radiat Sources, Argonne, IL USA. EM pdera@hawaii.edu RI Clark, Simon/B-2041-2013 OI Clark, Simon/0000-0002-7488-3438 FU NSF DMR [0521179]; NNSA [DE-FC88-01NV14049]; National Science Foundation - Earth Sciences [EAR-0622171]; Department of Energy - Geosciences [DE-FG02-94ER14466]; DOE-BES [DE-AC02-06CH11357]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The development of this software was initially funded though NSF DMR Major Research Instrumentation project 0521179 to UNLV. We acknowledge the support and encouragement by M. F. Nicol. O.G.-U. and O.T. acknowledge support through the NNSA Cooperative Agreement DE-FC88-01NV14049.; GeoSoilEnviroCARS is supported by the National Science Foundation - Earth Sciences (EAR-0622171) and the Department of Energy - Geosciences (DE-FG02-94ER14466). The APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 57 TC 33 Z9 33 U1 3 U2 22 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0895-7959 EI 1477-2299 J9 HIGH PRESSURE RES JI High Pressure Res. PD AUG 20 PY 2013 VL 33 IS 3 SI SI BP 466 EP 484 DI 10.1080/08957959.2013.806504 PG 19 WC Physics, Multidisciplinary SC Physics GA 252LR UT WOS:000327006700003 ER PT J AU Boehler, R Guthrie, M Molaison, JJ dos Santos, AM Sinogeikin, S Machida, S Pradhan, N Tulk, CA AF Boehler, R. Guthrie, M. Molaison, J. J. dos Santos, A. M. Sinogeikin, S. Machida, S. Pradhan, N. Tulk, C. A. TI Large-volume diamond cells for neutron diffraction above 90GPa SO HIGH PRESSURE RESEARCH LA English DT Article DE diamond-anvil cells; high pressure; neutron diffraction ID X-RAY; ANVIL CELLS; GPA; PRESSURES; IRON AB Quantitative high pressure neutron-diffraction measurements have traditionally required large sample volumes of at least approximate to 25 mm(3) due to limited neutron flux. Therefore, pressures in these experiments have been limited to below 25 GPa. In comparison, for X-ray diffraction, sample volumes in conventional diamond cells for pressures up to 100 GPa have been less than 1x10(-4) mm(3). Here, we report a new design of strongly supported conical diamond anvils for neutron diffraction that has reached 94 GPa with a sample volume of approximate to 2x10(-2) mm(3), a 100-fold increase. This sample volume is sufficient to measure full neutron-diffraction patterns of D2O-ice to this pressure at the high flux Spallation Neutrons and Pressure beamline at the Oak Ridge National Laboratory. This provides an almost fourfold extension of the previous pressure regime for such measurements. C1 [Boehler, R.; Guthrie, M.; Sinogeikin, S.; Machida, S.] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. [Molaison, J. J.; dos Santos, A. M.; Pradhan, N.; Tulk, C. A.] Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. [Sinogeikin, S.] Argonne Natl Lab, Adv Photon Source, HPCAT, Argonne, IL 60439 USA. RP Boehler, R (reprint author), Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. EM rboehler@ciw.edu RI dos Santos, Antonio/A-5602-2016; Boehler, Reinhard/L-3971-2016; Tulk, Chris/R-6088-2016 OI dos Santos, Antonio/0000-0001-6900-0816; Boehler, Reinhard/0000-0003-0222-6997; Tulk, Chris/0000-0003-3400-3878 FU EFree, an Energy Frontier Research Center; US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES) [DE-SC0001057]; Scientific User Facilities division, BES, DOE [DE-AC05-00OR22725]; UT-Battelle, LLC. FX This work is supported by EFree, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES) under Award No. DE-SC0001057. Research conducted at the SNS was supported by the Scientific User Facilities division, BES, DOE, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. NR 16 TC 15 Z9 16 U1 5 U2 37 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0895-7959 EI 1477-2299 J9 HIGH PRESSURE RES JI High Pressure Res. PD AUG 20 PY 2013 VL 33 IS 3 SI SI BP 546 EP 554 DI 10.1080/08957959.2013.823197 PG 9 WC Physics, Multidisciplinary SC Physics GA 252LR UT WOS:000327006700009 ER PT J AU Thomas, SA Montgomery, JM Tsoi, GM Vohra, YK Chesnut, GN Weir, ST Tulk, CA dos Santos, AM AF Thomas, Sarah A. Montgomery, Jeffrey M. Tsoi, Georgiy M. Vohra, Yogesh K. Chesnut, Gary N. Weir, Samuel T. Tulk, Christopher A. dos Santos, Antonio M. TI Neutron diffraction and electrical transport studies on magnetic ordering in terbium at high pressures and low temperatures SO HIGH PRESSURE RESEARCH LA English DT Article DE neutron diffraction; electrical transport; rare-earth metals; magnetism; high pressures-low temperatures ID RARE-EARTH-METALS; RESISTIVITY; HOLMIUM; ALLOYS AB Neutron diffraction and electrical transport measurements have been carried out on the heavy rare-earth metal terbium at high pressures and low temperatures in order to elucidate the onset of ferromagnetic (FM) order as a function of pressure. The electrical resistance measurements show a change in slope as the temperature is lowered through the FM Curie temperature. The temperature of this FM transition decreases at a rate of-16.7 K/GPa up to a pressure of 3.6 GPa, at which point the onset of FM order is suppressed. The neutron diffraction measurements as a function of pressure at temperatures ranging from 90 to 290 K confirm that the change of slope in the resistance is associated with the FM ordering, since this occurs at pressures similar to those determined from the resistance results at these temperatures. A disappearance of FM ordering was observed as the pressure is increased above 3.6 GPa and is correlated with the phase transition from the ambient hexagonal close packed structure to an -Sm-type structure at high pressures. C1 [Thomas, Sarah A.; Montgomery, Jeffrey M.; Tsoi, Georgiy M.; Vohra, Yogesh K.] Univ Alabama Birmingham, Dept Phys, Birmingham, AL 35294 USA. [Chesnut, Gary N.] Univ West Georgia, Dept Phys, Carrollton, GA 30118 USA. [Weir, Samuel T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Tulk, Christopher A.; dos Santos, Antonio M.] Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. RP Vohra, YK (reprint author), Univ Alabama Birmingham, Dept Phys, Birmingham, AL 35294 USA. EM ykvohra@uab.edu RI dos Santos, Antonio/A-5602-2016; Tulk, Chris/R-6088-2016 OI dos Santos, Antonio/0000-0001-6900-0816; Tulk, Chris/0000-0003-3400-3878 FU Department of Energy National Nuclear Security Administration [DE-NA0002014]; NASA-Alabama Space Grant Consortium Graduate Fellowship program [NNX10AJ80H]; Department of Education [P200A090143]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX This material is based upon the work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0002014. Sarah A. Thomas acknowledges support from the NASA-Alabama Space Grant Consortium Graduate Fellowship program under NNX10AJ80H. Jeffery M Montgomery acknowledges the support from the Department of Education Grant No. P200A090143. A portion of this research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 23 TC 3 Z9 3 U1 0 U2 17 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0895-7959 EI 1477-2299 J9 HIGH PRESSURE RES JI High Pressure Res. PD AUG 20 PY 2013 VL 33 IS 3 SI SI BP 555 EP 562 DI 10.1080/08957959.2013.806503 PG 8 WC Physics, Multidisciplinary SC Physics GA 252LR UT WOS:000327006700010 ER PT J AU Alexander, DM Stern, D Del Moro, A Lansbury, GB Assef, RJ Aird, J Ajello, M Ballantyne, DR Bauer, FE Boggs, SE Brandt, WN Christensen, FE Civano, F Comastri, A Craig, WW Elvis, M Grefenstette, BW Hailey, CJ Harrison, FA Hickox, RC Luo, B Madsen, KK Mullaney, JR Perri, M Puccetti, S Saez, C Treister, E Urry, CM Zhang, WW Bridge, CR Eisenhardt, PRM Gonzalez, AH Miller, SH Tsai, CW AF Alexander, D. M. Stern, D. Del Moro, A. Lansbury, G. B. Assef, R. J. Aird, J. Ajello, M. Ballantyne, D. R. Bauer, F. E. Boggs, S. E. Brandt, W. N. Christensen, F. E. Civano, F. Comastri, A. Craig, W. W. Elvis, M. Grefenstette, B. W. Hailey, C. J. Harrison, F. A. Hickox, R. C. Luo, B. Madsen, K. K. Mullaney, J. R. Perri, M. Puccetti, S. Saez, C. Treister, E. Urry, C. M. Zhang, W. W. Bridge, C. R. Eisenhardt, P. R. M. Gonzalez, A. H. Miller, S. H. Tsai, C. W. TI THE NuSTAR EXTRAGALACTIC SURVEY: A FIRST SENSITIVE LOOK AT THE HIGH-ENERGY COSMIC X-RAY BACKGROUND POPULATION SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: high-redshift; infrared: galaxies; X-rays: diffuse background; X-rays: general ID ACTIVE GALACTIC NUCLEI; DEEP FIELD-SOUTH; BL-LACERTAE OBJECTS; MS SOURCE CATALOGS; ALL-SKY SURVEY; RESOLUTION SPECTRAL TEMPLATES; HOST-GALAXY PROPERTIES; STAR-FORMING GALAXIES; POINT-SOURCE CATALOGS; HEAVILY OBSCURED AGN AB We report on the first 10 identifications of sources serendipitously detected by the Nuclear Spectroscopic Telescope Array (NuSTAR) to provide the first sensitive census of the cosmic X-ray background source population at greater than or similar to 10 keV. We find that these NuSTAR-detected sources are approximate to 100 times fainter than those previously detected at greater than or similar to 10 keV and have a broad range in redshift and luminosity (z = 0.020-2.923 and L10-40 keV approximate to 4 x 10(41)-5 x 10(45) erg s(-1)); the median redshift and luminosity are z approximate to 0.7 and L10-40 keV approximate to 3 x 10(44) erg s(-1), respectively. We characterize these sources on the basis of broad-band approximate to 0.5-32 keV spectroscopy, optical spectroscopy, and broad-band ultraviolet-to-mid-infrared spectral energy distribution analyses. We find that the dominant source population is quasars with L10-40 keV > 10(44) erg s(-1), of which approximate to 50% are obscured with N-H greater than or similar to 10(22) cm(-2). However, none of the 10 NuSTAR sources are Compton thick (N-H greater than or similar to 10(24) cm(-2)) and we place a 90% confidence upper limit on the fraction of Compton-thick quasars (L10-40 keV > 10(44) erg s(-1)) selected at greater than or similar to 10 keV of less than or similar to 33% over the redshift range z = 0.5-1.1. We jointly fitted the rest-frame approximate to 10-40 keV data for all of the non-beamed sources with L10-40 keV > 10(43) erg s(-1) to constrain the average strength of reflection; we find R < 1.4 for Gamma = 1.8, broadly consistent with that found for local active galactic nuclei (AGNs) observed at greater than or similar to 10 keV. We also constrain the host-galaxy masses and find a median stellar mass of approximate to 10(11) M-circle dot, a factor approximate to 5 times higher than the median stellar mass of nearby high-energy selected AGNs, which may be at least partially driven by the order of magnitude higher X-ray luminosities of the NuSTAR sources. Within the low source-statistic limitations of our study, our results suggest that the overall properties of the NuSTAR sources are broadly similar to those of nearby high-energy selected AGNs but scaled up in luminosity and mass. C1 [Alexander, D. M.; Del Moro, A.; Lansbury, G. B.; Aird, J.; Mullaney, J. R.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Stern, D.; Assef, R. J.; Eisenhardt, P. R. M.; Tsai, C. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Ajello, M.; Boggs, S. E.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Ballantyne, D. R.] Georgia Inst Technol, Sch Phys, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Bauer, F. E.; Saez, C.] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago 22, Chile. [Bauer, F. E.] Space Sci Inst, Boulder, CO 80301 USA. [Brandt, W. N.; Luo, B.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Brandt, W. N.; Luo, B.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Christensen, F. E.; Craig, W. W.] Tech Univ Denmark, DTU Space Natl Space Inst, DK-2800 Lyngby, Denmark. [Civano, F.; Hickox, R. C.] Dartmouth Coll, Dept Phys & Astron, Wilder Lab 6127, Hanover, NH 03755 USA. [Civano, F.; Elvis, M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Comastri, A.] INAF Osservatorio Astron Bologna, I-40127 Bologna, Italy. [Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Grefenstette, B. W.; Harrison, F. A.; Madsen, K. K.] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. [Hailey, C. J.] Columbia Astrophys Lab, Columbia, NY 10027 USA. [Perri, M.; Puccetti, S.] ASI Sci Data Ctr, I-00044 Frascati, Italy. [Perri, M.; Puccetti, S.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Treister, E.] Univ Concepcion, Dept Astron, Concepcion, Chile. [Urry, C. M.] Yale Univ, Dept Phys, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA. [Zhang, W. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bridge, C. R.; Miller, S. H.] CALTECH, Pasadena, CA 91125 USA. [Gonzalez, A. H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. RP Alexander, DM (reprint author), Univ Durham, Dept Phys, Durham DH1 3LE, England. RI Urry, Claudia/G-7381-2011; Boggs, Steven/E-4170-2015; Brandt, William/N-2844-2015; Comastri, Andrea/O-9543-2015; OI Urry, Claudia/0000-0002-0745-9792; Boggs, Steven/0000-0001-9567-4224; Brandt, William/0000-0002-0167-2453; Comastri, Andrea/0000-0003-3451-9970; Perri, Matteo/0000-0003-3613-4409; Puccetti, Simonetta/0000-0002-2734-7835; Alexander, David/0000-0002-5896-6313 FU Leverhulme Trust; Science and Technology Facilities Council (STFC); SAO grant [GO2-13164X]; NASA Postdoctoral Program at the Jet Propulsion Laboratory; NSF award [AST 1008067]; Center of Excellence in Astrophysics and Associated Technologies [PFB 06/2007]; Anillo project [ACT1101]; FONDECYT [1101024, 1120061]; Caltech NuSTAR [44A-1092750]; NASA ADP grant [NNX10AC99G]; ASI/INAF grant [I/037/12/0]; CONICYT-Chile under grant FONDECYT [3120198]; NASA [NNG08FD60C]; National Aeronautics and Space Administration FX We acknowledge financial support from the Leverhulme Trust (D.M.A. and J.R.M.), the Science and Technology Facilities Council (STFC; D.M.A., A.D.M., and G.B.L.), the SAO grant GO2-13164X (M.A.), NASA Postdoctoral Program at the Jet Propulsion Laboratory (R.J.A.), NSF award AST 1008067 (D.R.B.), Center of Excellence in Astrophysics and Associated Technologies (PFB 06/2007; F.E.B. and E.T.), the Anillo project ACT1101 (F.E.B. and E.T.), FONDECYT Regular 1101024 (F.E.B.), Caltech NuSTAR subcontract 44A-1092750 (W.N.B. and B.L.), NASA ADP grant NNX10AC99G (W.N.B. and B.L.), ASI/INAF grant I/037/12/0 (A.C. and S.P.), CONICYT-Chile under grant FONDECYT 3120198 (C.S.), and FONDECYT regular grant 1120061 (E.T.). We thank the referee for a constructive and positive report. We also thank Michael Koss for the discussion of Swift-BAT results, and Mark Brodwin, Daniel Gettings, John Gizis, Richard Walters, Jingwen Wu, and Dominika Wylezalek for supporting the ground-based follow-up observations. This work was supported under NASA Contract No. NNG08FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTAR-DAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). NR 136 TC 35 Z9 35 U1 0 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2013 VL 773 IS 2 AR 125 DI 10.1088/0004-637X/773/2/125 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 205EU UT WOS:000323426100044 ER PT J AU Chang, YY van der Wel, A Rix, HW Holden, B Bell, EF McGrath, EJ Wuyts, S Haussler, B Barden, M Faber, SM Mozena, M Ferguson, HC Guo, YC Galametz, A Grogin, NA Kocevski, DD Koekemoer, AM Dekel, A Huang, KH Hathi, NP Donley, J AF Chang, Yu-Yen van der Wel, Arjen Rix, Hans-Walter Holden, Bradford Bell, Eric F. McGrath, Elizabeth J. Wuyts, Stijn Haeussler, Boris Barden, Marco Faber, S. M. Mozena, Mark Ferguson, Henry C. Guo, Yicheng Galametz, Audrey Grogin, Norman A. Kocevski, Dale D. Koekemoer, Anton M. Dekel, Avishai Huang, Kuang-Han Hathi, Nimish P. Donley, Jennifer TI STRUCTURAL EVOLUTION OF EARLY-TYPE GALAXIES TO z=2.5 IN CANDELS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; galaxies: elliptical and lenticular, cD; galaxies: evolution; galaxies: formation; galaxies: structure ID STAR-FORMING GALAXIES; SIMILAR-TO 1; DIGITAL SKY SURVEY; EXTRAGALACTIC LEGACY SURVEY; HUBBLE-SPACE-TELESCOPE; GREATER-THAN 1; ELLIPTIC GALAXIES; QUIESCENT GALAXIES; MASSIVE GALAXIES; INTRINSIC SHAPES AB Projected axis ratio measurements of 880 early-type galaxies at redshifts 1 < z < 2.5 selected from CANDELS are used to reconstruct and model their intrinsic shapes. The sample is selected on the basis of multiple rest-frame colors to reflect low star-formation activity. We demonstrate that these galaxies as an ensemble are dust-poor and transparent and therefore likely have smooth light profiles, similar to visually classified early-type galaxies. Similar to their present-day counterparts, the z > 1 early-type galaxies show a variety of intrinsic shapes; even at a fixed mass, the projected axis ratio distributions cannot be explained by the random projection of a set of galaxies with very similar intrinsic shapes. However, a two-population model for the intrinsic shapes, consisting of a triaxial, fairly round population, combined with a flat (c/a similar to 0.3) oblate population, adequately describes the projected axis ratio distributions of both present-day and z > 1 early-type galaxies. We find that the proportion of oblate versus triaxial galaxies depends both on the galaxies' stellar mass, and-at a given mass-on redshift. For present-day and z < 1 early-type galaxies the oblate fraction strongly depends on galaxy mass. At z > 1, this trend is much weaker over the mass range explored here (10(10) < M*/M-circle dot < 10(11)), because the oblate fraction among massive (M* similar to 10(11) M-circle dot) was much higher in the past: 0.59 +/- 0.10 at z > 1, compared to 0.20 +/- 0.02 at z similar to 0.1. When combined with previous findings that the number density and sizes of early-type galaxies substantially increase over the same redshift range, this can be explained by the gradual emergence of merger-produced elliptical galaxies, at the expense of the destruction of pre-existing disks that were common among their high-redshift progenitors. In contrast, the oblate fraction among low-mass early-type galaxies (log(M*/M-circle dot) < 10.5) increased toward the present, from z = 0 to 0.38 +/- 0.11 at z > 1 to 0.72 +/- 0.06 at z = 0. We speculate that this lower incidence of disks at early cosmic times can be attributed to two factors: low-mass, star-forming progenitors at z > 1 were not settled into stable disks to the same degree as at later cosmic times, and the stripping of gas from star-forming disk galaxies in dense environments is an increasingly important process at lower redshifts. C1 [Chang, Yu-Yen; van der Wel, Arjen; Rix, Hans-Walter] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Holden, Bradford; Faber, S. M.; Mozena, Mark; Guo, Yicheng; Kocevski, Dale D.] Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Bell, Eric F.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [McGrath, Elizabeth J.] Colby Coll, Dept Phys & Astron, Waterville, ME 04901 USA. [Wuyts, Stijn] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany. [Haeussler, Boris] Univ Nottingham, Sch Phys, Nottingham NG7 2RD, England. [Haeussler, Boris] Univ Nottingham, Sch Astron, Nottingham NG7 2RD, England. [Barden, Marco] Univ Innsbruck, Inst Astro & Particle Phys, A-6020 Innsbruck, Austria. [Ferguson, Henry C.; Grogin, Norman A.; Koekemoer, Anton M.; Huang, Kuang-Han] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Galametz, Audrey] INAF Osservatorio Roma, I-00040 Monte Porzio Catone, Italy. [Dekel, Avishai] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Huang, Kuang-Han] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Hathi, Nimish P.] Observ Carnegie Inst Sci, Pasadena, CA USA. [Donley, Jennifer] Los Alamos Natl Lab, Los Alamos, NM USA. RP Chang, YY (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. EM chang@mpia.de RI Hathi, Nimish/J-7092-2014; OI Hathi, Nimish/0000-0001-6145-5090; Bell, Eric/0000-0002-5564-9873; Koekemoer, Anton/0000-0002-6610-2048 FU NASA [NAS5-26555]; IMPRS for Astronomy & Cosmic Physics at the University of Heidelberg; Marie Curie Initial Training Network ELIXIR of the European Commission [PITN-GA-2008-214227] FX We thank the anonymous referee for helpful comments, and Steve Willner and Matthew Ashby for useful suggestions. This work is based on observations taken by the CANDELS Multi-Cycle Treasury Program with the NASA/ESA HST, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Y.-Y.C. was funded by the IMPRS for Astronomy & Cosmic Physics at the University of Heidelberg and the Marie Curie Initial Training Network ELIXIR of the European Commission under contract PITN-GA-2008-214227. NR 78 TC 23 Z9 23 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2013 VL 773 IS 2 AR 149 DI 10.1088/0004-637X/773/2/149 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 205EU UT WOS:000323426100068 ER PT J AU Gilet, C Almgren, AS Bell, JB Nonaka, A Woosley, SE Zingale, M AF Gilet, C. Almgren, A. S. Bell, J. B. Nonaka, A. Woosley, S. E. Zingale, M. TI LOW MACH NUMBER MODELING OF CORE CONVECTION IN MASSIVE STARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE convection; hydrodynamics; methods: numerical; stars: interiors; turbulence ID TURBULENT COMPRESSIBLE CONVECTION; IA SUPERNOVAE; SOLAR CONVECTION; HYDRODYNAMIC SIMULATIONS; DIFFERENTIAL ROTATION; NUMERICAL SIMULATIONS; STELLAR CONVECTION; DEEP CONVECTION; PENETRATION; EVOLUTION AB This work presents three-dimensional simulations of core convection in a 15 M-circle dot star halfway through its main sequence lifetime. To perform the necessary long-time calculations, we use the low Mach number code MAESTRO, with initial conditions taken from a one-dimensional stellar model. We first identify several key factors that the one-dimensional initial model must satisfy to ensure efficient simulation of the convection process. We then use the three-dimensional simulations to examine the effects of two common modeling choices on the resulting convective flow: using a fixed composition approximation and using a reduced domain size. We find that using a fixed composition model actually increases the computational cost relative to using the full multi-species model because the fixed composition system takes longer to reach convection that is in a quasi-static state. Using a reduced (octant rather than full sphere) simulation domain yields flow with statistical properties that are within a factor of two of the full sphere simulation values. Both the octant and full sphere simulations show similar mixing across the convection zone boundary that is consistent with the turbulent entrainment model. However, the global character of the flow is distinctly different in the octant simulation, showing more rapid changes in the large-scale structure of the flow and thus a more isotropic flow on average. C1 [Gilet, C.; Almgren, A. S.; Bell, J. B.; Nonaka, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA. [Gilet, C.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Woosley, S. E.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Zingale, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Gilet, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA. OI Zingale, Michael/0000-0001-8401-030X FU DOE Applied Mathematics Research Program of the DOE Office of Advanced Scientific Computing Research under the U.S. Department of Energy [DE-AC02-05CH11231]; DOE Office of Nuclear Physics [DE-FG02-06ER41448]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Frank Timmes for making his equation of state routines publicly available and for helpful discussions on the thermodynamics. The work of C.G., A.S.A., J.B.B., and A.N. was supported by the DOE Applied Mathematics Research Program of the DOE Office of Advanced Scientific Computing Research under the U.S. Department of Energy Contract No. DE-AC02-05CH11231. M.Z. was supported by a DOE Office of Nuclear Physics grant No. DE-FG02-06ER41448 to Stony Brook University. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 58 TC 6 Z9 6 U1 0 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2013 VL 773 IS 2 AR 137 DI 10.1088/0004-637X/773/2/137 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 205EU UT WOS:000323426100056 ER PT J AU Guo, F Giacalone, J AF Guo, Fan Giacalone, Joe TI THE ACCELERATION OF THERMAL PROTONS AT PARALLEL COLLISIONLESS SHOCKS: THREE-DIMENSIONAL HYBRID SIMULATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; cosmic rays; shock waves; turbulence ID EARTHS BOW SHOCK; QUASI-PERPENDICULAR SHOCKS; SCALE MAGNETIC TURBULENCE; CHARGED-PARTICLE MOTION; TERMINATION SHOCK; ION REFLECTION; COSMIC-RAYS; INTERPLANETARY SHOCKS; ASTROPHYSICAL SHOCKS; DIFFUSE IONS AB We present three-dimensional hybrid simulations of collisionless shocks that propagate parallel to the background magnetic field to study the acceleration of protons that forms a high-energy tail on the distribution. We focus on the initial acceleration of thermal protons and compare it with results from one-dimensional simulations. We find that for both one-and three-dimensional simulations, particles that end up in the high-energy tail of the distribution later in the simulation gained their initial energy right at the shock. This confirms previous results but is the first to demonstrate this using fully three-dimensional fields. The result is not consistent with the "thermal leakage" model. We also show that the gyrocenters of protons in the three-dimensional simulation can drift away from the magnetic field lines on which they started due to the removal of ignorable coordinates that exist in one-and two-dimensional simulations. Our study clarifies the injection problem for diffusive shock acceleration. C1 [Guo, Fan] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Guo, Fan; Giacalone, Joe] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA. [Guo, Fan; Giacalone, Joe] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. RP Guo, F (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM guofan.ustc@gmail.com RI Guo, Fan/H-1723-2013; OI Guo, Fan/0000-0003-4315-3755 FU NASA [NNX10AF24G, NNX11AO64G] FX We benefited from discussions with Dr. Randy Jokipii and Dr. Jozsef Kota. This work was supported by NASA under grants NNX10AF24G and NNX11AO64G. Computational resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center and the institutional computing resources at LANL. NR 56 TC 19 Z9 19 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2013 VL 773 IS 2 AR 158 DI 10.1088/0004-637X/773/2/158 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 205EU UT WOS:000323426100077 ER PT J AU Zhang, YY Dietrich, JP McKay, TA Sheldon, ES Nguyen, ATQ AF Zhang, Yuanyuan Dietrich, Joerg P. McKay, Timothy A. Sheldon, Erin S. Nguyen, Alex T. Q. TI STUDYING INTERCLUSTER GALAXY FILAMENTS THROUGH STACKING gmBCG GALAXY CLUSTER PAIRS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: general; galaxies: general; large-scale structure of universe ID DIGITAL SKY SURVEY; HOT INTERGALACTIC MEDIUM; LARGE-SCALE STRUCTURE; X-RAY-ABSORPTION; LUMINOSITY FUNCTION; DATA RELEASE; K-CORRECTIONS; SDSS-III; VOID GALAXIES; SCULPTOR WALL AB We present a method to study the photometric properties of galaxies in filaments by stacking the galaxy populations between pairs of galaxy clusters. Using Sloan Digital Sky Survey data, this method can detect the intercluster filament galaxy overdensity with a significance of similar to 5 sigma out to z = 0.40. Using this approach, we study the g - r color and luminosity distribution of filament galaxies as a function of redshift. Consistent with expectation, filament galaxies are bimodal in their color distribution and contain a larger blue galaxy population than clusters. Filament galaxies are also generally fainter than cluster galaxies. More interestingly, the observed filament population seems to show redshift evolution at 0.12 < z < 0.40: the blue galaxy fraction has a trend to increase at higher redshift; such evolution is parallel to the "Butcher-Oemler effect" of galaxy clusters. We test the dependence of the observed filament density on the richness of the cluster pair: richer clusters are connected by higher density filaments. We also test the spatial dependence of filament galaxy overdensity: this quantity decreases when moving away from the intercluster axis between a cluster pair. This method provides an economical way to probe the photometric properties of filament galaxies and should prove useful for upcoming projects like the Dark Energy Survey. C1 [Zhang, Yuanyuan; Dietrich, Joerg P.; McKay, Timothy A.; Nguyen, Alex T. Q.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Dietrich, Joerg P.; McKay, Timothy A.] Univ Michigan, Michigan Ctr Theoret Phys, Ann Arbor, MI 48109 USA. [Dietrich, Joerg P.] Univ Sternwarte Munchen, D-81679 Munich, Germany. [McKay, Timothy A.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Sheldon, Erin S.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Nguyen, Alex T. Q.] Univ Rochester, Sch Med & Dent, Rochester, NY 14627 USA. RP Zhang, YY (reprint author), Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. RI McKay, Timothy/C-1501-2009; OI McKay, Timothy/0000-0001-9036-6150; Dietrich, Jorg/0000-0002-8134-9591 FU NSF [AST-0807304]; German Science Foundation (DFG) [Transregio 33]; Excellence Initiative of the Federal Government of Germany, EXC project [153]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington FX The authors acknowledge generous support from NSF grant AST-0807304. J.P.D. was also partially supported by the German Science Foundation (DFG) through the Transregio 33 and the Cluster of Excellence "Origin and Structure of the Universe," funded by the Excellence Initiative of the Federal Government of Germany, EXC project number 153. We are also very grateful to Jeeseon Song, Heidi Wu, Adam Sypnieski, and Risa Wechsler for many helpful discussions. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/.; The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. NR 67 TC 5 Z9 5 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2013 VL 773 IS 2 AR UNSP 115 DI 10.1088/0004-637X/773/2/115 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 205EU UT WOS:000323426100034 ER PT J AU Scown, CD Taptich, M Horvath, A McKone, TE Nazaroff, WW AF Scown, Corinne D. Taptich, Michael Horvath, Arpad McKone, Thomas E. Nazaroff, William W. TI Achieving Deep Cuts in the Carbon Intensity of US Automobile Transportation by 2050: Complementary Roles for Electricity and Biofuels SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID GREENHOUSE-GAS EMISSIONS; LIFE-CYCLE ASSESSMENT; BIOENERGY; ETHANOL; BOTTOM; POLICY; FUELS; COSTS AB Passenger cars in the United States (U.S.) rely primarily on petroleum-derived fuels and contribute the majority of U.S. transportation-related greenhouse gas (GHG) emissions. Electricity and biofuels are two promising alternatives for reducing both the carbon intensity of automotive transportation and U.S. reliance on imported oil. However, as standalone solutions, the biofuels option is limited by land availability and the electricity option is limited by market adoption rates and technical challenges. This paper explores potential GHG emissions reductions attainable in the United States through 2050 with a county-level scenario analysis that combines ambitious plug-in hybrid electric vehicle (PHEV) adoption rates with scale-up of cellulosic ethanol production. With PHEVs achieving a 58% share of the passenger car fleet by 2050, phasing out most corn ethanol and limiting cellulosic ethanol feedstocks to sustainably produced crop residues and dedicated crops, we project that the United States could supply the liquid fuels needed for the automobile fleet with an average blend of 80% ethanol (by volume) and 20% gasoline. If electricity for PHEV charging could be supplied by a combination of renewables and natural-gas combined-cycle power plants, the carbon intensity of automotive transport would be 79 g CO(2)e per vehicle-kilometer traveled, a 71% reduction relative to 2013. C1 [Scown, Corinne D.; McKone, Thomas E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Taptich, Michael; Horvath, Arpad; Nazaroff, William W.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [McKone, Thomas E.] Univ Calif Berkeley, Sch Publ Hlth, Berkeley, CA 94720 USA. RP Scown, CD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM cdscown@lbl.gov RI Scown, Corinne/D-1253-2013 FU U.S. Department of Energy [DE-AC03-76SF00098] FX Preparation of the biomass scenarios in this article was supported in part by the Energy Biosciences Institute at the University of California, Berkeley. This work was carried out in part at the Lawrence Berkeley National Laboratory, which is operated for the U.S. Department of Energy under Contract Grant No. DE-AC03-76SF00098. We graciously acknowledge Bradley Froehle for his assistance in constructing our fleet model for this paper. NR 54 TC 7 Z9 7 U1 3 U2 84 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD AUG 20 PY 2013 VL 47 IS 16 BP 9044 EP 9052 DI 10.1021/es4015635 PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 205VA UT WOS:000323471700007 PM 23906086 ER PT J AU Chen, B Andersson, A Lee, M Kirillova, EN Xiao, QF Krusa, M Shi, MN Hu, K Lu, ZF Streets, DG Du, K Gustafsson, O AF Chen, Bing Andersson, August Lee, Meehye Kirillova, Elena N. Xiao, Qianfen Krusa, Martin Shi, Meinan Hu, Ke Lu, Zifeng Streets, David G. Du, Ke Gustafsson, Orjan TI Source Forensics of Black Carbon Aerosols from China SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID ELEMENTAL CARBON; ORGANIC-CARBON; OPTICAL-PROPERTIES; BROWN CARBON; EMISSIONS; CLIMATE; BIOMASS; FOSSIL; ASIA; INVENTORY AB The limited understanding of black carbon (BC) aerosol emissions from incomplete combustion causes a poorly constrained anthropogenic climate warming that globally may be second only to CO2 and regionally, such as over East Asia, the dominant driver of climate change. The relative contribution to atmospheric BC from fossil fuel versus biomass combustion is important to constrain as fossil BC is a stronger climate forcer. The source apportionment is the underpinning for targeted mitigation actions. However, technology-based "bottom-up" emission inventories are inconclusive, largely due to uncertain BC emission factors from small-scale/household combustion and open burning. We use "top-down" radiocarbon measurements of atmospheric BC from five sites including three city sites and two regional sites to determine that fossil fuel combustion produces 80 +/- 6% of the BC emitted from China. This source-diagnostic radiocarbon signal in the ambient aerosol over East Asia establishes a much larger role for fossil fuel combustion than suggested by all 15 BC emission inventory models, including one with monthly resolution. Our results suggest that current climate modeling should refine both BC emission strength and consider the stronger radiative absorption associated with fossil-fuel-derived BC. To mitigate near-term climate effects and improve air quality in East Asia, activities such as residential coal combustion and city traffic should be targeted. C1 [Chen, Bing; Du, Ke] Chinese Acad Sci, Inst Urban Environm, Xiamen 361021, Peoples R China. [Chen, Bing] Univ Huelva, Associate Unit, CSIC, Univ Huelva Atmospher Pollut, E-21071 Huelva, Spain. [Andersson, August; Kirillova, Elena N.; Krusa, Martin; Gustafsson, Orjan] Stockholm Univ, Dept Appl Environm Sci, S-10691 Stockholm, Sweden. [Andersson, August; Kirillova, Elena N.; Krusa, Martin; Gustafsson, Orjan] Stockholm Univ, Bert Bolin Ctr Climate Res, S-10691 Stockholm, Sweden. [Lee, Meehye] Korea Univ, Dept Earth & Environm Sci, Seoul 136701, South Korea. [Xiao, Qianfen] Tongji Univ, Sch Environm Sci & Technol, Shanghai 200092, Peoples R China. [Shi, Meinan; Hu, Ke] China Univ Geosci, Sch Marine Sci, Beijing 100038, Peoples R China. [Lu, Zifeng; Streets, David G.] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. RP Du, K (reprint author), Chinese Acad Sci, Inst Urban Environm, Xiamen 361021, Peoples R China. EM kdu@iue.ac.cn; orjan.gustafsson@itm.su.se RI Lu, Zifeng/F-3266-2012; Du, Ke/A-6649-2012; OI Streets, David/0000-0002-0223-1350 FU FORMAS [214-2009-970]; STINT [2010/072]; National Natural Science Foundation of China [40905065]; Knowledge Innovation Program of the Chinese Academy of Sciences [KZCX2-EW-408]; Korean Center for Atmospheric and Earthquake Research; NASA's Modeling, Analysis and Predictability (MAP) program; Knut and Alice Wallenberg Foundation; Independent Innovation Foundation of Shandong University [2013TB003] FX The research was financially supported by the Swedish funding agencies FORMAS (Nr. 214-2009-970) and STINT (Nr. 2010/072), the National Natural Science Foundation of China (Nr. 40905065) the Knowledge Innovation Program of the Chinese Academy of Sciences (Nr. KZCX2-EW-408) and the Korean Center for Atmospheric and Earthquake Research. Argonne National Laboratory acknowledges the support of NASA's Modeling, Analysis and Predictability (MAP) program. O.G. additionally acknowledges support as an Academy Research Fellow at the Swedish Royal Academy of Sciences through a grant from the Knut and Alice Wallenberg Foundation and B.C. the Independent Innovation Foundation of Shandong University (Nr. 2013TB003). NR 56 TC 43 Z9 44 U1 14 U2 105 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD AUG 20 PY 2013 VL 47 IS 16 BP 9102 EP 9108 DI 10.1021/es401599r PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 205VA UT WOS:000323471700014 PM 23844635 ER PT J AU O'Loughlin, EJ Boyanov, MI Flynn, TM Gorski, CA Hofmann, SM McCormick, ML Scherer, MM Kemner, KM AF O'Loughlin, Edward J. Boyanov, Maxim I. Flynn, Theodore M. Gorski, Christopher A. Hofmann, Scott M. McCormick, Michael L. Scherer, Michelle M. Kemner, Kenneth M. TI Effects of Bound Phosphate on the Bioreduction of Lepidocrocite (gamma-FeOOH) and Maghemite (gamma-Fe2O3) and Formation of Secondary Minerals SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID HYDROXYCARBONATE GREEN RUST; DISSIMILATORY IRON REDUCTION; HYDROUS FERRIC-OXIDE; SHEWANELLA-PUTREFACIENS; MINERALIZATION PATHWAYS; ELECTRON-TRANSFER; THERMAL-DECOMPOSITION; STRUCTURAL PHOSPHORUS; FE(III) (HYDR)OXIDES; ORGANIC CONTAMINANTS AB Natural Fe-III oxides typically contain a range of trace elements including P. Although solution phase and adsorbed P (as phosphate) have been shown to impact the bioreduction of Fe-III oxides and the formation of "biogenic" secondary minerals, little is known about the potential effects of occluded/incorporated phosphate. We have examined the bioreduction of Fe-III oxides (lepidocrocite (gamma-FeOOH) and maghemite (gamma-Fe2O3)) containing 0-3 mass% P as "bound" (a term we use to include both adsorbed and occluded/incorporated) phosphate. Kinetic dissolution studies showed congruent release of Fe and P, suggesting that the phosphate in these materials was incorporated within the particles; however, 53% or 86% of the total phosphate associated with the lepidocrocites containing 0.7 or 3 mass% P, respectively, was extracted with 0.1 M NaOH and can be considered to be adsorbed, both to exterior surfaces and within micropores. In the absence of phosphate, lepidocrocite was rapidly reduced to magnetite by Shewanella putrefaciens CN32, and over time the magnetite was partially transformed to ferrous hydroxy carbonate (FHC). The presence of 0.2-0.7 mass% P significantly inhibited the initial reduction of lepidocrocite but ultimately resulted in greater Fe-II production and the formation of carbonate green rust. The bioreduction of maghemite with and without bound phosphate resulted in solid-state conversion to magnetite, with subsequent formation of FHC. We also examined the potential redox cycling of green rust under alternating Fe-III-reducing and oxic conditions. Oxidation of biogenic green rust by 02 resulted in conversion to ferric green rust, which was readily reduced back to green rust by S. putrefaciens CN32. These results indicate the potential for cycling of green rust between reduced and oxidized forms under redox dynamics similar to those encountered in environments that alternate between iron-reducing and oxic conditions, and they are consistent with the identification of green rust in soils/sediments with seasonal redox cycling. C1 [O'Loughlin, Edward J.; Boyanov, Maxim I.; Flynn, Theodore M.; Hofmann, Scott M.; Kemner, Kenneth M.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Gorski, Christopher A.; Scherer, Michelle M.] Univ Iowa, Dept Civil & Environm Engn, Iowa City, IA 52242 USA. [Gorski, Christopher A.] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA. [McCormick, Michael L.] Hamilton Coll, Dept Biol, Clinton, NY 13323 USA. RP O'Loughlin, EJ (reprint author), Argonne Natl Lab, Bldg 203,Room E-137,9700 South Cass Ave, Argonne, IL 60439 USA. EM oloughlin@anl.gov RI Flynn, Theodore/C-1221-2008; McCormick, Michael/A-2308-2008; BM, MRCAT/G-7576-2011; O'Loughlin, Edward/C-9565-2013 OI Flynn, Theodore/0000-0002-1838-8942; O'Loughlin, Edward/0000-0003-1607-9529 FU Subsurface Biogeochemical Research Program, Office of the Biological and Environmental Research, Office of Science, U.S. Department of Energy (DOE) [DE-AC02-06CH11357]; DOE, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank Russell Cook for his assistance with SEM imaging; Timothy Pasakarnis for assistance with collection of the Mossbauer spectra of the iron oxides; and Karen Haugen and four anonymous reviewers for their thoughtful reviews of the manuscript. This research is part of the Subsurface Science Scientific Focus Area (SFA) at Argonne National Laboratory supported by the Subsurface Biogeochemical Research Program, Office of the Biological and Environmental Research, Office of Science, U.S. Department of Energy (DOE), under contract DE-AC02-06CH11357. MRCAT/EnviroCAT operations are supported by DOE and the MRCAT/EnviroCAT member institutions. Use of the Advanced Photon Source and the Electron Microscopy Center for Materials Research at Argonne National Laboratory was supported by the DOE, Office of Science, Office of Basic Energy Sciences, under contract DE-AC02-06CH11357. NR 103 TC 10 Z9 12 U1 10 U2 125 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD AUG 20 PY 2013 VL 47 IS 16 BP 9157 EP 9166 DI 10.1021/es400627j PG 10 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 205VA UT WOS:000323471700021 PM 23909690 ER PT J AU Hu, YD Neil, C Lee, B Jun, YS AF Hu, Yandi Neil, Chelsea Lee, Byeongdu Jun, Young-Shin TI Control of Heterogeneous Fe(III) (Hydr)oxide Nucleation and Growth by Interfacial Energies and Local Saturations SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID DYNAMIC LIGHT-SCATTERING; HEMATITE THIN-FILMS; ACID-MINE DRAINAGE; EPITAXIAL-GROWTH; SEPARATING NUCLEATION; ZERO CHARGE; PROTEIN CRYSTALLIZATION; SURFACE COMPLEXATION; AQUEOUS-SOLUTION; METAL-OXIDES AB To predict the fate of aqueous pollutants, a better understanding of heterogeneous Fe(III) (hydr)oxide nucleation and growth on abundant mineral surfaces is needed. In this study, we measured in situ heterogeneous Fe(III) (hydr)oxide nucleation and growth on quartz, muscovite, and corundum (Al2O3) in 10(-4) M Fe(III) solution (in 10 mM NaNO3 at pH = 3.7 +/- 0.2) using grazing incidence small-angle X-ray scattering (GISAXS). Interestingly, both the fastest heterogeneous nucleation and slowest growth occurred on corundum. To elucidate the mechanisms, zeta potential and water contact angle measurements were conducted. Electrostatic forces between the charged Fe(III) (hydr)oxide polymeric embryos and substrate surfaces-which affect local saturations near the substrate surfaces-controlled heterogeneous growth rates. Water contact angles (7.5 degrees +/- 0.7,22.8 degrees +/- 1.7, and 44.8 degrees +/- 3.7 for quartz, muscovite, and corundum, respectively) indicate that corundum has the highest substrate water interfacial energy. Furthermore, a comparison of structural mismatches between the substrates and precipitates indicates a lowest precipitate-substrate interfacial energy for corundum. The fastest nucleation on corundum suggests that interfacial energies in the solution-substrate-precipitate system controlled heterogeneous nucleation rates. The unique information provided here bolsters our understanding of nanoparticle-mineral surface interactions, mineral surface modification by iron oxide coating, and pollutant transport. C1 [Hu, Yandi; Neil, Chelsea; Jun, Young-Shin] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA. [Lee, Byeongdu] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Jun, YS (reprint author), Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA. EM ysjun@seas.wustl.edu RI Hu, Yandi/F-7968-2011 OI Lee, Byeongdu/0000-0003-2514-8805; Hu, Yandi/0000-0002-8506-9335 FU Washington University Faculty Startup Grant; National Science Foundation's Environmental Chemical Science Program [CHE-1214090]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work is supported by a Washington University Faculty Startup Grant and the National Science Foundation's Environmental Chemical Science Program (CHE-1214090). We thank Ms. Jessica Ray for HRTEM measurements and Dr. Soenke Seifert for beamline experimental help. We also thank Dr. Jill Pasteris for her insight in crystallography and Dr. Alejandro Fernandez-Martinez and Dr. Glenn W. Waychunas for valuable discussion about electron density and surface energy. Use of the Advanced Photon Source (Sector 11-BM and 12ID-B) at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 86 TC 12 Z9 12 U1 4 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD AUG 20 PY 2013 VL 47 IS 16 BP 9198 EP 9206 DI 10.1021/es401160g PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 205VA UT WOS:000323471700026 PM 23875694 ER PT J AU Stoliker, DL Campbell, KM Fox, PM Singer, DM Kaviani, N Carey, M Peck, NE Bargar, JR Kent, DB Davis, JA AF Stoliker, Deborah L. Campbell, Kate M. Fox, Patricia M. Singer, David M. Kaviani, Nazila Carey, Minna Peck, Nicole E. Bargar, John R. Kent, Douglas B. Davis, James A. TI Evaluating Chemical Extraction Techniques for the Determination of Uranium Oxidation State in Reduced Aquifer Sediments SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID MICROBIAL U(VI) REDUCTION; CONTAMINATED AQUIFER; DISSOLUTION; UO2; GROUNDWATER; CARBONATE; U(IV); BIOREDUCTION; REOXIDATION; COMPLEXES AB Extraction techniques utilizing high pH and (bi)carbonate concentrations were evaluated for their efficacy in determining the oxidation state of uranium (U) in reduced sediments collected from Rifle, CO. Differences in dissolved concentrations between oxic and anoxic extractions have been proposed as a means to quantify the U(VI) and U(IV) content of sediments. An additional step was added to anoxic extractions using a strong anion exchange resin to separate dissolved U(IV) and U(VI). X-ray spectroscopy showed that U(IV) in the sediments was present as polymerized precipitates similar to uraninite and/or less ordered U(IV), referred to as non-uraninite U(IV) species associated with biomass (NUSAB). Extractions of sediment containing both uraninite and NUSAB displayed higher dissolved uranium concentrations under oxic than anoxic conditions while extractions of sediment dominated by NUSAB resulted in identical dissolved U concentrations. Dissolved U(IV) was rapidly oxidized under anoxic conditions in all experiments. Uraninite reacted minimally under anoxic conditions but thermodynamic calculations show that its propensity to oxidize is sensitive to solution chemistry and sediment mineralogy. A universal method for quantification of U(IV) and U(VI) in sediments has not yet been developed but the chemical extractions, when combined with solid-phase characterization, have a narrow range of applicability for sediments without U(VI). C1 [Stoliker, Deborah L.; Campbell, Kate M.; Fox, Patricia M.; Kaviani, Nazila; Carey, Minna; Kent, Douglas B.; Davis, James A.] US Geol Survey, Menlo Pk, CA 94025 USA. [Singer, David M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Peck, Nicole E.; Bargar, John R.] Stanford Synchrotron Radiat Lightsource, Chem & Catalysis Div, Menlo Pk, CA 94025 USA. RP Stoliker, DL (reprint author), US Geol Survey, 345 Middlefield Rd, Menlo Pk, CA 94025 USA. EM dlstoliker@usgs.gov RI Fox, Patricia/I-2208-2014; Davis, James/G-2788-2015 OI Fox, Patricia/0000-0002-5264-1876; FU U.S. Department of Energy (DOE), Office of Science, Subsurface Biogeochemical Research (SBR), through the Rifle IFRC; USGS National Water Quality Assessment, Hydraulic Research and Development, Toxic Substances Hydrology; USGS/National Research Council Postdoctoral Fellow Programs; DOE-SBR through the Stanford Linear Accelerator Center (SLAC) Science Focus Area (SFA) program [10094] FX Funding for this work was provided by the U.S. Department of Energy (DOE), Office of Science, Subsurface Biogeochemical Research (SBR), through the Rifle IFRC. Additional funding was provided by the USGS National Water Quality Assessment, Hydraulic Research and Development, Toxic Substances Hydrology, and USGS/National Research Council Postdoctoral Fellow Programs. Column installation was supported by the DOE-SBR through the Stanford Linear Accelerator Center (SLAC) Science Focus Area (SFA) program (work package 10094). The authors gratefully acknowledge the assistance of Chris Fuller for gamma-spectrometry analysis and members of the Rifle IFRC and SLAC-SFA science teams past and present in conducting and harvesting in situ column experiments. A portion of this work was conducted at the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the DOE, Office of Basic Energy Sciences. Use of trade names is for identification purposes only and does not constitute as an endorsement by the federal government. We thank three anonymous reviewers, the associate editor, and C. Fuller for helpful comments that strengthened this manuscript. NR 53 TC 9 Z9 9 U1 2 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD AUG 20 PY 2013 VL 47 IS 16 BP 9225 EP 9232 DI 10.1021/es401450v PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 205VA UT WOS:000323471700029 PM 23875928 ER PT J AU Rich, DQ Ozkaynak, H Crooks, J Baxter, L Burke, J Ohman-Strickland, P Thevenet-Morrison, K Kipen, HM Zhang, JF Kostis, JB Lunden, M Hodas, N Turpin, BJ AF Rich, David Q. Oezkaynak, Haluk Crooks, James Baxter, Lisa Burke, Janet Ohman-Strickland, Pamela Thevenet-Morrison, Kelly Kipen, Howard M. Zhang, Junfeng Kostis, John B. Lunden, Melissa Hodas, Natasha Turpin, Barbara J. TI The Triggering of Myocardial Infarction by Fine Particles Is Enhanced When Particles Are Enriched in Secondary Species SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID PARTICULATE AIR-POLLUTION; ATMOSPHERIC BOUNDARY-LAYER; CASE-CROSSOVER ANALYSIS; NONLOCAL CLOSURE-MODEL; ORGANIC AEROSOL; UNITED-STATES; EMERGENCY ADMISSIONS; HOSPITAL ADMISSIONS; MATTER CONSTITUENTS; TIME-SERIES AB Previous studies have reported an increased risk of myocardial infarction (MI) associated with acute increases in PM concentration. Recently, we reported that MI/fine particle (PM2.5) associations may be limited to transmural infarctions. In this study, we retained data on hospital discharges with a primary diagnosis of acute myocardial infarction (using International Classification of Diseases ninth Revision [ICD-9] codes), for those admitted January 1, 2004 to December 31, 2006, who were >= 18 years of age, and were residents of New Jersey at the time of their MI. We excluded MI with a diagnosis of a previous MI and MI coded as a subendocardial infarction, leaving n = 1563 transmural infarctions available for analysis. We coupled these health data with PM2.5 species concentrations predicted by the Community Multiscale Air Quality chemical transport model, ambient PM2.5 concentrations, and used the same case-crossover methods to evaluate whether the relative odds of transmural MI associated with increased PM2.5 concentration is modified by the PM2.5 composition/mixture (i.e., mass fractions of sulfate, nitrate, elemental carbon, organic carbon, and ammonium). We found the largest relative odds estimates on the days with the highest tertile of sulfate mass fraction (OR = 1.13; 95% CI = 1.00, 1.27), nitrate mass fraction (OR = 1.18; 95% CI = 0.98, 1.35), and ammonium mass fraction (OR = 1.13; 95% CI = 1.00 1.28), and the lowest tertile of EC mass fraction (OR = 1.17; 95% CI = 1.03, 1.34). Air pollution mixtures on these days were enhanced in pollutants formed through atmospheric chemistry (i.e., secondary PM2.5) and depleted in primary pollutants (e.g., EC). When mixtures were laden with secondary PM species (sulfate, nitrate, and/or organics), we observed larger relative odds of myocardial infarction associated with increased PM2.5 concentrations. Further work is needed to confirm these findings and examine which secondary PM2.5 component(s) is/are responsible for an acute MI response. C1 [Rich, David Q.; Thevenet-Morrison, Kelly] Univ Rochester, Sch Med & Dent, Rochester, NY 14642 USA. [Oezkaynak, Haluk; Crooks, James; Baxter, Lisa; Burke, Janet] US EPA, Off Res & Dev, Natl Exposure Res Lab, Res Triangle Pk, NC 27711 USA. [Ohman-Strickland, Pamela] Rutgers State Univ, Sch Publ Hlth, Piscataway, NJ USA. [Kipen, Howard M.] Rutgers State Univ, Robert Wood Johnson Med Sch, Environm & Occupat Hlth Sci Inst, Piscataway, NJ 08854 USA. [Kipen, Howard M.; Kostis, John B.] Rutgers State Univ, Robert Wood Johnson Med Sch, MIDAS Study Grp 19, Piscataway, NJ 08854 USA. [Zhang, Junfeng] Univ So Calif, Keck Sch Med, Los Angeles, CA 90033 USA. [Lunden, Melissa] Lawrence Berkeley Natl Labs, Environm Energy Technol Div, Berkeley, CA USA. [Hodas, Natasha; Turpin, Barbara J.] Rutgers State Univ, Sch Environm & Biol Sci, New Brunswick, NJ 08903 USA. RP Rich, DQ (reprint author), Univ Rochester, Sch Med & Dent, 265 Crittenden Blvd,CU420644, Rochester, NY 14642 USA. EM david_rich@urmc.rochester.edu RI Turpin, Barbara /D-8346-2012 FU U.S. Environmental Protection Agency [CR-83407201-0]; NIEHS [NIEHS P30ES005022]; New Jersey Agricultural Experiment Station; U.S. Department of Agriculture NIFA; Graduate Assistance in Areas of National Need (GAANN) Fellowship; Environmental Protection Agency Science To Achieve Results Graduate Fellowship FX We gratefully acknowledge Wyat Appel of EPA's National Exposure Research Laboratory for his support with the application and description of the CMAQ model used in this work. This research was funded in part by the U.S. Environmental Protection Agency (Cooperative Agreement CR-83407201-0), NIEHS-sponsored UMDNJ Center for Environmental Exposures and Disease (NIEHS P30ES005022), and the New Jersey Agricultural Experiment Station. Barbara Turpin was supported, in part, by the U.S. Department of Agriculture NIFA. Natasha Hodas was supported by a Graduate Assistance in Areas of National Need (GAANN) Fellowship and an Environmental Protection Agency Science To Achieve Results Graduate Fellowship. Although this work was reviewed by EPA and approved for publications, it may not necessarily reflect official Agency policy. NR 61 TC 15 Z9 15 U1 1 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD AUG 20 PY 2013 VL 47 IS 16 BP 9414 EP 9423 DI 10.1021/es4027248 PG 10 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 205VA UT WOS:000323471700052 PM 23819750 ER PT J AU Brandt, G AF Brandt, Gerhard TI SEARCH FOR SQUARKS IN R-PARITY VIOLATING SUPERSYMMETRY IN ep COLLISIONS AT HERA SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Review DE Supersymmetry; squarks; R-parity violation; HERA; LHeC; LHC ID DOUBLE-BETA-DECAY; TEV PP COLLISIONS; E(+)E(-) COLLISIONS; ATLAS DETECTOR; ROOT-S=189 GEV; ROOT-S; E-MU; PARTICLES; LEPTOQUARKS; PHYSICS AB The search for squarks in R-parity violating supersymmetry in ep collisions at HERA is reviewed. In the full data sample used by the H1 collaboration corresponding to about 0.5 fb(-1) no deviation from Standard Model predictions was observed and limits were set in phenomenological models. For example, for a R-parity violating coupling of electromagnetic strength lambda'(11k) = 0.3 (k is an element of {1, 2}), the mass bound on the corresponding right-handed down-type squark is m((d) over bark) greater than or similar to 290 GeV. The results are compared to other searches for supersymmetry. In particular, they are put in context with more recent results from the Large Hadron Collider (LHC). An outlook is given on search opportunities at a future ep collider. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Brandt, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd Mail Stop 50B6222, Berkeley, CA 94720 USA. EM gbrandt@cern.ch FU Alexander von Humboldt Foundation; BMBF FX I thank the organizers of ICHEP 2012 for providing the opportunity to conclusively present searches for RPV SUSY at HERA. I thank my colleagues in the H1 collaboration for years of fruitful collaboration on this topic, in particular M. Herbst, E. Perez, E. Sauvan, C. Diaconu, S. Schmitt and J. Haller. I thank M. Klein and M. d'Onofrio for useful hints about searches at the LHeC. I thank the University of Oxford and the Lawrence Berkeley National Lab for hosting me at the time of the talk and work on the review, and the Alexander von Humboldt Foundation and BMBF for supporting me. NR 64 TC 0 Z9 0 U1 2 U2 4 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD AUG 20 PY 2013 VL 28 IS 21 AR UNSP 1330031 DI 10.1142/S0217751X13300317 PG 14 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 207AA UT WOS:000323567400001 ER PT J AU Kosuri, S Goodman, DB Cambray, G Mutalik, VK Gao, Y Arkin, AP Endy, D Church, GM AF Kosuri, Sriram Goodman, Daniel B. Cambray, Guillaume Mutalik, Vivek K. Gao, Yuan Arkin, Adam P. Endy, Drew Church, George M. TI Composability of regulatory sequences controlling transcription and translation in Escherichia coli SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE next-generation sequencing; synthetic biology; systems biology ID MESSENGER-RNA DEGRADATION; RIBOSOME BINDING-SITES; GENE-EXPRESSION; SYNTHETIC BIOLOGY; BACILLUS-SUBTILIS; STABILITY; ELEMENTS; DESIGN; GENOME; INITIATION AB The inability to predict heterologous gene expression levels precisely hinders our ability to engineer biological systems. Using well-characterized regulatory elements offers a potential solution only if such elements behave predictably when combined. We synthesized 12,563 combinations of common promoters and ribosome binding sites and simultaneously measured DNA, RNA, and protein levels from the entire library. Using a simple model, we found that RNA and protein expression were within twofold of expected levels 80% and 64% of the time, respectively. The large dataset allowed quantitation of global effects, such as translation rate on mRNA stability and mRNA secondary structure on translation rate. However, the worst 5% of constructs deviated from prediction by 13-fold on average, which could hinder large-scale genetic engineering projects. The ease and scale this of approach indicates that rather than relying on prediction or standardization, we can screen synthetic libraries for desired behavior. C1 [Kosuri, Sriram; Goodman, Daniel B.; Church, George M.] Wyss Inst Biol Inspired Engn, Boston, MA 02115 USA. [Kosuri, Sriram; Goodman, Daniel B.; Church, George M.] Harvard Univ, Sch Med, Dept Genet, Boston, MA 02115 USA. [Goodman, Daniel B.] Harvard MIT Hlth Sci & Technol, Cambridge, MA 02139 USA. [Cambray, Guillaume; Mutalik, Vivek K.; Arkin, Adam P.; Endy, Drew] BIOFAB Int Open Facil Advancing Biotechnol, Emeryville, CA 94608 USA. [Cambray, Guillaume; Mutalik, Vivek K.; Arkin, Adam P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Cambray, Guillaume; Mutalik, Vivek K.; Arkin, Adam P.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Gao, Yuan] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21205 USA. [Gao, Yuan] Johns Hopkins Univ, Inst Cell Engn, Neuroregenerat & Stem Cell Biol Program, Baltimore, MD 21205 USA. [Gao, Yuan] Lieber Inst Brain Dev, Baltimore, MD 21205 USA. [Endy, Drew] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA. RP Church, GM (reprint author), Wyss Inst Biol Inspired Engn, Boston, MA 02115 USA. EM gchurch@genetics.med.harvard.edu RI Cambray, Guillaume/A-9476-2015; Arkin, Adam/A-6751-2008; OI Mutalik, Vivek/0000-0001-7934-0400; Cambray, Guillaume/0000-0003-0087-2469; Arkin, Adam/0000-0002-4999-2931; Endy, Drew/0000-0001-6952-8098; Kosuri, Sriram/0000-0002-4661-0600 FU US Department of Energy [DE-FG02-02ER63445]; National Science Foundation (NSF) Synthetic Biology Engineering Research Center [SA5283-11210]; Office of Naval Research [N000141010144]; Agilent Technologies; Wyss Institute; NSF Graduate Research Fellowship FX This work was supported by US Department of Energy Grant DE-FG02-02ER63445 (to G.M.C.), National Science Foundation (NSF) Synthetic Biology Engineering Research Center Grant SA5283-11210 (to G.M.C.), and Office of Naval Research Grant N000141010144 (to G.M.C. and S.K.), as well as by Agilent Technologies and Wyss Institute. D.B.G. is supported by an NSF Graduate Research Fellowship. NR 49 TC 81 Z9 82 U1 10 U2 63 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD AUG 20 PY 2013 VL 110 IS 34 BP 14024 EP 14029 DI 10.1073/pnas.1301301110 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 203DU UT WOS:000323271400076 PM 23924614 ER PT J AU Senanayake, SD Stacchiola, D Rodriguez, JA AF Senanayake, Sanjaya D. Stacchiola, Dario Rodriguez, Jose A. TI Unique Properties of Ceria Nanoparticles Supported on Metals: Novel Inverse Ceria/Copper Catalysts for CO Oxidation and the Water-Gas Shift Reaction SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID CARBON-MONOXIDE OXIDATION; MODEL CATALYST; OXIDE NANOPARTICLES; ACTIVE-SITES; SURFACE; MECHANISM; CU(111); COPPER; FILMS; CEOX/CU(111) AB Oxides play a central role in important industrial processes, including applications such as the production of renewable energy, remediation of environmental pollutants, and the synthesis of fine chemicals. They were originally used as catalyst supports and were thought to be chemically inert, but now they are used to build catalysts tailored toward improved selectivity and activity in chemical reactions. Many studies have compared the morphological, electronic, and chemical properties of oxide materials with those of unoxidized metals. Researchers know much less about the properties of oxides at the nanoscale, which display distinct behavior from their bulk counterparts. More is known about metal nanoparticles. Inverse-model catalysts, composed of oxide nanoparticles supported on metal or oxide substrates instead of the reverse (oxides supporting metal nanoparticles), are excellent tools for systematically testing the properties of novel catalytic oxide materials. Inverse models are prepared in situ and can be studied with a variety of surface science tools (e.g. scanning tunneling microscopy, X-ray photoemission spectroscopy, ultraviolet photoemission spectroscopy, low-energy electron microscopy) and theoretical tools (e.g. density functional theory). Meanwhile, their catalytic activity can be tested simultaneously in a reactor. This approach makes it possible to identify specific functions or structures that affect catalyst performance or reaction selectivity. Insights gained from these tests help to tailor powder systems, with the primary objective of rational design (experimental and theoretical) of catalysts for specific chemical reactions. This Account describes the properties of inverse catalysts composed of CeOx nanoparticles supported on Cu(111) or CuOx/Cu(111) as determined through the methods described above. Ceria is an important material for redox chemistry because of its interchangeable oxidation stabs (Ce4+ and Ce3+). Cu(111), meanwhile, is a standard catalyst for reactions such as CO oxidation and the water-gas shift (WGS). This metal serves as an ideal replacement for other noble metals that are neither abundant nor cost effective. To prepare the inverse system we deposited nanoparticles (2-20 nm) of cerium oxide onto the Cu(111) surface. During this proem, the Cu(111) surface grows an oxide layer that is characteristic of Cu2O (Cu1+). This oxide can influence the growth of ceria nanoparticles. Evidence suggests triangular-shaped CeO2(111) grows on Cu2O(111) surfaces while rectangular CeO2(100) grows on Cu4O3(111) surfaces. We used the CeOx/Cu2O/Cu(111) inverse system to study two catalytic processes: the WGS (CO + H2O -> CO2 + H-2) and CO oxidation (2CO + O-2 -> CO2). We discovered that the addition of small amounts of ceria nanoparticles can activate the Cu(111) surface and achieve remarkable enhancement of catalytic activity in the investigated reactions. In the case of the WGS, the CeOx nanoparticle facilitated this process by acting at the interface with Cu to dissociate water. In the CO oxidation case, an enhancement in the dissociation of O-2 by the nanoparticles was a key factor. The strong interaction between CeOx nanoparticles and Cu(111) when preoxidized and reduced in CO resulted in a massive surface reconstruction of the copper substrate with the introduction of microterraces that covered 25-35% of the surface. This constitutes a new mechanism for surface reconstruction not observed before. These microterraces helped to facilitate a further enhancement of activity towards the WGS by opening an additional channel for the dissociation of water. In summary, inverse catalysts of CeOx/Cu(111) and CeO2/Cu2O/Cu(111) demonstrate the versatility of a model system to obtain insightful knowledge of catalytic processes. These systems will continue to offer a unique opportunity to probe key catalytic components and elucidate the relationship between structure and reactivity of novel materials and reactions in the future. C1 [Senanayake, Sanjaya D.; Stacchiola, Dario; Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11789 USA. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11789 USA. EM rodrigez@bnl.gov RI Stacchiola, Dario/B-1918-2009; Senanayake, Sanjaya/D-4769-2009 OI Stacchiola, Dario/0000-0001-5494-3205; Senanayake, Sanjaya/0000-0003-3991-4232 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; U.S. Department of Energy FX The work performed at BNL was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02-98CH10886. Part of these studies was done at the National Synchrotron Light Source and at the Center for Functional Nanomaterials of BNL, which are supported by the U.S. Department of Energy. NR 50 TC 64 Z9 64 U1 47 U2 430 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD AUG 20 PY 2013 VL 46 IS 8 BP 1702 EP 1711 DI 10.1021/ar300231p PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 205VF UT WOS:000323472200005 PM 23286528 ER PT J AU Lu, JL Elam, JW Stair, PC AF Lu, Junling Elam, Jeffrey W. Stair, Peter C. TI Synthesis and Stabilization of Supported Metal Catalysts by Atomic Layer Deposition SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID OXIDATIVE DEHYDROGENATION; NANOPARTICLES; NANOCATALYSTS; ULTRATHIN; GROWTH; SHELL; NANOSTRUCTURES; PROPYLENE; PARTICLES; SILICA AB Supported metal nanoparticles are among the most important catalysts for many practical reactions, including petroleum refining, automobile exhaust treatment, and Fischer-Tropsch synthesis. The catalytic performance strongly depends on the size, composition, and structure of the metal nanoparticles, as well as the underlying support. Scientists have used conventional synthesis methods including impregnation, ion exchange, and deposition precipitation to control and tune these factors, to establish structure performance relationships, and to develop better catalysts. Meanwhile, chemists have Improved the stability of metal nanoparticles against sintering by the application of protective layers, such as polymers and oxides that encapsulate the metal particle. This often leads to decreased catalytic activity due to a lack of precise control over the thickness of the protective layer. A promising method of catalyst synthesis is atomic layer deposition (ALD). ALD is a variation on chemical vapor deposition in which metals, oxides, and other materials are deposited on surfaces by a sequence of self-limiting reactions. The self-limiting character of these reactions makes it possible to achieve uniform deposits on high-surface-area porous solids. Therefore, design and synthesis of advanced catalysts on the nanoscale becomes possible through precise control over the structure and composition of the underlying support, the catalytic active sites, and the protective layer. In this Account, we describe our advances in the synthesis and stabilization of supported metal catalysts by ALD. After a short introduction to the technique of ALD, we show several strategies for metal catalyst synthesis by ALD that take advantage of its self-limiting feature. Monometallic and bimetallic catalysts with precise control over the metal particle size, composition, and structure were achieved by combining ALD sequences, surface treatments, and deposition temperature control. Next, we describe ALD oxide overcoats applied with atomically precise thickness control that stabilize metal catalysts while preserving their catalytic function. We also discuss strategies for generation and control over the porosity of the overcoats that allow the embedded metal particles to remain accessible by reactants, and the details for ALD alumina overcoats on metal catalysts. Moreover, using methanol decomposition and oxidative dehydrogenation of ethane as probe reactions, we demonstrate that selectively blocking low coordination metal sites by oxide overcoats can provide another strategy to enhance both the durability and selectivity of metal catalysts. C1 [Lu, Junling; Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Stair, Peter C.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Stair, Peter C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Stair, PC (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM pstair@northwestern.edu RI Lu, Junling/F-3791-2010 OI Lu, Junling/0000-0002-7371-8414 FU Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, U.S. Department of Energy, under the Hydrogen Fuel Initiative; Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center; U.S. Department of Energy, Office of Basic Energy Sciences; Dow Chemical Company FX The work at Argonne National Laboratory was supported by the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, U.S. Department of Energy, under the Hydrogen Fuel Initiative (initial metal particle synthesis, low temperature overcoating methanol decomposition, overcoat pore generation) and the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Basic Energy Sciences (alloy particle synthesis and overcoat chemical mechanism). The work at Northwestern University was financially supported by The Dow Chemical Company under the Dow Methane Challenge Award (ethane oxidative dehydrogenation and inhibition of coke formation). NR 48 TC 66 Z9 67 U1 32 U2 337 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD AUG 20 PY 2013 VL 46 IS 8 BP 1806 EP 1815 DI 10.1021/ar300229c PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 205VF UT WOS:000323472200015 PM 23480735 ER PT J AU Porter, NS Wu, H Quan, ZW Fang, JY AF Porter, Nathan S. Wu, Hong Quan, Zewei Fang, Jiye TI Shape-Control and Electrocatalytic Activity-Enhancement of Pt-Based Bimetallic Nanocrystals SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID SINGLE-CRYSTAL SURFACES; HIGH-INDEX FACETS; OXYGEN REDUCTION REACTION; FORMIC-ACID OXIDATION; ALLOY SURFACES; FUEL-CELLS; METHANOL ELECTROOXIDATION; PLATINUM NANOCRYSTALS; NANOPARTICLES; NANOCUBES AB Due to the increasing worldwide energy demand and environmental concerns, the need for alternative energy sources is growing stronger, and platinum catalysts in fuel cells may help make the technologies a reality. However, the pursuit of highly active Pt-based electrocatalysts continues to be a challenge. Scientists developing electrocatalysts continue to focus on characterizing and directing the construction of nanocrystals and advancing their electrochemical applications. Although chemists have worked on Pt-based bimetallic (Pt-M) preparations in the past, more recent research shows that both shape-controlled Pt-M nanocrystals and the assembly of these nanocrystals into supercrystals are promising new directions. A solution-based synthesis approach is an effective technique for preparing crystallographic facet-directed nanocatalysts. This is aided by careful selection of the metal precursor, capping ligand, reducing agent, and solvent. Incorporating a secondary metal M into the Pt lattice and manipulating the crystal facets on the surface cooperatively alter the electrocatalytic behavior of these Pt-M bimetallic nanocrystals. Specifically, chemists have extensively studied the {111}- and {100}-terminated crystal facets because they show unique atomic arrangement on surfaces, exhibit different catalytic performance, and possess specific resistance to toxic adsorbed carbon monoxide (COads). For catalysts to have maximum efficiency, they need to have resistance to COads and other poisonous carbon-containing intermediates when the catalyst operate under harsh conditions. A necessary design to any synthesis is to dearly understand and utilize the role of each component in order to successfully induce shape-controlled growth. Since chemists began to understand Pt nanocrystal shape-dependent electrocatalytic activity, the main obstacles blocking proton exchange membrane fuel cells are anode poisoning sluggish kinetics at the cathode, and low activity. In this Account, we discuss the basic concepts in preparation of Pt-M bimetallic nanocrystals, focusing on several immaculate examples of manipulation at the nanoscale We briefly introduce the prospects for applying Pt-M nanocrystals as electrocatalysts based on the electronic and geometric standpoints. In addition, we discuss several key parameters in the solution-based synthesis approach commonly used to facilitate Pt-M nanocrystals, such as reaction temperature and time, the combination of organic amines and adds, gaseous adsorbates, anionic specks, and solvent Each example features various nanoscale morphologies, such as spheres, cubes, octahedrons, and tetrahedrons. Additionally, we outline and review the superior electrocatalytic performances of the recently developed high-index Pt-M nanostructures. Next, we give examples of the electrocatalytic capabilities from dim shape-defined Pt-M architectures by highlighting significant accomplishments in specific systems. Then, using several typical cases, we summarize electrochemical evaluations on the Pt-based shape-/composition-dependent nanocatalysts toward reactions on both the anode and the cathode. Lastly, we provide an outlook of current challenges and promising directions for shape-controlled Pt-M bimetallic electrocatalysts. C1 [Porter, Nathan S.; Quan, Zewei; Fang, Jiye] SUNY Binghamton, Dept Chem, Binghamton, NY 13902 USA. [Wu, Hong; Fang, Jiye] SUNY Binghamton, Mat Sci & Engn Program, Binghamton, NY 13902 USA. RP Quan, ZW (reprint author), Los Alamos Natl Lab, EES 14, POB 1663, Los Alamos, NM 87545 USA. EM jfang@binghamton.edu; zquan@lanl.gov RI Fang, Jiye/H-8266-2013; Quan, Zewei/G-4759-2011 FU General Motors LLC; DOE; SUNY-Binghamton FX This work was partially supported by General Motors LLC, DOE, and SUNY-Binghamton. N.S.P. thanks Clifford E. Mayers summer research grant. NR 73 TC 128 Z9 128 U1 65 U2 529 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD AUG 20 PY 2013 VL 46 IS 8 BP 1867 EP 1877 DI 10.1021/ar3002238 PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA 205VF UT WOS:000323472200021 PM 23461578 ER PT J AU Wu, G Zelenay, P AF Wu, Gang Zelenay, Piotr TI Nanostructured Nonprecious Metal Catalysts for Oxygen Reduction Reaction SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID NITROGEN-DOPED GRAPHENE; MEMBRANE FUEL-CELLS; ONION-LIKE CARBON; CATHODE CATALYSTS; IRON; ELECTROLYTE; ELECTROCATALYSTS; POLYANILINE; DURABILITY; NANOTUBES AB Platinum-based catalysts represent a state of the art in the electrocatalysis of oxygen reduction reaction (ORR) from the point of view of their activity and durability in harnessing the chemical energy via direct electrochemical conversion. However, because platinum is both expensive and scarce, its widespread implementation in such clean energy applications is limited. Recent breakthroughs in the synthesis of high-performance nonprecious metal catalysts (NPMCs) make replacement of Pt in ORR electrocatalysts with earth-abundant elements, such as Fe, Co, N, and C, a realistic possibility. In this Account, we discuss how we can obtain highly promising M N C (M: Fe and/or Co) catalysts by simultaneously heat-treating precursors of nitrogen, carbon, and transition metals at 800-1000 degrees C. The activity and durability of resulting catalysts depend greatly on the selection of precursors and synthesis chemistry. In addition, they correlate quite well with the catalyst nanostructure. While chemists have presented no conclusive description of the active catalytic site for this class of NPMCs, they have developed a designed approach to making active and durable materials, focusing on the catalyst nanostructure. The approach consists of nitrogen doping, in situ carbon graphitization, and the usage of graphitic structures (possibly graphene and graphene oxides) as carbon precursors. Various forms of nitrogen, particularly pyridinic and quaternary, can act as n-type carbon dopants in the M-N-C catalysts, assisting in the formation of disordered carbon nanostructures and donating electrons to the carbon. The CNx structures are likely a crucial part of the ORR active site(s). Noteworthy, the ORR activity is not necessarily governed by the amount of nitrogen, but by how the nitrogen is incorporated into the nanostructures. Apart from the possibility of a direct participation in the active site, the transition metal often plays an important role in the in situ formation of various carbon nanostructures by catalyzing the decomposition of the nitrogen/carbon precursor. We can control the formation of different nanostructures during the synthesis of M N C catalysts. For example, in situ formed nitrogen-doped graphene-sheets can only be derived from polyaniline (PANI), probably due to structural similarities between the aromatic structures of PANI and graphene. Highly-graphitized carbon nanostructures may serve as a matrix for the formation of ORR-active groups with improved catalytic activity and durability, containing nitrogen and most probably also metal atoms. In the future, we will likely focus NPMC synthesis approaches on precise control of interactions between precursors of the metal and carbon/nitrogen during the heat treatment. The main purposes will be to maximize the number of active sites, optimize nitrogen doping levels, and generate morphologies capable of hosting active and stable ORR sites. C1 [Wu, Gang; Zelenay, Piotr] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Zelenay, P (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. EM zelenay@lanl.gov RI Wu, Gang/E-8536-2010 OI Wu, Gang/0000-0003-4956-5208 FU DOE-EERE through Fuel Cells Technologies Office; Los Alamos National Laboratory through Laboratory Directed Research and Development (LDRD) program FX Financial support for this work has been provided by DOE-EERE through Fuel Cells Technologies Office and by Los Alamos National Laboratory through Laboratory Directed Research and Development (LDRD) program. NR 50 TC 323 Z9 325 U1 129 U2 1025 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD AUG 20 PY 2013 VL 46 IS 8 BP 1878 EP 1889 DI 10.1021/ar400011z PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA 205VF UT WOS:000323472200022 PM 23815084 ER PT J AU Schneidman-Duhovny, D Hammel, M Tainer, JA Sali, A AF Schneidman-Duhovny, Dina Hammel, Michal Tainer, John A. Sali, Andre TI Accurate SAXS Profile Computation and its Assessment by Contrast Variation Experiments SO BIOPHYSICAL JOURNAL LA English DT Article ID X-RAY-SCATTERING; SMALL-ANGLE SCATTERING; MACROMOLECULAR STRUCTURES; STRUCTURAL-ANALYSES; NEUTRON-SCATTERING; PROTEIN COMPLEXES; WEB SERVER; HYDRATION; MECHANISM; DYNAMICS AB A major challenge in structural biology is to characterize structures of proteins and their assemblies in solution. At low resolution, such a characterization may be achieved by small angle x-ray scattering (SAXS). Because SAXS analyses often require comparing profiles calculated from many atomic models against those determined by experiment, rapid and accurate profile computation from molecular structures is needed. We developed fast open-source x-ray scattering (FoXS) for profile computation. To match the experimental profile within the experimental noise, FoXS explicitly computes all interatomic distances and implicitly models the first hydration layer of the molecule. For assessing the accuracy of the modeled hydration layer, we performed contrast variation experiments for glucose isomerase and lysozyme, and found that FoXS can accurately represent density changes of this layer. The hydration layer model was also compared with a SAXS profile calculated for the explicit water molecules in the high-resolution structures of glucose isomerase and lysozyme. We tested FoXS on eleven protein, one DNA, and two RNA structures, revealing superior accuracy and speed versus CRYSOL, AquaSAXS, the Zernike polynomials-based method, and Fast-SAXS-pro. In addition, we demonstrated a significant correlation of the SAXS score with the accuracy of a structural model. Moreover, FoXS utility for analyzing heterogeneous samples was demonstrated for intrinsically flexible XLF-XRCC4 filaments and Ligase III-DNA complex. FoXS is extensively used as a standalone web server as a component of integrative structure determination by programs IMP, Chimera, and BILBOMD, as well as in other applications that require rapidly and accurately calculated SAXS profiles. C1 [Schneidman-Duhovny, Dina; Sali, Andre] Univ Calif San Francisco, Dept Pharmaceut Chem, Dept Bioengn & Therapeut Sci, San Francisco, CA 94143 USA. [Schneidman-Duhovny, Dina; Sali, Andre] Univ Calif San Francisco, Calif Inst Quantitat Biosci QB3, San Francisco, CA 94143 USA. [Hammel, Michal] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Tainer, John A.] Scripps Res Inst, Dept Mol Biol, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA. [Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Dept Mol Biol, Berkeley, CA 94720 USA. RP Sali, A (reprint author), Univ Calif San Francisco, Dept Pharmaceut Chem, Dept Bioengn & Therapeut Sci, San Francisco, CA 94143 USA. EM sali@salilab.org FU Weizmann Institute's Advancing Women in Science Postdoctoral Fellowship; National Institutes of Health [R01 GM083960, U54 RR022220, PN2 EY016525, MINOS R01GM105404]; Rinat (Pfizer) Inc.; Lawrence Berkeley National Lab IDAT program FX D.S.-D. has been funded by the Weizmann Institute's Advancing Women in Science Postdoctoral Fellowship. We also acknowledge support from National Institutes of Health grant Nos. R01 GM083960, U54 RR022220, and PN2 EY016525, and Rinat (Pfizer) Inc. (to A.S.) as well as the Lawrence Berkeley National Lab IDAT program and National Institutes of Health grant No. MINOS R01GM105404 (to J.A.T.). NR 67 TC 104 Z9 104 U1 5 U2 47 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD AUG 20 PY 2013 VL 105 IS 4 BP 962 EP 974 DI 10.1016/j.bpj.2013.07.020 PG 13 WC Biophysics SC Biophysics GA 205SN UT WOS:000323465200020 PM 23972848 ER PT J AU Young, WF Matolak, DW Bikhazi, N Holloway, C Koepke, G Fielitz, H Wu, Q Zhang, Q AF Young, William F. Matolak, David W. Bikhazi, Nicholas Holloway, Christopher Koepke, Galen Fielitz, Helge Wu, Qiong Zhang, Qian TI Intra-volume, centralised array concept for improved public-safety communications SO IET MICROWAVES ANTENNAS & PROPAGATION LA English DT Article ID PLACED WIRELESS TRANSMITTERS; TRANSMISSION; NETWORKS AB The author report on the testing and measurements of an intra-volume centralised array concept suitable for public-safety communications in buildings. The centralised array concept refers to the use of several small communication devices that are arbitrarily placed in an area and hence create a real-time communication network. The overall concept is to use randomly located (or arbitrarily placed) wireless devices in a coordinated manner in order to increase the radio-frequency signal level otherwise at unreachable locations. In a typical ad-hoc network, the transmission range of any communication link in that path is limited. We seek to extend the radio-frequency coverage within the array volume by using two or more nodes as elements of a phased array. The measurement results presented here, collected in real-world environments, along with simulations based on real-world data demonstrate that the centralised array technique can provide useful gain, up to 10 dB with only four elements. Both the measurements and simulations also indicate a typical gain of 2 to 6 dB, using only two elements. Analysis of the phase indicates a phase alignment of +/- 45 degrees achieves within 1 dB of the maximum gain. C1 [Young, William F.; Holloway, Christopher; Koepke, Galen] NIST, RF Fields Grp, Boulder, CO 80305 USA. [Matolak, David W.] Univ S Carolina, Dept Elect Engn, Columbia, SC 29208 USA. [Bikhazi, Nicholas] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Fielitz, Helge] Hamburg Univ Technol, D-21079 Hamburg, Germany. [Wu, Qiong] Apple Comp Inc, Cupertino, CA 95014 USA. [Zhang, Qian] InterDigital Corp, King Of Prussia, PA 19406 USA. RP Young, WF (reprint author), NIST, RF Fields Grp, Boulder, CO 80305 USA. EM wfy@boulder.nist.gov FU US Department of Justice through the Public Safety Communications Research Laboratory FX This work was sponsored by US Department of Justice through the Public Safety Communications Research Laboratory, Derek Orr, Program Manager. The authors thank members of the technical staff of the NIST Electromagnetics Division 818, who pulled together the equipment. The authors also thank Patrick Fine and his staff for providing access to the 555 17th Building in Denver, Colorado. NR 29 TC 0 Z9 0 U1 0 U2 1 PU INST ENGINEERING TECHNOLOGY-IET PI HERTFORD PA MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND SN 1751-8725 J9 IET MICROW ANTENNA P JI IET Microw. Antennas Propag. PD AUG 20 PY 2013 VL 7 IS 11 BP 916 EP 925 DI 10.1049/iet-map.2012.0717 PG 10 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 201MV UT WOS:000323146600007 ER PT J AU Hegelich, BM Pomerantz, I Yin, L Wu, HC Jung, D Albright, BJ Gautier, DC Letzring, S Palaniyappan, S Shah, R Allinger, K Horlein, R Schreiber, J Habs, D Blakeney, J Dyer, G Fuller, L Gaul, E Mccary, E Meadows, AR Wang, C Ditmire, T Fernandez, JC AF Hegelich, B. M. Pomerantz, I. Yin, L. Wu, H. C. Jung, D. Albright, B. J. Gautier, D. C. Letzring, S. Palaniyappan, S. Shah, R. Allinger, K. Hoerlein, R. Schreiber, J. Habs, D. Blakeney, J. Dyer, G. Fuller, L. Gaul, E. Mccary, E. Meadows, A. R. Wang, C. Ditmire, T. Fernandez, J. C. TI Laser-driven ion acceleration from relativistically transparent nanotargets SO NEW JOURNAL OF PHYSICS LA English DT Article ID OPTICAL-PARAMETRIC-AMPLIFICATION; PROTON-BEAMS; PLASMA INTERACTIONS; FAST IGNITION; HEAVY-ION; GENERATION; TARGETS; SOLIDS; ELECTRONS; THICKNESS AB Here we present experimental results on laser-driven ion acceleration from relativistically transparent, overdense plasmas in the break-out afterburner (BOA) regime. Experiments were preformed at the Trident ultra-high contrast laser facility at Los Alamos National Laboratory, and at the Texas Petawatt laser facility, located in the University of Texas at Austin. It is shown that when the target becomes relativistically transparent to the laser, an epoch of dramatic acceleration of ions occurs that lasts until the electron density in the expanding target reduces to the critical density in the non-relativistic limit. For given laser parameters, the optimal target thickness yielding the highest maximum ion energy is one in which this time window for ion acceleration overlaps with the intensity peak of the laser pulse. A simple analytic model of relativistically induced transparency is presented for plasma expansion at the time-evolving sound speed, from which these times may be estimated. The maximum ion energy attainable is controlled by the finite acceleration volume and time over which the BOA acts. C1 [Hegelich, B. M.; Pomerantz, I.; Blakeney, J.; Dyer, G.; Fuller, L.; Gaul, E.; Mccary, E.; Meadows, A. R.; Wang, C.; Ditmire, T.] Univ Texas Austin, Austin, TX 78712 USA. [Hegelich, B. M.; Yin, L.; Wu, H. C.; Jung, D.; Albright, B. J.; Gautier, D. C.; Letzring, S.; Palaniyappan, S.; Shah, R.; Fernandez, J. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Jung, D.; Allinger, K.; Schreiber, J.; Habs, D.] Univ Munich, Dept Phys, D-85748 Garching, Germany. [Jung, D.; Hoerlein, R.; Schreiber, J.; Habs, D.] Max Planck Inst Quantum Opt, D-85748 Garching, Germany. RP Hegelich, BM (reprint author), Univ Texas Austin, Austin, TX 78712 USA. EM hegelich@physics.utexas.edu RI Hegelich, Bjorn/J-2689-2013; Fernandez, Juan/H-3268-2011; palaniyappan, sasikumar/A-7791-2015; OI Fernandez, Juan/0000-0002-1438-1815; Albright, Brian/0000-0002-7789-6525; Yin, Lin/0000-0002-8978-5320; Palaniyappan, sasi/0000-0001-6377-1206 FU LANL Laboratory Directed Research & Development (LDRD); DOE Office of Fusion Energy Sciences (OFES); Deutsche Forschungsgemeinschaft (DFG) [Transregio SFB TR18]; DFG Cluster of Excellence Munich-Centre for Advanced Photonics (MAP); DFG LMU-Excellence FX We gratefully acknowledge the expert support of the Trident and TPW laser teams in conducting the experiments and the support of V Liechtenstein of the Kurchatov Institute, Moscow, in the development of DLC targets. The VPIC simulations were run on the LANL Roadrunner supercomputer. This work was supported by LANL Laboratory Directed Research & Development (LDRD), the DOE Office of Fusion Energy Sciences (OFES) and by the Deutsche Forschungsgemeinschaft (DFG) through Transregio SFB TR18, the DFG Cluster of Excellence Munich-Centre for Advanced Photonics (MAP) and DFG LMU-Excellence (M Hegelich). NR 58 TC 32 Z9 32 U1 5 U2 64 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD AUG 20 PY 2013 VL 15 AR 085015 DI 10.1088/1367-2630/15/8/085015 PG 17 WC Physics, Multidisciplinary SC Physics GA 203VA UT WOS:000323320900002 ER PT J AU Garcia-Fernandez, M Wilkins, SB Lu, M Li, QA Gray, KE Zheng, H Mitchell, JF Khomskii, D AF Garcia-Fernandez, M. Wilkins, S. B. Lu, Ming Li, Qing'an Gray, K. E. Zheng, H. Mitchell, J. F. Khomskii, Daniel TI Antiferromagnetic domain structure in bilayer manganite SO PHYSICAL REVIEW B LA English DT Article ID EXCHANGE BIAS; SCATTERING; MODEL; SPIN; NEUTRON; CHARGE; FILMS; NIO AB We report a soft x-ray nanodiffraction study of antiferromagnetic domains in the strongly correlated bilayer manganite La0.96Sr2.04Mn2O7. We find that the antiferromagnetic domains form a unique domain pattern with each domain having an intrinsic memory of its spin direction. This can be explained by the presence of crystallographic or magnetic imperfections locked in during the crystal growth process which pin the antiferromagnetic domains. The antiferromagnetic domain pattern shows two distinct types of domain. One of the domain types was observed to contain a periodic ripple in the manganese spin direction with a period of approximately 4 mu m. We propose that the loss of inversion symmetry within a bilayer is responsible for this ripple structure through a Dzyaloshinskii-Moriya-type interaction. C1 [Garcia-Fernandez, M.; Wilkins, S. B.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Lu, Ming] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Li, Qing'an; Gray, K. E.; Zheng, H.; Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Khomskii, Daniel] Univ Cologne, Inst Phys 2, D-50937 Cologne, Germany. RP Garcia-Fernandez, M (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM mgfernandez@bnl.gov; swilkins@bnl.gov RI Li, Qingan/L-3778-2013 FU Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886, DE-AC02-06CH11357]; Institutional Strategy of the University of Cologne within the German Excellence Initiative FX The authors would like to thank John Hill, Jing Tao, Mark Dean, and Simon Billinge for stimulating discussions. Technical assistance from William J. Leonhardt, D. Scott Coburn, Sue Wirick, and William Schoenig is especially noted. We would also like to acknowledge the support of Xiao Tong with AFM measurements. This research was funded by the Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886 at Brookhaven National Laboratory and DE-AC02-06CH11357 at Argonne National Laboratory. The work of D.Kh. was supported through the Institutional Strategy of the University of Cologne within the German Excellence Initiative. Part of this research was carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory. NR 27 TC 1 Z9 1 U1 3 U2 36 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD AUG 20 PY 2013 VL 88 IS 7 AR 075134 DI 10.1103/PhysRevB.88.075134 PG 7 WC Physics, Condensed Matter SC Physics GA 204RA UT WOS:000323384700002 ER PT J AU Bao, N Harrison, S AF Bao, Ning Harrison, Sarah TI Crystalline scaling geometries from vortex lattices SO PHYSICAL REVIEW D LA English DT Article AB We study magnetic geometries with Lifshitz and/or hyperscaling violation exponents (both with a hard wall cutoff in the IR and a smooth black brane horizon) which have a complex scalar field which couples to the magnetic field. The complex scalar is unstable to the production of a vortex lattice in the IR. The lattice is a normalizable mode which is relevant (i.e., grows into the IR.) When one considers linearized backreaction of the lattice on the metric and gauge field, the metric forms a crystalline structure. We analyze the scaling of the free energy, thermodynamic entropy, and entanglement in the lattice phase and find that in the smeared limit, the leading order correction to thermodynamic properties due to the lattice has the scaling behavior of a theory with a hyperscaling violation exponent between 0 and 1, indicating a flow to an effectively lower-dimensional theory in the deep IR. C1 [Bao, Ning] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. Stanford Univ, Theory Grp, SITP, SLAC, Stanford, CA 94305 USA. RP Bao, N (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. EM ningbao@stanford.edu; sarharr@stanford.edu OI Bao, Ning/0000-0002-3296-1039 FU John Templeton Foundation FX We would like to thank X. Dong, S. Hartnoll, S. Kachru, E. Shaghoulian, and G. Torroba for discussions. We also thank N. Paquette for comments on a draft. S. H. is supported in part by the John Templeton Foundation. NR 41 TC 9 Z9 9 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 20 PY 2013 VL 88 IS 4 AR 046009 DI 10.1103/PhysRevD.88.046009 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 204RS UT WOS:000323386800012 ER PT J AU Onyisi, PUE Bonvicini, G Cinabro, D Smith, MJ Zhou, P Naik, P Rademacker, J Edwards, KW Briere, RA Vogel, H Rosner, JL Alexander, JP Cassel, DG Das, S Ehrlich, R Gibbons, L Gray, SW Hartill, DL Heltsley, BK Kreinick, DL Kuznetsov, VE Patterson, JR Peterson, D Riley, D Ryd, A Sadoff, AJ Shi, X Sun, WM Yelton, J Rubin, P Lowrey, N Mehrabyan, S Selen, M Wiss, J Libby, J Kornicer, M Mitchell, RE Besson, D Pedlar, TK Cronin-Hennessy, D Hietala, J Dobbs, S Metreveli, Z Seth, KK Tomaradze, A Xiao, T Powell, A Thomas, C Wilkinson, G Asner, DM Tatishvili, G Ge, JY Miller, DH Shipsey, IPJ Xin, B Adams, GS Napolitano, J Ecklund, KM Insler, J Muramatsu, H Pearson, LJ Thorndike, EH Artuso, M Blusk, S Mountain, R Skwarnicki, T Stone, S Wang, JC Zhang, LM AF Onyisi, P. U. E. Bonvicini, G. Cinabro, D. Smith, M. J. Zhou, P. Naik, P. Rademacker, J. Edwards, K. W. Briere, R. A. Vogel, H. Rosner, J. L. Alexander, J. P. Cassel, D. G. Das, S. Ehrlich, R. Gibbons, L. Gray, S. W. Hartill, D. L. Heltsley, B. K. Kreinick, D. L. Kuznetsov, V. E. Patterson, J. R. Peterson, D. Riley, D. Ryd, A. Sadoff, A. J. Shi, X. Sun, W. M. Yelton, J. Rubin, P. Lowrey, N. Mehrabyan, S. Selen, M. Wiss, J. Libby, J. Kornicer, M. Mitchell, R. E. Besson, D. Pedlar, T. K. Cronin-Hennessy, D. Hietala, J. Dobbs, S. Metreveli, Z. Seth, K. K. Tomaradze, A. Xiao, T. Powell, A. Thomas, C. Wilkinson, G. Asner, D. M. Tatishvili, G. Ge, J. Y. Miller, D. H. Shipsey, I. P. J. Xin, B. Adams, G. S. Napolitano, J. Ecklund, K. M. Insler, J. Muramatsu, H. Pearson, L. J. Thorndike, E. H. Artuso, M. Blusk, S. Mountain, R. Skwarnicki, T. Stone, S. Wang, J. C. Zhang, L. M. CA CLEO Collaboration TI Improved measurement of absolute hadronic branching fractions of the D-s(+) meson SO PHYSICAL REVIEW D LA English DT Article ID QED RADIATIVE-CORRECTIONS; UNIVERSAL MONTE-CARLO; CLEO; DETECTOR; PHOTOS AB The branching fractions of D-s(+/-) meson decays serve to normalize many measurements of processes involving charm quarks. Using 586 pb(-1) of e(+)e(-) collisions recorded at a center of mass energy of 4.17 GeV, we determine absolute branching fractions for 13 D-s(+/-) decays in 16 reconstructed final states with a double tag technique. In particular we make a precise measurement of the branching fraction B(D-s -> K-K+pi(+)) = (5.55 +/- 0.14 +/- 0.13)%, where the uncertainties are statistical and systematic, respectively. We find a significantly reduced value of B(D-s -> pi(+)pi(0)eta') compared to the world average, and our results bring the inclusively and exclusively measured values of B(D-s -> eta'X) into agreement. We also search for CP-violating asymmetries in D-s decays and measure the cross section of e(+)e(-) -> D-s*D-s at E-cm = 4.17 GeV. C1 [Onyisi, P. U. E.] Univ Texas Austin, Austin, TX 78712 USA. [Bonvicini, G.; Cinabro, D.; Smith, M. J.; Zhou, P.] Wayne State Univ, Detroit, MI 48202 USA. [Naik, P.; Rademacker, J.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Edwards, K. W.] Carleton Univ, Ottawa, ON K1S 5B6, Canada. [Briere, R. A.; Vogel, H.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Rosner, J. L.] Univ Chicago, Chicago, IL 60637 USA. [Alexander, J. P.; Cassel, D. G.; Das, S.; Ehrlich, R.; Gibbons, L.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Kreinick, D. L.; Kuznetsov, V. E.; Patterson, J. R.; Peterson, D.; Riley, D.; Ryd, A.; Sadoff, A. J.; Shi, X.; Sun, W. M.] Cornell Univ, Ithaca, NY 14853 USA. [Yelton, J.] Univ Florida, Gainesville, FL 32611 USA. [Rubin, P.] George Mason Univ, Fairfax, VA 22030 USA. [Lowrey, N.; Mehrabyan, S.; Selen, M.; Wiss, J.] Univ Illinois, Urbana, IL 61801 USA. [Libby, J.] Indian Inst Technol, Madras 600036, Tamil Nadu, India. [Kornicer, M.; Mitchell, R. E.] Indiana Univ, Bloomington, IN 47405 USA. [Besson, D.] Univ Kansas, Lawrence, KS 66045 USA. [Pedlar, T. K.] Luther Coll, Decorah, IA 52101 USA. [Cronin-Hennessy, D.; Hietala, J.] Univ Minnesota, Minneapolis, MN 55455 USA. [Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Xiao, T.] Northwestern Univ, Evanston, IL 60208 USA. [Powell, A.; Thomas, C.; Wilkinson, G.] Univ Oxford, Oxford OX1 3RH, England. [Asner, D. M.; Tatishvili, G.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Ge, J. Y.; Miller, D. H.; Shipsey, I. P. J.; Xin, B.] Purdue Univ, W Lafayette, IN 47907 USA. [Adams, G. S.; Napolitano, J.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Ecklund, K. M.] Rice Univ, Houston, TX 77005 USA. [Insler, J.; Muramatsu, H.; Pearson, L. J.; Thorndike, E. H.] Univ Rochester, Rochester, NY 14627 USA. [Artuso, M.; Blusk, S.; Mountain, R.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Zhang, L. M.] Syracuse Univ, Syracuse, NY 13244 USA. RP Onyisi, PUE (reprint author), Univ Texas Austin, Austin, TX 78712 USA. RI Briere, Roy/N-7819-2014; Vogel, Helmut/N-8882-2014 OI Briere, Roy/0000-0001-5229-1039; Vogel, Helmut/0000-0002-6109-3023 FU A. P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; Natural Sciences and Engineering Research Council of Canada; U.K. Science and Technology Facilities Council FX We gratefully acknowledge the effort of the CESR staff in providing us with excellent luminosity and running conditions. This work was supported by the A. P. Sloan Foundation, the National Science Foundation, the U.S. Department of Energy, the Natural Sciences and Engineering Research Council of Canada, and the U.K. Science and Technology Facilities Council. NR 29 TC 11 Z9 11 U1 2 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 20 PY 2013 VL 88 IS 3 AR 032009 DI 10.1103/PhysRevD.88.032009 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 204RR UT WOS:000323386700001 ER PT J AU Kirshenbaum, K Syers, PS Hope, AP Butch, NP Jeffries, JR Weir, ST Hamlin, JJ Maple, MB Vohra, YK Paglione, J AF Kirshenbaum, Kevin Syers, P. S. Hope, A. P. Butch, N. P. Jeffries, J. R. Weir, S. T. Hamlin, J. J. Maple, M. B. Vohra, Y. K. Paglione, J. TI Pressure-Induced Unconventional Superconducting Phase in the Topological Insulator Bi2Se3 SO PHYSICAL REVIEW LETTERS LA English DT Article ID STRONG-COUPLED SUPERCONDUCTORS; HIGH-FIELD SUPERCONDUCTORS; TRANSITION-TEMPERATURE; BISMUTH; BI2TE3 AB Simultaneous low-temperature electrical resistivity and Hall effect measurements were performed on single-crystalline Bi2Se3 under applied pressures up to 50 GPa. As a function of pressure, superconductivity is observed to onset above 11 GPa with a transition temperature T-c and upper critical field H-c2 that both increase with pressure up to 30 GPa, where they reach maximum values of 7 K and 4 T, respectively. Upon further pressure increase, T-c remains anomalously constant up to the highest achieved pressure. Conversely, the carrier concentration increases continuously with pressure, including a tenfold increase over the pressure range where T-c remains constant. Together with a quasilinear temperature dependence of H-c2 that exceeds the orbital and Pauli limits, the anomalously stagnant pressure dependence of T-c points to an unconventional pressure-induced pairing state in Bi2Se3 that is unique among the superconducting topological insulators. C1 [Kirshenbaum, Kevin; Syers, P. S.; Hope, A. P.; Paglione, J.] Univ Maryland, Dept Phys, Ctr Nanophys & Adv Mat, College Pk, MD 20742 USA. [Butch, N. P.; Jeffries, J. R.; Weir, S. T.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. [Hamlin, J. J.; Maple, M. B.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Vohra, Y. K.] Univ Alabama Birmingham, Dept Phys, Birmingham, AL 35294 USA. RP Kirshenbaum, K (reprint author), Univ Maryland, Dept Phys, Ctr Nanophys & Adv Mat, College Pk, MD 20742 USA. EM paglione@umd.edu FU AFOSR-MURI [FA9550- 09-1-0603]; U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) [DE-AC52-07NA27344]; NNSA under the Stewardship Science Academic Alliance program through the U.S. DOE [DE-52-09NA29459]; DOE-NNSA [DE-FG52-10NA29660] FX The authors gratefully acknowledge C. S. Hellberg and I. I. Mazin. Work at the University of Maryland was funded by AFOSR-MURI Grant No. FA9550- 09-1-0603. Portions of this work were performed under LDRD (Tracking Code 11-LW-003). Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) under Contract No. DE-AC52-07NA27344. J. J. H. and M. B. M. acknowledge support from the NNSA under the Stewardship Science Academic Alliance program through the U.S. DOE Grant No. DE-52-09NA29459. Y. K. V. acknowledges support from DOE-NNSA Grant No. DE-FG52-10NA29660. NR 48 TC 50 Z9 50 U1 8 U2 109 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 20 PY 2013 VL 111 IS 8 AR 087001 DI 10.1103/PhysRevLett.111.087001 PG 5 WC Physics, Multidisciplinary SC Physics GA 204SD UT WOS:000323388200020 PM 24010465 ER PT J AU Ratner, D AF Ratner, D. TI Microbunched Electron Cooling for High-Energy Hadron Beams SO PHYSICAL REVIEW LETTERS LA English DT Article ID LASER AB Electron and stochastic cooling are proven methods for cooling low-energy hadron beams, but at present there is no way of cooling hadrons as they near the TeV scale. In the 1980s, Derbenev suggested that electron instabilities, such as free-electron lasers, could create collective space charge fields strong enough to correct the hadron energies. This Letter presents a variation on Derbenev's electron cooling scheme using the microbunching instability as the amplifier. The large bandwidth of the instability allows for faster cooling of high-density beams. A simple analytical model illustrates the cooling mechanism, and simulations show cooling rates for realistic parameters of the Large Hadron Collider. C1 SLAC, Menlo Pk, CA 94025 USA. RP Ratner, D (reprint author), SLAC, Menlo Pk, CA 94025 USA. EM dratner@slac.stanford.edu FU U.S. Department of Energy [DE-AC02-76SF00515]; U.S. Department of Energy Office of Science [DE-AC02-05CH11231] FX The author would like to thank N. P. Breznay, A. Chao, V. Litvinenko, A. Marinelli, T. Mastoridis, G. Wang, D. Xiang, and M. Zolotorev for their insightful comments. The author is particularly indebted to G. Stupakov who provided numerous suggestions and discussions throughout the development of the Letter. Research is supported by the U.S. Department of Energy under Contract No. DE-AC02-76SF00515. Simulations completed at the National Energy Research Scientific Computing Center, which is supported by the U.S. Department of Energy Office of Science under Contract No. DE-AC02-05CH11231. NR 28 TC 7 Z9 7 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 20 PY 2013 VL 111 IS 8 AR 084802 DI 10.1103/PhysRevLett.111.084802 PG 5 WC Physics, Multidisciplinary SC Physics GA 204SD UT WOS:000323388200012 PM 24010445 ER PT J AU Bross, A Wands, R Bayes, R Laing, A Soler, FJP Villanueva, AC Ghosh, T Cadenas, JJG Hernandez, P Martin-Albo, J Burguet-Castell, J AF Bross, A. Wands, R. Bayes, R. Laing, A. Soler, F. J. P. Cervera Villanueva, A. Ghosh, T. Gomez Cadenas, J. J. Hernandez, P. Martin-Albo, J. Burguet-Castell, J. TI Toroidal magnetized iron neutrino detector for a neutrino factory SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID MONTE-CARLO GENERATOR; PHYSICS; RECONSTRUCTION; PERFORMANCE AB A neutrino factory has unparalleled physics reach for the discovery and measurement of CP violation in the neutrino sector. A far detector for a neutrino factory must have good charge identification with excellent background rejection and a large mass. An elegant solution is to construct a magnetized iron neutrino detector (MIND) along the lines of MINOS, where iron plates provide a toroidal magnetic field and scintillator planes provide 3D space points. In this paper, the current status of a simulation of a toroidal MIND for a neutrino factory is discussed in light of the recent measurements of large theta(13). The response and performance using the 10 GeV neutrino factory configuration are presented. It is shown that this setup has equivalent delta(CP) reach to a MIND with a dipole field and is sensitive to the discovery of CP violation over 85% of the values of delta(CP). C1 [Bross, A.; Wands, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Bayes, R.; Laing, A.; Soler, F. J. P.] Univ Glasgow, Sch Phys & Astron, Glasgow, Lanark, Scotland. [Cervera Villanueva, A.; Ghosh, T.; Gomez Cadenas, J. J.; Hernandez, P.; Martin-Albo, J.] CSIC, IFIC, Valencia, Spain. [Cervera Villanueva, A.; Ghosh, T.; Gomez Cadenas, J. J.; Hernandez, P.; Martin-Albo, J.] Univ Valencia, Valencia, Spain. [Burguet-Castell, J.] Univ Illes Balears, Palma De Mallorca, Spain. RP Soler, FJP (reprint author), Univ Glasgow, Sch Phys & Astron, Glasgow, Lanark, Scotland. EM paul.soler@glasgow.ac.uk RI Gomez Cadenas, Juan Jose/L-2003-2014; Hernandez, Pilar/L-6453-2014; Soler, Paul/E-8464-2011; OI Gomez Cadenas, Juan Jose/0000-0002-8224-7714; Hernandez, Pilar/0000-0003-3838-5308; Soler, Paul/0000-0002-4893-3729; Martin-Albo, Justo/0000-0002-7318-1469 FU European Community under the European Commission Framework Programme 7 Design Study: EUROnu [212372]; Science and Technology Facilities Council (U.K.); Spanish Ministry of Education and Science; Department of Energy (U.S.A.) FX The authors acknowledge the support of the European Community under the European Commission Framework Programme 7 Design Study: EUROnu, Project No. 212372. The work was supported by the Science and Technology Facilities Council (U.K.), the Spanish Ministry of Education and Science and the Department of Energy (U.S.A.). NR 29 TC 4 Z9 4 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD AUG 20 PY 2013 VL 16 IS 8 AR 081002 DI 10.1103/PhysRevSTAB.16.081002 PG 16 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 204SO UT WOS:000323389400001 ER PT J AU Shingledecker, JP Evans, ND Pharr, GM AF Shingledecker, J. P. Evans, N. D. Pharr, G. M. TI Influences of composition and grain size on creep-rupture behavior of Inconel (R) alloy 740 SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Code case 2702; Eta phase; Nickel-based superalloy; Grain size; Creep-rupture ductility; Inconel 740H ID PHASE-STABILITY; MICROSTRUCTURE; PRECIPITATION; SUPERALLOY AB Creep-rupture experiments were conducted on multiple heats of the nickel-based superalloy Inconel 740 at temperatures between 923 and 1123 K (650 and 850 degrees C). The interactions between chemistry, microstructure, and creep performance were evaluated by analysis of creep data, optical microscopy, electron microscopy, and computational thermodynamics. The data show that grain size has a modest effect on the creep-rupture strength. Computational thermodynamics verified experimental observations of the formation of eta phase as a function of temperature and alloy chemistry, but the kinetics for the precipitation of eta phase did not agree with the experimental findings. Despite the formation of eta phase and the concomitant reduction in volume fraction of gamma prime, the creep resistance of the alloy is insensitive, within the range of chemistries tested, to the volume fraction of gamma prime. The creep ductility was found to increase with test temperature. Precipitation of a large volume fraction of eta phase (greater than 7%) appears to reduce the creep-rupture ductility, but smaller amounts do not produce adverse effects. (C) 2013 Elsevier B.V. All rights reserved. C1 [Shingledecker, J. P.] Elect Power Res Inst, Charlotte, NC 28262 USA. [Shingledecker, J. P.; Evans, N. D.; Pharr, G. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Shingledecker, J. P.; Pharr, G. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Shingledecker, JP (reprint author), Elect Power Res Inst, 1300 West WT Harris Blvd, Charlotte, NC 28262 USA. EM jshingledecker@epri.com FU US Department of Energy (DOE), Office of Fossil Energy, Advanced Research Materials Program; ORNL SHaRE User Center, Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US DOE [DE-AC05-00OR22725]; UT-Battelle, LLC; US Department of Energy [DE-FG26-01NT41175]; Ohio Coal Development Office of the Ohio Department of Development [CDO/D-0020, D-05-02A]; A-USC consortium FX Research at Oak Ridge National Laboratory (Oak Ridge, TN, USA) was supported by the US Department of Energy (DOE), Office of Fossil Energy, Advanced Research Materials Program, and the ORNL SHaRE User Center, Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US DOE, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. Special thanks to B. Sparks and T. Geer (ORNL) for their assistance with the experimental work. This publication also was prepared with the support of the US Department of Energy, under Award no. DE-FG26-01NT41175 and the Ohio Coal Development Office of the Ohio Department of Development under Grant Agreement number CDO/D-0020 (no D-05-02A). The support of A-USC consortium sponsors and technical direction of R. Romanosky, P. Rawls, and B. Purgert is appreciated. However, any opinions, findings, conclusions, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the DOE and/or the Ohio Coal Development Office and the Ohio Department of Development. NR 25 TC 20 Z9 21 U1 5 U2 35 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD AUG 20 PY 2013 VL 578 BP 277 EP 286 DI 10.1016/j.msea.2013.04.087 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 180LA UT WOS:000321595500037 ER PT J AU Maddox, BR Park, HS Lu, CH Remington, BA Prisbrey, S Kad, B Luo, R Meyers, MA AF Maddox, B. R. Park, H. -S. Lu, C. -H. Remington, B. A. Prisbrey, S. Kad, B. Luo, R. Meyers, M. A. TI Isentropic/shock compression and recovery methodology for materials using high-amplitude laser pulses SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Isentropic compression; Laser; Tantalum; LASNEX; Twinning ID INDUCED SHOCK COMPRESSION; COPPER-ALUMINUM ALLOYS; HIGH-PRESSURE; STRAIN-RATE; DEFORMATION; TANTALUM; DYNAMICS AB A new method of subjecting samples to high-amplitude laser pulses with durations in the ns range and recovering them for characterization is presented. It is applied to tantalum monocrystals and nanocrystals that are subjected to controlled and prescribed ramp loading configurations, creating a quasi-isentropic loading in the front that is retained up to 40 pm into the specimen. This is enabled by the use of a reservoir into which six laser beams impinge simultaneously, thereby creating plasma in a reservoir, from which the pulse is launched into the metal. This technique enables, with proper wave trapping devices, the recovery of the specimens for subsequent characterization. Successful experiments conducted in the Laboratory for Laser Energetics, U. of Rochester, generated pressure pulses with initial amplitudes ranging from 15 to 110 GPa and initial durations of similar to 3 ns. The quasi-isotropic loading minimizes thermal effects at the front surface. The compression history of the recovered samples is measured using velocity interferometry from an Al-coated LiF witness target on the same shot driven by a separate, but equivalent set of laser beams. These experimental measurements are compared with computations using a radiation hydrodynamics code. Recovered samples are investigated using optical, scanning, and transmission electron microscopy. The laser damage to the surface is characterized. (C) 2013 Elsevier B.V. All rights reserved. C1 [Maddox, B. R.; Park, H. -S.; Remington, B. A.; Prisbrey, S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Lu, C. -H.; Kad, B.; Meyers, M. A.] Univ Calif San Diego, San Diego, CA 92093 USA. [Luo, R.] Gen Atom, San Diego, CA 92121 USA. RP Meyers, MA (reprint author), Univ Calif San Diego, 9500 Gilman Dr, San Diego, CA 92093 USA. EM maddox3@llnl.gov; park1@llnl.gov; chiahuilu@gmail.com; remington2@llnl.gov; prisbrey1@llnl.gov; bkad@ucsd.edu; luorwga@gmail.com; mameyers@eng.ucsd.edu RI Meyers, Marc/A-2970-2016 OI Meyers, Marc/0000-0003-1698-5396 FU U.S Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 29 TC 2 Z9 2 U1 2 U2 18 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD AUG 20 PY 2013 VL 578 BP 354 EP 361 DI 10.1016/j.msea.2013.04.050 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 180LA UT WOS:000321595500047 ER PT J AU Mahrooghy, M Anantharaj, VG Younan, NH Petersen, WA Hsu, KL Behrangi, A Aanstoos, J AF Mahrooghy, Majid Anantharaj, Valentine G. Younan, Nicolas H. Petersen, Walter A. Hsu, Kuo-Lin Behrangi, Ali Aanstoos, James TI Augmenting satellite precipitation estimation with lightning information SO INTERNATIONAL JOURNAL OF REMOTE SENSING LA English DT Article ID RAINFALL ESTIMATION; CONVECTIVE PRECIPITATION; PASSIVE MICROWAVE; NETWORK; TRMM; SYSTEM AB We have used lightning information to augment the precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system (PERSIANN-CCS). Co-located lightning data are used to segregate cloud patches, segmented from Geostationary Operational Environmental Satellite (GOES)-12 infrared (IR) data, into either electrified patches (ECPs) or nonelectrified patches (NECPs). A set of features is extracted separately for the ECPs and NECPs. Features for the ECPs include a new feature corresponding to the number of flashes that occur within a 15 minute window around the time of the nominal scan of the satellite IR images of the cloud patches. The cloud patches are classified and clustered using a self-organizing maps (SOM) neural network. Then, brightness temperature and rain rate (T-R) relationships are derived for different clusters. Rain rates are estimated for the cloud patches based on their representative (T-R) relationship. The equitable threat scores (ETS) of the daily and hourly precipitation estimates at a range of rain rate thresholds show that incorporating lightning information can improve categorical precipitation estimation in the winter and fall seasons. In the winter, the ETS improvement is almost 15% for the daily and 12% for the hourly rainfall estimates (at thresholds below 15 mmhour(-1)). During the same period, there is also a drop in the false alarm ratio (FAR) and a corresponding increase in the probability of detection (POD) at most threshold levels. During the summer and spring seasons, no categorical significant improvements have been noted, except for the BIAS scores for the hourly rainfall estimates at higher thresholds (above 5 mmhour(-1)) in the summer months. A quantitative evaluation in terms of the root mean squared error (RMSE) and correlation coefficient (CORR) shows that the incorporation of lightning data does improve rainfall estimation over all seasons with the most improvement (around 11-13% CORR improvement) occurring during the winter. We speculate that during the winter, more of the ice processes are packed into a thinner stratiform layer with lower cloud tops and freezing levels. Hence, more of the ice contributes to precipitation on the ground. We also expect that information from lightning, related to the ice microphysics processes, provides surrogate information about the rain rate. C1 [Mahrooghy, Majid; Aanstoos, James] Mississippi State Univ, Geosyst Res Inst, Mississippi State, MS 39762 USA. [Anantharaj, Valentine G.] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. [Younan, Nicolas H.] Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA. [Petersen, Walter A.] NASA, Marshall Space Flight Ctr, Huntsville, AL 35899 USA. [Hsu, Kuo-Lin] Univ Calif Irvine, Ctr Hydrometeorol & Remote Sensing, Irvine, CA 92697 USA. [Behrangi, Ali] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Mahrooghy, M (reprint author), Mississippi State Univ, Geosyst Res Inst, Mississippi State, MS 39762 USA. EM majid@gri.msstate.edu FU NASA Applied Sciences Program [NNS06AA98B]; NOAA Office of Atmospheric Research [NA07OAR4170517]; Oak Ridge Leadership Computing Facility under Office of Advanced Scientific Computing Research, Office of Science, US Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC. FX This research was sponsored by the NASA Applied Sciences Program under Grant NNS06AA98B and the NOAA Office of Atmospheric Research via Grant NA07OAR4170517. We also thank the PERSIANN group at UC Irvine for the PERSIANN-CCS data and the helpful discussions about their methodology. Valentine Anantharaj is also supported by the Oak Ridge Leadership Computing Facility under the auspices of the Office of Advanced Scientific Computing Research, Office of Science, US Department of Energy under Contract No. DE-AC05-00OR22725 and Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. NR 33 TC 0 Z9 0 U1 0 U2 16 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0143-1161 J9 INT J REMOTE SENS JI Int. J. Remote Sens. PD AUG 20 PY 2013 VL 34 IS 16 BP 5796 EP 5811 DI 10.1080/01431161.2013.796100 PG 16 WC Remote Sensing; Imaging Science & Photographic Technology SC Remote Sensing; Imaging Science & Photographic Technology GA 161IZ UT WOS:000320187700010 ER PT J AU Varley, JB Schleife, A Janotti, A Van de Walle, CG AF Varley, J. B. Schleife, A. Janotti, A. Van de Walle, C. G. TI Ambipolar doping in SnO SO APPLIED PHYSICS LETTERS LA English DT Article ID AUGMENTED-WAVE METHOD; THIN-FILMS AB SnO is a promising oxide semiconductor that can be doped both p- and n-type, but the doping mechanisms remain poorly understood. Using hybrid functionals, we find that native defects cannot account for the unintentional p-type conductivity. Sn vacancies are shallow acceptors, but they have high formation energies and are unlikely to form. Unintentional impurities offer a more likely explanation for p-type doping; hydrogen is a likely candidate, and we find that it forms shallow-acceptor complexes with Sn vacancies. We also demonstrate that the ambipolar behavior of SnO can be attributed to the high position of the valence-band on an absolute energy scale. (C) 2013 AIP Publishing LLC. C1 [Varley, J. B.; Janotti, A.; Van de Walle, C. G.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Varley, J. B.; Schleife, A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Varley, JB (reprint author), Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. RI Van de Walle, Chris/A-6623-2012; Janotti, Anderson/F-1773-2011 OI Van de Walle, Chris/0000-0002-4212-5990; Janotti, Anderson/0000-0001-5028-8338 FU NSF MRSEC Program [DMR-1121053]; NSF [OCI-1053575, DMR07-0072N]; U.S. Department of Energy at Lawrence Livermore National Laboratory [DE-AC52-07A27344] FX Discussions with S. Kufner and F. Bechstedt are gratefully acknowledged. This work was supported by the NSF MRSEC Program (DMR-1121053). Computational resources were provided by the Center for Scientific Computing at the CNSI and MRL (an NSF MRSEC, DMR-1121053) (NSF CNS-0960316) and by the Extreme Science and Engineering Discovery Environment (XSEDE), supported by NSF (OCI-1053575 and DMR07-0072N). Part of this work was performed under the auspices of the U.S. Department of Energy at Lawrence Livermore National Laboratory under Contract No. DE-AC52-07A27344. NR 33 TC 22 Z9 22 U1 2 U2 66 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 19 PY 2013 VL 103 IS 8 AR 082118 DI 10.1063/1.4819068 PG 4 WC Physics, Applied SC Physics GA 209VH UT WOS:000323788100040 ER PT J AU Zhang, XJ Wang, DD Beres, M Liu, L Ma, ZX Yu, PY Mao, SS AF Zhang, Xiaojun Wang, Dandan Beres, Matthew Liu, Lei Ma, Zhixun Yu, Peter Y. Mao, Samuel S. TI Zincblende-wurtzite phase transformation of ZnSe films by pulsed laser deposition with nitrogen doping SO APPLIED PHYSICS LETTERS LA English DT Article ID BAND ALIGNMENT; PHOTOLUMINESCENCE; NANOWIRES; SEMICONDUCTORS; SUPERLATTICES; TRANSITION; CRYSTALS; HYDROGEN; METALS; ZNO AB Nitrogen-doped ZnSe films have been fabricated by pulsed laser deposition. It is found that the incorporation of nitrogen has resulted in a phase transformation from zincblende to wurtzite. By first-principles total energy calculations, two newly observed Raman peaks at 555 cm(-1) and 602 cm(-1) are assigned to vibration modes of N substituting Se in wurtzite and zincblende structures, respectively. This preference of wurtzite phase is consistent with previous prediction of the energy difference Delta EWZ-ZB between wurtzite structure and zincblende structure. This work opens a way to achieve stable ZnSe-based polytypism and may help understand the mechanisms of nitrogen doping in wide-bandgap semiconductors. (C) 2013 AIP Publishing LLC. C1 [Zhang, Xiaojun; Beres, Matthew; Ma, Zhixun; Yu, Peter Y.; Mao, Samuel S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Zhang, Xiaojun; Beres, Matthew; Mao, Samuel S.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Wang, Dandan; Liu, Lei] Chinese Acad Sci, State Key Lab Luminescence & Applicat, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Peoples R China. [Wang, Dandan] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China. [Yu, Peter Y.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Zhang, XJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM phyliulei@gmail.com; ssmao@berkeley.edu FU Office of Nonproliferation and Verification Research and Development, NNSA, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This research has been supported by Office of Nonproliferation and Verification Research and Development, NNSA, of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. NR 29 TC 4 Z9 5 U1 0 U2 49 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 19 PY 2013 VL 103 IS 8 AR 082111 DI 10.1063/1.4819271 PG 3 WC Physics, Applied SC Physics GA 209VH UT WOS:000323788100033 ER PT J AU Gross, SM Martin, JA Simpson, J Abraham-Juarez, MJ Wang, Z Visel, A AF Gross, Stephen M. Martin, Jeffrey A. Simpson, June Jazmin Abraham-Juarez, Maria Wang, Zhong Visel, Axel TI De novo transcriptome assembly of drought tolerant CAM plants, Agave deserti and Agave tequilana SO BMC GENOMICS LA English DT Article DE RNA-seq; Bioenergy; Crassulacean acid metabolism; de novo transcriptome assembly ID CRASSULACEAN ACID METABOLISM; LEAF DEVELOPMENT; RNA-SEQ; PRODUCTIVITY; PROTEINS; TEMPERATURE; SEQUENCES; SUCCULENT; EVOLUTION; AGAVACEAE AB Background: Agaves are succulent monocotyledonous plants native to xeric environments of North America. Because of their adaptations to their environment, including crassulacean acid metabolism (CAM, a water-efficient form of photosynthesis), and existing technologies for ethanol production, agaves have gained attention both as potential lignocellulosic bioenergy feedstocks and models for exploring plant responses to abiotic stress. However, the lack of comprehensive Agave sequence datasets limits the scope of investigations into the molecular-genetic basis of Agave traits. Results: Here, we present comprehensive, high quality de novo transcriptome assemblies of two Agave species, A. tequilana and A. deserti, built from short-read RNA-seq data. Our analyses support completeness and accuracy of the de novo transcriptome assemblies, with each species having a minimum of approximately 35,000 protein-coding genes. Comparison of agave proteomes to those of additional plant species identifies biological functions of gene families displaying sequence divergence in agave species. Additionally, a focus on the transcriptomics of the A. deserti juvenile leaf confirms evolutionary conservation of monocotyledonous leaf physiology and development along the proximal-distal axis. Conclusions: Our work presents a comprehensive transcriptome resource for two Agave species and provides insight into their biology and physiology. These resources are a foundation for further investigation of agave biology and their improvement for bioenergy development. C1 [Gross, Stephen M.; Martin, Jeffrey A.; Wang, Zhong; Visel, Axel] DOE Joint Genome Inst, Walnut Creek, CA USA. [Gross, Stephen M.; Martin, Jeffrey A.; Wang, Zhong; Visel, Axel] Genom Div, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Simpson, June; Jazmin Abraham-Juarez, Maria] CINVESTAV, Dept Genet Engn, Guanajuato, Mexico. RP Visel, A (reprint author), DOE Joint Genome Inst, Walnut Creek, CA USA. EM avisel@lbl.gov RI Simpson, June/I-1057-2012; Visel, Axel/A-9398-2009; OI Simpson, June/0000-0002-1891-4914; Visel, Axel/0000-0002-4130-7784; Gross, Stephen/0000-0003-0711-787X FU Lawrence Berkeley National Laboratory Directed Research and Development Program [LB11036]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors would like to thank Gerald Tuskan, Xiaohan Yang, Joel Martin, Wendy Schackwitz, Erika Lindquist, Feng Chen, Chia-Lin Wei, Cindy Choi, Natasha Zvenigorodsky, Dongwan Kang, Crystal Wright, Devin Coleman-Derr, Stephen Fairclough, Nicole Johnson, and Gretchen North for technical assistance and comments; and Michael McKain for data access [27]. Funding was provided by Lawrence Berkeley National Laboratory Directed Research and Development Program (LB11036). The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 82 TC 19 Z9 20 U1 5 U2 77 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD AUG 19 PY 2013 VL 14 AR 563 DI 10.1186/1471-2164-14-563 PG 14 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 206KC UT WOS:000323518500002 PM 23957668 ER PT J AU Wang, LM Cao, BF Kang, W Hybertsen, M Maeda, K Domen, K Khalifah, PG AF Wang, Limin Cao, Bingfei Kang, Wei Hybertsen, Mark Maeda, Kazuhiko Domen, Kazunari Khalifah, Peter G. TI Design of Medium Band Gap Ag-Bi-Nb-O and Ag-Bi-Ta-O Semiconductors for Driving Direct Water Splitting with Visible Light SO INORGANIC CHEMISTRY LA English DT Article ID DIELECTRIC-RELAXATION; DISPLACIVE DISORDER; PYROCHLORES; PHOTOCATALYSTS AB Two new metal oxide semiconductors belonging to the Ag-Bi-M-O (M = Nb, Ta) chemical systems have been synthesized as candidate compounds for driving overall water splitting with visible light on the basis of cosubstitution of Ag and Bi on the A-site position of known Ca2M2O7 pyrochlores. The low-valence band edge energies of typical oxide semiconductors prevents direct water splitting in compounds with band gaps below 3.0 eV, a limitation which these compounds are designed to overcome through the incorporation of low-lying Ag 4d(10) and Bi 6s(2) states into compounds of nominal composition "AgBiM2O7". It was found that the "AgBiTa2O7" pyrochlores are in fact a solid solution with an approximate range of AgxBi5/6Ta2O6.25+x/2 with 0.5 < x < 1. The structure of Ag4/5Bi5/6Ta2O6.65 was determined from the refinement of time-of-flight neutron diffraction data and was found to be a cubic pyrochlore with a = 10.52268(2) angstrom and a volume of 1165.143(6) angstrom(3). The closely related compound, AgBiNb2O7, appears to have an integer stoichiometry and to adopt an orthorhombically distorted pyrochlore-related structure with a subcell of a = 7.50102(8) angstrom, b = 7.44739(7) angstrom, c = 10.5788(1) angstrom, and V = 590.93(2) angstrom(3). Density functional theory-based calculations predict this distortion should result from A-site cation ordering. Fits to UV-vis diffuse reflectance data suggest that AgBiNb2O7 and "AgBiTa2O7" are both visible-light-absorbing semiconductors with the onset of strong direct absorption at 2.72 and 2.96 eV, respectively. Electronic structure calculations for an ordered AgBiNb2O7 structure show that the band gap reduction and the elevation of the valence band primarily result from hybridized Ag d(10)-O 2p orbitals that lie at higher energy than the normal O 2p states in typical pyrochlore oxides. While the minimum energy gap is direct in the band structure, the lowest energy dipole allowed optical transitions start about 0.2 eV higher in energy than the minimum energy transition and involve different bands. This suggests that the minimum electronic band gap in these materials is slightly smaller than the onset energy for strong absorption in the optical measurements. The elevated valence band energies of the niobate and tantalate compounds are experimentally confirmed by the ability of these compounds to reduce 2 H+ to H-2 gas when illuminated after functionalization with a Pt cocatalyst. C1 [Wang, Limin; Cao, Bingfei; Khalifah, Peter G.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Kang, Wei; Hybertsen, Mark] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Maeda, Kazuhiko; Domen, Kazunari] Univ Tokyo, Dept Chem Syst Engn, Bunkyo Ku, Tokyo 1138656, Japan. [Maeda, Kazuhiko] Japan Sci & Technol Agcy JST, Precursory Res Embryon Sci & Technol PRESTO, Kawaguchi, Saitama 3320012, Japan. [Khalifah, Peter G.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. RP Khalifah, PG (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM Limin.Wang@ge.com; weikang@pku.edu.cn; maedak@chem.titech.ac.jp; kpete@bnl.gov RI Kang, Wei/A-9784-2012; Maeda, Kazuhiko/F-5802-2015 OI Hybertsen, Mark S/0000-0003-3596-9754; Kang, Wei/0000-0001-9989-0485; Maeda, Kazuhiko/0000-0001-7245-8318 FU U.S. Department of Energy at BNL [DE-AC02-98CH10886]; U.S. DOE under the BES Hydrogen Fuel Initiative; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Department of Energy [DE-AC02-98CH10886] FX This work was in part carried out at BNL under Contract DE-AC02-98CH10886 with the U.S. Department of Energy. We also gratefully acknowledge the U.S. DOE for funding under the BES Hydrogen Fuel Initiative. The portion of this Research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Diffuse reflectance experiments and DFT computations were done at Brookhaven National Laboratory's Center for Functional Nanomaterials (CFN), which is supported by the Department of Energy under grant DE-AC02-98CH10886. We are very appreciative of the efforts of Dr. James Ciston (LBNL) to investigate the structure of these materials through electron diffraction at the BNL CFN, despite the complications induced by beam damage. Many thanks go to Prof. Peter Stephens and Saul Lapidus for enabling the collection of high-resolution powder diffraction data which helped enable the indexing of this data, as well as for extensive informal tutorials on advanced powder diffraction methods. NR 24 TC 5 Z9 5 U1 3 U2 87 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD AUG 19 PY 2013 VL 52 IS 16 BP 9192 EP 9205 DI 10.1021/ic400089s PG 14 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 205QX UT WOS:000323460800007 PM 23901790 ER PT J AU Zall, CM Clouston, LJ Young, VG Ding, KY Kim, HJ Zherebetskyy, D Chen, YS Bill, E Gagliardi, L Lu, CC AF Zall, Christopher M. Clouston, Laura J. Young, Victor G. Ding, Keying Kim, Hyun Jung Zherebetskyy, Danylo Chen, Yu-Sheng Bill, Eckhard Gagliardi, Laura Lu, Connie C. TI Mixed-Valent Dicobalt and Iron-Cobalt Complexes with High-Spin Configurations and Short Metal-Metal Bonds SO INORGANIC CHEMISTRY LA English DT Article ID ELECTRONIC-STRUCTURE CALCULATIONS; 2ND-ORDER PERTURBATION-THEORY; CR MULTIPLE BOND; STRUCTURAL-CHARACTERIZATION; DI(2-PYRIDYL)AMIDE DPA; ANOMALOUS-DISPERSION; DINUCLEAR COMPOUNDS; AMIDINATO COMPOUNDS; CO; LIGANDS AB Cobalt cobalt and iron cobalt bonds are investigated in coordination complexes with formally mixed-valent [M-2](3+) cores. The trigonal dicobalt tris(diphenylformamidinate) compound, Co-2(DPhF)(3), which was previously reported by Cotton, Murillo, and co-workers (Inorg. Chim. Acta 1996, 249, 9), is shown to have an energetically isolated, high-spin sextet ground-state by magnetic susceptibility and electron paramagnetic resonance (EPR) spectroscopy. A new tris(amidinato)amine ligand platform is introduced. By tethering three amidinate donors to an apical amine, this platform offers two distinct metal-binding sites. Using the phenyl-substituted variant (abbreviated as L-Ph), the isolation of a dicobalt homobimetallic and an iron cobalt heterobimetallic are demonstrated. The new [Co-2](3+) and [FeCo](3+) cores have high-spin sextet and septet ground states, respectively. Their solid-state structures reveal short metal metal bond distances of 2.29 angstrom for Co-Co and 2.18 angstrom for Fe-Co; the latter is the shortest distance for an iron cobalt bond to date. To assign the positions of iron and cobalt atoms as well as to determine if Fe/Co mixing is occurring, X-ray anomalous scattering experiments were performed, spanning the Fe and Co absorption energies. These studies show only a minor amount of metal-site mixing in this complex, and that FeCoLPh is more precisely described as (Fe0.94(1)Co0.06(1))(Co0.95(1)Fe0.05(1))L-Ph. The iron-cobalt heterobimetallic has been further characterized by Mossbauer spectroscopy. Its isomer shift of 0.65 mm/s and quadrupole splitting of 0.64 mm/s are comparable to the related diiron complex, Fe-2(DPhF)(3). On the basis of spectroscopic data and theoretical calculations, it is proposed that the formal [M-2](3+) cores are fully delocalized. C1 [Zall, Christopher M.; Clouston, Laura J.; Young, Victor G.; Ding, Keying; Kim, Hyun Jung; Zherebetskyy, Danylo; Gagliardi, Laura; Lu, Connie C.] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. [Kim, Hyun Jung; Zherebetskyy, Danylo; Gagliardi, Laura] Univ Minnesota, Inst Supercomp, Minneapolis, MN 55455 USA. [Kim, Hyun Jung; Zherebetskyy, Danylo; Gagliardi, Laura] Univ Minnesota, Chem Theory Ctr, Minneapolis, MN 55455 USA. [Chen, Yu-Sheng] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Bill, Eckhard] Max Planck Inst Chem Energiekonvers, D-45470 Mulheim, Germany. RP Bill, E (reprint author), Max Planck Inst Chem Energiekonvers, Stiftstr 34-36, D-45470 Mulheim, Germany. EM ebill@gwdg.de; gagliard@umn.edu; clu@umn.edu RI Lu , Connie/A-2281-2010; Zherebetskyy, Danylo/B-3404-2015 FU NSF-MRI [CHE-1229400]; University of Minnesota; NSF [CHE-1254621]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Andrew Fielding, Andreas Gobels, and Bernd Mienert are acknowledged for assisting with the acquisition of spectroscopic data. Professor Ted Betley is thanked for a helpful suggestion. C.M.Z. and C.C.L. thank Prof. John Lipscomb and Prof. David Blank for the use of their EPR and UV-vis-NIR instruments, respectively. X-ray diffraction experiments were performed using a crystal diffractometer acquired through an NSF-MRI award (CHE-1229400). Computing support and resources were provided by the Minnesota Supercomputing Institute, and funding for this work was provided in part by the University of Minnesota and the NSF (CHE-1254621). The computational results (H.J.K., D.Z., and L.G.) are based on work supported by the NSF (CHE-1212575). ChemMatCARS Sector 15 is principally supported by the NSF/DOE (CHE-0822838). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 74 TC 19 Z9 19 U1 4 U2 66 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD AUG 19 PY 2013 VL 52 IS 16 BP 9216 EP 9228 DI 10.1021/ic400292g PG 13 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 205QX UT WOS:000323460800009 PM 23902538 ER PT J AU Pollock, JB Cook, TR Schneider, GL Lutterman, DA Davies, AS Stang, PJ AF Pollock, J. Bryant Cook, Timothy R. Schneider, Gregory L. Lutterman, Daniel A. Davies, Andrew S. Stang, Peter J. TI Photophysical Properties of Endohedral Amine-Functionalized Bis(phosphine) Pt(II) Complexes as Models for Emissive Metallacycles SO INORGANIC CHEMISTRY LA English DT Article ID BIMETALLIC PLATINUM COMPLEXES; METAL COORDINATION COMPOUNDS; TERPYRIDYL COMPLEXES; ACETYLIDE OLIGOMERS; ANTICANCER ACTIVITY; RATIONAL DESIGN; CHARGE-TRANSFER; EXCITED-STATES; LIGANDS; CHEMISTRY AB The photophysical properties of bis(phosphine) Pt(II) complexes constructed from 2,6-bis(pyrid-3-ylethynyl) aniline and 2,6-bis(pyrid-4-ylethynyl) aniline vary significantly, even though the complexes differ only in the position of the coordinating nitrogen. By capping the ligands with an aryl bis(phosphine) Pt(II) metal acceptor, the photophysical properties of the two isomeric systems were directly compared, revealing that the low-energy absorption and emission bands of the two systems were separated by 30 nm (1804 cm(-1)) and 39 nm (1692 cm(-1)), respectively. From the analysis of time-dependent density functional (TD-DFT) calculations and excited-state lifetime measurements, it was determined that the nature of the Pt N bond in the HOMO and the sums of the radiative (k(rad)) and nonradiative (k(nr)) rate constants were significantly different in the two systems. As the dominant nonradiative decay pathway in aniline systems is relaxation from the triplet state through intersystem crossing (ISC), the difference in k(nr) be ascribed to changes in ISC between isomers of the bis(phosphine) Pt(II)-capped 2,6-bis(pyrid-3-ylethynyl) aniline system. It was also determined that the photophysical properties of these capped systems can be altered by functionalizing the aryl capping ligand on the bis(phosphine) Pt(II) metal center, which perturbs the molecular orbitals involved in the observed optical transitions. In addition, an isoelectronic bis(phosphine) Pd(II)-capped system was prepared for comparison with the bis(phosphine) Pt(II) suite of complexes. The Pd(II) system showed significant changes in its low-energy absorption band, but preserved the characteristic emissive properties of its Pt(II) analogue with an even higher quantum yield. C1 [Pollock, J. Bryant; Cook, Timothy R.; Schneider, Gregory L.; Davies, Andrew S.; Stang, Peter J.] Univ Utah, Dept Chem, Salt Lake City, UT 84412 USA. [Lutterman, Daniel A.] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA. RP Pollock, JB (reprint author), Univ Utah, Dept Chem, 315 South 1400 East,RM 2020, Salt Lake City, UT 84412 USA. EM bryant@chem.utah.edu; Stang@chem.utah.edu RI Lutterman, Daniel/C-9704-2016 OI Lutterman, Daniel/0000-0002-4875-6056 FU NSF [NSF-CHE 0820955]; Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy FX P.J.S. thanks the NSF (NSF-CHE 0820955) for financial support. We also thank the Center for High Performance Computing (CHPC) at the University of Utah for access and time allotment to perform the DFT and TD-DFT calculations. D.A.L. was sponsored by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. NR 68 TC 8 Z9 8 U1 3 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD AUG 19 PY 2013 VL 52 IS 16 BP 9254 EP 9265 DI 10.1021/ic400491q PG 12 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 205QX UT WOS:000323460800012 PM 23909761 ER PT J AU Xie, WW Thimmaiah, S Lamsal, J Liu, J Heitmann, TW Quirinale, D Goldman, AI Pecharsky, V Miller, GJ AF Xie, Weiwei Thimmaiah, Srinivasa Lamsal, Jagat Liu, Jing Heitmann, Thomas W. Quirinale, Dante Goldman, Alan I. Pecharsky, Vitalij Miller, Gordon J. TI beta-Mn-Type Co8+xZn12-x as a Defect Cubic Laves Phase: Site Preferences, Magnetism, and Electronic Structure SO INORGANIC CHEMISTRY LA English DT Article ID BRILLOUIN-ZONE INTEGRATIONS; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; CRYSTAL-STRUCTURE; QUASI-CRYSTAL; CO-ZN; METAL; TRANSITION; SYMMETRY AB The results of crystallographic analysis, magnetic characterization, and theoretical assessment of, beta-Mn-type Co-Zn intermetallics prepared using high-temperature methods are presented. These beta-Mn Co-Zn phases crystallize in the space group P4(1)32 [Pearson symbol cP20; a = 6.3555(7)-6.3220(7)] and their stoichiometry may be expressed as Co8+zZn12-x [1.7(2) < x < 2.2(2)]. According to a combination of single-crystal X-ray diffraction, neutron powder diffraction, and scanning electron microscopy, atomic site occupancies establish clear preferences for Co atoms in the 8c sites and Zn atoms in the 12d sites, with all additional Co atoms replacing some Zn atoms, a result that can be rationalized by electronic structure calculations. Magnetic measurements and neutron powder diffraction of an equimolar Co:Zn sample confirm ferromagnetism in this phase with a Curie temperature of similar to 420 K. Neutron powder diffraction and electronic structure calculations using the local spin density approximation indicate that the spontaneous magnetization of this phase arises exclusively from local moments at the Co atoms. Inspection of the atomic arrangements of Co8+xZn12-x reveals that the beta-Mn aristotype may be derived from an ordered defect, cubic Laves phase (MgCu2-type) structure. Structural optimization procedures using the Vienna ab initio simulation package (VASP) and starting from the undistorted, defect Laves phase structure achieved energy minimization at the observed beta-Mn structure type, a result that offers greater insight into the beta-Mn structure type and establishes a closer relationship with the corresponding alpha-Mn structure (cI58). C1 [Xie, Weiwei; Thimmaiah, Srinivasa; Miller, Gordon J.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Lamsal, Jagat; Quirinale, Dante; Goldman, Alan I.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Liu, Jing; Pecharsky, Vitalij] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. US DOE, Ames Lab, Ames, IA 50011 USA. [Heitmann, Thomas W.] Univ Missouri, Missouri Res Reactor, Columbia, MO 65211 USA. RP Miller, GJ (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM gmiller@iastate.edu OI Xie, Weiwei/0000-0002-5500-8195 FU U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering FX This work was carried out at the Ames Laboratory, which is operated for the U.S. Department of Energy by Iowa State University under Contract DE-AC02-07CH11358. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. The authors thank Dr. Wei Tang in the Ames Laboratory for magnetic measurements, Dr. Warren E. Straszheim in the Ames Laboratory for SEM analysis, and three astute reviewers for their insightful comments and suggestions. NR 61 TC 6 Z9 6 U1 3 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD AUG 19 PY 2013 VL 52 IS 16 BP 9399 EP 9408 DI 10.1021/ic4009653 PG 10 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 205QX UT WOS:000323460800028 PM 23909791 ER PT J AU Cantos, PM Jouffret, LJ Wilson, RE Burns, PC Cahill, CL AF Cantos, Paula M. Jouffret, Laurent J. Wilson, Richard E. Burns, Peter C. Cahill, Christopher L. TI Series of Uranyl-4,4 '-biphenyldicarboxylates and an Occurrence of a Cation-Cation Interaction: Hydrothermal Synthesis and in Situ Raman Studies SO INORGANIC CHEMISTRY LA English DT Article ID X-RAY-DIFFRACTION; URANYL-ORGANIC FRAMEWORKS; BOND-VALENCE PARAMETERS; COORDINATION POLYMERS; PENTAVALENT ACTINIDES; AQUEOUS-SOLUTIONS; DEGREES-C; COMPLEXES; ACID; ION AB Three uranium(VI)-bearing materials were synthesized hydrothermally using the organic ligand 4,4'-biphenyldicarboxylic acid: (UO2)(C14O4H8) (1); [(UO2)(2)(C14O4H8)(2)(OH)]center dot(NH4)(H2O) (2); (UO2)(2)(C14O4H8)(OH)(2) (3). Compound 1 was formed after 1 day at 180 C in an acidic environment (pH(i) = 4.03), and compounds 2 and 3 coformed after 3 days under basic conditions (pH(i) = 7.95). Coformation of all three compounds was observed at higher pH(i) (9.00). Ex situ Raman spectra of single crystals of 1-3 were collected and analyzed for signature peaks. In situ hydrothermal Raman data were also obtained and compared to the ex situ Raman spectra of the title compounds in an effort to acquire formation mechanism details. At pH(i) = 4.00, the formation of 1 was suggested by in situ Raman spectra. At an increased pH(i) (7.90), the in situ data implied the formation of compounds 1 and 3. The most basic conditions (pH(i) = 9.00) yielded a complex mixture of phases consistent with that of increased uranyl hydrolysis. C1 [Cantos, Paula M.; Cahill, Christopher L.] George Washington Univ, Dept Chem, Washington, DC 20052 USA. [Jouffret, Laurent J.; Burns, Peter C.] Univ Notre Dame, Dept Civil & Environm Engn & Earth Sci, Notre Dame, IN 46556 USA. [Wilson, Richard E.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Cahill, CL (reprint author), George Washington Univ, Dept Chem, 725 21st St NW, Washington, DC 20052 USA. EM cahill@gwu.edu RI JOUFFRET, Laurent/H-3927-2012; Wilson, Richard/H-1763-2011; OI Wilson, Richard/0000-0001-8618-5680; Burns, Peter/0000-0002-2319-9628 FU Office of Basic Energy Sciences of the U.S. Department of Energy as part of the Materials Science of Actinides Energy Frontier Research Center [DE-SC0001089] FX This work supported by the Office of Basic Energy Sciences of the U.S. Department of Energy as part of the Materials Science of Actinides Energy Frontier Research Center (Grant DE-SC0001089). The authors also thank Shauo Wang (University of Notre Dame) for collecting the fluorescence data. NR 70 TC 17 Z9 17 U1 2 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD AUG 19 PY 2013 VL 52 IS 16 BP 9487 EP 9495 DI 10.1021/ic401143g PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 205QX UT WOS:000323460800037 PM 23909845 ER PT J AU Chen, HY Yu, T Gao, P Bai, JM Tao, J Tyson, TA Wang, LP Lalancette, R AF Chen, Haiyan Yu, Tian Gao, Peng Bai, Jianming Tao, Jing Tyson, Trevor A. Wang, Liping Lalancette, Roger TI Synthesis and Structure of Perovskite ScMnO3 SO INORGANIC CHEMISTRY LA English DT Article ID CRYSTAL AB The rare-earth manganites RMnO3 (R = rare earth) are a class of important multiferroics with stable hexagonal structures for small R ion radius (Sc, Lu, Yb, ...). Metastable perovskite phases of these systems possess intriguing electronically driven electrical polarization, but the synthesis of the perovskite phase for the end member ScMnO3 system has proven to be elusive. We report the structure of a new monoclinic P2(1)/n perovskite phase of ScMnO3 synthesized from the hexagonal phase under high-pressure and high-temperature conditions. This extends the small ion region for so-called E-phase electronically driven ferroelectric manganese perovsites. C1 [Chen, Haiyan; Yu, Tian; Gao, Peng; Tyson, Trevor A.] New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA. [Bai, Jianming] Brookhaven Natl Lab, Natl Synchrotron Light Sources, Upton, NY 11973 USA. [Tao, Jing] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Wang, Liping] SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA. [Lalancette, Roger] Rutgers State Univ, Dept Chem, Newark, NJ 07102 USA. RP Tyson, TA (reprint author), New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA. EM tyson@njit.edu RI Bai, Jianming/O-5005-2015 FU DOE [DE-FG02-07ER46402]; U.S. Department of Energy; Rutgers University, Newark, NJ (NSF-CRIF) [0443538]; NSF MRI [DMR-0923032]; U.S. Department of Energy (Basic Energy Sciences); Materials Science and Engineering Division [DE-AC02-98CH10886] FX This work is supported by DOE Grant DE-FG02-07ER46402 (H.C., T.Y., P.G., TAT.). Synchrotron X-ray diffraction and Xray absorption data acquisition were performed at Brookhaven National Laboratory's National Synchrotron Light Source (NSLS) which is funded by the U.S. Department of Energy. Single crystal X-ray diffraction measurements were performed at Rutgers University, Newark, NJ (NSF-CRIF Grant No. 0443538 (R.L.)). The Physical Properties Measurements System was acquired under NSF MRI Grant DMR-0923032 (ARRA award). TEM work performed was supported by the U.S. Department of Energy (Basic Energy Sciences) and by the Materials Science and Engineering Division under Contract No. DE-AC02-98CH10886 and through the use of the Center for Functional Nanomaterials at Brookhaven National Laboratory. NR 32 TC 12 Z9 12 U1 5 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD AUG 19 PY 2013 VL 52 IS 16 BP 9692 EP 9697 DI 10.1021/ic4016838 PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 205QX UT WOS:000323460800060 PM 23906417 ER PT J AU Howell, D Davids, B Greene, JP Kanungo, R Mythili, S Ruiz, C Ruprecht, G Thompson, IJ AF Howell, D. Davids, B. Greene, J. P. Kanungo, R. Mythili, S. Ruiz, C. Ruprecht, G. Thompson, I. J. TI First determination of the Li-8 valence neutron asymptotic normalization coefficient using the Li-7(Li-8, Li-7)Li-8 reaction SO PHYSICAL REVIEW C LA English DT Article ID S-FACTOR; CONSTANT; CAPTURE; BE-7(P AB We report here a determination of the asymptotic normalization coefficient of the valence neutron in Li-8 from a measurement of the angular distribution of the Li-7(Li-8, Li-7)Li-8 reaction at 11 MeV. Using isospin symmetry the B-8 ANC has also been calculated and used to infer a value for S-17(0) of 20.2 +/- 4.4 eV b. C1 [Howell, D.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Howell, D.; Davids, B.; Mythili, S.; Ruiz, C.; Ruprecht, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Greene, J. P.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Kanungo, R.] St Marys Univ, Dept Phys & Astron, Halifax, NS B3H 3C3, Canada. [Thompson, I. J.] Lawrence Livermore Natl Lab, L414, Livermore, CA 94551 USA. RP Howell, D (reprint author), Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. FU National Research Council of Canada; U.S. Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX B.D. wishes to thank Natasha Timofeyuk for the discussions that initiated this work, which were held during a workshop at the ECT* in Trento. The authors acknowledge helpful contributions from Isao Tanihata and Sam Wright as well as the generous support of the Natural Sciences and Engineering Research Council of Canada. TRIUMF receives federal funding via a contribution agreement through the National Research Council of Canada. This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. The work of J.P.G. was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 and the work of I.J.T. was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 as a part of the TORUS collaboration. NR 25 TC 6 Z9 6 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG 19 PY 2013 VL 88 IS 2 AR 025804 DI 10.1103/PhysRevC.88.025804 PG 6 WC Physics, Nuclear SC Physics GA 203YI UT WOS:000323330300005 ER PT J AU Mauris, J Mantelli, F Woodward, AM Cao, ZY Bertozzi, CR Panjwani, N Godula, K Argueso, P AF Mauris, Jerome Mantelli, Flavio Woodward, Ashley M. Cao, Ziyhi Bertozzi, Carolyn R. Panjwani, Noorjahan Godula, Kamil Argueeso, Pablo TI Modulation of Ocular Surface Glycocalyx Barrier Function by a Galectin-3 N-terminal Deletion Mutant and Membrane-Anchored Synthetic Glycopolymers SO PLOS ONE LA English DT Article ID CORNEAL EPITHELIAL-CELLS; O-GLYCANS; TETHERED MUCINS; CROSS-LINKING; IN-VITRO; BINDING; EXPRESSION; CANCER; ASSOCIATION; RECEPTORS AB Background: Interaction of transmembrane mucins with the multivalent carbohydrate-binding protein galectin-3 is critical to maintaining the integrity of the ocular surface epithelial glycocalyx. This study aimed to determine whether disruption of galectin-3 multimerization and insertion of synthetic glycopolymers in the plasma membrane could be used to modulate glycocalyx barrier function in corneal epithelial cells. Methodology/Principal Findings: Abrogation of galectin-3 biosynthesis in multilayered cultures of human corneal epithelial cells using siRNA, and in galectin-3 null mice, resulted in significant loss of corneal barrier function, as indicated by increased permeability to the rose bengal diagnostic dye. Addition of beta-lactose, a competitive carbohydrate inhibitor of galectin-3 binding activity, to the cell culture system, transiently disrupted barrier function. In these experiments, treatment with a dominant negative inhibitor of galectin-3 polymerization lacking the N-terminal domain, but not full-length galectin-3, prevented the recovery of barrier function to basal levels. As determined by fluorescence microscopy, both cellobiose- and lactose-containing glycopolymers incorporated into apical membranes of corneal epithelial cells, independently of the chain length distribution of the densely glycosylated, polymeric backbones. Membrane incorporation of cellobiose glycopolymers impaired barrier function in corneal epithelial cells, contrary to their lactose-containing counterparts, which bound to galectin-3 in pull-down assays. Conclusions/Significance: These results indicate that galectin-3 multimerization and surface recognition of lactosyl residues is required to maintain glycocalyx barrier function at the ocular surface. Transient modification of galectin-3 binding could be therapeutically used to enhance the efficiency of topical drug delivery. C1 [Mauris, Jerome; Mantelli, Flavio; Woodward, Ashley M.; Argueeso, Pablo] Harvard Univ, Sch Med, Schepens Eye Res Inst, Boston, MA 02115 USA. [Mauris, Jerome; Mantelli, Flavio; Woodward, Ashley M.; Argueeso, Pablo] Harvard Univ, Sch Med, Dept Ophthalmol, Massachusetts Eye & Ear, Boston, MA USA. [Cao, Ziyhi; Panjwani, Noorjahan] Tufts Univ, Sch Med, Dept Ophthalmol, Ctr Vis Res, Boston, MA 02111 USA. [Bertozzi, Carolyn R.; Godula, Kamil] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.; Godula, Kamil] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Argueso, P (reprint author), Harvard Univ, Sch Med, Schepens Eye Res Inst, Boston, MA 02115 USA. EM pablo_argueso@meei.harvard.edu FU National Institutes of Health/National Eye Institute [R01 EY014847]; National Institutes of Health/American Recovery and Reinvestment Act [GM59907]; National Institutes of Health/Pathway to Independence Award [5 K99 EB013446-02] FX This work was supported by: National Institutes of Health/National Eye Institute R01 EY014847 to PA; National Institutes of Health/American Recovery and Reinvestment Act GM59907 to CRB; National Institutes of Health/Pathway to Independence Award 5 K99 EB013446-02 to KG. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 49 TC 9 Z9 9 U1 1 U2 19 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD AUG 19 PY 2013 VL 8 IS 8 AR e72304 DI 10.1371/journal.pone.0072304 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 205ER UT WOS:000323425700163 PM 23977277 ER PT J AU GhattyVenkataKrishna, PK Uberbacher, EC Cheng, XL AF GhattyVenkataKrishna, Pavan K. Uberbacher, Edward C. Cheng, Xiaolin TI Effect of the amyloid beta hairpin's structure on the handedness of helices formed by its aggregates SO FEBS LETTERS LA English DT Article DE Amyloid; Alzheimer's; Protein structure ID SOLID-STATE NMR; MOLECULAR-DYNAMICS SIMULATIONS; X-RAY-DIFFRACTION; ALZHEIMERS A-BETA(1-40) PEPTIDE; PROBING SOLVENT ACCESSIBILITY; PRION PROTEIN-FRAGMENT; SECONDARY STRUCTURE; FIBRIL FORMATION; HYDROGEN-EXCHANGE; H/D-EXCHANGE AB Various structural models for amyloid beta fibrils have been derived from a variety of experimental techniques. However, these models cannot differentiate between the relative position of the two arms of the beta hairpin called the stagger. Amyloid fibrils of various hierarchical levels form left-handed helices composed of beta sheets. However it is unclear if positive, negative and zero staggers all form the macroscopic left-handed helices. To address this issue we have conducted extensive molecular dynamics simulations of amyloid beta sheets of various staggers and shown that only negative staggers lead to the experimentally observed left-handed helices while positive staggers generate the incorrect right-handed helices. This result suggests that the negative staggers are physiologically relevant structure of the amyloid beta fibrils. (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved. C1 [GhattyVenkataKrishna, Pavan K.; Uberbacher, Edward C.] Oak Ridge Natl Lab, Computat Biol & Bioinformat Grp, Oak Ridge, TN 37831 USA. [GhattyVenkataKrishna, Pavan K.; Uberbacher, Edward C.; Cheng, Xiaolin] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Cheng, Xiaolin] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN USA. [Cheng, Xiaolin] Oak Ridge Natl Lab, UT ORNL Ctr Mol Biophys, Oak Ridge, TN 37831 USA. RP GhattyVenkataKrishna, PK (reprint author), Oak Ridge Natl Lab, Computat Biol & Bioinformat Grp, Oak Ridge, TN 37831 USA. EM pkc@ornl.gov FU US Department of Energy (DOE) [DE-AC05-00OR22725]; Office of Science of the US Department of Energy [DE-AC02-05CH11231]; UT-Battelle, LLC FX This research was sponsored by the US Department of Energy (DOE) under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC managing contractor for Oak Ridge National Laboratory. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. P.K.G. thanks Dr. Robert Tycko and Dr. Cyril Falvo for useful discussions. We thank the anonymous reviewers for insightful comments that greatly improved the manuscript. NR 89 TC 6 Z9 6 U1 0 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0014-5793 J9 FEBS LETT JI FEBS Lett. PD AUG 19 PY 2013 VL 587 IS 16 BP 2649 EP 2655 DI 10.1016/j.febslet.2013.06.050 PG 7 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 205QC UT WOS:000323458400026 PM 23845280 ER PT J AU Blackburn, E Chang, J Said, AH Leu, BM Liang, RX Bonn, DA Hardy, WN Forgan, EM Hayden, SM AF Blackburn, E. Chang, J. Said, A. H. Leu, B. M. Liang, Ruixing Bonn, D. A. Hardy, W. N. Forgan, E. M. Hayden, S. M. TI Inelastic x-ray study of phonon broadening and charge-density wave formation in ortho-II-ordered YBa2Cu3O6.54 SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; NEUTRON-SCATTERING; FERMI-SURFACE; STRIPE ORDER; PHASE; DICHALCOGENIDES; TRANSITION AB Inelastic x-ray scattering is used to investigate charge-density wave (CDW) formation and the low-energy lattice dynamics of the underdoped high-temperature superconductor ortho-II YBa2Cu3O6.54. We find that, for a temperature similar to 1/3 of the CDW onset temperature (approximate to 155 K), the CDW order is static within the resolution of the experiment, that is the inverse lifetime is less than 0.3 meV. In the same temperature region, low-energy phonons near the ordering wave vector of the CDW show large increases in their linewidths. This contrasts with the usual behavior in CDW systems where the phonon anomalies are strongest near the CDW onset temperature. C1 [Blackburn, E.; Forgan, E. M.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Chang, J.] Ecole Polytech Fed Lausanne, Inst Mat Complexe, CH-1015 Lausanne, Switzerland. [Said, A. H.; Leu, B. M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Liang, Ruixing; Bonn, D. A.; Hardy, W. N.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Liang, Ruixing; Bonn, D. A.; Hardy, W. N.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. [Hayden, S. M.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. RP Blackburn, E (reprint author), Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. EM e.blackburn@bham.ac.uk; s.hayden@bris.ac.uk RI Blackburn, Elizabeth/C-2312-2014; Chang, Johan/F-1506-2014; Hayden, Stephen/F-4162-2011 OI Chang, Johan/0000-0002-4655-1516; Hayden, Stephen/0000-0002-3209-027X FU UK EPSRC [EP/J015423/1, EP/J016977/1]; Swiss National Science Foundation through NCCR-MaNEP [PZ00P2_142434]; Canadian Natural Sciences and Engineering Research Council; Canada Foundation for Innovations; U.S. DOE [DE-AC02-06CH11357]; NSF [DMR-0115852] FX We are grateful to Mathieu Le Tacon and collaborators for sharing their extensive IXS data on ortho-VIII YBCO with the community, where strong phonon anomalies are seen at a different reciprocal space position in a sample with different Cu-O chain order. Since the submission of the present paper, this work has appeared as Ref. 38. Our work was supported by the UK EPSRC (Grant No. EP/J015423/1 & No. EP/J016977/1), the Swiss National Science Foundation through NCCR-MaNEP and Grant No. PZ00P2_142434, the Canadian Natural Sciences and Engineering Research Council, and the Canada Foundation for Innovations. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. The construction of HERIX was partially supported by the NSF under Grant No. DMR-0115852. NR 44 TC 22 Z9 22 U1 0 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD AUG 19 PY 2013 VL 88 IS 5 AR 054506 DI 10.1103/PhysRevB.88.054506 PG 7 WC Physics, Condensed Matter SC Physics GA 203XN UT WOS:000323328000008 ER PT J AU Vlaminck, V Pearson, JE Bader, SD Hoffmann, A AF Vlaminck, V. Pearson, J. E. Bader, S. D. Hoffmann, A. TI Dependence of spin-pumping spin Hall effect measurements on layer thicknesses and stacking order SO PHYSICAL REVIEW B LA English DT Article ID DIFFUSION; RESONANCE AB Voltages generated from inverse spin Hall and anisotropic magnetoresistance effects via spin pumping in ferromagnetic (F)/nonmagnetic (N) bilayers are investigated by means of a broadband ferromagnetic resonance approach. Varying the nonmagnetic layer thickness enables the determination of the spin diffusion length in Pd of 5.5 +/- 0.5 nm. We also observe a systematic change of the voltage line shape when reversing the stacking order of the F/N bilayer, which is qualitatively consistent with expectations from spin Hall effects. However, even after independent calibration of the precession angle, systematic quantitative discrepancies in analyzing the data with spin Hall effects remain. C1 [Vlaminck, V.; Pearson, J. E.; Bader, S. D.; Hoffmann, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Bader, S. D.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Vlaminck, V (reprint author), Univ San Francisco Quito, Colegio Ciencias & Ingn, Quito, Ecuador. RI Hoffmann, Axel/A-8152-2009 OI Hoffmann, Axel/0000-0002-1808-2767 FU U.S. Department of Energy, Office of Science, Basic Energy Science [DE-AC02-06CH11357] FX We would like to thank F. Y. Fradin, R. Winkler, and H. Schultheiss for illuminating discussions. This work and the use of the Center for Nanoscale Materials at Argonne National Laboratory are supported by the U.S. Department of Energy, Office of Science, Basic Energy Science under Contract No. DE-AC02-06CH11357. NR 40 TC 39 Z9 39 U1 6 U2 69 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 19 PY 2013 VL 88 IS 6 AR 064414 DI 10.1103/PhysRevB.88.064414 PG 8 WC Physics, Condensed Matter SC Physics GA 203XS UT WOS:000323328600006 ER PT J AU Zhang, F Gale, JD Uberuaga, BP Stanek, CR Marks, NA AF Zhang, F. Gale, J. D. Uberuaga, B. P. Stanek, C. R. Marks, N. A. TI Importance of dispersion in density functional calculations of cesium chloride and its related halides SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; AB-INITIO; ALKALI-HALIDES; COHESIVE ENERGETICS; THERMAL-EXPANSION; LATTICE ENERGY; IONIC-CRYSTALS; PRESSURE; POLARIZABILITY AB The ionic compound cesium chloride adopts a cubic crystal structure bearing the same name. However, ab initio electronic structure calculations based on density functional theory methods using generalized gradient approximation functionals do not predict that cesium chloride adopts this phase. In this paper we apply semiempirical methods (density functional theory plus a pairwise dispersion correction) to account for missing van der Waals interactions within cesium chloride. The C-6 and R-0 dispersion parameters for cesium are established within Grimme's DFT + D2 formalism. Inclusion of the dispersion corrections is found not only to improve the quality of structures in comparison to experiment for all cesium halides, but also leads to the correct prediction of the ground-state phase under ambient conditions. C1 [Zhang, F.; Gale, J. D.] Curtin Univ, Nanochem Res Inst, Dept Chem, Perth, WA 6845, Australia. [Uberuaga, B. P.; Stanek, C. R.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Marks, N. A.] Curtin Univ, Nanochem Res Inst, Discipline Phys & Astron, Perth, WA 6845, Australia. RP Zhang, F (reprint author), Curtin Univ, Nanochem Res Inst, Dept Chem, POB U1987, Perth, WA 6845, Australia. EM f.zhang@curtin.edu.au RI Gale, Julian/B-7987-2009; Marks, Nigel/F-6084-2010 OI Gale, Julian/0000-0001-9587-9457; Marks, Nigel/0000-0003-2372-1284 FU US Department of Energy through the LANL/LDRD program; Australian Research Council FX We gratefully acknowledge financial support from the US Department of Energy through the LANL/LDRD program. J.D.G. and N.A.M. both thank the Australian Research Council for fellowships and iVEC and National Computational Infrastructure for provision of computing resources. NR 48 TC 15 Z9 15 U1 3 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD AUG 19 PY 2013 VL 88 IS 5 AR 054112 DI 10.1103/PhysRevB.88.054112 PG 7 WC Physics, Condensed Matter SC Physics GA 203XN UT WOS:000323328000004 ER PT J AU Aartsen, MG Abbasi, R Abdou, Y Ackermann, M Adams, J Aguilar, JA Ahlers, M Altmann, D Auffenberg, J Bai, X Baker, M Barwick, SW Baum, V Bay, R Beatty, JJ Bechet, S Tjus, JB Becker, KH Bell, M Benabderrahmane, ML BenZvi, S Berdermann, J Berghaus, P Berley, D Bernardini, E Bernhard, A Bertrand, D Besson, DZ Binder, G Bindig, D Bissok, M Blaufuss, E Blumenthal, J Boersma, DJ Bohaichuk, S Bohm, C Bose, D Boser, S Botner, O Brayeur, L Bretz, HP Brown, AM Bruijn, R Brunner, J Carson, M Casey, J Casier, M Chirkin, D Christov, A Christy, B Clark, K Clevermann, F Coenders, S Cohen, S Cowen, DF Silva, AHC Danninger, M Daughhetee, J Davis, JC De Clercq, C De Ridder, S Desiati, P de With, M DeYoung, T Diaz-Velez, JC Dunkman, M Eagan, R Eberhardt, B Eisch, J Ellsworth, RW Euler, S Evenson, PA Fadiran, O Fazely, AR Fedynitch, A Feintzeig, J Feusels, T Filimonov, K Finley, C Fischer-Wasels, T Flis, S Franckowiak, A Franke, R Frantzen, K Fuchs, T Gaisser, TK Gallagher, J Gerhardt, L Gladstone, L Glusenkamp, T Goldschmidt, A Golup, G Gonzalez, JG Goodman, JA Gora, D Grandmont, DT Grant, D Gross, A Ha, C Ismail, AH Hallen, P Hallgren, A Halzen, F Hanson, K Heereman, D Heinen, D Helbing, K Hellauer, R Hickford, S Hill, GC Hoffman, KD Hoffmann, R Homeier, A Hoshina, K Huelsnitz, W Hulth, PO Hultqvist, K Hussain, S Ishihara, A Jacobi, E Jacobsen, J Jagielski, K Japaridze, GS Jero, K Jlelati, O Kaminsky, B Kappes, A Karg, T Karle, A Kelley, JL Kiryluk, J Kislat, F Klas, J Klein, SR Kohne, JH Kohnen, G Kolanoski, H Kopke, L Kopper, C Kopper, S Koskinen, DJ Kowalski, M Krasberg, M Krings, K Kroll, G Kunnen, J Kurahashi, N Kuwabara, T Labare, M Landsman, H Larson, MJ Lesiak-Bzdak, M Leuermann, M Leute, J Lunemann, J Madsen, J Maruyama, R Mase, K Matis, HS McNally, F Meagher, K Merck, M Meszaros, P Meures, T Miarecki, S Middell, E Milke, N Miller, J Mohrmann, L Montaruli, T Morse, R Nahnhauer, R Naumann, U Niederhausen, H Nowicki, SC Nygren, DR Obertacke, A Odrowski, S Olivas, A Olivo, M O'Murchadha, A Palazzo, A Paul, L Pepper, JA de los Heros, CP Pfendner, C Pieloth, D Pinat, E Pirk, N Posselt, J Price, PB Przybylski, GT Radel, L Rameez, M Rawlins, K Redl, P Reimann, R Resconi, E Rhode, W Ribordy, M Richman, M Riedel, B Rodrigues, JP Rott, C Ruhe, T Ruzybayev, B Ryckbosch, D Saba, SM Salameh, T Sander, HG Santander, M Sarkar, S Schatto, K Scheel, M Scheriau, F Schmidt, T Schmitz, M Schoenen, S Schoneberg, S Schonwald, A Schukraft, A Schulte, L Schulz, O Seckel, D Sestayo, Y Seunarine, S Sheremata, C Smith, MWE Soldin, D Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stasik, A Stezelberger, T Stokstad, RG Stoss, A Strahler, EA Strom, R Sullivan, GW Taavola, H Taboada, I Tamburro, A Tepe, A Ter-Antonyan, S Tesic, G Tilav, S Toale, PA Toscano, S Usner, M van der Drift, D van Eijndhoven, N Van Overloop, A van Santen, J Vehring, M Voge, M Vraeghe, M Walck, C Waldenmaier, T Wallraff, M Wasserman, R Weaver, C Wellons, M Wendt, C Westerhoff, S Whitehorn, N Wiebe, K Wiebusch, CH Williams, DR Wissing, H Wolf, M Wood, TR Woschnagg, K Xu, C Xu, DL Xu, XW Yanez, JP Yodh, G Yoshida, S Zarzhitsky, P Ziemann, J Zierke, S Zoll, M AF Aartsen, M. G. Abbasi, R. Abdou, Y. Ackermann, M. Adams, J. Aguilar, J. A. Ahlers, M. Altmann, D. Auffenberg, J. Bai, X. Baker, M. Barwick, S. W. Baum, V. Bay, R. Beatty, J. J. Bechet, S. Tjus, J. Becker Becker, K. -H. Bell, M. Benabderrahmane, M. L. BenZvi, S. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bernhard, A. Bertrand, D. Besson, D. Z. Binder, G. Bindig, D. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. J. Bohaichuk, S. Bohm, C. Bose, D. Boeser, S. Botner, O. Brayeur, L. Bretz, H. -P. Brown, A. M. Bruijn, R. Brunner, J. Carson, M. Casey, J. Casier, M. Chirkin, D. Christov, A. Christy, B. Clark, K. Clevermann, F. Coenders, S. Cohen, S. Cowen, D. F. Silva, A. H. Cruz Danninger, M. Daughhetee, J. Davis, J. C. De Clercq, C. De Ridder, S. Desiati, P. de With, M. DeYoung, T. Diaz-Velez, J. C. Dunkman, M. Eagan, R. Eberhardt, B. Eisch, J. Ellsworth, R. W. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Fedynitch, A. Feintzeig, J. Feusels, T. Filimonov, K. Finley, C. Fischer-Wasels, T. Flis, S. Franckowiak, A. Franke, R. Frantzen, K. Fuchs, T. Gaisser, T. K. Gallagher, J. Gerhardt, L. Gladstone, L. Gluesenkamp, T. Goldschmidt, A. Golup, G. Gonzalez, J. G. Goodman, J. A. Gora, D. Grandmont, D. T. Grant, D. Gross, A. Ha, C. Ismail, A. Haj Hallen, P. Hallgren, A. Halzen, F. Hanson, K. Heereman, D. Heinen, D. Helbing, K. Hellauer, R. Hickford, S. Hill, G. C. Hoffman, K. D. Hoffmann, R. Homeier, A. Hoshina, K. Huelsnitz, W. Hulth, P. O. Hultqvist, K. Hussain, S. Ishihara, A. Jacobi, E. Jacobsen, J. Jagielski, K. Japaridze, G. S. Jero, K. Jlelati, O. Kaminsky, B. Kappes, A. Karg, T. Karle, A. Kelley, J. L. Kiryluk, J. Kislat, F. Klaes, J. Klein, S. R. Koehne, J. -H. Kohnen, G. Kolanoski, H. Koepke, L. Kopper, C. Kopper, S. Koskinen, D. J. Kowalski, M. Krasberg, M. Krings, K. Kroll, G. Kunnen, J. Kurahashi, N. Kuwabara, T. Labare, M. Landsman, H. Larson, M. J. Lesiak-Bzdak, M. Leuermann, M. Leute, J. Luenemann, J. Madsen, J. Maruyama, R. Mase, K. Matis, H. S. McNally, F. Meagher, K. Merck, M. Meszaros, P. Meures, T. Miarecki, S. Middell, E. Milke, N. Miller, J. Mohrmann, L. Montaruli, T. Morse, R. Nahnhauer, R. Naumann, U. Niederhausen, H. Nowicki, S. C. Nygren, D. R. Obertacke, A. Odrowski, S. Olivas, A. Olivo, M. O'Murchadha, A. Palazzo, A. Paul, L. Pepper, J. A. de los Heros, C. Perez Pfendner, C. Pieloth, D. Pinat, E. Pirk, N. Posselt, J. Price, P. B. Przybylski, G. T. Raedel, L. Rameez, M. Rawlins, K. Redl, P. Reimann, R. Resconi, E. Rhode, W. Ribordy, M. Richman, M. Riedel, B. Rodrigues, J. P. Rott, C. Ruhe, T. Ruzybayev, B. Ryckbosch, D. Saba, S. M. Salameh, T. Sander, H. -G. Santander, M. Sarkar, S. Schatto, K. Scheel, M. Scheriau, F. Schmidt, T. Schmitz, M. Schoenen, S. Schoeneberg, S. Schoenwald, A. Schukraft, A. Schulte, L. Schulz, O. Seckel, D. Sestayo, Y. Seunarine, S. Sheremata, C. Smith, M. W. E. Soldin, D. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stasik, A. Stezelberger, T. Stokstad, R. G. Stoess, A. Strahler, E. A. Stroem, R. Sullivan, G. W. Taavola, H. Taboada, I. Tamburro, A. Tepe, A. Ter-Antonyan, S. Tesic, G. Tilav, S. Toale, P. A. Toscano, S. Usner, M. van der Drift, D. van Eijndhoven, N. Van Overloop, A. van Santen, J. Vehring, M. Voge, M. Vraeghe, M. Walck, C. Waldenmaier, T. Wallraff, M. Wasserman, R. Weaver, Ch. Wellons, M. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebe, K. Wiebusch, C. H. Williams, D. R. Wissing, H. Wolf, M. Wood, T. R. Woschnagg, K. Xu, C. Xu, D. L. Xu, X. W. Yanez, J. P. Yodh, G. Yoshida, S. Zarzhitsky, P. Ziemann, J. Zierke, S. Zoll, M. CA IceCube Collaboration TI Measurement of Atmospheric Neutrino Oscillations with IceCube SO PHYSICAL REVIEW LETTERS LA English DT Article ID PERFORMANCE; TELESCOPE; SYSTEM AB We present the first statistically significant detection of neutrino oscillations in the high-energy regime (> 20 GeV) from an analysis of IceCube Neutrino Observatory data collected in 2010 and 2011. This measurement is made possible by the low-energy threshold of the DeepCore detector (similar to 20 GeV) and benefits from the use of the IceCube detector as a veto against cosmic-ray-induced muon background. The oscillation signal was detected within a low-energy muon neutrino sample (20-100 GeV) extracted from data collected by DeepCore. A high-energy muon neutrino sample (100 GeV-10 TeV) was extracted from IceCube data to constrain systematic uncertainties. The disappearance of low-energy upward-going muon neutrinos was observed, and the nonoscillation hypothesis is rejected with more than 5 sigma significance. In a two-neutrino flavor formalism, our data are best described by the atmospheric neutrino oscillation parameters vertical bar Delta m(32)(2)vertical bar = (2.3(-0.5)(+0.6)) x 10(-3) eV(2) and sin(2) (2 theta(23)) > 0.93, and maximum mixing is favored. C1 [Bissok, M.; Blumenthal, J.; Coenders, S.; Euler, S.; Hallen, P.; Heinen, D.; Jagielski, K.; Krings, K.; Leuermann, M.; Paul, L.; Raedel, L.; Reimann, R.; Scheel, M.; Schoenen, S.; Schukraft, A.; Vehring, M.; Wallraff, M.; Wiebusch, C. H.; Zierke, S.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Aartsen, M. G.; Hill, G. C.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. [Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Bay, R.; Binder, G.; Filimonov, K.; Gerhardt, L.; Ha, C.; Klein, S. R.; Miarecki, S.; Price, P. B.; van der Drift, D.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Binder, G.; Gerhardt, L.; Goldschmidt, A.; Ha, C.; Klein, S. R.; Matis, H. S.; Miarecki, S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.; van der Drift, D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Altmann, D.; de With, M.; Kappes, A.; Kolanoski, H.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Tjus, J. Becker; Fedynitch, A.; Olivo, M.; Saba, S. M.; Schoeneberg, S.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Boeser, S.; Franckowiak, A.; Homeier, A.; Kowalski, M.; Schulte, L.; Stasik, A.; Usner, M.; Voge, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Bechet, S.; Bertrand, D.; Hanson, K.; Heereman, D.; Meures, T.; O'Murchadha, A.; Pinat, E.] Univ Libre Brussels, Sci Fac CP230, B-1050 Brussels, Belgium. [Bose, D.; Brayeur, L.; Casier, M.; De Clercq, C.; Golup, G.; Kunnen, J.; Labare, M.; Miller, J.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Ishihara, A.; Mase, K.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Adams, J.; Brown, A. M.; Hickford, S.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Berley, D.; Blaufuss, E.; Christy, B.; Ellsworth, R. W.; Goodman, J. A.; Hellauer, R.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Clevermann, F.; Frantzen, K.; Fuchs, T.; Koehne, J. -H.; Milke, N.; Pieloth, D.; Rhode, W.; Ruhe, T.; Scheriau, F.; Schmitz, M.; Ziemann, J.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Bohaichuk, S.; Grandmont, D. T.; Grant, D.; Nowicki, S. C.; Sheremata, C.; Wood, T. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada. [Aguilar, J. A.; Christov, A.; Montaruli, T.; Rameez, M.] Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland. [Abdou, Y.; Bernhard, A.; Carson, M.; De Ridder, S.; Feusels, T.; Ismail, A. Haj; Jlelati, O.; Ryckbosch, D.; Van Overloop, A.; Vraeghe, M.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Barwick, S. W.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bruijn, R.; Cohen, S.; Ribordy, M.] Ecole Polytech Fed Lausanne, High Energy Phys Lab, CH-1015 Lausanne, Switzerland. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Abbasi, R.; Ahlers, M.; Auffenberg, J.; Baker, M.; BenZvi, S.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Jero, K.; Karle, A.; Kelley, J. L.; Kopper, C.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; McNally, F.; Merck, M.; Morse, R.; Riedel, B.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Abbasi, R.; Ahlers, M.; Auffenberg, J.; Baker, M.; BenZvi, S.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Jero, K.; Karle, A.; Kelley, J. L.; Kopper, C.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; McNally, F.; Merck, M.; Morse, R.; Riedel, B.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA. [Baum, V.; Eberhardt, B.; Koepke, L.; Kroll, G.; Luenemann, J.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Bernhard, A.; Gross, A.; Leute, J.; Odrowski, S.; Resconi, E.; Schulz, O.; Sestayo, Y.] Tech Univ Munich, D-85748 Garching, Germany. [Bai, X.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.; Xu, C.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Bai, X.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.; Xu, C.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Madsen, J.; Seunarine, S.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Kiryluk, J.; Lesiak-Bzdak, M.; Niederhausen, H.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Rott, C.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Larson, M. J.; Pepper, J. A.; Toale, P. A.; Williams, D. R.; Xu, D. L.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Cowen, D. F.; Meszaros, P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Bell, M.; Clark, K.; Cowen, D. F.; DeYoung, T.; Dunkman, M.; Eagan, R.; Koskinen, D. J.; Meszaros, P.; Salameh, T.; Smith, M. W. E.; Tesic, G.; Wasserman, R.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Boersma, D. J.; Botner, O.; Hallgren, A.; de los Heros, C. Perez; Stroem, R.; Taavola, H.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Becker, K. -H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Posselt, J.; Soldin, D.; Tepe, A.] Berg Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Ackermann, M.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Bernardini, E.; Bretz, H. -P.; Brunner, J.; Silva, A. H. Cruz; Franke, R.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Kaminsky, B.; Karg, T.; Kislat, F.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Pirk, N.; Schoenwald, A.; Spiering, C.; Stoess, A.; Yanez, J. P.] DESY, D-15735 Zeuthen, Germany. [Palazzo, A.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Montaruli, T.] Ist Nazl Fis Nucl, Dipartimento Fis, I-70126 Bari, Italy. RP Gross, A (reprint author), Tech Univ Munich, D-85748 Garching, Germany. EM Andreas.Gross@tum.de RI Taavola, Henric/B-4497-2011; Tjus, Julia/G-8145-2012; Wiebusch, Christopher/G-6490-2012; Auffenberg, Jan/D-3954-2014; Koskinen, David/G-3236-2014; Brunner, Juergen/G-3540-2015; Aguilar Sanchez, Juan Antonio/H-4467-2015; Maruyama, Reina/A-1064-2013; Sarkar, Subir/G-5978-2011; Beatty, James/D-9310-2011; OI Schukraft, Anne/0000-0002-9112-5479; Taavola, Henric/0000-0002-2604-2810; Perez de los Heros, Carlos/0000-0002-2084-5866; Benabderrahmane, Mohamed Lotfi/0000-0003-4410-5886; Carson, Michael/0000-0003-0400-7819; Wiebusch, Christopher/0000-0002-6418-3008; Auffenberg, Jan/0000-0002-1185-9094; Koskinen, David/0000-0002-0514-5917; Brunner, Juergen/0000-0002-5052-7236; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Maruyama, Reina/0000-0003-2794-512X; Sarkar, Subir/0000-0002-3542-858X; Beatty, James/0000-0003-0481-4952; Rott, Carsten/0000-0002-6958-6033; Ter-Antonyan, Samvel/0000-0002-5788-1369 FU U.S. National Science Foundation-Office of Polar Programs; U.S. National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; Grid Laboratory of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison; Open Science Grid (OSG) infrastructure; U.S. Department of Energy and National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI) grid computing resources, USA; Natural Sciences and Engineering Research Council of Canada, WestGrid; Compute/Calcul, Canada; Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); Helmholtz Alliance for Astroparticle Physics (HAP); Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO Odysseus programme; Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office (Belspo), Belgium; University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS), Japan; Swiss National Science Foundation (SNSF), Switzerland FX We acknowledge support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison, the Open Science Grid (OSG) infrastructure, U.S. Department of Energy and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources, USA; Natural Sciences and Engineering Research Council of Canada, WestGrid, and Compute/Calcul, Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo), Belgium; University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS), Japan; and the Swiss National Science Foundation (SNSF), Switzerland. NR 16 TC 40 Z9 40 U1 0 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 19 PY 2013 VL 111 IS 8 AR 081801 DI 10.1103/PhysRevLett.111.081801 PG 6 WC Physics, Multidisciplinary SC Physics GA 203ZW UT WOS:000323334900005 PM 24010427 ER PT J AU Callaghan, TV Jonasson, C Thierfelder, T Yang, ZL Hedenas, H Johansson, M Molau, U Van Bogaert, R Michelsen, A Olofsson, J Gwynn-Jones, D Bokhorst, S Phoenix, G Bjerke, JW Tommervik, H Christensen, TR Hanna, E Koller, EK Sloan, VL AF Callaghan, Terry V. Jonasson, Christer Thierfelder, Tomas Yang, Zhenlin Hedenas, Henrik Johansson, Margareta Molau, Ulf Van Bogaert, Rik Michelsen, Anders Olofsson, Johan Gwynn-Jones, Dylan Bokhorst, Stef Phoenix, Gareth Bjerke, Jarle W. Tommervik, Hans Christensen, Torben R. Hanna, Edward Koller, Eva K. Sloan, Victoria L. TI Ecosystem change and stability over multiple decades in the Swedish subarctic: complex processes and multiple drivers SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES LA English DT Article DE subarctic environment; climate change impacts; ecosystem stability ID WINTER WARMING EVENTS; SIMULATED ENVIRONMENTAL-CHANGE; TUNDRA VEGETATION CHANGE; RECENT CLIMATE-CHANGE; PROJECT IPY-BTF; POLAR YEAR-BACK; ENHANCED UV-B; NORTHERN SWEDEN; SHRUB EXPANSION; TREE-LINE AB The subarctic environment of northernmost Sweden has changed over the past century, particularly elements of climate and cryosphere. This paper presents a unique geo-referenced record of environmental and ecosystem observations from the area since 1913. Abiotic changes have been substantial. Vegetation changes include not only increases in growth and range extension but also counterintuitive decreases, and stability: all three possible responses. Changes in species composition within the major plant communities have ranged between almost no changes to almost a 50 per cent increase in the number of species. Changes in plant species abundance also vary with particularly large increases in trees and shrubs (up to 600%). There has been an increase in abundance of aspen and large changes in other plant communities responding to wetland area increases resulting from permafrost thaw. Populations of herbivores have responded to varying management practices and climate regimes, particularly changing snow conditions. While it is difficult to generalize and scale-up the site-specific changes in ecosystems, this very site-specificity, combined with projections of change, is of immediate relevance to local stakeholders who need to adapt to new opportunities and to respond to challenges. Furthermore, the relatively small area and its unique datasets are a microcosm of the complexity of Arctic landscapes in transition that remains to be documented. C1 [Callaghan, Terry V.; Jonasson, Christer; Yang, Zhenlin; Johansson, Margareta] Royal Swedish Acad Sci, S-10405 Stockholm, Sweden. [Callaghan, Terry V.; Yang, Zhenlin; Phoenix, Gareth; Koller, Eva K.; Sloan, Victoria L.] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England. [Jonasson, Christer] Polar Res Secretariat, S-11418 Stockholm, Sweden. [Thierfelder, Tomas] Swedish Univ Agr Sci, S-75007 Uppsala, Sweden. [Hedenas, Henrik; Bokhorst, Stef] Swedish Univ Agr Sci, Dept Forest Resource Management, S-90183 Umea, Sweden. [Johansson, Margareta; Christensen, Torben R.] Lund Univ, Dept Phys Geog & Ecosyst Sci, S-22362 Lund, Sweden. [Molau, Ulf] Univ Gothenburg, Dept Biol & Environm Sci, S-40530 Gothenburg, Sweden. [Molau, Ulf] Stockholm Univ, Stockholm Resilience Ctr, S-10691 Stockholm, Sweden. [Van Bogaert, Rik] Nat Resources Canada, Canadian Forest Serv, Toronto, ON, Canada. [Michelsen, Anders] Univ Copenhagen, Ctr Permafrost CENPERM, DK-1350 Copenhagen K, Denmark. [Olofsson, Johan] Umea Univ, Dept Ecol & Environm Sci, S-90187 Umea, Sweden. [Gwynn-Jones, Dylan] Aberystwyth Univ, Aberystwyth, Dyfed, Wales. [Bjerke, Jarle W.; Tommervik, Hans] Norwegian Inst Nat Res, FRAM High North Res Ctr Climate & Environm, N-9296 Tromso, Norway. [Christensen, Torben R.] Greenland Climate Res Ctr, Nuuk, Greenland. [Hanna, Edward] Univ Sheffield, Dept Geog, Sheffield S10 2TN, S Yorkshire, England. [Koller, Eva K.] Bangor Univ, Sch Environm Nat Resources & Geog, Bangor LL57 2UW, Gwynedd, Wales. [Sloan, Victoria L.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Callaghan, TV (reprint author), Royal Swedish Acad Sci, POB 500 05, S-10405 Stockholm, Sweden. EM terry_callaghan@btinternet.com RI Michelsen, Anders/L-5279-2014; Hanna, Edward/H-2219-2016; Callaghan, Terens/N-7640-2014; OI Michelsen, Anders/0000-0002-9541-8658; Hanna, Edward/0000-0002-8683-182X; Phoenix, Gareth/0000-0002-0911-8107; Bjerke, Jarle/0000-0003-2721-1492 FU FORMAS [214-2008-188, 214-2009-389]; Research Council of Norway [216434/E10] FX All authors wish to thank the many national and international funding bodies that have funded the projects synthesized in this paper. T. V. C. and C.J. wish to thank FORMAS for funding the projects 'Climate change, impacts and adaptation in the subarctic: a case study from the northern Swedish mountains' (214-2008-188) and 'Advanced simulation of Arctic climate change and impact on Northern regions' (214-2009-389) to which this paper contributes. J.W.B., H. T., T. V. C. and S. B. gratefully acknowledge the Research Council of Norway for grant number 216434/E10, 'Extreme winter warming in the High North and its biological effects in the past, present and future'. The study also contributes to the EU Framework 7 Infrastructure Project 'INTERACT' (www.eu-interact.org). NR 167 TC 30 Z9 30 U1 10 U2 147 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 0962-8436 EI 1471-2970 J9 PHILOS T R SOC B JI Philos. Trans. R. Soc. B-Biol. Sci. PD AUG 19 PY 2013 VL 368 IS 1624 AR UNSP 20120488 DI 10.1098/rstb.2012.0488 PG 18 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 180AR UT WOS:000321565600009 PM 23836792 ER PT J AU Devenport, WJ Burdisso, RA Borgoltz, A Ravetta, PA Barone, MF Brown, KA Morton, MA AF Devenport, William J. Burdisso, Ricardo A. Borgoltz, Aurelien Ravetta, Patricio A. Barone, Matthew F. Brown, Kenneth A. Morton, Michael A. TI The Kevlar-walled anechoic wind tunnel SO JOURNAL OF SOUND AND VIBRATION LA English DT Article AB The aerodynamic and acoustic performance of an anechoic wind tunnel test section with walls made from thin Kevlar cloth have been measured and analyzed. The Kevlar test section offers some advantages over a conventional free-jet arrangement The cloth contains the bulk of the flow but permits the transmission of sound with little loss. The containment results in smaller far-field aerodynamic corrections meaning that larger models can be tested at higher Reynolds numbers. The containment also eliminates the. need for a jet catcher and allows for a much longer test section. Model-generated noise is thus more easily separated from facility background using beamforming. Measurements and analysis of acoustic and aerodynamic corrections for a Kevlar-walled test section are presented and discussed, along with benchmark trailing edge noise measurements. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Devenport, William J.; Burdisso, Ricardo A.; Borgoltz, Aurelien; Brown, Kenneth A.; Morton, Michael A.] Virginia Tech, Blacksburg, VA 24061 USA. [Ravetta, Patricio A.] AVEC Inc, Blacksburg, VA 24060 USA. [Barone, Matthew F.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Devenport, WJ (reprint author), Virginia Tech, Blacksburg, VA 24061 USA. EM devenport@vt.edu FU Office of Naval Research under DURIP [N00014-04-1-04933]; NREL [ZAM-4-33226-011]; Sandia National Laboratories [PO 872540]; GE Global Research [PO 400017513] FX The hybrid Kevlar wind tunnel development was initially funded by the Office of Naval Research under DURIP Grant N00014-04-1-04933 and by NREL under grant ZAM-4-33226-011. Components of this work were also performed under sponsorship from Sandia National Laboratories (PO 872540) and GE Global Research (PO 400017513). We would also like to gratefully acknowledge the advice and support of Drs. Ron Joslin and Ki-Han Kim (ONR), Drs. Kevin Kinzie, Trevor Wood, Jon Luedke, Chris Carroll and Domenic von Terzi (GE), Dr. Anurag Gupta (Vestas), Dr. Dale Berg (Sandia), and Drs. Pat Moriarty and Paul Migliore (NREL), in performing these studies. NR 18 TC 9 Z9 9 U1 1 U2 6 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-460X J9 J SOUND VIB JI J. Sound Vibr. PD AUG 19 PY 2013 VL 332 IS 17 BP 3971 EP 3991 DI 10.1016/j.jsv.2013.02.043 PG 21 WC Acoustics; Engineering, Mechanical; Mechanics SC Acoustics; Engineering; Mechanics GA 168BN UT WOS:000320680800008 ER PT J AU Silva, RM TeeSy, C Franzi, L Weir, A Westerhoff, P Evans, JE Pinkerton, KE AF Silva, Rona M. TeeSy, Christel Franzi, Lisa Weir, Alex Westerhoff, Paul Evans, James E. Pinkerton, Kent E. TI BIOLOGICAL RESPONSE TO NANO-SCALE TITANIUM DIOXIDE (TiO2): ROLE OF PARTICLE DOSE, SHAPE, AND RETENTION SO JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH-PART A-CURRENT ISSUES LA English DT Article ID IN-VIVO; SURFACE-AREA; PULMONARY TOXICITY; OXIDATIVE STRESS; INTERLABORATORY EVALUATION; ENGINEERED NANOMATERIALS; INFLAMMATORY RESPONSES; NANOPARTICLE EXPOSURE; ULTRAFINE PARTICLES; GENE-EXPRESSION AB Titanium dioxide (TiO2) is one of the most widely used nanomaterials, valued for its highly refractive, photocatalytic, and pigmenting properties. TiO2 is also classified by the International Agency for Research on Cancer (IARC) as a possible human carcinogen. The objectives of this study were to (1) establish a lowest-observed-effect level (LOEL) for nano-scale TiO2, (2) determine TiO2 uptake in the lungs, and (3) estimate toxicity based on physicochemical properties and retention in the lungs. In vivo lung toxicity of nano-scale TiO2 using varying forms of well-characterized, highly dispersed TiO2 was assessed. Anatase/rutile P25 spheres (TiO2-P25), pure anatase spheres (TiO2-A), and anatase nanobelts (TiO2-NB) were tested. To determine the effects of dose and particle characteristics, male Sprague-Dawley rats were administered TiO2 (0, 20, 70, or 200 g) via intratracheal instillation. Bronchoalveolar lavage fluid (BALF) and lung tissue were obtained for analysis 1 and 7 d post exposure. Despite abundant TiO2 inclusions in all exposed animals, only TiO2-NB displayed any significant degree of inflammation seen in BALF at the 1-d time point. This inflammation resolved by 7 d, although TiO2 particles had not cleared from alveolar macrophages recovered from the lung. Histological examination showed TiO2-NB produced cellular changes at d 1 that were still evident at d 7. Data indicate TiO2-NB is the most inflammatory with a LOEL of 200 g at 1 d post instillation. C1 [Silva, Rona M.; TeeSy, Christel; Pinkerton, Kent E.] Univ Calif Davis, Ctr Hlth & Environm, Davis, CA 95616 USA. [Franzi, Lisa] Univ Calif Davis, Sch Med, CCRBM, Dept Pulm & Crit Care Med, Davis, CA 95616 USA. [Weir, Alex; Westerhoff, Paul] Arizona State Univ, Sch Sustainable Engn & Built Environm, Tempe, AZ USA. [Evans, James E.] Univ Calif Davis, Dept Mol & Cellular Biol, Davis, CA 95616 USA. [Evans, James E.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Pinkerton, KE (reprint author), Univ Calif Davis, Ctr Hlth & Environm, 1 Shields Ave, Davis, CA 95616 USA. EM kepinkerton@ucdavis.edu FU University of California; Davis Atmospheric Aerosols and Health Lead Campus Program; NIEHS Nano Grand Opportunities (NanoGO) Challenge Grants [RC1 ES018232, RC2 DE-FG02-08ER64613]; NIEHS [1U01ES020127-01]; Engineered Nanomaterials: Linking Physical and Chemical Properties to Biology; Battelle Memorial Institute for the U.S. Department of Energy [DE-AC05-76RL01830] FX Support for this research was provided by: University of California, Davis Atmospheric Aerosols and Health Lead Campus Program (aah.ucdavis.edu); NIEHS Nano Grand Opportunities (NanoGO) Challenge Grants (RC1 ES018232 and RC2 DE-FG02-08ER64613); and NIEHS 1U01ES020127-01, Engineered Nanomaterials: Linking Physical and Chemical Properties to Biology. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC05-76RL01830. We thank Imelda Espiritu, Katherine Johnson, Amy Madl, Dipti Munshi, Leng Mut, Janice Peake, Laurel Plummer, Vish Seshachellam, Esther Shin, and Dale Uyeminami for technical assistance, and Drs. Ting Guo, Angie Louie, Otto Raabe, and Laura Van Winkle for insightful discussions during the course of this study, as well as Suzette Smiley-Jewell for article preparation. The writing of the article was the sole responsibility of the authors. It has not been published and/or submitted simultaneously for publication elsewhere. NR 57 TC 25 Z9 25 U1 1 U2 37 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1528-7394 EI 1087-2620 J9 J TOXICOL ENV HEAL A JI J. Toxicol. Env. Health Part A PD AUG 18 PY 2013 VL 76 IS 16 BP 953 EP 972 DI 10.1080/15287394.2013.826567 PG 20 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 240BI UT WOS:000326069300001 PM 24156719 ER PT J AU Scheckel, KG Diamond, GL Burgess, MF Klotzbach, JM Maddaloni, M Miller, BW Partridge, CR Serda, SM AF Scheckel, Kirk G. Diamond, Gary L. Burgess, Michele F. Klotzbach, Julie M. Maddaloni, Mark Miller, Bradley W. Partridge, Charles R. Serda, Sophia M. TI AMENDING SOILS WITH PHOSPHATE AS MEANS TO MITIGATE SOIL LEAD HAZARD: A CRITICAL REVIEW OF THE STATE OF THE SCIENCE SO JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH-PART B-CRITICAL REVIEWS LA English DT Review ID SMELTER-CONTAMINATED SOIL; IN-SITU STABILIZATION; SEQUENTIAL EXTRACTION PROCEDURE; DISSOLVED ORGANIC-CARBON; VARYING PH CONDITIONS; FIRING RANGE SOILS; 25 DEGREES C; ARSENIC UPTAKE; RELATIVE BIOAVAILABILITY; ENVIRONMENTAL LEAD AB Ingested soil and surface dust may be important contributors to elevated blood lead (Pb) levels in children exposed to Pb contaminated environments. Mitigation strategies have typically focused on excavation and removal of the contaminated soil. However, this is not always feasible for addressing widely disseminated contamination in populated areas often encountered in urban environments. The rationale for amending soils with phosphate is that phosphate will promote formation of highly insoluble Pb species (e.g., pyromorphite minerals) in soil, which will remain insoluble after ingestion and, therefore, inaccessible to absorption mechanisms in the gastrointestinal tract (GIT). Amending soil with phosphate might potentially be used in combination with other methods that reduce contact with or migration of contaminated soils, such as covering the soil with a green cap such as sod, clean soil with mulch, raised garden beds, or gravel. These remediation strategies may be less expensive and far less disruptive than excavation and removal of soil. This review evaluates evidence for efficacy of phosphate amendments for decreasing soil Pb bioavailability. Evidence is reviewed for (1) physical and chemical interactions of Pb and phosphate that would be expected to influence bioavailability, (2) effects of phosphate amendments on soil Pb bioaccessibility (i.e., predicted solubility of Pb in the GIT), and (3) results of bioavailability bioassays of amended soils conducted in humans and animal models. Practical implementation issues, such as criteria and methods for evaluating efficacy, and potential effects of phosphate on mobility and bioavailability of co-contaminants in soil are also discussed. C1 [Scheckel, Kirk G.] US EPA, Off Res & Dev, Cincinnati, OH 45224 USA. [Diamond, Gary L.; Klotzbach, Julie M.] SRC Inc, North Syracuse, NY USA. [Burgess, Michele F.] US EPA, Off Superfund Remediat & Technol Innovat, Washington, DC 20460 USA. [Maddaloni, Mark] US EPA, New York, NY USA. [Miller, Bradley W.] Oak Ridge Inst Sci & Educ, Cincinnati, OH USA. [Partridge, Charles R.] US EPA, Denver, CO USA. [Serda, Sophia M.] US EPA, San Francisco, CA USA. RP Scheckel, KG (reprint author), US EPA, 5995 Ctr Hill Ave, Cincinnati, OH 45224 USA. EM scheckel.kirk@epa.gov OI Scheckel, Kirk/0000-0001-9326-9241 FU U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation (OSRTI), under General Services Administration [GS 00F 0019L]; U.S. EPA Region 9 Superfund Program; U.S. EPA OSRTI Technical Review Workgroup Bioavailability Committee; U.S. Environmental Protection Agency FX Portions of this work were funded by the U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation (OSRTI), under General Services Administration contract GS 00F 0019L. The authors gratefully acknowledge support from U.S. EPA Region 9 Superfund Program and the U.S. EPA OSRTI Technical Review Workgroup Bioavailability Committee. The U.S. Environmental Protection Agency funded and managed the research described here. It has been subjected to agency review and approved for publication. No attempt was made to validate data in the cited literature. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. NR 224 TC 33 Z9 34 U1 14 U2 89 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1093-7404 EI 1521-6950 J9 J TOXICOL ENV HEAL B JI J. Toxicol. Env. Health-Pt b-Crit. Rev. PD AUG 18 PY 2013 VL 16 IS 6 BP 337 EP 380 DI 10.1080/10937404.2013.825216 PG 44 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 240AK UT WOS:000326066900001 PM 24151967 ER PT J AU Heyn, T Anitescu, M Tasora, A Negrut, D AF Heyn, Toby Anitescu, Mihai Tasora, Alessandro Negrut, Dan TI Using Krylov subspace and spectral methods for solving complementarity problems in many-body contact dynamics simulation SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE solids; contact; differential equations; multibody dynamics ID RIGID MULTIBODY DYNAMICS; GRADIENT-METHOD; LARGE-SCALE; CONVEX-SETS; FRICTION; CONSTRAINTS; BARZILAI; CONVERGENCE; FORMULATION; NONSMOOTH AB Many-body dynamics problems are expected to handle millions of unknowns when, for instance, investigating the three-dimensional flow of granular material. Unfortunately, the size of the problems tractable by existing numerical solution techniques is severely limited on convergence grounds. This is typically the case when the equations of motion embed a differential variational inequality problem that captures contact and possibly frictional interactions between rigid and/or flexible bodies. As the size of the physical system increases, the speed and/or the quality of the numerical solution decreases. This paper describes three methods - the gradient projected minimum residual method, the preconditioned spectral projected gradient with fallback method, and the modified proportioning with reduced gradient projection method - that demonstrate better scalability than the projected Jacobi and Gauss-Seidel methods commonly used to solve contact problems that draw on a differential-variational-inequality-based modeling approach. Copyright (c) 2013 John Wiley & Sons, Ltd. C1 [Heyn, Toby; Negrut, Dan] Univ Wisconsin, Dept Mech Engn, Madison, WI 53706 USA. [Anitescu, Mihai] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Tasora, Alessandro] Univ Parma, Dept Ind Engn, I-43100 Parma, Italy. RP Negrut, D (reprint author), 2035 Mech Engn Bldg,1513 Univ Ave, Madison, WI 53706 USA. EM negrut@engr.wisc.edu FU National Science Foundation [CMMI0840442]; Italian Ministry of Education [2007Z7K4ZB]; Office of Advanced Scientific Computing Research, Office of Science, US Department of Energy [DE-AC02-06CH11357] FX Financial support for Heyn and Negrut was provided in part by the National Science Foundation Award CMMI0840442. Financial support for Tasora was provided in part by the Italian Ministry of Education under the PRIN grant 2007Z7K4ZB. Anitescu was supported by the Office of Advanced Scientific Computing Research, Office of Science, US Department of Energy, under Contract DE-AC02-06CH11357. NR 58 TC 11 Z9 11 U1 2 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0029-5981 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD AUG 17 PY 2013 VL 95 IS 7 BP 541 EP 561 DI 10.1002/nme.4513 PG 21 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 183XJ UT WOS:000321850300001 ER PT J AU Jung, J Sethi, A Gaiotto, T Han, JJ Jeoh, T Gnanakaran, S Goodwin, PM AF Jung, Jaemyeong Sethi, Anurag Gaiotto, Tiziano Han, Jason J. Jeoh, Tina Gnanakaran, Sandrasegaram Goodwin, Peter M. TI Binding and Movement of Individual Cel7A Cellobiohydrolases on Crystalline Cellulose Surfaces Revealed by Single-molecule Fluorescence Imaging SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID TRICHODERMA-REESEI CELLULASES; ENZYMATIC-HYDROLYSIS; 1,4-BETA-D-GLUCAN CELLOBIOHYDROLASE; LIMITED PROTEOLYSIS; SUBSTRATE; ENZYMES; DOMAIN; ADSORPTION; KINETICS; PROBES AB The efficient catalytic conversion of biomass to bioenergy would meet a large portion of energy requirements in the near future. A crucial step in this process is the enzyme-catalyzed hydrolysis of cellulose to glucose that is then converted into fuel such as ethanol by fermentation. Here we use single-molecule fluorescence imaging to directly monitor the movement of individual Cel7A cellobiohydrolases from Trichoderma reesei (TrCel7A) on the surface of insoluble cellulose fibrils to elucidate molecular level details of cellulase activity. The motion of multiple, individual TrCel7A cellobiohydrolases was simultaneously recorded with similar to 15-nm spatial resolution. Time-resolved localization microscopy provides insights on the activity of TrCel7A on cellulose and informs on nonproductive binding and diffusion. Wemeasured single-molecule residency time distributions of TrCel7A bound to cellulose both in the presence of and absence of cellobiose the major product and a potent inhibitor of Cel7A activity. Combining these results with a kinetic model of TrCel7A binding provides microscopic insight into interactions between TrCel7A and the cellulose substrate. C1 [Jung, Jaemyeong; Han, Jason J.; Goodwin, Peter M.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87544 USA. [Sethi, Anurag; Gnanakaran, Sandrasegaram] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. [Gaiotto, Tiziano] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87544 USA. [Jeoh, Tina] Univ Calif Davis, Dept Biol & Agr Engn, Davis, CA 95616 USA. RP Goodwin, PM (reprint author), Los Alamos Natl Lab, Mail Stop K771, Los Alamos, NM 87545 USA. EM pmg@lanl.gov OI Gnanakaran, S/0000-0002-9368-3044 FU Los Alamos National Laboratory Directed Research and Development Exploratory Research Grant [20100129ER]; U.S. Department of Energy [DE-AC52-06NA25396] FX This work was supported by Los Alamos National Laboratory Directed Research and Development Exploratory Research Grant 20100129ER and U.S. Department of Energy Contract DE-AC52-06NA25396. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. NR 35 TC 17 Z9 17 U1 3 U2 29 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 EI 1083-351X J9 J BIOL CHEM JI J. Biol. Chem. PD AUG 16 PY 2013 VL 288 IS 33 BP 24164 EP 24172 DI 10.1074/jbc.M113.455758 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 302NO UT WOS:000330611400055 PM 23818525 ER PT J AU Mizanur, RM Frasca, V Swaminathan, S Bavari, S Webb, R Smith, LA Ahmed, SA AF Mizanur, Rahman M. Frasca, Verna Swaminathan, Subramanyam Bavari, Sina Webb, Robert Smith, Leonard A. Ahmed, S. Ashraf TI The C Terminus of the Catalytic Domain of Type A Botulinum Neurotoxin May Facilitate Product Release from the Active Site SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID TO-STRUCTURE PIPELINE; LIGHT-CHAIN; SUBSTRATE RECOGNITION; TRYPTOPHAN SYNTHASE; SEROTYPE-A; N-TERMINUS; PROTEOLYTIC ACTIVITY; CRYSTAL-STRUCTURE; PROTEASE ACTIVITY; IDENTIFICATION AB Botulinum neurotoxins are the most toxic of all compounds. The toxicity is related to a poor zinc endopeptidase activity located in a 50-kDa domain known as light chain (Lc) of the toxin. The C-terminal tail of Lc is not visible in any of the currently available x-ray structures, and it has no known function but undergoes autocatalytic truncations during purification and storage. By synthesizing C-terminal peptides of various lengths, in this study, we have shown that these peptides competitively inhibit the normal catalytic activity of Lc of serotypeA(LcA) and have defined the length of the mature LcA to consist of the first 444 residues. Two catalytically inactive mutants also inhibited LcA activity. Our results suggested that the C terminus of LcA might interact at or near its own active site. By using synthetic C-terminal peptides from LcB, LcC1, LcD, LcE, and LcF and their respective substrate peptides, we have shown that the inhibition of activity is specific only for LcA. Although a potent inhibitor with a K-i of 4.5 mu M, the largest of our LcA C-terminal peptides stimulated LcA activity when added at near-stoichiometric concentration to three versions of LcA differing in their C-terminal lengths. The result suggested a product removal role of the LcA C terminus. This suggestion is supported by a weak but specific interaction determined by isothermal titration calorimetry between an LcA C-terminal peptide and N-terminal product from a peptide substrate of LcA. Our results also underscore the importance of using a mature LcA as an inhibitor screening target. C1 [Mizanur, Rahman M.; Bavari, Sina; Webb, Robert; Ahmed, S. Ashraf] US Army, Integrated Toxicol Div, Med Res Inst Infect Dis, Ft Detrick, MD 21702 USA. [Frasca, Verna] GE Healthcare Life Sci, Northampton, MA 01060 USA. [Swaminathan, Subramanyam] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Smith, Leonard A.] Off Chief Scientist, Ft Detrick, MD 20854 USA. RP Ahmed, SA (reprint author), US Army, Integrated Toxicol Div, Med Res Inst Infect Dis, 1425 Porter St, Ft Detrick, MD 21702 USA. EM syed.ahmed@amedd.army.mil FU Defense Threat Reduction Agency-Joint Science and Technology Office for Chemical and Biological Defense Grant [JSTOCBD3.10012_06_RD_B]; National Research Council FX This work was supported in part by Defense Threat Reduction Agency-Joint Science and Technology Office for Chemical and Biological Defense Grant JSTOCBD3.10012_06_RD_B (to S. A. A.).; Supported by the National Research Council through the research associateship program. NR 48 TC 7 Z9 7 U1 0 U2 3 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 EI 1083-351X J9 J BIOL CHEM JI J. Biol. Chem. PD AUG 16 PY 2013 VL 288 IS 33 BP 24223 EP 24233 DI 10.1074/jbc.M113.451286 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 302NO UT WOS:000330611400060 PM 23779108 ER PT J AU Li, JLF Waliser, DE Stephens, G Lee, S L'Ecuyer, T Kato, S Loeb, N Ma, HY AF Li, J. -L. F. Waliser, D. E. Stephens, G. Lee, Seungwon L'Ecuyer, T. Kato, Seiji Loeb, Norman Ma, Hsi-Yen TI Characterizing and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary GCM, and reanalysis SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE Radiation; CMIP3; CMIP5 ID SATELLITE-OBSERVATIONS; ATMOSPHERE RADIATION; TRANSFER MODEL; ISCCP DATA; DATA SETS; IN-SITU; CLOUD; SURFACE; TOP; ECMWF AB We evaluate the annual mean radiative shortwave flux downward at the surface (RSDS) and reflected shortwave (RSUT) and radiative longwave flux upward at top of atmosphere (RLUT) from the twentieth century Coupled Model Intercomparison Project Phase 5 (CMIP5) and Phase 3 (CMIP3) simulations as well as from the NASA GEOS5 model and Modern-Era Retrospective Analysis for Research and Applications analysis. The results show that a majority of the models have significant regional biases in the annual means of RSDS, RLUT, and RSUT, with biases from -30 to 30Wm(-2). While the global average CMIP5 ensemble mean biases of RSDS, RLUT, and RSUT are reduced compared to CMIP3 by about 32% (e.g., -6.9 to 2.5Wm(-2)), 43%, and 56%, respectively. This reduction arises from a more complete cancellation of the pervasive negative biases over ocean and newly larger positive biases over land. In fact, based on these biases in the annual mean, Taylor diagram metrics, and RMSE, there is virtually no progress in the simulation fidelity of RSDS, RLUT, and RSUT fluxes from CMIP3 to CMIP5. A persistent systematic bias in CMIP3 and CMIP5 is the underestimation of RSUT and overestimation of RSDS and RLUT in the convectively active regions of the tropics. The amount of total ice and liquid atmospheric water content in these areas is also underestimated. We hypothesize that at least a part of these persistent biases stem from the common global climate model practice of ignoring the effects of precipitating and/or convective core ice and liquid in their radiation calculations. C1 [Li, J. -L. F.; Waliser, D. E.; Stephens, G.; Lee, Seungwon] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [L'Ecuyer, T.] Univ Wisconsin Madison, Madison, WI USA. [Kato, Seiji; Loeb, Norman] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Ma, Hsi-Yen] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Li, JLF (reprint author), CALTECH, Jet Prop Lab, NASA, MS 233-306K,4800 Ak Grove Dr, Pasadena, CA 91109 USA. EM Juilin.F.Li@jpl.nasa.gov RI Ma, Hsi-Yen/K-1019-2013; L'Ecuyer, Tristan/E-5607-2012 OI L'Ecuyer, Tristan/0000-0002-7584-4836 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We would like to thank the Editor and two reviewers for giving very insightful and helpful comments and suggestions. We thank Prof. M-D Chou/NCU and Dr. W-L Lee/RCEC-Academia Sinica for useful comments; Dr. Anthony Del Genio/NASA GISS, Dr. Ken Lo/NASA GISS, Dr. Voldoir Aurore/CNRM, Dr. Masahiro Watanabe and Dr. Shingo Watanabe/MIROC, Dr. Leon Rotstayn/CSIRO, Dr. Knut von Salzen/CCCma, Dr. Gary Strand/NCAR, Dr. Alf Kirkevag/NCC, Dr. Seiji Yukimoto/MRI, Dufresne Jean-Louis/IPSL, Dr. Tongwen Wu/BCC-CMA, and many other colleagues from climate modeling centers for providing model information. Thanks also to Prof. W-T Anne Chen/NTU when at JPL and Gregory Huey/JPL with data. The contributions by DEW and JLL to this study were carried out on behalf of the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The contribution of Hsi-Yen Ma to this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 65 TC 39 Z9 41 U1 0 U2 20 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 16 PY 2013 VL 118 IS 15 BP 8166 EP 8184 DI 10.1002/jgrd.50378 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 213DA UT WOS:000324032900004 ER PT J AU Kravitz, B Caldeira, K Boucher, O Robock, A Rasch, PJ Alterskjaer, K Karam, DB Cole, JNS Curry, CL Haywood, JM Irvine, PJ Ji, DY Jones, A Kristjansson, JE Lunt, DJ Moore, JC Niemeier, U Schmidt, H Schulz, M Singh, B Tilmes, S Watanabe, S Yang, ST Yoon, JH AF Kravitz, Ben Caldeira, Ken Boucher, Olivier Robock, Alan Rasch, Philip J. Alterskjaer, Kari Karam, Diana Bou Cole, Jason N. S. Curry, Charles L. Haywood, James M. Irvine, Peter J. Ji, Duoying Jones, Andy Kristjansson, Jon Egill Lunt, Daniel J. Moore, John C. Niemeier, Ulrike Schmidt, Hauke Schulz, Michael Singh, Balwinder Tilmes, Simone Watanabe, Shingo Yang, Shuting Yoon, Jin-Ho TI Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP) SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE geoengineering; model intercomparison ID LAND-SURFACE SCHEME; SOLAR-RADIATION MANAGEMENT; CARBON-CYCLE; TERRESTRIAL BIOSPHERE; HYDROLOGICAL CYCLE; VEGETATION MODEL; GISS MODELE; SYSTEM; IMPACT; PRECIPITATION AB Solar geoengineeringdeliberate reduction in the amount of solar radiation retained by the Earthhas been proposed as a means of counteracting some of the climatic effects of anthropogenic greenhouse gas emissions. We present results from Experiment G1 of the Geoengineering Model Intercomparison Project, in which 12 climate models have simulated the climate response to an abrupt quadrupling of CO2 from preindustrial concentrations brought into radiative balance via a globally uniform reduction in insolation. Models show this reduction largely offsets global mean surface temperature increases due to quadrupled CO2 concentrations and prevents 97% of the Arctic sea ice loss that would otherwise occur under high CO2 levels but, compared to the preindustrial climate, leaves the tropics cooler (-0.3K) and the poles warmer (+0.8K). Annual mean precipitation minus evaporation anomalies for G1 are less than 0.2mmday(-1) in magnitude over 92% of the globe, but some tropical regions receive less precipitation, in part due to increased moist static stability and suppression of convection. Global average net primary productivity increases by 120% in G1 over simulated preindustrial levels, primarily from CO2 fertilization, but also in part due to reduced plant heat stress compared to a high CO2 world with no geoengineering. All models show that uniform solar geoengineering in G1 cannot simultaneously return regional and global temperature and hydrologic cycle intensity to preindustrial levels. C1 [Kravitz, Ben; Rasch, Philip J.; Singh, Balwinder; Yoon, Jin-Ho] Pacific NW Natl Lab, Richland, WA 99352 USA. [Caldeira, Ken] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA USA. [Boucher, Olivier] CNRS UPMC, IPSL, Meteorol Dynam Lab, Paris, France. [Robock, Alan] Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08903 USA. [Alterskjaer, Kari; Kristjansson, Jon Egill] Univ Oslo, Dept Geosci, Oslo, Norway. [Karam, Diana Bou] CEA CNRS UVSQ, Lab Sci Climat & Environm, Saclay, France. [Cole, Jason N. S.] Environm Canada, Canadian Ctr Climate Modeling & Anal, Toronto, ON, Canada. [Curry, Charles L.] Univ Victoria, Sch Earth & Ocean Sci, Victoria, BC, Canada. [Haywood, James M.; Jones, Andy] Met Off Hadley Ctr, Exeter, Devon, England. [Haywood, James M.] Univ Exeter, Coll Engn Math & Phys Sci, Exeter, Devon, England. [Irvine, Peter J.] Inst Adv Sustainabil Studies, Potsdam, Germany. [Ji, Duoying; Moore, John C.] Beijing Normal Univ, Coll Global Change & Earth Syst Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China. [Lunt, Daniel J.] Univ Bristol, Sch Geog Sci, Bristol, Avon, England. [Niemeier, Ulrike; Schmidt, Hauke] Max Planck Inst Meteorol, D-20146 Hamburg, Germany. [Schulz, Michael] Norwegian Meteorol Inst, Oslo, Norway. [Tilmes, Simone] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Watanabe, Shingo] Japan Agcy Marine Earth Sci & Technol, Yokohama, Kanagawa, Japan. [Yang, Shuting] Danish Meteorol Inst, Copenhagen, Denmark. RP Kravitz, B (reprint author), Pacific NW Natl Lab, POB 999,MSIN K9-24, Richland, WA 99352 USA. EM ben.kravitz@pnnl.gov RI Watanabe, Shingo/L-9689-2014; Lunt, Daniel/G-9451-2011; Yang, Shuting/L-2251-2013; Moore, John/B-2868-2013; YOON, JIN-HO/A-1672-2009; Kravitz, Ben/P-7925-2014; Schulz, Michael/A-6930-2011; Robock, Alan/B-6385-2016; Caldeira, Ken/E-7914-2011 OI Watanabe, Shingo/0000-0002-2228-0088; Lunt, Daniel/0000-0003-3585-6928; Cole, Jason/0000-0003-0450-2748; FRANCIS, Diana/0000-0002-7587-0006; Moore, John/0000-0001-8271-5787; YOON, JIN-HO/0000-0002-4939-8078; Kravitz, Ben/0000-0001-6318-1150; Schulz, Michael/0000-0003-4493-4158; FU Fund for Innovative Climate and Energy Research; NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center; U.S. Department of Energy by Battelle Memorial Institute [DE-AC05-76RL01830]; US National Science Foundation [AGS-1157525]; joint DECC/Defra Met Office Hadley Centre Climate Programme [GA01101]; European Union [226567-IMPLICC]; Norwegian Research Council [2012-t2012012201]; National Science Foundation; Innovative Program of Climate Change Projection for the 21st century, MEXT, Japan; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank all participants of the Geoengineering Model Intercomparison Project and their model development teams, the CLIVAR/WCRP Working Group on Coupled Modeling for endorsing GeoMIP, the scientists managing the Earth System Grid data nodes who have assisted with making GeoMIP output available, and Vivek Arora, Andy Ridgwell, Georgiy L. Stenchikov, and three anonymous reviewers for helpful comments. We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1) for producing and making available their model output. For CMIP, the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. BK is supported by the Fund for Innovative Climate and Energy Research. Simulations performed by BK were supported by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under contract DE-AC05-76RL01830. AR is supported by US National Science Foundation grant AGS-1157525. JMH and AJ were supported by the joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). KA, DBK, JEK, UN, HS, and MS received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 226567-IMPLICC. KA and JEK received support from the Norwegian Research Council's Programme for Supercomputing (NOTUR) through a grant of computing time. Simulations with the IPSL-CM5 model were supported through HPC resources of [CCT/TGCC/CINES/IDRIS] under the allocation 2012-t2012012201 made by GENCI (Grand Equipement National de Calcul Intensif). DJ and JCM thank all members of the BNU-ESM model group, as well as the Center of Information and Network Technology at Beijing Normal University for assistance in publishing the GeoMIP data set. The National Center for Atmospheric Research is funded by the National Science Foundation. SW was supported by the Innovative Program of Climate Change Projection for the 21st century, MEXT, Japan. Computer resources for PJR, BS, and JHY were provided by the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH11231. NR 71 TC 77 Z9 80 U1 14 U2 85 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 16 PY 2013 VL 118 IS 15 BP 8320 EP 8332 DI 10.1002/jgrd.50646 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 213DA UT WOS:000324032900015 ER PT J AU Li, J Carlson, BE Lacis, AA AF Li, Jing Carlson, Barbara E. Lacis, Andrew A. TI Application of spectral analysis techniques in the intercomparison of aerosol data: 1. An EOF approach to analyze the spatial-temporal variability of aerosol optical depth using multiple remote sensing data sets SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE aerosol; spatial-temporal variability; multi-sensor; EOF analysis ID RETRIEVALS; LAND; OCEAN AB Many remote sensing techniques and passive sensors have been developed to measure global aerosol properties. While instantaneous comparisons between pixel-level data often reveal quantitative differences, here we use Empirical Orthogonal Function (EOF) analysis, also known as Principal Component Analysis, to demonstrate that satellite-derived aerosol optical depth (AOD) data sets exhibit essentially the same spatial and temporal variability and are thus suitable for large-scale studies. Analysis results show that the first four EOF modes of AOD account for the bulk of the variance and agree well across the four data sets used in this study (i.e., Aqua MODIS, Terra MODIS, MISR, and SeaWiFS). Only SeaWiFS data over land have slightly different EOF patterns. Globally, the first two EOF modes show annual cycles and are mainly related to Sahara dust in the northern hemisphere and biomass burning in the southern hemisphere, respectively. After removing the mean seasonal cycle from the data, major aerosol sources, including biomass burning in South America and dust in West Africa, are revealed in the dominant modes due to the different interannual variability of aerosol emissions. The enhancement of biomass burning associated with El Nino over Indonesia and central South America is also captured with the EOF technique. C1 [Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Li, Jing] Oak Ridge Associated Univ, NASA, Postdoctoral Fellowship Program, Oak Ridge, TN USA. RP Li, J (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM Jing.Li@nasa.gov FU climate grant [509496.02.08.04.24]; NASA Postdoctoral Program (NPP) FX We thank the MODIS, MISR, and SeaWiFS science teams for providing the data used in this study. We also thank the anonymous reviewers for providing many helpful comments and suggestions. This study is funded by climate grant 509496.02.08.04.24. Jing Li is also funded by the NASA Postdoctoral Program (NPP). NR 23 TC 10 Z9 10 U1 3 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 16 PY 2013 VL 118 IS 15 BP 8640 EP 8648 DI 10.1002/jgrd.50686 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 213DA UT WOS:000324032900036 ER PT J AU Li, W Thorne, RM Bortnik, J Reeves, GD Kletzing, CA Kurth, WS Hospodarsky, GB Spence, HE Blake, JB Fennell, JF Claudepierre, SG Wygant, JR Thaller, SA AF Li, W. Thorne, R. M. Bortnik, J. Reeves, G. D. Kletzing, C. A. Kurth, W. S. Hospodarsky, G. B. Spence, H. E. Blake, J. B. Fennell, J. F. Claudepierre, S. G. Wygant, J. R. Thaller, S. A. TI An unusual enhancement of low-frequency plasmaspheric hiss in the outer plasmasphere associated with substorm-injected electrons SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE hiss amplification; chorus excitation; substorm injection ID DISCRETE CHORUS EMISSIONS; ORIGIN; RADIATION; MAGNETOSPHERE AB Both plasmaspheric hiss and chorus waves were observed simultaneously by the two Van Allen Probes in association with substorm-injected energetic electrons. Probe A, located inside the plasmasphere in the postdawn sector, observed intense plasmaspheric hiss, whereas Probe B observed chorus waves outside the plasmasphere just before dawn. Dispersed injections of energetic electrons were observed in the dayside outer plasmasphere associated with significant intensification of plasmaspheric hiss at frequencies down to similar to 20Hz, much lower than typical hiss wave frequencies of 100-2000Hz. In the outer plasmasphere, the upper energy of injected electrons agrees well with the minimum cyclotron resonant energy calculated for the lower cutoff frequency of the observed hiss, and computed convective linear growth rates indicate instability at the observed low frequencies. This suggests that the unusual low-frequency plasmaspheric hiss is likely to be amplified in the outer plasmasphere due to the injected energetic electrons. C1 [Li, W.; Thorne, R. M.; Bortnik, J.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. [Reeves, G. D.] Los Alamos Natl Lab, Space Sci & Applicat Grp, Los Alamos, NM USA. [Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Spence, H. E.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.] Aerosp Corp, Los Angeles, CA 90009 USA. [Wygant, J. R.; Thaller, S. A.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. RP Li, W (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, 7127 Math Sci Bldg,405 Hilgard Ave, Los Angeles, CA 90095 USA. EM moonli@atmos.ucla.edu RI Li, Wen/F-3722-2011; Reeves, Geoffrey/E-8101-2011; OI Reeves, Geoffrey/0000-0002-7985-8098; Kletzing, Craig/0000-0002-4136-3348; Spence, Harlan/0000-0002-2526-2205; Kurth, William/0000-0002-5471-6202; Hospodarsky, George/0000-0001-9200-9878 FU JHU/APL under NASA [967399, 921647, NAS5-01072]; NASA [NNX11AD75G, NNX11AR64G]; NSF [AGS-0840178]; EMFISIS [1001057397:01]; ECT [13-041] FX This work was supported by JHU/APL contracts 967399 and 921647 under NASA's prime contract NAS5-01072, NASA grants NNX11AD75G and NNX11AR64G, and NSF grant AGS-0840178. The analysis at UCLA was supported by the EMFISIS subaward 1001057397:01 and by the ECT subaward 13-041. We acknowledge Lunjin Chen and Yukitoshi Nishimura for helpful discussions. We thank the World Data Center for Geomagnetism, Kyoto for providing AU and AL indices used in this study. NR 32 TC 42 Z9 42 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 16 PY 2013 VL 40 IS 15 BP 3798 EP 3803 DI 10.1002/grl.50787 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 208EO UT WOS:000323660000003 ER PT J AU Franz, TE Zreda, M Rosolem, R Hornbuckle, BK Irvin, SL Adams, H Kolb, TE Zweck, C Shuttleworth, WJ AF Franz, Trenton E. Zreda, Marek Rosolem, Rafael Hornbuckle, Brian K. Irvin, Samantha L. Adams, Henry Kolb, Thomas E. Zweck, Chris Shuttleworth, W. James TI Ecosystem-scale measurements of biomass water using cosmic ray neutrons SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE biomass; large scale; cosmic ray neutrons ID SOIL-MOISTURE; GROWTH; CARBON; FORESTS; LIDAR AB Accurate estimates of biomass are imperative for understanding the global carbon cycle. However, measurements of biomass and water in the biomass are difficult to obtain at a scale consistent with measurements of mass and energy transfer, similar to 1km, leading to substantial uncertainty in dynamic global vegetation models. Here we use a novel cosmic ray neutron method to estimate a stoichiometric predictor of ecosystem-scale biomass and biomass water equivalent over tens of hectares. We present two experimental studies, one in a ponderosa pine forest and the other in a maize field, where neutron-derived estimates of biomass water equivalent are compared and found consistent with direct observations. Given the new hectometer scale of nondestructive observation and potential for continuous measurements, we anticipate this technique to be useful to many scientific disciplines. C1 [Franz, Trenton E.; Zreda, Marek; Rosolem, Rafael; Zweck, Chris; Shuttleworth, W. James] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA. [Hornbuckle, Brian K.; Irvin, Samantha L.] Iowa State Univ, Dept Agron, Ames, IA USA. [Adams, Henry] Los Alamos Natl Lab, Los Alamos, NM USA. [Kolb, Thomas E.] No Arizona Univ, Sch Forestry, Flagstaff, AZ 86011 USA. RP Franz, TE (reprint author), Univ Arizona, 1133 E James E Rogers Way,Rm 122, Tucson, AZ 85721 USA. EM tfranz@email.arizona.edu RI Rosolem, Rafael/J-6637-2013 OI Rosolem, Rafael/0000-0002-4914-692X FU U.S. National Science Foundation [AGS-0838491, EAR-01-26241, EAR-0345440, EAR-0636110] FX This research and the COSMOS project are supported by the U.S. National Science Foundation under grant AGS-0838491. The fundamental work on the systematics of low-energy neutrons at the earth's surface was funded by the U.S. National Science Foundation under grants EAR-01-26241, EAR-0345440, and EAR-0636110. NR 21 TC 16 Z9 16 U1 2 U2 26 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 16 PY 2013 VL 40 IS 15 BP 3929 EP 3933 DI 10.1002/grl.50791 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 208EO UT WOS:000323660000028 ER PT J AU Jones, AD Collins, WD Torn, MS AF Jones, Andrew D. Collins, William D. Torn, Margaret S. TI On the additivity of radiative forcing between land use change and greenhouse gases SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE land use change; radiative forcing; climate policy; climate assessment ID CLIMATE-CHANGE; FUTURE CLIMATES; CARBON-CYCLE; COVER CHANGE; ALBEDO; POLICY; CIRCULATION; DYNAMICS; BENEFITS; IMPACTS AB In scientific and policy contexts, radiative forcingan external change in Earth's mean radiative balancehas been suggested as a metric for evaluating the strength of climate perturbations resulting from different climate change drivers such as greenhouse gases and surface physical effects of land use change. However, the utility of this approach has been questioned given the spatially concentrated and sometimes nonradiative nature of land use climate disturbances. Here we show that when negative forcing from agricultural expansion is approximately balanced by a radiatively equivalent increase in atmospheric carbon dioxide, significant changes in temperature, precipitation, and the timing of climate change result. These idealized experiments demonstrate the nonadditivity of radiative forcing from land use change and greenhouse gases and point to the need for new climate change metrics or the development of climate policies and assessment protocols that do not rely on single dimensional metrics. C1 [Jones, Andrew D.; Collins, William D.; Torn, Margaret S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Collins, William D.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Torn, Margaret S.] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA. RP Jones, AD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd,Mail Stop 84-0171, Berkeley, CA 94720 USA. EM adjones@lbl.gov RI Jones, Andrew/M-4363-2013; Collins, William/J-3147-2014; Torn, Margaret/D-2305-2015 OI Jones, Andrew/0000-0002-1913-7870; Collins, William/0000-0002-4463-9848; FU Office of Science, Office of Biological and Environmental Research, Climate and Environmental Science Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We would like to thank Michael O'Hare and Anthony Janetos for feedback on early versions of this manuscript. This work was supported by the Director, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Science Division, of the U.S. Department of Energy under contract DE-AC02-05CH11231. The CESM project is supported by the National Science Foundation and the Office of Science of the U.S. Department of Energy. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH11231. NR 46 TC 18 Z9 18 U1 4 U2 24 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 16 PY 2013 VL 40 IS 15 BP 4036 EP 4041 DI 10.1002/grl.50754 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 208EO UT WOS:000323660000047 ER PT J AU Khar, KR Goldschmidt, L Karanicolas, J AF Khar, Karen R. Goldschmidt, Lukasz Karanicolas, John TI Fast Docking on Graphics Processing Units via Ray-Casting SO PLOS ONE LA English DT Article ID PROTEIN-LIGAND DOCKING; RECEPTOR FLEXIBILITY; DRUG DISCOVERY; BINDING-SITES; CONFORMER GENERATION; OPTIMIZATION; COMPUTATION; ALGORITHM; SIMULATION; COMPLEXES AB Docking Approach using Ray Casting (DARC) is structure-based computational method for carrying out virtual screening by docking small-molecules into protein surface pockets. In a complementary study we find that DARC can be used to identify known inhibitors from large sets of decoy compounds, and can identify new compounds that are active in biochemical assays. Here, we describe our adaptation of DARC for use on Graphics Processing Units (GPUs), leading to a speedup of approximately 27-fold in typical-use cases over the corresponding calculations carried out using a CPU alone. This dramatic speedup of DARC will enable screening larger compound libraries, screening with more conformations of each compound, and including multiple receptor conformations when screening. We anticipate that all three of these enhanced approaches, which now become tractable, will lead to improved screening results. C1 [Khar, Karen R.; Karanicolas, John] Univ Kansas, Ctr Bioinformat, Lawrence, KS 66045 USA. [Goldschmidt, Lukasz] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA USA. [Karanicolas, John] Univ Kansas, Dept Mol Biosci, Lawrence, KS 66045 USA. RP Karanicolas, J (reprint author), Univ Kansas, Ctr Bioinformat, Lawrence, KS 66045 USA. EM johnk@ku.edu FU National Institute of General Medical Sciences [1R01GM099959, 5R01GM095847]; National Institute on Aging [2R01AG029430, 5P50AG016570]; National Institute of Allergy and Infectious Diseases [5T32AI070089] FX This work was supported by grants from the National Institute of General Medical Sciences (1R01GM099959, 5R01GM095847), the National Institute on Aging (2R01AG029430 and 5P50AG016570), and the National Institute of Allergy and Infectious Diseases (5T32AI070089). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 51 TC 4 Z9 4 U1 1 U2 8 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD AUG 16 PY 2013 VL 8 IS 8 AR e70661 DI 10.1371/journal.pone.0070661 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 207BA UT WOS:000323570200005 PM 23976948 ER PT J AU Sheehan, JP Hershkowitz, N Kaganovich, ID Wang, H Raitses, Y Barnat, EV Weatherford, BR Sydorenko, D AF Sheehan, J. P. Hershkowitz, N. Kaganovich, I. D. Wang, H. Raitses, Y. Barnat, E. V. Weatherford, B. R. Sydorenko, D. TI Kinetic Theory of Plasma Sheaths Surrounding Electron-Emitting Surfaces SO PHYSICAL REVIEW LETTERS LA English DT Article ID HALL THRUSTERS; EMISSION AB A one-dimensional kinetic theory of sheaths surrounding planar, electron-emitting surfaces is presented which accounts for plasma electrons lost to the surface and the temperature of the emitted electrons. It is shown that ratio of plasma electron temperature to emitted electron temperature significantly affects the sheath potential when the plasma electron temperature is within an order of magnitude of the emitted electron temperature. The sheath potential goes to zero as the plasma electron temperature equals the emitted electron temperature, which can occur in the afterglow of an rf plasma and some low-temperature plasma sources. These results were validated by particle in cell simulations. The theory was tested by making measurements of the sheath surrounding a thermionically emitting cathode in the afterglow of an rf plasma. The measured sheath potential shrunk to zero as the plasma electron temperature cooled to the emitted electron temperature, as predicted by the theory. C1 [Sheehan, J. P.; Hershkowitz, N.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Kaganovich, I. D.; Wang, H.; Raitses, Y.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. [Barnat, E. V.; Weatherford, B. R.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Sydorenko, D.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E9, Canada. RP Sheehan, JP (reprint author), Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. EM sheehanj@umich.edu OI Sheehan, J. P./0000-0003-4312-0611 FU U.S. Department of Energy [DE-FG02-97ER54437]; DOE, Office of Fusion Energy Science [DE-SC0001939]; Fusion Energy Sciences Fellowship Program; U.S. Department of Energy; Oak Ridge Associated Universities FX This work was supported by the U.S. Department of Energy, Grant No. DE-FG02-97ER54437, the DOE, Office of Fusion Energy Science, Contract No. DE-SC0001939, and the Fusion Energy Sciences Fellowship Program administered by Oak Ridge Institute for Science and Education under a contract between the U.S. Department of Energy and the Oak Ridge Associated Universities. NR 21 TC 26 Z9 26 U1 5 U2 48 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 16 PY 2013 VL 111 IS 7 AR 075002 DI 10.1103/PhysRevLett.111.075002 PG 5 WC Physics, Multidisciplinary SC Physics GA 203ZM UT WOS:000323333800006 PM 23992073 ER PT J AU De Silva, SU Delayen, JR AF De Silva, S. U. Delayen, J. R. TI Cryogenic test of a proof-of-principle superconducting rf-dipole deflecting and crabbing cavity SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID FIELD-EMISSION; SEPARATOR; ACCELERATORS; NIOBIUM AB Recent applications in need of compact low-frequency deflecting and crabbing cavities have initiated the design and development of new superconducting structures operating at high gradients with low losses. Previously, TM110-type deflecting and crabbing cavities were developed and have also been operated successfully. However, these geometries are not favorable designs for low operating frequencies. The superconducting rf-dipole cavity is the first compact deflecting and crabbing geometry that has demonstrated high gradients and high shunt impedance. Since the fundamental operating mode is the lowest mode and is widely separated from the nearest higher order mode, the rf-dipole design is an attractive geometry for effective damping of the higher order modes in high current applications. A 400 MHz rf-dipole cavity was designed, fabricated, and tested as a proof-of-principle cavity. The cavity achieved high operating gradients, and the multipacting levels were easily processed and did not reoccur. C1 [De Silva, S. U.] Old Dominion Univ, Dept Phys, Ctr Accelerator Sci, Norfolk, VA 23529 USA. Thomas Jefferson Natl Accelerator Facil, Accelerator Div, Newport News, VA 23606 USA. RP De Silva, SU (reprint author), Old Dominion Univ, Dept Phys, Ctr Accelerator Sci, Norfolk, VA 23529 USA. EM pdesilva@odu.edu; jdelayen@odu.edu FU U.S. Department of Energy through U.S. LHC Accelerator Research Program (LARP); EU [284404]; U.S. DOE HEP SBIR/STTR program through Niowave Inc., Lansing, MI; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We want to acknowledge the help we have received from the Jefferson Lab SRF Institute for the processing of the cavity, and preparation for and conducting of the tests. We want to give special thanks to HyeKyoung Park, Peter Kneisel, Tom Powers, and Kirk Davis of Jefferson Lab. This work was partially supported by the U.S. Department of Energy through the U.S. LHC Accelerator Research Program (LARP), by the EU FP7 HiLumi LHC-Grant Agreement No. 284404, and by the U.S. DOE HEP SBIR/STTR program through Niowave Inc., Lansing, MI. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 44 TC 3 Z9 3 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD AUG 16 PY 2013 VL 16 IS 8 AR 082001 DI 10.1103/PhysRevSTAB.16.082001 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 203ZK UT WOS:000323333500001 ER PT J AU Rider, WJ Love, E Scovazzi, G Weirs, VG AF Rider, W. J. Love, E. Scovazzi, G. Weirs, V. G. TI A high resolution Lagrangian method using nonlinear hybridization and hyperviscosity SO COMPUTERS & FLUIDS LA English DT Article; Proceedings Paper CT 5th International Conference on Numerical Methods for Highly Compressible Multi-Material Flow Problems (MULTIMAT) CY SEP 05-09, 2011 CL Arcachon, FRANCE DE Lagrangian; Hydrocode; Artificial viscosity; Limiter; Hybridization; Hyperviscosity; Shock wave; Filter ID CONSERVATIVE DIFFERENCE SCHEME; ARTIFICIAL VISCOSITY; SHOCK HYDRODYNAMICS; COMPUTATIONS; WAVE AB Classical artificial viscosity methods often suffer from excessive numerical viscosity both at and away from shocks. While a proper amount of dissipation is necessary at the shock wave, it should be minimized away from the shock and disappear where the flow is smooth. The common approach to remove the excessive dissipation is to introduce a limiter. We use a limiting methodology based on nonlinear hybridization, which generalizes to multiple dimensions naturally. Moreover, the properties of the limiter are made mesh independent through abiding by important symmetry and invariance characteristics. A secondary impact of the approach is the use of more optimal coefficients for the viscosity itself. The coefficients can be derived directly through analysis of the Rankine-Hugoniot relations. We can further refine our approach with the use of hyperviscous dissipation that helps to more effectively control oscillations. The hyperviscosity is defined by applying a filter to the original unlimited viscosity, which is then combined using the original limiter. The combination of the limiter with the hyperviscosity produces sharp shock transitions while effectively reducing the amount of high frequency noise emitted by the shock. These characteristics are demonstrated computationally and we show that the limiter returns the overall method to second-order accuracy with or without the contribution of the hyperviscosity. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Rider, W. J.; Love, E.] Sandia Natl Labs, Computat Shock & Multiphys Dept, Albuquerque, NM 87185 USA. [Scovazzi, G.] Duke Univ, Durham, NC 27708 USA. [Weirs, V. G.] Sandia Natl Labs, Optimizat & Uncertainty Quantificat Dept, Albuquerque, NM 87185 USA. RP Rider, WJ (reprint author), Sandia Natl Labs, Computat Shock & Multiphys Dept, MS-1323,POB 5800, Albuquerque, NM 87185 USA. EM wjrider@sandia.gov NR 26 TC 1 Z9 1 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 J9 COMPUT FLUIDS JI Comput. Fluids PD AUG 16 PY 2013 VL 83 SI SI BP 25 EP 32 DI 10.1016/j.compfluid.2012.09.009 PG 8 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA 200TF UT WOS:000323093100004 ER PT J AU Burton, DE Carney, TC Morgan, NR Sambasivan, SK Shashkov, MJ AF Burton, D. E. Carney, T. C. Morgan, N. R. Sambasivan, S. K. Shashkov, M. J. TI A cell-centered Lagrangian Godunov-like method for solid dynamics SO COMPUTERS & FLUIDS LA English DT Article; Proceedings Paper CT 5th International Conference on Numerical Methods for Highly Compressible Multi-Material Flow Problems (MULTIMAT) CY SEP 05-09, 2011 CL Arcachon, FRANCE SP CEA, Ctr Natl Rech Scientifique (CNRS), Inst Natl Rech Informatique & Automatique (INRIA), Inst Polytechnique Bordeaux (IPB), GAMNI SMAI DE Lagrangian; Hydrodynamics; Godunov; Mimetic; Cell-centered; Solids; Finite-volume; Tensor viscosity; Curl free ID TENSOR ARTIFICIAL VISCOSITY; COMPRESSIBLE FLOW PROBLEMS; EULER EQUATIONS; STRONG SHOCKS; HYDRODYNAMICS; SCHEME; GRIDS; DISCRETIZATION; COMPUTATIONS; ERRORS AB This work presents a spatially and temporally second-order cell-centered Lagrangian formulation (CCH) suitable for elasto-plastic materials on unstructured polyhedral cells in multiple dimensions. In the development of our scheme, we follow a mimetic approach, based upon the finite volume method, as a guide to the derivation of the difference equations. In doing so, we consider not only the governing equations, but a number of ancillary relationships. The finite volume equations for solids are cast in Lagrangian form with particular attention to the discrete form of the Second Law of Thermodynamics. We expand upon previous work and propose a new entropy production expression. A new tensor dissipation model is presented that guarantees the viscous stress tensor is symmetric. The new tensor dissipation model shows increased mesh robustness. In the second-order formulation, a limiter for the stress gradient is presented, as well as a voracity limiter for the velocity gradient. Numerical results are demonstrated for common test problems involving both gas and solid constitutive models. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Burton, D. E.; Carney, T. C.; Morgan, N. R.; Shashkov, M. J.] Los Alamos Natl Lab, X Computat Phys Div, Los Alamos, NM USA. [Sambasivan, S. K.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. RP Burton, DE (reprint author), Los Alamos Natl Lab, X Computat Phys Div, POB 1663, Los Alamos, NM USA. EM burton@lanl.gov NR 58 TC 29 Z9 29 U1 1 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 EI 1879-0747 J9 COMPUT FLUIDS JI Comput. Fluids PD AUG 16 PY 2013 VL 83 SI SI BP 33 EP 47 DI 10.1016/j.compfluid.2012.09.008 PG 15 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA 200TF UT WOS:000323093100005 ER PT J AU Morgan, NR AF Morgan, Nathaniel R. TI A dissipation model for staggered grid Lagrangian hydrodynamics SO COMPUTERS & FLUIDS LA English DT Article; Proceedings Paper CT 5th International Conference on Numerical Methods for Highly Compressible Multi-Material Flow Problems (MULTIMAT) CY SEP 05-09, 2011 CL Arcachon, FRANCE DE Lagrangian; Hydrodynamics; Viscosity; Dissipation ID ARTIFICIAL VISCOSITY AB Viscosity terms are explicitly added to the Lagrangian staggered grid hydrodynamic equations for calculating shock wave problems. The explicit viscosity terms are commonly termed artificial viscosity. All shocks are irreversible so a dissipation model is necessary to capture the entropy created by a shock. In this work, viscosity models are derived via analytic solutions to one-dimensional shock problems for materials having linear and non-linear relationships between particle velocity and shock velocity. The dissipation model includes linear, quadratic, and cubic viscosity terms. The linear viscosity term is used to damp spurious oscillations, whereas, the quadratic and cubic viscosities are used to capture the pressure difference between a shock wave and an acoustic wave. The quadratic and cubic viscosity coefficients are material dependent and are calculated using fits to experimental data. The details of the viscosity model are discussed and numerical tests are presented. (C) 2012 Elsevier Ltd. All rights reserved. C1 Los Alamos Natl Lab, X Computat Phys Div, Los Alamos, NM USA. RP Morgan, NR (reprint author), Los Alamos Natl Lab, X Computat Phys Div, POB 1663, Los Alamos, NM USA. EM nmorgan@lanl.gov NR 24 TC 6 Z9 6 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 J9 COMPUT FLUIDS JI Comput. Fluids PD AUG 16 PY 2013 VL 83 SI SI BP 48 EP 57 DI 10.1016/j.compfluid.2012.05.018 PG 10 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA 200TF UT WOS:000323093100006 ER PT J AU Dobrev, VA Ellis, TE Kolev, TV Rieben, RN AF Dobrev, Veselin A. Ellis, Truman E. Kolev, Tzanio V. Rieben, Robert N. TI High-order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics SO COMPUTERS & FLUIDS LA English DT Article; Proceedings Paper CT 5th International Conference on Numerical Methods for Highly Compressible Multi-Material Flow Problems (MULTIMAT) CY SEP 05-09, 2011 CL Arcachon, FRANCE DE Axisymmetric problems; Lagrangian hydrodynamics; High-order finite element methods ID SHOCK HYDRODYNAMICS; HYDROCODES; FRAMEWORK; GEOMETRY AB In this paper we present an extension of our general high-order curvilinear finite element approach for solving the Euler equations in a Lagrangian frame [1] to the case of axisymmetric problems. The numerical approximation of these equations is important in a number of applications of compressible shock hydrodynamics and the reduction of 3D problems with axial symmetry to 2D computations provides a significant computational advantage. Unlike traditional staggered-grid hydrodynamics (SGH) methods, which use the so-called "area-weighting" scheme, we formulate our semi-discrete axisymmetric conservation laws directly in 3D and reduce them to a 2D variational form in a meridian cut of the original domain. This approach is a natural extension Of the high-order curvilinear finite element framework we have developed for 2D and 3D problems in Cartesian geometry, leading to a rescaled momentum conservation equation which includes new radial terms in the pressure gradient and artificial viscosity forces. We show that this approach exactly conserves energy and we demonstrate via computational examples that it also excels at preserving symmetry in problems with symmetric initial conditions. The results also illustrate that our computational method does not produce spurious symmetry breaking near the axis of rotation, as is the case with many area-weighted approaches. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Dobrev, Veselin A.; Kolev, Tzanio V.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA USA. [Ellis, Truman E.] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA. [Rieben, Robert N.] Lawrence Livermore Natl Lab, B Div, Livermore, CA USA. RP Kolev, TV (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA USA. EM tzanio@llnl.gov NR 23 TC 15 Z9 15 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 J9 COMPUT FLUIDS JI Comput. Fluids PD AUG 16 PY 2013 VL 83 SI SI BP 58 EP 69 DI 10.1016/j.compfluid.2012.06.004 PG 12 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA 200TF UT WOS:000323093100007 ER PT J AU Sambasivan, SK Shashkov, MJ Burton, DE AF Sambasivan, Shiv Kumar Shashkov, Mikhail J. Burton, Donald E. TI Exploration of new limiter schemes for stress tensors in Lagrangian and ALE hydrocodes SO COMPUTERS & FLUIDS LA English DT Article; Proceedings Paper CT 5th International Conference on Numerical Methods for Highly Compressible Multi-Material Flow Problems (MULTIMAT) CY SEP 05-09, 2011 CL Arcachon, FRANCE DE Limiters; Slope limiters; Tensors; Stress tensors; High-order reconstruction ID EULERIAN METHOD; GRIDS; CONSERVATION; ALGORITHMS; REALE AB Limiter schemes are chiefly responsible for making high-resolution computations realizable in Lagrangian, Eulerian and ALE hydrocodes. Robust limiter schemes that are frame invariant and preserve symmetry have been established for scalars and to an extent, for vectors. However such limiter schemes have not been formulated and reported in the literature for tensor variables. In this work, new designs for limiter schemes for stress tensors are explored. Novel design principles are introduced and several limiter schemes are constructed based on these guiding principles. A scaling technique based on invariants and two new designs for slope limiter are proposed. In contrast to conventional slope limiters, the scaling technique designed by constraining the second invariant of stress tensor ensures monotonicity compliance by scaling the eigenvalues of the reconstructed stress tensors. Scalar slope limiter constructed based on constraining the second invariant is a formulation to extract a slope limiter from the scaling procedure. The tensor slope limiter scheme proposed for limiting velocity gradients is also extended for constraining stress tensor and the results from the same are considered as the basis for comparing and establishing the various limiter schemes formulated in this work. These limiter formulations are compared and contrasted in a cell-centered Lagrangian framework augmented with hypo-elastic model, by virtue of several one- and two-dimensional example problems. Published by Elsevier Ltd. C1 [Sambasivan, Shiv Kumar] Los Alamos Natl Lab, Theoret Div T5, Los Alamos, NM 87545 USA. [Shashkov, Mikhail J.; Burton, Donald E.] Los Alamos Natl Lab, Computat Phys Grp XCP4 X, Los Alamos, NM 87545 USA. RP Sambasivan, SK (reprint author), Los Alamos Natl Lab, Theoret Div T5, POB 1663, Los Alamos, NM 87545 USA. EM shiv@lanl.gov; shashkov@lanl.gov; burton@lanl.gov NR 37 TC 10 Z9 10 U1 0 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 J9 COMPUT FLUIDS JI Comput. Fluids PD AUG 16 PY 2013 VL 83 SI SI BP 98 EP 114 DI 10.1016/j.compfluid.2012.04.010 PG 17 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA 200TF UT WOS:000323093100011 ER PT J AU Breil, J Harribey, T Maire, PH Shashkov, M AF Breil, Jerome Harribey, Thibault Maire, Pierre-Henri Shashkov, Mikhail TI A multi-material ReALE method with MOF interface reconstruction SO COMPUTERS & FLUIDS LA English DT Article; Proceedings Paper CT 5th International Conference on Numerical Methods for Highly Compressible Multi-Material Flow Problems (MULTIMAT) CY SEP 05-09, 2011 CL Arcachon, FRANCE DE ReALE; MOF interface reconstruction; ALE; Cell-centered scheme; Lagrangian hydrodynamics; Voronoi mesh; Polygonal mesh ID LAGRANGIAN-EULERIAN METHOD; TRACKING; SCHEME AB We present a comparison of a classical arbitrary Lagrangian-Eulerian (ALE) method with a new multi-material reconnection-based arbitrary-Lagrangian-Eulerian (Re-ALE) strategy devoted to the computation of multi-material compressible fluid flows using the Moment Of Fluid (MOF) interface reconstruction. In ReALE we replace the rezoning phase of classical ALE method by a rezone where we allow the connectivity between cells of the mesh to change where rezoned grid is a polygonal mesh. Nevertheless, the ability of pure Lagrangian method to deal with multi-material problem, where mesh is aligned with material interfaces, is lost. In this work we have implemented MOF interface reconstruction on polygonal mesh in ReALE framework. This leads to a formulation that recover the Lagrangian features of following material and material interface that we lose using standard ALE methods with fixed connectivity. Some numerical examples, are used to clearly illustrate the robustness and accuracy of the new method. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Breil, Jerome; Harribey, Thibault] Univ Bordeaux, CNRS, CEA, CELIA,UMR5107, F-33400 Talence, France. [Maire, Pierre-Henri] CEA, CESTA, F-33116 Le Barp, France. [Shashkov, Mikhail] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Breil, J (reprint author), Univ Bordeaux, CNRS, CEA, CELIA,UMR5107, F-33400 Talence, France. EM breil@celia.u-bordeaux1.fr RI Maire, Pierre-Henri/H-6219-2013 OI Maire, Pierre-Henri/0000-0002-4180-8220 NR 20 TC 16 Z9 16 U1 1 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 J9 COMPUT FLUIDS JI Comput. Fluids PD AUG 16 PY 2013 VL 83 SI SI BP 115 EP 125 DI 10.1016/j.compfluid.2012.08.015 PG 11 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA 200TF UT WOS:000323093100012 ER PT J AU Francois, MM Shashkov, MJ Masser, TO Dendy, ED AF Francois, M. M. Shashkov, M. J. Masser, T. O. Dendy, E. D. TI A comparative study of multimaterial Lagrangian and Eulerian methods with pressure relaxation SO COMPUTERS & FLUIDS LA English DT Article; Proceedings Paper CT 5th International Conference on Numerical Methods for Highly Compressible Multi-Material Flow Problems (MULTIMAT) CY SEP 05-09, 2011 CL Arcachon, FRANCE DE Multimaterial Euler equations; Hydrodynamics methods; Pressure relaxation ID MODELS AB We compare various Lagrangian and Eulerian hydrodynamics methods for two-material compressible flow. We investigate staggered and cell-centered Lagrangian schemes with Tipton's mixture model for pressure relaxation. We compare direct Eulerian methods (five-equation model and a sharp Eulerian method) to a Lagrange plus remap method. We have tested our methods on classical one-dimensional shock tube problems with perfect and stiffened gas equations of state. In order to include Tipton's mixture model in the cell-centered Lagrangian scheme, we have introduced a correction algorithm to ensure conservation of total energy. We have found that the tested algorithms compared favorably for averaged quantities. However, differences appear in multimaterial cell quantities and near the material interface discontinuity due to the localized effects of the mixture model and interface treatments. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Francois, M. M.; Masser, T. O.; Dendy, E. D.] Los Alamos Natl Lab, Computat Phys & Methods Grp CCS 2, Los Alamos, NM 87545 USA. [Shashkov, M. J.] Los Alamos Natl Lab, Methods & Algorithms Grp XCP 4, Los Alamos, NM 87545 USA. RP Francois, MM (reprint author), Los Alamos Natl Lab, Computat Phys & Methods Grp CCS 2, POB 1663, Los Alamos, NM 87545 USA. EM mmfran@lanl.gov; shashkov@lanl.gov; tmasser@lanl.gov; dendy@lanl.gov OI Francois, Marianne/0000-0003-3062-6234 NR 16 TC 11 Z9 11 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 J9 COMPUT FLUIDS JI Comput. Fluids PD AUG 16 PY 2013 VL 83 SI SI BP 126 EP 136 DI 10.1016/j.compfluid.2012.06.011 PG 11 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA 200TF UT WOS:000323093100013 ER PT J AU Yanilkin, YV Goncharov, EA Kolobyanin, VY Sadchikov, VV Kamm, JR Shashkov, MJ Rider, WJ AF Yanilkin, Yury V. Goncharov, Evgeny A. Kolobyanin, Vadim Yu. Sadchikov, Vitaly V. Kamm, James R. Shashkov, Mikhail J. Rider, William J. TI Multi-material pressure relaxation methods for Lagrangian hydrodynamics SO COMPUTERS & FLUIDS LA English DT Article; Proceedings Paper CT 5th International Conference on Numerical Methods for Highly Compressible Multi-Material Flow Problems (MULTIMAT) CY SEP 05-09, 2011 CL Arcachon, FRANCE DE Compressible flow; Lagrangian methods; Closure models ID EULERIAN HYDROCODES AB In Arbitrary Lagrangian-Eulerian (ALE) methods for hydrodynamics with several materials, multiple-material Lagrangian cells invariably arise when the flow field is remapped onto a new mesh. One must close the system of equations for multi-material cells; this, in effect, constitutes a model either explicit or implicit for the sub-scale dynamics. We discuss several different multi-material closure model algorithms for Lagrangian hydrodynamics under the assumption of a single velocity for 1D, multiple-material cells. Russian researchers at the All-Russian Research Institute of Experimental Physics (VNIIEF) have developed several models, which we describe in some detail; recent work by US researchers was developed independent of the details of these models. This work contains a comparison of these different approaches, which we believe is unique in the literature. We compare these methods on two standard test problems and discuss the results. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Yanilkin, Yury V.; Goncharov, Evgeny A.; Kolobyanin, Vadim Yu.; Sadchikov, Vitaly V.] All Russian Res Inst Expt Phys, Sarov, Russia. [Kamm, James R.; Rider, William J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Shashkov, Mikhail J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kamm, JR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM yan@md08.vniief.ru; geag@vniief.ru; kolobyanin@vniief.ru; jrkamm@sandia.gov; shashkov@lanl.gov; wjrider@sandia.gov NR 17 TC 13 Z9 13 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 J9 COMPUT FLUIDS JI Comput. Fluids PD AUG 16 PY 2013 VL 83 SI SI BP 137 EP 143 DI 10.1016/j.compfluid.2012.05.020 PG 7 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA 200TF UT WOS:000323093100014 ER PT J AU Kapahi, A Mousel, J Sambasivan, S Udaykumar, HS AF Kapahi, A. Mousel, J. Sambasivan, S. Udaykumar, H. S. TI Parallel, sharp interface Eulerian approach to high-speed multi-material flows SO COMPUTERS & FLUIDS LA English DT Article; Proceedings Paper CT 5th International Conference on Numerical Methods for Highly Compressible Multi-Material Flow Problems (MULTIMAT) CY SEP 05-09, 2011 CL Arcachon, FRANCE DE Eulerian; Sharp interface method; Level set method; Ghost fluid method (GFM); Narrow band scheme; Parallelization; Ghost layer construction ID GHOST FLUID METHOD; CARTESIAN GRID METHOD; LEVEL SET; SCHEMES; IMPACT; IMPLEMENTATION; COMPUTATIONS; SIMULATIONS; PENETRATION AB This paper describes the challenges in developing a parallel implementation of a sharp interface high-speed multi-material dynamics solver. To facilitate large scale computations the algorithm is designed to retain strict data localization on processors. A high-order conservative ENO scheme is used for calculating the numerical fluxes and level sets are used to define the objects immersed in the flow field. A modified ghost fluid method is used for interface treatment of embedded objects. The issues involved in paralielization of the moving boundary flow solver are presented with emphasis on strong shocks interacting with embedded interfaces (solid-fluid and solid-solid) in a three-dimensional compressible flow framework. The handling of moving boundaries tracked using a narrow-band level set technique leads to issues peculiar to the multi-processor environment. The solution to object passage between sub-domains and treatment of ghost regions for inter-processor communication are addressed in the current work. Example calculations for three-dimensional impact-penetration problems and shocked particulate flows are presented. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Kapahi, A.; Mousel, J.; Udaykumar, H. S.] Univ Iowa, Dept Mech & Ind Engn, Seamans Ctr 3131, Iowa City, IA 52242 USA. [Sambasivan, S.] Los Alamos Natl Lab, Div Theoret, Grp T5, Los Alamos, NM 87545 USA. RP Udaykumar, HS (reprint author), Univ Iowa, Dept Mech & Ind Engn, Seamans Ctr 3131, Iowa City, IA 52242 USA. EM ush@engineering.uiowa.edu NR 44 TC 1 Z9 1 U1 1 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 J9 COMPUT FLUIDS JI Comput. Fluids PD AUG 16 PY 2013 VL 83 SI SI BP 144 EP 156 DI 10.1016/j.compfluid.2012.06.024 PG 13 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA 200TF UT WOS:000323093100015 ER PT J AU Velechovsky, J Liska, R Shashkov, M AF Velechovsky, J. Liska, R. Shashkov, M. TI High-order remapping with piece-wise parabolic reconstruction SO COMPUTERS & FLUIDS LA English DT Article; Proceedings Paper CT 5th International Conference on Numerical Methods for Highly Compressible Multi-Material Flow Problems (MULTIMAT) CY SEP 05-09, 2011 CL Arcachon, FRANCE SP CEA, Ctr Natl Rech Scientifique (CNRS), Inst Natl Rech Informatique & Automatique (INRIA), Inst Polytechnique Bordeaux (IPB), GAMNI SMAI DE Remapping; ALE; Piece-wise parabolic reconstruction; Barth-Jespersen limiter; Monotonicity ID GRIDS; LIMITER; PPM AB High-order remapping methods, using piece-wise parabolic reconstruction with different limiting techniques trying to keep monotonicity (defined in terms of bounds on remapped solution) in the neighborhood of discontinuities, are investigated and compared on cyclic remapping tests. Piece-wise parabolic remapping methods based on PPM and FCT approaches keep the solution bounds in all the cases. These methods provide more accurate results than the standard remapping method using piece-wise linear reconstruction, usually with Barth-Jespersen limiter. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Velechovsky, J.; Liska, R.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague 1, Czech Republic. [Shashkov, M.] Los Alamos Natl Lab, X Computat Phys Div, Grp XCP 4, Los Alamos, NM 87545 USA. RP Liska, R (reprint author), Czech Tech Univ, Fac Nucl Sci & Phys Engn, Brehova 7, CR-11519 Prague 1, Czech Republic. EM liska@siduri.fjfi.cvut.cz RI Liska, Richard/C-3142-2009 OI Liska, Richard/0000-0002-6149-0440 NR 17 TC 5 Z9 5 U1 0 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 EI 1879-0747 J9 COMPUT FLUIDS JI Comput. Fluids PD AUG 16 PY 2013 VL 83 SI SI BP 164 EP 169 DI 10.1016/j.compfluid.2012.06.006 PG 6 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA 200TF UT WOS:000323093100017 ER PT J AU Fung, J Harrison, AK Chitanvis, S Margulies, J AF Fung, J. Harrison, A. K. Chitanvis, S. Margulies, J. TI Ejecta source and transport modeling in the FLAG hydrocode SO COMPUTERS & FLUIDS LA English DT Article; Proceedings Paper CT 5th International Conference on Numerical Methods for Highly Compressible Multi-Material Flow Problems (MULTIMAT) CY SEP 05-09, 2011 CL Arcachon, FRANCE DE PIC; MP-PIC; ALE; Arbitrary-Eulerian-Lagrangian; Ejecta; Hydrocode AB We present the ongoing development and implementation of an ejecta model in the FLAG hydrocode. Ejecta is the term given to particulate matter that is produced at the free surface of a material subject to extreme shock loading. Following shock propagation into a material and reflection at its free surface, conditions may be sufficient to induce phase changes, damage, or fragmentation at the surface. The dynamics of the fragmentation may be such that a "cloud" of particulate matter forms and propagates away from the material. Modeling such phenomena in a continuum hydrodynamics code challenges the assumptions underlying the numerical approximations made in the hydrodynamics. The representative scales for the particulate matter are often much smaller than the representative scales for the bulk material producing the ejecta. However, this scale separation allows for statistical descriptions of ejecta that are compatible with continuum mechanics. Earlier work documents an initial effort in modeling ejecta in the FLAG hydrocode. The FLAG hydrocode computes continuum mechanics solutions for fluid and solid materials in an Arbitrary-Eulerian-Lagrangian (ALE) framework. To model ejecta in FLAG, a hybrid particle-continuum representation was defined that allows for coupling with continuum materials on large (bulk) scales. Numerical models were developed and implemented for particle production (sourcing) as well as for solving the particle equations of motion. The numerics were shown to conserve mass, momentum and energy, and preliminary results were given for modeling drag and volume effects. This work documents recent advances in source and transport models. Spatial and temporal dependencies have been added to the source models to account for geometric free-surface variations, mesh dependence, and shock loading. More physically relevant drag models have been implemented that include Reynolds number effects. These will be presented along with test results verifying the models. A FLAG model of an actual ejecta experiment will also be presented. Published by Elsevier Ltd. C1 [Fung, J.; Harrison, A. K.; Margulies, J.] Los Alamos Natl Lab, X Computat Phys Div, Los Alamos, NM USA. [Chitanvis, S.] Los Alamos Natl Lab, X Theoret Design Div, Los Alamos, NM USA. RP Fung, J (reprint author), Los Alamos Natl Lab, X Computat Phys Div, POB 1663, Los Alamos, NM USA. EM fung@lanl.gov NR 16 TC 6 Z9 6 U1 0 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 J9 COMPUT FLUIDS JI Comput. Fluids PD AUG 16 PY 2013 VL 83 SI SI BP 177 EP 186 DI 10.1016/j.compfluid.2012.08.011 PG 10 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA 200TF UT WOS:000323093100019 ER PT J AU Robinson, AC Berry, RD Carpenter, JH Debusschere, B Drake, RR Mattsson, AE Rider, WJ AF Robinson, A. C. Berry, R. D. Carpenter, J. H. Debusschere, B. Drake, R. R. Mattsson, A. E. Rider, W. J. TI Fundamental issues in the representation and propagation of uncertain equation of state information in shock hydrodynamics SO COMPUTERS & FLUIDS LA English DT Article; Proceedings Paper CT 5th International Conference on Numerical Methods for Highly Compressible Multi-Material Flow Problems (MULTIMAT) CY SEP 05-09, 2011 CL Arcachon, FRANCE SP CEA, Ctr Natl Rech Scientifique (CNRS), Inst Natl Rech Informatique & Automatique (INRIA), Inst Polytechnique Bordeaux (IPB), GAMNI SMAI DE Uncertainty quantification; UQ; Equation of state; EOS; Multiscale material modeling AB Uncertainty quantification (UQ) deals with providing reasonable estimates of the uncertainties associated with an engineering model and propagating them-to final engineering quantities of interest. We present a conceptual UQ framework for the case of shock hydrodynamics with Euler's equations where the uncertainties are assumed to lie principally in the equation of state (EOS). In this paper we consider experimental data as providing both data and an estimate of data uncertainty. We propose a specific Bayesian inference approach for characterizing EOS uncertainty in thermodynamic phase space. We show how this approach provides a natural and efficient methodology for transferring data uncertainty to engineering outputs through an EOS representation that understands and deals consistently with parameter correlations as sensed in the data. Historically, complex multiphase EOSs have been built utilizing tables as the delivery mechanism in order to amortize the cost of creation of the tables over many subsequent continuum scale runs. Once UQ enters into the picture, however, the proper operational paradigm for multiphase tables become much less clear. Using a simple single-phase Mie-Gruneisen model we experiment with several approaches and demonstrate how uncertainty can be represented. We also show how the quality of the tabular representation is of key importance. As a first step, we demonstrate a particular tabular approach for the Mie-Gruneisen model which when extended to multiphase tables should have value for designing a UQ-enabled shock hydrodynamic modeling approach that is not only theoretically sound but also robust, useful, and acceptable to the modeling community. We also propose an approach to separate data uncertainty from modeling error in the EOS. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Robinson, A. C.; Carpenter, J. H.; Drake, R. R.; Mattsson, A. E.; Rider, W. J.] Sandia Natl Labs, Computat Shock & Multiphys Dept, Albuquerque, NM 87185 USA. [Berry, R. D.; Debusschere, B.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Robinson, AC (reprint author), Sandia Natl Labs, Computat Shock & Multiphys Dept, POB 5800,MS 1323, Albuquerque, NM 87185 USA. EM acrobin@sandia.gov NR 15 TC 1 Z9 1 U1 1 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 EI 1879-0747 J9 COMPUT FLUIDS JI Comput. Fluids PD AUG 16 PY 2013 VL 83 SI SI BP 187 EP 193 DI 10.1016/j.compfluid.2012.10.024 PG 7 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA 200TF UT WOS:000323093100020 ER PT J AU Cargnello, M Doan-Nguyen, VVT Gordon, TR Diaz, RE Stach, EA Gorte, RJ Fornasiero, P Murray, CB AF Cargnello, Matteo Doan-Nguyen, Vicky V. T. Gordon, Thomas R. Diaz, Rosa E. Stach, Eric A. Gorte, Raymond J. Fornasiero, Paolo Murray, Christopher B. TI Control of Metal Nanocrystal Size Reveals Metal-Support Interface Role for Ceria Catalysts SO SCIENCE LA English DT Article ID CO OXIDATION-KINETICS; GAS SHIFT CATALYSIS; NANOPARTICLES; RH; PRESSURE; AU; PD AB Interactions between ceria (CeO2) and supported metals greatly enhance rates for a number of important reactions. However, direct relationships between structure and function in these catalysts have been difficult to extract because the samples studied either were heterogeneous or were model systems dissimilar to working catalysts. We report rate measurements on samples in which the length of the ceria-metal interface was tailored by the use of monodisperse nickel, palladium, and platinum nanocrystals. We found that carbon monoxide oxidation in ceria-based catalysts is greatly enhanced at the ceria-metal interface sites for a range of group VIII metal catalysts, clarifying the pivotal role played by the support. C1 [Cargnello, Matteo; Fornasiero, Paolo] Univ Trieste, Dept Chem & Pharmaceut Sci, ICCOM CNR, Consortium INSTM, I-34127 Trieste, Italy. [Cargnello, Matteo; Doan-Nguyen, Vicky V. T.; Murray, Christopher B.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Gordon, Thomas R.; Murray, Christopher B.] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA. [Diaz, Rosa E.; Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Gorte, Raymond J.] Univ Penn, Dept Chem & Biomol Engn, Philadelphia, PA 19104 USA. RP Fornasiero, P (reprint author), Univ Trieste, Dept Chem & Pharmaceut Sci, ICCOM CNR, Consortium INSTM, I-34127 Trieste, Italy. EM pfornasiero@units.it; cbmurray@sas.upenn.edu RI Stach, Eric/D-8545-2011; Fornasiero, Paolo/B-7279-2011; Gordon, Thomas/H-2924-2012; COST, CM1104/I-8057-2015; OI Stach, Eric/0000-0002-3366-2153; Fornasiero, Paolo/0000-0003-1082-9157; Cargnello, Matteo/0000-0002-7344-9031 FU University of Trieste through FRA project; COST Action [CM1104]; U.S. Department of Energy's Advanced Research Projects Agency, Energy (ARPA-E) [DE-AR0000123]; NSF through the Nano/Bio Interface Center at the University of Pennsylvania [DMR08-32802]; Air Force Office of Scientific Research Multidisciplinary University Initiative [FA9550-08-1-0309]; Richard Perry University; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX We thank M. Graziani, T. Montini (University of Trieste), B. Diroll, and K. Bakhmutsky (University of Pennsylvania) for discussions and help. Supported by University of Trieste through FRA project and COST Action CM1104 (M. C. and P. F.); the U.S. Department of Energy's Advanced Research Projects Agency, Energy (ARPA-E) grant DE-AR0000123 (V.V.T.D.-N.); NSF through the Nano/Bio Interface Center at the University of Pennsylvania, grant DMR08-32802 (T. R. G.); Air Force Office of Scientific Research Multidisciplinary University Initiative grant FA9550-08-1-0309 (R.J.G.); and a Richard Perry University Professorship (C. B. M.). Aberration-corrected EM (R. E. D. and E. A. S.) was carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract DE-AC02-98CH10886. M. C. conceived the idea for the study. M. C. and V.V.T.D.-N. synthesized the metal NCs. M. C. prepared the catalysts and collected the catalytic data. R. E. D. performed TEM, STEM, and ETEM characterization with help from V.V.T.D.-N. and T. R. G. E. A. S. coordinated all TEM studies. T. R. G. prepared the physical model of the NCs. R.J.G., P. F., and C. B. M. supervised the project. M. C. wrote the draft and all authors commented on the data and the manuscript. NR 26 TC 233 Z9 234 U1 129 U2 904 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD AUG 16 PY 2013 VL 341 IS 6147 BP 771 EP 773 DI 10.1126/science.1240148 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 201DZ UT WOS:000323122200043 PM 23868919 ER PT J AU Roy, D AF Roy, Dibyendu TI Cascaded two-photon nonlinearity in a one-dimensional waveguide with multiple two-level emitters SO SCIENTIFIC REPORTS LA English DT Article ID SINGLE-PHOTON; OPTICAL DIODE; 2ND-ORDER NONLINEARITY; QUANTUM DOTS; TRANSISTOR; PLASMONS AB We propose and theoretically investigate a model to realize cascaded optical nonlinearity with few atoms and photons in one-dimension (1D). The optical nonlinearity in our system is mediated by resonant interactions of photons with two-level emitters, such as atoms or quantum dots in a 1D photonic waveguide. Multi-photon transmission in the waveguide is nonreciprocal when the emitters have different transition energies. Our theory provides a clear physical understanding of the origin of nonreciprocity in the presence of cascaded nonlinearity. We show how various two-photon nonlinear effects including spatial attraction and repulsion between photons, background fluorescence can be tuned by changing the number of emitters and the coupling between emitters (controlled by the separation). C1 [Roy, Dibyendu] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Roy, Dibyendu] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Roy, D (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM dibyendu@lanl.gov RI Roy, Dibyendu/D-3286-2013; Dibyendu, Roy /E-6903-2017 OI Roy, Dibyendu/0000-0002-8966-8677; FU U.S. Department of Energy through LANL/LDRD Program FX The support of the U.S. Department of Energy through LANL/LDRD Program for this work is gratefully acknowledged. NR 36 TC 17 Z9 17 U1 1 U2 23 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD AUG 16 PY 2013 VL 3 AR 2337 DI 10.1038/srep02337 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 201ND UT WOS:000323147400001 PM 23948782 ER PT J AU Ryzhkov, MV Mirmelstein, A Yu, SW Chung, BW Tobin, JG AF Ryzhkov, Mickhail V. Mirmelstein, Alexei Yu, Sung-Woo Chung, Brandon W. Tobin, James G. TI Probing actinide electronic structure through pu cluster calculations SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY LA English DT Article DE electronic structure; fully relativistic calculations; atomic configurations; x-ray photoelectron spectroscopy properties of materials ID PLUTONIUM; MOLECULES; URANIUM; SOLIDS; UO2; PHOTOEMISSION; MODEL; ATOMS AB Calculations of the electronic structure of clusters of plutonium have been performed, within the framework of the relativistic discrete-variational method. These theoretical results and those calculated earlier for related systems have been compared to spectroscopic data produced in the experimental investigations of bulk systems, including photoelectron spectroscopy. Observation of the changes in the Pu electronic structure as a function of size provides powerful insight for aspects of bulk Pu electronic structure. (c) 2013 Wiley Periodicals, Inc. C1 [Ryzhkov, Mickhail V.] Russian Acad Sci, Ural Div, Inst Solid State Chem, Ekaterinburg, Russia. [Mirmelstein, Alexei] EI Zababakhin Inst Tech Phys VNIITF, Russian Fed Nucl Ctr, Dept Expt Phys, Snezhinsk, Russia. [Yu, Sung-Woo; Chung, Brandon W.; Tobin, James G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Ryzhkov, MV (reprint author), Russian Acad Sci, Ural Div, Inst Solid State Chem, Ekaterinburg, Russia. EM ryz@ihim.uran.ru RI Tobin, James/O-6953-2015; Chung, Brandon/G-2929-2012 FU Lawrence Livermore National Security, LLC [DE-AC52- 07NA27344]; DOE Office of Science, Office of Basic Energy Science, and Division of Materials Science and Engineering; LLNL; VNIITF [B590089]; DOE Office of Science and Office of Basic Energy Science (Advanced Light Source (ALS) in Berkeley); DOE Office of Science and Office of Basic Energy Science (Stanford Synchrotron Radiation Laboratory) FX Contract grant sponsor: Lawrence Livermore National Security, LLC; Contract grant number: DE-AC52- 07NA27344.; Contract grant sponsors: DOE Office of Science, Office of Basic Energy Science, and Division of Materials Science and Engineering (J.G.T. and S.W.Y.).; Contract grant sponsors: LLNL and VNIITF; Contract grant number: B590089.; Contract grant sponsors: DOE Office of Science and Office of Basic Energy Science (Advanced Light Source (ALS) in Berkeley and the Stanford Synchrotron Radiation Laboratory). NR 54 TC 3 Z9 3 U1 0 U2 18 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0020-7608 EI 1097-461X J9 INT J QUANTUM CHEM JI Int. J. Quantum Chem. PD AUG 15 PY 2013 VL 113 IS 16 BP 1957 EP 1965 DI 10.1002/qua.24417 PG 9 WC Chemistry, Physical; Mathematics, Interdisciplinary Applications; Physics, Atomic, Molecular & Chemical SC Chemistry; Mathematics; Physics GA 238CK UT WOS:000325918100003 ER PT J AU Ringstrand, B Seifert, S Firestone, MA AF Ringstrand, Bryan Seifert, Soenke Firestone, Millicent A. TI Preparation of a solution-processable, nanostructured ionic polyacetylene SO JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS LA English DT Article DE airbrush-spray deposition; conducting polymers; conjugated polyelectrolytes; nanostructure; nanotechnology; polyelectrolytes; polymerized ionic liquids ID CONJUGATED POLYELECTROLYTES; CONDUCTING POLYMERS; LIQUIDS; POLYMERIZATION; BROMIDE); CHARGE; SPECTROSCOPY; COMPOSITE; OXIDATION; DESIGN AB Polymerization of a self-assembled 1-dodecyl-3-propargylimidazolium bromide ionic liquid (IL) yields a nanostructured ionic polyacetylene. A 1:1 aqueous mixture of the amphiphilic IL produces an ordered lyotropic mesophase that adopts a hexagonal perforated lamellar structure. Rh (I)-mediated polymerization of the assembled mixture yields a hexagonal modulated lamellar structured polymer. FTIR spectroscopy reveals that the polymer was self n-doped. The polymer was fractioned into three components with the majority product, possessing an intermediate molecular weight that is soluble in polar organic solvents. In methanol, the optical band gap of the main fraction was determined to be 2.38 eV and was nonemissive. The solution-processable polymer was airbrush sprayed onto glass substrates to give a liquid-crystalline, lamellar structured semiconductive film (7.02 x 10-5 Scm-1). The polymer resisted oxidation (degradation) upon storage in air as monitored by vibrational spectroscopy. (c) 2013 Wiley Periodicals, Inc. C1 [Ringstrand, Bryan; Firestone, Millicent A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Seifert, Soenke] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Firestone, Millicent A.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Firestone, MA (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM firestone@lanl.gov FU Office of Basic Energy Sciences, Division of Materials Sciences, United States Department of Energy [DE-AC02-06CH11357] FX This work was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, United States Department of Energy under Contract No. DE-AC02-06CH11357 to the UChicago, LLC. We thank Dr. Alexander Polozov for fruitful discussions. NR 55 TC 6 Z9 6 U1 2 U2 26 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-6266 EI 1099-0518 J9 J POLYM SCI POL PHYS JI J. Polym. Sci. Pt. B-Polym. Phys. PD AUG 15 PY 2013 VL 51 IS 16 BP 1215 EP 1227 DI 10.1002/polb.23321 PG 13 WC Polymer Science SC Polymer Science GA 237SK UT WOS:000325891000004 ER PT J AU Abazov, VM Abbott, B Acharya, BS Adams, M Adams, T Agnew, JP Alexeev, GD Alkhazov, G Alton, A Askew, A Atkins, S Augsten, K Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Baringer, P Bartlett, JF Bassler, U Bazterra, V Bean, A Begalli, M Bellantoni, L Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bhat, PC Bhatia, S Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Boos, EE Borissov, G Brandt, A Brandt, O Brock, R Bross, A Brown, D Bu, XB Buehler, M Buescher, V Bunichev, V Burdin, S Buszello, CP Camacho-Perez, E Casey, BCK Castilla-Valdez, H Caughron, S Chakrabarti, S Chan, KM Chandra, A Chapon, E Chen, G Cho, SW Choi, S Choudhary, B Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Cutts, D Das, A Davies, G de Jong, SJ De La Cruz-Burelo, E Deliot, F Demina, R Denisov, D Denisov, SP Desai, S Deterre, C DeVaughan, K Diehl, HT Diesburg, M Ding, PF Dominguez, A Dubey, A Dudko, LV Duperrin, A Dutt, S Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Evans, H Evdokimov, VN Feng, L Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Garcia-Bellido, A Garcia-Gonzalez, JA Gavrilov, V Geng, W Gerber, CE Gershtein, Y Ginther, G Golovanov, G Grannis, PD Greder, S Greenlee, H Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guillemin, T Gutierrez, G Gutierrez, P Haley, J Han, L Harder, K Harel, A Hauptman, JM Hays, J Head, T Hebbeker, T Hedin, D Hegab, H Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hogan, J Hohlfeld, M Hooper, R Howley, I Hubacek, Z Hynek, V Iashvili, I Ilchenko, Y Illingworth, R Ito, AS Jabeen, S Jaffre, M Jayasinghe, A Holzbauer, J Jeong, MS Jesik, R Jiang, P Johns, K Johnson, E Johnson, M Jonckheere, A Jonsson, P Joshi, J Jung, AW Juste, A Kajfasz, E Karmanov, D Katsanos, I Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Kiselevich, I Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Lammers, S Lebrun, P Lee, HS Lee, SW Lee, WM Lei, X Lellouch, J Li, D Li, H Li, L Li, QZ Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, H Liu, Y Lobodenko, A Lokajicek, M de Sa, RL Luna-Garcia, R Lyon, AL Maciel, AKA Madar, R Magana-Villalba, R Malik, S Malyshev, VL Mansour, J Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Miconi, F Mondal, NK Mulhearn, M Nagy, E Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nguyen, HT Nunnemann, T Orduna, J Osman, N Osta, J Pal, A Parashar, N Parihar, V Park, SK Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, Y Petridis, K Petrillo, G Petroff, P Pleier, MA Podstavkov, VM Popov, AV Prewitt, M Price, D Prokopenko, N Qian, J Quadt, A Quinn, B Ratoff, PN Razumov, I Ripp-Baudot, I Rizatdinova, F Rominsky, M Ross, A Royon, C Rubinov, P Ruchti, R Sajot, G Sanchez-Hernandez, A Sanders, MP Santos, AS Savage, G Sawyer, L Scanlon, T Schamberger, RD Scheglov, Y Schellman, H Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shaw, S Shchukin, AA Simak, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Soustruznik, K Stark, J Stoyanova, DA Strauss, M Suter, L Svoisky, P Titov, M Tokmenin, VV Tsai, YT Tsybychev, D Tuchming, B Tully, C Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verkheev, AY Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weichert, J Welty-Rieger, L Williams, MRJ Wilson, GW Wobisch, M Wood, DR Wyatt, TR Xie, Y Yamada, R Yang, S Yasuda, T Yatsunenko, YA Ye, W Ye, Z Yin, H Yip, K Youn, SW Yu, JM Zennamo, J Zhao, TG Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Acharya, B. S. Adams, M. Adams, T. Agnew, J. P. Alexeev, G. D. Alkhazov, G. Alton, A. Askew, A. Atkins, S. Augsten, K. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Baringer, P. Bartlett, J. F. Bassler, U. Bazterra, V. Bean, A. Begalli, M. Bellantoni, L. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bhat, P. C. Bhatia, S. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Boos, E. E. Borissov, G. Brandt, A. Brandt, O. Brock, R. Bross, A. Brown, D. Bu, X. B. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Buszello, C. P. Camacho-Perez, E. Casey, B. C. K. Castilla-Valdez, H. Caughron, S. Chakrabarti, S. Chan, K. M. Chandra, A. Chapon, E. Chen, G. Cho, S. W. Choi, S. Choudhary, B. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Cutts, D. Das, A. Davies, G. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Deterre, C. DeVaughan, K. Diehl, H. T. Diesburg, M. Ding, P. F. Dominguez, A. Dubey, A. Dudko, L. V. Duperrin, A. Dutt, S. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Evans, H. Evdokimov, V. N. Feng, L. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Garcia-Bellido, A. Garcia-Gonzalez, J. A. Gavrilov, V. Geng, W. Gerber, C. E. Gershtein, Y. Ginther, G. Golovanov, G. Grannis, P. D. Greder, S. Greenlee, H. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guillemin, T. Gutierrez, G. Gutierrez, P. Haley, J. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Head, T. Hebbeker, T. Hedin, D. Hegab, H. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hogan, J. Hohlfeld, M. Hooper, R. Howley, I. Hubacek, Z. Hynek, V. Iashvili, I. Ilchenko, Y. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jayasinghe, A. Holzbauer, J. Jeong, M. S. Jesik, R. Jiang, P. Johns, K. Johnson, E. Johnson, M. Jonckheere, A. Jonsson, P. Joshi, J. Jung, A. W. Juste, A. Kajfasz, E. Karmanov, D. Katsanos, I. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Kiselevich, I. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Lammers, S. Lebrun, P. Lee, H. S. Lee, S. W. Lee, W. M. Lei, X. Lellouch, J. Li, D. Li, H. Li, L. Li, Q. Z. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, H. Liu, Y. Lobodenko, A. Lokajicek, M. de Sa, R. Lopes Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Madar, R. Magana-Villalba, R. Malik, S. Malyshev, V. L. Mansour, J. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Miconi, F. Mondal, N. K. Mulhearn, M. Nagy, E. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nguyen, H. T. Nunnemann, T. Orduna, J. Osman, N. Osta, J. Pal, A. Parashar, N. Parihar, V. Park, S. K. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, Y. Petridis, K. Petrillo, G. Petroff, P. Pleier, M. -A. Podstavkov, V. M. Popov, A. V. Prewitt, M. Price, D. Prokopenko, N. Qian, J. Quadt, A. Quinn, B. Ratoff, P. N. Razumov, I. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Ross, A. Royon, C. Rubinov, P. Ruchti, R. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santos, A. S. Savage, G. Sawyer, L. Scanlon, T. Schamberger, R. D. Scheglov, Y. Schellman, H. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shaw, S. Shchukin, A. A. Simak, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Soustruznik, K. Stark, J. Stoyanova, D. A. Strauss, M. Suter, L. Svoisky, P. Titov, M. Tokmenin, V. V. Tsai, Y. -T. Tsybychev, D. Tuchming, B. Tully, C. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verkheev, A. Y. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weichert, J. Welty-Rieger, L. Williams, M. R. J. Wilson, G. W. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yamada, R. Yang, S. Yasuda, T. Yatsunenko, Y. A. Ye, W. Ye, Z. Yin, H. Yip, K. Youn, S. W. Yu, J. M. Zennamo, J. Zhao, T. G. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA D0 Collaboration TI Measurement of the ZZ production cross section and search for the standard model Higgs boson in the four lepton final state in p(p)over-bar collisions SO PHYSICAL REVIEW D LA English DT Article ID DETECTOR; MASS; LHC AB We present a measurement of Z boson pair production in p (p) over bar collisions at 1.96 TeV with 9.6 to 9.8 fb(-1) of D0 data. We examine the final states eeee, ee mu mu, and mu mu mu mu. Based on selected data, the measured cross section in the mass region M(Z/gamma*) > 30 GeV is sigma(p (p) over bar -> Z/gamma*Z/gamma*) = 1.26(-0.36)(+0.44)(stat)(-0.15)(+0.17) X (syst) +/- 0.08 (lumi) pb; after correcting for the expected ratio of sigma (p (p) over bar -> Z/gamma*Z/gamma*) to sigma(p (p) over bar -> ZZ), we derive a cross section for p (p) over bar -> ZZ production of 1.05(-0.30)(+0.37)(stat)(-0.12)(0.14)(syst) +/- 0.06 (lumi) pb. This result is combined with a previous result from the ZZ -> l(+)l(-) nu(nu) over bar channel resulting in a combined p (p) over bar -> ZZ cross section measurement of 1.32(-0.25)(+0.29) (stat) +/- 0.12 (syst) +/- 0.04 (lumi) pb. These measurements are consistent with the standard model expectation of 1.43 +/- 0.10 pb. We extend this analysis to search for the standard model (SM) Higgs boson between 115 and 200 GeV. At a Higgs boson mass of 125 GeV, we expect to set a limit of 43 times the SM expectation at 95% C.L., and set a limit of 42 times the SM expectation at 95% C.L. C1 [Maciel, A. K. A.; Santos, A. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Han, L.; Jiang, P.; Liu, Y.; Yang, S.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Augsten, K.; Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gris, Ph.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France. [Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, Grenoble, France. [Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Nagy, E.; Osman, N.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Grivaz, J. -F.; Guillemin, T.; Jaffre, M.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, Orsay, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 06, LPNHE, Paris, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chapon, E.; Couderc, F.; Deliot, F.; Grohsjean, A.; Hubacek, Z.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, SPP, Saclay, France. [Greder, S.; Miconi, F.; Ripp-Baudot, I.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bernhard, R.; Madar, R.] Univ Freiburg, Inst Phys, D-79106 Freiburg, Germany. [Brandt, O.; Deterre, C.; Hensel, C.; Mansour, J.; Meyer, J.; Peters, Y.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weichert, J.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Nunnemann, T.; Sanders, M. P.] Univ Munich, Munich, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Choi, S.; Jeong, M. S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Garcia-Gonzalez, J. A.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.; van Leeuwen, W. M.] Nikhef, Amsterdam, Netherlands. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.] Radboud Univ Nijmegen, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Verkheev, A. Y.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Kiselevich, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Prokopenko, N.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Juste, A.] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Juste, A.] Inst Fis Altes Energies, Barcelona, Spain. [Buszello, C. P.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Ratoff, P. N.; Ross, A.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Scanlon, T.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Agnew, J. P.; Ding, P. F.; Harder, K.; Head, T.; Hesketh, G.; McGivern, C. L.; Petridis, K.; Schwanenberger, C.; Soeldner-Rembold, S.; Suter, L.; Vesterinen, M.; Wyatt, T. R.; Zhao, T. G.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Lei, X.; Nayyar, R.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Joshi, J.; Li, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Hoang, T.; Lee, W. M.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Bu, X. B.; Buehler, M.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Herner, K.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Jung, A. W.; Khalatyan, N.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Melnitchouk, A.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Savage, G.; Verzocchi, M.; Wang, M. H. L. S.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Yin, H.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Bazterra, V.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Eads, M.; Feng, L.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Schellman, H.; Welty-Rieger, L.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Williams, M. R. J.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Atkins, S.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Barberis, E.; Haley, J.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Neal, H. A.; Qian, J.; Yu, J. M.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Brock, R.; Caughron, S.; Edmunds, D.; Fisher, W.; Geng, W.; Johnson, E.; Linnemann, J.; Schwienhorst, R.; Shaw, S.] Michigan State Univ, E Lansing, MI 48824 USA. [Bhatia, S.; Holzbauer, J.; Kraus, J.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Zennamo, J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Tsai, Y. -T.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Hobbs, J. D.; de Sa, R. Lopes; McCarthy, R.; Schamberger, R. D.; Tsybychev, D.; Ye, W.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Patwa, A.; Pleier, M. -A.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Jayasinghe, A.; Severini, H.; Skubic, P.; Strauss, M.; Svoisky, P.] Univ Oklahoma, Norman, OK 73019 USA. [Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Heintz, U.; Hooper, R.; Jabeen, S.; Narain, M.; Parihar, V.; Partridge, R.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; Howley, I.; Pal, A.] Univ Texas Arlington, Arlington, TX 76019 USA. [Ilchenko, Y.; Kehoe, R.; Liu, H.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Hogan, J.; Orduna, J.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Hirosky, R.; Li, H.; Mulhearn, M.; Nguyen, H. T.] Univ Virginia, Charlottesville, VA 22904 USA. [Watts, G.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Shabalina, Elizaveta/M-2227-2013; Dudko, Lev/D-7127-2012; Fisher, Wade/N-4491-2013; Santos, Angelo/K-5552-2012; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Lei, Xiaowen/O-4348-2014; Gutierrez, Phillip/C-1161-2011; Merkin, Mikhail/D-6809-2012; Li, Liang/O-1107-2015; OI Dudko, Lev/0000-0002-4462-3192; Sharyy, Viatcheslav/0000-0002-7161-2616; Lei, Xiaowen/0000-0002-2564-8351; Li, Liang/0000-0001-6411-6107; Williams, Mark/0000-0001-5448-4213; Price, Darren/0000-0003-2750-9977; Bertram, Iain/0000-0003-4073-4941 FU DOE; NSF (USA); CEA; CNRS/IN2P3 (France); MON; NRC KI; RFBR (Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (The Netherlands); STFC; Royal Society (United Kingdom); MSMT; GACR (Czech Republic); BMBF; DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS; CNSF (China) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); MON, NRC KI and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 40 TC 7 Z9 7 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 15 PY 2013 VL 88 IS 3 AR 032008 DI 10.1103/PhysRevD.88.032008 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 203TX UT WOS:000323317500001 ER PT J AU Jermwongratanachai, T Jacobs, G Ma, WP Shafer, WD Gnanamani, MK Gao, P Kitiyanan, B Davis, BH Klettlinger, JLS Yen, CH Cronauer, DC Kropf, AJ Marshall, CL AF Jermwongratanachai, Thani Jacobs, Gary Ma, Wenping Shafer, Wilson D. Gnanamani, Muthu Kumaran Gao, Pei Kitiyanan, Boonyarach Davis, Burtron H. Klettlinger, Jennifer L. S. Yen, Chia H. Cronauer, Donald C. Kropf, A. Jeremy Marshall, Christopher L. TI Fischer-Tropsch synthesis: Comparisons between Pt and Ag promoted Co/Al2O3 catalysts for reducibility, local atomic structure, catalytic activity, and oxidation-reduction (OR) cycles SO APPLIED CATALYSIS A-GENERAL LA English DT Article DE Fischer-Tropsch synthesis (FTS); Gas-to-liquids (GTL); Silver (Ag); Platinum (Pt); Cobalt (Co); Co/Al2O3; XANES; EXAFS; Oxidation-reduction (OR) cycles ID WATER-GAS-SHIFT; IN-SITU EXAFS; COBALT ALUMINA CATALYSTS; SELECTIVE HYDROGENATION; CARBON-MONOXIDE; RHENIUM; KINETICS; XPS; TPR; SPECTROSCOPY AB For economic reasons, Ag as a substitute for Pt promoter for FT Co/Al2O3 catalysts was advocated, due to its satisfactory ability to facilitate cobalt oxide reduction, its good catalytic performance in improving the CO conversion and selectivity and, especially, its much lower price compared to that of Pt (i.e., $23.31/Troy oz Ag. vs $1486.0/Troy oz Pt (May 10, 2013)). A comparative study between Pt and Ag promoters at several equivalent atomic loadings was performed in this work. While either Pt or Ag significantly facilitates cobalt oxide reduction supplying additional Co metal active sites compared to the unpromoted Co/Al2O3 catalysts, the total metal site density increased with increasing Pt loading, but become attenuated at high Ag loading. The EXAFS results indicate isolated Pt atoms interact with cobalt clusters to form Pt-Co bonds, without evidence of Pt-Pt bond formation, even at levels as high as 5 wt% Pt. In Ag promoted Co/Al2O3 catalyst, not only were Ag-Co bonds observed, but Ag-Ag bonds were present, even at levels as low as 0.276% Ag. The degree of Ag-Ag coordination increased as a function of Ag loading, while decreases in BET surface area and a shift to wider average pore size suggests some pore blocking by Ag at high loadings, which likely restricted access of reactants to internal cobalt sites. Therefore, although both promoters initially facilitate reduction of cobalt oxides, their local atomic structures are fundamentally different. Either Pt or Ag can significantly improve the CO conversion rate on a per gram catalyst basis of Co/Al2O3. Slightly adverse effects on selectivity (i.e., increased CH4 and CO2, at detriment to C-5+) were found with Pt, especially at higher loading, while Ag provides some benefits (i.e., slightly decreases CH4 and CO2, and increases C-5+) at all loadings tested in this work. Moreover, TPR and chemisorption/pulse reoxidation results show that Pt and Ag continue to be in proximity with Co following oxidation-reduction (OR) cycles to continue to facilitate reduction. Additional reaction tests are required to determine the impact of regeneration on performance. (C) 2013 Elsevier B.V. All rights reserved. C1 [Jermwongratanachai, Thani; Jacobs, Gary; Ma, Wenping; Shafer, Wilson D.; Gnanamani, Muthu Kumaran; Gao, Pei; Davis, Burtron H.] Univ Kentucky, Ctr Appl Energy Res, Lexington, KY 40511 USA. [Jermwongratanachai, Thani; Kitiyanan, Boonyarach] Chulalongkorn Univ, Petr & Petrochem Coll, Bangkok 10330, Thailand. [Gao, Pei] Eastern Kentucky Univ, Richmond, KY 40475 USA. [Klettlinger, Jennifer L. S.; Yen, Chia H.] NASA Glenn Res Ctr, Cleveland, OH 44135 USA. [Cronauer, Donald C.; Kropf, A. Jeremy; Marshall, Christopher L.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Davis, BH (reprint author), Univ Kentucky, Ctr Appl Energy Res, 2540 Res Pk Dr, Lexington, KY 40511 USA. EM burtron.davis@uky.edu RI BM, MRCAT/G-7576-2011; Gnanamani, Muthu Kumaran/M-7736-2015; Marshall, Christopher/D-1493-2015; Jacobs, Gary/M-5349-2015 OI Gnanamani, Muthu Kumaran/0000-0003-1274-2645; Marshall, Christopher/0000-0002-1285-7648; Jacobs, Gary/0000-0003-0691-6717 FU NASA [NNX11AI75A]; Commonwealth of Kentucky; U.S. DOE, Office of Fossil Energy, NETL; U.S. DOE, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; DOE; MRCAT member institutions; Fulbright-TRF scholarship program FX CAER work was supported by a NASA grant (Relating FTS catalyst properties to performance No. NNX11AI75A) and by the Commonwealth of Kentucky. Argonne's research was supported in part by the U.S. DOE, Office of Fossil Energy, NETL. The use of the APS was supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. MRCAT operations are supported by the DOE and the MRCAT member institutions. We would like to thank Ms. Shelley Hopps for her assistance with XRD experiments. We are also grateful to the Fulbright-TRF scholarship program for financial support for Mr. Thani Jermwongratanachai. NR 37 TC 25 Z9 25 U1 10 U2 91 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-860X EI 1873-3875 J9 APPL CATAL A-GEN JI Appl. Catal. A-Gen. PD AUG 15 PY 2013 VL 464 BP 165 EP 180 DI 10.1016/j.apcata.2013.05.040 PG 16 WC Chemistry, Physical; Environmental Sciences SC Chemistry; Environmental Sciences & Ecology GA 210BW UT WOS:000323805300021 ER PT J AU Miliordos, E Xantheas, SS AF Miliordos, Evangelos Xantheas, Sotiris S. TI Efficient Procedure for the Numerical Calculation of Harmonic Vibrational Frequencies Based on Internal Coordinates SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID GF MATRIX-METHOD; ANALYTIC ENERGY DERIVATIVES; DIPOLE-MOMENT DERIVATIVES; VALENCE FORCE-CONSTANTS; AB-INITIO; GEOMETRIC DERIVATIVES; WATER CLUSTERS; WAVE-FUNCTIONS; MOLECULES; FIELD AB We propose a general procedure for the numerical calculation of the harmonic vibrational frequencies that is based on internal coordinates and Wilson's GF methodology via double differentiation of the energy. The internal coordinates are defined as the geometrical parameters of a Z-matrix structure, thus avoiding issues related to their redundancy. Linear arrangements of atoms are described using a dummy atom of infinite mass. The procedure has been automated in FORTRAN90 and its main advantage lies in the nontrivial reduction of the number of single-point energy calculations needed for the construction of the Hessian matrix when compared to the corresponding number using double differentiation in Cartesian coordinates. For molecules of C-1 symmetry the computational savings in the energy calculations amount to 36N - 30, where N is the number of atoms, with additional savings when symmetry is present. Typical applications for small and medium size molecules in their minimum and transition state geometries as well as hydrogen bonded clusters (water dimer and timer) are presented. In all cases the frequencies based on internal coordinates differ on average by <1 cm(-1) from those obtained from Cartesian coordinates. C1 [Miliordos, Evangelos; Xantheas, Sotiris S.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Xantheas, SS (reprint author), Pacific NW Natl Lab, Div Phys Sci, 902 Battelle Blvd,MS K1-83, Richland, WA 99352 USA. EM sotiris.xantheas@pnnl.gov RI Xantheas, Sotiris/L-1239-2015; OI Xantheas, Sotiris/0000-0002-6303-1037 FU Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This work was supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, U.S. Department of Energy. Computer resources were provided by the Office of Basic Energy Sciences, U.S. Department of Energy at the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science user facility at Lawrence Berkeley National Laboratory. NR 47 TC 6 Z9 6 U1 2 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD AUG 15 PY 2013 VL 117 IS 32 BP 7019 EP 7029 DI 10.1021/jp3127576 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 203NV UT WOS:000323300800013 PM 23406376 ER PT J AU Yacovitch, TI Heine, N Brieger, C Wende, T Hock, C Neumark, DM Asmis, KR AF Yacovitch, Tara I. Heine, Nadja Brieger, Claudia Wende, Torsten Hock, Christian Neumark, Daniel M. Asmis, Knut R. TI Vibrational Spectroscopy of Bisulfate/Sulfuric Acid/Water Clusters: Structure, Stability, and Infrared Multiple-Photon Dissociation Intensities SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID NEGATIVE-ION COMPOSITION; AB-INITIO CALCULATIONS; SULFURIC-ACID; ATMOSPHERIC IONS; PREDISSOCIATION SPECTRA; AEROSOL NUCLEATION; H2SO4; WATER; STRATOSPHERE; DYNAMICS AB The structure and stability of mass-selected bisulfate, sulfuric acid, and water cluster anions, HSO4-(H2SO4)(m)(H2O)(n), are studied by infrared photodissociation spectroscopy aided by electronic structure calculations. The triply hydrogen-bound HSO4-(H2SO4) configuration appears as a recurring motif in the bare clusters, while incorporation of water disrupts this stable motif for clusters with m > 1. Infrared-active vibrations predominantly involving distortions of the hydrogen-bound network are notably missing from the infrared multiple-photon dissociation (IRMPD) spectra of these ions but are fully recovered by messenger-tagging the clusters with H-2. A simple model is used to explain the observed "IRMPD transparency". C1 [Yacovitch, Tara I.; Hock, Christian; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Heine, Nadja; Brieger, Claudia; Wende, Torsten; Asmis, Knut R.] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany. [Neumark, Daniel M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu; asmis@fhi-berlin.mpg.de RI Heine, Nadja/G-8839-2013; Asmis, Knut/N-5408-2014; Neumark, Daniel/B-9551-2009; OI Asmis, Knut/0000-0001-6297-5856; Neumark, Daniel/0000-0002-3762-9473; Lentz, Claudia/0000-0002-1876-9331 FU European Community [226716]; Air Force Office of Scientific Research [FA9550-12-1-1060]; National Science and Engineering Research Council of Canada (NSERC); German Academic Exchange Service (DAAD) FX We thank the Stichting voor Fundamenteel Onderzoek der Materie (FOM) for granting the required beam time and greatly appreciate the skill and assistance of the FELIX staff. This research is funded by the European Community's Seventh Framework Program (FP7/2007-2013, Grant 226716) and the Air Force Office of Scientific Research (FA9550-12-1-1060). T.I.Y. thanks the National Science and Engineering Research Council of Canada (NSERC) for a postgraduate scholarship. C.H. thanks the German Academic Exchange Service (DAAD) for a postdoctoral scholarship. Most calculations were performed at the Molecular Dynamics and Computational Facility at the University of California, Berkeley (National Science Foundation Grant CHE-0840505). NR 64 TC 22 Z9 22 U1 3 U2 59 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD AUG 15 PY 2013 VL 117 IS 32 BP 7081 EP 7090 DI 10.1021/jp400154v PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 203NV UT WOS:000323300800019 PM 23713566 ER PT J AU Cotton, SJ Miller, WH AF Cotton, Stephen J. Miller, William H. TI Symmetrical Windowing for Quantum States in Quasi-Classical Trajectory Simulations SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID DISCRETE VARIABLE REPRESENTATION; S-MATRIX; SCATTERING; ENERGY AB A microscopically reversible approach toward computing reaction probabilities via classical trajectory simulation has been developed that bins trajectories symmetrically on the basis of their initial and final classical actions. The symmetrical quasi-classical (SQC) approach involves defining a classical action window function centered at integer quantum values of the action, choosing a width parameter that is less than unit quantum width, and applying the window function to both initial reactant and final product vibrational states. Calculations were performed using flat histogram windows and Gaussian windows over a range of width parameters. Use of the Wigner distribution function was also investigated as a possible choice. It was demonstrated for collinear H + H-2 reactive scattering on the BKMP2 potential energy surface that reaction probabilities computed via the SQC methodology using a Gaussian window function of 1/2 unit width produces good agreement with quantum mechanical results over the 0.4-0.6 eV energy range relevant to the ground vibrational state to the ground vibrational state reactive transition. C1 [Miller, William H.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Miller, WH (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM millerwh@berkeley.edu FU National Science Foundation [CHE-1148645]; Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the National Science Foundation Grant No. CHE-1148645 and by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. NR 11 TC 32 Z9 32 U1 3 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD AUG 15 PY 2013 VL 117 IS 32 BP 7190 EP 7194 DI 10.1021/jp401078u PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 203NV UT WOS:000323300800030 PM 23432081 ER PT J AU Mamontov, E AF Mamontov, Eugene TI Boiling Temperature As a Scaling Parameter for the Microscopic Relaxation Dynamics in Molecular Liquids SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID LENNARD-JONES MIXTURE; MODE-COUPLING THEORY; NEUTRON SPIN-ECHO; SUPERCOOLED LIQUIDS; IONIC LIQUID; GLASS-TRANSITION; SCATTERING; BENZENE; HETEROGENEITY; REORIENTATION AB At sufficiently high temperatures, the center-of-mass microscopic diffusion dynamics of liquids is characterized by a single component, often with weak temperature dependence. In this regime, the effective cage made by the neighbor particles cannot be sustained and readily breaks down, enabling long-range diffusion. As the temperature is decreased, the cage relaxation becomes impeded, leading to a higher viscosity with more pronounced temperature dependence. On the microscopic scale, the sustained caging effect leads to a separation between a faster in-cage relaxation component and a slower cage-breaking relaxation component. The evidence for the separate dynamic components, as opposed to a single stretched component, is provided by quasielastic neutron scattering experiments. We use a simple method to evaluate the extent of the dynamic components separation as a function of temperature in a group of related aromatic molecular liquids. We find that, regardless of the glass-forming capabilities or lack thereof, progressively more pronounced separation between the in-cage and cage-breaking dynamic components develops on cooling down as the ratio of T-b/T, where T-b is the boiling temperature, increases. This reflects the microscopic mechanism behind the empirical rule for the glass forming capability based on the ratio of boiling and melting temperatures, T-b/T-m. When a liquids T-b/T-m happens to be high, the liquid can readily be supercooled below its Tm because the liquids microscopic relaxation dynamics is already impeded at T-m, as evidenced by a sustained caging effect manifested through the separation of the in-cage and cage-breaking dynamic components. Our findings suggest certain universality in the temperature dependence of the microscopic diffusion dynamics in molecular liquids, regardless of their glass-forming capabilities. Unless the insufficiently low (with respect to T-b) melting temperature, T-m, intervenes and makes crystallization thermodynamically favorable when cage-breaking is still unimpeded and the structural relaxation is fast, the liquid is likely to become supercooled. The propensity to supercooling and eventually forming a glass is thus determined by a purely thermodynamic factor, T-b/T-m. C1 Oak Ridge Natl Lab, Neutron Sci Directorate, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. RP Mamontov, E (reprint author), Oak Ridge Natl Lab, Neutron Sci Directorate, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. EM mamontove@ornl.gov RI Mamontov, Eugene/Q-1003-2015 OI Mamontov, Eugene/0000-0002-5684-2675 FU Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE; U.S. DOE [DE-AC05-00OR22725] FX This research is based upon work supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The neutron scattering studies were conducted with support from the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for U.S. DOE under Contract no. DE-AC05-00OR22725. The DAVE package was used for data analysis. NR 37 TC 2 Z9 2 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD AUG 15 PY 2013 VL 117 IS 32 BP 9501 EP 9507 DI 10.1021/jp404899z PG 7 WC Chemistry, Physical SC Chemistry GA 203NX UT WOS:000323301000021 PM 23869489 ER PT J AU Gabella, WE Brau, CA Choi, BK Ivanov, B Jarvis, JD Mendenhall, MH Piot, P Mihalcea, D Carrigan, R Wagner, W AF Gabella, W. E. Brau, C. A. Choi, B. K. Ivanov, B. Jarvis, J. D. Mendenhall, M. H. Piot, P. Mihalcea, D. Carrigan, R. Wagner, W. TI Generation and application of channeling X-rays using a novel, low-emittance electron beam-Status and plans SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Cathodes; Channeling; Channeling radiation; X-rays; Phase contrast imaging ID RADIATION; DIAMOND; EMISSION; SILICON AB We plan to use very small emittance electron beams created from our novel, single tip cathodes to make a channeling-radiation X-ray source for X-ray imaging, especially phase contrast imaging. We calculate that we can preserve the electron emittance from the source to the crystal, and focus to a 40 nm spot on the crystal face for 40 MeV electrons. This yields an X-ray source with good coherence properties. We discuss our plan for experiments at Fermilab with 4.5 MeV electrons at the High Brightness Electron Source Laboratory, and with 40 MeV electrons at the Advanced Superconducting Test Accelerator. We also present the state of our art with cathode construction and testing. Electrons come from the cathodes by field-emission, with the electric field enhanced by geometric properties of a very small, robust diamond tip. This can create an electron beam with very small emittance. We estimate that the normalized emittance of such a beam at the cathode is 3 nm rad. We currently test the cathodes in DC, high-voltage test stands. We will begin experiments placing the cathodes in RF guns in early 2013. ;(C) 2013 Elsevier B.V. All rights reserved. C1 [Gabella, W. E.; Brau, C. A.; Ivanov, B.; Jarvis, J. D.; Mendenhall, M. H.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Choi, B. K.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA. [Piot, P.; Mihalcea, D.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Piot, P.; Mihalcea, D.; Carrigan, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Wagner, W.] Helmholtz Zentrum Dresden Rossendorf, Inst Radiat Phys, Dresden, Germany. RP Gabella, WE (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. EM b.gabella@vanderbilt.edu OI Choi, Bo K./0000-0002-4984-5958; Ivanov, Borislav/0000-0003-1837-6113 FU DARPA Advanced X-ray Imaging System (AXiS) program FX We have had many useful discussions with Dr. Raj Gupta about phase contrast imaging and image analysis. We wish to thank colleagues at Fermilab who have loaned us the goniometer that was used for previous experiments at the AO Photoinjector-the predecessor to HBESL. We also want to acknowledge the technicians and engineers that built the ELBE goniometer that we will use on the ASTA experiments. We have been able to increase the pace of our work greatly because these groups shared their hardware and expertise. We would also like to acknowledge the DARPA Advanced X-ray Imaging System (AXiS) program for funding which made this work possible. NR 24 TC 3 Z9 3 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD AUG 15 PY 2013 VL 309 BP 10 EP 14 DI 10.1016/j.nimb.2013.01.058 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 204ZC UT WOS:000323408800003 ER PT J AU Azarova, N Ferguson, AJ van de Lagemaat, J Rengnath, E Park, W Johnson, JC AF Azarova, Natalia Ferguson, Andrew J. van de Lagemaat, Jao Rengnath, Elisabeth Park, Wounjhang Johnson, Justin C. TI Coupling between a Molecular Charge-Transfer Exciton and Surface Plasmons in a Nanostructured Metal Grating SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID 3,4,9,10-PERYLENETETRACARBOXYLIC DIANHYDRIDE PTCDA; TIME-RESOLVED PHOTOLUMINESCENCE; THIN-FILMS; OPTICAL-CONSTANTS; ALPHA-PTCDA; PHOTOPHYSICS; CRYSTALS; FRENKEL AB The interaction of molecular excitons in organic thin films with surface plasmon polaritons (SPPs) in nanostructured metal electrodes represents a unique opportunity for enhancing the properties of the active layer of a photoconversion device. We present evidence of hybridization between charge-transfer excitons (CTEs) in 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) and SPP modes in silver grating nanostructures. Molecular and SPP absorption peaks exhibit avoided crossings in angle-dependent reflectivity experiments, which are verified by electromagnetic-field simulations of the PTCDA-grating structure. Photoluminescence measurements indicate that the radiative decay of the CTE is enhanced. Besides energetic resonance, selective coupling between the SPP and the exciton in this unique case may be aided by the oriented nature of PTCDA into 1-D "molecular stacks" as well as the delocalized nature of the CTE. C1 [Azarova, Natalia; Rengnath, Elisabeth; Park, Wounjhang] Univ Colorado, Dept Elect Comp & Energy Engn, Boulder, CO 80309 USA. [Ferguson, Andrew J.; van de Lagemaat, Jao; Johnson, Justin C.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Johnson, JC (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM justin.johnson@nrel.gov RI van de Lagemaat, Jao/J-9431-2012; OI Ferguson, Andrew/0000-0003-2544-1753 FU Laboratory Directed Research and Development program at the National Renewable Energy Laboratory; U.S. Department of Energy [DE-AC36-08GO28308]; NSF [CHE-1125935] FX This research was performed under a grant from the Laboratory Directed Research and Development program at the National Renewable Energy Laboratory, which is supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308. W.P. acknowledges NSF CHE-1125935 grant. We thank Steve Christensen for assistance with atomic layer deposition and Zhen Wang and Yifu Ding for assistance with nanoimprint lithography. NR 28 TC 2 Z9 2 U1 0 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD AUG 15 PY 2013 VL 4 IS 16 BP 2658 EP 2663 DI 10.1021/jz401219s PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 203NW UT WOS:000323300900010 ER PT J AU Kube, R Bracht, H Huger, E Schmidt, H Hansen, JL Larsen, AN Ager, JW Haller, EE Geue, T Stahn, J AF Kube, R. Bracht, H. Hueger, E. Schmidt, H. Hansen, J. Lundsgaard Larsen, A. Nylandsted Ager, J. W., III Haller, E. E. Geue, T. Stahn, J. TI Contributions of vacancies and self-interstitials to self-diffusion in silicon under thermal equilibrium and nonequilibrium conditions SO PHYSICAL REVIEW B LA English DT Article ID ENERGY ION-IMPLANTATION; POINT-DEFECTS; EXTRINSIC SILICON; ANTIMONY DIFFUSION; BINDING-ENERGY; OUT-DIFFUSION; DEGREES-C; SI; CLUSTERS; HETEROSTRUCTURES AB Since many years, the contribution of vacancies (V) and self-interstitials (I) to silicon (Si) self-diffusion is a matter of debate. Native defects and their interaction among themselves and with foreign atoms influence the processes taking place during device fabrication, starting with the growth of Si single crystals and ending with doping of nanosized electronic devices. Considering this relevance, it is remarkable that present data about the properties of native point defects in Si are still limited and controversial. This work reports experiments on self-diffusion in Si for temperatures between 650 degrees C and 960 degrees C to verify recent results of Shimizu et al. [Phys. Rev. Lett. 98, 095901 (2007)] that give rise to inconsistencies in V -mediated self-and dopant diffusion. Two different structures of isotopically controlled epitaxial layers of Si are used for the diffusion study. One structure consisting of 20 bilayers of Si-29/Si-28 was grown by molecular beam epitaxy (MBE). The other structure with a Si-28 layer sandwiched between natural Si was grown by means of chemical vapor deposition. Self-diffusion in (Si-29/Si-28) 20 multilayers (ML) was analyzed by means of secondary ion mass spectrometry (SIMS) and neutron reflectometry, whereas self-diffusion in Si-nat/Si-28/Si-nat sandwich (SW) structures was measured with SIMS only. Analysis of the experimental profiles reveals an enhanced self-diffusion in ML compared to SW structures. The enhanced diffusion is ascribed to the dissolution of V-and I-related defect clusters grown-in during MBE. On the other hand, self-diffusion in the SW structures accurately confirms the data of Shimizu et al. that are considered to represent data for thermal equilibrium conditions. The temperature dependence of self-diffusion is described by V- and I-mediated contributions with temperature-dependent thermodynamic properties of V. This interpretation can solve the inconsistency between self-and dopant diffusion in Si, but further experiments are required to verify this concept. C1 [Kube, R.; Bracht, H.] Univ Munster, Inst Mat Phys, D-48149 Munster, Germany. [Hueger, E.; Schmidt, H.] Tech Univ Clausthal, AG Mikrokinet, Inst Met, D-38678 Clausthal Zellerfeld, Germany. [Hansen, J. Lundsgaard; Larsen, A. Nylandsted] Univ Aarhus, Dept Phys & Astron, DK-8000 Aarhus, Denmark. [Ager, J. W., III; Haller, E. E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ager, J. W., III; Haller, E. E.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Geue, T.; Stahn, J.] Paul Scherrer Inst, Neutron Scattering Lab, CH-5232 Villigen, Switzerland. RP Kube, R (reprint author), Univ Munster, Inst Mat Phys, D-48149 Munster, Germany. EM bracht@uni-muenster.de RI Schmidt, Harald/E-8736-2014; OI Schmidt, Harald/0000-0001-9389-8507; Ager, Joel/0000-0001-9334-9751 FU Deutsche Forschungsgemeinschaft [BR 1520/12-1, SCHM 1569/14-1]; Heisenberg program; Initiatives for Proliferation Prevention Program of the Office of Nonproliferation Research and Engineering of the U. S. Department of Energy [NN-20, DE-AC03-76SF00098]; European Commission [CP-CSA-INFRA-2008-1.1.1, 226507-NMI3] FX The authors thank Tascon GmbH Munster and RTG Mikroanalyse GmbH Berlin for SIMS measurements. This work was funded by the Deutsche Forschungsgemeinschaft under Grants No. BR 1520/12-1 and No. SCHM 1569/14-1 as well as an individual grant within the Heisenberg program for H.B. and H.S. The isotopically enriched Si was developed by the Initiatives for Proliferation Prevention Program of the Office of Nonproliferation Research and Engineering (NN-20) of the U. S. Department of Energy under Contract No. DE-AC03-76SF00098. Neutron reflectometry experiments were performed at the Swiss spallation neutron source SINQ, Paul Scherrer Institute, Villigen, Switzerland, and have been also supported by the European Commission under the 7th Framework Programme through the "Research Infrastructures" action of the "Capacities" Programme, Contract No CP-CSA-INFRA-2008-1.1.1 Number 226507-NMI3. NR 62 TC 19 Z9 19 U1 1 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 15 PY 2013 VL 88 IS 8 AR 085206 DI 10.1103/PhysRevB.88.085206 PG 12 WC Physics, Condensed Matter SC Physics GA 203TK UT WOS:000323316200002 ER PT J AU He, HM Andersson, DA Allred, DD Rector, KD AF He, Heming Andersson, David A. Allred, David D. Rector, Kirk D. TI Determination of the Insulation Gap of Uranium Oxides by Spectroscopic Ellipsometry and Density Functional Theory SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; ELECTRONIC-STRUCTURE; AMORPHOUS-SEMICONDUCTORS; NEUTRON DIFFRACTION; MOLECULAR-DYNAMICS; OPTICAL-ABSORPTION; VALENCE STATES; UO2; U3O8 AB Detecting and understanding the complex signatures of species for attribution of highly enriched uranium, HEU, is challenging even though these compounds have been intensively studied for 65 years. Attempts to obtain, for example, chemical speciation signatures on uranium oxides are frustrated by the presence of extremely diverse phases, complex structures, and their tendency to form solid solutions with the coexistence of many nonstoichiometric oxides. More importantly, the spectroscopic signatures of many of these oxides, using common techniques such as X-ray diffraction or Raman scattering, are remarkably similar with each other. On the other hand, the effort to understand the U-O system also exhibits some of the most intriguing and challenging properties in theoretical and computational chemistry. This is due to the spatial extent between localization and delocalization of the 5f orbitals of the uranium atom. In this article, spectroscopic ellipsometry (SE) measurements and a comparison of six fitting methods as well as theoretical calculations are combined to examine the intrinsic electronic structure and the corresponding band gap of uranium oxides to determine the chemical speciation in a,102 nm thick reactively sputtered uranium oxide film. The SE results reveal that the UOx film exhibits two absorption edges, a primary absorption edge slightly above 2.6 eV and a secondary absorption at 1.7-1.8 eV. The optical band gaps compared with the theoretical calculations performed on UO2, U4O9, U3O7, alpha-U3O8, alpha-UO3, delta-UO3, and gamma-UO3 suggest that the UOx film is composed of at least two components; the primary absorption is caused by the alpha-UO3 sublayer, which is superimposed on top of an adjacent alpha-U3O8 sublayer that is hypothesized to be heteroepitaxial growth of alpha-U3O8 along the UOx/substrate interface. Comparison to the ellipsometry measurements shows that the DFT+U and hybrid (HSE) calculations predict the correct trend for band gaps as a function of oxidation state and crystallography but they fail to capture the exact gaps. However, they provide important information for interpretation of the experimental results and highlight some of the structural complexity that prevails in the UOx compounds. The combination of theoretical and experimental methods to examine the intrinsic electronic structure and the band gap of the corresponding uranium oxides could benefit from the development of new methods for better distinguishing chemical speciation in uranium oxides. In addition, the experimental measurement of the indirect band gap of alpha-U3O8, is, to our knowledge, reported for the first time. C1 [He, Heming; Rector, Kirk D.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Andersson, David A.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Allred, David D.] Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA. RP Rector, KD (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM kdr@lanl.gov RI Allred, David/R-3854-2016; OI Allred, David/0000-0001-6163-518X FU Los Alamos National Laboratory LDRD Program; Seaborg Institute FX For financial support of this work, we acknowledge the Los Alamos National Laboratory LDRD Program and G. T. Seaborg Institute (Fellowship to H.H.). NR 69 TC 10 Z9 10 U1 5 U2 58 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 15 PY 2013 VL 117 IS 32 BP 16540 EP 16551 DI 10.1021/jp401149m PG 12 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 203NY UT WOS:000323301100030 ER PT J AU Llordes, A Garcia, G Gazquez, J Milliron, DJ AF Llordes, Anna Garcia, Guillermo Gazquez, Jaume Milliron, Delia J. TI Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites SO NATURE LA English DT Article ID OPTICAL-PROPERTIES; AMORPHOUS OXIDE; NIOBIUM OXIDES; RAMAN-SPECTRA; FILMS; NANOCOMPOSITE; CHEMISTRY; ION AB Amorphous metal oxides are useful in optical(1,2), electronic(3-5) and electrochemical devices(6,7). The bonding arrangement within these glasses largely determines their properties, yet it remains a challenge to manipulate their structures in a controlled manner. Recently, we developed synthetic protocols for incorporating nanocrystals that are covalently bonded into amorphous materials(8,9). This 'nanocrystal-in-glass' approach not only combines two functional components in one material, but also the covalent link enables us to manipulate the glass structure to change its properties. Here we illustrate the power of this approach by introducing tin-doped indium oxide nanocrystals into niobium oxide glass (NbOx), and realize a new amorphous structure as a consequence of linking it to the nanocrystals. The resulting material demonstrates a previously unrealized optical switching behaviour that will enable the dynamic control of solar radiation transmittance through windows. These transparent films can block near-infrared and visible light selectively and independently by varying the applied electrochemical voltage over a range of 2.5 volts. We also show that the reconstructed NbOx glass has superior properties-its optical contrast is enhanced fivefold and it has excellent electrochemical stability, with 96 per cent of charge capacity retained after 2,000 cycles. C1 [Llordes, Anna; Garcia, Guillermo; Milliron, Delia J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Gazquez, Jaume] ICMAB CSIC, Inst Ciencia Mat Barcelona, Bellaterra 08193, Catalonia, Spain. RP Milliron, DJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM dmilliron@lbl.gov RI Foundry, Molecular/G-9968-2014; Milliron, Delia/D-6002-2012; Gazquez, Jaume/C-5334-2012; Llordes, Anna/H-2370-2015 OI Gazquez, Jaume/0000-0002-2561-328X; Llordes, Anna/0000-0003-4169-9156 FU Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (DOE) [DE-AC02-05CH11231]; DOE Early Career Research Program; Consejo Superior de Investigaciones Cientificas, CSIC, JAE; DOE-BES, Materials Sciences and Engineering Division; ORNL's Shared Research Equipment (ShaRE) User Program; DOE-BES FX We thank S. Raoux and J. L. Jordan-Sweet as well as S. Mannsfeld and M. Toney for assistance in synchrotron XRD measurements at the National Synchrotron Light Source (Brookhaven National Laboratory) and Stanford Synchrotron Radiation Lightsource (SSRL); and R. Zuckermann, P. J. Schuck, R. J. Mendelsberg, and especially M. Salmeron and O. Yaghi for critical reading of the manuscript. This work was performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, and was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (DOE) under contract number DE-AC02-05CH11231. D. J. M. and G. G. were supported by a DOE Early Career Research Program grant under the same contract, and J. G. was supported by Consejo Superior de Investigaciones Cientificas, CSIC, JAE. Scanning transmission electron microscopy images were taken at Oak Ridge National Laboratory (ORNL), supported by DOE-BES, Materials Sciences and Engineering Division, and by ORNL's Shared Research Equipment (ShaRE) User Program, which is also sponsored by DOE-BES. XRD data shown in the manuscript was acquired at SSRL, beamline 11-3. NR 32 TC 165 Z9 168 U1 29 U2 313 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD AUG 15 PY 2013 VL 500 IS 7462 BP 323 EP + DI 10.1038/nature12398 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 201AF UT WOS:000323112400030 PM 23955232 ER PT J AU Shao, S Wang, J Misra, A Hoagland, RG AF Shao, Shuai Wang, Jian Misra, Amit Hoagland, Richard G. TI Spiral Patterns of Dislocations at Nodes in (111) Semi-coherent FCC Interfaces SO SCIENTIFIC REPORTS LA English DT Article ID ATOMISTIC SIMULATIONS; DEFECTS; COMPOSITES AB In semi-coherent interface, a superposed network of interface dislocations accommodates the attendant coherency strains in the adjacent crystals and their intersections (referred to as nodes) can act as sinks and sources for point defects because of the low formation energy. Nodes in {1 1 1} semi-coherent interfaces are characterized with a spiral pattern (SP), wherein the line direction of each dislocation entering a node curves. The structure of SP nodes is able to switch between condensed and expanded by either reaction with point defects or mechanical deformation. Due to the switching of the node structures, point defect formation energies at nodes can be significantly reduced. Combining atomistic simulation and dislocation theory, these features are proven universal corresponding to the node density and the character of interface dislocations. C1 [Shao, Shuai; Wang, Jian; Hoagland, Richard G.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Misra, Amit] Los Alamos Natl Lab, MPA CINT, Los Alamos, NM 87545 USA. RP Wang, J (reprint author), Los Alamos Natl Lab, MST-8, Los Alamos, NM 87545 USA. EM wangj6@lanl.gov RI Shao, Shuai/B-2037-2014; Shao, Shuai/I-4108-2014; Misra, Amit/H-1087-2012; Wang, Jian/F-2669-2012 OI Shao, Shuai/0000-0002-4718-2783; Shao, Shuai/0000-0002-4718-2783; Wang, Jian/0000-0001-5130-300X FU Center for Materials at Irradiation and Mechanical Extremes; Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [2008LANL1026]; Los Alamos National Laboratory Directed Research and Development [ER20140450] FX This work was supported by the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Grant No. 2008LANL1026. JW also thank the support provided by a Los Alamos National Laboratory Directed Research and Development project ER20140450. Authors are grateful for the helpful comments from Prof. John P. Hirth. NR 36 TC 29 Z9 29 U1 6 U2 46 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD AUG 15 PY 2013 VL 3 AR 2448 DI 10.1038/srep02448 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 200VT UT WOS:000323099700006 PM 23945821 ER PT J AU Dubchak, I Munoz, M Poliakov, A Salomonis, N Minovitsky, S Bodmer, R Zambon, AC AF Dubchak, Inna Munoz, Matthew Poliakov, Alexandre Salomonis, Nathan Minovitsky, Simon Bodmer, Rolf Zambon, Alexander C. TI Whole-Genome rVISTA: a tool to determine enrichment of transcription factor binding sites in gene promoters from transcriptomic data SO BIOINFORMATICS LA English DT Article ID ALIGNMENTS; DISCOVERY AB We have developed a web-based query tool, Whole-Genome rVISTA (WGRV), that determines enrichment of transcription factors (TFs) and associated target genes in sets of co-regulated genes. WGRV enables users to query databases containing pre-computed genome coordinates of evolutionarily conserved transcription factor binding sites in the proximal promoters (from 100 bp to 5 kb upstream) of human, mouse and Drosophila genomes. TF binding sites are based on position-weight matrices from the TRANSFAC Professional database. For a given set of co-regulated genes, WGRV returns statistically enriched and evolutionarily conserved binding sites, mapped by the regulatory VISTA (rVISTA) algorithm. Users can then retrieve a list of genes from the query set containing the enriched TF binding sites and their location in the query set promoters. Results are exported in a BED format for rapid visualization in the UCSC genome browser. Flat files of mapped conserved sites and their genomic coordinates are also available for analysis with stand-alone software. C1 [Dubchak, Inna] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. [Dubchak, Inna; Poliakov, Alexandre; Minovitsky, Simon] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. [Munoz, Matthew; Zambon, Alexander C.] Univ Calif San Diego, Dept Pharmacol, La Jolla, CA 92093 USA. [Munoz, Matthew; Zambon, Alexander C.] Univ Calif San Diego, Dept Med, La Jolla, CA 92093 USA. [Salomonis, Nathan] Calif Pacific Med Ctr, Res Inst, San Francisco, CA 94107 USA. [Bodmer, Rolf] Sanford Burnham Med Res Inst, Dev & Aging Program, La Jolla, CA 92037 USA. RP Dubchak, I (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. EM ildubchak@lbl.gov; azambon@ucsd.edu FU National Institutes of Health [R01 HL091495, 1U54HL08460, 8UL1TR000100, P01HL098053, R01 HL54732, P01 HL0980539, P01 AG033561]; American Heart Association [10SDG2630130]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX National Institutes of Health (R01 HL091495 to I.D., 1U54HL08460 to M.M. and A.Z., 8UL1TR000100, P01HL098053 to A.Z., R01 HL54732, P01 HL0980539, P01 AG033561 to R.B.) and American Heart Association (10SDG2630130 to A.Z.). The work, conducted by the U.S. Department of Energy Joint Genome Institute (I.D., A.P., S.M.), is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors would like to thank Ivan Ovcharenko for helpful discussions. NR 12 TC 15 Z9 15 U1 0 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 J9 BIOINFORMATICS JI Bioinformatics PD AUG 15 PY 2013 VL 29 IS 16 BP 2059 EP 2061 DI 10.1093/bioinformatics/btt318 PG 3 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA 190KB UT WOS:000322337400023 PM 23736530 ER PT J AU Wang, YF Ahn, TH Li, Z Pan, CL AF Wang, Yingfeng Ahn, Tae-Hyuk Li, Zhou Pan, Chongle TI Sipros/ProRata: a versatile informatics system for quantitative community proteomics SO BIOINFORMATICS LA English DT Article ID DATABASE AB Sipros/ProRata is an open-source software package for end-to-end data analysis in a wide variety of community proteomics measurements. A database-searching program, Sipros 3.0, was developed for accurate general-purpose protein identification and broadrange post-translational modification searches. Hybrid Message Passing Interface/OpenMP parallelism of the new Sipros architecture allowed its computation to be scalable from desktops to supercomputers. The upgraded ProRata 3.0 performs label-free quantification and isobaric chemical labeling quantification in addition to metabolic labeling quantification. Sipros/ProRata is a versatile informatics system that enables identification and quantification of proteins and their variants in many types of community proteomics studies. C1 [Wang, Yingfeng; Ahn, Tae-Hyuk; Pan, Chongle] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Li, Zhou; Pan, Chongle] Univ Tennessee, Oak Ridge Natl Lab, Grad Sch Genome Sci & Technol, Oak Ridge, TN 37831 USA. RP Pan, CL (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. EM panc@ornl.gov RI Li, Zhou/L-7976-2015 FU U.S. Department of Energy, Office of Biological and Environmental Research, Genomic Science Program; U.S. Department of Energy [DE-AC05-00OR22725] FX This work was funded by the U.S. Department of Energy, Office of Biological and Environmental Research, Genomic Science Program. This research used resources of the Oak Ridge Leadership Computing Facility. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 5 TC 14 Z9 14 U1 1 U2 17 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 J9 BIOINFORMATICS JI Bioinformatics PD AUG 15 PY 2013 VL 29 IS 16 BP 2064 EP 2065 DI 10.1093/bioinformatics/btt329 PG 2 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA 190KB UT WOS:000322337400025 PM 23793753 ER PT J AU Ufuktepe, Y Farha, AH Kimura, S Hajiri, T Karadag, F Al Mamun, MA Elmustafa, AA Myneni, G Elsayed-Ali, HE AF Ufuktepe, Yuksel Farha, Ashraf Hassan Kimura, Shin-ichi Hajiri, Tetsuya Karadag, Faruk Al Mamun, Md Abdullah Elmustafa, Abdelmageed A. Myneni, Ganapati Elsayed-Ali, Hani E. TI Structural, electronic, and mechanical properties of niobium nitride prepared by thermal diffusion in nitrogen SO MATERIALS CHEMISTRY AND PHYSICS LA English DT Article DE Thin films; Nitrides; Hardness; X-ray photo-emission; spectroscopy (XPS) ID NB-N SYSTEM; HIGH-TEMPERATURE; ELASTIC-MODULUS; FILMS; XPS; INDENTATION; TRANSITION; COATINGS; HARDNESS; GROWTH AB Niobium nitride (NbNx) was prepared by heating Nb sample in a nitrogen atmosphere (133 Pa) at a temperature of 900 degrees C. The structural, electronic, nanomechanical and surface properties of the deposited layers have been determined as a function of processing time. The results suggested that the niobium nitride was crystalline in the single phase of hexagonal beta-Nb2N and the nitrogen-to-niobium ratio was found to be in the range of 0.67 +/- 0.03 to 0.74 +/- 0.03. Longer processing times resulted in layers with higher nitrogen-to-niobium ratios. The mean grain size of these nitrides was about 18 nm. The valence band photoemission and calculated density of state spectra characterized by two peaks were associated with N 2p-Nb 4d hybridization. X-ray photoemission spectra of Nb 3p and 3d core levels revealed a strong interaction with nitrogen along with binding energy shift. As the processing time was increased, the film growth continued with consistent improvement in hardness and modulus. (C) 2013 Elsevier B.V. All rights reserved. C1 [Ufuktepe, Yuksel; Karadag, Faruk] Cukurova Univ, Dept Phys, TR-01330 Adana, Turkey. [Farha, Ashraf Hassan; Elsayed-Ali, Hani E.] Old Dominion Univ, Dept Elect & Comp Engn, Norfolk, VA 23529 USA. [Farha, Ashraf Hassan; Al Mamun, Md Abdullah; Elmustafa, Abdelmageed A.; Elsayed-Ali, Hani E.] Old Dominion Univ, Appl Res Ctr, Norfolk, VA 23529 USA. [Kimura, Shin-ichi; Hajiri, Tetsuya] UVSOR Facil, Inst Mol Sci, Okazaki, Aichi 4448585, Japan. [Kimura, Shin-ichi] Grad Univ Adv Studies SOKENDAI, Sch Phys Sci, Okazaki, Aichi 4448585, Japan. [Hajiri, Tetsuya] Nagoya Univ, Grad Sch Engn, Nagoya, Aichi 4648601, Japan. [Farha, Ashraf Hassan] Ain Shams Univ, Fac Sci, Dept Phys, Cairo 11566, Egypt. [Al Mamun, Md Abdullah; Elmustafa, Abdelmageed A.] Old Dominion Univ, Dept Mech & Aerosp Engn, Norfolk, VA 23529 USA. [Myneni, Ganapati] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Ufuktepe, Y (reprint author), Cukurova Univ, Dept Phys, TR-01330 Adana, Turkey. EM ufuk@cu.edu.tr RI Kimura, Shin-ichi/D-7179-2011; Hajiri, Tetsuya/N-1503-2013; Mamun, Md Abdullah/E-2914-2014 OI Kimura, Shin-ichi/0000-0003-1091-196X; Hajiri, Tetsuya/0000-0003-3770-483X; Mamun, Md Abdullah/0000-0001-8019-448X FU Cukurova University; Council of Higher Education of Turkey; Japan Society for the Promotion of Science (JSPS); National Science Foundation [DMR-9988669, MRI-0821180]; Jefferson Lab fellowship FX One of the authors (Y.U.) thanks the Cukurova University, the Council of Higher Education of Turkey, and the Japan Society for the Promotion of Science (JSPS) for their support. H.E.A. acknowledges support by the National Science Foundation Grant Nos. DMR-9988669 and MRI-0821180. A.H.F. was supported by a Jefferson Lab fellowship. NR 30 TC 6 Z9 6 U1 1 U2 39 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0254-0584 J9 MATER CHEM PHYS JI Mater. Chem. Phys. PD AUG 15 PY 2013 VL 141 IS 1 BP 393 EP 400 DI 10.1016/j.matchemphys.2013.05.029 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA 187VN UT WOS:000322149700056 ER PT J AU Czekner, J Taatjes, CA Osborn, DL Meloni, G AF Czekner, Joseph Taatjes, Craig A. Osborn, David L. Meloni, Giovanni TI Absolute photoionization cross-sections of selected furanic and lactonic potential biofuels SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY LA English DT Article DE Synchrotron photoionization mass spectrometry; Photoionization cross sections; Dissociative ionization fragments; Appearance energy; Adiabatic ionization energy ID SET MODEL CHEMISTRY; GAMMA-VALEROLACTONE; PHOTOELECTRON-SPECTRA; VACUUM-ULTRAVIOLET; CATALYTIC CONVERSION; COMBUSTION CHEMISTRY; HYDROCARBON FUELS; MASS-SPECTROMETRY; CARBOXYLIC-ACIDS; FLAME CHEMISTRY AB Absolute photoionization cross sections of the molecules gamma-butyrolactone (GBL), gamma-valerolactone (GVL), alpha-angelicalactone (ML), and gamma-methylene-gamma-butyrolactone (GMGB), including partial ionization cross sections for dissociative ionization, are measured. The experiments are carried out using photoionization mass spectrometry (PIMS) at the Advanced Light Source, and an orthogonal extraction time-of-flight spectrometer is used for mass analysis. Photoionization of furan, 2-methyl furan (2-MF), and 2,5-dimethyl furan (2,5-DMF) is also investigated to confirm the accuracy of our measurements, which show a good agreement of the absolute partial photoionization cross sections with literature values. CBS-QB3 calculations of adiabatic ionization energies (AIE) and appearance energies (AE) agree well with the experimental results. (C) 2013 Elsevier B.V. All rights reserved. C1 [Czekner, Joseph; Meloni, Giovanni] Univ San Francisco, Dept Chem, San Francisco, CA 94117 USA. [Taatjes, Craig A.; Osborn, David L.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Meloni, G (reprint author), Univ San Francisco, Dept Chem, San Francisco, CA 94117 USA. EM gmeloni@usfca.edu FU American Chemical Society - Petroleum Research Fund [51170 UNI6]; University of San Francisco Faculty Development Fund; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, of the U.S. Department of Energy; National Nuclear Security Administration [DE-AC04-94-AL85000] FX We acknowledge the American Chemical Society - Petroleum Research Fund Grant #51170 UNI6, the University of San Francisco Faculty Development Fund for financial support, the usage of the chemistry computer cluster at the University of San Francisco supported by professors Claire Castro and William Karney, and the Advanced Light Source (ALS) division at the Lawrence Berkeley National Laboratory for beamtime allocation. We also thank Dr. John Savee from Sandia National labs for sharing his insight throughout the writing of this paper. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The Sandia authors and the development of the experimental apparatus are supported by the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, of the U.S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under contract DE-AC04-94-AL85000. NR 69 TC 5 Z9 5 U1 2 U2 43 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-3806 EI 1873-2798 J9 INT J MASS SPECTROM JI Int. J. Mass Spectrom. PD AUG 15 PY 2013 VL 348 BP 39 EP 46 DI 10.1016/j.ijms.2013.04.020 PG 8 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 177YA UT WOS:000321410100006 ER PT J AU Hamelin, EI Bragg, W Shaner, RL Swaim, LL Johnson, RC AF Hamelin, Elizabeth I. Bragg, William Shaner, Rebecca L. Swaim, Leigh L. Johnson, Rudolph C. TI Comparison of high-resolution and tandem mass spectrometry for the analysis of nerve agent metabolites in urine SO RAPID COMMUNICATIONS IN MASS SPECTROMETRY LA English DT Article ID ISOTOPE-DILUTION; QUANTITATION; QUANTIFICATION; ORBITRAP; PLASMA; SOMAN; SPECTROSCOPY; BIOANALYSIS; EXPOSURE; DRUGS AB RATIONALE Although use is prohibited, concerns remain for human exposure to nerve agents during decommissioning, research, and warfare. High-resolution mass spectrometry (HRMS) was compared to tandem mass spectrometry (MS/MS) analysis for the quantitation of five urinary metabolites specific to VX, Russian VX, soman, sarin and cyclosarin nerve agents. The HRMS method was further evaluated for qualitative screening of metabolites not included in the test panel. METHODS Nerve agent metabolites were extracted from urine using solid-phase extraction, separated using hydrophilic interaction chromatography and analyzed using both tandem and high-resolution mass spectrometry. MS/MS results were obtained using selected reaction monitoring with unit resolution; HRMS results were obtained using a mass extraction window of 10ppm at a mass resolution of 50 000. The benchtop Orbitrap HRMS instrument was operated in full scan mode, to measure the presence of unexpected nerve agent metabolites. RESULTS The assessment of two quality control samples demonstrated high accuracy (99.5-104%) and high precision (2-9%) for both HRMS and MS/MS. Sensitivity, as described by the limit of detection, was overlapping for both detectors (0.2-0.7ng/mL). Additionally, the HRMS method positively confirmed the presence of a nerve agent metabolite, not included in the test panel, using the accurate mass and relative retention time. CONCLUSIONS The precision, accuracy, and sensitivity were comparable between the current MS/MS method and this newly developed HRMS analysis for five nerve agent metabolites. HRMS showed additional capabilities beyond the current method by confirming the presence of a metabolite not included in the test panel. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA. C1 [Hamelin, Elizabeth I.; Shaner, Rebecca L.; Swaim, Leigh L.; Johnson, Rudolph C.] Ctr Dis Control & Prevent, Emergency Response Branch, Div Sci Lab, Natl Ctr Environm Hlth, Atlanta, GA 30341 USA. [Bragg, William] Oak Ridge Inst Sci Educ, Oak Ridge, TN 37831 USA. RP Hamelin, EI (reprint author), Ctr Dis Control & Prevent, 4770 Buford Hwy,Mailstop F44, Atlanta, GA 30341 USA. EM ehamelin@cdc.gov FU Intramural CDC HHS [CC999999] NR 26 TC 6 Z9 6 U1 2 U2 37 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0951-4198 J9 RAPID COMMUN MASS SP JI Rapid Commun. Mass Spectrom. PD AUG 15 PY 2013 VL 27 IS 15 BP 1697 EP 1704 DI 10.1002/rcm.6621 PG 8 WC Biochemical Research Methods; Chemistry, Analytical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA 175BG UT WOS:000321203700004 PM 23821563 ER PT J AU Tian, D Li, DY Wang, FF Xiao, N Liu, RQ Li, N Li, Q Gao, W Wu, G AF Tian, Dong Li, De Y. Wang, Fang F. Xiao, Ning Liu, Rui Q. Li, Ning Li, Qing Gao, Wei Wu, Gang TI A Pd-free activation method for electroless nickel deposition on copper SO SURFACE & COATINGS TECHNOLOGY LA English DT Article DE Pd-free activation; Immersion nickel layers; Copper; Thiourea; Electroless nickel deposition ID FUNCTIONAL THEORY ANALYSIS; CONTAINING ACID-SOLUTION; SULFURIC-ACID; HYPOPHOSPHITE IONS; METAL-SURFACES; THIOUREA; NI; OXIDATION; XPS; TIN AB In this work, a Pd-free activation method for electroless nickel deposition on copper via an immersion nickel technique was developed. In the very solution we studied, high concentration of thiourea resulted in a negative shift of the steady potential of copper, making it possible to realize immersion nickel. The obtained immersion nickel layers were characterized by scanning electron microscopy, energy dispersive X-ray spectrometry and X-ray photoelectron spectroscopy, demonstrating a co-deposition of sulfur in the nickel layer. Importantly, the post-treatment in 1.0 M NaH2PO2 + 1.0 M NaOH solution was able to eliminate the adsorbed thiourea and stimulate the catalytic activity of the immersion nickel layer for electroless nickel deposition. A combination of open circuit potential measurements and morphology studies indicated that an incubation step was required during the electroless nickel deposition on the immersion nickel layers after post-treatment. Although the catalytic activity of this Ni-activation method was slightly lower as compared to the conventional Pd-activation, both obtained electroless Ni-P layers exhibited similar morphology, chemical composition, corrosion resistance, and adhesion strength. Thus, this work demonstrated that the newly developed Ni-activation method was cost-effective and could be a promising replacement to expensive Pd-activation method currently used in printed circuit board industries. (C) 2013 Published by Elsevier B.V. C1 [Tian, Dong; Li, De Y.; Xiao, Ning; Liu, Rui Q.; Li, Ning] Sch Chem Engn & Technol, Harbin Inst Technol, Harbin 150001, Peoples R China. [Xiao, Ning] Xiamen Univ, Coll Chem & Chem Engn, Dept Chem, Xiamen 361005, Peoples R China. [Li, Qing; Gao, Wei; Wu, Gang] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Li, N (reprint author), Sch Chem Engn & Technol, Harbin Inst Technol, Harbin 150001, Peoples R China. EM lininghit@263.net RI Wu, Gang/E-8536-2010; Li, Qing/G-4502-2011 OI Wu, Gang/0000-0003-4956-5208; Li, Qing/0000-0003-4807-030X FU Highnic Group FX The financial support by the Highnic Group in this work is gratefully acknowledged. NR 49 TC 5 Z9 5 U1 5 U2 67 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD AUG 15 PY 2013 VL 228 BP 27 EP 33 DI 10.1016/j.surfcoat.2013.03.048 PG 7 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 183EM UT WOS:000321797100003 ER PT J AU Wang, C Han, Y Chen, JQ Wang, XC Zhang, QZ Bond-Lamberty, B AF Wang, Chuankuan Han, Yi Chen, Jiquan Wang, Xingchang Zhang, Quanzhi Bond-Lamberty, Ben TI Seasonality of soil CO2 efflux in a temperate forest: Biophysical effects of snowpack and spring freeze-thaw cycles SO AGRICULTURAL AND FOREST METEOROLOGY LA English DT Article DE Carbon dioxide; Model; Non-growing season; Soil respiration; Winter ID CARBON-DIOXIDE; BOREAL FOREST; ENVIRONMENTAL CONTROLS; CHAMBER SYSTEMS; VEGETATION TYPE; CLIMATE-CHANGE; WATER-CONTENT; FROZEN SOIL; FINE ROOTS; RESPIRATION AB Changes in characteristics of snowfall and spring freeze-thaw-cycle (FTC) events under the warming climate make it critical to understand biophysical controls on soil CO2 efflux (R-S) in seasonally snow-covered ecosystems. We conducted a snow removal experiment and took year-round continuous automated measurements of R-S, soil temperature (T-5) and soil volumetric water content at the 5 cm depth (W-5) with a half-hour interval in a Chinese temperate forest in 2010-2011. Our objectives were to: (1) develop statistical models to describe the seasonality of R-S in this forest; (2) quantify the contribution of seasonal R-S to the annual budget; (3) examine biophysical effects of snowpack on R-S; and (4) test the hypothesis that an FTC-induced enhancement of R-S is jointly driven by biological and physical processes. Empirical R-S-T-5-W-5 models explained 65.3-94.1% of the variability in the R-S data, but the number of the regression terms and their coefficients varied with season. This indicates that the model should be fitted to the seasonal data sets separately to explicitly describe the seasonality of R-S. The R-S during the winter, spring FTC period, and growing season contributed 5.7%, 3.5%, and 91.1%, respectively, to the total annual R-S. The relative enhancement of R-S due to snowpack and FTCs averaged 3.4 and 2.5, respectively. The snowpack-induced enhancement of R-S exponentially increased with T-5 (R-2 = 0.83) and snow depth (R-2 = 0.16), while the FTC-induced enhancement of R-S exponentially decreased with T-5 (R-2 = 0.45) and W-5 (R-2 = 0.67). These results suggest that the snowpack-induced enhancement mainly results from the snow-depth-dependent insulation of soil from low air temperatures, while the FTC-induced enhancement is dominantly driven by biological processes. Accumulatively, the snowpack and spring FTCs made a minor net contribution (2.3% and 1.2%, respectively) to the annual R-S budget. (C) 2013 Elsevier B.V. All rights reserved. C1 [Wang, Chuankuan; Han, Yi; Wang, Xingchang; Zhang, Quanzhi] Northeast Forestry Univ, Ctr Ecol Res, Harbin 150040, Peoples R China. [Chen, Jiquan] Univ Toledo, Dept Environm Sci, Toledo, OH 43606 USA. [Bond-Lamberty, Ben] Univ Maryland, Joint Global Change Res Inst, Pacific NW Natl Lab, College Pk, MD 20740 USA. RP Wang, C (reprint author), Northeast Forestry Univ, Ctr Ecol Res, 26 Hexing Rd, Harbin 150040, Peoples R China. EM wangck-cf@nefu.edu.cn RI Chen, Jiquan/D-1955-2009; Zhang, Quanzhi/A-2693-2014; Bond-Lamberty, Ben/C-6058-2008 OI Zhang, Quanzhi/0000-0001-5139-8870; Bond-Lamberty, Ben/0000-0001-9525-4633 FU National Key Technology Research and Development Program of the Ministry of Science and Technology of China [2011BAD37B01]; Program for Changjiang Scholars and Innovative Research Team in University [IRT1054]; National Natural Science Funds for Distinguished Young Scientists [30625010] FX This research was financially supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (No. 2011BAD37B01), the Program for Changjiang Scholars and Innovative Research Team in University (IRT1054), and the National Natural Science Funds for Distinguished Young Scientists (No. 30625010) to C. K. Wang. Special thanks go to Dr. Timothy J. Griffis and two anonymous reviewers for their constructive comments. We also thank Dr. Song Qian for valuable discussion on data analysis and Lisa Taylor for the language editing. The Maoershan Forest Ecosystem Research Station provided field logistic support. NR 66 TC 13 Z9 26 U1 12 U2 114 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1923 J9 AGR FOREST METEOROL JI Agric. For. Meteorol. PD AUG 15 PY 2013 VL 177 BP 83 EP 92 DI 10.1016/j.agrformet.2013.04.008 PG 10 WC Agronomy; Forestry; Meteorology & Atmospheric Sciences SC Agriculture; Forestry; Meteorology & Atmospheric Sciences GA 173OB UT WOS:000321087700008 ER PT J AU Lipnikov, K Reynolds, J Nelson, E AF Lipnikov, Konstantin Reynolds, James Nelson, Eric TI Mimetic discretization of two-dimensional magnetic diffusion equations SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Mimetic finite differences; Magnetic diffusion; Cylindrical coordinates; Unstructured mesh ID FINITE-DIFFERENCE METHODS; POLYHEDRAL MESHES AB In case of non-constant resistivity, cylindrical coordinates, and highly distorted polygonal meshes, a consistent discretization of the magnetic diffusion equations requires new discretization tools based on a discrete vector and tensor calculus. We developed a new discretization method using the mimetic finite difference framework. It is second-order accurate on arbitrary polygonal meshes and a consistent calculation of the Joule heating is intrinsic within it. The second-order convergence rates in L-2 and L-1 norms were verified with numerical experiments. Published by Elsevier Inc. C1 [Lipnikov, Konstantin; Reynolds, James; Nelson, Eric] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Lipnikov, K (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM lipnikov@lanl.gov; jreynolds@lanl.gov; enelson@lanl.gov OI Nelson, Eric/0000-0003-1446-6453 FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; Advanced Simulation & Computing (ASC) Program; DOE Office of Science Advanced Scientific Computing Research (ASCR) Program in Applied Mathematics Research FX This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. We express gratitude to Allen Robinson, Chris Rousculp, and Ann Kaul for enlightening discussions. The authors acknowledge support of the Advanced Simulation & Computing (ASC) Program and the DOE Office of Science Advanced Scientific Computing Research (ASCR) Program in Applied Mathematics Research. NR 23 TC 4 Z9 4 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD AUG 15 PY 2013 VL 247 BP 1 EP 16 DI 10.1016/j.jcp.2013.03.050 PG 16 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 167BK UT WOS:000320605100001 ER PT J AU Chen, G Chacon, L AF Chen, G. Chacon, L. TI An analytical particle mover for the charge- and energy-conserving, nonlinearly implicit, electrostatic particle-in-cell algorithm SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Analytical particle orbit integration; Electrostatic particle-in-cell; Implicit methods; Energy conservation; Charge conservation ID PLASMA; SIMULATION AB We propose a 1D analytical particle mover for the recent charge-and energy-conserving electrostatic particle-in-cell (PIC) algorithm in Ref. [G. Chen, L. Chacon, D. C. Barnes, An energy-and charge-conserving, implicit, electrostatic particle-in-cell algorithm, Journal of Computational Physics 230 (2011) 7018-7036]. The approach computes particle orbits exactly for a given piece-wise linear electric field. The resulting PIC algorithm maintains the exact charge and energy conservation properties of the original algorithm, but with improved performance (both in efficiency and robustness against the number of particles and timestep). We demonstrate the advantageous properties of the scheme with a challenging multiscale numerical test case, the ion acoustic wave. Using the analytical mover as a reference, we demonstrate that the choice of error estimator in the Crank-Nicolson mover has significant impact on the overall performance of the implicit PIC algorithm. The generalization of the approach to the multi-dimensional case is outlined, based on a novel and simple charge conserving interpolation scheme. Published by Elsevier Inc. C1 [Chen, G.; Chacon, L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Chen, G (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM gchen@lanl.gov RI Chen, Guangye /K-3192-2012; OI Chacon, Luis/0000-0002-4566-8763; Chen, Guangye/0000-0002-8800-5791 FU Office of Fusion Energy Science at Oak Ridge National Laboratory; Los Alamos National Laboratory (LANL) Directed Research and Development Program; US Department of Energy at Oak Ridge National Laboratory [DE-AC05-00OR22725]; National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX The authors would like to acknowledge useful conversations with Dana Knoll. This work was partially sponsored by the Office of Fusion Energy Science at Oak Ridge National Laboratory, and by the Los Alamos National Laboratory (LANL) Directed Research and Development Program. This work was performed under the auspices of the US Department of Energy at Oak Ridge National Laboratory, managed by UT-Battelle, LLC under contract DE-AC05-00OR22725, and the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory, managed by LANS, LLC under contract DE-AC52-06NA25396. NR 10 TC 5 Z9 5 U1 0 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD AUG 15 PY 2013 VL 247 BP 79 EP 87 DI 10.1016/j.jcp.2013.04.002 PG 9 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 167BK UT WOS:000320605100004 ER PT J AU Oppelstrup, T AF Oppelstrup, Tomas TI Matrix compression by common subexpression elimination SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Matrix compression; Common subexpression elimination; Black box optimization ID ALGORITHM AB In this report a method for common subexpression elimination in matrices is explored. The method is applied to several types of matrices occurring in numerical simulations. In all cases, the cost of a matrix-vector multiplication is reduced by a significant amount. The amount of storage required for the eliminated matrices is also less than that required for the original matrices. When the proposed method is applied to the Fourier transform matrix, the output is equivalent to the fast Fourier transform. For some matrices used in the fast multipole method for dislocation dynamics, the cost of a matrix-vector multiplication is reduced from O(p(6)) to O(p(4.5)), where p is the expansion order. Using an expansion order of 5, one can expect a factor of four speedup of the fast multipole part of a dislocation dynamics code. (C) 2013 Elsevier Inc. All rights reserved. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Oppelstrup, T (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM oppelstrup2@llnl.gov FU U.S. Department of Energy [DE-AC52-07NA27344] FX I thank professor Olof Runborg for a good discussion, which resulted in a greatly improved quality and readability of this report. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The release number of this document is LLNL-JRNL-561191. NR 10 TC 0 Z9 0 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD AUG 15 PY 2013 VL 247 BP 100 EP 108 DI 10.1016/j.jcp.2013.03.042 PG 9 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 167BK UT WOS:000320605100006 ER PT J AU Nielsen, LC De Yoreo, JJ DePaolo, DJ AF Nielsen, Laura C. De Yoreo, James J. DePaolo, Donald J. TI General model for calcite growth kinetics in the presence of impurity ions SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID CRYSTAL-GROWTH; AQUEOUS-SOLUTIONS; OXALATE MONOHYDRATE; TOTAL PRESSURE; CARBONATE; SEAWATER; PRECIPITATION; SURFACE; STEP; INHIBITION AB The concentrations of Sr, Mg and other elements in calcite are widely used to infer the conditions of mineral growth. However, such inferences are dependent on the mechanisms that govern the incorporation of minor constituents into the calcite lattice during growth. A particularly confusing observation is that both Sr and Mg are readily incorporated into growing calcite crystals at low concentrations but inhibit calcite growth at higher concentrations. Here we show that the growth rate dependence of Sr and Mg incorporation into calcite, as well the inhibitory effects on calcite growth of both incorporating and non-incorporating ions, can be predicted with an ion-by-ion crystal growth model where ion attachment is confined to kink sites on the crystal surface. The exchange of ions between active growth (kink) sites on the mineral surface and aqueous solution governs both the efficiency of incorporation of minor constituents and the kinetics of mineral precipitation. Ions such as Sr and Mg in calcite, that are not stoichiometric constituents, may attach to kink sites and impede crystal growth by either blocking propagation of the kink (kink blocking), or if incorporated into the growing mineral, straining the local crystal lattice, and hence increasing the mineral solubility (incorporation inhibition). Here we investigate the effects of including these growth inhibition mechanisms into a microscopic model for crystal growth based on kink creation, propagation and collision (CPC) theory. This model predicts that kink blocking by either incorporated or non-incorporated ions causes an exponential decrease in mineral growth rate with increasing impurity concentration, while incorporation inhibition results in more complicated functional forms of the growth rate effect depending on the thermodynamics of the solid solution. Applying this model to existing data on the partitioning of strontium and magnesium into calcite and the simultaneous effects on growth kinetics and mineral composition, we find that strontium uptake inhibits growth by enhancing mineral solubility while magnesium inhibits growth primarily by kink blocking. Our model should be widely applicable to understanding the impurity content of a large range of sparingly soluble minerals that form by precipitation from aqueous solutions. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Nielsen, Laura C.] Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA. [De Yoreo, James J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [DePaolo, Donald J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [DePaolo, Donald J.] Univ Calif Berkeley, Ctr Isotope Geochem, Berkeley, CA 94720 USA. RP Nielsen, LC (reprint author), Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA. EM lauracn@stanford.edu FU Chemical Sciences, Geosciences and Biosciences Division, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The research was done as part of the Center for Nanoscale Control of Geologic CO2, a Basic Energy Sciences Energy Frontier Research Center. General support for isotopic geochemistry is also provided by Chemical Sciences, Geosciences and Biosciences Division, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 68 TC 30 Z9 31 U1 9 U2 147 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD AUG 15 PY 2013 VL 115 BP 100 EP 114 DI 10.1016/j.gca.2013.04.001 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 152CP UT WOS:000319507900007 ER PT J AU Carnes, B Spernjak, D Luo, G Hao, L Chen, KS Wang, CY Mukundan, R Borup, RL AF Carnes, Brian Spernjak, Dusan Luo, Gang Hao, Liang Chen, Ken S. Wang, Chao-Yang Mukundan, Rangachary Borup, Rodney L. TI Validation of a two-phase multidimensional polymer electrolyte membrane fuel cell computational model using current distribution measurements SO JOURNAL OF POWER SOURCES LA English DT Article DE Validation; Polymer electrolyte membrane fuel cell; Computational model; Current distribution measurements; Uncertainty quantification ID PARAMETER SENSITIVITY EXAMINATION; POROUS-MEDIA; MULTIPHASE; TRANSPORT; TOOLS; FLOW AB Validation of computational models for polymer electrolyte membrane fuel cell (PEMFC) performance is crucial for understanding the limits of the model predictions. We compare predictions from a multiphase PEMFC computational model with experimental data collected under various current density, temperature and humidification conditions from a single 50 cm(2) PEMFC with a 10 x 10 segmented current collector. Both cell voltage and current distribution measurements are used to quantify the predictive capability of the computational model. Several quantitative measures are used to quantify the error in the model predictions for current distribution, including root mean square error, maximum/minimum local error, and local error averaged from inlet to outlet. The cell voltage predictions were within 15 mV of the experimental data in the current range from 0.1 to 1.2 A cm(-2), and the current distributions were acceptable (less than 30% local error) except for the low temperature case, where the model over-predicted the current distribution. Particular attention was paid to incorporating experimental variability into the model validation process. (C) 2013 Elsevier B.V. All rights reserved. C1 [Carnes, Brian; Chen, Ken S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Spernjak, Dusan; Mukundan, Rangachary; Borup, Rodney L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Luo, Gang; Hao, Liang; Wang, Chao-Yang] Penn State Univ, ECEC, University Pk, PA 16802 USA. RP Carnes, B (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM bcarnes@sandia.gov RI Wang, Chao-Yang/C-4122-2009; Hao, Liang/A-4457-2014; OI Hao, Liang/0000-0002-2584-490X; Mukundan, Rangachary/0000-0002-5679-3930 FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 24 TC 3 Z9 3 U1 1 U2 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD AUG 15 PY 2013 VL 236 BP 126 EP 137 DI 10.1016/j.jpowsour.2013.02.039 PG 12 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 149EL UT WOS:000319301700017 ER PT J AU Cai, L An, K Feng, ZL Liang, CD Harris, SJ AF Cai, Lu An, Ke Feng, Zhili Liang, Chengdu Harris, Stephen J. TI In-situ observation of inhomogeneous degradation in large format Li-ion cells by neutron diffraction SO JOURNAL OF POWER SOURCES LA English DT Article DE Lithium-ion battery; Degradation; Neutron diffraction; Graphite; Spinel; Inhomogeneous ID CAPACITY FADE; LITHIUM; BATTERIES; MECHANISMS; ELECTRODE; LAMBDA-MNO2; MICROSCOPY; VULCAN; NI AB This work presents a non-destructive in-situ method for probing degradation mechanisms in large format, operating, commercial lithium-ion batteries by neutron diffraction. A fresh battery (15 Ah capacity) was shown to have a uniform (homogeneous) local state of charge (SOC) at 4.0 V (9 Ah SOC) and 4.2 V (15 Ah SOC), with 1.33 C and 2.67 C charging rates, respectively. This battery was then aggressively cycled until it retained only a 9 Ah capacity, 60% of its original value. Inhomogeneous deterioration in the battery was observed: near the edges, both the graphite anode and the spinel-based cathode showed a significant loss of capacity, while near the central area, both electrodes functioned properly. An SOC mapping measurement of the degraded battery in the fully charged state (4.2 V) indicated that the loss of local capacity of the anode and cathode is coupled. (C) 2013 Elsevier B.V. All rights reserved. C1 [Cai, Lu; An, Ke] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Feng, Zhili] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Liang, Chengdu] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Harris, Stephen J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP An, K (reprint author), Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. EM kean@ornl.gov RI Feng, Zhili/H-9382-2012; An, Ke/G-5226-2011 OI Feng, Zhili/0000-0001-6573-7933; An, Ke/0000-0002-6093-429X FU ORNL; Division of Materials Sciences and Engineering, BES, DOE; Division of Scientific User Facilities, BES, DOE FX This research is supported by a Laboratory Directors R&D fund from ORNL. L.C., K.A. and C.L. acknowledge the support by the Division of Materials Sciences and Engineering, BES, DOE. This research benefitted from the use of SNS sponsored by the Division of Scientific User Facilities, BES, DOE. The authors thank Mr. H. D. Skorpenske for his technical support of neutron measurements. NR 26 TC 30 Z9 30 U1 3 U2 103 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD AUG 15 PY 2013 VL 236 BP 163 EP 168 DI 10.1016/j.jpowsour.2013.02.066 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 149EL UT WOS:000319301700022 ER PT J AU Xu, W Chen, XL Wang, W Choi, DW Ding, F Zhang, JM Nie, ZM Choi, YJ Zhang, JG Yang, ZG AF Xu, Wu Chen, Xilin Wang, Wei Choi, Daiwon Ding, Fei Zhang, Jianming Nie, Zhimin Choi, Young Joon Zhang, Ji-Guang Yang, Z. Gary TI Simply AlF3-treated Li4Ti5O12 composite anode materials for stable and ultrahigh power lithium-ion batteries SO JOURNAL OF POWER SOURCES LA English DT Article DE Li4Ti5O12; AlF3 treatment; Doping; Anode; Lithium-ion battery; High power ID CARBON-COATED LI4TI5O12; ELECTROCHEMICAL PERFORMANCE; DOPED LI4TI5O12; ELECTRODE; SPINEL; TEMPERATURE AB The commercial Li4Ti5O12 (LTO) is successfully modified by AlF3 via a low temperature process. After being calcined at 400 degrees C for 5 h, AlF3 reacts with LTO to form a composite material which mainly consists of Al3+ and F- co-doped LTO with small amounts of anatase TiO2. Al3+ and F- co-doped LTO demonstrates ultrahigh rate capability comparing to the pristine LTO. Since the amount of the byproduct TiO2 is relatively small, the modified LTO electrodes retain the main voltage characteristics of LTO with a minor feature similar to those of anatase TiO2. The doped LTO anodes deliver slightly higher discharge capacity and maintain the excellent long-term cycling stability when compared to the pristine LTO anode. Therefore, Al3+ and F- co-doped LTO composite material synthesized at low temperature is an excellent anode for stable and ultra-high power lithium-ion batteries. (C) 2013 Elsevier B.V. All rights reserved. C1 [Xu, Wu; Chen, Xilin; Wang, Wei; Choi, Daiwon; Ding, Fei; Zhang, Jianming; Nie, Zhimin; Choi, Young Joon; Zhang, Ji-Guang; Yang, Z. Gary] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. [Ding, Fei] Tianjin Inst Power Sources, Natl Key Lab Power Sources, Tianjin 300381, Peoples R China. RP Xu, W (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. EM wu.xu@pnnl.gov; jiguang.zhang@pnnl.gov; gary.yang@uetechnologies.com RI Chen, Xilin/A-1409-2012; Wang, Wei/F-4196-2010; Choi, Daiwon/B-6593-2008; Zheng, Jianming/F-2517-2014; OI Wang, Wei/0000-0002-5453-4695; Zheng, Jianming/0000-0002-4928-8194; Xu, Wu/0000-0002-2685-8684 FU Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technology of the U.S. Department of Energy FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technology of the U.S. Department of Energy. NR 40 TC 26 Z9 26 U1 7 U2 115 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD AUG 15 PY 2013 VL 236 BP 169 EP 174 DI 10.1016/j.jpowsour.2013.02.055 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 149EL UT WOS:000319301700023 ER PT J AU Hu, LB Zhang, ZC Amine, K AF Hu, Libo Zhang, Zhengcheng Amine, Khalil TI Electrochemical investigation of carbonate-based electrolytes for high voltage lithium-ion cells SO JOURNAL OF POWER SOURCES LA English DT Article DE Carbonate-based electrolyte; High voltage cell; 5 V LiNi0.5Mn1.5O4 cathode; Electrochemical performance; Lithium-ion batteries ID BATTERIES AB One conventional electrolyte ("Gen 2") for lithium-ion batteries consists of 1.2 M LiPF6 dissolved in ethylene carbonate and ethyl methyl carbonate. A comprehensive investigation of this electrolyte in a high-voltage graphite/LiNi0.5Mn1.5O4 (LNMO) cell was carried out to evaluate its voltage stability under various charging conditions. Although the carbonate-based electrolyte was relatively stable when the graphite/LNMO cell was charged to 4.8 V at room temperature, the introduction of a constant-voltage charging step aggravated the oxidative decomposition of the electrolyte. Further increase in the cell charging voltage to 4.9 V or above and further increase in the temperature to 55 degrees C caused cell performance to deteriorate dramatically. (C) 2013 Elsevier B.V. All rights reserved. C1 [Hu, Libo; Zhang, Zhengcheng; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Zhang, ZC (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM zzhang@anl.gov RI Amine, Khalil/K-9344-2013; Hu, Libo/A-5911-2012 FU U.S. Department of Energy, Vehicle Technologies Office FX This research is supported by U.S. Department of Energy, Vehicle Technologies Office. We would like to thank the Cell Fabrication Facility of Argonne Chemical Science and Engineering Division for providing the electrode materials. NR 12 TC 28 Z9 28 U1 4 U2 153 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD AUG 15 PY 2013 VL 236 BP 175 EP 180 DI 10.1016/j.jpowsour.2013.02.064 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 149EL UT WOS:000319301700024 ER PT J AU Pratt, HD Hudak, NS Fang, XK Anderson, TM AF Pratt, Harry D., III Hudak, Nicholas S. Fang, Xikui Anderson, Travis M. TI A polyoxometalate flow battery SO JOURNAL OF POWER SOURCES LA English DT Article DE Flow battery; Polyoxometalates; Vanadium; Tungsten ID RESEARCH-AND-DEVELOPMENT; ENERGY-STORAGE; MIXED-VALENCE; W-183 NMR; VANADIUM; KEGGIN; HETEROPOLY; COMPLEXES; CHEMISTRY; PROGRESS AB A redox flow battery utilizing two, three-electron polyoxometalate redox couples ((SiV3W9O407-)-W-V-O-VI/(SiV3W9O4010-)-W-IV-O-VI and (SiV3W9O4010-)-W-IV-O-VI/(SiV3W3W6O4013-)-W-IV-W-V-O-VI) was investigated for use in stationary storage in either aqueous or non-aqueous conditions. The aqueous battery had coulombic efficiencies greater than 95% with relatively low capacity fading over 100 cycles. Infrared studies showed there was no decomposition of the compound under these conditions. The non-aqueous analog had a higher operating voltage but at the expense of coulombic efficiency. The spontaneous formation of these clusters by self-assembly facilitates recovery of the battery after being subjected to reversed polarity. Polyoxometalates offer a new approach to stationary storage materials because they are capable of undergoing multi-electron reactions and are stable over a wide range of pH values and temperatures. Published by Elsevier B.V. C1 [Pratt, Harry D., III; Hudak, Nicholas S.; Anderson, Travis M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Fang, Xikui] Ames Lab, Ames, IA 50011 USA. RP Anderson, TM (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM tmander@sandia.gov RI Hudak, Nicholas/D-3529-2011 FU Sandia National Laboratories' LDRD program; U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358] FX We thank the Sandia National Laboratories' LDRD program for funding the synthesis, characterization, and static cell testing and the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability (Dr. Imre Gyuk, Energy Storage Program), for funding the flow cell testing, and Jonathan Leonard, David Ingersoll, Chris Brigman, and Chad Staiger for technical assistance. We also thank Professor Ulrich Kortz for providing a titanium-substituted POM for screening. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The work at Ames Laboratory (magnetic measurements and assistance with synthesis) was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. NR 47 TC 24 Z9 24 U1 11 U2 143 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD AUG 15 PY 2013 VL 236 BP 259 EP 264 DI 10.1016/j.jpowsour.2013.02.056 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 149EL UT WOS:000319301700035 ER PT J AU Chick, LA Marina, OA Coyle, CA Thomsen, EC AF Chick, Larry A. Marina, Olga A. Coyle, Chris A. Thomsen, Ed C. TI Effects of temperature and pressure on the performance of a solid oxide fuel cell running on steam reformate of kerosene SO JOURNAL OF POWER SOURCES LA English DT Article DE Solid oxide fuel cell; Pressure effect; Temperature effect; Steam reformate of kerosene ID HYBRID SYSTEMS; SOFC; ANODE; TECHNOLOGY; DESIGN AB A button solid oxide fuel cell with a La0.6Sr0.4CO0.2Fe0.8O3 cathode and a nickel-YSZ anode was tested over a range of temperatures from 650 to 800 degrees C and a range of pressures from 101 to 724 kPa. The fuel was simulated steam-reformed kerosene and the oxidant was air. The observed increases in open circuit voltages (OCVs) at elevated pressures were accurately predicted by the Nernst equation. Kinetics also increased with the pressure, although the power boost due to improved kinetics was just more than half as large as the boost due to increased OCV. The power boost increased almost linearly with the logarithm of pressure. At constant voltage the relative power boost due to increased pressure was higher at higher temperatures. At constant current the relative power boost was the same for all temperatures. When the pressure was increased from 101 to 724 kPa, the total power boost at 750 degrees C and 0.8 V was 66%. A significant decrease in electrodic losses at elevated pressures was observed by impedance spectroscopy. Complex impedance spectra were dominated by a combination of low frequency processes that decreased markedly with increasing pressure. A composite of high-frequency processes also decreased with pressure, but to a lesser extent. (C) 2013 Elsevier B.V. All rights reserved. C1 [Chick, Larry A.; Marina, Olga A.; Coyle, Chris A.; Thomsen, Ed C.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Chick, LA (reprint author), Pacific NW Natl Lab, 904 Battelle Blvd, Richland, WA 99352 USA. EM larry.chick@pnnl.gov FU United States Department of Energy Office of Energy Efficiency and Renewable Energy FX This work was supported by the United States Department of Energy Office of Energy Efficiency and Renewable Energy. The authors appreciate helpful discussions with L.R. Pederson. NR 22 TC 9 Z9 9 U1 3 U2 48 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD AUG 15 PY 2013 VL 236 BP 341 EP 349 DI 10.1016/j.jpowsour.2012.11.136 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 149EL UT WOS:000319301700042 ER PT J AU Denholm, P Kuss, M Margolis, RM AF Denholm, Paul Kuss, Michael Margolis, Robert M. TI Co-benefits of large scale plug-in hybrid electric vehicle and solar PV deployment SO JOURNAL OF POWER SOURCES LA English DT Article DE Plug-in hybrid electric vehicles; Solar photovoltaics; Renewable energy; Grid modeling ID POWER-SYSTEMS; PHOTOVOLTAICS PV; ENERGY; IMPACT; LIMITS AB A number of studies have found that plug-in hybrid electric vehicles (PHEVs) will have relatively small grid impacts if charged with overnight off-peak electricity. However the greatest petroleum displacement will occur if vehicles are allowed to charge during the day, maximizing all-electric range. Charging during the day also allows for a smaller, lower cost battery. Mid-day charging will add to peak electricity demands and may occur in locations where it is difficult to construct new generation and transmission capacity. Solar photovoltaics (PV) provide an option to provide mid-day peaking capacity. Mid-day charging of PHEVs also may absorb low value or even curtailed PV generation during periods of low demand. This study identifies possible co-benefits of large scale PV and PHEV deployment by simulating the Texas grid and identifying changes in peak capacity requirements and PV curtailment. A modest deployment of PV is able to avoid most of the increase in capacity requirements associated with very large PHEV penetrations. PHEVs are also able to reduce curtailment at high PV penetration, especially if charging can be controlled to improve the coincidence of consumer charging demand with normal PV generation patterns. (C) 2013 Elsevier B.V. All rights reserved. C1 [Denholm, Paul; Kuss, Michael] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Margolis, Robert M.] Natl Renewable Energy Lab, Washington, DC 20024 USA. RP Denholm, P (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM paul.denholm@nrel.gov; michael.kuss@nrel.gov; robert.margolis@nrel.gov NR 38 TC 25 Z9 26 U1 4 U2 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD AUG 15 PY 2013 VL 236 BP 350 EP 356 DI 10.1016/j.jpowsour.2012.10.007 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 149EL UT WOS:000319301700043 ER PT J AU Neubauer, J Brooker, A Wood, E AF Neubauer, Jeremy Brooker, Aaron Wood, Eric TI Sensitivity of plug-in hybrid electric vehicle economics to drive patterns, electric range, energy management, and charge strategies SO JOURNAL OF POWER SOURCES LA English DT Article DE Battery Ownership Model; Total cost of ownership; Plug-in hybrid electric vehicles; Charge strategies; Drive pattern; Range AB Plug-in hybrid electric vehicles (PHEVs) offer the potential to reduce oil imports, greenhouse gases, and fuel costs, but high upfront costs discourage many potential purchasers. Making an economic comparison with conventional alternatives is complicated in part by sensitivity to drive patterns, vehicle range, available energy management, and charge strategies that affect battery wear and gasoline consumption. Identifying justifiable battery replacement schedules adds further complexity to the issue. The National Renewable Energy Laboratory developed the Battery Ownership Model to address these and related questions. The Battery Ownership Model is applied here to examine the sensitivity of PHEV economics to drive patterns, vehicle range, available energy management, and charge strategies when a high-fidelity battery degradation model and financially justified battery replacement schedules are employed. We find that energy management methodology, all-electric range, maximum beginning-of-life state of charge, and basic charge timing generally have a small impact on the total cost of ownership of PHEVs; however, PHEV economics do prove sensitive to drive patterns and the availability of an at-work charger. (C) 2012 Elsevier B.V. All rights reserved. C1 [Neubauer, Jeremy; Brooker, Aaron; Wood, Eric] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Neubauer, J (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM Jeremy.neubauer@nrel.gov FU Dave Howell and Brian Cunningham of the Energy Storage, Vehicle Technologies Program, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy FX This study was supported by Dave Howell and Brian Cunningham of the Energy Storage, Vehicle Technologies Program, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy. The use of the battery degradation and FASTSim vehicle simulation tools, both developed at the National Renewable Energy Laboratory under funding from the U.S. Department of Energy's Vehicle Technologies Program, was critical to the completion of this study. Special thanks to Michael O'Keefe, Caley Johnson, and Michael Mendelsohn for all their work framing and developing the Battery Ownership Model; Kandler Smith for developing and supporting the integration of the battery degradation model; and Ahmad Pesaran, the National Renewable Energy Laboratory's Energy Storage team leader, for his continual guidance. NR 17 TC 20 Z9 20 U1 0 U2 48 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD AUG 15 PY 2013 VL 236 BP 357 EP 364 DI 10.1016/j.jpowsour.2012.07.055 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 149EL UT WOS:000319301700044 ER PT J AU Zhu, X Tian, CC Chai, SH Nelson, K Han, KS Hagaman, EW Veith, GM Mahurin, SM Liu, HL Dai, S AF Zhu, Xiang Tian, Chengcheng Chai, Songhai Nelson, Kimberly Han, Kee Sung Hagaman, Edward W. Veith, Gabriel M. Mahurin, Shannon M. Liu, Honglai Dai, Sheng TI New Tricks for Old Molecules: Development and Application of Porous N-doped, Carbonaceous Membranes for CO2 Separation SO ADVANCED MATERIALS LA English DT Article DE trimerization of acetyl groups; N-doped membrane; CO2 separation ID TRIAZINE-BASED FRAMEWORKS; ORGANIC FRAMEWORKS; GAS-SEPARATION; INTRINSIC MICROPOROSITY; IONOTHERMAL SYNTHESIS; POLYMERIC MEMBRANES; HIGH PERMEABILITY; ACTIVATED CARBON; SIEVE MEMBRANES; PERFORMANCE C1 [Zhu, Xiang; Tian, Chengcheng; Liu, Honglai] E China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China. [Zhu, Xiang; Tian, Chengcheng; Liu, Honglai] E China Univ Sci & Technol, Dept Chem, Shanghai 200237, Peoples R China. [Zhu, Xiang; Tian, Chengcheng; Chai, Songhai; Han, Kee Sung; Hagaman, Edward W.; Mahurin, Shannon M.; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Nelson, Kimberly; Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Veith, Gabriel M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Mahurin, SM (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM mahurinsm@ornl.gov; hlliu@ecust.edu.cn; dais@ornl.gov RI Chai, Song-Hai/A-9299-2012; Zhu, Xiang/P-6867-2014; Dai, Sheng/K-8411-2015; OI Chai, Song-Hai/0000-0002-4152-2513; Zhu, Xiang/0000-0002-3973-4998; Dai, Sheng/0000-0002-8046-3931; Han, Kee Sung/0000-0002-3535-1818 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy's Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; National Basic Research Program of China [2013CB733501]; National Natural Science Foundation of China [20990224, 21176066]; 111 Project of China [B08021]; Fundamental Research Funds for the Central Universities of China FX X.Z. and C.C.T. contributed equally to this work. This research was sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. G.M.V. was supported by the U.S. Department of Energy's Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. X.Z., C.C.T. and H.L.L. thank the National Basic Research Program of China (2013CB733501), the National Natural Science Foundation of China (No. 20990224, 21176066), the 111 Project of China (No. B08021) and the Fundamental Research Funds for the Central Universities of China. NR 64 TC 20 Z9 22 U1 10 U2 149 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD AUG 14 PY 2013 VL 25 IS 30 BP 4152 EP 4158 DI 10.1002/adma.201300793 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 261QY UT WOS:000327680900013 PM 23696159 ER PT J AU Johnson, MC Tester, JW AF Johnson, Michael C. Tester, Jefferson W. TI Lipid Transformation in Hydrothermal Processing of Whole Algal Cells SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID FATTY-ACID ESTERS; SUBCRITICAL WATER; THERMOCHEMICAL LIQUEFACTION; SUPERCRITICAL WATER; VEGETABLE-OILS; SUNFLOWER OIL; HYDROLYSIS; KINETICS; TRANSESTERIFICATION; BIODIESEL AB Hydrothermal processing may provide an attractive alternative for producing biofuels with microalgae. Hydrothermal processing can be used with wet feedstocks without needing energy-intensive drying or solvents for oil recovery as is typical for algae biofuel processes. In this study, microalgae strains Isochtysis sp. and Thalassiosira weissflogii were processed in a hydrothermal batch reactor at temperatures of 250-350 degrees C and residence times up to 3 h. Triglyceride feedstock hydrolysis in hydrothermal systems was modeled using previously identified methods. Kinetic parameters for triglyceride hydrolysis were fit to literature data. Degradation of unsaturated fatty acids in hydrothermal systems was modeled by adding reaction pathways to the hydrolysis reaction system, and fitting kinetic parameters to the experimental data. The time scale for the degradation indicates that short reaction times (<30 min) with high temperatures (300-350 degrees C) will maximize the yield of free fatty acids before degradation occurs. C1 [Johnson, Michael C.] MIT, Dept Chem Engn, Cambridge, MA 02139 USA. [Tester, Jefferson W.] Cornell Univ, Dept Chem & Biomol Engn, Ithaca, NY 14853 USA. [Tester, Jefferson W.] Cornell Univ, Cornell Energy Inst, Ithaca, NY 14853 USA. RP Johnson, MC (reprint author), Argonne Natl Lab, 9700 S Cass Ave Bldg 362, Lemont, IL 60439 USA. EM mcjohnson@anl.gov NR 26 TC 6 Z9 6 U1 2 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD AUG 14 PY 2013 VL 52 IS 32 BP 10988 EP 10995 DI 10.1021/ie400876w PG 8 WC Engineering, Chemical SC Engineering GA 202SW UT WOS:000323240900013 ER PT J AU Rochford, C Kumar, N Liu, JW Zhao, H Wu, J AF Rochford, Caitlin Kumar, Nardeep Liu, Jianwei Zhao, Hui Wu, Judy TI All-Optical Technique to Correlate Defect Structure and Carrier Transport in Transferred Graphene Films SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE graphene; transient absorption microscopy; chemical vapor deposition; grain boundaries; defects; Raman spectroscopy ID CHEMICAL-VAPOR-DEPOSITION; SUSPENDED GRAPHENE; RAMAN-SPECTROSCOPY AB Chemical vapor deposition of graphene on copper foil is an attractive method of producing large-area graphene films, but the electronic performance is limited by defects such as creases from the film transfer process, wrinkles due to the thermal expansion coefficient mismatch, and grain boundaries from the growth process. Here we present an all-optical technique to correlate defect structure with electronic properties using spatially resolved Raman spectroscopy and transient absorption microscopy. This technique is especially attractive since it does not require any lithographic steps to probe the electronic properties of the graphene film. As a first demonstration, we focus on the effects of both wrinkles and creases while averaging over many small grains. It was found that wrinkles and creases may decrease the charge carrier diffusion coefficient by over 50% due to increased defect scattering. This technique may easily be extended to large grain graphene films in order to study the effect of different types of grain boundaries. C1 [Rochford, Caitlin; Kumar, Nardeep; Liu, Jianwei; Zhao, Hui; Wu, Judy] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. RP Rochford, C (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM crochfo@sandia.gov; jwu@ku.edu RI Zhao, Hui/A-2703-2009; OI Zhao, Hui/0000-0003-4552-3836; Rochford, Caitlin/0000-0002-5070-209X FU ARO [W911NF-12-1-0412]; NSF [NSF-DMR-1105986, NSF EPSCoR-0903806]; National Science Foundation Graduate Research Fellowship; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors acknowledge support in part by ARO contract no. W911NF-12-1-0412 and NSF contract nos. NSF-DMR-1105986 and NSF EPSCoR-0903806 and matching support from the State of Kansas through Kansas Technology Enterprise Corporation. C.R. would like to acknowledge a National Science Foundation Graduate Research Fellowship. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 16 TC 1 Z9 1 U1 1 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD AUG 14 PY 2013 VL 5 IS 15 BP 7176 EP 7180 DI 10.1021/am401518y PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 202SY UT WOS:000323241100057 PM 23855775 ER PT J AU Harris, JR Lewellen, JW Poole, BR AF Harris, J. R. Lewellen, J. W. Poole, B. R. TI Transport of electron beams with initial transverse-longitudinal correlation SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SPACE-CHARGE AB When an electron beam whose current varies in time is extracted from a DC gun, the competition between the time-dependent space charge force and the time-independent focusing force will cause a correlation between radius, divergence, current, and position along the beam. This correlation will determine the beam's configuration in trace space, and together with the design of the downstream transport system, will determine the quality of the transport solutions that can be obtained, including the amplitude of the mismatch oscillations occurring in each slice of the beam. Recent simulations of a simplified diode with Pierce-type focusing operating at nonrelativistic voltages indicated that the radius and divergence of beams extracted from such guns can be approximated to high accuracy as linear functions of current. Here, we consider the impact of this dependence on the beam configuration in trace space and investigate the implications for matching and transport of such correlated beams in uniform linear focusing channels. (C) 2013 AIP Publishing LLC. C1 [Harris, J. R.] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA. [Lewellen, J. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Poole, B. R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Harris, JR (reprint author), Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA. EM john.harris@colostate.edu FU Office of Naval Research; High Energy Laser Joint Technology Office; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was primarily funded by the Office of Naval Research and the High Energy Laser Joint Technology Office, with additional work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 15 TC 2 Z9 2 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD AUG 14 PY 2013 VL 114 IS 6 AR 063304 DI 10.1063/1.4817828 PG 8 WC Physics, Applied SC Physics GA 201XU UT WOS:000323177100011 ER PT J AU Kim, K Jeng, G Kim, P Choi, J Bolotnikov, AE Camarda, GS James, RB AF Kim, KiHyun Jeng, Geunwoo Kim, Pilsu Choi, Jonghak Bolotnikov, A. E. Camarda, G. S. James, R. B. TI Influence of the cooling scheme on the performance and presence of carrier traps for CdMnTe detectors SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID CDZNTE RADIATION DETECTORS; SPECTROSCOPY; IRRADIATION; DEFECTS AB The detector performance and presence of Te secondary-phase defects distribution were investigated in CdMnTe (CMT) crystals prepared with different cooling rates. Detectors fabricated from fast-cooled CMT crystals exhibit a relatively poor detector performance, although IR transmission microscopy measurements show that the Te secondary-phase defects have a lower concentration and smaller size compared to slow-cooled crystals. Current deep-level transient spectroscopy (I-DLTS) measurements for both CMT detectors reveal the same trap levels, but there is a clear difference in the densities for the 0.26- and 0.42-eV traps for the two different cooling schemes. These two traps are probably attributed to Cd vacancies and Te anti-site defects, respectively. In addition, there is some likelihood that the traps are anti-correlated with respect to each other. (C) 2013 AIP Publishing LLC. C1 [Kim, KiHyun; Jeng, Geunwoo; Kim, Pilsu; Choi, Jonghak] Korea Univ, Dept Radiol Sci, Seoul 136703, South Korea. [Bolotnikov, A. E.; Camarda, G. S.; James, R. B.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Kim, K (reprint author), Korea Univ, Dept Radiol Sci, Seoul 136703, South Korea. EM khkim1@korea.ac.kr FU Korea University [K1222241]; U.S. Department of Energy, Office of Defense Nonproliferation Research and Development, DNN RD FX This work was supported by Korea University (K1222241) and the U.S. Department of Energy, Office of Defense Nonproliferation Research and Development, DNN R&D. NR 12 TC 4 Z9 4 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD AUG 14 PY 2013 VL 114 IS 6 AR 063706 DI 10.1063/1.4817869 PG 4 WC Physics, Applied SC Physics GA 201XU UT WOS:000323177100040 ER PT J AU La Lone, BM Stevens, GD Turley, WD Holtkamp, DB Iverson, AJ Hixson, RS Veeser, LR AF La Lone, B. M. Stevens, G. D. Turley, W. D. Holtkamp, D. B. Iverson, A. J. Hixson, R. S. Veeser, L. R. TI Release path temperatures of shock-compressed tin from dynamic reflectance and radiance measurements SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID BISMUTH; PYROMETRY; INTERFACES; TRANSITION; METALS; MODEL; RISE AB Dynamic reflectance and radiance measurements were conducted for tin samples shock compressed to 35 GPa and released to 15 GPa using high explosives. We determined the reflectance of the tin samples glued to lithium fluoride windows using an integrating sphere with an internal xenon flashlamp as an illumination source. The dynamic reflectance (R) was determined at near normal incidence in four spectral bands with coverage in visible and near-infrared spectra. Uncertainties in R/R-0 are <2%, and uncertainties in absolute reflectance are <5%. In complementary experiments, thermal radiance from the tin/glue/lithium fluoride interface was recorded with similar shock stress and spectral coverage as the reflectance measurements. The two sets of experiments were combined to obtain the temperature history of the tin surface with an uncertainty of <2%. The stress at the interface was determined from photonic Doppler velocimetry and combined with the temperatures to obtain temperature-stress release paths for tin. We discuss the relationship between the experimental release paths and release isentropes that begin on the principal shock Hugoniot. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [La Lone, B. M.; Stevens, G. D.; Turley, W. D.] Natl Secur Technol LLC, Special Technol Lab, Santa Barbara, CA 93111 USA. [Holtkamp, D. B.; Hixson, R. S.; Veeser, L. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Iverson, A. J.; Hixson, R. S.; Veeser, L. R.] Natl Secur Technol LLC, Los Alamos Operat, Los Alamos, NM 87544 USA. RP La Lone, BM (reprint author), Natl Secur Technol LLC, Special Technol Lab, Santa Barbara, CA 93111 USA. EM lalonebm@nv.doe.gov FU U.S. National Nuclear Security Administration; U. S. Department of Energy [DE-AC52-06NA25946]; Site-Directed Research and Development Program FX We thank M. Grover, R. Corrow, and J. Stone for their extensive experimental contributions and M. Odyniec, E. Machorro, and A. Luttman for their insightful conversations regarding uncertainty quantification. This work was performed under the auspices of the U.S. National Nuclear Security Administration. This manuscript has been authored by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U. S. Department of Energy and supported by the Site-Directed Research and Development Program. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 36 TC 4 Z9 4 U1 0 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD AUG 14 PY 2013 VL 114 IS 6 AR 063506 DI 10.1063/1.4817764 PG 14 WC Physics, Applied SC Physics GA 201XU UT WOS:000323177100020 ER PT J AU Liu, K Wang, SM Zhou, XL Chang, J AF Liu, Ke Wang, Shan-Min Zhou, Xiao-Lin Chang, Jing TI Theoretical calculations for structural, elastic, and thermodynamic properties of c-W3N4 under high pressure SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID 1ST-PRINCIPLES CALCULATIONS; LATTICE-VIBRATIONS; CONSTANTS; MINERALS; NITRIDE; SILICATES; SOLIDS; APPROXIMATION; TRANSITION; PLATINUM AB We have investigated the structural and elastic properties of c-W3N4 at high pressures using generalized gradient approximation within the plane-wave pseudopotential density functional theory. The obtained normalized volume dependence of the resulting pressure is in excellent agreement with our experimental data investigated using high-P synchrotron x-ray diffraction. The elastic constants as a function of the applied pressure, the bulk modulus, Young's modulus and shear modulus on the pressure P are also successfully obtained. The superior mechanical properties indicate that c-W3N4 is a potential candidate structure to be one of the ultra-incompressible and hard materials. The high-pressure elastic constants indicate that c-W3N4 is mechanically stable up to 50GPa. By the elastic stability criteria, it is predicted that c-W3N4 is not stable above 110GPa. In addition, the calculated B/G ratio indicated that c-W3N4 possesses ductile nature in the range of pressure from 0 to 50GPa. The calculated elastic anisotropic factors suggest that c-W3N4 is elastically anisotropic. Through the quasi-harmonic Debye model, we also investigate the thermodynamic properties of c-W3N4. (C) 2013 AIP Publishing LLC. C1 [Liu, Ke; Zhou, Xiao-Lin; Chang, Jing] Sichuan Normal Univ, Coll Phys & Elect Engn, Chengdu 610101, Peoples R China. [Liu, Ke; Zhou, Xiao-Lin; Chang, Jing] Sichuan Normal Univ, Inst Solid State Phys, Chengdu 610101, Peoples R China. [Liu, Ke; Wang, Shan-Min] Sichuan Univ, Inst Atom & Mol Phys, Chengdu 610065, Peoples R China. [Wang, Shan-Min] Los Alamos Natl Lab, LANSCE Div, Los Alamos, NM 87545 USA. RP Liu, K (reprint author), Sichuan Normal Univ, Coll Phys & Elect Engn, Chengdu 610101, Peoples R China. EM lkworld@126.com; Zhouxl_wuli@163.com FU China 973 Program [2011CB808205]; National Natural Science Foundation of China [11027405]; Scientific Reserch Fund of SiChuan Provincial Education Department [12ZBL104, 11ZB079, 09ZDL01] FX This work was supported by the China 973 Program (Grant No. 2011CB808205) and the National Natural Science Foundation of China (Grant No. 11027405) and the Scientific Reserch Fund of SiChuan Provincial Education Department (Grant Nos. 12ZBL104, 11ZB079, and 09ZDL01). NR 59 TC 8 Z9 8 U1 1 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD AUG 14 PY 2013 VL 114 IS 6 AR 063512 DI 10.1063/1.4817904 PG 7 WC Physics, Applied SC Physics GA 201XU UT WOS:000323177100026 ER PT J AU Liu, X Thadesar, PA Taylor, CL Kunz, M Tamura, N Bakir, MS Sitaraman, SK AF Liu, Xi Thadesar, Paragkumar A. Taylor, Christine L. Kunz, Martin Tamura, Nobumichi Bakir, Muhannad S. Sitaraman, Suresh K. TI Dimension and liner dependent thermomechanical strain characterization of through-silicon vias using synchrotron x-ray diffraction SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MICRODIFFRACTION; RELIABILITY; STRESSES AB Strain measurements are demonstrated for through-silicon vias (TSVs) using synchrotron x-ray diffraction to characterize the effect of copper via dimensions and liner materials. Reduction in strains in the silicon around TSVs is observed for the TSVs with smaller via diameters and the TSVs with a thicker polymer liner. To interpret the measured two-dimensional (2D) TSV strain distribution maps of the three-dimensional (3D) TSV strains, a data averaging method based on the energy dependent x-ray absorption is implemented along with additional considerations from the sample preparation by means of an indirect comparison methodology. (C) 2013 AIP Publishing LLC. C1 [Liu, Xi; Taylor, Christine L.; Sitaraman, Suresh K.] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. [Thadesar, Paragkumar A.; Bakir, Muhannad S.] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. [Kunz, Martin; Tamura, Nobumichi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Liu, X (reprint author), Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. EM suresh.sitaraman@me.gatech.edu RI Liu, Xi/E-4425-2012 FU Semiconductor Research Corporation [2012-KJ-2255]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy at the Lawrence Berkeley National Laboratory (LBNL) [DE-AC02-05CH11231] FX This work is supported by the Semiconductor Research Corporation under Contract No. 2012-KJ-2255. The Advanced Light Source (ALS) is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 at the Lawrence Berkeley National Laboratory (LBNL). NR 19 TC 10 Z9 10 U1 1 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD AUG 14 PY 2013 VL 114 IS 6 AR 064908 DI 10.1063/1.4818327 PG 7 WC Physics, Applied SC Physics GA 201XU UT WOS:000323177100094 ER PT J AU Shi, TT Yin, WJ Wu, YL Al-Jassim, M Yan, YF AF Shi, Tingting Yin, Wan-Jian Wu, Yelong Al-Jassim, Mowafak Yan, Yanfa TI The structure and properties of (aluminum, oxygen) defect complexes in silicon SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID THERMAL DOUBLE DONORS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; CRYSTALLINE SILICON; BASIS-SET; SEMICONDUCTORS; CENTERS AB The atomic structure and electronic properties of aluminum (Al)-related defect complexes in silicon (Si) are investigated using first-principles calculations. Individual substitutional Al (Al-Si), interstitial Al (Al-i) and their possible complex configurations with oxygen (O) atoms are studied. We find a unique stable complex configuration consisting of an Al-i and an oxygen dimer, Al-i-2O(i), which introduces deep levels in the band gap of Si. The formation energies of the Al-i-2O(i) complexes could be lower than that of individual Al-i atoms under oxygen-rich conditions. The formation of Al-i-2O(i) complexes may explain the experimental observation that the coexistence of Al and O results in reduced carrier lifetime in Si wafers. (C) 2013 AIP Publishing LLC. C1 [Shi, Tingting; Yin, Wan-Jian; Wu, Yelong; Yan, Yanfa] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. [Al-Jassim, Mowafak] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Yan, YF (reprint author), Univ Toledo, Dept Phys & Astron, 2801 Bancroft St, Toledo, OH 43606 USA. EM yanfa.yan@utoledo.edu RI Wu, Yelong/G-1100-2010; Yin, Wanjian/F-6738-2013 OI Wu, Yelong/0000-0002-4211-911X; FU Ohio Research Scholar Program (ORSP); U.S. Department of Energy [DE-AC36-08GO28308]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX Y.Y. acknowledges the support from the Ohio Research Scholar Program (ORSP). Work at NREL was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 24 TC 1 Z9 1 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD AUG 14 PY 2013 VL 114 IS 6 AR 063520 DI 10.1063/1.4818515 PG 5 WC Physics, Applied SC Physics GA 201XU UT WOS:000323177100034 ER PT J AU Zou, JD Liu, J Mudryk, Y Pecharsky, VK Gschneidner, KA AF Zou, J. D. Liu, J. Mudryk, Y. Pecharsky, V. K. Gschneidner, K. A., Jr. TI Ferromagnetic ordering and Griffiths-like phase behavior in Gd5Ge3.9Al0.1 SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MAGNETIC-FIELD; RARE-EARTH; TRANSITION; GD-5(SIXGE1-X)(4); GD-5(SI1.8GE2.2); GD-5(SI2GE2); GD5GAXGE4-X; ALLOYS; GE AB Gd5Ge3.9Al0.1 crystallizes in the Sm5Ge4-type structure at room temperature, but unlike the parent Gd5Ge4 that remains antiferromagnetic in a zero magnetic field down to at least 2K, the ground state of the Al-substituted compound is ferromagnetic. The Curie temperature of Gd5Ge3.9Al0.1 is nearly the same as that of Gd5Ge4 in a 50 kOe magnetic field. The Griffiths-like phase behavior is observed in both Gd5Ge4 and Gd5Ge3.9Al0.1 compounds. Compared with Gd5Ge4, the Neel temperature of the aluminum-substituted compound decreases by 2K, while the onset temperature of the Griffiths-like phase decreases by 5K. Substitution of Al for Ge increases the magnetocaloric effect of Gd5Ge4, and the entropy change peak shifts from 41K to 49 K. (C) 2013 AIP Publishing LLC. C1 [Zou, J. D.; Liu, J.; Mudryk, Y.; Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Zou, J. D.] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China. [Liu, J.; Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Zou, JD (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. EM zoujd@buaa.edu.cn RI Zou, Junding/I-8180-2012 FU U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; Iowa State University [DE-AC02-07CH11358] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. The research was performed at the Ames Laboratory operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 39 TC 3 Z9 3 U1 1 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD AUG 14 PY 2013 VL 114 IS 6 AR 063904 DI 10.1063/1.4817956 PG 6 WC Physics, Applied SC Physics GA 201XU UT WOS:000323177100053 ER PT J AU Hulley, EB Welch, KD Appel, AM DuBois, DL Bullock, RM AF Hulley, Elliott B. Welch, Kevin D. Appel, Aaron M. DuBois, Daniel L. Bullock, R. Morris TI Rapid, Reversible Heterolytic Cleavage of Bound H-2 SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SIGMA-BOND METATHESIS; COMPLEXES; HYDROGEN; DIHYDROGEN; LIGANDS; ELECTROCATALYST; MECHANISM; HYDRIDE; ENZYMES; PROTON AB Heterolytic cleavage of dihydrogen into a proton and a hydride ion is a fundamentally important step in many reactions, including the oxidation of hydrogen by hydrogenase enzymes and ionic hydrogenation of organic compounds. We report the facile, reversible heterolytic cleavage of H-2 in a manganese complex bearing a pendant amine, leading to the formation of a manganese hydride and a protonated amine that undergo H+/H- exchange at an estimated rate of >10(7) s(-1) at 25 degrees C. C1 [Hulley, Elliott B.; Welch, Kevin D.; Appel, Aaron M.; DuBois, Daniel L.; Bullock, R. Morris] Pacific NW Natl Lab, Div Phys Sci, Ctr Mol Electrocatalysis, Richland, WA 99352 USA. RP Bullock, RM (reprint author), Pacific NW Natl Lab, Div Phys Sci, Ctr Mol Electrocatalysis, POB 999,K2-57, Richland, WA 99352 USA. EM morris.bullock@pnnl.gov RI Hulley, Elliott/H-3193-2014; Bullock, R. Morris/L-6802-2016; OI Hulley, Elliott/0000-0002-2630-3689; Bullock, R. Morris/0000-0001-6306-4851; Appel, Aaron/0000-0002-5604-1253 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences; Center for Molecular Electrocatalysis, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX We are grateful to Dr. Monte Helm for assistance in revising this manuscript. We thank the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, for support of the initial parts of this work. The current work was supported by the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy. NR 31 TC 34 Z9 34 U1 3 U2 64 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD AUG 14 PY 2013 VL 135 IS 32 BP 11736 EP 11739 DI 10.1021/ja405755j PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 202SZ UT WOS:000323241200015 PM 23889300 ER PT J AU Krawicz, A Yang, JH Anzenberg, E Yano, J Sharp, ID Moore, GF AF Krawicz, Alexandra Yang, Jinhui Anzenberg, Eitan Yano, Junko Sharp, Ian D. Moore, Gary F. TI Photofunctional Construct That Interfaces Molecular Cobalt-Based Catalysts for H-2 Production to a Visible-Light-Absorbing Semiconductor SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ELECTROCATALYTIC HYDROGEN EVOLUTION; SOLAR FUEL PRODUCTION; POLYMER BRUSHES; PHOTOELECTROCHEMICAL CELL; ARTIFICIAL PHOTOSYNTHESIS; FUNCTIONAL MODELS; ELECTRON-TRANSFER; WATER REDUCTION; COBALOXIMES; ENERGY AB Molecular cobalt-containing hydrogen production catalysts are grafted to a visible-light-absorbing semiconductor. The attachment procedure exploits the UV-induced immobilization chemistry of vinylpyridine to p-type (100) gallium phosphide (GaP). Single step surface-initiated photopolymerization yields a covalently attached polymer with pendent pyridyl groups that provide attachment points for assembling cobaloxime catalysts. Successful attachment is characterized by grazing angle attenuated total reflection Fourier transform infrared spectroscopy (GATR-FTIR), which shows distinct vibrational modes associated with the catalyst, as well as X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge structure spectroscopy (XANES) that confirm the presence of intact Co-III complex on the surface. The Co-functionalized photocathode shows significantly enhanced photoelectrochemical (PEC) performance in aqueous conditions at neutral pH, compared to results obtained on GaP without attached cobalt complex PEC measurements, at 100 mW cm(-2) illumination, yield a 2.4 mA cm(-2) current density at a 310 mV underpotential. C1 [Krawicz, Alexandra; Yang, Jinhui; Anzenberg, Eitan; Yano, Junko; Sharp, Ian D.; Moore, Gary F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, JCAP, Berkeley, CA 94720 USA. RP Yano, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, JCAP, Berkeley, CA 94720 USA. EM jyano@lbl.gov; idsharp@lbl.gov; gfmoore@lbl.gov RI Sharp, Ian/I-6163-2015; Moore, Gary/L-6828-2016 OI Sharp, Ian/0000-0001-5238-7487; Moore, Gary/0000-0003-3369-9308 FU Office of Science of the U.S. Department of Energy [DE-SC0004993]; [DE-AC02-05CH11231] FX This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993. XANES experiments were performed at the Advanced Light Source (beamline 10.3.2), operated under Contract DE-AC02-05CH11231. The authors thank Dr. Sirine Fakra and Dr. Matthew Marcus for assistance with experiments performed at Advanced Light Source (beamline 10.3.2), Prof. Rachel Seaglman and Dr. Miguel Modestino for use of the ellipsometer, and Dr. Frank Deubel, Mark Hettick, and Dr. Diana Cedeno for discussions. The authors also thank Dr. Heinz Frei. The TOC photo was taken by Brandi Eide. NR 77 TC 65 Z9 65 U1 17 U2 228 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD AUG 14 PY 2013 VL 135 IS 32 BP 11861 EP 11868 DI 10.1021/ja404158r PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 202SZ UT WOS:000323241200038 PM 23848528 ER PT J AU Wu, MY Xiao, XC Vukmirovic, N Xun, SD Das, PK Song, XY Olalde-Velasco, P Wang, DD Weber, AZ Wang, LW Battaglia, VS Yang, WL Liu, G AF Wu, Mingyan Xiao, Xingcheng Vukmirovic, Nenad Xun, Shidi Das, Prodip K. Song, Xiangyun Olalde-Velasco, Paul Wang, Dongdong Weber, Adam Z. Wang, Lin-Wang Battaglia, Vincent S. Yang, Wanli Liu, Gao TI Toward an Ideal Polymer Binder Design for High-Capacity Battery Anodes SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID LITHIUM-ION BATTERIES; HIGH-PERFORMANCE; ELECTROCHEMICAL PERFORMANCE; NEGATIVE ELECTRODE; SILICON NANOWIRES; STRESS GENERATION; ALLOY ANODES; CYCLE LIFE; SI; INSERTION AB The dilemma of employing high-capacity battery materials and maintaining the electronic and mechanical integrity of electrodes demands novel designs of binder systems. Here, we developed a binder polymer with multifunctionality to maintain high electronic conductivity, mechanical adhesion, ductility, and electrolyte uptake. These critical properties are achieved by designing polymers with proper functional groups. Through synthesis, spectroscopy, and simulation, electronic conductivity is optimized by tailoring the key electronic state, which is not disturbed by further modifications of side chains. This fundamental allows separated optimization of the mechanical and swelling properties without detrimental effect on electronic property. Remaining electronically conductive, the enhanced polarity of the polymer greatly improves the adhesion, ductility, and more importantly, the electrolyte uptake to the levels of those available only in nonconductive binders before. We also demonstrate directly the performance of the developed conductive binder by achieving full-capacity cycling of silicon particles without using any conductive additive. C1 [Wu, Mingyan; Xun, Shidi; Das, Prodip K.; Song, Xiangyun; Wang, Dongdong; Weber, Adam Z.; Battaglia, Vincent S.; Liu, Gao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Olalde-Velasco, Paul; Yang, Wanli] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Wang, Lin-Wang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Xiao, Xingcheng] Gen Motors, Global Res & Dev Ctr, Warren, MI 48090 USA. [Vukmirovic, Nenad] Univ Belgrade, Inst Phys Belgrade, Comp Sci Lab, Belgrade 11080, Serbia. RP Yang, WL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. EM WLYang@lbl.gov; GLiu@lbl.gov RI Vukmirovic, Nenad/D-9489-2011; Yang, Wanli/D-7183-2011; Foundry, Molecular/G-9968-2014; OI Vukmirovic, Nenad/0000-0002-4101-1713; Yang, Wanli/0000-0003-0666-8063; Weber, Adam/0000-0002-7749-1624; Das, Prodip/0000-0001-9096-3721 FU Office of Vehicle Technologies of the U.S. Department of Energy, under the Batteries for Advanced Transportation Technologies (BATT) Program; University of California, Office of the President through the University of California Discovery Grant; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; European Community FP7Marie Curie Career Integration Grant (ELECTROMAT); Serbian Ministry of Science [ON171017] FX This work is funded by the Assistant Secretary for Energy Efficiency, Office of Vehicle Technologies of the U.S. Department of Energy, under the Batteries for Advanced Transportation Technologies (BATT) Program and by University of California, Office of the President through the University of California Discovery Grant. Soft X-ray spectroscopy was performed at the Advanced Light Source (ALS). Calculations used resources of the National Energy Research Scientific Computing Center (NERSC). NMR measurements were performed at the Molecular Foundry. Electron microscopy experiments were conducted at the National Center for Electron Microscopy (NCEM). All four facilities are located at Lawrence Berkeley National Laboratory (LBNL) and are supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. N.V. is supported by European Community FP7Marie Curie Career Integration Grant (ELECTROMAT) and Serbian Ministry of Science (project ON171017). NR 51 TC 87 Z9 90 U1 24 U2 291 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD AUG 14 PY 2013 VL 135 IS 32 BP 12048 EP 12056 DI 10.1021/ja4054465 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 202SZ UT WOS:000323241200060 PM 23855781 ER PT J AU Schroeder, FA Lewis, MC Fass, DM Wagner, FF Zhang, YL Hennig, KM Gale, J Zhao, WN Reis, S Barker, DD Berry-Scott, E Kim, SW Clore, EL Hooker, JM Holson, EB Haggarty, SJ Petryshen, TL AF Schroeder, Frederick A. Lewis, Michael C. Fass, Daniel M. Wagner, Florence F. Zhang, Yan-Ling Hennig, Krista M. Gale, Jennifer Zhao, Wen-Ning Reis, Surya Barker, Douglas D. Berry-Scott, Erin Kim, Sung Won Clore, Elizabeth L. Hooker, Jacob M. Holson, Edward B. Haggarty, Stephen J. Petryshen, Tracey L. TI A Selective HDAC 1/2 Inhibitor Modulates Chromatin and Gene Expression in Brain and Alters Mouse Behavior in Two Mood-Related Tests SO PLOS ONE LA English DT Article ID HISTONE DEACETYLASE INHIBITORS; VALPROIC ACID; STRAIN DIFFERENCES; NUCLEUS-ACCUMBENS; PROTEIN-KINASE; MESSENGER-RNA; LITHIUM; MICE; ACETYLATION; HIPPOCAMPUS AB Psychiatric diseases, including schizophrenia, bipolar disorder and major depression, are projected to lead global disease burden within the next decade. Pharmacotherapy, the primary - albeit often ineffective - treatment method, has remained largely unchanged over the past 50 years, highlighting the need for novel target discovery and improved mechanism-based treatments. Here, we examined in wild type mice the impact of chronic, systemic treatment with Compound 60 (Cpd-60), a slow-binding, benzamide-based inhibitor of the class I histone deacetylase (HDAC) family members, HDAC1 and HDAC2, in mood-related behavioral assays responsive to clinically effective drugs. Cpd-60 treatment for one week was associated with attenuated locomotor activity following acute amphetamine challenge. Further, treated mice demonstrated decreased immobility in the forced swim test. These changes are consistent with established effects of clinical mood stabilizers and antidepressants, respectively. Whole-genome expression profiling of specific brain regions (prefrontal cortex, nucleus accumbens, hippocampus) from mice treated with Cpd-60 identified gene expression changes, including a small subset of transcripts that significantly overlapped those previously reported in lithium-treated mice. HDAC inhibition in brain was confirmed by increased histone acetylation both globally and, using chromatin immunoprecipitation, at the promoter regions of upregulated transcripts, a finding consistent with in vivo engagement of HDAC targets. In contrast, treatment with suberoylanilide hydroxamic acid (SAHA), a non-selective fast-binding, hydroxamic acid HDAC 1/2/3/ 6 inhibitor, was sufficient to increase histone acetylation in brain, but did not alter mood-related behaviors and had dissimilar transcriptional regulatory effects compared to Cpd-60. These results provide evidence that selective inhibition of HDAC1 and HDAC2 in brain may provide an epigenetic-based target for developing improved treatments for mood disorders and other brain disorders with altered chromatin-mediated neuroplasticity. C1 [Schroeder, Frederick A.; Fass, Daniel M.; Hennig, Krista M.; Zhao, Wen-Ning; Reis, Surya; Haggarty, Stephen J.; Petryshen, Tracey L.] Massachusetts Gen Hosp, Ctr Human Genet Res, Boston, MA 02114 USA. [Schroeder, Frederick A.; Haggarty, Stephen J.; Petryshen, Tracey L.] Harvard Univ, Sch Med, Dept Psychiat, Boston, MA 02115 USA. [Schroeder, Frederick A.; Hooker, Jacob M.; Haggarty, Stephen J.; Petryshen, Tracey L.] Massachusetts Gen Hosp, Boston, MA 02114 USA. [Haggarty, Stephen J.] Harvard Univ, Sch Med, Dept Neurol, Boston, MA 02115 USA. [Hooker, Jacob M.] Harvard Univ, Sch Med, Dept Radiol, Boston, MA 02115 USA. [Schroeder, Frederick A.; Hooker, Jacob M.] Harvard Univ, Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Sch Med,Dept Radiol, Charlestown, MA USA. [Lewis, Michael C.; Fass, Daniel M.; Wagner, Florence F.; Zhang, Yan-Ling; Hennig, Krista M.; Gale, Jennifer; Barker, Douglas D.; Berry-Scott, Erin; Clore, Elizabeth L.; Hooker, Jacob M.; Holson, Edward B.; Haggarty, Stephen J.; Petryshen, Tracey L.] Broad Inst Harvard & MIT, Stanley Ctr Psychiat Res, Cambridge, MA USA. [Kim, Sung Won] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. RP Haggarty, SJ (reprint author), Massachusetts Gen Hosp, Ctr Human Genet Res, Boston, MA 02114 USA. EM haggarty@chgr.mgh.harvard.edu; petryshen@chgr.mgh.harvard.edu OI Hooker, Jacob/0000-0002-9394-7708 FU Stanley Medical Research Institute; NIH [R01DA028301, R01DA030321] FX This work was supported by the Stanley Medical Research Institute (T. L. P. and S.J.H.) and the NIH (R01DA028301 to S.J.H. and R01DA030321 to S.J.H. and J.M.H.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 58 TC 39 Z9 39 U1 0 U2 20 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD AUG 14 PY 2013 VL 8 IS 8 AR e71323 DI 10.1371/journal.pone.0071323 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 202MQ UT WOS:000323221500074 PM 23967191 ER PT J AU Chichili, VPR Xiao, YC Seetharaman, J Cummins, TR Sivaraman, J AF Chichili, Vishnu Priyanka Reddy Xiao, Yucheng Seetharaman, J. Cummins, Theodore R. Sivaraman, J. TI Structural Basis for the Modulation of the Neuronal Voltage-Gated Sodium Channel Na(V)1.6 by Calmodulin SO SCIENTIFIC REPORTS LA English DT Article AB The neuronal-voltage gated sodium channel (VGSC), Na(V)1.6, plays an important role in propagating action potentials along myelinated axons. Calmodulin (CaM) is known to modulate the inactivation kinetics of Na(V)1.6 by interacting with its IQ motif. Here we report the crystal structure of apo-CaM:Na(V)1.6IQ motif, along with functional studies. The IQ motif of Na(V)1.6 adopts an alpha-helical conformation in its interaction with the C-lobe of CaM. CaM uses different residues to interact with Na(V)1.6IQ motif depending on the presence or absence of Ca2+. Three residues from Na(V)1.6, Arg1902, Tyr1904 and Arg1905 were identified as the key common interacting residues in both the presence and absence of Ca2+. Substitution of Arg1902 and Tyr1904 with alanine showed a reduced rate of Na(V)1.6 inactivation in electrophysiological experiments in vivo. Compared with other CaM:Na-V complexes, our results reveal a different mode of interaction for CaM: Na(V)1.6 and provides structural insight into the isoform-specific modulation of VGSCs. C1 [Chichili, Vishnu Priyanka Reddy; Sivaraman, J.] Natl Univ Singapore, Dept Biol Sci, Singapore 117543, Singapore. [Xiao, Yucheng; Cummins, Theodore R.] Indiana Univ, Sch Med, Stark Neurosci Res Inst, Dept Pharmacol & Toxicol, Indianapolis, IN USA. [Seetharaman, J.] Brookhaven Natl Lab, X4 Beamline, Upton, NY 11973 USA. RP Sivaraman, J (reprint author), Natl Univ Singapore, Dept Biol Sci, Singapore 117543, Singapore. EM dbsjayar@nus.edu.sg FU Biomedical Research Council of Singapore (BMRC), A*STAR [R154000461305]; AcRF (Tier 1) National University of Singapore (NUS) [R154000563112]; NIH [NS053422]; NUS FX We are grateful to the Biomedical Research Council of Singapore (BMRC), A*STAR, (R154000461305) and AcRF (Tier 1) (R154000563112) National University of Singapore (NUS), for the partial support of this study. TRC and YX are supported by NIH grant NS053422. X-ray diffraction data for this study were measured at beamline X6A National Synchrotron Light Source (NSLS), BNL New York, USA. VPRC is a graduate scholar in receipt of a research scholarship from the NUS. NR 49 TC 8 Z9 8 U1 0 U2 8 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD AUG 14 PY 2013 VL 3 AR 2435 DI 10.1038/srep02435 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 200VB UT WOS:000323097900003 ER PT J AU Berardo, E Hu, HS Kowalski, K Zwijnenburg, MA AF Berardo, Enrico Hu, Han-Shi Kowalski, Karol Zwijnenburg, Martijn A. TI Coupled cluster calculations on TiO2 nanoclusters SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID 2ND-ORDER PERTURBATION-THEORY; EXCITED ELECTRONIC STATES; WAVE-FUNCTION; TITANIUM-DIOXIDE; ORBITAL THEORY; BASIS-SETS; OPEN-SHELL; EXCITATION-ENERGIES; (TIO2)(N); DENSITY AB The excitation energies of the four lowest-lying singlet excited states of the TiO2, Ti2O4, and Ti3O6 clusters are calculated by a variety of different Equation-of-Motion Coupled Cluster (EOM-CC) approaches in order to obtain benchmark values for the optical excitations of titanium dioxide clusters. More specifically we investigate what the effect is of the inclusion of triple excitations "triples" in the (EOM-)CC scheme on the calculated excited states of the clusters. While for the monomer and dimer the inclusion of triples is found to only cause a rigid shift in the excitation energies, in the case of the trimer the crossing of the excited states is observed. Coupled cluster approaches where triples are treated perturbatively were found to offer no advantage over EOM-CCSD, whereas the active-space methods (EOM-CCSDt(II/I)) were demonstrated to yield results very close to full EOM-CCSDT, but at a much reduced computational cost. (C) 2013 AIP Publishing LLC. C1 [Berardo, Enrico; Zwijnenburg, Martijn A.] UCL, Dept Chem, London WC1H 0AJ, England. [Hu, Han-Shi; Kowalski, Karol] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Kowalski, K (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, K8-91,POB 999, Richland, WA 99352 USA. EM karol.kowalski@pnnl.gov; m.zwijnenburg@ucl.ac.uk RI Berardo, Enrico/F-2180-2013; Berardo, Enrico/D-1874-2017 OI Berardo, Enrico/0000-0003-3979-2247 FU UK Engineering and Physical Sciences Research Council (EPSRC) [EP/I004424/1]; UCL Impact studentship award; EPSRC [EP/K000144/1, EP/K000136/1, EP/F067496/1, EP/L000202/1]; Department of Energy's Office of Biological and Environmental Research; U.S. Department of Energy (DOE) by the Battelle Memorial Institute [DEAC06.76RLO-1830] FX We kindly acknowledge Dr. M. Calatayud, Professor F. Illas, Dr. A. Kerridge, Dr. S. Shevlin, Dr. C. Sousa, and Dr. S. M. Woodley for stimulating discussion. M.A.Z. acknowledges the UK Engineering and Physical Sciences Research Council (EPSRC) for a Career Acceleration Fellowship (Grant No. EP/I004424/1). This study has further been supported by a UCL Impact studentship award to E. B. Computational time on the computers of the Unity High Performance Computing Facility at University College London, the IRIDIS regional high-performance computing service provided by the e-Infrastructure South Centre for Innovation (EPSRC Grant Nos. EP/K000144/1 and EP/K000136/1), and on HECToR the UK's national high-performance computing service (via our membership of the UK's HPC Materials Chemistry Consortium, which is funded by EPSRC Grant Nos. EP/F067496/1 and EP/L000202/1) is gratefully acknowledged. A significant portion of the research was also performed using PNNL Institutional Computing at Pacific Northwest National Laboratory and EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy (DOE) by the Battelle Memorial Institute under Contract DEAC06.76RLO-1830. NR 43 TC 10 Z9 10 U1 1 U2 40 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD AUG 14 PY 2013 VL 139 IS 6 AR 064313 DI 10.1063/1.4817536 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 201YB UT WOS:000323177900025 PM 23947861 ER PT J AU Li, H Malinin, SV Tretiak, S Chernyak, VY AF Li, Hao Malinin, Sergey V. Tretiak, Sergei Chernyak, Vladimir Y. TI Effective tight-binding models for excitons in branched conjugated molecules SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ELECTRONIC EXCITATIONS; OPTICAL-EXCITATIONS; SCATTERING APPROACH; SOLAR-CELLS; POLYMERS; LOCALIZATION; SPECTROSCOPY; DENDRIMERS; OLIGOMERS; FIELDS AB Effective tight-binding models have been introduced to describe vertical electronic excitations in branched conjugated molecules. The excited-state electronic structure is characterized by quantum particles (excitons) that reside on an irregular lattice (graph) that reflects the molecular structure. The methodology allows for the exciton spectra and energy-dependent exciton scattering matrices to be described in terms of a small number of lattice parameters which can be obtained from quantum-chemical computations using the exciton scattering approach as a tool. We illustrate the tight-binding model approach using the time-dependent Hartree-Fock computations in phenylacetylene oligomers. The on-site energies and hopping constants have been identified from the exciton dispersion and scattering matrices. In particular, resonant, as well as bound states, are reproduced for a symmetric quadruple branching center. The capability of the tight-binding model approach to describe the exciton-phonon coupling and energetic disorder in large branched conjugated molecules is briefly discussed. (C) 2013 AIP Publishing LLC. C1 [Li, Hao; Tretiak, Sergei] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Li, Hao; Tretiak, Sergei] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Malinin, Sergey V.; Chernyak, Vladimir Y.] Wayne State Univ, Dept Chem, Detroit, MI 48202 USA. [Tretiak, Sergei] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Li, H (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM serg@lanl.gov; chernyak@chem.wayne.edu RI Li, Hao/B-4756-2013; Tretiak, Sergei/B-5556-2009; Chernyak, Vladimir/F-5842-2016 OI Tretiak, Sergei/0000-0001-5547-3647; Chernyak, Vladimir/0000-0003-4389-4238 FU National Science Foundation [CHE-1111350]; U.S. Department of Energy [DE-AC52-06NA25396]; Center for Integrated Nanotechnology (CINT); Center for Nonlinear Studies (CNLS) FX This material is based upon work supported by the National Science Foundation under Grant No. CHE-1111350. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. We acknowledge support of Center for Integrated Nanotechnology (CINT) and Center for Nonlinear Studies (CNLS). NR 37 TC 5 Z9 5 U1 0 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD AUG 14 PY 2013 VL 139 IS 6 AR 064109 DI 10.1063/1.4818156 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 201YB UT WOS:000323177900009 PM 23947845 ER PT J AU Seese, RR Chen, LLY Cox, CD Schulz, D Babayan, AH Bunney, WE Henn, FA Gall, CM Lynch, G AF Seese, Ronald R. Chen, Lulu Y. Cox, Conor D. Schulz, Daniela Babayan, Alex H. Bunney, William E. Henn, Fritz A. Gall, Christine M. Lynch, Gary TI Synaptic Abnormalities in the Infralimbic Cortex of a Model of Congenital Depression SO JOURNAL OF NEUROSCIENCE LA English DT Article ID MOOD DISORDERS; LEARNED HELPLESSNESS; PREFRONTAL CORTEX; MAJOR DEPRESSION; PYRAMIDAL CELLS; NMDA RECEPTOR; GLUTAMATE; SYNAPSES; RATS; PSD-95 AB Multiple lines of evidence suggest that disturbances in excitatory transmission contribute to depression. Whether these defects involve the number, size, or composition of glutamatergic contacts is unclear. This study used recently introduced procedures for fluorescence deconvolution tomography in a well-studied rat model of congenital depression to characterize excitatory synapses in layer I of infralimbic cortex, a region involved in mood disorders, and of primary somatosensory cortex. Three groups were studied: (1) rats bred for learned helplessness (cLH); (2) rats resistant to learned helplessness (cNLH); and (3) control Sprague Dawley rats. In fields within infralimbic cortex, cLH rats had the same numerical density of synapses, immunolabeled for either the postsynaptic density (PSD) marker PSD95 or the presynaptic protein synaptophysin, as controls. However, PSD95 immunolabeling intensities were substantially lower in cLH rats, as were numerical densities of synapse-sized clusters of the AMPA receptor subunit GluA1. Similar but less pronounced differences (comparable numerical densities but reduced immunolabeling intensity for PSD95) were found in the somatosensory cortex. In contrast, non-helpless rats had 25% more PSDs than either cLH or control rats without any increase in synaptophysin-labeled terminal frequency. Compared with controls, both cLH and cNLH rats had fewer GABAergic contacts. These results indicate that congenital tendencies that increase or decrease depression-like behavior differentially affect excitatory synapses. C1 [Seese, Ronald R.; Chen, Lulu Y.; Cox, Conor D.; Babayan, Alex H.; Gall, Christine M.; Lynch, Gary] Univ Calif Irvine, Dept Anat & Neurobiol, Irvine, CA 92697 USA. [Bunney, William E.; Lynch, Gary] Univ Calif Irvine, Dept Psychiat & Human Behav, Irvine, CA 92697 USA. [Gall, Christine M.] Univ Calif Irvine, Dept Neurobiol & Behav, Irvine, CA 92697 USA. [Schulz, Daniela; Henn, Fritz A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Henn, Fritz A.] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA. RP Lynch, G (reprint author), Univ Calif Irvine, Dept Psychiat & Human Behav, Irvine, CA 92697 USA. EM glynch@uci.edu RI Schulz, Daniela/H-5625-2011 FU National Institutes of Health [NS045260, MH083346, T32-GM0862, FMH095432A, MH083396]; Laboratory Directed Research and Development [LDRD-07-096]; Office of Naval Research [N00014-10-1-007]; National Science Foundation [DGE-0808392] FX This work was supported by National Institutes of Health Grants NS045260 (C.M.G., G.L.), MH083346 (C.M.G.), T32-GM0862 and FMH095432A (R.R.S.), and MH083396 (L.Y.C.), Laboratory Directed Research and Development Grant LDRD-07-096 (F.A.H.), Office of Naval Research Grant N00014-10-1-007 (G.L.), and National Science Foundation Grant DGE-0808392 (C.D.C.). We thank Yue Qin Yao and Dr. Csaba Varga for their assistance. NR 57 TC 10 Z9 13 U1 1 U2 6 PU SOC NEUROSCIENCE PI WASHINGTON PA 11 DUPONT CIRCLE, NW, STE 500, WASHINGTON, DC 20036 USA SN 0270-6474 J9 J NEUROSCI JI J. Neurosci. PD AUG 14 PY 2013 VL 33 IS 33 BP 13441 EP 13448 DI 10.1523/JNEUROSCI.2434-13.2013 PG 8 WC Neurosciences SC Neurosciences & Neurology GA 201PV UT WOS:000323155700019 PM 23946402 ER PT J AU Normile, PS Rotter, M Detlefs, C Jensen, J Canfield, PC Blanco, JA AF Normile, P. S. Rotter, M. Detlefs, C. Jensen, J. Canfield, P. C. Blanco, J. A. TI Magnetic ordering in GdNi2B2C revisited by resonant x-ray scattering: Evidence for the double-q model SO PHYSICAL REVIEW B LA English DT Article ID MAGNETOELASTIC PARADOX AB Recent theoretical efforts aimed at understanding the nature of antiferromagnetic ordering in GdNi2B2C predicted double-q ordering. Here we employ resonant elastic x-ray scattering to test this theory against the formerly proposed, single-q ordering scenario. Our study reveals a satellite reflection associated with a mixed-order component propagation wave vector, viz., (q(a),2q(b), 0) with q(b) = q(a) approximate to 0.55 reciprocal lattice units, the presence of which is incompatible with single-q ordering but is expected from the double-q model. A (3q(a),0,0) wave vector (i.e., third-order) satellite is also observed, again in line with the double-q model. The temperature dependencies of these along with that of a first-order satellite are compared with calculations based on the double-q model and reasonable qualitative agreement is found. By examining the azimuthal dependence of first-order satellite scattering, we show the magnetic order to be, as predicted, elliptically polarized at base temperature and find the temperature dependence of the "out of a-b plane" moment component to be in fairly good agreement with calculation. Our results provide qualitative support for the double-q model and thus in turn corroborate the explanation for the "magnetoelastic paradox" offered by this model. C1 [Normile, P. S.] Univ Castilla La Mancha, IRICA, E-13071 Ciudad Real, Spain. [Normile, P. S.] Univ Castilla La Mancha, Dept Fis Aplicada, E-13071 Ciudad Real, Spain. [Normile, P. S.] Univ Liverpool, Dept Phys, Liverpool L69 3BX, Merseyside, England. [Normile, P. S.] European Synchrotron Radiat Facil, XMaS, F-38043 Grenoble, France. [Rotter, M.] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany. [Detlefs, C.] European Synchrotron Radiat Facil, F-38043 Grenoble 9, France. [Jensen, J.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Canfield, P. C.] US DOE, Ames Lab, Ames, IA 50011 USA. [Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Blanco, J. A.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. RP Normile, PS (reprint author), Univ Castilla La Mancha, IRICA, E-13071 Ciudad Real, Spain. EM peter.normile@uclm.es RI Detlefs, Carsten/B-6244-2008; Canfield, Paul/H-2698-2014; Blanco, Jesus/L-6508-2014; Jensen, Jens/C-7484-2015; Normile, Peter/I-2320-2015 OI Detlefs, Carsten/0000-0003-2573-2286; Blanco, Jesus/0000-0002-8054-1442; Jensen, Jens/0000-0002-7954-8073; Normile, Peter/0000-0002-8851-9899 FU EPSRC; US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; US Department of Energy [DE-AC02-07CH11358]; Spanish MINECO; European Regional Development Fund [MAT2011-27573-C04-02] FX The EPSRC-funded XMaS beamline at the ESRF is directed by M. J. Cooper, C. A. Lucas, and T. P. A. Hase. We are grateful to O. Bikondoa, L. Bouchenoire, S. Brown, and P. Thompson for their invaluable assistance and to S. Beaufoy and J. Kervin for additional XMaS support. P.C.C.'s work was supported by the US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. P.C.C.'s synthesis and basic characterization was performed at the Ames Laboratory. Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. J. A. B. acknowledges financial support from the Spanish MINECO and a European Regional Development Fund Grant (No. MAT2011-27573-C04-02). M. R. gratefully acknowledges useful discussions with Maurits Haverkort. NR 32 TC 2 Z9 2 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 14 PY 2013 VL 88 IS 5 AR 054413 DI 10.1103/PhysRevB.88.054413 PG 7 WC Physics, Condensed Matter SC Physics GA 201PH UT WOS:000323153800002 ER PT J AU Kemei, MC Barton, PT Moffitt, SL Gaultois, MW Kurzman, JA Seshadri, R Suchomel, MR Kim, YI AF Kemei, Moureen C. Barton, Phillip T. Moffitt, Stephanie L. Gaultois, Michael W. Kurzman, Joshua A. Seshadri, Ram Suchomel, Matthew R. Kim, Young-Il TI Crystal structures of spin-Jahn-Teller-ordered MgCr2O4 and ZnCr2O4 SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID PHASE-TRANSITION AB Magnetic ordering in the geometrically frustrated magnetic oxide spinels MgCr2O4 and ZnCr2O4 is accompanied by a structural change that helps to relieve the frustration. Analysis of high-resolution synchrotron x-ray scattering reveals that the low-temperature structures are well described by a two-phase model of tetragonal I4(1)/amd and orthorhombic Fddd symmetries. The Cr-4 tetrahedra of the pyrochlore lattice are distorted at these low-temperatures, with the Fddd phase displaying larger distortions than the I4(1)/amd phase. The spin-Jahn-Teller distortion is approximately one order of magnitude smaller than is observed in first-order Jahn-Teller spinels such as NiCr2O4 and CuCr2O4. In analogy with NiCr2O4 and CuCr2O4, we further suggest that the precise nature of magnetic ordering can itself provide a second driving force for structural change. C1 [Kemei, Moureen C.; Barton, Phillip T.; Moffitt, Stephanie L.; Gaultois, Michael W.; Kurzman, Joshua A.; Seshadri, Ram] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Kemei, Moureen C.; Barton, Phillip T.; Moffitt, Stephanie L.; Gaultois, Michael W.; Kurzman, Joshua A.; Seshadri, Ram] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA. [Suchomel, Matthew R.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Kim, Young-Il] Yeungnam Univ, Dept Chem, Gyongsan 712749, Gyeongbuk, South Korea. RP Kemei, MC (reprint author), Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. EM kemei@mrl.ucsb.edu RI Kim, Young-il/I-9322-2014; Seshadri, Ram/C-4205-2013; Barton, Phillip/H-3847-2011; Suchomel, Matthew/C-5491-2015; Gaultois, Michael/D-2867-2009; OI Kim, Young-il/0000-0003-2755-9587; Seshadri, Ram/0000-0001-5858-4027; Gaultois, Michael/0000-0003-2172-2507; SUCHOMEL, Matthew/0000-0002-9500-5079 FU Schlumberger Foundation; National Science Foundation; NSERC; International Fulbright Science & Technology Award; NSF [DMR 1105301, DMR 1121053]; National Research Foundation of Korea [2012-0002868]; DOE, Office of Science, Office of Basic Energy Sciences [DE-AC0206CH11357] FX We thank Jason Douglas for helpful discussions. MCK is supported by the Schlumberger Foundation Faculty for the Future fellowship. PTB is supported by the National Science Foundation Graduate Research Fellowship program. MWG is supported by a NSERC Postgraduate Scholarship and an International Fulbright Science & Technology Award. RS, MCK, and PTB acknowledge the support of the NSF through the DMR 1105301. YIK is supported by National Research Foundation of Korea (2012-0002868). We acknowledge the use of shared experimental facilities of the Materials Research Laboratory: an NSF MRSEC, supported by NSF DMR 1121053. The 11-BM beamline at the Advanced Photon Source is supported by the DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC0206CH11357. NR 27 TC 12 Z9 12 U1 6 U2 74 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD AUG 14 PY 2013 VL 25 IS 32 AR 326001 DI 10.1088/0953-8984/25/32/326001 PG 7 WC Physics, Condensed Matter SC Physics GA 188WH UT WOS:000322227600013 PM 23846793 ER PT J AU Lin, SZ Roy, D AF Lin, Shi-Zeng Roy, Dibyendu TI Role of kinetic inductance in transport properties of shunted superconducting nanowires SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID JUNCTIONS; TIME; CURRENTS AB Recently, transport measurements have been carried out in resistively shunted long superconducting nanowires (Brenner et al 2012 Phys. Rev. B 85 224507). The measured voltage-current (V-I) characteristics were explained by the appearance of the phase slip centers in the shunted wire, and the whole wire was modeled as a single Josephson junction. The kinetic inductance of the long nanowires used in experiments is generally large. Here we argue that the shunted superconducting nanowire acts as a Josephson junction in series with an inductor. The inductance depends on the length and the cross section of the wire. The inclusion of inductance in our analysis modifies the V-I curves, and increases the rate of switching from the superconducting state to the resistive state. The quantitative differences can be quite large in some practical parameter sets, and might be important to properly understand the experimental results. Our proposed model can be verified experimentally by studying the shunted superconducting nanowires of different lengths and cross sections. C1 [Lin, Shi-Zeng; Roy, Dibyendu] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Roy, Dibyendu] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Lin, SZ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM szl@lanl.gov RI Lin, Shi-Zeng/B-2906-2008; Roy, Dibyendu/D-3286-2013; Dibyendu, Roy /E-6903-2017 OI Lin, Shi-Zeng/0000-0002-4368-5244; Roy, Dibyendu/0000-0002-8966-8677; FU US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; US Department of Energy through LANL/LDRD Program FX One of the authors (SZL) is grateful to L N Bulaevskii for helpful discussions. SZL was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. DR gratefully acknowledges the support of the US Department of Energy through LANL/LDRD Program for this work. NR 26 TC 3 Z9 3 U1 1 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD AUG 14 PY 2013 VL 25 IS 32 AR 325701 DI 10.1088/0953-8984/25/32/325701 PG 8 WC Physics, Condensed Matter SC Physics GA 188WH UT WOS:000322227600012 PM 23838641 ER PT J AU von Konigslow, K Cardenas-Mendez, ED Thompson, RB Rasmussen, KO AF von Konigslow, K. Cardenas-Mendez, E. D. Thompson, R. B. Rasmussen, K. O. TI The self-assembly of particles with isotropic interactions SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID DNA; NANOPARTICLES; COLLOIDS; ORGANIZATION; SYSTEMS AB A generic field-theoretic model for the self-assembly of particles with isotropic interactions, motivated by ideas in DNA-mediated colloidal assembly, is presented. A simplest possible system of colloids in explicit solvent is examined to determine the ability of non-connected particles to form complex nanometre or micron scale equilibrium structures in the absence of confounding kinetic effects. It is found that non-trivial morphologies are possible and that, for this effectively one component system, these parallel the phases of diblock copolymer melts for certain parameter choices, despite the absence of connectivity or packing frustration in the model. An explanation for the morphological similarity between these architecturally disparate systems is given. For other parameter choices, it is found that meta-stable and defected phases become more common, and that similarity with block copolymer morphologies decreases. C1 [von Konigslow, K.; Cardenas-Mendez, E. D.; Thompson, R. B.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [von Konigslow, K.; Cardenas-Mendez, E. D.; Thompson, R. B.] Univ Waterloo, Waterloo Inst Nanotechnol, Waterloo, ON N2L 3G1, Canada. [Rasmussen, K. O.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP von Konigslow, K (reprint author), Univ Waterloo, Dept Phys & Astron, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada. EM thompson@uwaterloo.ca RI Rasmussen, Kim/B-5464-2009; Thompson, Russell/J-6326-2012 OI Rasmussen, Kim/0000-0002-4029-4723; Thompson, Russell/0000-0002-6571-558X NR 36 TC 1 Z9 1 U1 1 U2 30 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD AUG 14 PY 2013 VL 25 IS 32 AR 325101 DI 10.1088/0953-8984/25/32/325101 PG 7 WC Physics, Condensed Matter SC Physics GA 188WH UT WOS:000322227600001 PM 23820019 ER PT J AU Pattinson, SW Diaz, RE Stelmashenko, NA Windle, AH Ducati, C Stach, EA Koziol, KKK AF Pattinson, Sebastian W. Diaz, Rosa E. Stelmashenko, Nadia A. Windle, Alan H. Ducati, Caterina Stach, Eric A. Koziol, Krzysztof K. K. TI In Situ Observation of the Effect of Nitrogen on Carbon Nanotube Synthesis SO CHEMISTRY OF MATERIALS LA English DT Article DE carbon nanotube synthesis; nitrogen carbon nanotubes; environmental TEM; chemical vapor deposition ID CHEMICAL-VAPOR-DEPOSITION; CEMENTITE LAYERS; GROWTH; DIFFUSION; REDUCTION; FIBERS; IRON C1 [Pattinson, Sebastian W.; Stelmashenko, Nadia A.; Windle, Alan H.; Ducati, Caterina; Koziol, Krzysztof K. K.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. [Diaz, Rosa E.; Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Pattinson, SW (reprint author), Univ Cambridge, Dept Mat Sci & Met, Pembroke St, Cambridge CB2 3QZ, England. EM swp29@cam.ac.uk; kk292@cam.ac.uk RI Stach, Eric/D-8545-2011; OI Stach, Eric/0000-0002-3366-2153; Ducati, Caterina/0000-0003-3366-6442; , /0000-0002-7851-7718 FU EPSRC; Royal Society; ERC; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX The authors thank Hajime Murakami for taking extensometer measurements. S.W.P. thanks the EPSRC for funding. K.K.K.K. and C.D. thank the Royal Society and ERC for funding. In situ microscopy took place at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 21 TC 13 Z9 14 U1 5 U2 54 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD AUG 13 PY 2013 VL 25 IS 15 BP 2921 EP 2923 DI 10.1021/cm401216q PG 3 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 202DF UT WOS:000323193000002 ER PT J AU Brozek, CK Cozzolino, AF Teat, SJ Chen, YS Dinca, M AF Brozek, Carl K. Cozzolino, Anthony F. Teat, Simon J. Chen, Yu-Sheng Dinca, Mircea TI Quantification of Site-Specific Cation Exchange in Metal-Organic Frameworks Using Multi-Wavelength Anomalous X-ray Dispersion SO CHEMISTRY OF MATERIALS LA English DT Article DE metal organic frameworks; postsynthetic ion metathesis; anomalous X-ray dispersion ID HYDROGEN STORAGE; DIFFRACTION; CRYSTALLOGRAPHY; SCATTERING AB We employed multiwavelength anomalous X-ray dispersion to determine the relative cation occupation at two crystallographically distinct metal sites in Fe2+-, Cu2+-, and Zn2+-exchanged versions of the microporous metal organic framework (MOF) known as MnMnBTT (BTT = 1,3,5-benzenetristetrazolate). By exploiting the dispersive differences between Mn, Fe, Cu, and Zn, the extent and location of cation exchange were determined from single crystal X-ray diffraction data sets collected near the K edges of Mn2+ and of the substituting metal, and at a wavelength remote from either edge as a reference. Comparing the anomalous dispersion between these measurements indicated that the extent of Mn2+ replacement depends on the identity of the substituting metal. We contrasted two unique methods to analyze this data with a conventional approach and evaluated their limitations with emphasis on the general application of this method to other heterometallic MOFs, where site-specific metal identification is fundamental to tuning catalytic and physical properties. C1 [Brozek, Carl K.; Cozzolino, Anthony F.; Dinca, Mircea] MIT, Dept Chem, Cambridge, MA 02139 USA. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Chen, Yu-Sheng] Argonne Natl Lab, ChemMatCARS, Adv Photon Source, Argonne, IL 60439 USA. RP Dinca, M (reprint author), MIT, Dept Chem, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM mdinca@mit.edu OI Cozzolino, Anthony/0000-0002-1100-0829; Dinca, Mircea/0000-0002-1262-1264 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0006937]; NSF Graduate Research Fellowship Program [1122374]; National Science Foundation/Department of Energy [NSF/CHE-0822838]; U.S. DOE [DE-AC02-06CH11357]; U.S. Department of Energy [DE-AC02-05CH1123] FX This research was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award DE-SC0006937. C.K.B gratefully acknowledges the NSF Graduate Research Fellowship Program for financial support through Grant 1122374. We are grateful for the use of beamline 15-ID-B,C,D at the Advanced Photon Source and beamline 11.3.1 at the Advanced Light Source. ChemMatCARS Sector IS is principally supported by the National Science Foundation/Department of Energy under Grant NSF/CHE-0822838. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 27 TC 17 Z9 17 U1 6 U2 82 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD AUG 13 PY 2013 VL 25 IS 15 BP 2998 EP 3002 DI 10.1021/cm400858d PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 202DF UT WOS:000323193000013 ER PT J AU Bergerud, A Buonsanti, R Jordan-Sweet, JL Milliron, DJ AF Bergerud, Amy Buonsanti, Raffaella Jordan-Sweet, Jean L. Milliron, Delia J. TI Synthesis and Phase Stability of Metastable Bixbyite V2O3 Colloidal Nanocrystals SO CHEMISTRY OF MATERIALS LA English DT Article DE vanadium oxide; phase transformation; oxidation; aminolysis; nanoflowers; surface energy ID VANADIUM DIOXIDE NANOCRYSTALS; ANATASE TIO2 NANOCRYSTALS; LITHIUM ION BATTERIES; OXIDE NANOCRYSTALS; STRUCTURAL METASTABILITY; INSULATOR TRANSITION; OPTICAL-PROPERTIES; LATTICE EXPANSION; CRYSTAL-STRUCTURE; SIZE AB We have recently developed a colloidal route to vanadium sesquioxide (V2O3) nanocrystals with a metastable bixbyite crystal structure. In addition to being one of the first reported observations of the bixbyite phase in V2O3, it is also one of the first successful colloidal syntheses of any of the vanadium oxides. The nanocrystals, measuring 5 to 30 nm in diameter, possess a flower-like morphology which densify into a more spherical shape as the reaction temperature is increased. The bixbyite structure was examined by X-ray diffraction and an aminolysis reaction pathway was determined by Fourier transform infrared spectroscopy. A direct band gap of 1.29 eV was calculated from optical data. Under ambient conditions, the structure was found to expand and become less distorted, as evidenced by XRD. This is thought to be due to the filling of structural oxygen vacancies in the bixbyite lattice. The onset of the irreversible transformation to the thermodynamically stable rhombohedral phase of V2O3 occurred just under 500 degrees C in an inert atmosphere, accompanied by slight particle coarsening. A critical size of transformation between 27 and 42 rim was estimated by applying the Scherrer formula to analyze XRD peak widths during the course of the transformation. The slow kinetics of transformation and large critical size reveal the remarkable stability of the bixbyite phase over the rhombohedral phase in our nanocrystal system. C1 [Bergerud, Amy] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Bergerud, Amy; Buonsanti, Raffaella; Milliron, Delia J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Jordan-Sweet, Jean L.] IBM Watson Res Ctr, Yorktown Hts, NY 10598 USA. RP Milliron, DJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM dmilliron@lbl.gov RI Milliron, Delia/D-6002-2012; Foundry, Molecular/G-9968-2014 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; UC Berkeley Chancellor's Fellowship for Graduate Study; National Science Foundation [DGE 1106400] FX The authors acknowledge F. Gandara for assistance with XRD measurements and A. Llordes for helpful discussions. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Ms. Bergerud was supported by a UC Berkeley Chancellor's Fellowship for Graduate Study and a National Science Foundation Graduate Student Research Fellowship under Grant No. DGE 1106400. NR 60 TC 16 Z9 16 U1 4 U2 64 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD AUG 13 PY 2013 VL 25 IS 15 BP 3172 EP 3179 DI 10.1021/cm401530t PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 202DF UT WOS:000323193000033 ER PT J AU Hoppe, SM Sasaki, DY Kinghorn, AN Hattar, K AF Hoppe, Sarah M. Sasaki, Darryl Y. Kinghorn, Aubrianna N. Hattar, Khalid TI In-Situ Transmission Electron Microscopy of Liposomes in an Aqueous Environment SO LANGMUIR LA English DT Article ID MEMBRANES; AFM; TEM AB The characterization of liposomes was undertaken using in-situ microfluidic transmission electron microscopy. Liposomes were imaged without contrast enhancement staining or cryogenic treatment, allowing for the observation of functional liposomes in an aqueous environment. The stability and quality of the liposome structures observed were found to be highly dependent on the surface and liposome chemistries within the liquid cell. The successful imaging of liposomes suggests the potential for the extension of in-situ microfluidic TEM to a wide variety of other biological and soft matter systems and processes. C1 [Hoppe, Sarah M.; Kinghorn, Aubrianna N.; Hattar, Khalid] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Sasaki, Darryl Y.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Hattar, K (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM khattar@sandia.gov FU U.S. DOE, Office of BES, Division of Materials Science and Engineering; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We gratefully acknowledge Walter F. Paxton for assistance with DLS at the Center for Integrated Nanotechnology, an Office of Science user facility operated for the U.S. DOE Office of Science. Vesicle preparation (D.S.) and purchase of the microfluidic stage (K.H.) were funded by the U.S. DOE, Office of BES, Division of Materials Science and Engineering. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 27 TC 6 Z9 6 U1 1 U2 56 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD AUG 13 PY 2013 VL 29 IS 32 BP 9958 EP 9961 DI 10.1021/la401288g PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 202DG UT WOS:000323193100002 PM 23886420 ER PT J AU Zhou, X Li, Y Hart, KE Abbott, LJ Lin, ZX Svec, F Colina, CM Turner, SR AF Zhou, Xu Li, Yi Hart, Kyle E. Abbott, Lauren J. Lin, Zhixing Svec, Frantisek Colina, Coray M. Turner, S. Richard TI Nanoporous Structure of Semirigid Alternating Copolymers via Nitrogen Sorption and Molecular Simulation SO MACROMOLECULES LA English DT Article ID COVALENT ORGANIC FRAMEWORKS; INTRINSIC MICROPOROSITY; MALEIC-ANHYDRIDE; SURFACE-AREA; GAS SORPTION; POLYMERS; NETWORKS; POROSITY; STORAGE; POLYSTYRENE AB Surface area and porosity of a series of semirigid alternating copolymers consisting of tert-butyl carboxylate-functionalized stilbene or tert-butyl carboxylate-functionalized styrene and maleic anhydride or tert-butyl carboxylate-functionalized N-phenylmaleimide were investigated using nitrogen adsorption/desorption isotherms at 77 K and atomistic molecular simulations. Surface areas from experiments using the Brunauer-Emmett-Teller (BET) theory and geometric surface areas of molecular simulations show good correlation. It is shown here that the stilbene copolymers have higher surface areas than their styrene analogues. It is also found that BET surface areas increase as the persistence length (chain stiffness) increases for these alternating copolymers. C1 [Zhou, Xu; Li, Yi; Turner, S. Richard] Virginia Tech, Dept Chem, Blacksburg, VA 24061 USA. [Zhou, Xu; Li, Yi; Turner, S. Richard] Virginia Tech, Macromol & Interfaces Inst, Blacksburg, VA 24061 USA. [Hart, Kyle E.; Abbott, Lauren J.; Colina, Coray M.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Lin, Zhixing; Svec, Frantisek] EO Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Colina, CM (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. EM colina@matse.psu.edu; srturner@vt.edu RI Hart, Kyle/G-3665-2011; Abbott, Lauren/G-3670-2011; Foundry, Molecular/G-9968-2014; OI Hart, Kyle/0000-0002-8158-038X; Abbott, Lauren/0000-0003-3523-9380 FU National Science Foundation (NSF) [DMR-0905231, DMR-1206409, DMR-0908781]; Department of Chemistry at Virginia Tech; Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [OCI-0821527] FX This work was supported by the National Science Foundation (NSF) under Grants DMR-0905231, DMR-1206409, and DMR-0908781 and the Department of Chemistry at Virginia Tech. The specific surface area measurements were performed at the Molecular Foundry, Lawrence Berkeley National Laboratory. This work and F. Svec were supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division of the U.S. Department of Energy, under Contract DE-AC02-05CH11231. Computational resources were supported in part by the Materials Simulation Center of the Materials Research Institute, the Research Computing and Cyberinfrastructure unit of Information Technology Services and Penn-State Center for Nanoscale Science, and were supported in part through instrumentation funded by the National Science Foundation through Grant OCI-0821527. We also acknowledge Dr. Michael W. Ellis and Dr. Junbo Hou at Institute for Critical Technology and Applied Science for help with BET surface area measurements. NR 48 TC 10 Z9 10 U1 3 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD AUG 13 PY 2013 VL 46 IS 15 BP 5968 EP 5973 DI 10.1021/ma4006582 PG 6 WC Polymer Science SC Polymer Science GA 202DI UT WOS:000323193300019 ER PT J AU Kuo, CY Huang, YC Hsiow, CY Yang, YW Huang, CI Rwei, SP Wang, HL Wang, L AF Kuo, Cheng-Yu Huang, Yu-Chen Hsiow, Chuen-Yo Yang, Yu-Wen Huang, Ching-I Rwei, Syang-Peng Wang, Hsing-Lin Wang, Leeyih TI Effect Side-Chain Architecture on the Optical and Crystalline Properties of Two-Dimensional Polythiophenes SO MACROMOLECULES LA English DT Article ID ORGANIC SOLAR-CELLS; PHOTOVOLTAIC PROPERTIES; CONJUGATED POLYMERS; HIGH-MOBILITY; ABSORPTION; TRANSISTOR; POLY(3-HEXYLTHIOPHENE); ELECTROLUMINESCENCE; SIMULATIONS; COPOLYMERS AB The present study reported here synthesis of three novel two-dimensional (2D) polythiophene derivatives with conjugated terthiophene-vinylene side chain-poly{3-(5 ''-hexyl-2,2':5',2 ''-terthiophenyl-5-vinyl)thiophene-alt-thiophene} (P1), poly{3-(5,5 ''-dihexyl-2,2':5',2 ''-terthiophenyl-3'-vinyl)thiophene-alt-thiophene} (P2), and poly{3-(4,4 ''-dihexyl-2,2:5',2 ''-terthiophene-3'-vinyl)thiophene-alt-thiophene} (P3)-that were synthesized via stile coupling reaction. The terthiophene side chain with different conformations conjugated to the polythiophene main chain via vinyl linkage provided the ability to control the molecular organization, hence affecting the optoelectronic and electrochemical properties of 2D polymers. TD-DFT calculation with the B3LYP/6-31+g(d) function on electronic structures of the monomers was consistent with the experimental results. It suggested that the energetic states of HOMO and LUMO were highly dependent on the side-chain architectures. These polythiophene thin films fabricated by spin-casting show a broader absorption ranges from 300 to 700 nm which was significantly wider than the absorption of pure poly(3-hexylthiophene). When comparing the solid-state absorption spectra of these polymers before and after thermal annealing, P3 displayed the most red-shift in the wavelength range between 450 and 700 nm. It was presumably due to an extended conjugation length resulting from the linear conformation and preferred chain packing, as manifested in the X-ray diffraction. Molecular dynamics (MD) simulation on polymers with different side chains in isolated and packed states suggests planar conformation of the main chain was adopted and regulated by the side chains which were placed in parallel with the main-chain direction. Interestingly, P1 solution revealed an excitation-dependent emission property, suggesting a structural inhomogeneity in solution. Contrary to P1, the PL spectra of P2 and P3 showed only one emission peak at 460 nm, regardless of the excitation energy. Orientation and regiochemistry of the terthiophene side chain had a major impact on the overall optical and electronic properties of the polymer. Moreover, the HOMO and LUMO of these three polymers had been determined through cyclic voltammetry. HOMO of the three polymers were in the following order: P1 > P2 > P3. It implied that the energy level was regiochemistry dependent and directly associated with the linked position between backbone and conjugated side chain. Most importantly, through mesogen-jacketed-like design strategy employed in the present study, the improved packing of these two-dimensional polymers offered insights into structure design to enhance properties that have strong ties to the electronic devices. C1 [Kuo, Cheng-Yu; Huang, Yu-Chen; Hsiow, Chuen-Yo; Yang, Yu-Wen; Huang, Ching-I; Wang, Leeyih] Natl Taiwan Univ, Inst Polymer Sci & Engn, Taipei 106, Taiwan. [Kuo, Cheng-Yu; Wang, Hsing-Lin] Los Alamos Natl Lab, CPC S, Los Alamos, NM 87544 USA. [Rwei, Syang-Peng] Natl Taipei Univ Technol, Inst Organ & Polymer Mat, Taipei 106, Taiwan. [Wang, Leeyih] Natl Taiwan Univ, Ctr Condense Matter Sci, Taipei 106, Taiwan. RP Wang, HL (reprint author), Los Alamos Natl Lab, CPC S, POB 1663, Los Alamos, NM 87544 USA. EM hwang@lanl.gov; leewang@ntu.edu.tw FU National Science Council of the Republic of China; LDRD program under the Department of Energy; Basic Energy Science, Biomaterials Program FX We acknowledge the National Science Council of the Republic of China for financially supporting this research. H.L.W. thanks the financial support from LDRD program under the auspices of Department of Energy. Part of this work is supported by Basic Energy Science, Biomaterials Program. NR 36 TC 30 Z9 30 U1 11 U2 100 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD AUG 13 PY 2013 VL 46 IS 15 BP 5985 EP 5997 DI 10.1021/ma4007945 PG 13 WC Polymer Science SC Polymer Science GA 202DI UT WOS:000323193300021 ER PT J AU Ramirez-Hernandez, A Detcheverry, FA Peters, BL Chappa, VC Schweizer, KS Muller, M de Pablo, JJ AF Ramirez-Hernandez, Abelardo Detcheverry, Francois A. Peters, Brandon L. Chappa, Veronica C. Schweizer, Kenneth S. Mueller, Marcus de Pablo, Juan J. TI Dynamical Simulations of Coarse Grain Polymeric Systems: Rouse and Entangled Dynamics SO MACROMOLECULES LA English DT Article ID SLIP-LINK MODEL; CHEMICALLY NANOPATTERNED SURFACES; FORMING BLOCK-COPOLYMERS; MONTE-CARLO SIMULATIONS; MOLECULAR-DYNAMICS; SINGLE-CHAIN; DENSITY MULTIPLICATION; CONSTRAINT RELEASE; RUBBER ELASTICITY; STRESS OVERSHOOT AB A particle-based, theoretically informed coarse-grained model for multicomponent polymeric systems is proposed to explore the dynamics of entangled polymeric melts. Entanglements are treated at the two-molecule level, through slip-springs that couple the dynamics of neighboring pairs of chains. Their inclusion in the model changes its behavior from Rouse to entangled, with scaling laws for the mean-square displacement and shear viscosity consistent with those observed in tube theories and in experiments. C1 [Ramirez-Hernandez, Abelardo; de Pablo, Juan J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Detcheverry, Francois A.] Univ Lyon 1, CNRS, UMR5306, Inst Lumiere Mat, F-69622 Villeurbanne, France. [Ramirez-Hernandez, Abelardo; Peters, Brandon L.; de Pablo, Juan J.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Chappa, Veronica C.; Mueller, Marcus] Univ Gottingen, Inst Theoret Phys, D-37077 Gottingen, Germany. [Schweizer, Kenneth S.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. RP de Pablo, JJ (reprint author), Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. EM depablo@uchicago.edu RI Muller, Marcus/B-9898-2009; Ramirez-Hernandez, Abelardo/A-1717-2011 OI Muller, Marcus/0000-0002-7472-973X; Ramirez-Hernandez, Abelardo/0000-0002-3569-5223 FU National Science Foundation through the Nanoscale Science and Engineering Center at the University of Wisconsin [DMR-0832760]; US Department of Energy, Office of Science, Office of Basic Energy Sciences-Materials Science [DE-AC02-06CH11357]; Office of Naval Research through the Multi-University Research Initiative (MURI) [N00014-11-1-0690]; Semiconductor Research Corporation; German Science Foundation [Mu1674/11-1] FX The authors are grateful to David C. Morse and Annette Zippelius for helpful discussions. The calculations in this work were completed in part with resources provided by the University of Chicago Research Computing Center. The original development of the slip-link approach was carried out with support from the National Science Foundation through the Nanoscale Science and Engineering Center at the University of Wisconsin under Grant No. DMR-0832760. The calculations and implementation of the TIEPOS model presented in this work are supported by US Department of Energy, Office of Science, Office of Basic Energy Sciences-Materials Science, under contract DE-AC02-06CH11357. J.J.dP. also thanks the Office of Naval Research for financial support of the polymer non-equilibrium methodology developed here through the Multi-University Research Initiative (MURI AwardN00014-11-1-0690). Additional support from the Semiconductor Research Corporation and the German Science Foundation under grant Mu1674/11-1 are also acknowledged. NR 78 TC 11 Z9 11 U1 7 U2 79 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD AUG 13 PY 2013 VL 46 IS 15 BP 6287 EP 6299 DI 10.1021/ma400526v PG 13 WC Polymer Science SC Polymer Science GA 202DI UT WOS:000323193300053 ER PT J AU Inceoglu, S Young, NP Jackson, AJ Kline, SR Costeux, S Balsara, NP AF Inceoglu, Sebnem Young, Nicholas P. Jackson, Andrew J. Kline, Steven R. Costeux, Stephane Balsara, Nitash P. TI Effect of Supercritical Carbon Dioxide on the Thermodynamics of Model Blends of Styrene-Acrylonitrile Copolymer and Poly(methyl methacrylate) Studied by Small-Angle Neutron Scattering SO MACROMOLECULES LA English DT Article ID METHACRYLATE)/POLY(VINYLIDENE FLUORIDE) BLENDS; TRANSFER RADICAL POLYMERIZATION; HIGH-PRESSURE CO2; PHASE-BEHAVIOR; GLASS-TRANSITION; BLOCK-COPOLYMERS; TEMPERATURE; FLUID; POLY(STYRENE-CO-ACRYLONITRILE); MISCIBILITY AB Quantitative analysis of small angle neutron scattering (SANS) data from homogeneous multicomponent mixtures of supercritical carbon dioxide (scCO(2)) and two polymers is presented for the first time. The two polymers used in this study were styrene-acrylonitrile copolymer (SAN) and deuterated poly(methyl methacrylate) (dPMMA). Model polymers were used to facilitate comparisons between theory and experiment. The random phase approximation (RPA) was used to derive a simple expression to describe SANS profiles. The scCO(2)-free binary blend was studied to determine the temperature dependence of the polymer-polymer interaction parameter. scCO(2)-polymer solubility data was used to relate polymer-solvent interaction parameters. Comparisons between SANS profiles from multicomponent mixtures and the RPA expression provided an estimate of the interaction parameter between scCO(2) and PMMA, chi(13). The addition of scCO(2) at a modest pressure results in a decrease of phase separation temperature T-s by 127 K. The analysis indicates that the change in T-s is caused by an increase in chi(13) with increasing scCO(2) pressure. C1 [Inceoglu, Sebnem; Young, Nicholas P.; Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Jackson, Andrew J.] European Spallat Source ESS AB, SE-22100 Lund, Sweden. [Kline, Steven R.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Costeux, Stephane] Dow Chem Co USA, Dow Coatings & Construct, Midland, MI 48674 USA. [Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Balsara, NP (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. EM nbalsara@berkeley.edu RI Jackson, Andrew/B-9793-2008; Foundry, Molecular/G-9968-2014; Costeux, Stephane/G-4998-2011 OI Jackson, Andrew/0000-0002-6296-0336; Costeux, Stephane/0000-0001-6095-2837 FU Dow Chemical Company; National Science Foundation [DMR-0454672]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-11231] FX We acknowledge The Dow Chemical Company for providing the primary support for this work, and thank Dr. Alan Nakatani and Dr. Tirtha Chatterjee for educational discussions on the design and interpretation of SANS experiments. Dr. Boualem Hammouda, Mr. Cedric Gagnon, and Mr. Juscelino Leao of the NIST Center for Neutron Research are thanked for their assistance in carrying out SANS experiments. Dr. Chris Canlas and Dr. Jeffrey G. Pelton of the University of California, Berkeley are thanked for their help with the NMR measurements. We acknowledge the support of the National Institute of Standards and Technology, U.S. Department of Commerce, in providing the neutron research facilities used in this work. This work utilized facilities supported in part by the National Science Foundation under Agreement No. DMR-0454672. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-11231. NR 36 TC 5 Z9 5 U1 4 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD AUG 13 PY 2013 VL 46 IS 15 BP 6345 EP 6356 DI 10.1021/ma401090q PG 12 WC Polymer Science SC Polymer Science GA 202DI UT WOS:000323193300059 ER PT J AU Stevens, MJ McIntosh, DB Saleh, OA AF Stevens, Mark J. McIntosh, Dustin B. Saleh, Omar A. TI Simulations of Stretching a Strong, Flexible Polyelectrolyte: Using Long Chains To Access the Pincus Scaling Regime SO MACROMOLECULES LA English DT Article ID LINEAR POLYELECTROLYTES; MOLECULAR-DYNAMICS; EXCLUDED-VOLUME; MONTE-CARLO AB We present simulations of the stretching of a strongly charged, flexible polyelectrolyte chain for long chain lengths particularly focusing on the intermediate force regime, where the Pincus scaling regime occurs. We performed Monte Carlo simulations using the screened Coulomb potential for 200 mM added salt. The number of monomers ranges from 200 to 25000, which includes the experimental value of 5000 for measurements on ssDNA. The simulation force-extension data matches the experimental data over the whole range of forces. For these long chains, the equilibrium structure factor S(k) shows that the chain has two structural regimes. At long length scales, where the electrostatics is fully screened, the chain is a self-avoiding random walk with Flory exponent of 3/5. At short length scales the structure exhibits polyelectrolyte character and is stretched relative to a neutral chain. Under an applied force, S(k) similar to k at low k and the range of the linear scaling expands monotonically to lower k as the force increases. The logarithmic scaling regime at high forces occurs independent of chain length N and agrees with our previous all ion simulations. For N = 5000, the end-to-end extension scales as a function of the applied force as R-z similar to f(gamma), where gamma = 0.60. This value is smaller than the Pincus value of 0.66, but is in agreement with both experiment and neutral polymer simulations that showed larger N is required to reach the Pincus value. We find gamma = 0.67 in agreement with the Pincus value for N = 25000. C1 [Stevens, Mark J.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [McIntosh, Dustin B.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Saleh, Omar A.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Saleh, Omar A.] Univ Calif Santa Barbara, BMSE Program, Santa Barbara, CA 93106 USA. RP Stevens, MJ (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800,MS 1315, Albuquerque, NM 87185 USA. EM msteve@sandia.gov RI Saleh, Omar/B-5014-2008 OI Saleh, Omar/0000-0002-9197-4024 FU United States Department of Energy [DE-AC04-94AL85000]; US Department of Energy, Center for Integrated Nanotechnologies, at Los Alamos National Laboratory [DE-AC52-06NA25396]; Sandia National Laboratories; NSF [DMR-1006737]; National Science Foundation [PHYS-1066293, NSF PHY11-25915] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94AL85000. This work was performed at the US Department of Energy, Center for Integrated Nanotechnologies, at Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories. O.A.S and D.B.M were partially supported by the NSF through Grant DMR-1006737. This work was supported in part by the National Science Foundation under Grant No. PHYS-1066293 and the hospitality of the Aspen Center for Physics. The collaboration was furthered by M.J.S. visiting the Kavli Institute for Theoretical Physics, which was supported in part by the National Science Foundation under Grant No. NSF PHY11-25915. NR 16 TC 7 Z9 7 U1 2 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD AUG 13 PY 2013 VL 46 IS 15 BP 6369 EP 6373 DI 10.1021/ma401211w PG 5 WC Polymer Science SC Polymer Science GA 202DI UT WOS:000323193300062 ER PT J AU Steven, B Lionard, M Kuske, CR Vincent, WF AF Steven, Blaire Lionard, Marie Kuske, Cheryl R. Vincent, Warwick F. TI High Bacterial Diversity of Biological Soil Crusts in Water Tracks over Permafrost in the High Arctic Polar Desert SO PLOS ONE LA English DT Article AB In this study we report the bacterial diversity of biological soil crusts (biocrusts) inhabiting polar desert soils at the northern land limit of the Arctic polar region (83 degrees 05 N). Employing pyrosequencing of bacterial 16S rRNA genes this study demonstrated that these biocrusts harbor diverse bacterial communities, often as diverse as temperate latitude communities. The effect of wetting pulses on the composition of communities was also determined by collecting samples from soils outside and inside of permafrost water tracks, hill slope flow paths that drain permafrost-affected soils. The intermittent flow regime in the water tracks was correlated with altered relative abundance of phylum level taxonomic bins in the bacterial communities, but the alterations varied between individual sampling sites. Bacteria related to the Cyanobacteria and Acidobacteria demonstrated shifts in relative abundance based on their location either inside or outside of the water tracks. Among cyanobacterial sequences, the proportion of sequences belonging to the family Oscillatoriales consistently increased in relative abundance in the samples from inside the water tracks compared to those outside. Acidobacteria showed responses to wetting pulses in the water tracks, increasing in abundance at one site and decreasing at the other two sites. Subdivision 4 acidobacterial sequences tended to follow the trends in the total Acidobacteria relative abundance, suggesting these organisms were largely responsible for the changes observed in the Acidobacteria. Taken together, these data suggest that the bacterial communities of these high latitude polar biocrusts are diverse but do not show a consensus response to intermittent flow in water tracks over high Arctic permafrost. C1 [Steven, Blaire; Kuske, Cheryl R.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. [Lionard, Marie; Vincent, Warwick F.] Univ Laval, Dept Biol, Quebec City, PQ G1K 7P4, Canada. [Lionard, Marie; Vincent, Warwick F.] Univ Laval, Ctr Etud Nord, Quebec City, PQ G1K 7P4, Canada. RP Vincent, WF (reprint author), Univ Laval, Dept Biol, Quebec City, PQ G1K 7P4, Canada. EM warwick.vincent@bio.ulaval.ca RI Steven, Blaire/E-5295-2012; OI Steven, Blaire/0000-0001-5940-2432; Vincent, Warwick/0000-0001-9055-1938 FU National Science and Engineering Research Council; ArcticNet; Centre d'etudes Norqiques (CEN); Polar Continental Shelf Project; Los Alamos National Laboratory LDRD program FX Field work was supported by the National Science and Engineering Research Council, ArcticNet, Centre d'etudes Norqiques (CEN) and the Polar Continental Shelf Project. Sequence analysis for this study was supported through a grant to CK from the Los Alamos National Laboratory LDRD program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 59 TC 14 Z9 14 U1 1 U2 52 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD AUG 13 PY 2013 VL 8 IS 8 AR e71489 DI 10.1371/journal.pone.0071489 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 201BN UT WOS:000323115800063 PM 23967218 ER PT J AU Karrasch, C Bardarson, JH Moore, JE AF Karrasch, C. Bardarson, J. H. Moore, J. E. TI Reducing the numerical effort of finite-temperature density matrix renormalization group calculations SO NEW JOURNAL OF PHYSICS LA English DT Article ID QUANTUM SPIN SYSTEMS; THERMAL-CONDUCTIVITY; PRODUCT STATES; XXZ CHAIN; TRANSPORT; THERMODYNAMICS; EQUIVALENCE; DYNAMICS; MODEL; LAWS AB Finite-temperature transport properties of one-dimensional systems can be studied using the time dependent density matrix renormalization group via the introduction of auxiliary degrees of freedom which purify the thermal statistical operator. We demonstrate how the numerical effort of such calculations is reduced when the physical time evolution is augmented by an additional time evolution within the auxiliary Hilbert space. Specifically, we explore a variety of integrable and non-integrable, gapless and gapped models at temperatures ranging from T = infinity down to T/bandwidth = 0.05 and study both (i) linear response where (heat and charge) transport coefficients are determined by the current-current correlation function and (ii) non-equilibrium driven by arbitrary large temperature gradients. The modified density matrix renormalization algorithm removes an 'artificial' build-up of entanglement between the auxiliary and physical degrees of freedom. Thus, longer time scales can be reached. C1 [Karrasch, C.; Bardarson, J. H.; Moore, J. E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 95720 USA. [Karrasch, C.; Bardarson, J. H.; Moore, J. E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Karrasch, C (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 95720 USA. EM karrasch@berkeley.edu RI Moore, Joel/O-4959-2016; Karrasch, Christoph/S-5716-2016 OI Moore, Joel/0000-0002-4294-5761; Karrasch, Christoph/0000-0002-6475-3584 FU Deutsche Forschungsgemeinschaft [KA3360-1/1]; DARPA TI program of UCLA; Nanostructured Thermoelectrics program of LBNL FX We are grateful to Frank Verstraete for very useful suggestions and thank Thomas Barthel, Fabian Heidrich-Meisner and Steve White for discussions. Support by the Deutsche Forschungsgemeinschaft via KA3360-1/1 (CK), by the DARPA TI program of UCLA (JHB) as well as by the Nanostructured Thermoelectrics program of LBNL (CK and JEM) is acknowledged. NR 95 TC 26 Z9 26 U1 1 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD AUG 13 PY 2013 VL 15 AR 083031 DI 10.1088/1367-2630/15/8/083031 PG 21 WC Physics, Multidisciplinary SC Physics GA 199XO UT WOS:000323029000003 ER PT J AU Le Pape, S Correa, AA Fortmann, C Neumayer, P Doppner, T Davis, P Ma, T Divol, L Plagemann, KU Schwegler, E Redmer, R Glenzer, S AF Le Pape, Sebastien Correa, Alfredo A. Fortmann, Carsten Neumayer, Paul Doeppner, Tilo Davis, Paul Ma, Tammy Divol, Laurent Plagemann, Kai-Uwe Schwegler, E. Redmer, Ronald Glenzer, Siegfried TI Structure measurements of compressed liquid boron at megabar pressures SO NEW JOURNAL OF PHYSICS LA English DT Article ID RAY THOMSON SCATTERING; PHASE-DIAGRAM; PLASMAS AB We report on the first measurements of the structure of compressed liquid boron, as it crosses the melt line in dynamic shock-compression experiments at a pressure of 100 GPa. Temporally, spectrally and angularly resolving x-ray scattering provides an independent and accurate measurement of the compression factor 1.5 and the electron density of 4 x 10(23) cm(-3) at moderate temperatures of 0.2-1 eV. At these conditions, the elastic scattering measurements provide the structure factor and indicate the liquid compressed phase with a coordination number of 8.3 in good agreement with predictions from first-principles molecular dynamic simulations. C1 [Le Pape, Sebastien; Correa, Alfredo A.; Fortmann, Carsten; Doeppner, Tilo; Davis, Paul; Ma, Tammy; Divol, Laurent; Schwegler, E.; Glenzer, Siegfried] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Fortmann, Carsten] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Neumayer, Paul] GSI Helmholtzzentrum Schwerionen Forsch, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [Neumayer, Paul] GSI Helmholtzzentrum Schwerionen Forsch, Div Res, D-64291 Darmstadt, Germany. [Plagemann, Kai-Uwe; Redmer, Ronald] Univ Rostock, Inst Phys, D-18051 Rostock, Germany. RP Le Pape, S (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM lepape2@llnl.gov RI lepape, sebastien/J-3010-2015; Schwegler, Eric/A-2436-2016 OI Schwegler, Eric/0000-0003-3635-7418 FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development [11-ERD-050]; National Laboratory User Facility; DFG [SFB 652]; Alexander von Humboldt-Foundation FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Work was also supported by the Laboratory Directed Research and Development grant no. 11-ERD-050 and the National Laboratory User Facility. KUP and RR acknowledge support from the DFG via the SFB 652. CF acknowledges support by the Alexander von Humboldt-Foundation. NR 22 TC 0 Z9 0 U1 1 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD AUG 13 PY 2013 VL 15 AR 085011 DI 10.1088/1367-2630/15/8/085011 PG 9 WC Physics, Multidisciplinary SC Physics GA 199XL UT WOS:000323028700002 ER PT J AU Lin, SZ Bulaevskii, LN AF Lin, Shi-Zeng Bulaevskii, Lev N. TI Quantum motion and level quantization of a skyrmion in a pinning potential in chiral magnets SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; CRYSTALS; IRRADIATION; VORTICES; DEFECTS; LATTICE; STATES; FLOW AB A topological excitation called skyrmion has been observed experimentally in chiral magnets without spatial inversion symmetry. The dynamics of a skyrmion is equivalent to an electron moving in a strong magnetic field. As a skyrmion involves large number of spins, it is not clear whether there exist observable quantum effects. In this work, we study the quantum dynamics of a skyrmion in a pinning potential. Without a pinning potential, the skyrmion performs cyclotron motion due to the strong emergent magnetic field originating from the Berry phase of spins, and all skyrmions occupy the lowest Landau level. Their wave functions are strongly localized in a region with radius less than 1 angstrom when no driving force is applied. Thus in most circumstances, the quantum effects of a skyrmion are weak. In the presence of a pinning potential, the lowest Landau level for skyrmions is split into quantized levels, characterized by the orbital moments. The transition between quantized levels can be observed experimentally by microwave absorption measurements in low temperature region. The quantum effects are more prominent for a skyrmion with a small size, which can be realized in magnets with a large Dzyaloshinskii-Moriya interaction. C1 [Lin, Shi-Zeng; Bulaevskii, Lev N.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Lin, SZ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Lin, Shi-Zeng/B-2906-2008 OI Lin, Shi-Zeng/0000-0002-4368-5244 FU Los Alamos Laboratory Directed Research and Development Program [20110138ER] FX The authors are grateful for the helpful discussions with Cristian D. Batista, Avadh Saxena, and Charles Reichhardt. This publication was made possible by funding from the Los Alamos Laboratory Directed Research and Development Program, Project No. 20110138ER. NR 35 TC 2 Z9 2 U1 1 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG 13 PY 2013 VL 88 IS 6 AR 060404 DI 10.1103/PhysRevB.88.060404 PG 5 WC Physics, Condensed Matter SC Physics GA 200EJ UT WOS:000323050300002 ER PT J AU Briceno, R Davoudi, Z Luu, T AF Briceno, Raul Davoudi, Zohreh Luu, Thomas TI Two-nucleon systems in a finite volume: Quantization conditions SO PHYSICAL REVIEW D LA English DT Article ID EFFECTIVE-FIELD THEORY; NEUTRON-DEUTERON SCATTERING; SHORT-RANGE INTERACTIONS; LATTICE QCD; NUCLEAR-FORCES; STATES; DEPENDENCE; MATRIX; TRITON AB The quantization condition for interacting energy eigenvalues of the two-nucleon system in a finite cubic volume is derived in connection to the nucleon-nucleon scattering amplitudes. This condition is derived using an auxiliary (dimer) field formalism that is generalized to arbitrary partial waves in the context of nonrelativistic effective field theory. The quantization condition presented gives access to the scattering parameters of the two-nucleon systems with arbitrary parity, spin, isospin, angular momentum and center-of-mass motion, from a lattice QCD calculation of the energy eigenvalues. In particular, as it includes all noncentral interactions, such as the two-nucleon tensor force, it makes explicit the dependence of the mixing parameters of nucleon-nucleon systems calculated from lattice QCD when there is a physical mixing among different partial waves, e.g. S-D partial wave mixing in the deuteron channel. We provide explicit relations among scattering parameters and their corresponding point group symmetry class eigenenergies with orbital angular momentum l <= 3, and for center-of-mass boost vectors of the form 2 pi/L(2n(1), 2n(2), 2n(3)), 2 pi/L(2n(1), 2n(2), 2n(3) + 1) and 2 pi/L(2n(1) + 1, 2n(2) + 1, 2n(3)). L denotes the special extent of the cubic volume and n(1), n(2), n(3) are integers. Our results are valid below inelastic thresholds up to exponential volume corrections that are governed by the pion mass. C1 [Briceno, Raul; Davoudi, Zohreh] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Luu, Thomas] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Briceno, R (reprint author), Univ Washington, Dept Phys, Box 351560, Seattle, WA 98195 USA. EM briceno@uw.edu; davoudi@uw.edu; luu5@llnl.gov FU DOE [DE-FG02-97ER41014]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We would like to thank Martin J. Savage for valuable discussions and for his feedback on the first manuscript of this paper. R. B. and Z. D. also would like to thank Richard J. Furnstahl for useful conversations. R. B. and Z. D. were supported in part by the DOE Grant No. DE-FG02-97ER41014. The work of T.L. was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. Part of this work was planned as a result of discussions among the authors during the INT workshop on "Nuclear reactions from lattice QCD" in the Institute for Nuclear Theory at the University of Washington in March 2013. NR 68 TC 22 Z9 22 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 13 PY 2013 VL 88 IS 3 AR 034502 DI 10.1103/PhysRevD.88.034502 PG 44 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 200EV UT WOS:000323051500001 ER PT J AU Xie, RB Long, GG Weigand, SJ Moss, SC Carvalho, T Roorda, S Hejna, M Torquato, S Steinhardt, PJ AF Xie, Ruobing Long, Gabrielle G. Weigand, Steven J. Moss, Simon C. Carvalho, Tobi Roorda, Sjoerd Hejna, Miroslav Torquato, Salvatore Steinhardt, Paul J. TI Hyperuniformity in amorphous silicon based on the measurement of the infinite-wavelength limit of the structure factor SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE glass; disordered solid ID RAMAN-SCATTERING; ENERGY BARRIER; DIFFRACTION; SI; RELAXATION; GLASSES; ORDER; GE AB We report the results of highly sensitive transmission X-ray scattering measurements performed at the Advanced Photon Source, Argonne National Laboratory, on nearly fully dense high-purity amorphous-silicon (a-Si) samples for the purpose of determining their degree of hyperuniformity. A perfectly hyperuniform structure has complete suppression of infinite-wavelength density fluctuations, or, equivalently, the structure factor S(q -> 0) = 0; the smaller the value of S(0), the higher the degree of hyperuniformity. Annealing was observed to increase the degree of hyperuniformity in a-Si where we found S(0) = 0.0075 (+/- 0.0005), which is significantly below the computationally determined lower bound recently suggested by de Graff and Thorpe [de Graff AMR, Thorpe MF (2010) Acta Crystallogr A 66(Pt 1):22-31] based on studies of continuous random network models, but consistent with the recently proposed nearly hyperuniform network picture of a-Si. Increasing hyperuniformity is correlated with narrowing of the first diffraction peak and extension of the range of oscillations in the pair distribution function. C1 [Xie, Ruobing; Long, Gabrielle G.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Long, Gabrielle G.] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA. [Weigand, Steven J.] Northwestern Univ, Argonne Natl Lab, DuPont Northwestern Dow Collaborat Access Team Sy, Argonne, IL 60439 USA. [Moss, Simon C.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Moss, Simon C.] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. [Carvalho, Tobi; Roorda, Sjoerd] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada. [Hejna, Miroslav; Torquato, Salvatore; Steinhardt, Paul J.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Torquato, Salvatore] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. [Torquato, Salvatore] Princeton Univ, Princeton Inst Sci & Technol Mat, Princeton, NJ 08544 USA. [Steinhardt, Paul J.] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA. RP Steinhardt, PJ (reprint author), Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. EM steinh@princeton.edu RI Roorda, Sjoerd/N-2604-2014; OI Xie, Ruobing/0000-0003-0266-9122 FU US Department of Energy, Office of Science [DE-AC02-006CH11357]; National Science Foundation-Materials Research Science and Engineering Center Program through New York University [DMR-0820341]; Natural Sciences and Engineering Research Counsel of Canada; Fonds de Recherche Nature et Technologies Quebec FX We thank Mike Thorpe for discussions during the early portion of this research and Jan Ilavsky for help with the ultra small-angle X-ray scattering (USAXS) measurements. This research was performed mainly at the SAXS/wide-angle X-ray scattering (WAXS) instrument at DuPont-Northwestern-Dow Collaborative Access Team 5-ID-D and also at the USAXS instrument at 32-ID-B at the Advanced Photon Source, Argonne National Laboratory. Use of the APS is supported by the US Department of Energy, Office of Science, under Contract DE-AC02-006CH11357. This work is supported in part by the National Science Foundation-Materials Research Science and Engineering Center Program through New York University (DMR-0820341 to S.T. and P.J.S.) and by the Natural Sciences and Engineering Research Counsel of Canada and Fonds de Recherche Nature et Technologies Quebec (S.R. and T.C.). NR 39 TC 15 Z9 15 U1 8 U2 38 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD AUG 13 PY 2013 VL 110 IS 33 BP 13250 EP 13254 DI 10.1073/pnas.1220106110 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 200LA UT WOS:000323069200023 PM 23898166 ER PT J AU Yu, Q Qi, L Mishra, RK Li, J Minor, AM AF Yu, Qian Qi, Liang Mishra, Raja K. Li, Ju Minor, Andrew M. TI Reducing deformation anisotropy to achieve ultrahigh strength and ductility in Mg at the nanoscale SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE lightweight alloys; metallurgy; mechanical properties; in situ TEM; nanoparticle ID MAGNESIUM SINGLE CRYSTALS; NONBASAL SLIP; NANOCRYSTALLINE MATERIALS; ALLOYS; PLASTICITY; METALS; TEMPERATURE; INTERFACES; ALUMINUM; STRESS AB In mechanical deformation of crystalline materials, the critical resolved shear stress (CRSS; tau(CRSS)) is the stress required to initiate movement of dislocations on a specific plane. In plastically anisotropic materials, such as Mg, tau(CRSS) for different slip systems differs greatly, leading to relatively poor ductility and formability. However, tau(CRSS) for all slip systems increases as the physical dimension of the sample decreases to approach eventually the ideal shear stresses of a material, which are much less anisotropic. Therefore, as the size of a sample gets smaller, the yield stress increases and tau(CRSS) anisotropy decreases. Here, we use in situ transmission electron microscopy mechanical testing and atomistic simulations to demonstrate that tau(CRSS) anisotropy can be significantly reduced in nanoscale Mg single crystals, where extremely high stresses (similar to 2 GPa) activate multiple deformation modes, resulting in a change from basal slip-dominated plasticity to a more homogeneous plasticity. Consequently, an abrupt and dramatic size-induced "brittle-to-ductile" transition occurs around 100 nm. This nanoscale change in the CRSS anisotropy demonstrates the powerful effect of size-related deformation mechanisms and should be a general feature in plastically anisotropic materials. C1 [Yu, Qian; Minor, Andrew M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Yu, Qian; Minor, Andrew M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Qi, Liang; Li, Ju] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA. [Li, Ju] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Mishra, Raja K.] Gen Motors Res & Dev Ctr, Warren, MI 48090 USA. RP Minor, AM (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM aminor@berkeley.edu RI Li, Ju/A-2993-2008; Qi, Liang/A-3851-2010; Foundry, Molecular/G-9968-2014 OI Li, Ju/0000-0002-7841-8058; Qi, Liang/0000-0002-0201-9333; FU National Science Foundation [DMR-1120901, DMR-1008104]; General Motors Research and Development Center; US Department of Energy [DE-AC02-05CH11231] FX We thank X. Q. Zeng for providing the nanoparticles used in this study and R. O. Ritchie for valuable discussions. L.Q. and J.L. acknowledge support by National Science Foundation Grants DMR-1120901 and DMR-1008104. This research was supported by the General Motors Research and Development Center and was performed at the National Center for Electron Microscopy at Lawrence Berkeley National Laboratory, which is supported by the US Department of Energy under Contract DE-AC02-05CH11231. NR 38 TC 22 Z9 22 U1 6 U2 90 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD AUG 13 PY 2013 VL 110 IS 33 BP 13289 EP 13293 DI 10.1073/pnas.1306371110 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 200LA UT WOS:000323069200030 PM 23904487 ER PT J AU Chakraborty, P Zuckermann, RN AF Chakraborty, Promita Zuckermann, Ronald N. TI Coarse-grained, foldable, physical model of the polypeptide chain SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE protein folding; self-assembly; biomimetic modular robotics; rotational energy barrier; conformational isomerism ID BETA-SHEETS; PROTEINS; VISUALIZATION; PREDICTION; PLAYERS; DESIGN; TURNS AB Although nonflexible, scaled molecular models like Pauling-Corey's and its descendants have made significant contributions in structural biology research and pedagogy, recent technical advances in 3D printing and electronics make it possible to go one step further in designing physical models of biomacromolecules: to make them conformationally dynamic. We report here the design, construction, and validation of a flexible, scaled, physical model of the polypeptide chain, which accurately reproduces the bond rotational degrees of freedom in the peptide backbone. The coarse-grained backbone model consists of repeating amide and alpha-carbon units, connected by mechanical bonds (corresponding to phi and psi) that include realistic barriers to rotation that closely approximate those found at the molecular scale. Longer-range hydrogen-bonding interactions are also incorporated, allowing the chain to readily fold into stable secondary structures. The model is easily constructed with readily obtainable parts and promises to be a tremendous educational aid to the intuitive understanding of chain folding as the basis for macromolecular structure. Furthermore, this physical model can serve as the basis for linking tangible biomacromolecular models directly to the vast array of existing computational tools to provide an enhanced and interactive human-computer interface. C1 [Chakraborty, Promita; Zuckermann, Ronald N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Zuckermann, RN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM rnzuckermann@lbl.gov RI Zuckermann, Ronald/A-7606-2014; Foundry, Molecular/G-9968-2014 OI Zuckermann, Ronald/0000-0002-3055-8860; FU Defense Threat Reduction Agency [IACRO B1144571]; National Science Foundation [CHE-0840505]; Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the Department of Energy [DE-AC02-05CH11231] FX We thank Prof. Alexey Onufriev (Virginia Tech), Dr. Babak Sanii, Helen Tran, and Michael Connolly (Lawrence Berkeley National Laboratory) for helpful discussions. We also thank Prof. Joseph DeRisi (University of California, San Francisco) for helpful comments as well as initial support with 3D printing. This work was supported by the Defense Threat Reduction Agency under Grant IACRO B1144571. In addition, we thank the Molecular Graphics and Computation Facility (supported by National Science Foundation Grant CHE-0840505) at the University of California, Berkeley, for use of the facilities in energy plot computations. This work was performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, and was partially supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the Department of Energy under Contract DE-AC02-05CH11231. NR 48 TC 11 Z9 11 U1 0 U2 36 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD AUG 13 PY 2013 VL 110 IS 33 BP 13368 EP 13373 DI 10.1073/pnas.1305741110 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 200LA UT WOS:000323069200044 PM 23898168 ER PT J AU Tomasi, D Wang, GJ Volkow, ND AF Tomasi, Dardo Wang, Gene-Jack Volkow, Nora D. TI Energetic cost of brain functional connectivity SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE fMRI connectivity; PET-FDG; allometric scaling; energy budget; graph theory ID SMALL-WORLD; ALZHEIMERS-DISEASE; CORTICAL HUBS; LOW-FREQUENCY; NETWORKS; MRI; FLUCTUATIONS; ORGANIZATION; DYNAMICS; IMAGES AB The brain's functional connectivity is complex, has high energetic cost, and requires efficient use of glucose, the brain's main energy source. It has been proposed that regions with a high degree of functional connectivity are energy efficient and can minimize consumption of glucose. However, the relationship between functional connectivity and energy consumption in the brain is poorly understood. To address this neglect, here we propose a simple model for the energy demands of brain functional connectivity, which we tested with positron emission tomography and MRI in 54 healthy volunteers at rest. Higher glucose metabolism was associated with proportionally larger MRI signal amplitudes, and a higher degree of connectivity was associated with nonlinear increases in metabolism, supporting our hypothesis for the energy efficiency of the connectivity hubs. Basal metabolism (in the absence of connectivity) accounted for 30% of brain glucose utilization, which suggests that the spontaneous brain activity accounts for 70% of the energy consumed by the brain. The energy efficiency of the connectivity hubs was higher for ventral precuneus, cerebellum, and subcortical hubs than for cortical hubs. The higher energy demands of brain communication that hinges upon higher connectivity could render brain hubs more vulnerable to deficits in energy delivery or utilization and help explain their sensitivity to neurodegenerative conditions, such as Alzheimer's disease. C1 [Tomasi, Dardo; Volkow, Nora D.] NIAAA, Bethesda, MD 20892 USA. [Wang, Gene-Jack] Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. [Wang, Gene-Jack] SUNY Stony Brook, Dept Radiol, Stony Brook, NY 11794 USA. [Volkow, Nora D.] Natl Inst Drug Abuse, Bethesda, MD 20892 USA. RP Tomasi, D (reprint author), NIAAA, Bethesda, MD 20892 USA. EM tomasidg@mail.nih.gov RI Tomasi, Dardo/J-2127-2015 FU National Institutes of Alcohol Abuse and Alcoholism [2R01AA09481]; National Center for Research Resources [GCRC 5-M01-RR-10710] FX We thank Ruben Baler, Ruiliang Wang, David Alexoff, Christopher Wong, Millard Jayne, Paul Vaska, David Schlyer, Karen Apelskog-Torres, Barbara Hubbard, and Joanna S. Fowler for assistance in various aspects of these studies. This work was accomplished with support from National Institutes of Alcohol Abuse and Alcoholism Grant 2R01AA09481 and National Center for Research Resources Grant GCRC 5-M01-RR-10710. NR 44 TC 92 Z9 95 U1 1 U2 26 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD AUG 13 PY 2013 VL 110 IS 33 BP 13642 EP 13647 DI 10.1073/pnas.1303346110 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 200LA UT WOS:000323069200090 PM 23898179 ER PT J AU Zhao, Q Tobimatsu, Y Zhou, R Pattathil, S Gallego-Giraldo, L Fu, C Jackson, LA Hahn, MG Kim, H Chen, F Ralph, J Dixon, RA AF Zhao, Qiao Tobimatsu, Yuki Zhou, Rui Pattathil, Sivakumar Gallego-Giraldo, Lina Fu, Chunxiang Jackson, Lisa A. Hahn, Michael G. Kim, Hoon Chen, Fang Ralph, John Dixon, Richard A. TI Loss of function of cinnamyl alcohol dehydrogenase 1 leads to unconventional lignin and a temperature-sensitive growth defect in Medicago truncatula SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE model legume; monolignol pathway; transposon mutagenesis ID ARABIDOPSIS-THALIANA; DOWN-REGULATION; FERULIC ACID; SATIVA L.; BIOSYNTHESIS; ALFALFA; GENE; LIGNIFICATION; DEFICIENCY; EXPRESSION AB There is considerable debate over the capacity of the cell wall polymer lignin to incorporate unnatural monomer units. We have identified Tnt1 retrotransposon insertion mutants of barrel medic (Medicago truncatula) that show reduced lignin autofluorescence under UV microscopy and red coloration in interfascicular fibers. The phenotype is caused by insertion of retrotransposons into a gene annotated as encoding cinnamyl alcohol dehydrogenase, here designated M. truncatula CAD1. NMR analysis indicated that the lignin is derived almost exclusively from coniferaldehyde and sinapaldehyde and is therefore strikingly different from classical lignins, which are derived mainly from coniferyl and sinapyl alcohols. Despite such a major alteration in lignin structure, the plants appear normal under standard conditions in the greenhouse or growth chamber. However, the plants are dwarfed when grown at 30 degrees C. Glycome profiling revealed an increased extractability of some xylan and pectin epitopes from the cell walls of the cad1-1 mutant but decreased extractability of others, suggesting that aldehyde-dominant lignin significantly alters cell wall structure. C1 [Zhao, Qiao; Zhou, Rui; Gallego-Giraldo, Lina; Jackson, Lisa A.; Dixon, Richard A.] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA. [Tobimatsu, Yuki; Kim, Hoon; Ralph, John] Samuel Roberts Noble Fdn Inc, Forage Improvement Div, Ardmore, OK 73401 USA. [Tobimatsu, Yuki; Kim, Hoon; Ralph, John] Wisconsin Energy Inst, Great Lakes Bioenergy Res Ctr, Dept Energy, Madison, WI 53726 USA. [Pattathil, Sivakumar; Hahn, Michael G.] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA. [Pattathil, Sivakumar; Jackson, Lisa A.; Chen, Fang; Dixon, Richard A.] Bioenergy Sci Ctr, Dept Energy, Oak Ridge, TN 37831 USA. RP Dixon, RA (reprint author), Univ N Texas, Dept Biol Sci, Denton, TX 76203 USA. EM richard.dixon@unt.edu OI Hahn, Michael/0000-0003-2136-5191; , Sivakumar Pattathil/0000-0003-3870-4137 FU National Science Foundation [703285]; Department of Energy (DOE) Feedstock Genomics program [DE-FG02-06ER64303]; Forage Genetics International; Samuel Roberts Noble Foundation; DOE's Bioenergy Sciences and Great Lakes Bioenergy Research Centers; Office of Biological and Environmental Research in the DOE Office of Science [BER DE-AC05-00OR22725, DE-FC02-07ER64494] FX We thank Drs. Wolfgang Schieble and Elison Blancaflor for critical reading of the manuscript. The M. truncatula plants used in this work were created through research funded, in part, by National Science Foundation Grant 703285. This work was supported in part by Grant DE-FG02-06ER64303 from the Department of Energy (DOE) Feedstock Genomics program (to R.A.D.), with additional support from Forage Genetics International, The Samuel Roberts Noble Foundation, and the DOE's Bioenergy Sciences and Great Lakes Bioenergy Research Centers, supported by the Office of Biological and Environmental Research in the DOE Office of Science (BER DE-AC05-00OR22725 and DE-FC02-07ER64494, respectively). NR 52 TC 31 Z9 35 U1 5 U2 68 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD AUG 13 PY 2013 VL 110 IS 33 BP 13660 EP 13665 DI 10.1073/pnas.1312234110 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 200LA UT WOS:000323069200093 PM 23901113 ER PT J AU Wee, SH Zuev, YL Cantoni, C Goyal, A AF Wee, Sung Hun Zuev, Yuri L. Cantoni, Claudia Goyal, Amit TI Engineering nanocolumnar defect configurations for optimized vortex pinning in high temperature superconducting nanocomposite wires SO SCIENTIFIC REPORTS LA English DT Article ID SELF-ASSEMBLED NANODOTS; COLUMNAR DEFECTS; YBA2CU3O7-DELTA FILMS; THICKNESS; NANORODS; DENSITY AB We report microstructural design via control of BaZrO3 (BZO) defect density in high temperature superconducting (HTS) wires based on epitaxial YBa2Cu3O7-delta (YBCO) films to achieve the highest critical current density, J(c), at different fields, H. We find the occurrence of J(c)(H) cross-over between the films with 1-4 vol% BZO, indicating that optimal BZO doping is strongly field-dependent. The matching fields, B-phi, estimated by the number density of BZO nanocolumns are matched to the field ranges for which 1-4 vol% BZO-doped films exhibit the highest J(c)(H). With incorporation of BZO defects with the controlled density, we fabricate 4-mu m-thick single layer, YBCO + BZO nanocomposite film having the critical current (I-c) of similar to 1000 A cm(-1) at 77 K, self-field and the record minimum I-c, I-c(min), of 455 A cm(-1) at 65 K and 3 T for all field angles. This I-c(min) is the largest value ever reported from HTS films fabricated on metallic templates. C1 [Wee, Sung Hun; Cantoni, Claudia; Goyal, Amit] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Zuev, Yuri L.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. RP Wee, SH (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM sunghunwee@yahoo.com; goyala@ornl.gov RI Cantoni, Claudia/G-3031-2013 OI Cantoni, Claudia/0000-0002-9731-2021 FU U.S. DOE Office of Electricity Delivery and Energy Reliability - Advanced Cables and Conductors [DE-AC05-00OR22725]; ORNL's Shared Research Equipment (SHaRE) User Facility; Office of Basic Energy Sciences FX We would like to thank SuperPower Inc. for providing the Hastelloy substrates with the multilayer configuration of IBAD MgO layer/Homoepitaxial MgO layer/Epitaxial LaMnO3. This research was sponsored by the U.S. DOE Office of Electricity Delivery and Energy Reliability - Advanced Cables and Conductors under contract DE-AC05-00OR22725 with UT-Battelle, LLC managing contractor for Oak Ridge National Laboratory. Research also supported by ORNL's Shared Research Equipment (SHaRE) User Facility, which is sponsored by the Office of Basic Energy Sciences. NR 32 TC 19 Z9 19 U1 2 U2 41 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD AUG 13 PY 2013 VL 3 AR 2310 DI 10.1038/srep02310 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 199XG UT WOS:000323028200001 PM 23939231 ER PT J AU Ortiz-Medina, J Garcia-Betancourt, ML Jia, XT Martinez-Gordillo, R Pelagio-Flores, MA Swanson, D Elias, AL Gutierrez, HR Gracia-Espino, E Meunier, V Owens, J Sumpter, BG Cruz-Silva, E Rodriguez-Macias, FJ Lopez-Urias, F Munoz-Sandoval, E Dresselhaus, MS Terrones, H Terrones, M AF Ortiz-Medina, Josue Luisa Garcia-Betancourt, M. Jia, Xiaoting Martinez-Gordillo, Rafael Pelagio-Flores, Miguel A. Swanson, David Elias, Ana Laura Gutierrez, Humberto R. Gracia-Espino, Eduardo Meunier, Vincent Owens, Jonathan Sumpter, Bobby G. Cruz-Silva, Eduardo Rodriguez-Macias, Fernando J. Lopez-Urias, Florentino Munoz-Sandoval, Emilio Dresselhaus, Mildred S. Terrones, Humberto Terrones, Mauricio TI Nitrogen-Doped Graphitic Nanoribbons: Synthesis, Characterization, and Transport SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article DE carbon; nanoribbons; doping; sensors; transport mechanisms; graphite ID CARBON NANOTUBES; GRAPHENE NANORIBBONS; BILAYER GRAPHENE; LOOP FORMATION; ELECTRON; ZIGZAG; EDGES; STATE AB Nitrogen-doped graphitic nanoribbons (N-x-GNRs), synthesized by chemical vapor deposition (CVD) using pyrazine as a nitrogen precursor, are reported for the first time. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) reveal that the synthesized materials are formed by multilayered corrugated GNRs, which in most cases exhibit the formation of curved graphene edges (loops). This suggests that during growth, nitrogen atoms promote loop formation; undoped GNRs do not form loops at their edges. Transport measurements on individual pure GNRs exhibit a linear I-V (current-voltage) behavior, whereas N-x-GNRs show reduced current responses following a semiconducting-like behavior, which becomes more prominent for high nitrogen concentrations. To better understand the experimental findings, electron density of states (DOS), quantum conductance for nitrogen-doped zigzag and armchair single-layer GNRs are calculated for different N doping concentrations using density functional theory (DFT) and non-equilibrium Green functions. These calculations confirm the crucial role of nitrogen atoms in the transport properties, confirming that the nonlinear I-V curves are due to the presence of nitrogen atoms within the N-x-GNRs lattice that act as scattering sites. These characteristic N-x-GNRs transport properties could be advantageous in the fabrication of electronic devices including sensors in which metal-like undoped GNRs are unsuitable. C1 [Ortiz-Medina, Josue; Luisa Garcia-Betancourt, M.; Gracia-Espino, Eduardo; Rodriguez-Macias, Fernando J.; Lopez-Urias, Florentino; Munoz-Sandoval, Emilio] IPICYT, Adv Mat Dept, San Luis Potosi 78216, Mexico. [Ortiz-Medina, Josue; Luisa Garcia-Betancourt, M.; Elias, Ana Laura; Gutierrez, Humberto R.; Lopez-Urias, Florentino; Terrones, Humberto; Terrones, Mauricio] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Jia, Xiaoting] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Martinez-Gordillo, Rafael] Ctr Invest Nanociencia & Nanotecnol CSIC ICN, E-08193 Bellaterra, Spain. [Pelagio-Flores, Miguel A.; Rodriguez-Macias, Fernando J.] Univ Fed Pernambuco, Dept Quim Fundamental, BR-50740540 Recife, PE, Brazil. [Swanson, David] Augustana Coll, Dept Chem, Sioux Falls, SD 57197 USA. [Swanson, David] Augustana Coll, Dept Phys, Sioux Falls, SD 57197 USA. [Meunier, Vincent; Sumpter, Bobby G.; Cruz-Silva, Eduardo] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Meunier, Vincent; Owens, Jonathan] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Dresselhaus, Mildred S.] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. [Dresselhaus, Mildred S.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Terrones, Mauricio] Shinshu Univ, Res Ctr Exot Nanocarbons, Nagano 3808553, Japan. RP Ortiz-Medina, J (reprint author), IPICYT, Adv Mat Dept, Camino Presa San Jose 2055,Lomas 4A Sec, San Luis Potosi 78216, Mexico. EM mut11@psu.edu RI Terrones, Mauricio/B-3829-2014; Rodriguez-Macias, Fernando/A-9841-2013; Cruz-Silva, Eduardo/B-7003-2009; Meunier, Vincent/F-9391-2010; Munoz-Sandoval, Emilio/N-1059-2014; Jia, Xiaoting/E-2669-2015; Sumpter, Bobby/C-9459-2013; OI Rodriguez-Macias, Fernando/0000-0002-4319-5608; Cruz-Silva, Eduardo/0000-0003-2877-1598; Meunier, Vincent/0000-0002-7013-179X; Munoz-Sandoval, Emilio/0000-0002-6095-4119; Jia, Xiaoting/0000-0003-4890-6103; Sumpter, Bobby/0000-0001-6341-0355; Gracia-Espino, Eduardo/0000-0001-9239-0541 FU JST-Japan; Penn State Center for Nanoscale Science (MRSEC; NSF) [DMR-0820404]; CAPES, Brazil; CONACYT (Mexico) [CB-2008-SEP-107082, 60218-F1, 48300 S-3907]; MURI [ONR-N00014-09-1-1063]; MCINN [FIS2009-12721-C04-01]; AGAUR; CONACYT [223807, 223824]; PSU; Center for Nanophase Materials Sciences (CNMS); Division of Scientific User Facilities, U.S. Department of Energy FX M.T. thanks JST-Japan for funding the Research Center for Exotic NanoCarbons, under the Japanese regional Innovation Strategy Program by the Excellence. M.T. is grateful to the Penn State Center for Nanoscale Science (MRSEC; NSF grant number DMR-0820404), for a seed grant on "Defect Engineering in Layered Materials". H.T. acknowledges support of CAPES, Brazil, through its Foreign Scientist Invited program. F.J.R.M., F.L.U., and E.M.S. acknowledge CONACYT (Mexico) grants CB-2008-SEP-107082, 60218-F1 and 48300 S-3907, respectively. X.J. and M.S.D. acknowledge the MURI grant ONR-N00014-09-1-1063. R.M.G. was supported by MCINN, project number FIS2009-12721-C04-01 and scholarship AGAUR "FI-DGR 2011". This work was supported by CONACYT Ph.D. scholarships 223807 (J.O.M.) and 223824 (M.L.G.B.), as well as financial research support from PSU. J.O.M. thanks complementary support from the Graduate Complementary Scholarship program (DGRI-SEP, Mexico). B.G.S. was supported by the Center for Nanophase Materials Sciences (CNMS), sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. NR 52 TC 11 Z9 11 U1 8 U2 127 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD AUG 12 PY 2013 VL 23 IS 30 BP 3755 EP 3762 DI 10.1002/adfm.201202947 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 258XB UT WOS:000327490900005 ER PT J AU Hus, SM Weitering, HH AF Hus, Saban M. Weitering, Hanno H. TI Formation of uni-directional ultrathin metallic YSi2 nanowires on Si(110) SO APPLIED PHYSICS LETTERS LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; SILICIDE NANOWIRES; SURFACE; SI(001); GROWTH AB Ultrathin YSi2 nanowires were grown epitaxially on the Si(110) surface. High-aspect-ratio nanowire growth is induced by the strongly anisotropic lattice-match between the silicide crystal lattice and the Si(110) surface, similar to the established formation of rare-earth silicide nanowires on Si(100). In contrast to the Si(100) case, however, YSi2 nanowires on Si(110) grow in a single orientation along the [1 (1) over bar0] direction and exhibit a clear preference of nucleating at step edges when these edges are aligned along the [1 (1) over bar0] growth direction. This suggests a promising avenue for the fabrication of regular nanowire arrays with controlled wire separation, by varying the miscut angle of the Si wafer. The nanowires are metallic and are embedded in a reconstructed Si(110)-(2 root 3 x root 3)R54.7 degrees-Y semiconducting surface layer. (C) 2013 AIP Publishing LLC. C1 [Hus, Saban M.; Weitering, Hanno H.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Weitering, Hanno H.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Hus, SM (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Hus, Saban/J-3318-2016 OI Hus, Saban/0000-0002-3410-9878 FU NSF [DMR-1005488]; Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy FX S.M.H. was supported by NSF Grant No. DMR-1005488. H. H. W. was supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy NR 19 TC 6 Z9 6 U1 2 U2 44 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 12 PY 2013 VL 103 IS 7 AR 073101 DI 10.1063/1.4817529 PG 3 WC Physics, Applied SC Physics GA 209OS UT WOS:000323769000062 ER PT J AU Li, DF Li, BL Luo, M Feng, CB Ouyang, T Gao, F AF Li, Dengfeng Li, Bolin Luo, Min Feng, Chunbao Ouyang, Tao Gao, Fei TI Thermal transport properties of rolled graphene nanoribbons SO APPLIED PHYSICS LETTERS LA English DT Article ID CARBON NANOTUBES; ELECTRONIC-PROPERTIES; CURVATURE; CONDUCTIVITY AB Using nonequilibrium Green's function method, we investigate the influence of the curvature and edge effects on the thermal transport during the process of rolling graphene nanoribbons (GNRs) into carbon nanotubes (CNTs) in the transverse direction. The curvature effect results in a slight decrease in the thermal conductance of GNRs, which is remarkably different from that in the longitudinal direction. The curvature and edge effects show a strong size and chirality dependence, while the curvature effect is more sensitive to the size. When the size equals to 12.8 nm (49.2 nm) with the zigzag (armchair) edge, the edge effect results in the reduction of thermal conductance of 2.4% (13.0%) as compared to the corresponding CNT, but the curvature effect vanishes. (C) 2013 AIP Publishing LLC. C1 [Li, Dengfeng; Li, Bolin; Luo, Min; Feng, Chunbao] Chongqing Univ Posts & Telecommun, Dept Math & Phys, Chongqing 400065, Peoples R China. [Ouyang, Tao] Xiangtan Univ, Lab Quantum Engn & Micronano Energy Technol, Xiangtan 411105, Hunan, Peoples R China. [Gao, Fei] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Li, DF (reprint author), Chongqing Univ Posts & Telecommun, Dept Math & Phys, Chongqing 400065, Peoples R China. EM phyldf@gmail.com; fei.gao@pnnl.gov FU Key Program of the Natural Science Foundation of Chongqing [cstc2012jjB50010] FX We acknowledge financial support from the Key Program of the Natural Science Foundation of Chongqing (cstc2012jjB50010). NR 48 TC 3 Z9 3 U1 5 U2 41 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 12 PY 2013 VL 103 IS 7 AR 071908 DI 10.1063/1.4818658 PG 4 WC Physics, Applied SC Physics GA 209OS UT WOS:000323769000023 ER PT J AU Ungaro, C Gray, SK Gupta, MC AF Ungaro, Craig Gray, Stephen K. Gupta, Mool C. TI Black tungsten for solar power generation SO APPLIED PHYSICS LETTERS LA English DT Article ID THERMOPHOTOVOLTAIC SYSTEMS; EFFICIENCY; DESIGN; LIMIT AB The viability of micro/nano textured tungsten as an efficient solar absorber is explored via computational electrodynamics simulations. Pseudo-random structures are investigated, along with the effects of protective oxide coatings. These structures show extremely high absorption across the solar spectrum along with relaxed requirements for manufacturing, allowing them to be applied for power generation. (C) 2013 AIP Publishing LLC. C1 [Ungaro, Craig; Gupta, Mool C.] Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22901 USA. [Gray, Stephen K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Ungaro, C (reprint author), Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22901 USA. EM mgupta@virginia.edu FU NASA; Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility [DE-AC02-06CH11357] FX We thank the NASA Langley Professor Program for their support of this project. This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract No. DE-AC02-06CH11357. NR 16 TC 8 Z9 8 U1 1 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 12 PY 2013 VL 103 IS 7 AR 071105 DI 10.1063/1.4818711 PG 3 WC Physics, Applied SC Physics GA 209OS UT WOS:000323769000005 ER PT J AU Zhu, PF Cao, J Zhu, Y Geck, J Hidaka, Y Pjerov, S Ritschel, T Berger, H Shen, Y Tobey, R Hill, JP Wang, XJ AF Zhu, Pengfei Cao, J. Zhu, Y. Geck, J. Hidaka, Y. Pjerov, S. Ritschel, T. Berger, H. Shen, Y. Tobey, R. Hill, J. P. Wang, X. J. TI Dynamic separation of electron excitation and lattice heating during the photoinduced melting of the periodic lattice distortion in 2H-TaSe2 SO APPLIED PHYSICS LETTERS LA English DT Article ID CHARGE-DENSITY WAVES; ATOMIC MOTIONS; DIFFRACTION; SCATTERING AB The photoinduced structural dynamics in 2H-TaSe2 in the charge-density wave (CDW) state is investigated using MeV ultrafast electron diffraction. By simultaneously tracking both the melting of the periodic lattice distortion (PLD) associated with the CDW and the lattice heating, following an impulsive photoexcitation, the separate contributions of electronic excitation and lattice thermalization to the melting process are disentangled in the time domain. Two distinct time-constants, reflecting the corresponding individual dynamics of the subsystems, are observed. Our experimental results demonstrate that the PLD in 2H-TaSe2 is first suppressed promptly by the electronic excitation and scattering, and then subsequently by lattice thermalization through electron-phonon interaction, on a much longer time scale. This latter leads to the final, full melting of the PLD. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Zhu, Pengfei; Zhu, Y.; Hidaka, Y.; Pjerov, S.; Shen, Y.; Tobey, R.; Hill, J. P.; Wang, X. J.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Zhu, Pengfei; Wang, X. J.] Shanghai Jiao Tong Univ, Key Lab Laser Plasmas, Minist Educ, Shanghai 200240, Peoples R China. [Zhu, Pengfei; Wang, X. J.] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China. [Cao, J.] Florida State Univ, Dept Phys, NHMFL, Tallahassee, FL 32310 USA. [Geck, J.; Ritschel, T.; Berger, H.] Leibniz Inst Solid State & Mat Res IFW Dresden, D-01069 Dresden, Germany. RP Zhu, PF (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM wangx@bnl.gov RI Zhu, Pengfei/O-1619-2015 FU U.S. Department of Energy [DEAC02-98CH1-886]; BNL Laboratory Directed Research and Development (LDRD) funds [2010-010, 2012-22]; Natural Science Foundation of China (NSFC) [11121504] FX The authors would like to thank C. C. Kao, J. Misewich, and J. B. Murphy for discussions and encouragement. The technical support by BNL Photon Science Directorate is gratefully acknowledged. This research was supported in part by the U.S. Department of Energy under Contract No: DEAC02-98CH1-886, BNL Laboratory Directed Research and Development (LDRD) funds 2010-010 and 2012-22, and Natural Science Foundation of China (NSFC) Grant No. 11121504. NR 30 TC 14 Z9 14 U1 5 U2 41 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 12 PY 2013 VL 103 IS 7 AR 071914 DI 10.1063/1.4818460 PG 5 WC Physics, Applied SC Physics GA 209OS UT WOS:000323769000029 ER PT J AU Demirkaya, A Frantzeskakis, DJ Kevrekidis, PG Saxena, A Stefanov, A AF Demirkaya, A. Frantzeskakis, D. J. Kevrekidis, P. G. Saxena, A. Stefanov, A. TI Effects of parity-time symmetry in nonlinear Klein-Gordon models and their stationary kinks SO PHYSICAL REVIEW E LA English DT Article ID NON-HERMITIAN HAMILTONIANS; SOLITONS; DYNAMICS; STABILITY; DISCRETE; COUPLERS; LATTICES; SYSTEM AB In this work, we introduce some basic principles of PT-symmetric Klein-Gordon nonlinear field theories. By formulating a particular antisymmetric gain and loss profile, we illustrate that the stationary states of the model do not change. However, the stability critically depends on the gain and loss profile. For a symmetrically placed solitary wave (in either the continuum model or a discrete analog of the nonlinear Klein-Gordon type), there is no effect on the steady state spectrum. However, for asymmetrically placed solutions, there exists a measurable effect of which a perturbative mathematical characterization is offered. It is generally found that asymmetry towards the lossy side leads towards stability, while towards the gain side produces instability. Furthermore, a host of finite size effects, which disappear in the infinite domain limit, are illustrated in connection to the continuous spectrum of the problem. C1 [Demirkaya, A.] Univ Hartford, Dept Math, Hartford, CT 06112 USA. [Frantzeskakis, D. J.] Univ Athens, Dept Phys, Athens 15784, Greece. [Kevrekidis, P. G.] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. [Saxena, A.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Saxena, A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Stefanov, A.] Univ Kansas, Dept Math, Lawrence, KS 66045 USA. RP Demirkaya, A (reprint author), Univ Hartford, Dept Math, 200 Bloomeld Ave, Hartford, CT 06112 USA. RI Stefanov, Atanas/H-4242-2012 FU Special Account for Research Grants of the University of Athens; US Department of Energy; US AFOSR [FA9550-12-1-0332]; Alexander von Humboldt Foundation; Binational Science Foundation [2010239]; [NSF-DMS-0806762]; [NSF-CMMI-1000337] FX The work of D.J.F. was partially supported by the Special Account for Research Grants of the University of Athens. A. Saxena is supported by the US Department of Energy. P.G.K. is supported by Grants No. NSF-DMS-0806762 and No. NSF-CMMI-1000337, as well as by the US AFOSR under Grant No. FA9550-12-1-0332, the Alexander von Humboldt Foundation, and the Binational Science Foundation (Grant No. 2010239). NR 47 TC 9 Z9 10 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD AUG 12 PY 2013 VL 88 IS 2 AR 023203 DI 10.1103/PhysRevE.88.023203 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 199ZU UT WOS:000323035900021 PM 24032958 ER PT J AU Hu, YJ Knope, KE Skanthakumar, S Soderholm, L AF Hu, Yung-Jin Knope, Karah E. Skanthakumar, S. Soderholm, L. TI Understanding the Ligand-Directed Assembly of a Hexanuclear Th-IV Molecular Cluster in Aqueous Solution SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Article DE Hexamers; Nanoparticles; Actinides; Cluster compounds; X-ray scattering ID CRYSTAL-STRUCTURE; AQUA ION; CORE; HYDROLYSIS; CHEMISTRY; PRODUCTS; SULFATES; THORIUM AB The electrochemical hydrolysis of thorium(IV) was monitored by a combination of high-energy X-ray scattering (HEXS) and NMR spectroscopy. Once formed, (2)-dihydroxo-bridged dimers remain stable in solutions of moderate pH until glycine is added, upon which the dimers rapidly condense to form hexanuclear clusters [Th-6((3)-O)(4)((3)-OH)(4)](12+). In the absence of the dimers or glycine, the clusters do not form even if the solutions are stored over extended times. C1 [Hu, Yung-Jin; Knope, Karah E.; Skanthakumar, S.; Soderholm, L.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Soderholm, L (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ls@anl.gov FU U. S. Department of Energy, Office of Basic Energy Sciences (DOE/OBES), Chemical Sciences, Geosciences and Biosciences [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Basic Energy Sciences (DOE/OBES), Materials Sciences [DE-AC02-06CH11357] FX We thank Dr. John Munteen for his assistance with running the 17O NMR spectroscopic experiments. This work was supported by the U. S. Department of Energy, Office of Basic Energy Sciences (DOE/OBES), Chemical Sciences, Geosciences and Biosciences, under contract number DE-AC02-06CH11357. High-energy X-ray scattering (HEXS) data was measured at the Advanced Photon Source, supported by the U.S. Department of Energy, Office of Basic Energy Sciences (DOE/OBES), Materials Sciences under the same contract number. NR 32 TC 17 Z9 17 U1 3 U2 41 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1434-1948 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD AUG 12 PY 2013 VL 2013 IS 24 BP 4159 EP 4163 DI 10.1002/ejic.201300805 PG 5 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 198XM UT WOS:000322957200011 ER PT J AU Driben, R Yulin, AV Efimov, A Malomed, BA AF Driben, R. Yulin, A. V. Efimov, A. Malomed, B. A. TI Trapping of light in solitonic cavities and its role in the supercontinuum generation SO OPTICS EXPRESS LA English DT Article ID PHOTONIC-CRYSTAL FIBERS; DISPERSIVE WAVES; ADVANCED-STAGE AB We demonstrate that the fission of higher-order N-solitons with a subsequent ejection of fundamental quasi-solitons creates cavities formed by a pair of solitary waves with dispersive light trapped between them. As a result of multiple reflections of the trapped light from the bounding solitons which act as mirrors, they bend their trajectories and collide. In the spectral domain, the two solitons receive blue and red wavelength shifts, and the spectrum of the trapped light alters as well. This phenomenon strongly affects spectral characteristics of the generated supercontinuum. Consideration of the system's parameters which affect the creation of the cavity reveals possibilities of predicting and controlling soliton-soliton collisions induced by multiple reflections of the trapped light. (c) 2013 Optical Society of America C1 [Driben, R.] Univ Paderborn, Dept Phys, D-33098 Paderborn, Germany. [Driben, R.] Univ Paderborn, CeOPP, D-33098 Paderborn, Germany. [Driben, R.; Malomed, B. A.] Tel Aviv Univ, Fac Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel. [Yulin, A. V.] Univ Lisbon, Ctr Fis Teor & Computac, P-1649003 Lisbon, Portugal. [Efimov, A.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol Mat Phys & Applicat, Los Alamos, NM 87544 USA. RP Driben, R (reprint author), Univ Paderborn, Dept Phys, Warburger Str 100, D-33098 Paderborn, Germany. EM driben@post.tau.ac.il RI Yulin, Alexey/M-9613-2013; Yulin, Alexey/B-6139-2015; OI Yulin, Alexey/0000-0002-0739-0764; Yulin, Alexey/0000-0002-2403-6564; Efimov, Anatoly/0000-0002-5559-4147 FU Binational (US-Israel) Science Foundation [2010239]; FCT grant [PTDC/FIS/112624/2009, PEst-OE/FIS/UI0618/2011] FX The work of R.D. and B.A.M. was partly supported by the Binational (US-Israel) Science Foundation through grant No. 2010239. The work of AVY was supported by the FCT grant PTDC/FIS/112624/2009 and PEst-OE/FIS/UI0618/2011. NR 30 TC 22 Z9 22 U1 0 U2 11 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD AUG 12 PY 2013 VL 21 IS 16 BP 19091 EP 19096 DI 10.1364/OE.21.019091 PG 6 WC Optics SC Optics GA 200EF UT WOS:000323049900047 PM 23938823 ER PT J AU Shah, RA Scherer, NF Pelton, M Gray, SK AF Shah, Raman A. Scherer, Norbert F. Pelton, Matthew Gray, Stephen K. TI Ultrafast reversal of a Fano resonance in a plasmon-exciton system SO PHYSICAL REVIEW B LA English DT Article ID SINGLE QUANTUM-DOT; PHASE-SHIFTS AB When a two-level quantum dot and a plasmonic metal nanoantenna are resonantly coupled by the electromagnetic near-field, the system can exhibit a Fano resonance, resulting in a transparency dip in the optical spectrum of the coupled system. We calculate the nonlinear response of such a system, for illumination both by continuous-wave and ultrafast pulsed lasers, using both a cavity quantum electrodynamics and a semiclassical coupled-oscillator model. For the experimentally relevant case of thermal broadening of the quantum-dot transition (to meV values consistent with similar to 100 K), we predict that femtosecond pulsed illumination can lead to a reversal of the Fano resonance, with the induced transparency changing into a superscattering spike in the spectrum. This ultrafast reversal is due to a transient change in the phase relationship between the dipoles of the plasmon and exciton. It thus represents a new approach to dynamically control the collective optical properties and coherence of coupled nanoparticle systems. C1 [Shah, Raman A.; Scherer, Norbert F.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Shah, Raman A.; Scherer, Norbert F.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Pelton, Matthew; Gray, Stephen K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Shah, RA (reprint author), Univ Chicago, Dept Chem, 929 East 57th St, Chicago, IL 60637 USA. EM gray@anl.gov RI Shah, Raman/J-5837-2013; Pelton, Matthew/H-7482-2013; OI Pelton, Matthew/0000-0002-6370-8765; Shah, Raman/0000-0001-6384-9915 FU National Science Foundation [CHE-1059057]; National Science Foundation Graduate Research Fellowship; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank Dr. Lina Cao for helpful conversations. This research was funded by the National Science Foundation (CHE-1059057). R.A.S. was supported by a National Science Foundation Graduate Research Fellowship. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 40 TC 17 Z9 17 U1 2 U2 72 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD AUG 12 PY 2013 VL 88 IS 7 AR 075411 DI 10.1103/PhysRevB.88.075411 PG 7 WC Physics, Condensed Matter SC Physics GA 199YV UT WOS:000323032700007 ER PT J AU Tang, AH Wang, G AF Tang, A. H. Wang, G. TI Effects of the detection efficiency on multiplicity distributions SO PHYSICAL REVIEW C LA English DT Article ID QUARK-GLUON PLASMA; BEAM ENERGY; COLLISIONS; COLLABORATION; PERSPECTIVE; STAR AB In this paper we investigate how a finite detection efficiency affects three popular multiplicity distributions, namely, the Poisson, the binomial, and the negative binomial distributions. We found that a multiplicity-independent detection efficiency does not change the characteristic of a distribution, while a multiplicity-dependent detection efficiency does. We layout a procedure to study the deviation of moments and their derivative quantities from the baseline distribution due to a multiplicity-dependent detection efficiency. C1 [Tang, A. H.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Wang, G.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. RP Tang, AH (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. FU US Department of Energy [DE-AC02-98CH10886, DE-FG02-89ER40531, DE-FG02-88ER40424] FX The work for the case of a multiplicity-dependent detection efficiency was stimulated by a discussion with J. Dunlop, P. Sorensen, and H. Wang. We thank A. Bzdak and V. Koch for a fruitful discussion. A.T. was supported by the US Department of Energy under Grants No. DE-AC02-98CH10886 and No. DE-FG02-89ER40531. G.W. was supported by the US Department of Energy under Grant No. DE-FG02-88ER40424. NR 19 TC 3 Z9 3 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD AUG 12 PY 2013 VL 88 IS 2 AR 024905 DI 10.1103/PhysRevC.88.024905 PG 3 WC Physics, Nuclear SC Physics GA 199ZE UT WOS:000323034000004 ER PT J AU Kidwai, AS Mushamiri, I Niemann, GS Brown, RN Adkins, JN Heffron, F AF Kidwai, Afshan S. Mushamiri, Ivy Niemann, George S. Brown, Roslyn N. Adkins, Joshua N. Heffron, Fred TI Diverse Secreted Effectors Are Required for Salmonella Persistence in a Mouse Infection Model SO PLOS ONE LA English DT Article ID ENTERICA SEROVAR TYPHIMURIUM; BACTERIAL VIRULENCE GENES; III SECRETION; HOST-CELLS; PATHOGENICITY ISLAND-2; TRANSLOCATED EFFECTORS; ACTIN CYTOSKELETON; CONTAINING VACUOLE; EUKARYOTIC CELLS; EPITHELIAL-CELLS AB Salmonella enterica serovar Typhimurium causes typhoid-like disease in mice and is a model of typhoid fever in humans. One of the hallmarks of typhoid is persistence, the ability of the bacteria to survive in the host weeks after infection. Virulence factors called effectors facilitate this process by direct transfer to the cytoplasm of infected cells thereby subverting cellular processes. Secretion of effectors to the cell cytoplasm takes place through multiple routes, including two separate type III secretion (T3SS) apparati as well as outer membrane vesicles. The two T3SS are encoded on separate pathogenicity islands, SPI-1 and -2, with SPI-1 more strongly associated with the intestinal phase of infection, and SPI-2 with the systemic phase. Both T3SS are required for persistence, but the effectors required have not been systematically evaluated. In this study, mutations in 48 described effectors were tested for persistence. We replaced each effector with a specific DNA barcode sequence by allelic exchange and co-infected with a wild-type reference to calculate the ratio of wildtype parent to mutant at different times after infection. The competitive index (CI) was determined by quantitative PCR in which primers that correspond to the barcode were used for amplification. Mutations in all but seven effectors reduced persistence demonstrating that most effectors were required. One exception was CigR, a recently discovered effector that is widely conserved throughout enteric bacteria. Deletion of cigR increased lethality, suggesting that it may be an anti-virulence factor. The fact that almost all Salmonella effectors are required for persistence argues against redundant functions. This is different from effector repertoires in other intracellular pathogens such as Legionella. C1 [Kidwai, Afshan S.; Mushamiri, Ivy; Niemann, George S.; Heffron, Fred] Oregon Hlth & Sci Univ, Dept Mol Microbiol & Immunol, Portland, OR 97201 USA. [Brown, Roslyn N.] Washington State Univ, Ctr Bioprod & Bioenergy, Richland, WA USA. [Adkins, Joshua N.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Heffron, F (reprint author), Oregon Hlth & Sci Univ, Dept Mol Microbiol & Immunol, Portland, OR 97201 USA. EM heffronf@ohsu.edu OI Adkins, Joshua/0000-0003-0399-0700 FU [RO1 AI 022933]; [UO1 GM 094623] FX Funding for this work was provided by RO1 AI 022933 and UO1 GM 094623 (PSI Biology of secreted effectors). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 84 TC 6 Z9 7 U1 0 U2 15 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD AUG 12 PY 2013 VL 8 IS 8 AR e70753 DI 10.1371/journal.pone.0070753 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 200UV UT WOS:000323097300047 PM 23950998 ER PT J AU Dawson, JF Cooper, F Chien, CC Mihaila, B AF Dawson, John F. Cooper, Fred Chien, Chih-Chun Mihaila, Bogdan TI Leading-order auxiliary-field theory of the Bose-Hubbard model SO PHYSICAL REVIEW A LA English DT Article ID EINSTEIN CONDENSATE; PHASE-DIAGRAM; TRANSITION; SUPERFLUID; GAS; TEMPERATURE; INSULATOR; DYNAMICS AB We discuss the phase diagram of the Bose-Hubbard (BH) model in the leading-order auxiliary field (LOAF) theory. LOAF is a conserving nonperturbative approximation that treats on equal footing the normal and anomalous density condensates. The mean-field solutions in LOAF correspond to first-order and second-order phase transition solutions with two critical temperatures corresponding to a vanishing Bose-Einstein condensate T-c and a vanishing diatom condensate T-star. The second-order phase transition solution predicts the correct order of the transition in continuum Bose gases. For either solution, the superfluid state is tied to the presence of the diatom condensate related to the anomalous density in the system. In ultracold Bose atomic gases confined on a three-dimensional lattice, the critical temperature T-c exhibits a quantum phase transition, where T-c goes to zero at a finite coupling. The BH phase diagram in LOAF features a line of first-order transitions ending in a critical point beyond which the transition is second order while approaching the quantum phase transition. We identify a region where a diatom condensate is expected for temperatures higher than T-c and less than T-0, the critical temperature of the noninteracting system. The LOAF phase diagram for the BH model compares qualitatively well with existing experimental data and results of ab initio Monte Carlo simulations. C1 [Dawson, John F.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Cooper, Fred] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Cooper, Fred] Santa Fe Inst, Santa Fe, NM 87501 USA. [Chien, Chih-Chun; Mihaila, Bogdan] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Mihaila, Bogdan] Natl Sci Fdn, Arlington, VA 22230 USA. RP Dawson, JF (reprint author), Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. EM john.dawson@unh.edu; fcooper@fas.harvard.edu; chihchun@lanl.gov; bmihaila@nsf.gov RI Mihaila, Bogdan/D-8795-2013 OI Mihaila, Bogdan/0000-0002-1489-8814 FU National Science Foundation; US Department of Energy FX This work was performed in part under the auspices of the National Science Foundation and the US Department of Energy. NR 36 TC 3 Z9 3 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD AUG 12 PY 2013 VL 88 IS 2 AR 023607 DI 10.1103/PhysRevA.88.023607 PG 10 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 199YI UT WOS:000323031400011 ER PT J AU Hodovanets, H Bud'ko, SL Lin, X Taufour, V Kim, MG Pratt, DK Kreyssig, A Canfield, PC AF Hodovanets, H. Bud'ko, S. L. Lin, X. Taufour, V. Kim, M. G. Pratt, D. K. Kreyssig, A. Canfield, P. C. TI Anisotropic transport and magnetic properties and magnetic-field tuned states of CeZn11 single crystals SO PHYSICAL REVIEW B LA English DT Article ID LOW-TEMPERATURE PROPERTIES; THERMOPOWER; SYSTEM; HEAT; ZINC; ELECTRON; METALS; ZN AB We present detailed temperature- and field-dependent data obtained from magnetization, resistivity, heat capacity, Hall resistivity and thermoelectric power measurements performed on single crystals of CeZn11. The compound orders antiferromagnetically at similar to 2 K. The zero-field resistivity and thermoelectric power data show features characteristic of a Ce-based intermetallic with crystal-electric-field splitting and possible Kondo lattice effects. We constructed the T-H phase diagram for the magnetic field applied along the easy [110] direction, which shows that the magnetic field required to suppress T-N below 0.4 K is in the range of 45-47.5 kOe. A linear behavior of the rho(T) data, H parallel to [110], was observed only for H = 45 kOe for 0.46 K <= T <= 1.96 K followed by the Landau-Fermi-liquid regime for a limited range of fields 47.5 kOe <= H <= 60 kOe. From the analysis of our data, it appears that CeZn11 is a local moment compound with little or no electronic correlations arising from the Ce 4f shell. The thermoelectric and transport properties of CeZn11 are mostly governed by the crystal-electric-field effects. Given the very high quality of our single crystals, quantum oscillations are found for both CeZn11 and its nonmagnetic analog LaZn11. C1 [Hodovanets, H.; Bud'ko, S. L.; Kim, M. G.; Pratt, D. K.; Kreyssig, A.; Canfield, P. C.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Hodovanets, H.; Bud'ko, S. L.; Lin, X.; Taufour, V.; Kim, M. G.; Pratt, D. K.; Kreyssig, A.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Hodovanets, H (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. RI Kim, Min Gyu/B-8637-2012; Canfield, Paul/H-2698-2014 OI Kim, Min Gyu/0000-0001-7676-454X; FU Ames Laboratory, US DOE [E-AC02-07CH111358]; US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; AFOSR-MURI [FA9550-09-1-0603] FX The authors would like to thank A. I. Goldman, A. Jesche, H. Kim, and T. Kong for insightful discussions. This work was done at Ames Laboratory, US DOE, under Contract No. DE-AC02-07CH111358. This work was supported by the US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. X. Lin and V. Taufour are supported by AFOSR-MURI Grant No. FA9550-09-1-0603. NR 43 TC 6 Z9 6 U1 4 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 12 PY 2013 VL 88 IS 5 AR 054410 DI 10.1103/PhysRevB.88.054410 PG 15 WC Physics, Condensed Matter SC Physics GA 199YN UT WOS:000323031900005 ER PT J AU Prokop, CR Piot, P Carlsten, BE Church, M AF Prokop, C. R. Piot, P. Carlsten, B. E. Church, M. TI Beam dynamics performances and applications of a low-energy electron-beam magnetic bunch compressor SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Photoinjector; Linear accelerator; Electron beam; Magnetic bunch compressor; Space charge; Coherent synchrotron radiation ID ACCELERATORS; SIMULATION AB Many front-end applications of electron linear accelerators rely on the production of temporally compressed bunches. The shortening of electron bunches is often realized with magnetic bunch compressors located in high-energy sections of accelerators. Magnetic compression is subject to collective effects including space charge and self interaction via coherent synchrotron radiation. In this paper we explore the application of magnetic compression to low-energy (similar to 40 MeV), high-charge (nC) electron bunches with low normalized transverse emittances ( < 5 mu m). (C) 2013 Elsevier B.V. All rights reserved. C1 [Prokop, C. R.; Piot, P.] No Illinois Univ, Northern Illinois Ctr Accelerator & Detector Dev, De Kalb, IL 60115 USA. [Prokop, C. R.; Piot, P.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Piot, P.] Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, Batavia, IL 60510 USA. [Carlsten, B. E.] Los Alamos Natl Lab, Accelerat Operat & Technol Div, Los Alamos, NM 87545 USA. [Church, M.] Fermilab Natl Accelerator Lab, Accelerator Div, Batavia, IL 60510 USA. RP Prokop, CR (reprint author), No Illinois Univ, Northern Illinois Ctr Accelerator & Detector Dev, De Kalb, IL 60115 USA. EM cprokop@gmail.com OI Carlsten, Bruce/0000-0001-5619-907X FU LANL Laboratory Directed Research and Development (LDRD) program [20110067DR]; U.S. Department of Energy [DE-FG02-08ER41532]; Northern Illinois University; Fermi Research Alliance, LLC. [DE-AC02-07CH11359] FX This work was supported by LANL Laboratory Directed Research and Development (LDRD) program, project 20110067DR and by the U.S. Department of Energy under Contract no. DE-FG02-08ER41532 with Northern Illinois University and Contract no. DE-AC02-07CH11359 the Fermi Research Alliance, LLC. NR 40 TC 8 Z9 8 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 11 PY 2013 VL 719 BP 17 EP 28 DI 10.1016/j.nima.2013.03.068 PG 12 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 166YM UT WOS:000320597100004 ER PT J AU Caspi, S Arbelaez, D Brouwer, L Dietderich, DR Felice, H Hafalia, R Prestemon, S Robin, D Sun, C Wan, W AF Caspi, S. Arbelaez, D. Brouwer, L. Dietderich, D. R. Felice, H. Hafalia, R. Prestemon, S. Robin, D. Sun, C. Wan, W. TI A superconducting magnet mandrel with minimum symmetry laminations for proton therapy SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Curved dipole magnet; Superconducting; Gantry; Hadron therapy; Canted cosine-theta ID DIPOLE; DESIGN; GANTRY AB The size and weight of ion-beam cancer therapy gantries are frequently determined by a large aperture, curved, ninety degree, dipole magnet. The higher fields achievable with superconducting technology promise to greatly reduce the size and weight of this magnet and therefore also the gantry as a whole. This paper reports advances in the design of winding mandrels for curved, canted cosine-theta (CCT) magnets in the context of a preliminary magnet design for a proton gantry. The winding mandrel is integral to the CCT design and significantly affects the construction cost, stress management, winding feasibility, eddy current power losses, and field quality of the magnet. A laminated mandrel design using a minimum symmetry in the winding path is introduced and its feasibility demonstrated by a rapid prototype model. Piecewise construction of the mandrel using this laminated approach allows for increased manufacturing techniques and material choices. Sectioning the mandrel also reduces eddy currents produced during field changes accommodating the scan of beam energies during treatment. This symmetry concept can also greatly reduce the computational resources needed for 3D finite element calculations. It is shown that the small region of symmetry forming the laminations combined with periodic boundary conditions can model the entire magnet geometry disregarding the ends. (C) 2013 Elsevier B.V. All rights reserved. C1 [Caspi, S.; Arbelaez, D.; Brouwer, L.; Dietderich, D. R.; Felice, H.; Hafalia, R.; Prestemon, S.; Robin, D.; Sun, C.; Wan, W.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Brouwer, L.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Brouwer, L (reprint author), 1 Cyclotron Rd,M-S 46-161, Berkeley, CA 94720 USA. EM s_caspi@lbl.gov; lnbrouwer@lbl.gov FU Office of Science, Office of Energy Research, Office of High Energy and Nuclear Physics, High Energy Physics Division, US Department of Energy [DE-AC02-05CH11231]; National Science Foundation [DGE 1106400]; LDRD FX This work was supported by the Director, Office of Science, Office of Energy Research, Office of High Energy and Nuclear Physics, High Energy Physics Division, US Department of Energy, under Contract no. DE-AC02-05CH11231, and the National Science Foundation under Grant no. DGE 1106400. The authors greatly appreciate the interest and enthusiastic support of Andrew Sessler and are thankful for funding received within our laboratory through LDRD. NR 16 TC 8 Z9 8 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 11 PY 2013 VL 719 BP 44 EP 49 DI 10.1016/j.nima.2013.04.021 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 166YM UT WOS:000320597100007 ER PT J AU Hauck, DK Croft, S Evans, LG Favalli, A Santi, PA Dowell, J AF Hauck, Danielle K. Croft, Stephen Evans, Louise G. Favalli, Andrea Santi, Peter A. Dowell, Jonathan TI Study of a theoretical model for the measured gate moments resulting from correlated detection events and an extending dead time SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Dead time; Correlated events; Neutron multiplicity counting; Coincidence counting; Fissile material assay; Non-destructive assay ID PASSIVE NEUTRON ASSAY; COUNTERS AB Neutron emissions from fissioning nuclear material are temporally correlated. The detection of these correlated neutrons is frequently used to quantify plutonium (Pu) and other fissile materials for international nuclear safeguards and related activities. However, detector dead time affects the observed rates of correlated neutrons in a non-trivial manner, and must be accounted for to obtain accurate results. A major simplification made in the most widely used dead time corrections is that the neutron detections are occurring randomly in time. A few previous attempts at providing a dead time model for correlated neutrons have been limited in scope, have made simplifying assumptions early in the derivation, and have, in general, not been implemented in the broader safeguards community. This paper provides an exact dead time model for correlated neutron detections in a single channel system assuming an updating dead time, and therefore a paralyzable system. This dead time model includes the assumption that a single exponential, with one characteristic decay constant, can describe the system neutron die-away profile. An exact model for the effects of dead time on measured gate moments is derived which is extendable to an arbitrary order of neutron correlation. This dead time model predicts the measured gate moments based on the dead time and underlying detection rates, including the effects from detection rates with an arbitrarily high order of correlation. The effects of dead time on the apparent singles, doubles, triples and quadruples rates using either event triggered, random or mixed gate structure is also derived. Either the equations for the measured gate moments or the apparent multiplicity rates can be numerically inverted to find the dead time corrected multiplicity rates. Although the model has been explicitly solved for rates up to and including quadruples, it is directly extendable to any order of correlation. This model is presented from the perspective of neutron counting. However, the model is mathematically applicable to any series of events which are temporally correlated through an exponential probability distribution and which are subject to a dead time-like filter. Published by Elsevier B.V. C1 [Hauck, Danielle K.; Favalli, Andrea; Santi, Peter A.; Dowell, Jonathan] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Croft, Stephen; Evans, Louise G.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Hauck, DK (reprint author), Los Alamos Natl Lab, MS E540,POB 1663, Los Alamos, NM 87545 USA. EM hauck@lanl.gov NR 19 TC 2 Z9 2 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 11 PY 2013 VL 719 BP 57 EP 69 DI 10.1016/j.nima.2013.03.063 PG 13 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 166YM UT WOS:000320597100009 ER PT J AU Mkrtchyan, H Carlini, R Tadevosyan, V Arrington, J Asaturyan, A Christy, ME Dutta, D Ent, R Fenker, HC Gaskell, D Horn, T Jones, MK Keppel, CE Mack, DJ Malace, SP Mkrtchyan, A Niculescu, MI Seely, J Tvaskis, V Wood, SA Zhamkochyan, S AF Mkrtchyan, H. Carlini, R. Tadevosyan, V. Arrington, J. Asaturyan, A. Christy, M. E. Dutta, D. Ent, R. Fenker, H. C. Gaskell, D. Horn, T. Jones, M. K. Keppel, C. E. Mack, D. J. Malace, S. P. Mkrtchyan, A. Niculescu, M. I. Seely, J. Tvaskis, V. Wood, S. A. Zhamkochyan, S. TI The lead-glass electromagnetic calorimeters for the magnetic spectrometers in Hall C at Jefferson Lab SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Electromagnetic calorimeter; Pion/electron separation; Electron detection efficiency; Pion suppression factor; Lead glass; Photomultiplier ID PERFORMANCE; COUNTERS AB The electromagnetic calorimeters of the various magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing High Momentum Spectrometer (HMS) and Short Orbit Spectrometer (SOS), design considerations, relevant construction information, and comparisons of simulated and experimental results are included. The energy resolution of the HMS and SOS calorimeters is better than sigma-/E similar to 6%/root a. and pion/electron (pi/e) separation of about 100:1 has been achieved in the energy range of 1-5 GeV. Good agreement has been observed between the experimental and simulated energy resolutions, but simulations systematically exceed experimentally determined pi(-) suppression factors by close to a factor of two. For the Super High Momentum Spectrometer (SHMS), presently under construction, details on the design and accompanying GEANT4 simulation efforts are given. The anticipated performance of the new calorimeter is predicted over the full momentum range of the SHMS. Good electron/hadron separation is anticipated by combining the energy deposited in an initial (preshower) calorimeter layer with the total energy deposited in the calorimeter. (C) 2013 Elsevier B.V. All rights reserved. C1 [Mkrtchyan, H.; Tadevosyan, V.; Asaturyan, A.; Mkrtchyan, A.; Zhamkochyan, S.] Yerevan Phys Inst, AI Alikhanyan Natl Sci Lab, Yerevan 0036, Armenia. [Carlini, R.; Ent, R.; Fenker, H. C.; Gaskell, D.; Jones, M. K.; Mack, D. J.; Wood, S. A.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Arrington, J.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Christy, M. E.; Keppel, C. E.; Tvaskis, V.] Hampton Univ, Hampton, VA 23668 USA. [Dutta, D.; Malace, S. P.] Triangle Univ Nucl Lab, Durham, NC 27708 USA. [Dutta, D.; Malace, S. P.] Duke Univ, Durham, NC 27708 USA. [Horn, T.] Catholic Univ Amer, Washington, DC 20064 USA. [Niculescu, M. I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Seely, J.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. RP Tadevosyan, V (reprint author), Yerevan Phys Inst, AI Alikhanyan Natl Sci Lab, Yerevan 0036, Armenia. EM tadevosn@jlab.org RI Arrington, John/D-1116-2012 OI Arrington, John/0000-0002-0702-1328 FU ANL [DE-AC02-06CH11327]; U.S. Department of Energy under Jefferson Science Associates, LLC [DEAC05-84ER40150, DE-AC05-060R23177] FX This work was supported in part by ANL grant DE-AC02-06CH11327, and by U.S. Department of Energy contracts DEAC05-84ER40150 and DE-AC05-060R23177 under which Jefferson Science Associates, LLC, operates the Thomas Jefferson National Accelerator Facility. NR 50 TC 3 Z9 3 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 11 PY 2013 VL 719 BP 85 EP 100 DI 10.1016/j.nima.2013.03.070 PG 16 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 166YM UT WOS:000320597100012 ER PT J AU Segoli, M De Gryze, S Dou, F Lee, J Post, WM Denef, K Six, J AF Segoli, M. De Gryze, S. Dou, F. Lee, J. Post, W. M. Denef, K. Six, J. TI AggModel: A soil organic matter model with measurable pools for use in incubation studies SO ECOLOGICAL MODELLING LA English DT Article DE Macroaggregates; Measurable SOM pools; Microaggregates; Soil aggregates; SOM turnover ID NATIVE GRASSLAND SOILS; AGGREGATE STABILITY; MACROAGGREGATE DYNAMICS; CARBON POOLS; NO-TILLAGE; NITROGEN DISTRIBUTION; RESIDUE LOCATION; TURNOVER; DECOMPOSITION; PARTICULATE AB Current soil organic matter (SOM) models are empirical in nature by employing few conceptual SOM pools that have a specific turnover time, but that are not measurable and have no direct relationship with soil structural properties. Most soil particles are held together in aggregates and the number, size and stability of these aggregates significantly affect the size and amount of organic matter contained in these aggregates, and its susceptibility to decomposition. While it has been shown that soil aggregates and their dynamics can be measured directly in the laboratory and in the field, the impact of soil aggregate dynamics on SOM decomposition has not been explicitly incorporated in ecosystem models. Here, we present AggModel, a conceptual and simulation model that integrates soil aggregate and SOM dynamics. In AggModel, we consider unaggregated and microaggregated soil that can exist within or external to macroaggregated soil. Each of the four aggregate size classes contains particulate organic matter and mineral-associated organic matter fractions. We used published data from laboratory incubations to calibrate and validate the biological and environmental effects on the rate of formation and breakdown of macroaggregates and microaggregates, and the organic matter dynamics within these different aggregate fractions. After calibration, AggModel explained more than 60% of the variation in aggregate masses and over 70% of the variation in aggregate-associated carbon. The model estimated the turnover time of macroaggregates as 31 and 181 days for microaggregates. Sensitivity analysis of AggModel parameterization supported the notion that macroaggregate turnover rate has a strong control over microaggregate masses and, hence, carbon sequestration. In conclusion, AggModel successfully incorporates the explicit representation for the turnover of soil aggregates and their influence on SOM dynamics and can form the basis for new SOM modules within existing ecosystem models. (C) 2013 Elsevier B.V. All rights reserved. C1 [Segoli, M.; De Gryze, S.; Dou, F.; Lee, J.; Six, J.] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA. [Segoli, M.] CSIRO Ecosyst Sci, Pmb Aitkenvale, Qld 4814, Australia. [De Gryze, S.] Terra Global Capital, San Francisco, CA 94114 USA. [Post, W. M.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Post, W. M.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. [Denef, K.] Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA. RP Segoli, M (reprint author), CSIRO Ecosyst Sci, Pmb Aitkenvale, Qld 4814, Australia. EM moran.segoli@csiro.au RI Segoli, Moran/I-6624-2012; OI Segoli, Moran/0000-0002-9839-9843; , Juhwan/0000-0002-7967-2955 FU Carbon Sequestration in Terrestrial Ecosystems (CSiTE); U.S. Department of Energy FX This research is funded through a subcontract from the Carbon Sequestration in Terrestrial Ecosystems (CSiTE). The CSiTE is funded by the U.S. Department of Energy. NR 60 TC 12 Z9 12 U1 12 U2 85 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3800 J9 ECOL MODEL JI Ecol. Model. PD AUG 10 PY 2013 VL 263 BP 1 EP 9 DI 10.1016/j.ecolmodel.2013.04.010 PG 9 WC Ecology SC Environmental Sciences & Ecology GA 197NJ UT WOS:000322857600001 ER PT J AU Muratov, AL Gnedin, OY Gnedin, NY Zemp, M AF Muratov, Alexander L. Gnedin, Oleg Y. Gnedin, Nickolay Y. Zemp, Marcel TI REVISITING THE FIRST GALAXIES: THE EPOCH OF POPULATION III STARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: theory; galaxies: evolution; galaxies: formation; methods: numerical; stars: formation ID INITIAL MASS FUNCTION; PAIR-INSTABILITY SUPERNOVAE; WEBB-SPACE-TELESCOPE; COSMOLOGICAL SIMULATIONS; PRIMORDIAL GAS; STELLAR POPULATIONS; CHEMICAL ENRICHMENT; COSMIC-RAYS; UNIVERSE; FRAGMENTATION AB We investigate the transition from primordial Population III (Pop III) star formation to normal Pop II star formation in the first galaxies using new cosmological hydrodynamic simulations. We find that while the first stars seed their host galaxies with metals, they cannot sustain significant outflows to enrich the intergalactic medium, even assuming a top-heavy initial mass function. This means that Pop III star formation could potentially continue until z approximate to 6 in different unenriched regions of the universe, before being ultimately shut off by cosmic reionization. Within an individual galaxy, the metal production and stellar feedback from Pop II stars overtake Pop III stars in 20-200 Myr, depending on galaxy mass. C1 [Muratov, Alexander L.; Gnedin, Oleg Y.; Zemp, Marcel] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Gnedin, Nickolay Y.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Gnedin, Nickolay Y.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Gnedin, Nickolay Y.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Gnedin, Nickolay Y.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Zemp, Marcel] Peking Univ, Kavli Inst Astron & Astrophys, Beijing 100871, Peoples R China. RP Muratov, AL (reprint author), Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. EM muratov@umich.edu OI Zemp, Marcel/0000-0002-0498-3812; Gnedin, Oleg/0000-0001-9852-9954 FU Rackham pre-Doctoral Fellowship; University of Michigan; NSF [AST-0708087, AST-0708154]; NASA [NNX12AG44G]; DOE at Fermilab; Peking University FX We thank the anonymous referee for useful comments which helped to improve the quality of this work. A. L. M. acknowledges the support of the Rackham pre-Doctoral Fellowship awarded by The University of Michigan. O.Y.G. was supported in part by NSF grant AST-0708087 and NASA grant NNX12AG44G. This work was supported in part by the DOE at Fermilab and by the NSF grant AST-0708154. M.Z. is supported in part by a 985 grant from Peking University. NR 60 TC 23 Z9 23 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 10 PY 2013 VL 773 IS 1 AR 19 DI 10.1088/0004-637X/773/1/19 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 193BN UT WOS:000322531900019 ER PT J AU Ross, NP McGreer, ID White, M Richards, GT Myers, AD Palanque-Delabrouille, N Strauss, MA Anderson, SF Shen, Y Brandt, WN Yeche, C Swanson, MEC Aubourg, E Bailey, S Bizyaev, D Bovy, J Brewington, H Brinkmann, J DeGraf, C Di Matteo, T Ebelke, G Fan, XH Ge, J Malanushenko, E Malanushenko, V Mandelbaum, R Maraston, C Muna, D Oravetz, D Pan, K Paris, I Petitjean, P Schawinski, K Schlegel, DJ Schneider, DP Silverman, JD Simmons, A Snedden, S Streblyanska, A Suzuki, N Weinberg, DH York, D AF Ross, Nicholas P. McGreer, Ian D. White, Martin Richards, Gordon T. Myers, Adam D. Palanque-Delabrouille, Nathalie Strauss, Michael A. Anderson, Scott F. Shen, Yue Brandt, W. N. Yeche, Christophe Swanson, Molly E. C. Aubourg, Eric Bailey, Stephen Bizyaev, Dmitry Bovy, Jo Brewington, Howard Brinkmann, J. DeGraf, Colin Di Matteo, Tiziana Ebelke, Garrett Fan, Xiaohui Ge, Jian Malanushenko, Elena Malanushenko, Viktor Mandelbaum, Rachel Maraston, Claudia Muna, Demitri Oravetz, Daniel Pan, Kaike Paris, Isabelle Petitjean, Patrick Schawinski, Kevin Schlegel, David J. Schneider, Donald P. Silverman, John D. Simmons, Audrey Snedden, Stephanie Streblyanska, Alina Suzuki, Nao Weinberg, David H. York, Donald TI THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: THE QUASAR LUMINOSITY FUNCTION FROM DATA RELEASE NINE SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; galaxies: active; galaxies: luminosity function, mass function; quasars: general; surveys ID DIGITAL-SKY-SURVEY; ACTIVE GALACTIC NUCLEI; SUPERMASSIVE BLACK-HOLES; HIGH-REDSHIFT QUASARS; DEEP FIELD-SOUTH; SIMILAR-TO 4; SPECTRAL ENERGY-DISTRIBUTIONS; SURVEY PHOTOMETRIC SYSTEM; BROAD-LINE QUASARS; DARK-MATTER HALOES AB We present a new measurement of the optical quasar luminosity function (QLF), using data from the Sloan Digital Sky Survey-III: Baryon Oscillation Spectroscopic Survey (SDSS-III: BOSS). From the SDSS-III Data Release Nine, a uniform sample of 22,301 i less than or similar to 21.8 quasars are selected over an area of 2236 deg(2), with confirmed spectroscopic redshifts between 2.2 < z < 3.5, filling in a key part of the luminosity-redshift plane for optical quasar studies. The completeness of the survey is derived through simulated quasar photometry, and this completeness estimate is checked using a sample of quasars selected by their photometric variability within the BOSS footprint. We investigate the level of systematics associated with our quasar sample using the simulations, in the process generating color-redshift relations and a new quasar K-correction. We probe the faint end of the QLF to M-i (z = 2.2) approximate to -24.5 and see a clear break in the QLF at all redshifts up to z = 3.5. A log-linear relation (in log Phi* - M*) for a luminosity evolution and density evolution model is found to adequately describe our data within the range 2.2 < z < 3.5; across this interval the break luminosity increases by a factor of similar to 2.6 while Phi* declines by a factor of similar to 8. At z less than or similar to 2.2 our data are reasonably well fit by a pure luminosity evolution model, and only a weak signature of "AGN downsizing" is seen, in line with recent studies of the hard X-ray luminosity function. We compare our measured QLF to a number of theoretical models and find that models making a variety of assumptions about quasar triggering and halo occupation can fit our data over a wide range of redshifts and luminosities. C1 [Ross, Nicholas P.; White, Martin; Bailey, Stephen; Schlegel, David J.; Suzuki, Nao] Lawrence Berkeley Natl Lab, Berkeley, CA 92420 USA. [McGreer, Ian D.; Fan, Xiaohui] Steward Observ, Tucson, AZ 85721 USA. [White, Martin] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Richards, Gordon T.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Richards, Gordon T.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Myers, Adam D.] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. [Palanque-Delabrouille, Nathalie; Yeche, Christophe] CEA, Ctr Saclay, IRFU, F-91191 Gif Sur Yvette, France. [Strauss, Michael A.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Anderson, Scott F.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Shen, Yue; Swanson, Molly E. C.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Brandt, W. N.; Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Brandt, W. N.; Schneider, Donald P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Aubourg, Eric] Univ Paris Diderot, APC, CNRS IN2P3, CEA IRFU,Observ Paris,Sorbonne Paris Cite, Paris, France. [Bizyaev, Dmitry; Brewington, Howard; Brinkmann, J.; Ebelke, Garrett; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Daniel; Pan, Kaike; Simmons, Audrey; Snedden, Stephanie] Apache Point Observ, Sunspot, NM 88349 USA. [Bovy, Jo] Inst Adv Study, Princeton, NJ 08540 USA. [DeGraf, Colin; Di Matteo, Tiziana; Mandelbaum, Rachel] Carnegie Mellon Univ, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA. [Ge, Jian] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Maraston, Claudia] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Muna, Demitri] NYU, Ctr Cosmol & Particle Phys, Dept Phys, New York, NY 10003 USA. [Paris, Isabelle; Petitjean, Patrick] UPMC, CNRS, Inst Astrophys Paris, UMR7095, F-75014 Paris, France. [Paris, Isabelle] Univ Chile, Dept Astron, Santiago, Chile. [Schawinski, Kevin] Yale Univ, Dept Phys, New Haven, CT 06511 USA. [Silverman, John D.] Univ Tokyo, IPMU, Kashiwa, Chiba 2778568, Japan. [Streblyanska, Alina] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Tenerife, Spain. [Weinberg, David H.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Weinberg, David H.] Ohio State Univ, Ctr Cosmol & AstroParticle Phys, Columbus, OH 43210 USA. [York, Donald] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [York, Donald] Univ Chicago, Fermi Inst, Chicago, IL 60637 USA. RP Ross, NP (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 92420 USA. EM npross@lbl.gov RI White, Martin/I-3880-2015; Brandt, William/N-2844-2015; Mandelbaum, Rachel/N-8955-2014; Di Matteo, Tiziana/O-4762-2014 OI White, Martin/0000-0001-9912-5070; Brandt, William/0000-0002-0167-2453; Bovy, Jo/0000-0001-6855-442X; Schawinski, Kevin/0000-0001-5464-0888; Mandelbaum, Rachel/0000-0003-2271-1527; Di Matteo, Tiziana/0000-0002-6462-5734 FU Alfred P. Sloan Foundation; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; University of Cambridge; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University; National Science Foundation; U.S. Department of Energy Office of Science; David and Lucile Packard Fellowship; NSF [AST 08-06861, AST 11-07682]; Alexander von Humboldt Foundation at the Max-Planck-Institut fur Astronomie FX Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III Web site is http://www.sdss3.org/.; SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University.; N.P.R. warmly thanks Silvia Bonoli, Federico Marulli, Nikos Fanidakis and Phil Hopkins for providing their model QLF data in a prompt manner. Matt George, Genevieve Graves, Tom Shanks, Julie Wardlow and Gabor Worseck, also provided very useful discussions. Paul Hewett was key in the K-correction discussions. I. D. M. and X. F. acknowledge support from a David and Lucile Packard Fellowship, and NSF grants AST 08-06861 and AST 11-07682. G. T. R. acknowledges the generous support of a research fellowship from the Alexander von Humboldt Foundation at the Max-Planck-Institut fur Astronomie and is grateful for the hospitality of the Astronomisches Rechen-Institut and the Institute of Astronomy, Cambridge. NR 213 TC 68 Z9 68 U1 2 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 10 PY 2013 VL 773 IS 1 AR 14 DI 10.1088/0004-637X/773/1/14 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 193BN UT WOS:000322531900014 ER PT J AU Frey, LH Fryer, CL Young, PA AF Frey, Lucille H. Fryer, Chris L. Young, Patrick A. TI CAN STELLAR MIXING EXPLAIN THE LACK OF TYPE Ib SUPERNOVAE IN LONG-DURATION GAMMA-RAY BURSTS? SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE stars: neutron; supernovae: general ID TURBULENT CONVECTION; COLLAPSE; STARS AB The discovery of supernovae associated with long-duration gamma-ray burst observations is primary evidence that the progenitors of these outbursts are massive stars. One of the principle mysteries in understanding these progenitors has been the fact that all of these gamma-ray-burst-associated supernovae are Type Ic supernovae with no evidence of helium in the stellar atmosphere. Many studies have focused on whether or not this helium is simply hidden from spectral analyses. In this Letter, we show results from recent stellar models using new convection algorithms based on our current understanding of stellar mixing. We demonstrate that enhanced convection may lead to severe depletion of stellar helium layers, suggesting that the helium is not observed simply because it is not in the star. We also present light curves and spectra of these compact helium-depleted stars compared to models with more conventional helium layers. C1 [Frey, Lucille H.] Los Alamos Natl Lab, HPC 3, Los Alamos, NM 87545 USA. [Frey, Lucille H.] Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA. [Fryer, Chris L.] Los Alamos Natl Lab, CCS 2, Los Alamos, NM 87545 USA. [Fryer, Chris L.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Fryer, Chris L.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Young, Patrick A.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85276 USA. RP Frey, LH (reprint author), Los Alamos Natl Lab, HPC 3, POB 1663, Los Alamos, NM 87545 USA. OI Frey, Lucille/0000-0002-5478-2293 FU National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396]; NSF [0807567] FX We thank Wesley Even of CCS-2 at LANL for developing and implementing the code used to map explosion profiles from the collapse code into RAGE. Work at LANL was done under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy under contract No. DE-AC52-06NA25396. Young was supported in part by NSF grant #0807567. NR 13 TC 10 Z9 10 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 10 PY 2013 VL 773 IS 1 AR L7 DI 10.1088/2041-8205/773/1/L7 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 192AF UT WOS:000322455600007 ER PT J AU Lee, WC Lv, WC Arham, HZ AF Lee, Wei-Cheng Lv, Weicheng Arham, Hamood Z. TI ELEMENTARY EXCITATIONS DUE TO ORBITAL DEGREES OF FREEDOM IN IRON-BASED SUPERCONDUCTORS SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B LA English DT Review DE Orbital ordering; non-Fermi liquid; nematicity ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; LANDAU-LEVELS; TRANSITION; ANISOTROPY; PNICTIDES; PHYSICS; POINT; STATE AB One central issue under intense debate in the study of the iron-based superconductors is the origin of the structural phase transition that changes the crystal lattice symmetry from tetragonal to orthorhombic. This structural phase transition, occurring universally in almost every family of the iron-based superconductors, breaks the lattice C-4 rotational symmetry and results in an anisotropy in a number of physical properties. Due to the unique topology of the Fermi surface, both orbital-and spin-based scenarios have been proposed as the driving force. In this review, we focus on theories from the orbital-based scenario and discuss several related experiments. It is pointed out that although both scenarios lead to the same macroscopic phases and are not distinguishable in bulk measurements of the thermodynamic properties, the elementary excitations could be fundamentally different, and provide us with the possibility to resolve this long-standing debate between orbital-and spin-based theories. C1 [Lee, Wei-Cheng; Arham, Hamood Z.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Lv, Weicheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Lv, Weicheng] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Lee, WC (reprint author), Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. EM leewc@illinois.edu FU Center for Emergent Superconductivity; DOE Energy Frontier Research Center [DE-AC0298CH1088]; National Science Foundation [DMR-1104386] FX We would like to thank Philip W. Phillips, Laura H. Greene and Wan Kyu Park, for helpful discussions. This work is supported by the Center for Emergent Superconductivity, a DOE Energy Frontier Research Center, Grant No. DE-AC0298CH1088, and W. L. is supported in part by the National Science Foundation Grant No. DMR-1104386. NR 83 TC 10 Z9 10 U1 0 U2 21 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-9792 EI 1793-6578 J9 INT J MOD PHYS B JI Int. J. Mod. Phys. B PD AUG 10 PY 2013 VL 27 IS 20 AR 1330014 DI 10.1142/S0217979213300144 PG 25 WC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical SC Physics GA 189DQ UT WOS:000322247800001 ER PT J AU Ferenbaugh, CR AF Ferenbaugh, Charles R. TI A comparison of GPU strategies for unstructured mesh physics SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article DE advanced architectures; GPU; unstructured mesh AB There have been few efforts to date to write physics algorithms for general unstructured meshes (meshes composed of arbitrary polygons/polyhedra) on graphics processing units (GPUs). Typical strategies for GPU memory management, such as double-buffering and coalescing memory accesses, are difficult to apply to the irregular memory storage patterns of unstructured meshes. This paper presents results from an initial GPU version of a typical unstructured mesh kernel. Three different memory management strategies are described and implemented. Timing results for all three strategies are presented, in some cases showing speedups of over 20 times compared with the original CPU code.Copyright (c) 2012 John Wiley & Sons, Ltd. C1 Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Ferenbaugh, CR (reprint author), Los Alamos Natl Lab, Mail Stop B295, Los Alamos, NM 87544 USA. EM cferenba@lanl.gov FU US Department of Energy National Nuclear Security Administration by Los Alamos National Security, LLC, at Los Alamos National Laboratory [DE-AC52-06NA25396]; US DOE NNSA Advanced Simulation and Computing (ASC) Program FX This work was performed under the auspices of the US Department of Energy National Nuclear Security Administration by Los Alamos National Security, LLC, at Los Alamos National Laboratory, under contract DE-AC52-06NA25396. The author gratefully acknowledges the support of the US DOE NNSA Advanced Simulation and Computing (ASC) Program. NR 18 TC 3 Z9 3 U1 1 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1532-0626 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD AUG 10 PY 2013 VL 25 IS 11 BP 1547 EP 1558 DI 10.1002/cpe.2894 PG 12 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 181VI UT WOS:000321697100003 ER PT J AU Jha, S Cole, M Katz, DS Parashar, M Rana, O Weissman, J AF Jha, Shantenu Cole, Murray Katz, Daniel S. Parashar, Manish Rana, Omer Weissman, Jon TI Distributed computing practice for large-scale science and engineering applications SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article ID REPLICA-EXCHANGE; DATA-MANAGEMENT; MONTE-CARLO; PARALLEL; IMPLEMENTATION; ARCHITECTURE; SIMULATION; FRAMEWORK; GEOMETRY; MODELS AB It is generally accepted that the ability to develop large-scale distributed applications has lagged seriously behind other developments in cyberinfrastructure. In this paper, we provide insight into how such applications have been developed and an understanding of why developing applications for distributed infrastructure is hard. Our approach is unique in the sense that it is centered around half a dozen existing scientific applications; we posit that these scientific applications are representative of the characteristics, requirements, as well as the challenges of the bulk of current distributed applications on production cyberinfrastructure (such as the US TeraGrid). We provide a novel and comprehensive analysis of such distributed scientific applications. Specifically, we survey existing models and methods for large-scale distributed applications and identify commonalities, recurring structures, patterns and abstractions. We find that there are many ad hoc solutions employed to develop and execute distributed applications, which result in a lack of generality and the inability of distributed applications to be extensible and independent of infrastructure details. In our analysis, we introduce the notion of application vectors: a novel way of understanding the structure of distributed applications. Important contributions of this paper include identifying patterns that are derived from a wide range of real distributed applications, as well as an integrated approach to analyzing applications, programming systems and patterns, resulting in the ability to provide a critical assessment of the current practice of developing, deploying and executing distributed applications. Gaps and omissions in the state of the art are identified, and directions for future research are outlined. Copyright (c) 2012 John Wiley & Sons, Ltd. C1 [Jha, Shantenu; Katz, Daniel S.] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA. [Jha, Shantenu; Cole, Murray] Univ Edinburgh, Sch Informat, Edinburgh, Midlothian, Scotland. [Katz, Daniel S.] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Katz, Daniel S.] Argonne Natl Lab, Argonne, IL 60439 USA. [Katz, Daniel S.] Louisiana State Univ, Dept Elect & Comp Engn, Baton Rouge, LA 70803 USA. [Jha, Shantenu; Parashar, Manish] Rutgers State Univ, NSF Cloud & Auton Comp Ctr, Piscataway, NJ USA. [Jha, Shantenu; Parashar, Manish] Rutgers State Univ, Dept Elect & Comp Engn, Piscataway, NJ 08855 USA. [Rana, Omer] Cardiff Univ, Sch Informat & Comp Sci, Cardiff CF10 3AX, S Glam, Wales. [Weissman, Jon] Univ Minnesota, Dept Comp Sci, Minneapolis, MN 55455 USA. RP Jha, S (reprint author), Rutgers State Univ, Dept Elect & Comp Engn, Newark, NJ 07102 USA. EM shantenu.jha@rutgers.edu RI Rana, Omer/E-4314-2015; OI Rana, Omer/0000-0003-3597-2646; Katz, Daniel S./0000-0001-5934-7525 FU EPSRC via e-Science Institute, Edinburgh FX This paper is the outcome of the EPSRC via e-Science Institute, Edinburgh sponsored Research Theme on Distributed Programming Abstractions. We would like to thank many people who participated in the workshops and meetings associated with the theme and help frame the problem landscape upon which this paper is built. In particular, we would like to thank the following people for their contributions to the paper and theme-Gabrielle Allen, Geoffrey Fox, Gerry Creager, Daniel Goodman, Craig Lee, Andre Merzky and Phil Trinder. S. Jha acknowledges Malcolm Atkinson for many significant discussions, insight and advice on theme related issues. NR 66 TC 5 Z9 5 U1 0 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1532-0626 EI 1532-0634 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD AUG 10 PY 2013 VL 25 IS 11 BP 1559 EP 1585 DI 10.1002/cpe.2897 PG 27 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 181VI UT WOS:000321697100004 ER PT J AU Skippon, T Clausen, B Daymond, MR AF Skippon, T. Clausen, B. Daymond, M. R. TI Effect of loading mode on lattice strain measurements via neutron diffraction SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Zirconium; Neutron diffraction; Lattice strain; Plasticity ID MAGNESIUM ALLOY; COMPRESSIVE DEFORMATION; UNIAXIAL DEFORMATION; TEXTURED ZIRCALOY-2; AMBIENT-TEMPERATURE; EVOLUTION; SLIP; STRESS; CREEP; MECHANISMS AB The study of lattice strain evolution during uniaxial deformation via in situ neutron diffraction is a well established technique for characterizing the deformation behavior of metals. However, the relatively low flux of neutron facilities results in count times on the order of several minutes, requiring experimenters to choose between either applying a very slow strain rate, or loading the sample incrementally rather than continuously. Here we investigate the effects on lattice strain data obtained by using stress, strain, and position controlled incremental loading, as well as continuous loading, on samples of Zircaloy-2 under uniaxial compression. It was found that both qualitative and quantitative differences arise in the lattice strain behavior of certain grain families, particularly (10 (1) over bar0} and {11 (2) over bar0}, while other grain families show no discernible effect The differences in lattice strain evolution brought on by the variation in loading modes are believed to be the result of thermally activated dislocation motion. (C) 2013 Elsevier B.V. All rights reserved. C1 [Skippon, T.; Daymond, M. R.] Queens Univ, Dept Mech & Mat Engn, Kingston, ON, Canada. [Clausen, B.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. RP Skippon, T (reprint author), Queens Univ, Dept Mech & Mat Engn, Kingston, ON, Canada. EM travis.skippon@queensu.ca RI Clausen, Bjorn/B-3618-2015; OI Clausen, Bjorn/0000-0003-3906-846X; Daymond, Mark/0000-0001-6242-7489 FU Department of Energy's Office of Basic Energy Sciences; DOE [DE-AC52-06NA25396]; NSERC; COG; OPG; Nu-Tech Precision Metals under the Industrial Research Chair program in Nuclear Materials at Queen's University FX This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, funded by the Department of Energy's Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396.; This work was sponsored by NSERC, COG, OPG and Nu-Tech Precision Metals under the Industrial Research Chair program in Nuclear Materials at Queen's University. NR 31 TC 4 Z9 4 U1 2 U2 18 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD AUG 10 PY 2013 VL 577 BP 169 EP 178 DI 10.1016/j.msea.2013.04.046 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 170GD UT WOS:000320837500023 ER PT J AU Zhao, GX Haskins, N Jin, ZM Allewell, NM Tuchman, M Shi, D AF Zhao, Gengxiang Haskins, Nantaporn Jin, Zhongmin Allewell, Norma M. Tuchman, Mendel Shi, Dashuang TI Structure of N-acetyl-L-glutamate synthase/kinase from Maricaulis maris with the allosteric inhibitor L-arginine bound SO BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS LA English DT Article DE N-acetyl-glutamate synthase; N-acetyl-glutamate kinase; GCN5-acetyltransferase; Arginine inhibition; Arginine biosynthesis; Allosteric regulation ID ACETYLGLUTAMATE SYNTHASE; CRYSTAL-STRUCTURE; LIKELIHOOD AB Maricaulis mans N-acetylglutamate synthase/kinase (mmNAGS/K) catalyzes the first two steps in L-arginine biosynthesis and has a high degree of sequence and structural homology to human N-acetylglutamate synthase, a regulator of the urea cycle. The synthase activity of both mmNAGS/K and human NAGS are regulated by L-arginine, although L-arginine is an allosteric inhibitor of mmNAGS/K, but an activator of human NAGS. To investigate the mechanism of allosteric inhibition of mmNAGS/K by L-arginine, we have determined the structure of the mmNAGS/K complexed with L-arginine at 2.8 angstrom resolution. In contrast to the structure of mmNAGS/K in the absence of L-arginine where there are conformational differences between the four subunits in the asymmetric unit, all four subunits in the L-arginine liganded structure have very similar conformations. In this conformation, the AcCoA binding site in the N-acetyl-transferase (NAT) domain is blocked by a loop from the amino acid kinase (AAK) domain, as a result of a domain rotation that occurs when L-arginine binds. This structural change provides an explanation for the allosteric inhibition of mmNAGS/K and related enzymes by L-arginine. The allosterically regulated mechanism for mmNAGS/K differs significantly from that for Neisseria gonorrhoeae NAGS (ngNAGS). To define the active site, several residues near the putative active site were mutated and their activities determined. These experiments identify roles for Lys356, Arg386, Asn391 and Tyr397 in the catalytic mechanism. (C) 2013 Elsevier Inc. All rights reserved. C1 [Zhao, Gengxiang; Haskins, Nantaporn; Tuchman, Mendel; Shi, Dashuang] Childrens Natl Med Ctr, Med Genet Res Ctr, Washington, DC 20010 USA. [Zhao, Gengxiang; Tuchman, Mendel; Shi, Dashuang] George Washington Univ, Dept Integrat Syst Biol, Washington, DC 20010 USA. [Jin, Zhongmin] Argonne Natl Lab, Southeast Reg Collaborat Access Team, Adv Photon Source, Argonne, IL 60439 USA. [Haskins, Nantaporn; Allewell, Norma M.] Univ Maryland, Coll Comp Math & Nat Sci, Dept Cell Biol & Mol Genet, College Pk, MD 20742 USA. [Allewell, Norma M.] Univ Maryland, Coll Comp Math & Nat Sci, Dept Chem & Biochem, College Pk, MD 20742 USA. RP Shi, D (reprint author), George Washington Univ, Med Genet Res Ctr, Childrens Natl Med Ctr, 111 Michigan Ave NW, Washington, DC 20010 USA. EM dshi@cnmcresearch.org FU Public Health Service [DK-DK064913]; U.S. Department of Energy, Office of Science and Office of Basic Energy Sciences [W-31-109-Eng-38] FX This work was supported by Public Health Service Grants DK-DK064913 (MT). We thank Dr. David Davies for facilitating the use of the diffraction equipment in the Molecular Structure Section of the National Institutes of Health and Dr. Fred Dyda for help in data collection. High resolution data were collected at Southeast Regional Collaborative Access Team (SER-CAT) 22-ID beamline at the Advanced Photon Source, Argonne National Laboratory. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science and Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38. NR 19 TC 5 Z9 5 U1 0 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0006-291X EI 1090-2104 J9 BIOCHEM BIOPH RES CO JI Biochem. Biophys. Res. Commun. PD AUG 9 PY 2013 VL 437 IS 4 BP 585 EP 590 DI 10.1016/j.bbrc.2013.07.003 PG 6 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 207FN UT WOS:000323584400015 PM 23850694 ER PT J AU Mitchell, D Jarmoskaite, I Seval, N Seifert, S Russell, R AF Mitchell, David, III Jarmoskaite, Inga Seval, Nikhil Seifert, Soenke Russell, Rick TI The Long-Range P3 Helix of the Tetrahymena Ribozyme Is Disrupted during Folding between the Native and Misfolded Conformations SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE structured RNA; group I intron; catalytic RNA; RNA folding; RNA topology ID TRANSFER-RIBONUCLEIC-ACID; SELF-SPLICING RNA; X-RAY-SCATTERING; GROUP-I RIBOZYME; THERMODYNAMIC PARAMETERS; THERMOPHILA RIBOZYME; INTERVENING SEQUENCE; RIBOSOMAL-SUBUNIT; ESCHERICHIA-COLI; NUCLEIC-ACID AB RNAs are prone to misfolding, but how misfolded structures are formed and resolved remains incompletely understood. The Tetrahymena group I intron ribozyme folds in vitro to a long-lived misfolded conformation (M) that includes extensive native structure but is proposed to differ in topology from the native state (N). A leading model predicts that exchange of the topologies requires unwinding of the long-range, core helix P3, despite the presence of P3 in both conformations. To test this model, we constructed 16 mutations to strengthen or weaken P3. Catalytic activity and in-line probing showed that nearly all of the mutants form the M state before folding to N. The P3-weakening mutations accelerated refolding from M (3- to 30-fold) and the P3-strengthening mutations slowed refolding (6- to 1400-fold), suggesting that P3 indeed unwinds transiently. Upon depletion of Mg2+, the mutations had analogous effects on unfolding from N to intermediates that subsequently fold to M. The magnitudes for the P3-weakening mutations were larger than in refolding from M, and small-angle X-ray scattering showed that the ribozyme expands rapidly to intermediates from which P3 is disrupted subsequently. These results are consistent with previous results indicating unfolding of native peripheral structure during refolding from M, which probably permits rearrangement of the core. Together, our results demonstrate that exchange of the native and misfolded conformations requires loss of a core helix in addition to peripheral structure. Further, the results strongly suggest that misfolding arises from a topological error within the ribozyme core, and a specific topology is proposed. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Mitchell, David, III; Jarmoskaite, Inga; Seval, Nikhil; Russell, Rick] Univ Texas Austin, Inst Cellular & Mol Biol, Dept Chem & Biochem, Austin, TX 78712 USA. [Seifert, Soenke] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Russell, R (reprint author), Univ Texas Austin, Inst Cellular & Mol Biol, Dept Chem & Biochem, Austin, TX 78712 USA. EM rick_russell@cm.utexas.edu FU National Institutes of Health [GM070456, F31GM084692]; Welch Foundation [F-1563] FX We thank Dan Herschlag and members of the Russell laboratory for helpful comments on the manuscript. This work was supported by grants to R.R. from the National Institutes of Health (GM070456) and the Welch Foundation (F-1563). D.M. was supported by National Institutes of Health Award F31GM084692. NR 62 TC 6 Z9 6 U1 0 U2 5 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD AUG 9 PY 2013 VL 425 IS 15 BP 2670 EP 2686 DI 10.1016/j.jmb.2013.05.008 PG 17 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 189VM UT WOS:000322296400005 PM 23702292 ER PT J AU Gluck, F Drexlin, G Leiber, B Mertens, S Osipowicz, A Reich, J Wandkowsky, N AF Glueck, Ferenc Drexlin, Guido Leiber, Benjamin Mertens, Susanne Osipowicz, Alexander Reich, Jan Wandkowsky, Nancy TI Electromagnetic design of the large-volume air coil system of the KATRIN experiment SO NEW JOURNAL OF PHYSICS LA English DT Article ID UNIFORM MAGNETIC-FIELDS; TRITIUM BETA-DECAY; NEUTRINO MASS; SPECTROMETER; ELECTRONS; SEARCH AB The Karlsruhe Tritium Neutrino (KATRIN) experiment is designed to determine the absolute neutrino mass scale with a sensitivity of 200 meV (90% confidence level) by measuring the electron energy spectrum close to the endpoint of molecular tritium beta decay. Electrons from a high-intensity gaseous tritium source are guided by a strong magnetic field of a few T to the analyzing plane of the main spectrometer where an integral energy analysis takes place in a low field region (B < 0.5 mT). An essential design feature to obtain adiabatic electron transport through this spectrometer is a large volume air coil system surrounding the vessel. The system has two key tasks: to adjust and fine-tune the magnetic guiding field (low field correction system), as well as to compensate the distorting effects of the earth magnetic field (earth field compensation system). In this paper we outline the key electromagnetic design issues for this very large air coil system, which allows for well-defined electron transmission and optimized background reduction in the KATRIN main spectrometer. C1 [Glueck, Ferenc; Drexlin, Guido; Leiber, Benjamin; Mertens, Susanne; Reich, Jan; Wandkowsky, Nancy] Karlsruhe Inst Technol, KCETA, Karlsburg, Germany. [Mertens, Susanne] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Osipowicz, Alexander] Univ Appl Sci, Fulda, Germany. RP Gluck, F (reprint author), Karlsruhe Inst Technol, KCETA, Karlsburg, Germany. EM ferenc.glueck@kit.edu FU Helmholtz Association (HGF); German Federal Ministry of Education and Research (BMBF) [05A08VK2, 05A11VK3]; German Research Foundation (DFG) [SFB/TR27]; Karlsruhe House of Young Scientists (KHYS); Deutsche Forschungsgemeinschaft; Open Access Publishing Fund of Karlsruhe Institute of Technology FX This research was supported by the Helmholtz Association (HGF), the German Federal Ministry of Education and Research (BMBF), through grant numbers 05A08VK2 and 05A11VK3 and the German Research Foundation (DFG) within the framework of the Transregio project 'Neutrinos and Beyond', grant number SFB/TR27. BL, SM and NW thank the Karlsruhe House of Young Scientists (KHYS) for supporting part of this study. We would like to thank Tudor Cristea-Platon and Nils Stallkamp for their useful participation in the mathematical optimization computations, and Michaela Meloni for her helping us to create some of the figures. We acknowledge support by the Deutsche Forschungsgemeinschaft and the Open Access Publishing Fund of Karlsruhe Institute of Technology. NR 60 TC 4 Z9 4 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD AUG 9 PY 2013 VL 15 AR 083025 DI 10.1088/1367-2630/15/8/083025 PG 30 WC Physics, Multidisciplinary SC Physics GA 198WG UT WOS:000322953000003 ER PT J AU Hong, S Ghaemi, P Moore, JE Phillips, PW AF Hong, Seungmin Ghaemi, Pouyan Moore, Joel E. Phillips, Philip W. TI Tuning thermoelectric power factor by crystal-field and spin-orbit couplings in Kondo-lattice materials SO PHYSICAL REVIEW B LA English DT Article ID HEAVY-FERMION SEMICONDUCTORS; TRANSPORT-PROPERTIES; ANDERSON MODEL; DEGENERACY; INSULATOR; CE3BI4PT3; SYSTEMS; LIMIT AB We study thermoelectric transport at low temperatures in correlated Kondo insulators, motivated by the recent observation of a high thermoelectric figure of merit (ZT) in FeSb2 at T similar to 10K [A. Bentien et al., Eur. Phys. Lett. 80, 17008 (2007)]. Even at room temperature, correlations have the potential to lead to high ZT, as in YbAl3, one of the most widely used thermoelectric metals. At low temperature correlation effects are especially worthy of study because fixed band structures are unlikely to give rise to the very small energy gaps E-g similar to 5 kT necessary for a weakly correlated material to function efficiently at low temperature. We explore the possibility of improving the thermoelectric properties of correlated Kondo insulators through tuning of crystal-field and spin-orbit coupling and present a framework to design more efficient low-temperature thermoelectrics based on our results. C1 [Hong, Seungmin; Ghaemi, Pouyan; Phillips, Philip W.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Ghaemi, Pouyan; Moore, Joel E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Ghaemi, Pouyan; Moore, Joel E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Hong, S (reprint author), Univ Illinois, Dept Phys, Urbana, IL 61801 USA. RI Moore, Joel/O-4959-2016 OI Moore, Joel/0000-0002-4294-5761 FU U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-05CH11231]; NSF [DMR-1064319, DMR-1104909] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231 (P. G. and J.E.M.). P. G. also acknowledges support from NSF Grant No. DMR-1064319. S. H. and P. W. P. are funded by NSF Grant No. DMR-1104909. NR 42 TC 8 Z9 8 U1 7 U2 49 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 9 PY 2013 VL 88 IS 7 AR 075118 DI 10.1103/PhysRevB.88.075118 PG 8 WC Physics, Condensed Matter SC Physics GA 198CM UT WOS:000322899300001 ER PT J AU Huang, GY Wirth, BD AF Huang, Gui-Yang Wirth, B. D. TI Energetics and kinetics of native point defects in Ga2Se3 from first principles SO PHYSICAL REVIEW B LA English DT Article ID AUGMENTED-WAVE METHOD; SINGLE-CRYSTALS; OPTICAL-PROPERTIES; THIN-FILMS; PHOTOELECTRIC PROPERTIES; SOLID SOLUTION; GA2TE3; SEMICONDUCTORS; SYSTEM; DYNAMICS AB Based on first-principles calculations, the Ga vacancy and antisite defect Se-Ga are the only intrinsic shallow acceptors in Ga2Se3. The Ga interstitial is always a donor, +3 charge state under p-type conditions or +1 charge state under n-type conditions. Both the Se vacancy and Se interstitial are neutral defects except under an extremely p-type condition. Both the Ga interstitial and Se interstitial are predicted to be a very fast diffuser under n-type conditions, with a migration barrier value of <0.3 eV. Under p-type conditions, the calculated migration barrier of the Ga interstitial has a quite large value of >1.0 eV. The +2 charge state is stable for the Se interstitial under the extremely p-type condition, and the corresponding migration barrier is 0.68 eV. The migration barriers of the Ga vacancy and Se vacancy are >0.8 eV and >1.3 eV, respectively. C1 [Huang, Gui-Yang; Wirth, B. D.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Wirth, B. D.] Oak Ridge Natl Lab, Knoxville, TN USA. RP Huang, GY (reprint author), Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. EM huangguiyang@gmail.com; bdwirth@utk.edu RI Wirth, Brian/O-4878-2015 OI Wirth, Brian/0000-0002-0395-0285 FU US Department of Energy, Office of Nuclear Energy, through the Nuclear Energy University Program [00091204]; CFDA [81.049]; DHS-NSF FX The authors would like to acknowledge N. M. Abdul-Jabbar (UC Berkeley) for many motivating discussions. This research has been funded by the US Department of Energy, Office of Nuclear Energy, through the Nuclear Energy University Program, administered by Batelle Energy Alliance, LLC, Subcontract No. 00091204, CFDA No. 81.049, and partially as part of the DHS-NSF Academic Research grant at the University of California, Berkeley. NR 67 TC 2 Z9 2 U1 3 U2 39 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 9 PY 2013 VL 88 IS 8 AR 085203 DI 10.1103/PhysRevB.88.085203 PG 16 WC Physics, Condensed Matter SC Physics GA 198CT UT WOS:000322900100002 ER PT J AU Phelan, D Suzuki, Y Wang, S Huq, A Leighton, C AF Phelan, D. Suzuki, Y. Wang, S. Huq, A. Leighton, C. TI Structural, transport, and magnetic properties of narrow bandwidth Nd1-xCaxCoO3-delta and comparisons to Pr1-xCaxCoO3-delta SO PHYSICAL REVIEW B LA English DT Article ID SPIN-STATE TRANSITION; NEUTRON-SCATTERING; PHASE-SEPARATION; LACOO3; PEROVSKITE; BEHAVIOR; FIELD; ND AB Low bandwidth Pr-based cobalt perovskites, such as Pr1-xCaxCoO3-delta, have received significant recent attention as they undergo first-order spin-state transitions with a strong influence on magnetic and transport properties. The unique nature of the Pr-O bond has been implicated as the impetus for these transitions, as it is thought that temperature-dependent charge transfer can occur between Pr and Co ions, i.e., a partial Pr3+-> Pr4+ and Co4+-> Co3+ valence shift. In the present work, we have studied the related compound Nd1-xCaxCoO3-delta. The Nd3+ ions have very similar ionic radius to Pr3+ but do not induce a temperature-dependent valence shift (at least in the composition range studied here), enabling deconvolution of the intrinsic low bandwidth physics from the unique effects of Pr-Obonding in Pr1-xCaxCoO3-delta. To this end, we have characterized the structural, magnetic, and electronic transport characteristics of Nd1-xCaxCoO3-delta bulk polycrystals, using neutron diffraction, small-angle neutron scattering, dc and ac magnetometry, and magnetotransport, and have established the Nd1-xCaxCoO3-delta magnetic phase diagram. This phase diagram contains regimes of short-range ferromagnetism and long-range ferromagnetism, in addition to ferrimagnetism. We argue that, with the exception of the valence transition that occurs at high x (e. g., x = 0.5) in Pr1-xCaxCoO3-delta and the low-temperature ordering of Nd3+ moments that results in the ferrimagnetism in Nd1-xCaxCoO3-delta, the two systems are nearly isostructural and have similar magnetic and transport properties. The low bandwidth physics intrinsic to both systems is summarized as encompassing long-range ferromagnetism with a relatively low Curie temperature due to Co-O-Co bond buckling (<60 K for Nd1-xCaxCoO3-delta), short-range ferromagnetism that emerges at much higher temperatures (similar to 270 K for Nd1-xCaxCoO3-delta), and likely stems from oxygen deficiency, exchange-spring behavior related to magnetoelectronic phase separation, and a doping-driven insulator-metal transition. In addition to elucidating the essential physics of narrow bandwidth perovskite cobaltites, the results thus further confirm the importance of the unique features of the Pr-O bond in driving the abrupt spin-state transition in Pr1-xCaxCoO3-delta. C1 [Phelan, D.; Suzuki, Y.; Wang, S.; Leighton, C.] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. [Huq, A.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. RP Phelan, D (reprint author), Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA. RI Huq, Ashfia/J-8772-2013 OI Huq, Ashfia/0000-0002-8445-9649 FU Basic Energy Sciences, US Department of Energy (DOE) [DE-FG02-06ER46275]; National Science Foundation [DMR-0944772]; Scientific User Facilities Division, Office of Basic Energy Sciences, US DOE FX This work was supported primarily by the Basic Energy Sciences, US Department of Energy (DOE) under Grant No. DE-FG02-06ER46275. We gratefully acknowledge fruitful discussions with Shameek Bose and Stephan Rosenkranz, experimental assistance on NG-3 from Steve Kline, and experimental assistance on POWGEN from Luke Heroux. Research conducted at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US DOE. This work was carried out in part using computing resources at the University of Minnesota Supercomputing Institute. This work used facilities at NIST supported in part by the National Science Foundation under DMR-0944772. NR 57 TC 5 Z9 5 U1 5 U2 43 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 9 PY 2013 VL 88 IS 7 AR 075119 DI 10.1103/PhysRevB.88.075119 PG 11 WC Physics, Condensed Matter SC Physics GA 198CM UT WOS:000322899300002 ER PT J AU Zhang, CL Li, HF Song, Y Su, YX Tan, GT Netherton, T Redding, C Carr, SV Sobolev, O Schneidewind, A Faulhaber, E Harriger, LW Li, SL Lu, XY Yao, DX Das, T Balatsky, AV Bruckel, T Lynn, JW Dai, PC AF Zhang, Chenglin Li, H. -F. Song, Yu Su, Yixi Tan, Guotai Netherton, Tucker Redding, Caleb Carr, Scott V. Sobolev, Oleg Schneidewind, Astrid Faulhaber, Enrico Harriger, L. W. Li, Shiliang Lu, Xingye Yao, Dao-Xin Das, Tanmoy Balatsky, A. V. Brueckel, Th. Lynn, J. W. Dai, Pengcheng TI Distinguishing s(+/-) and s(++) electron pairing symmetries by neutron spin resonance in superconducting NaFe0.935Co0.045As SO PHYSICAL REVIEW B LA English DT Article ID IRON; EXCITATIONS; SCATTERING AB A determination of the superconducting (SC) electron pairing symmetry forms the basis for establishing a microscopic mechanism for superconductivity. For iron pnictide superconductors, the s(+/-)-pairing symmetry theory predicts the presence of a sharp neutron spin resonance at an energy below the sum of hole and electron SC gap energies (E <= 2 Delta) below T-c. On the other hand, the s(++)-pairing symmetry expects a broad spin excitation enhancement at an energy above 2 Delta below Tc. Although the resonance has been observed in iron pnictide superconductors at an energy below 2 Delta consistent with the s(+/-)-pairing symmetry, the mode has also been interpreted as arising from the s++-pairing symmetry with E <= 2 Delta due to its broad energy width and the large uncertainty in determining the SC gaps. Here we use inelastic neutron scattering to reveal a sharp resonance at E = 7 meV in SC NaFe0.935Co0.045As (T-c = 18 K). On warming towards Tc, the mode energy hardly softens while its energy width increases rapidly. By comparing with calculated spin-excitation spectra within the s(+/-) and s++-pairing symmetries, we conclude that the ground-state resonance in NaFe0.935Co0.045As is only consistent with the s(+/-) pairing, and is inconsistent with the s(++)-pairing symmetry. C1 [Zhang, Chenglin; Song, Yu; Carr, Scott V.; Dai, Pengcheng] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Zhang, Chenglin; Song, Yu; Tan, Guotai; Netherton, Tucker; Redding, Caleb; Carr, Scott V.; Dai, Pengcheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Li, H. -F.] Forschungszentrum Julich, Julich Ctr Neutron Sci JCNS, Outstn Inst Laue Langevin, F-38042 Grenoble 9, France. [Li, H. -F.] Rhein Westfal TH Aachen, Inst Kristallog, D-52056 Aachen, Germany. [Su, Yixi; Schneidewind, Astrid] Forschungszentrum Julich, Julich Ctr Neutron Sci JCNS, Outstn MLZ, D-85747 Garching, Germany. [Tan, Guotai] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China. [Sobolev, Oleg] Univ Gottingen, Inst Phys Chem, D-37077 Gottingen, Germany. [Schneidewind, Astrid; Faulhaber, Enrico] Tech Univ Munich, Forschungsneutronenquelle Heinz Maier Leibnitz FR, D-85747 Garching, Germany. [Faulhaber, Enrico] Helmholtz Zentrum Berlin Mat & Energie, Gemeinsame Forschergrp HZB TU Dresden, D-14109 Berlin, Germany. [Harriger, L. W.; Lynn, J. W.] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Li, Shiliang; Lu, Xingye; Dai, Pengcheng] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Yao, Dao-Xin] Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Guangdong, Peoples R China. [Das, Tanmoy; Balatsky, A. V.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Brueckel, Th.] Forschungszentrum Julich, Julich Ctr Neutron Sci JCNS, D-52425 Julich, Germany. [Brueckel, Th.] Forschungszentrum Julich, JARA FIT, Peter Grunberg Inst, D-52425 Julich, Germany. RP Zhang, CL (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. EM pdai@rice.edu RI Dai, Pengcheng /C-9171-2012; Su, Yixi/K-9119-2013; Li, Shiliang/B-9379-2009; Li, Haifeng/F-9743-2013; Bruckel, Thomas/J-2968-2013; Sobolev, Oleg/P-5983-2016; OI Dai, Pengcheng /0000-0002-6088-3170; Su, Yixi/0000-0001-8434-1758; Bruckel, Thomas/0000-0003-1378-0416; Song, Yu/0000-0002-3460-393X; Netherton, Tucker/0000-0003-1583-7121 FU US DOE, BES [DE-FG02-05ER46202]; MOST (973 Project) [2012CB82400]; BMBF [05K10PA3]; NNSA of the US DOE [DE-AC52-06NA25396]; [NSFC-11074310]; [RFDPHE-20110171110026]; [NCET-11-0547] FX The single-crystal growth efforts and neutron-scattering work at UT/Rice were supported by the US DOE, BES, through Contract No. DE-FG02-05ER46202. Work at IOP was supported by MOST (973 Project No. 2012CB82400). The work at JCNS and RWTH Aachen University was partially funded by the BMBF under Contract No. 05K10PA3. Work at LANL was supported by the NNSA of the US DOE under Contract No. DE-AC52-06NA25396. Work at SYSU was supported by NSFC-11074310, RFDPHE-20110171110026, NCET-11-0547. NR 50 TC 25 Z9 25 U1 2 U2 38 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 9 PY 2013 VL 88 IS 6 AR 064504 DI 10.1103/PhysRevB.88.064504 PG 8 WC Physics, Condensed Matter SC Physics GA 198CC UT WOS:000322898300006 ER PT J AU Zhou, XW Ward, DK Martin, JE van Swol, FB Cruz-Campa, JL Zubia, D AF Zhou, X. W. Ward, D. K. Martin, J. E. van Swol, F. B. Cruz-Campa, J. L. Zubia, D. TI Stillinger-Weber potential for the II-VI elements Zn-Cd-Hg-S-Se-Te SO PHYSICAL REVIEW B LA English DT Article ID BOND-ORDER POTENTIALS; ELASTIC CONSTANTS; MULTICOMPONENT SYSTEMS; MOLECULAR-DYNAMICS; CADMIUM TELLURIDE; DETECTOR MATERIAL; MONTE-CARLO; ZINC; SEMICONDUCTORS; SIMULATIONS AB Bulk and multilayered thin film crystals of II-VI semiconductor compounds are the leading materials for infrared sensing, gamma-ray detection, photovoltaics, and quantum dot lighting applications. The key to achieving high performance for these applications is reducing crystallographic defects. Unfortunately, past efforts to improve these materials have been prolonged due to a lack of understanding with regards to defect formation and evolution mechanisms. To enable high-fidelity and high-efficiency atomistic simulations of defect mechanisms, this paper develops a Stillinger-Weber interatomic potential database for semiconductor compounds composed of the major II-VI elements Zn, Cd, Hg, S, Se, and Te. The potential's fidelity is achieved by optimizing all the pertinent model parameters, by imposing reasonable energy trends to correctly capture the transformation between elemental, solid solution, and compound phases, and by capturing exactly the experimental cohesive energies, lattice constants, and bulk moduli of all binary compounds. Verification tests indicate that our model correctly predicts crystalline growth of all binary compounds during molecular dynamics simulations of vapor deposition. Two stringent cases convincingly show that our potential is applicable for a variety of compound configurations involving all the six elements considered here. In the first case, we demonstrate a successful molecular dynamics simulation of crystalline growth of an alloyed (Cd0.28Zn0.68Hg0.04) (Te0.20Se0.18S0.62) compound on a ZnS substrate. In the second case, we demonstrate the predictive power of our model on defects, such as misfit dislocations, stacking faults, and subgrain nucleation, using a complex growth simulation of ZnS/CdSe/HgTe multilayers that also contain all the six elements considered here. Using CdTe as a case study, a comprehensive comparison of our potential with literature potentials is also made. Finally, we also propose unique insights for improving the Stillinger-Weber potential in future developments. C1 [Zhou, X. W.] Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA. [Ward, D. K.] Sandia Natl Labs, Radiat & Nucl Detect Mat & Anal Dept, Livermore, CA 94550 USA. [Martin, J. E.] Sandia Natl Labs, Nanoscale Sci Dept, Albuquerque, NM 87185 USA. [van Swol, F. B.] Sandia Natl Labs, Computat Mat & Data Sci Dept, Albuquerque, NM 87185 USA. [Cruz-Campa, J. L.] Sandia Natl Labs, MEMS Technol Dept, Albuquerque, NM 87185 USA. [Zubia, D.] Univ Texas El Paso, Dept Elect Engn, El Paso, TX 79968 USA. RP Zhou, XW (reprint author), Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA. EM xzhou@sandia.gov FU US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. This work was performed under a Laboratory Directed Research and Development (LDRD) project. NR 66 TC 19 Z9 19 U1 5 U2 65 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD AUG 9 PY 2013 VL 88 IS 8 AR 085309 DI 10.1103/PhysRevB.88.085309 PG 14 WC Physics, Condensed Matter SC Physics GA 198CT UT WOS:000322900100003 ER PT J AU Datar, VM Chakrabarty, DR Kumar, S Nanal, V Pastore, S Wiringa, RB Behera, SP Chatterjee, A Jenkins, D Lister, CJ Mirgule, ET Mitra, A Pillay, RG Ramachandran, K Roberts, OJ Rout, PC Shrivastava, A Sugathan, P AF Datar, V. M. Chakrabarty, D. R. Kumar, Suresh Nanal, V. Pastore, S. Wiringa, R. B. Behera, S. P. Chatterjee, A. Jenkins, D. Lister, C. J. Mirgule, E. T. Mitra, A. Pillay, R. G. Ramachandran, K. Roberts, O. J. Rout, P. C. Shrivastava, A. Sugathan, P. TI Electromagnetic Transition from the 4(+) to 2(+) Resonance in Be-8 Measured via the Radiative Capture in He-4+He-4 SO PHYSICAL REVIEW LETTERS LA English DT Article AB An earlier measurement on the 4(+) to 2(+) radiative transition in Be-8 provided the first electromagnetic signature of its dumbbell-like shape. However, the large uncertainty in the measured cross section does not allow a stringent test of nuclear structure models. This Letter reports a more elaborate and precise measurement for this transition, via the radiative capture in the He-4 + He-4 reaction, improving the accuracy by about a factor of 3. Ab initio calculations of the radiative transition strength with improved three-nucleon forces are also presented. The experimental results are compared with the predictions of the alpha cluster model and ab initio calculations. C1 [Datar, V. M.; Chakrabarty, D. R.; Kumar, Suresh; Behera, S. P.; Chatterjee, A.; Mirgule, E. T.; Mitra, A.; Ramachandran, K.; Rout, P. C.; Shrivastava, A.] Bhabha Atom Res Ctr, Div Nucl Phys, Bombay 400085, Maharashtra, India. [Datar, V. M.; Kumar, Suresh; Rout, P. C.] Homi Bhabha Natl Inst, Bombay 400094, Maharashtra, India. [Nanal, V.; Pillay, R. G.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Pastore, S.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Wiringa, R. B.; Lister, C. J.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Jenkins, D.; Roberts, O. J.] Univ York, Dept Phys, York Y010 5DD, N Yorkshire, England. [Sugathan, P.] Inter Univ Accelerator Ctr, New Delhi 110064, India. RP Datar, VM (reprint author), Bhabha Atom Res Ctr, Div Nucl Phys, Bombay 400085, Maharashtra, India. RI Wiringa, Robert/M-4970-2015; Pullanhiotan, Sugathan/C-4453-2017; Roberts, Oliver/N-6284-2016 OI Pullanhiotan, Sugathan/0000-0001-5773-2008; Roberts, Oliver/0000-0002-7150-9061 FU U.S. DOE Office of Nuclear Physics [DE-AC02-06CH11357]; U.S. NSF [PHY-1068305] FX We thank the Pelletron crew for delivering the 4He beam and R. Kujur and M. Pose for their help during the experiment. S. P. and R. B. W. wish to thank S. C. Pieper for valuable discussions. The work of C. J. L. and R. B. W. is supported by the U.S. DOE Office of Nuclear Physics under Contract No. DE-AC02-06CH11357; the work of S. P. is supported by the U.S. NSF under Grant No. PHY-1068305. NR 12 TC 21 Z9 22 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 9 PY 2013 VL 111 IS 6 AR 062502 DI 10.1103/PhysRevLett.111.062502 PG 5 WC Physics, Multidisciplinary SC Physics GA 198GK UT WOS:000322910200004 PM 23971569 ER PT J AU Ke, YQ Libisch, F Xia, JC Wang, LW Carter, EA AF Ke, Youqi Libisch, Florian Xia, Junchao Wang, Lin-Wang Carter, Emily A. TI Angular-Momentum-Dependent Orbital-Free Density Functional Theory SO PHYSICAL REVIEW LETTERS LA English DT Article ID TRANSFERABLE LOCAL PSEUDOPOTENTIALS; INITIO MOLECULAR-DYNAMICS; SIMULATIONS; EQUATIONS; ATOMS AB Orbital-free (OF) density functional theory (DFT) directly solves for the electron density rather than the wave function of many electron systems, greatly simplifying and enabling large scale first principles simulations. However, the required approximate noninteracting kinetic energy density functionals and local electron-ion pseudopotentials severely restrict the general applicability of conventional OFDFT. Here, we present a new generation of OFDFT called angular-momentum-dependent (AMD)-OFDFT to harness the accuracy of Kohn-Sham DFT and the simplicity of OFDFT. The angular momenta of electrons are explicitly introduced within atom-centered spheres so that the important ionic core region can be accurately described. In addition to conventional OF total energy functionals, we introduce a crucial nonlocal energy term with a set of AMD energies to correct errors due to the kinetic energy density functional and the local pseudopotential. We find that our AMD-OFDFT formalism offers substantial improvements over conventional OFDFT, as we show for various properties of the transition metal titanium. C1 [Ke, Youqi; Libisch, Florian; Xia, Junchao; Carter, Emily A.] Princeton Univ, Dept Mech & Aerosp Engn, Program Appl & Computat Math, Princeton, NJ 08544 USA. [Ke, Youqi; Libisch, Florian; Xia, Junchao; Carter, Emily A.] Princeton Univ, Andlinger Ctr Energy & Environm, Princeton, NJ 08544 USA. [Wang, Lin-Wang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Carter, EA (reprint author), Princeton Univ, Dept Mech & Aerosp Engn, Program Appl & Computat Math, Princeton, NJ 08544 USA. EM eac@princeton.edu RI Carter, Emily/P-4075-2014; OI Libisch, Florian/0000-0001-5641-9458 FU Office of Naval Research FX We gratefully acknowledge discussions with Dr. Chen Huang, Dr. Linda Hung, and Ilgyou Shin. Thanks to Dr. Mohan Chen and David B. Krisiloff for carefully reading the manuscript. This work is supported by the Office of Naval Research. We are grateful to Princeton University and DOD HPC for providing computational resources. NR 33 TC 14 Z9 14 U1 1 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 9 PY 2013 VL 111 IS 6 AR 066402 DI 10.1103/PhysRevLett.111.066402 PG 5 WC Physics, Multidisciplinary SC Physics GA 198GK UT WOS:000322910200007 PM 23971595 ER PT J AU Simutis, G Gvasaliya, S Mansson, M Chernyshev, AL Mohan, A Singh, S Hess, C Savici, AT Kolesnikov, AI Piovano, A Perring, T Zaliznyak, I Buchner, B Zheludev, A AF Simutis, G. Gvasaliya, S. Mansson, M. Chernyshev, A. L. Mohan, A. Singh, S. Hess, C. Savici, A. T. Kolesnikov, A. I. Piovano, A. Perring, T. Zaliznyak, I. Buechner, B. Zheludev, A. TI Spin Pseudogap in Ni-Doped SrCuO2 SO PHYSICAL REVIEW LETTERS LA English DT Article ID HEISENBERG ANTIFERROMAGNETIC CHAIN; DIMENSIONAL S=1/2 ANTIFERROMAGNET; DYNAMICS; LOCALIZATION; TRANSPORT; SYSTEMS; FIELD AB The S = 1/2 spin chain material SrCuO2 doped with 1% S = 1 Ni impurities is studied by inelastic neutron scattering. At low temperatures, the spectrum shows a pseudogap Delta approximate to 8 meV, absent in the parent compound, and not related to any structural phase transition. The pseudogap is shown to be a generic feature of quantum spin chains with dilute defects. A simple model based on this idea quantitatively accounts for the experimental data measured in the temperature range from 2 to 300 K, and allows us to represent the momentum-integrated dynamic structure factor in a universal scaling form. C1 [Simutis, G.; Gvasaliya, S.; Mansson, M.; Zheludev, A.] ETH, Solid State Phys Lab, CH-8093 Zurich, Switzerland. [Chernyshev, A. L.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Mohan, A.; Singh, S.; Hess, C.; Buechner, B.] Leibniz Inst Solid State & Mat Res IFW Dresden, D-01171 Dresden, Germany. [Savici, A. T.; Kolesnikov, A. I.] Oak Ridge Natl Lab, NScD, Oak Ridge, TN 37831 USA. [Piovano, A.] Inst Laue Langevin, F-38042 Grenoble 9, France. [Perring, T.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 OQX, Oxon, England. [Zaliznyak, I.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Buechner, B.] Tech Univ Dresden, Dept Phys, D-01069 Dresden, Germany. RP Simutis, G (reprint author), ETH, Solid State Phys Lab, CH-8093 Zurich, Switzerland. EM zhelud@ethz.ch RI Mansson, Martin/C-1134-2014; Zaliznyak, Igor/E-8532-2014; Hess, Christian/F-3170-2014; piovano, andrea/K-2376-2015; Savici, Andrei/F-2790-2013; Kolesnikov, Alexander/I-9015-2012; Buchner, Bernd/E-2437-2016 OI Mansson, Martin/0000-0002-3086-9642; Zaliznyak, Igor/0000-0002-9886-3255; Hess, Christian/0000-0002-8977-6811; piovano, andrea/0000-0002-5005-6307; Savici, Andrei/0000-0001-5127-8967; Kolesnikov, Alexander/0000-0003-1940-4649; Buchner, Bernd/0000-0002-3886-2680 FU Swiss National Fund through MANEP; Deutsche Forschungsgemeinschaft [FOR 912]; European Commission through the LOTHERM project [PITN-GA-2009-238475]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. DOE [DE-FG02-04ER46174]; U.S. DOE Office of Basic Energy Sciences [DE-AC02-98CH10886]; European Union under the Integrated Infrastructure Initiative for Neuron Scattering and Muon Spectroscopy (NMI3) FX Work at ETHZ was partially supported by the Swiss National Fund through MANEP. The work at IFW has been supported by the Deutsche Forschungsgemeinschaft (FOR 912) and the European Commission through the LOTHERM project (Project No. PITN-GA-2009-238475). Research conducted at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The work of A. L. C. was supported by the U.S. DOE under Award No. DE-FG02-04ER46174, and that of I. Z. by the U.S. DOE Office of Basic Energy Sciences under Award No. DE-AC02-98CH10886. We acknowledge support from the European Union under the Integrated Infrastructure Initiative for Neuron Scattering and Muon Spectroscopy (NMI3). A. Z. would like to thank D. Ivanov (ETHZ) for enlightening discussions. C. H. and B. B. thank H. Grafe, S. Nishimoto, and S.-L. Drechsler for discussions. NR 39 TC 16 Z9 16 U1 0 U2 33 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 9 PY 2013 VL 111 IS 6 AR 067204 DI 10.1103/PhysRevLett.111.067204 PG 5 WC Physics, Multidisciplinary SC Physics GA 198GK UT WOS:000322910200008 PM 23971608 ER PT J AU Abazov, VM Abbott, B Acharya, BS Adams, M Adams, T Alexeev, GD Alkhazov, G Alton, A Anikeev, VB Askew, A Atkins, S Augsten, K Avila, C Badaud, E Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Baringer, P Bartlett, JF Bassler, U Bazterra, V Bean, A Begalli, M Bellantoni, L Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bhat, PC Bhatia, S Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Boos, EE Borissov, G Brandt, A Brandt, O Brock, R Bross, A Brown, D Bu, XB Buehler, M Buescher, V Bunichev, V Burdin, S Buszello, CP Camacho-Perez, E Casey, BCK Castilla-Valdez, H Caughron, S Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapon, E Chen, G Cho, SW Choi, S Choudhary, B Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, E Cousinou, MC Cutts, D Das, A Davies, G de Jong, SJ De La Cruz-Burelo, E Deliot, E Demina, R Denisov, D Denisov, SP Desai, S Deterre, C DeVaughan, K Diehl, HT Diesburg, M Ding, PF Dominguez, A Dubey, A Dudko, LV Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Evans, H Evdokimov, VN Feng, L Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Garcia-Bellido, A Garcia-Gonzalez, JA Garcia-Guerra, GA Gavrilov, V Geng, W Gerber, CE Gershtein, Y Ginther, G Golovanov, G Grannis, PD Greder, S Greenlee, H Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guillemin, T Gutierrez, G Gutierrez, P Haley, J Han, L Harder, K Harel, A Hauptman, JM Hays, J Head, T Hebbeker, T Hedin, D Hegab, H Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hogan, J Hohlfeld, M Howley, I Hubacek, Z Hynek, V Iashvili, I Ilchenko, Y Illingworth, R Ito, AS Jabeen, S Jaffre, M Jayasinghe, A Jeong, MS Jesik, R Jiang, R Johns, K Johnson, E Johnson, M Jonckheere, A Jonsson, R Joshi, J Jung, AW Juste, A Kajfasz, E Karmanov, D Katsanos, I Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Kiselevich, I Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Lammers, S Lebrun, P Lee, HS Lee, SW Lee, WM Lei, X Lellouch, J Li, D Li, H Li, L Li, QZ Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, H Liu, Y Lobodenko, A Lokajicek, M de Sa, RL Luna-Garcia, R Lyon, AL Maciel, AKA Magana-Villalba, R Malik, S Malyshev, VL Mansour, J Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Miconi, F Mondal, NK Mulhearn, M Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nguyen, HT Nunnemann, T Orduna, J Osman, N Osta, J Padilla, M Pal, A Parashar, N Parihar, V Park, SK Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, Y Petridis, K Petrillo, G Petroff, P Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Popov, AV Prewitt, M Price, D Prokopenko, N Qian, J Quadt, A Quinn, B Rangel, MS Ratoff, PN Razumov, I Ripp-Baudo, I Rizatdinova, E Rominsky, M Ross, A Royon, C Rubinov, P Ruchti, R Sajot, G Salcido, P Sanchez-Hernandez, A Sanders, MP Santos, AS Savage, G Sawyer, L Scanlon, T Schamberger, RD Scheglov, Y Schellman, H Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shaw, S Shchukin, AA Shivpuri, RK Simak, V Skubic, P Slattery, P Smirnov, D Smith, KJ Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Soustruznik, K Stark, J Stoyanova, DA Strauss, M Suter, L Svoisky, P Titov, M Tokmenin, VV Trusov, V Tsai, YT Tsybychev, D Tuchming, B Tully, C Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verkheev, AY Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weichert, J Welty-Rieger, L White, A Wicke, D Williams, MRJ Wilson, GW Wobisch, M Wood, DR Wyatt, TR Xie, Y Yamada, R Yang, S Yasuda, T Yatsunenko, YA Ye, W Ye, Z Yin, H Yip, K Youn, SW Yu, JM Zennamo, J Zhao, TG Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Acharya, B. S. Adams, M. Adams, T. Alexeev, G. D. Alkhazov, G. Alton, A. Anikeev, V. B. Askew, A. Atkins, S. Augsten, K. Avila, C. Badaud, E. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Baringer, P. Bartlett, J. F. Bassler, U. Bazterra, V. Bean, A. Begalli, M. Bellantoni, L. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bhat, P. C. Bhatia, S. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Boos, E. E. Borissov, G. Brandt, A. Brandt, O. Brock, R. Bross, A. Brown, D. Bu, X. B. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Buszello, C. P. Camacho-Perez, E. Casey, B. C. K. Castilla-Valdez, H. Caughron, S. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chapon, E. Chen, G. Cho, S. W. Choi, S. Choudhary, B. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, E. Cousinou, M. -C. Cutts, D. Das, A. Davies, G. de Jong, S. J. De La Cruz-Burelo, E. Deliot, E. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Deterre, C. DeVaughan, K. Diehl, H. T. Diesburg, M. Ding, P. F. Dominguez, A. Dubey, A. Dudko, L. V. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Evans, H. Evdokimov, V. N. Feng, L. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Garcia-Bellido, A. Garcia-Gonzalez, J. A. Garcia-Guerra, G. A. Gavrilov, V. Geng, W. Gerber, C. E. Gershtein, Y. Ginther, G. Golovanov, G. Grannis, P. D. Greder, S. Greenlee, H. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guillemin, T. Gutierrez, G. Gutierrez, P. Haley, J. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Head, T. Hebbeker, T. Hedin, D. Hegab, H. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hogan, J. Hohlfeld, M. Howley, I. Hubacek, Z. Hynek, V. Iashvili, I. Ilchenko, Y. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jayasinghe, A. Jeong, M. S. Jesik, R. Jiang, R. Johns, K. Johnson, E. Johnson, M. Jonckheere, A. Jonsson, R. Joshi, J. Jung, A. W. Juste, A. Kajfasz, E. Karmanov, D. Katsanos, I. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Kiselevich, I. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Lammers, S. Lebrun, P. Lee, H. S. Lee, S. W. Lee, W. M. Lei, X. Lellouch, J. Li, D. Li, H. Li, L. Li, Q. Z. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, H. Liu, Y. Lobodenko, A. Lokajicek, M. de Sa, R. Lopes Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Magana-Villalba, R. Malik, S. Malyshev, V. L. Mansour, J. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Miconi, F. Mondal, N. K. Mulhearn, M. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nguyen, H. T. Nunnemann, T. Orduna, J. Osman, N. Osta, J. Padilla, M. Pal, A. Parashar, N. Parihar, V. Park, S. K. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, Y. Petridis, K. Petrillo, G. Petroff, P. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Popov, A. V. Prewitt, M. Price, D. Prokopenko, N. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ratoff, P. N. Razumov, I. Ripp-Baudo, I. Rizatdinova, E. Rominsky, M. Ross, A. Royon, C. Rubinov, P. Ruchti, R. Sajot, G. Salcido, P. Sanchez-Hernandez, A. Sanders, M. P. Santos, A. S. Savage, G. Sawyer, L. Scanlon, T. Schamberger, R. D. Scheglov, Y. Schellman, H. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shaw, S. Shchukin, A. A. Shivpuri, R. K. Simak, V. Skubic, P. Slattery, P. Smirnov, D. Smith, K. J. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Soustruznik, K. Stark, J. Stoyanova, D. A. Strauss, M. Suter, L. Svoisky, P. Titov, M. Tokmenin, V. V. Trusov, V. Tsai, Y. -T. Tsybychev, D. Tuchming, B. Tully, C. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verkheev, A. Y. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weichert, J. Welty-Rieger, L. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yamada, R. Yang, S. Yasuda, T. Yatsunenko, Y. A. Ye, W. Ye, Z. Yin, H. Yip, K. Youn, S. W. Yu, J. M. Zennamo, J. Zhao, T. G. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA D0 Collaboration TI Measurement of the differential cross sections for isolated direct photon pair production in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICS LETTERS B LA English DT Article ID TRANSVERSE-MOMENTUM; HIGGS-BOSON; 280 GEV/C; SEARCH; LHC; COLLIDER; DETECTOR AB We present measurements of direct photon pair production cross sections using 8.5 fb(-1) of data collected with the D0 detector at the Fermilab Tevatron p (p) over bar collider. The results are presented as differential distributions of the photon pair invariant mass d sigma/dM(gamma gamma), pair transverse momentum d sigma/dp(T)(gamma gamma) azimuthal angle between the photons d sigma/d Delta(phi)(gamma gamma), and polar scattering angle in the Collins-Soper frame d sigma/d vertical bar cos theta*vertical bar. Measurements are performed for isolated photons with transverse momenta p(T)(gamma) > 18 (17) GeV for the leading (next-to-leading) photon in P-T, pseudorapidities vertical bar eta(gamma)vertical bar < 0.9, and a separation in eta-phi space Delta R-gamma gamma > 0.4. We present comparisons with the predictions from Monte Carlo event generators DIPHOX and RESBOS implementing QCD calculations at next-to-leading order, 2 gamma NNLO at next-to-next-to-leading order, and SHERPA using matrix elements with higher-order real emissions matched to parton shower. (C) 2013 Elsevier B.V. All rights reserved. C1 [Maciel, A. K. A.; Rangel, M. S.; Santos, A. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Han, L.; Jiang, R.; Liu, Y.; Yang, S.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Augsten, K.; Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, E.; Gris, Ph.] Univ Clermont Ferrand, CNRS IN2P3, LPC, Clermont, France. [Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS IN2P3, LPSC, Inst Natl Polytech Grenoble, Grenoble, France. [Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Nagy, E.; Osman, N.] Aix Marseille Univ, CPPM, CNRS IN2P3, Marseille, France. [Grivaz, J. -F.; Guillemin, T.; Jaffre, M.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 06, LPNHE, Paris, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chapon, E.; Couderc, E.; Deliot, E.; Grohsjean, A.; Hubacek, Z.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France. [Greder, S.; Miconi, F.; Ripp-Baudo, I.] Univ Strasbourg, IPHC, CNRS, IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bernhard, R.] Univ Freiburg, Inst Phys, D-79106 Freiburg, Germany. [Brandt, O.; Deterre, C.; Hensel, C.; Mansour, J.; Meyer, J.; Peters, Y.; Quadt, A.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weichert, J.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Nunnemann, T.; Sanders, M. P.] Univ Munich, Munich, Germany. [Wicke, D.] Berg Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Choi, S.; Jeong, M. S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Garcia-Gonzalez, J. A.; Garcia-Guerra, G. A.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.; van Leeuwen, W. M.] NIKHEF H, NL-1009 DB Amsterdam, Netherlands. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.] Radboud Univ Nijmegen, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Verkheev, A. Y.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Kiselevich, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Anikeev, V. B.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Prokopenko, N.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Juste, A.] ICREA, Barcelona, Spain. [Juste, A.] IFAE, Barcelona, Spain. [Buszello, C. P.] Uppsala Univ, Uppsala, Sweden. [Trusov, V.] Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Ratoff, P. N.; Ross, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, R.; Scanlon, T.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Ding, P. F.; Harder, K.; Head, T.; Hesketh, G.; McGivern, C. L.; Petridis, K.; Schwanenberger, C.; Soeldner-Rembold, S.; Suter, L.; Vesterinen, M.; Wyatt, T. R.; Zhao, T. G.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Lei, X.; Nayyar, R.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Joshi, J.; Li, L.; Padilla, M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Hoang, T.; Lee, W. M.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Bu, X. B.; Buehler, M.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Jung, A. W.; Khalatyan, N.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Melnitchouk, A.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Savage, G.; Verzocchi, M.; Wang, M. H. L. S.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Yin, H.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Bazterra, V.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Eads, M.; Feng, L.; Fortner, M.; Hedin, D.; Menezes, D.; Salcido, P.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Schellman, H.; Welty-Rieger, L.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; Sawyer, L.; Sekaric, J.; Wilson, G. W.; Wobisch, M.] Univ Kansas, Lawrence, KS 66045 USA. [Atkins, S.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Barberis, E.; Haley, J.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Yu, J. M.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Brock, R.; Caughron, S.; Edmunds, D.; Fisher, W.; Geng, W.; Johnson, E.; Linnemann, J.; Schwienhorst, R.; Shaw, S.] Michigan State Univ, E Lansing, MI 48824 USA. [Bhatia, S.; Kraus, J.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Smith, K. J.; Zennamo, J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Tsai, Y. -T.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Hobbs, J. D.; de Sa, R. Lopes; McCarthy, R.; Schamberger, R. D.; Tsybychev, D.; Ye, W.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Patwa, A.; Pleier, M. -A.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Jayasinghe, A.; Severini, H.; Skubic, P.; Strauss, M.; Svoisky, P.] Univ Oklahoma, Norman, OK 73019 USA. [Hegab, H.; Khanov, A.; Rizatdinova, E.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Heintz, U.; Jabeen, S.; Narain, M.; Parihar, V.; Partridge, R.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; Howley, I.; Pal, A.; White, A.] Univ Texas Arlington, Arlington, TX 76019 USA. [Ilchenko, Y.; Kehoe, R.; Liu, H.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Hogan, J.; Orduna, J.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Hirosky, R.; Li, H.; Mulhearn, M.; Nguyen, H. T.] Univ Virginia, Charlottesville, VA 22904 USA. [Watts, G.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Shabalina, Elizaveta/M-2227-2013; Li, Liang/O-1107-2015; Dudko, Lev/D-7127-2012; Fisher, Wade/N-4491-2013; Santos, Angelo/K-5552-2012; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Lei, Xiaowen/O-4348-2014; Gutierrez, Phillip/C-1161-2011; Merkin, Mikhail/D-6809-2012 OI Li, Liang/0000-0001-6411-6107; Dudko, Lev/0000-0002-4462-3192; Sharyy, Viatcheslav/0000-0002-7161-2616; Lei, Xiaowen/0000-0002-2564-8351; FU DOE (USA); NSF (USA); CEA (France); CNRS/IN2P3 (France); MON, (Russia); NRC KI (Russia); RFBR (Russia); CNPq (Brazil); FAPERJ, (Brazil); FAPESP (Brazil); FUNDUNESP (Brazil); DAE (India); DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (The Netherlands); STEC; Royal Society (United Kingdom); MSMT (Czech Republic); GACR (Czech Republic); BMBF (Germany); DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS (China); CNSF (China) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); MON, NRC KI and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (The Netherlands); STEC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 47 TC 8 Z9 8 U1 0 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD AUG 9 PY 2013 VL 725 IS 1-3 BP 6 EP 14 DI 10.1016/j.physletb.2013.06.036 PG 9 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 194BU UT WOS:000322606800002 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Aguilo, E Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hammer, J Hormann, N Hrubec, J Jeitlerl, M Kiesenhofer, W Knunz, V Krammer, M Liko, D Mikulec, I Pernicka, M Rahbaran, B Rohringer, C Rohringer, H Schofbeck, R Strauss, J Taurok, A Waltenberger, W Walzel, G Widl, E Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Bansal, S Cornelis, T De Wolf, EA Janssen, X Luyckx, S Mucibello, L Ochesanu, S Roland, B Rougny, R Selvaggi, M Staykova, Z Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, E Blyweert, S D'Hondt, J Suarez, RG Kalogeropoulos, A Maes, M Olbrechts, A Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Clerbaux, B De Lentdecker, G Dero, V Gay, APR Hreus, T Leonard, A Marage, PE Mohammadi, A Reis, T Thomas, L Vander Velde, C Vanlaer, P Wang, J Adler, V Beernaert, K Cimmino, A Costantini, S Garcia, G Grunewald, M Klein, B Lellouch, J Marinov, A Mccartin, J Rios, AAO Ryckbosch, D Strobbe, N Thyssen, F Tytgat, M Verwilligen, P Walsh, S Yazgan, E Zaganidis, N Basegmez, S Bruno, G Castello, R Ceard, L Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Lemaitre, V Liao, J Militaru, O Nuttens, C Pagano, D Pin, A Piotrzkowski, K Schul, N Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alves, GA Martins, MC Damiao, DD Martins, T Pol, ME Souza, MHG Alda, WL Carvalho, W Custodio, A Da Costa, EM Martins, CD De Souza, SF Figueiredo, DM Mundim, L Nogima, H Oguri, V Da Silva, WLP Santoro, A Jorge, LS Sznajder, A Anjos, TS Bernardes, CA Dias, FA Tomei, TRFP Gregores, EM Lagana, C Marinho, F Mercadante, PG Novaes, SF Padula, SS Genchev, V Iaydjiev, P Piperov, S Rodozov, M Stoykova, S Sultanov, G Tcholakov, V Trayanov, R Vutova, M Dimitrov, A Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Meng, X Tao, J Wang, J Wang, X Wang, Z Xiao, H Xu, M Zang, J Zhang, Z Asawatangtrakuldee, C Ban, Y Guo, S Guo, Y Li, Q Li, W Liu, S Mao, Y Qian, SJ Wang, D Zhang, L Zhu, B Zou, W Avila, C Gomez, JP Moreno, BG Oliveros, AFO Sanabria, JC Godinovic, N Lelas, D Plestina, R Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Duric, S Kadija, K Luetic, J Morovic, S Attikis, A Galanti, M Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, E Razis, PA Finger, M Finger, M Assran, Y Elgammal, S Kamel, AE Mahmoud, MA Radi, A Kadastik, M Muntel, M Raidal, M Rebane, L Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Heikkinen, A Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Ungaro, D Wendland, L Banzuzi, K Karjalainen, A Korpela, A Tuuva, T Besancon, M Choudhury, S Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Millischer, L Nayak, A Rander, J Rosowsky, A Shreyber, I Titov, M Baffioni, S Beaudette, F Benhabib, L Bianchini, L Bluj, M Broutin, C Busson, P Charlot, C Daci, N Dahms, T Dobrzynski, L de Cassagnac, RG Haguenauer, M Mine, P Mironov, C Nguyen, M Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Veelken, C Zabi, A Agram, JL Andrea, J Bloch, D Bodin, D Brom, JM Cardaci, M Chabert, EC Collard, C Conte, E Drouhin, F Ferro, C Fontaine, JC Gele, D Goerlach, U Juillot, P Le Bihan, AC Van Hove, P Fassi, E Mercier, D Beauceron, S Beaupere, N Bondu, O Boudoul, G Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Sordini, V Tschudi, Y Verdier, P Viret, S Tsamalaidze, Z Anagnostou, G Beranek, S Edelhoff, M Feld, L Heracleous, N Hindrichs, O Jussen, R Klein, K Merz, J Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Wittmer, B Zhukov, V Ata, M Caudron, J Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Kreuzer, P Lingemann, J Magass, C Merschmeyer, M Meyer, A Olschewski, M Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Steggemann, J Teyssier, D Weber, M Bontenackels, M Cherepanov, V Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Nowack, A Perchalla, L Pooth, O Sauerland, P Stahl, A Martin, MA Behr, J Behrenhoff, W Behrens, U Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Castro, E Costanza, F Dammann, D Pardos, CD Eckerlin, G Eckstein, D Flucke, G Geiser, A Glushkov, I Gunnellini, P Habib, S Hauk, J Hellwig, G Jung, H Kasemann, M Katsas, P Kleinwort, C Kluge, H Knutsson, A Kramer, M Krucker, D Kuznetsova, E Lange, W Lohmann, W Lutz, B Mankel, R Marfin, I Marienfeld, M Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Naumann-Emme, S Olzem, J Perrey, H Petrukhin, A Pitzl, D Raspereza, A Cipriano, PMR Riedl, C Ron, E Rosin, M Salfeld-Nebgen, J Schmidt, R Schoerner-Sadenius, T Sen, N Spiridonov, A Stein, M Walsh, R Wissing, C Autermann, C Blobel, V Draeger, J Enderle, H Erfle, J Gebbert, U Gorner, M Hermanns, T Hoing, RS Kaschube, K Kaussen, G Kirschenmann, H Klanner, R Lange, J Mura, B Nowak, F Peiffer, T Pietsch, N Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Schroder, M Schum, T Seidel, M Sola, V Stadie, H Steinbruck, G Thomsen, J Vanelderen, L Barth, C Berger, J Boser, C Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Guthoff, M Hackstein, C Hartmann, F Hauth, T Heinrich, M Held, H Hoffmann, KH Honc, S Katkov, I Komaragiri, JR Pardo, PL Martschei, D Mueller, S Muller, T Niegel, M Nurnberg, A Oberst, O Oehler, A Ott, J Quast, G Rabbertz, K Ratnikov, F Ratnikova, N Rocker, S Scheurer, A Schilling, FP Schott, G Simonis, HJ Stober, FM Troendle, D Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Zeise, M Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Manolakos, I Markou, A Markou, C Mavrommatis, C Ntomari, E Gouskos, L Mertzimekis, TJ Panagiotou, A Saoulidou, N Evangelou, I Foudas, C Kokkas, P Manthos, N Papadopoulos, I Patras, V Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, E Veszpremi, V Vesztergombi, G Beni, N Czellar, S Molnar, J Palinkas, J Szillasi, Z Karancsi, J Raics, P Trocsanyi, ZL Ujvari, B Bansal, M Beri, SB Bhatnagar, V Dhingra, N Gupta, R Kaur, M Mehta, MZ Nishu, N Saini, LK Sharma, A Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Malhotra, S Naimuddin, M Ranjan, K Sharma, V Shivpuri, RK Banerjee, S Bhattacharya, S Dutta, S Gomber, B Jain, S Jain, S Khurana, R Sarkar, S Sharan, M Abdulsalam, A Choudhury, RK Dutta, D Kailas, S Kumar, V Mehta, P Mohanty, AK Pant, LM Shukla, P Aziz, T Ganguly, S Guchait, M Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Banerjee, S Dugad, S Arfaei, H Bakhshiansohi, H Etesami, SM Fahim, A Hashemi, M Hesari, H Jafari, A Khakzad, M Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Lusito, L Maggi, G Maggi, M Marangelli, B My, S Nuzzo, S Pacifico, N Pompili, A Pugliese, G Selvaggi, G Silvestris, L Singh, G Venditti, R Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Capiluppi, P Castro, A Cavallo, FR Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Meneghelli, AM Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, GP Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Gonzi, S Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Colafranceschi, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Tosi, S Benaglia, A De Guio, F Di Matteo, L Fiorendi, S Gennai, S Ghezzi, A Malvezzi, S Manzoni, RA Martelli, A Massironi, A Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N Sala, S de Fatis, TT Buontempo, S Montoya, CAC Cavallo, N De Cosa, A Dogangun, O Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Bisello, D Branca, A Carlin, R Checchia, P Dorigo, T Gasparini, F Gasparini, U Gozzelino, A Kanishchev, K Lacaprara, S Lazzizzera, I Margoni, M Meneguzzo, AT Pazzini, I Pegoraro, M Pozzobon, N Ronchese, P Simonetto, E Torassa, E Tosi, M Vanini, S Zotto, P Zumerle, G Gabusi, M Ratti, SP Riccardi, C Torre, P Vitulo, P Biasini, M Bilei, GM Fano, L Lariccia, P Lucaroni, A Mantovani, G Menichelli, M Nappi, A Romeo, E Saha, A Santocchia, A Spiezia, A Taroni, S Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R D'Agnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Kraan, A Ligabue, E Lomtadze, T Martini, L Messineo, A Palla, F Rizzi, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, E Del Re, D Diemoz, M Grassi, M Longo, E Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Sigamani, M Soffi, L Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Cartiglia, N Costa, M Dellacasa, G Demaria, N Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Potenza, A Romero, A Sacchi, R Solano, A Staiano, A Pereira, AV Belforte, S Candelise, V Cossutti, F Della Ricca, G Gobbo, B Marone, M Montanino, D Penzo, A Schizzi, A Heo, SG Kim, TY Nam, SK Chang, S Kim, DH Kim, GN Kong, DJ Park, H Ro, SR Son, DC Son, T Kim, JY Kim, ZJ Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, TJ Lee, KS Moon, DH Park, SK Choi, M Kim, JH Park, C Park, IC Park, S Ryu, G Cho, Y Choi, Y Choi, YK Goh, J Kim, MS Kwon, E Lee, B Lee, J Lee, S Seo, H Yu, I Bilinskas, MJ Grigelionis, I Janulis, M Juodagalvis, A Castilla-Valdez, H De La Cruz-Burelo, E Heredia-de La Cruz, I Lopez-Fernandez, R Villalba, RM Martinez-Ortega, J Sanchez-Hernandez, A Villasenor-Cendejas, LM Moreno, SC Valencia, EV Lbarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Krofcheck, D Bell, AJ Butler, PH Doesburg, R Reucroft, S Silverwood, H Ahmad, M Asghar, MI Hoorani, HR Khalid, S Khan, WA Khurshid, T Qazi, S Shah, MA Shoaib, M Bialkowska, H Boimska, B Frueboes, T Gokieli, R Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Almeida, N Bargassa, R David, A Faccioli, P Parracho, PGF Gallinaro, M Seixas, J Varela, J Vischia, P Bunin, R Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Konoplyanikov, V Kozlov, G Laney, A Malakhov, A Moisenz, P Palichik, V Perelygin, V Savina, M Shmatov, S Smirnov, V Volodko, A Zarubin, A Evstyukhin, S Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Matveev, V Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Erofeeva, M Gavrilov, V Kossov, M Lychkovskaya, N Popov, V Safronov, G Semenov, S Stolin, V Vlasov, E Zhokin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Markina, A Obraztsov, S Perfilov, M Petrushanko, S Popov, A Sarycheva, L Savrin, V Snigirev, A Azhgirey, I Bayshev, I Bitioukov, S Grishin, V Kachanov, V Konstantinov, D Korablev, A Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Ekmedzic, M Krpic, D Milosevic, J Aguilar-Benitez, M Maestre, JA Arce, P Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De La Cruz, B Peris, AD Vazquez, DD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G Pelayo, JP Olmeda, AQ Redondo, I Romero, L Santaolalla, J Soares, MS Willmott, C Albajar, C Codispoti, G de Troconiz, JF Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Gomez, JP Cifuentes, JAB Cabrillo, IJ Calderon, A Chuang, SH Campderros, JD Felcini, M Fernandez, M Gomez, G Sanchez, JG Graziano, A Jorda, C Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Sanudo, MS Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Baillon, P Ball, AH Barney, D Benitez, JF Bernet, C Bianchi, G Bloch, P Bocci, A Bonato, A Botta, C Breuker, H Camporesi, T Cerminara, G Christiansen, T Perez, JAC D'Enterria, D Dabrowski, A De Roeck, A Di Guida, S Dobson, M Dupont-Sagorin, N Elliott-Peisert, A Frisch, B Funk, W Georgiou, G Giffels, M Gigi, D Gill, K Giordano, D Giunta, M Glege, F Garrido, RGR Govoni, P Gowdy, S Guida, R Hansen, M Harris, P Hartl, C Harvey, J Hegner, B Hinzmann, A Innocente, V Janot, P Kaadze, K Karavakis, E Kousouris, K Lecoq, P Lee, YJ Lenzi, P Lourenco, C Maki, T Malberti, M Malgeri, L Mannelli, M Masetti, L Meijers, F Mersi, S Meschi, E Moser, R Mozer, MU Mulders, M Musella, P Nesvold, E Orimoto, T Orsini, L Cortezon, EP Perez, E Perrozzi, L Petrilli, A Pfeiffer, A Pierini, M Pimia, M Piparo, D Polese, G Quertenmont, L Racz, A Reece, W Antunes, JR Rolandi, G Rommerskirchen, T Rovelli, C Rovere, M Sakulin, H Santanastasio, F Schafer, C Schwick, C Segoni, I Sekmen, S Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Tsirou, A Veres, GI Vlimant, JR Wohri, HK Worm, SD Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Meier, F Renker, D Rohe, T Sibille, J Bani, L Bortignon, P Buchmann, MA Casal, B Chanon, N Deisher, A Dissertori, G Dittmar, M Dunser, M Eugster, J Freudenreich, K Grab, C Hits, D Lecomte, P Lustermann, W Marini, AC del Arbol, PMR Mohr, N Moortgat, E Nageli, C Nef, P Nessi-Tedaldi, F Pandolfi, F Pape, L Pauss, F Peruzzi, M Ronga, FJ Rossini, M Sala, L Sanchez, AK Starodumov, A Stieger, B Takahashi, M Tauscher, L Thea, A Theofilatos, K Treille, D Urscheler, C Wallny, R Weber, HA Wehrli, L Amsler, C Chiochia, V De Visscher, S Favaro, C Rikova, MI Mejias, BM Otiougova, P Robmann, P Snoek, H Tupputi, S Verzetti, M Chang, YH Chen, KH Kuo, CM Li, SW Lin, W Liu, ZK Lu, YJ Mekterovic, D Singh, AP Volpe, R Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Dietz, C Grundler, U Hou, WS Hsiung, Y Kao, KY Lei, YJ Lu, RS Majumder, D Petrakou, E Shi, X Shiu, JG Tzeng, YM Wan, X Wang, M Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Karaman, T Karapinar, G Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Vergili, LN Vergili, M Akin, IV Aliev, T Bilin, B Bilmis, S Deniz, M Gamsizkan, H Guler, AM Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yalvac, M Yildirim, E Zeyrek, M Gulmez, E Isildak, B Kaya, M Kaya, O Ozkorucuklu, S Sonmez, N Cankocak, K Levchuk, L Bostock, F Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Kreczko, L Metson, S Newbold, DM Nirunpong, K Poll, A Senkin, S Smith, VJ Williams, T Basso, L Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Jackson, J Kennedy, BW Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Bainbridge, R Ball, G Beuselinck, R Buchmuller, O Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Ferguson, W Fulcher, J Futyan, D Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Lyons, L Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Papageorgiou, A Pela, J Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rose, A Ryan, MJ Seez, C Sharp, P Sparrow, A Stoye, M Tapper, A Acosta, MV Virdee, T Wakefield, S Wardle, N Whyntie, T Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Hatakeyama, K Liu, H Scarborough, T Charaf, O Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Heister, A Lawson, P Lazic, D Rohlf, J Sperka, D St John, J Sulak, L Alimena, J Bhattacharya, S Cutts, D Ferapontov, A Heintz, U Jabeen, S Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Nguyen, D Segala, M Sinthuprasith, T Speer, T Tsang, KV Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Dolen, J Erbacher, R Gardner, M Houtz, R Ko, W Kopecky, A Lander, R Miceli, T Pellett, D Ricci-Tam, F Rutherford, B Searle, M Smith, J Squires, M Tripathi, M Sierra, RV Andreev, V Cline, D Cousins, R Duris, J Erhan, S Everaerts, P Farrell, C Hauser, J Ignatenko, M Jarvis, C Plager, C Rakness, G Schlein, P Valuev, V Weber, M Babb, J Clare, R Dinardo, ME Ellison, J Gary, JW Giordano, F Hanson, G Jeng, GY Liu, H Long, OR Luthra, A Nguyen, H Paramesvaran, S Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S Evans, D Golf, F Holzner, A Kelley, R Lebourgeois, M Letts, J Macneill, I Mangano, B Padhi, S Palmer, C Petrucciani, G Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Wasserbaech, S Wurthwein, F Yagil, A Yoo, J Barge, D Bellan, R Campagnari, C D'Alfonso, M Danielson, T Flowers, K Geffert, P Incandela, J Justus, C Kalavase, P Koay, SA Kovalskyi, D Krutelyov, V Lowette, S Mccoll, N Pavlunin, V Rebassoo, F Ribnik, J Richman, J Rossin, R Stuart, D To, W West, C Apresyan, A Bornheim, A Bunn, J Chen, Y Di Marco, E Duarte, J Gataullin, M Kcira, D Ma, Y Mott, A Newman, HB Rogan, C Spiropulu, M Timciuc, V Traczyk, R Veverka, J Wilkinson, R Yang, Y Zhu, RY Akgun, B Azzolini, V Carroll, R Ferguson, T Iiyama, Y Jang, DW Liu, YF Paulini, M Vogel, H Vorobiev, I Cumalat, JP Drell, BR Edelmaier, CJ Ford, WT Gaz, A Heyburn, B Lopez, EL Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Eggert, N Gibbons, LK Heltsley, B Khukhunaishvili, A Kreis, B Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Sun, W Teo, WD Thom, J Thompson, J Tucker, J Vaughan, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bloch, I Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gao, Y Green, D Gutsche, O Hanlon, J Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Kilminster, B Klima, B Kunori, S Kwan, S Leonidopoulos, C Linacre, J Lincoln, D Lipton, R Lykken, J Maeshima, K Marraffino, JM Maruyama, S Mason, D McBride, P Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Sexton-Kennedy, E Sharma, S Spalding, WJ Spiegel, L Tan, P Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yang, F Yumiceva, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Cheng, T Das, S De Gruttola, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fisher, M Fu, Y Furic, IK Gartner, J Hugon, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Remington, R Rinkevicius, A Sellers, P Skhirtladze, N Snowball, M Yelton, J Zakaria, M Gaultney, V Hewamanage, S Lebolo, LM Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Jenkins, M Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Dorney, B Hohlmann, M Kalakhety, H Vodopiyanov, I Adams, MR Anghel, IM Apanasevich, L Bai, Y Bazterra, VE Betts, RR Bucinskaite, I Callner, J Cavanaugh, R Dragoiu, C Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Lacroix, F Malek, M O'Brien, C Silkworth, C Strom, D Varelas, N Akgun, U Albayrak, EA Bilki, B Clarida, W Duru, F Griffiths, S Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Norbeck, E Onel, Y Ozok, F Sen, S Tiras, E Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Giurgiu, G Gritsan, AV Guo, ZJ Hu, G Maksimovic, P Rappoccio, S Swartz, M Whitbeck, A Baringer, P Bean, A Benelli, G Grachov, O Kenny, RP Murray, M Noonan, D Sanders, S Stringer, R Tinti, G Wood, JS Zhukova, V Barfuss, AF Bolton, T Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Shrestha, S Svintradze, I Gronberg, J Lange, D Wright, D Baden, A Boutemeur, M Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kirn, M Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Peterman, A Skuja, A Temple, J Tonjes, MB Tonwar, SC Twedt, E Apyan, A Bauer, G Bendavid, J Busza, W Butz, E Cali, IA Chan, M Dutta, V Ceballos, GG Goncharov, M Hahn, KA Kim, Y Klute, M Krajczar, K Li, W Luckey, PD Ma, T Nahn, S Paus, C Ralph, D Roland, C Roland, G Rudolph, M Stephans, GSF Stockli, F Sumorok, K Sung, K Velicanu, D Wenger, EA Wolf, R Wyslouch, B Xie, S Yang, M Yilmaz, Y Yoon, AS Zanetti, M Cooper, SI Dahmes, B De Benedetti, A Franzoni, G Gude, A Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Sasseville, M Singovsky, A Tambe, N Turkewitz, J Cremaldi, LM Kroeger, R Perera, L Rahmat, R Sanders, DA Avdeeva, E Bloom, K Bose, S Butt, J Claes, DR Dominguez, A Eads, M Keller, J Kravchenko, I Lazo-Flores, J Malbouisson, H Malik, S Snow, GR Baur, U Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Shipkowski, SP Smith, K Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Nash, D Trocino, D Wood, D Zhang, J Anastassov, A Kubik, A Mucia, N Odell, N Ofierzynski, RA Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Antonelli, L Berry, D Brinkerhoff, A Hildreth, M Jessop, C Karmgard, DJ Kolb, J Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Ruchti, R Slaunwhite, J Valls, N Wayne, M Wolf, M Bylsma, B Durkin, LS Hill, C Hughes, R Hughes, R Kotov, K Ling, TY Puigh, D Rodenburg, M Vuosalo, C Williams, G Winer, BL Adam, N Berry, E Elmer, P Gerbaudo, D Halyo, V Hebda, P Hegeman, J Hunt, A Jindal, P Pegna, DL Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Raval, A Safdi, B Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Acosta, JG Brownson, E Huang, XT Lopez, A Mendez, H Oliveros, S Vargas, JER Zatserklyaniy, A Alagoz, E Barnes, VE Benedetti, D Bolla, G Bortoletto, D De Mattia, M Everett, A Hu, Z Jones, M Koybasi, O Kress, M Laasanen, AT Leonardo, N Maroussov, V Merkel, P Miller, DH Neumeister, N Shipsey, I Silvers, D Svyatkovskiy, A Marono, MV Yoo, HD Zablocki, J Zheng, Y Guragain, S Parashar, N Adair, A Boulahouache, C Ecklund, KM Geurts, FJM Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Chung, YS Covarelli, R de Barbaro, P Demina, R Eshaq, Y Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Miner, DC Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Malik, S Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Lath, A Panwalkar, S Park, M Patel, R Rekovic, V Robles, J Rose, K Salur, S Schnetzer, S Seitz, C Somalwar, S Stone, R Thomas, S Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Safonov, A Sakuma, T Sengupta, S Suarez, I Tatarinov, A Toback, D Akchurin, N Damgov, J Dudero, PR Jeong, C Kovitanggoon, K Lee, SW Libeiro, T Roh, Y Volobouev, I Appelt, E Delannoy, AG Florez, C Greene, S Gurrola, A Johns, W Johnston, C Kurt, P Maguire, C Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Balazs, M Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Lin, C Neu, C Wood, J Yohay, R Gollapinni, S Harr, R Karchin, PE Don, CKK Lamichhane, P Sakharov, A Anderson, M Bachtis, M Belknap, DA Borrello, L Carlsmith, D Cepeda, M Dasu, S Friis, E Gray, L Grogg, KS Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Klukas, J Lanaro, A Lazaridis, C Leonard, J Loveless, R Mohapatra, A Ojalvo, I Palmonari, E Pierro, GA Ross, I Savin, A Smith, WH Swanson, J AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Aguilo, E. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hammer, J. Hoermann, N. Hrubec, J. Jeitlerl, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Liko, D. Mikulec, I. Pernicka, M. Rahbaran, B. Rohringer, C. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Waltenberger, W. Walzel, G. Widl, E. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Luyckx, S. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Selvaggi, M. Staykova, Z. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, E. Blyweert, S. D'Hondt, J. Suarez, R. Gonzalez Kalogeropoulos, A. Maes, M. Olbrechts, A. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Clerbaux, B. De Lentdecker, G. Dero, V. Gay, A. P. R. Hreus, T. Leonard, A. Marage, P. E. Mohammadi, A. Reis, T. Thomas, L. Vander Velde, C. Vanlaer, P. Wang, J. Adler, V. Beernaert, K. Cimmino, A. Costantini, S. Garcia, G. Grunewald, M. Klein, B. Lellouch, J. Marinov, A. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Strobbe, N. Thyssen, F. Tytgat, M. Verwilligen, P. Walsh, S. Yazgan, E. Zaganidis, N. Basegmez, S. Bruno, G. Castello, R. Ceard, L. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Lemaitre, V. Liao, J. Militaru, O. Nuttens, C. Pagano, D. Pin, A. Piotrzkowski, K. Schul, N. Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alves, G. A. Correa Martins Junior, M. De Jesus Damiao, D. Martins, T. Pol, M. E. Souza, M. H. G. Alda Junior, W. L. Carvalho, W. Custodio, A. Da Costa, E. M. De Oliveira Martins, C. Fonseca De Souza, S. Matos Figueiredo, D. Mundim, L. Nogima, H. Oguri, V. Prado Da Silva, W. L. Santoro, A. Soares Jorge, L. Sznajder, A. Anjos, T. S. Bernardes, C. A. Dias, F. A. Fernandez Perez Tomei, T. R. Gregores, E. M. Lagana, C. Marinho, F. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Genchev, V. Iaydjiev, P. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Tcholakov, V. Trayanov, R. Vutova, M. Dimitrov, A. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Meng, X. Tao, J. Wang, J. Wang, X. Wang, Z. Xiao, H. Xu, M. Zang, J. Zhang, Z. Asawatangtrakuldee, C. Ban, Y. Guo, S. Guo, Y. Li, Q. Li, W. Liu, S. Mao, Y. Qian, S. J. Wang, D. Zhang, L. Zhu, B. Zou, W. Avila, C. Gomez, J. P. Gomez Moreno, B. Osorio Oliveros, A. F. Sanabria, J. C. Godinovic, N. Lelas, D. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Duric, S. Kadija, K. Luetic, J. Morovic, S. Attikis, A. Galanti, M. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, E. Razis, P. A. Finger, M. Finger, M., Jr. Assran, Y. Elgammal, S. Kamel, A. Ellithi Mahmoud, M. A. Radi, A. Kadastik, M. Muentel, M. Raidal, M. Rebane, L. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Harkonen, J. Heikkinen, A. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Ungaro, D. Wendland, L. Banzuzi, K. Karjalainen, A. Korpela, A. Tuuva, T. Besancon, M. Choudhury, S. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Millischer, L. Nayak, A. Rander, J. Rosowsky, A. Shreyber, I. Titov, M. Baffioni, S. Beaudette, F. Benhabib, L. Bianchini, L. Bluj, M. Broutin, C. Busson, P. Charlot, C. Daci, N. Dahms, T. Dobrzynski, L. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Nguyen, M. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Veelken, C. Zabi, A. Agram, J. -L. Andrea, J. Bloch, D. Bodin, D. Brom, J. -M. Cardaci, M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Ferro, C. Fontaine, J. -C. Gele, D. Goerlach, U. Juillot, P. Le Bihan, A. -C. Van Hove, P. Fassi, E. Mercier, D. Beauceron, S. Beaupere, N. Bondu, O. Boudoul, G. Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Sordini, V. Tschudi, Y. Verdier, P. Viret, S. Tsamalaidze, Z. Anagnostou, G. Beranek, S. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Jussen, R. Klein, K. Merz, J. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Caudron, J. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Kreuzer, P. Lingemann, J. Magass, C. Merschmeyer, M. Meyer, A. Olschewski, M. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Steggemann, J. Teyssier, D. Weber, M. Bontenackels, M. Cherepanov, V. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Nowack, A. Perchalla, L. Pooth, O. Sauerland, P. Stahl, A. Martin, M. Aldaya Behr, J. Behrenhoff, W. Behrens, U. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Castro, E. Costanza, F. Dammann, D. Pardos, C. Diez Eckerlin, G. Eckstein, D. Flucke, G. Geiser, A. Glushkov, I. Gunnellini, P. Habib, S. Hauk, J. Hellwig, G. Jung, H. Kasemann, M. Katsas, P. Kleinwort, C. Kluge, H. Knutsson, A. Kraemer, M. Kruecker, D. Kuznetsova, E. Lange, W. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Marienfeld, M. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Naumann-Emme, S. Olzem, J. Perrey, H. Petrukhin, A. Pitzl, D. Raspereza, A. Cipriano, P. M. Ribeiro Riedl, C. Ron, E. Rosin, M. Salfeld-Nebgen, J. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Spiridonov, A. Stein, M. Walsh, R. Wissing, C. Autermann, C. Blobel, V. Draeger, J. Enderle, H. Erfle, J. Gebbert, U. Goerner, M. Hermanns, T. Hoeing, R. S. Kaschube, K. Kaussen, G. Kirschenmann, H. Klanner, R. Lange, J. Mura, B. Nowak, F. Peiffer, T. Pietsch, N. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Schroeder, M. Schum, T. Seidel, M. Sola, V. Stadie, H. Steinbrueck, G. Thomsen, J. Vanelderen, L. Barth, C. Berger, J. Boeser, C. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Guthoff, M. Hackstein, C. Hartmann, F. Hauth, T. Heinrich, M. Held, H. Hoffmann, K. H. Honc, S. Katkov, I. Komaragiri, J. R. Pardo, P. Lobelle Martschei, D. Mueller, S. Mueller, Th. Niegel, M. Nuernberg, A. Oberst, O. Oehler, A. Ott, J. Quast, G. Rabbertz, K. Ratnikov, F. Ratnikova, N. Roecker, S. Scheurer, A. Schilling, F. -P Schott, G. Simonis, H. J. Stober, F. M. Troendle, D. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Zeise, M. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Manolakos, I. Markou, A. Markou, C. Mavrommatis, C. Ntomari, E. Gouskos, L. Mertzimekis, T. J. Panagiotou, A. Saoulidou, N. Evangelou, I. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Patras, V. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, E. Veszpremi, V. Vesztergombi, G. Beni, N. Czellar, S. Molnar, J. Palinkas, J. Szillasi, Z. Karancsi, J. Raics, P. Trocsanyi, Z. L. Ujvari, B. Bansal, M. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Kaur, M. Mehta, M. Z. Nishu, N. Saini, L. K. Sharma, A. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Malhotra, S. Naimuddin, M. Ranjan, K. Sharma, V. Shivpuri, R. K. Banerjee, S. Bhattacharya, S. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Sarkar, S. Sharan, M. Abdulsalam, A. Choudhury, R. K. Dutta, D. Kailas, S. Kumar, V. Mehta, P. Mohanty, A. K. Pant, L. M. Shukla, P. Aziz, T. Ganguly, S. Guchait, M. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Arfaei, H. Bakhshiansohi, H. Etesami, S. M. Fahim, A. Hashemi, M. Hesari, H. Jafari, A. Khakzad, M. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Lusito, L. Maggi, G. Maggi, M. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pompili, A. Pugliese, G. Selvaggi, G. Silvestris, L. Singh, G. Venditti, R. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Capiluppi, P. Castro, A. Cavallo, F. R. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Meneghelli, A. M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. P. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Gonzi, S. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Colafranceschi, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Tosi, S. Benaglia, A. De Guio, F. Di Matteo, L. Fiorendi, S. Gennai, S. Ghezzi, A. Malvezzi, S. Manzoni, R. A. Martelli, A. Massironi, A. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. Sala, S. de Fatis, T. Tabarelli Buontempo, S. Montoya, C. A. Carrillo Cavallo, N. De Cosa, A. Dogangun, O. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dorigo, T. Gasparini, F. Gasparini, U. Gozzelino, A. Kanishchev, K. Lacaprara, S. Lazzizzera, I. Margoni, M. Meneguzzo, A. T. Pazzini, I. Pegoraro, M. Pozzobon, N. Ronchese, P. Simonetto, E. Torassa, E. Tosi, M. Vanini, S. Zotto, P. Zumerle, G. Gabusi, M. Ratti, S. P. Riccardi, C. Torre, P. Vitulo, P. Biasini, M. Bilei, G. M. Fano, L. Lariccia, P. Lucaroni, A. Mantovani, G. Menichelli, M. Nappi, A. Romeo, E. Saha, A. Santocchia, A. Spiezia, A. Taroni, S. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. D'Agnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Kraan, A. Ligabue, E. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Rizzi, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, E. Del Re, D. Diemoz, M. Grassi, M. Longo, E. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Sigamani, M. Soffi, L. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Cartiglia, N. Costa, M. Dellacasa, G. Demaria, N. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Potenza, A. Romero, A. Sacchi, R. Solano, A. Staiano, A. Pereira, A. Vilela Belforte, S. Candelise, V. Cossutti, F. Della Ricca, G. Gobbo, B. Marone, M. Montanino, D. Penzo, A. Schizzi, A. Heo, S. G. Kim, T. Y. Nam, S. K. Chang, S. Kim, D. H. Kim, G. N. Kong, D. J. Park, H. Ro, S. R. Son, D. C. Son, T. Kim, J. Y. Kim, Zero J. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, T. J. Lee, K. S. Moon, D. H. Park, S. K. Choi, M. Kim, J. H. Park, C. Park, I. C. Park, S. Ryu, G. Cho, Y. Choi, Y. Choi, Y. K. Goh, J. Kim, M. S. Kwon, E. Lee, B. Lee, J. Lee, S. Seo, H. Yu, I. Bilinskas, M. J. Grigelionis, I. Janulis, M. Juodagalvis, A. Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-de La Cruz, I. Lopez-Fernandez, R. Magana Villalba, R. Martinez-Ortega, J. Sanchez-Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Vazquez Valencia, E. Salazar Lbarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Reyes-Santos, M. A. Krofcheck, D. Bell, A. J. Butler, P. H. Doesburg, R. Reucroft, S. Silverwood, H. Ahmad, M. Asghar, M. I. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Qazi, S. Shah, M. A. Shoaib, M. Bialkowska, H. Boimska, B. Frueboes, T. Gokieli, R. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Almeida, N. Bargassa, R. David, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Seixas, J. Varela, J. Vischia, P. Bunin, R. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Konoplyanikov, V. Kozlov, G. Laney, A. Malakhov, A. Moisenz, P. Palichik, V. Perelygin, V. Savina, M. Shmatov, S. Smirnov, V. Volodko, A. Zarubin, A. Evstyukhin, S. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Matveev, V. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Erofeeva, M. Gavrilov, V. Kossov, M. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Stolin, V. Vlasov, E. Zhokin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Markina, A. Obraztsov, S. Perfilov, M. Petrushanko, S. Popov, A. Sarycheva, L. Savrin, V. Snigirev, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Grishin, V. Kachanov, V. Konstantinov, D. Korablev, A. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Ekmedzic, M. Krpic, D. Milosevic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Arce, P. Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Santaolalla, J. Soares, M. S. Willmott, C. Albajar, C. Codispoti, G. de Troconiz, J. F. Brun, H. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Piedra Gomez, J. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Chuang, S. H. Duarte Campderros, J. Felcini, M. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Graziano, A. Jorda, C. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Sobron Sanudo, M. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Baillon, P. Ball, A. H. Barney, D. Benitez, J. F. Bernet, C. Bianchi, G. Bloch, P. Bocci, A. Bonato, A. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa D'Enterria, D. Dabrowski, A. De Roeck, A. Di Guida, S. Dobson, M. Dupont-Sagorin, N. Elliott-Peisert, A. Frisch, B. Funk, W. Georgiou, G. Giffels, M. Gigi, D. Gill, K. Giordano, D. Giunta, M. Glege, F. Garrido, R. Gomez-Reino Govoni, P. Gowdy, S. Guida, R. Hansen, M. Harris, P. Hartl, C. Harvey, J. Hegner, B. Hinzmann, A. Innocente, V. Janot, P. Kaadze, K. Karavakis, E. Kousouris, K. Lecoq, P. Lee, Y. -J. Lenzi, P. Lourenco, C. Maeki, T. Malberti, M. Malgeri, L. Mannelli, M. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mozer, M. U. Mulders, M. Musella, P. Nesvold, E. Orimoto, T. Orsini, L. Cortezon, E. Palencia Perez, E. Perrozzi, L. Petrilli, A. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Polese, G. Quertenmont, L. Racz, A. Reece, W. Antunes, J. Rodrigues Rolandi, G. Rommerskirchen, T. Rovelli, C. Rovere, M. Sakulin, H. Santanastasio, F. Schaefer, C. Schwick, C. Segoni, I. Sekmen, S. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Tsirou, A. Veres, G. I. Vlimant, J. R. Woehri, H. K. Worm, S. D. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Meier, F. Renker, D. Rohe, T. Sibille, J. Baeni, L. Bortignon, P. Buchmann, M. A. Casal, B. Chanon, N. Deisher, A. Dissertori, G. Dittmar, M. Duenser, M. Eugster, J. Freudenreich, K. Grab, C. Hits, D. Lecomte, P. Lustermann, W. Marini, A. C. del Arbol, P. Martinez Ruiz Mohr, N. Moortgat, E. Naegeli, C. Nef, P. Nessi-Tedaldi, F. Pandolfi, F. Pape, L. Pauss, F. Peruzzi, M. Ronga, F. J. Rossini, M. Sala, L. Sanchez, A. K. Starodumov, A. Stieger, B. Takahashi, M. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Urscheler, C. Wallny, R. Weber, H. A. Wehrli, L. Amsler, C. Chiochia, V. De Visscher, S. Favaro, C. Rikova, M. Ivova Mejias, B. Millan Otiougova, P. Robmann, P. Snoek, H. Tupputi, S. Verzetti, M. Chang, Y. H. Chen, K. H. Kuo, C. M. Li, S. W. Lin, W. Liu, Z. K. Lu, Y. J. Mekterovic, D. Singh, A. P. Volpe, R. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Dietz, C. Grundler, U. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lu, R. -S. Majumder, D. Petrakou, E. Shi, X. Shiu, J. G. Tzeng, Y. M. Wan, X. Wang, M. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Karaman, T. Karapinar, G. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, L. N. Vergili, M. Akin, I. V. Aliev, T. Bilin, B. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yalvac, M. Yildirim, E. Zeyrek, M. Gulmez, E. Isildak, B. Kaya, M. Kaya, O. Ozkorucuklu, S. Sonmez, N. Cankocak, K. Levchuk, L. Bostock, F. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Kreczko, L. Metson, S. Newbold, D. M. Nirunpong, K. Poll, A. Senkin, S. Smith, V. J. Williams, T. Basso, L. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Jackson, J. Kennedy, B. W. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Bainbridge, R. Ball, G. Beuselinck, R. Buchmuller, O. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Lyons, L. Magnan, A. -M. Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Papageorgiou, A. Pela, J. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rose, A. Ryan, M. J. Seez, C. Sharp, P. Sparrow, A. Stoye, M. Tapper, A. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Whyntie, T. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Hatakeyama, K. Liu, H. Scarborough, T. Charaf, O. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Heister, A. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. St John, J. Sulak, L. Alimena, J. Bhattacharya, S. Cutts, D. Ferapontov, A. Heintz, U. Jabeen, S. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Nguyen, D. Segala, M. Sinthuprasith, T. Speer, T. Tsang, K. V. Breedon, R. Breto, G. Sanchez, M. Calderon De La Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Dolen, J. Erbacher, R. Gardner, M. Houtz, R. Ko, W. Kopecky, A. Lander, R. Miceli, T. Pellett, D. Ricci-Tam, F. Rutherford, B. Searle, M. Smith, J. Squires, M. Tripathi, M. Sierra, R. Vasquez Andreev, V. Cline, D. Cousins, R. Duris, J. Erhan, S. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Jarvis, C. Plager, C. Rakness, G. Schlein, P. Valuev, V. Weber, M. Babb, J. Clare, R. Dinardo, M. E. Ellison, J. Gary, J. W. Giordano, F. Hanson, G. Jeng, G. Y. Liu, H. Long, O. R. Luthra, A. Nguyen, H. Paramesvaran, S. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. Evans, D. Golf, F. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Macneill, I. Mangano, B. Padhi, S. Palmer, C. Petrucciani, G. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Wuerthwein, F. Yagil, A. Yoo, J. Barge, D. Bellan, R. Campagnari, C. D'Alfonso, M. Danielson, T. Flowers, K. Geffert, P. Incandela, J. Justus, C. Kalavase, P. Koay, S. A. Kovalskyi, D. Krutelyov, V. Lowette, S. Mccoll, N. Pavlunin, V. Rebassoo, F. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. West, C. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Di Marco, E. Duarte, J. Gataullin, M. Kcira, D. Ma, Y. Mott, A. Newman, H. B. Rogan, C. Spiropulu, M. Timciuc, V. Traczyk, R. Veverka, J. Wilkinson, R. Yang, Y. Zhu, R. Y. Akgun, B. Azzolini, V. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Liu, Y. F. Paulini, M. Vogel, H. Vorobiev, I. Cumalat, J. P. Drell, B. R. Edelmaier, C. J. Ford, W. T. Gaz, A. Heyburn, B. Lopez, E. Luiggi Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Eggert, N. Gibbons, L. K. Heltsley, B. Khukhunaishvili, A. Kreis, B. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Vaughan, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bloch, I. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Green, D. Gutsche, O. Hanlon, J. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Kilminster, B. Klima, B. Kunori, S. Kwan, S. Leonidopoulos, C. Linacre, J. Lincoln, D. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Maruyama, S. Mason, D. McBride, P. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Sexton-Kennedy, E. Sharma, S. Spalding, W. J. Spiegel, L. Tan, P. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yang, F. Yumiceva, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Cheng, T. Das, S. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Gartner, J. Hugon, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Remington, R. Rinkevicius, A. Sellers, P. Skhirtladze, N. Snowball, M. Yelton, J. Zakaria, M. Gaultney, V. Hewamanage, S. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Jenkins, M. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Dorney, B. Hohlmann, M. Kalakhety, H. Vodopiyanov, I. Adams, M. R. Anghel, I. M. Apanasevich, L. Bai, Y. Bazterra, V. E. Betts, R. R. Bucinskaite, I. Callner, J. Cavanaugh, R. Dragoiu, C. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Lacroix, F. Malek, M. O'Brien, C. Silkworth, C. Strom, D. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Clarida, W. Duru, F. Griffiths, S. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Norbeck, E. Onel, Y. Ozok, F. Sen, S. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Giurgiu, G. Gritsan, A. V. Guo, Z. J. Hu, G. Maksimovic, P. Rappoccio, S. Swartz, M. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Grachov, O. Kenny, R. P., III Murray, M. Noonan, D. Sanders, S. Stringer, R. Tinti, G. Wood, J. S. Zhukova, V. Barfuss, A. F. Bolton, T. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Shrestha, S. Svintradze, I. Gronberg, J. Lange, D. Wright, D. Baden, A. Boutemeur, M. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kirn, M. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Peterman, A. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Twedt, E. Apyan, A. Bauer, G. Bendavid, J. Busza, W. Butz, E. Cali, I. A. Chan, M. Dutta, V. Ceballos, G. Gomez Goncharov, M. Hahn, K. A. Kim, Y. Klute, M. Krajczar, K. Li, W. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Ralph, D. Roland, C. Roland, G. Rudolph, M. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Sung, K. Velicanu, D. Wenger, E. A. Wolf, R. Wyslouch, B. Xie, S. Yang, M. Yilmaz, Y. Yoon, A. S. Zanetti, M. Cooper, S. I. Dahmes, B. De Benedetti, A. Franzoni, G. Gude, A. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Sasseville, M. Singovsky, A. Tambe, N. Turkewitz, J. Cremaldi, L. M. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Avdeeva, E. Bloom, K. Bose, S. Butt, J. Claes, D. R. Dominguez, A. Eads, M. Keller, J. Kravchenko, I. Lazo-Flores, J. Malbouisson, H. Malik, S. Snow, G. R. Baur, U. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Shipkowski, S. P. Smith, K. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Nash, D. Trocino, D. Wood, D. Zhang, J. Anastassov, A. Kubik, A. Mucia, N. Odell, N. Ofierzynski, R. A. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Antonelli, L. Berry, D. Brinkerhoff, A. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Ruchti, R. Slaunwhite, J. Valls, N. Wayne, M. Wolf, M. Bylsma, B. Durkin, L. S. Hill, C. Hughes, R. Hughes, R. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Vuosalo, C. Williams, G. Winer, B. L. Adam, N. Berry, E. Elmer, P. Gerbaudo, D. Halyo, V. Hebda, P. Hegeman, J. Hunt, A. Jindal, P. Pegna, D. Lopes Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Raval, A. Safdi, B. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Acosta, J. G. Brownson, E. Huang, X. T. Lopez, A. Mendez, H. Oliveros, S. Vargas, J. E. Ramirez Zatserklyaniy, A. Alagoz, E. Barnes, V. E. Benedetti, D. Bolla, G. Bortoletto, D. De Mattia, M. Everett, A. Hu, Z. Jones, M. Koybasi, O. Kress, M. Laasanen, A. T. Leonardo, N. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Shipsey, I. Silvers, D. Svyatkovskiy, A. Marono, M. Vidal Yoo, H. D. Zablocki, J. Zheng, Y. Guragain, S. Parashar, N. Adair, A. Boulahouache, C. Ecklund, K. M. Geurts, F. J. M. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Chung, Y. S. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Miner, D. C. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Malik, S. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Lath, A. Panwalkar, S. Park, M. Patel, R. Rekovic, V. Robles, J. Rose, K. Salur, S. Schnetzer, S. Seitz, C. Somalwar, S. Stone, R. Thomas, S. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Safonov, A. Sakuma, T. Sengupta, S. Suarez, I. Tatarinov, A. Toback, D. Akchurin, N. Damgov, J. Dudero, P. R. Jeong, C. Kovitanggoon, K. Lee, S. W. Libeiro, T. Roh, Y. Volobouev, I. Appelt, E. Delannoy, A. G. Florez, C. Greene, S. Gurrola, A. Johns, W. Johnston, C. Kurt, P. Maguire, C. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Balazs, M. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Wood, J. Yohay, R. Gollapinni, S. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sakharov, A. Anderson, M. Bachtis, M. Belknap, D. A. Borrello, L. Carlsmith, D. Cepeda, M. Dasu, S. Friis, E. Gray, L. Grogg, K. S. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Leonard, J. Loveless, R. Mohapatra, A. Ojalvo, I. Palmonari, E. Pierro, G. A. Ross, I. Savin, A. Smith, W. H. Swanson, J. CA CMS Collaboration TI Searches for Higgs bosons in pp collisions at root s=7 and 8 TeV in the context of four-generation and fermiophobic models SO PHYSICS LETTERS B LA English DT Article DE CMS; Physics; Higgs ID STANDARD MODEL; E(+)E(-) COLLISIONS; MASSLESS PARTICLES; BROKEN SYMMETRIES; 4 GENERATIONS; 2 PHOTONS; LHC; DECAYS; PAIR; LEP AB Searches are reported for Higgs bosons in the context of either the standard model extended to include a fourth generation of fermions (SM4) with masses of up to 600 GeV or fermiophobic models. For the former, results from three decay modes (tau tau, WW, and ZZ) are combined, whilst for the latter the diphoton decay is exploited. The analysed proton-proton collision data correspond to integrated luminosities of up to 5.1 fb(-1) at 7 TeV and up to 5.3 fb(-1) at 8 TeV. The observed results exclude the SM4 Higgs boson in the mass range 110-600 GeV at 99% confidence level (CL), and in the mass range 110-560 GeV at 99.9% CL. A fermiophobic Higgs boson is excluded in the mass range 110-147 GeV at 95% CL, and in the range 110-133 GeV at 99% CL. The recently observed boson with a mass near 125 GeV is not consistent with either an SM4 or a fermiophobic Higgs boson. (C) 2013 CERN. Published by Elsevier B.V. All rights reserved. C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Hoermann, N.; Hrubec, J.; Jeitlerl, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Blekman, E.; Blyweert, S.; D'Hondt, J.; Suarez, R. Gonzalez; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Leonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Garcia, J. M. Vizan] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Correa Martins Junior, M.; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Alda Junior, W. L.; Carvalho, W.; Custodio, A.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Fernandez Perez Tomei, T. R.; Lagana, C.; Marinho, F.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Anjos, T. S.; Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.] Inst Nucl Energy Res, Sofia, Bulgaria. [Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Guo, S.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zhu, B.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, E.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Elgammal, S.; Kamel, A. Ellithi; Mahmoud, M. A.; Radi, A.] Egyptian Network High Energy Phys, Acad Sci Res & Technol Arab Republ Egypt, Cairo, Egypt. [Kadastik, M.; Muentel, M.; Raidal, M.; Rebane, L.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Heikkinen, A.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.] CEA Saclay, DSM, IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Agram, J. -L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Juillot, P.; Le Bihan, A. -C.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS IN2P3, Strasbourg, France. [Fassi, E.; Mercier, D.] CNRS, Ctr Calcul, Inst Natl Phys Nucl & Phys Particules, IN2P3, Villeurbanne, France. [Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatiz, GE-380086 Tbilisi, Rep of Georgia. [Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Lingemann, J.; Magass, C.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Weber, M.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bontenackels, M.; Cherepanov, V.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kuessel, Y.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Martin, M. Aldaya; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Pardos, C. Diez; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kraemer, M.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Cipriano, P. M. Ribeiro; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Autermann, C.; Blobel, V.; Draeger, J.; Enderle, H.; Erfle, J.; Gebbert, U.; Goerner, M.; Hermanns, T.; Hoeing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Mura, B.; Nowak, F.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schroeder, M.; Schum, T.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrueck, G.; Thomsen, J.; Vanelderen, L.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Berger, J.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Katkov, I.; Komaragiri, J. R.; Pardo, P. Lobelle; Martschei, D.; Mueller, S.; Mueller, Th.; Niegel, M.; Nuernberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Roecker, S.; Scheurer, A.; Schilling, F. -P; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.] Inst Expt Kernphys, Karlsruhe, Germany. [Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece. [Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Sphicas, P.] Univ Athens, Athens, Greece. [Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, E.; Veszpremi, V.; Vesztergombi, G.; Krajczar, K.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Bansal, M.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mehta, P.; Mohanty, A. K.; Pant, L. M.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Aziz, T.; Ganguly, S.; Guchait, M.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res, EHEP, Bombay 400005, Maharashtra, India. [Banerjee, S.; Guchait, M.; Dugad, S.] Tata Inst Fundamental Res, HECR, Bombay 400005, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Lusito, L.; Marangelli, B.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Selvaggi, G.; Singh, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, A. M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Meneghelli, A. M.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.] Univ Florence, Florence, Italy. [Fabbri, F.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Musenich, R.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Tosi, S.] Univ Genoa, Genoa, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Ghezzi, A.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Montoya, C. A. Carrillo; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [De Cosa, A.; Dogangun, O.; Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata Potenza, Naples, Italy. [Meola, S.] Univ G Marconi Roma, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Pazzini, I.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Simonetto, E.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bisello, D.; Branca, A.; Carlin, R.; Gasparini, F.; Gasparini, U.; Margoni, M.; Pazzini, I.; Pozzobon, N.; Ronchese, P.; Simonetto, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Univ Padua, Padua, Italy. [Kanishchev, K.; Lazzizzera, I.] Univ Trento Trento, Padua, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, E.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.; Pioppi, M.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Nappi, A.; Romeo, E.; Santocchia, A.; Spiezia, A.; Taroni, S.; Pioppi, M.] Univ Perugia, I-06100 Perugia, Italy. [Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, E.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Fiori, F.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Azzurri, P.; Broccolo, G.; D'Agnolo, R. T.; Foa, L.; Ligabue, E.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, E.; Del Re, D.; Diemoz, M.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Sigamani, M.; Soffi, L.; Rovelli, C.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Grassi, M.; Longo, E.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Rahatlou, S.; Soffi, L.; Rovelli, C.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Costa, M.; Dellacasa, G.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.; Staiano, A.; Pereira, A. Vilela] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Costa, M.; Migliore, E.; Monaco, V.; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Candelise, V.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; Marone, M.; Montanino, D.; Schizzi, A.] Univ Trieste, Trieste, Italy. [Heo, S. G.; Kim, T. Y.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Chang, S.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D. C.; Son, T.; Kamon, T.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, J. Y.; Kim, Zero J.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.] Korea Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Cho, Y.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.] Vilnius Univ, Vilnius, Lithuania. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Magana Villalba, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, E.] Univ Iberoamer, Mexico City, DF, Mexico. [Salazar Lbarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Asghar, M. I.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bluj, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Gokieli, R.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.] Univ Warsaw, Fac Phys, Inst Expt Phys, Warsaw, Poland. [Almeida, N.; Bargassa, R.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Bunin, R.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Laney, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Zhukov, V.; Katkov, I.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Popov, A.; Sarycheva, L.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.] CIEMAT, E-28040 Madrid, Spain. [Albajar, C.; Codispoti, G.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Genchev, V.; Iaydjiev, P.; Puljak, I.; Chierici, R.; Tsamalaidze, Z.; Guthoff, M.; Hauth, T.; Foudas, C.; Hajdu, C.; Sharma, A.; Mohanty, G. B.; Calabria, C.; De Filippis, N.; Fasanella, D.; Meneghelli, A. M.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; D'Enterria, D.; Dabrowski, A.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Giunta, M.; Glege, F.; Garrido, R. Gomez-Reino; Govoni, P.; Gowdy, S.; Guida, R.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lee, Y. -J.; Lenzi, P.; Lourenco, C.; Maeki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Musella, P.; Nesvold, E.; Orimoto, T.; Orsini, L.; Cortezon, E. Palencia; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Antunes, J. Rodrigues; Rolandi, G.; Rommerskirchen, T.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schaefer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Woehri, H. K.; Worm, S. D.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Baeni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Duenser, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Mohr, N.; Moortgat, E.; Naegeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.] ETH, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Rikova, M. Ivova; Mejias, B. Millan; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.] Univ Zurich, Zurich, Switzerland. [Chang, Y. H.; Chen, K. H.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Singh, A. P.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Chang, Y. H.; Bartalini, P.; Chang, P.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Karapinar, G.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, L. N.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey. [Cankocak, K.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.] Natl Sci Ctr, Kharkov Inst Phys & Technol, Kharkov, Ukraine. [Bostock, F.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Belyaev, A.; Worm, S. D.; Newbold, D. M.; Basso, L.; Bell, K. W.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.] Univ London Imperial Coll Sci Technol & Med, London, England. [Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Hatakeyama, K.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; St John, J.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Bhattacharya, S.; Alimena, J.; Cutts, D.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Miceli, T.; Pellett, D.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez] Univ Calif Davis, Davis, CA 95616 USA. [Weber, M.; Andreev, V.; Felcini, M.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA USA. [Liu, H.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wuerthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dias, F. A.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Kcira, D.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Traczyk, R.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Akgun, B.; Azzolini, V.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Gaz, A.; Heyburn, B.; Lopez, E. Luiggi; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kilminster, B.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Remington, R.; Rinkevicius, A.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; Malek, M.; O'Brien, C.; Silkworth, C.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL USA. [Ozturk, S.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Griffiths, S.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Onel, Y.; Ozok, F.; Sen, S.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD USA. [Sibille, J.; Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Zhukova, V.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Boutemeur, M.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.] Univ Maryland, College Pk, MD 20742 USA. [Li, W.; Apyan, A.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Kim, Y.; Klute, M.; Krajczar, K.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Xie, S.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.] MIT, Cambridge, MA 02139 USA. [Cooper, S. I.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.] Univ Mississippi, University, MS 38677 USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malbouisson, H.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Baur, U.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Shipkowski, S. P.; Smith, K.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Anastassov, A.; Kubik, A.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Antonelli, L.; Berry, D.; Brinkerhoff, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Pegna, D. Lopes; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Raval, A.; Safdi, B.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Acosta, J. G.; Brownson, E.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Vargas, J. E. Ramirez; Zatserklyaniy, A.] Univ Puerto Rico, Mayaguez, PR USA. [Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Marono, M. Vidal; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Guragain, S.; Parashar, N.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Malik, S.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.] Rutgers State Univ, Piscataway, NJ USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Damgov, J.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Roh, Y.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Delannoy, A. G.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Johnston, C.; Kurt, P.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Yohay, R.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sakharov, A.] Wayne State Univ, Detroit, MI USA. [Anderson, M.; Bachtis, M.; Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Palmonari, E.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.] Univ Wisconsin, Madison, WI 53706 USA. [Fabjan, C.; Fruehwirth, R.; Jeitlerl, M.; Krammer, M.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Giammanco, A.] NICPB, Tallinn, Estonia. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Elgammal, S.] Zewail City Sci & Technol, Zewail, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Radi, A.] British Univ Egypt, Cairo, Egypt. [Agram, J. -L.; Conte, E.; Drouhin, F.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Bakhshiansohi, H.; Fahim, A.; Jafari, A.] Sharif Univ Technol, Tehran, Iran. [Etesami, S. M.; Zeinali, M.] Isfahan Univ Technol, Esfahan, Iran. [Safarzadeh, B.] Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Meola, S.] Univ Guglielmo Marconi, Rome, Italy. [Martini, L.] Univ Siena, I-53100 Siena, Italy. [Serban, A. T.] Univ Bucharest, Fac Phys, Bucharest, Romania. [Rolandi, G.] Scuola Normale Super Pisa, Pisa, Italy. [Rolandi, G.] Sezione Ist Nazl Fis Nucl, Pisa, Italy. [Bakirci, M. N.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey. [Sonmez, N.] Ege Univ, Izmir, Turkey. [Belyaev, A.; Basso, L.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Jeng, G. Y.] Univ Sydney, Sydney, NSW 2006, Australia. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. RP Alverson, G (reprint author), Northeastern Univ, Boston, MA 02115 USA. EM George.Alverson@cern.ch RI Oguri, Vitor/B-5403-2013; Janssen, Xavier/E-1915-2013; Novaes, Sergio/D-3532-2012; Bartalini, Paolo/E-2512-2014; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Wulz, Claudia-Elisabeth/H-5657-2011; Codispoti, Giuseppe/F-6574-2014; Tinti, Gemma/I-5886-2013; Montanari, Alessandro/J-2420-2012; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; Calderon, Alicia/K-3658-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Arce, Pedro/L-1268-2014; Josa, Isabel/K-5184-2014; Calvo Alamillo, Enrique/L-1203-2014; Paulini, Manfred/N-7794-2014; Vogel, Helmut/N-8882-2014; Ferguson, Thomas/O-3444-2014; Benussi, Luigi/O-9684-2014; Leonidov, Andrey/P-3197-2014; vilar, rocio/P-8480-2014; Liu, Sheng/K-2815-2013; Zhukov, Valery/K-3615-2013; Venturi, Andrea/J-1877-2012; Wimpenny, Stephen/K-8848-2013; Markina, Anastasia/E-3390-2012; Dudko, Lev/D-7127-2012; Dermenev, Alexander/M-4979-2013; Tinoco Mendes, Andre David/D-4314-2011; Marlow, Daniel/C-9132-2014; de Jesus Damiao, Dilson/G-6218-2012; Lokhtin, Igor/D-7004-2012; Petrushanko, Sergey/D-6880-2012; Hill, Christopher/B-5371-2012; Fassi, Farida/F-3571-2016; Menasce, Dario Livio/A-2168-2016; Bargassa, Pedrame/O-2417-2016; Rolandi, Luigi (Gigi)/E-8563-2013; Sguazzoni, Giacomo/J-4620-2015; Ligabue, Franco/F-3432-2014; Bedoya, Cristina/K-8066-2014; My, Salvatore/I-5160-2015; Matorras, Francisco/I-4983-2015; Ragazzi, Stefano/D-2463-2009; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Azarkin, Maxim/N-2578-2015; Flix, Josep/G-5414-2012; Dahms, Torsten/A-8453-2015; da Cruz e Silva, Cristovao/K-7229-2013; Grandi, Claudio/B-5654-2015; Bernardes, Cesar Augusto/D-2408-2015; Raidal, Martti/F-4436-2012; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Stahl, Achim/E-8846-2011; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Hernandez Calama, Jose Maria/H-9127-2015; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Gerbaudo, Davide/J-4536-2012; Della Ricca, Giuseppe/B-6826-2013; Tomei, Thiago/E-7091-2012; Dubinin, Mikhail/I-3942-2016; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Seixas, Joao/F-5441-2013; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Mundim, Luiz/A-1291-2012; Haj Ahmad, Wael/E-6738-2016; Xie, Si/O-6830-2016 OI Novaes, Sergio/0000-0003-0471-8549; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Codispoti, Giuseppe/0000-0003-0217-7021; Montanari, Alessandro/0000-0003-2748-6373; Cerrada, Marcos/0000-0003-0112-1691; Scodellaro, Luca/0000-0002-4974-8330; Arce, Pedro/0000-0003-3009-0484; Calvo Alamillo, Enrique/0000-0002-1100-2963; Paulini, Manfred/0000-0002-6714-5787; Vogel, Helmut/0000-0002-6109-3023; Ferguson, Thomas/0000-0001-5822-3731; Benussi, Luigi/0000-0002-2363-8889; Wimpenny, Stephen/0000-0003-0505-4908; Dudko, Lev/0000-0002-4462-3192; Tinoco Mendes, Andre David/0000-0001-5854-7699; de Jesus Damiao, Dilson/0000-0002-3769-1680; Hill, Christopher/0000-0003-0059-0779; Tricomi, Alessia Rita/0000-0002-5071-5501; Fassi, Farida/0000-0002-6423-7213; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Ghezzi, Alessio/0000-0002-8184-7953; bianco, stefano/0000-0002-8300-4124; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235; Ciulli, Vitaliano/0000-0003-1947-3396; Fiorendi, Sara/0000-0003-3273-9419; Martelli, Arabella/0000-0003-3530-2255; Gonzi, Sandro/0000-0003-4754-645X; Levchenko, Petr/0000-0003-4913-0538; Di Matteo, Leonardo/0000-0001-6698-1735; Baarmand, Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Bargassa, Pedrame/0000-0001-8612-3332; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Safdi, Benjamin R./0000-0001-9531-1319; Lloret Iglesias, Lara/0000-0002-0157-4765; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Sguazzoni, Giacomo/0000-0002-0791-3350; Ligabue, Franco/0000-0002-1549-7107; Diemoz, Marcella/0000-0002-3810-8530; Bedoya, Cristina/0000-0001-8057-9152; My, Salvatore/0000-0002-9938-2680; Matorras, Francisco/0000-0003-4295-5668; Ragazzi, Stefano/0000-0001-8219-2074; Rovelli, Tiziano/0000-0002-9746-4842; TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; Flix, Josep/0000-0003-2688-8047; Dahms, Torsten/0000-0003-4274-5476; Grandi, Claudio/0000-0001-5998-3070; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Stahl, Achim/0000-0002-8369-7506; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Faccioli, Pietro/0000-0003-1849-6692; Gallinaro, Michele/0000-0003-1261-2277; Tabarelli de Fatis, Tommaso/0000-0001-6262-4685; Lenzi, Piergiulio/0000-0002-6927-8807; Raval, Amita/0000-0003-0164-4337; Torassa, Ezio/0000-0003-2321-0599; Sogut, Kenan/0000-0002-9682-2855; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Gerbaudo, Davide/0000-0002-4463-0878; Vieira de Castro Ferreira da Silva, Pedro Manuel/0000-0002-5725-041X; Bean, Alice/0000-0001-5967-8674; Longo, Egidio/0000-0001-6238-6787; Della Ricca, Giuseppe/0000-0003-2831-6982; Tomei, Thiago/0000-0002-1809-5226; Dubinin, Mikhail/0000-0002-7766-7175; Paganoni, Marco/0000-0003-2461-275X; Gulmez, Erhan/0000-0002-6353-518X; Seixas, Joao/0000-0002-7531-0842; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Mundim, Luiz/0000-0001-9964-7805; Haj Ahmad, Wael/0000-0003-1491-0446; Xie, Si/0000-0003-2509-5731 FU BMWF (Austria); FWF (Austria); FNRS (Belgium); FWO (Belgium); CNPq, (Brazil); CAPES, (Brazil); FAPERJ, (Brazil); FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS (China); MoST, (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, (Estonia) [SF0690030s09]; ERDF (Estonia); Academy of Finland; MEC, (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF, (Germany); DFG, (Germany); HGF (Germany); GSRT (Greece); OTKA (Hungary); NKTH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Republic of Korea); WCU (Republic of Korea); LAS (Lithuania); CINVESTAV (Mexico); CONACYT, (Mexico); SEP, (Mexico); UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE (Poland); NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, (Russia); RosAtom, (Russia); RAS (Russia); RFBR (Russia); MSTD (Serbia); SEIDI (Spain); CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, (Thailand); IPST (Thailand); NSTDA (Thailand); TUBITAK (Turkey); TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE (USA); NSF (USA); Marie-Curie programme; European Research Council (European Union); Leventis Foundation; A.P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of Czech Republic; Council of Science and Industrial Research, India; Compagnia di San Paolo (Torino); HOMING PLUS programme of Foundation for Polish Science; European Union, Regional Development Fund FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); and the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund. NR 67 TC 9 Z9 9 U1 2 U2 118 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD AUG 9 PY 2013 VL 725 IS 1-3 BP 36 EP 59 DI 10.1016/j.physletb.2013.06.043 PG 24 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 194BU UT WOS:000322606800005 ER PT J AU Aad, G Abajyan, T Abbott, B Abdallah, J Khalek, SA Abdelalim, AA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Addy, TN Adelman, J Adomeit, S Adye, T Aefsky, S Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akesson, TPA Akimoto, G Akimov, AV Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Allbrooke, BMM Allison, LJ Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alonso, F Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Ammosov, VV Dos Santos, SPA Amorim, A Amoroso, S Amram, N Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Anger, P Angerami, A Anghinolfi, F Anisenkov, A Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Arfaoui, S Arguin, JF Argyropoulos, S Arik, E Arik, M Armbruster, AJ Arnaez, O Arnal, V Artamonov, A Artoni, G Arutinov, D Asai, S Asbah, N Ask, S Asman, B Asquith, L Assamagan, K Astalos, R Astbury, A Atkinson, M Auerbach, B Auge, E Augsten, K Aurousseau, M Avolio, G Axen, D Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, S Balek, P Balli, F Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartsch, V Basye, A Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Bauer, F Bawa, HS Beale, S Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernat, P Bernhard, R Bernius, C Bernlochner, FU Berry, T Bertella, C Bertolucci, F Besana, MI Besjes, GJ Besson, N Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bittner, B Black, CW Black, JE Black, KM Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blocki, J Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boek, TT Boelaert, N Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Bolnet, NM Bomben, M Bona, M Boonekamp, M Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Bouchami, J Boudreau, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Branchini, P Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Bremer, J Brendlinger, K Brenner, R Bressler, S Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Broggi, F Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brown, G de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchanan, J Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Bugge, L Bulekov, O Bundock, AC Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Buscher, V Bussey, P Buszello, CP Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, AA Carter, JR Carvalho, TJ Casadei, D Casado, MP Cascella, M Caso, C Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Cataldi, G Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, B Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chan, K Chang, P Chapleau, B Chapman, JD Chapman, JW Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, X Chen, Y Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Choudalakis, G Chouridou, S Chow, BKB Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirilli, M Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Clemens, JC Clement, B Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Colas, J Cole, S Colijn, AP Collins, NJ Collins-Tooth, C Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Courneyea, L Cowan, G Cox, BE Cranmer, K Crepe-Renaudin, S Crescioli, F Cristinziani, M Crosetti, G Cuciuc, CM Almenar, CC Donszelmann, TC Cummings, J Curatolo, M Curtis, CJ Cuthbert, C Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dallaire, F Dallapiccola, C Dam, M Damiani, DS Daniells, AC Danielsson, HO Dao, V Darbo, G Darlea, GL Darmora, S Dassoulas, JA Davey, W Davidek, T Davidson, N Davies, E Davies, M Davignon, O Davison, AR Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S de Graat, J De Groot, N de Jong, P De la Taille, C De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV De Zorzi, G Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Degenhardt, J Del Peso, J Del Prete, T Delemontex, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demilly, A Demirkoz, B Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Donato, C Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dinut, F Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobos, D Dobson, E Dodd, J Doglioni, C Doherty, T Dohmae, T Doi, Y Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donini, J Dopke, J Doria, A Dos Anjos, A Dotti, A Dova, MT Doyle, AT Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Duda, D Dudarev, A Dudziak, F Duflot, L Dufour, MA Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Duxfield, R Dwuznik, M Ebenstein, WL Ebke, J Eckweiler, S Edson, W Edwards, CA Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Engelmann, R Engl, A Epp, B Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Facini, G Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Ferencei, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filthaut, E Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, J Fisher, MJ Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Bustos, ACF Flowerdew, MJ Martin, TF Formica, A Forti, A Fortin, D Fournier, D Fowler, AJ Fox, H Francavilla, P Franchini, M Franchino, S Francis, D Franklin, M Franz, S Fraternali, M Fratina, S French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gadatsch, S Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Gan, KK Gandrajula, RP Gao, YS Gaponenko, A Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gillman, AR Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giuliani, C Giunta, M Gjelsten, BK Gkialas, I Gladilin, LK Glasman, C Glatzer, J Glazov, A Glonti, GL Goddard, JR Godfrey, J Godlewski, J Goebel, M Goeringer, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramstad, E Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenshaw, T Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gunther, J Guo, B Guo, J Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hadavand, HK Haefner, P Hajduk, Z Hakobyan, H Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Han, L Hanagaki, K Hanawa, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hard, AS Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayakawa, T Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Herbert, GH Hernandez, CM Jimenez, YH Herrberg, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hofmann, JI Hohlfeld, M Holmgren, SO Holzbauer, JL Hong, TM van Huysduynen, LH Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Hu, D Hubacek, Z Hubaut, F Huegging, F Huettmann, A Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikematsu, K Ikeno, M Iliadis, D Ilic, N Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Jantsch, A Janus, M Jared, RC Jarlskog, G Jeanty, L Jeng, GY Jen-La Plante, I Jennens, D Jenni, P Jeske, C Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Joram, C Jorge, PM Joshi, KD Jovicevic, J Jovin, T Ju, X Jung, CA Jungst, RM Jussel, P Rozas, AJ Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kajomovitz, E Kalinin, S Kama, S Kanaya, N Kaneda, M Kaneti, S Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karnevskiy, M Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Keener, PT Kehoe, R Keil, M Keller, JS Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kitamura, T Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klinkby, EB Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kodys, P Koenig, S Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohn, F Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Koneke, K Konig, AC Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotv, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretzschmar, J Kreutzfeldt, K Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MK Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Lablak, S Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laier, H Laisne, E Lambourne, L Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, C Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Larner, A Lassnig, M Laurelli, P Lavorini, V Lavrijsen, W Laycock, P Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Legger, F Leggett, C Lehmacher, M Miotto, GL Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Lepold, F Leroy, C Lessard, JR Lester, CG Lester, CM Leveque, J Levin, D Levinson, LJ Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, S Li, X Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Limper, M Lin, SC Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, D Liu, JB Liu, K Liu, L Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loevschall-Jensen, AE Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, RE Lopes, L Mateos, DL Lorenz, J Martinez, NL Losada, M Loscutoff, P Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Lukas, W Luminari, L Lund, E Lundberg, B Lundberg, J Lundberg, O Lund-Jensen, B Lundquist, J Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macek, B Miguens, JM Macina, D Mackeprang, R Madar, R Madaras, RJ Maddocks, HJ Mader, WF Madsen, A Maeno, M Maeno, T Magnoni, L Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, V Malyukov, S Mamuzic, J Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marroquim, F Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, JP Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Matsunaga, H Matsushita, T Mattig, P Mattig, S Mattravers, C Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazur, M Mazzaferro, L Mazzanti, M Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meehan, S Meera-Lebbai, R Meguro, T Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Navas, LM Mengarelli, A Menke, S Meoni, E Mercurio, KM Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Meyer, J Michal, S Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Moya, MM Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitrevski, J Mitsou, VA Mitsui, S Miyagawa, PS Mjornmark, JU Moa, T Moeller, V Mohapatra, S Mohr, W Moles-Valls, R Molfetas, A Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Herrera, CM Moraes, A Morange, N Morel, J Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Moritz, S Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, N Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, T Mueller, T Muenstermann, D Munwes, Y Quijada, JAM Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Napier, A Narayan, R Nash, M Nattermann, T Naumann, T Navarro, G Neal, HA Nechaeva, PY Neep, TJ Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neusiedl, A Neves, RM Nevski, P Newcomer, FM Newman, PR Nguyen, DH Hong, VNT Nickerson, RB Nicolaidou, R Nicquevert, B Niedercorn, F Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Novakova, J Nozaki, M Nozka, L Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E O'Brien, BJ O'Neil, DC O'Shea, V Oakes, LB Oakham, FG Oberlack, H Ocariz, J Ochi, A Ochoa, MI Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Ouyang, Q Ovcharoya, A Owen, M Owen, S Ozcan, VE Ozturk, N Pages, AP Aranda, CP Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Paleari, CP Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Papadelis, A Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pashapour, S Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, M Lopez, SP Morales, MIP Peleganchuk, SV Pelikan, D Peng, H Penning, B Penson, A Penwell, J Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Piec, SM Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pizio, C Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Poblaguev, A Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Polychronakos, V Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Prabhu, R Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Pretzl, K Price, D Price, J Price, LE Prieur, D Primavera, M Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Prudent, X Przybycien, M Przysiezniak, H Psoroulas, S Ptacek, E Pueschel, E Puldon, D Purohit, M Puzo, P Pylypchenko, Y Qian, J Quadt, A Quarrie, DR Quayle, WB Quilty, D Raas, M Radeka, V Radescu, V Radloff, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Rammes, M Randle-Conde, AS Randrianarivony, K Rangel-Smith, C Rao, K Rauscher, F Rave, TC Ravenscroft, T Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reinsch, A Reisinger, I Relich, M Rembser, C Ren, ZL Renaud, A Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richter, R Richter-Was, E Ridel, M Rieck, P Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Ritsch, E Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A de Lima, JGR Roda, C Dos Santos, DR Roe, A Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Romeo, G Adam, ER Rompotis, N Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosenbaum, GA Rosendahl, PL Rosenthal, O Rosselet, L Rossetti, V Rossi, E Rossi, LP Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Ruckstuhl, N Rud, VI Rudoph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rumyantsev, L Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ruzicka, P Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Saddique, A Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salek, D Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarrazin, B Sarri, F Sartisohn, G Sasaki, O Sasaki, Y Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Sawyer, C Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scannicchio, DA Scarcella, M Schaarschmidt, J Schacht, P Schaefer, D Schaelicke, A Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, C Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schultens, MJ Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Scutti, F Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, R Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Sherwood, P Shimizu, S Shimojima, M Shin, T Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Sicho, P Sidoti, A Siegert, F Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skottowe, HP Skovpen, K Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, KM Smizanska, M Smolek, K Snesarev, AA Snidero, G Snow, J Snyder, S Sobie, R Sodomka, J Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Solovyev, V Soni, N Sood, A Sopko, V Sopko, B Sosebee, M Soualah, R Soueid, P Soukharev, A South, D Spagnolo, S Spano, F Spighi, R Spigo, G Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Staude, A Stavina, P Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoerig, K Stoicea, G Stonjek, S Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Stugu, B Stumer, I Stupak, J Sturm, P Styles, NA Su, D Subramania, HS Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Tackmann, K Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, A Tam, JYC Tamsett, MC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tani, K Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teinturier, M Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tic, T Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomlinson, L Tomoto, M Tompkins, L Toms, K Tonoyan, A Topfel, C Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Triplett, N Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tudorache, A Tudorache, V Tuggle, JM Tuna, AN Turala, M Turecek, D Cakir, IT Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tzanakos, G Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Urbaniec, D Urquijo, P Usai, G Vacavant, L Vacek, V Vachon, B Vahsen, S Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Berg, R Van der Deijl, PC van der Geer, R van der Graaf, H Van der Leeuw, R van der Ster, D van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I Vanadia, M Vandelli, W Vaniachine, A Vankov, P Vannucci, F Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Schroeder, TV Veloso, F Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Virzi, J Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Vykydal, Z Wagner, W Wagner, P Wahlen, H Wahrmund, S Wakabayashi, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watanabe, I Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, MS Webster, JS Weidberg, AR Weigell, P Weingarten, J Weiser, C Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Wetter, J Whalen, K White, A White, MJ White, R White, S Whitehead, SR Whiteson, D Whittington, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, R Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Williams, S Willis, W Willocq, S Wilson, JA Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wittig, T Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wong, WC Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wraight, K Wright, M Wrona, B Wu, SL Wu, X Wu, Y Wuf, E Wynne, BM Xella, S Xiao, M Xie, S Xu, C Xu, D Xu, L Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamaguchi, Y Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, H Yang, UK Yang, Y Yang, Z Yanush, S Yao, L Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yen, AL Yildirim, E Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, D Yu, DR Yu, J Yu, J Yuan, L Yurkewicz, A Zabinski, B Zaidan, R Zaitsev, AM Zambito, S Zanello, L Zanzi, D Zaytsev, A Zeitnitz, C Zeman, M Zemla, A Zenin, O Zenis, T Zerwas, D della Porta, GZ Zhang, D Zhang, H Zhang, J Zhang, L Zhang, X Zhang, Z Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhuravlov, V Zibell, A Zieminska, D Zimin, NI Zimmermann, C Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abajyan, T. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdelalim, A. A. Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Addy, T. N. Adelman, J. Adomeit, S. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alonso, F. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Amaral Coutinho, Y. Amelung, C. Ammosov, V. V. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amram, N. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angelidakis, S. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Arfaoui, S. Arguin, J-F Argyropoulos, S. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asbah, N. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Astbury, A. Atkinson, M. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Avolio, G. Axen, D. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagiacchi, P. Bagnaia, P. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, S. Balek, P. Balli, F. Banas, E. Banerjee, P. Banerjee, Sw Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartsch, V. Basye, A. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Bauer, F. Bawa, H. S. Beale, S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernat, P. Bernhard, R. Bernius, C. Bernlochner, F. U. Berry, T. Bertella, C. Bertolucci, F. Besana, M. I. Besjes, G. J. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bittner, B. Black, C. W. Black, J. E. Black, K. M. Blair, R. E. Blanchard, J-B Blazek, T. Bloch, I. Blocker, C. Blocki, J. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boek, T. T. Boelaert, N. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bomben, M. Bona, M. Boonekamp, M. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Branchini, P. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Bremer, J. Brendlinger, K. Brenner, R. Bressler, S. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Broggi, F. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brown, G. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchanan, J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Bugge, L. Bulekov, O. Bundock, A. C. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Buescher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byszewski, M. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cameron, D. Caminada, L. M. Caminal Armadans, R. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, A. A. Carter, J. R. Carvalho, T. J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Castaneda-Miranda, E. Castelli, A. Castillo Gimenez, V. Castro, N. F. Cataldi, G. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavaliere, V. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chan, K. Chang, P. Chapleau, B. Chapman, J. D. Chapman, J. W. Charlton, D. G. Chavda, V. Barajas, C. A. Chavez Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, X. Chen, Y. Cheng, Y. Cheplakov, A. Cherkaoui El Moursli, R. Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiarella, V. Chiefari, G. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Choudalakis, G. Chouridou, S. Chow, B. K. B. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Cirilli, M. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Clemens, J. C. Clement, B. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Coggeshall, J. Colas, J. Cole, S. Colijn, A. P. Collins, N. J. Collins-Tooth, C. Collot, J. Colombo, T. Colon, G. Compostella, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Courneyea, L. Cowan, G. Cox, B. E. Cranmer, K. Crepe-Renaudin, S. Crescioli, F. Cristinziani, M. Crosetti, G. Cuciuc, C-M Almenar, C. Cuenca Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Curtis, C. J. Cuthbert, C. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dallaire, F. Dallapiccola, C. Dam, M. Damiani, D. S. Daniells, A. C. Danielsson, H. O. Dao, V. Darbo, G. Darlea, G. L. Darmora, S. Dassoulas, J. A. Davey, W. Davidek, T. Davidson, N. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De la Taille, C. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie De Zorzi, G. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Degenhardt, J. Del Peso, J. Del Prete, T. Delemontex, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demilly, A. Demirkoz, B. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dinut, F. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Do Valle Wemans, A. Doan, T. K. O. Dobos, D. Dobson, E. Dodd, J. Doglioni, C. Doherty, T. Dohmae, T. Doi, Y. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dotti, A. Dova, M. T. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Duda, D. Dudarev, A. Dudziak, F. Duflot, L. Dufour, M-A Duguid, L. Duehrssen, M. Dunford, M. Yildiz, H. Duran Dueren, M. Duxfield, R. Dwuznik, M. Ebenstein, W. L. Ebke, J. Eckweiler, S. Edson, W. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Engelmann, R. Engl, A. Epp, B. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Curull, X. Espinal Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Facini, G. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Ferencei, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filthaut, E. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, J. Fisher, M. J. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Bustos, A. C. Florez Flowerdew, M. J. Martin, T. Fonseca Formica, A. Forti, A. Fortin, D. Fournier, D. Fowler, A. J. Fox, H. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gadatsch, S. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Gan, K. K. Gandrajula, R. P. Gao, Y. S. Gaponenko, A. Walls, F. M. Garay Garberson, F. Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gillman, A. R. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giuliani, C. Giunta, M. Gjelsten, B. K. Gkialas, I. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glonti, G. L. Goddard, J. R. Godfrey, J. Godlewski, J. Goebel, M. Goeringer, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Graber, L. Grabowska-Bold, I. Grafstroem, P. Grahn, K-J Gramstad, E. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenshaw, T. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J-F Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gunther, J. Guo, B. Guo, J. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hadavand, H. K. Haefner, P. Hajduk, Z. Hakobyan, H. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hard, A. S. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayakawa, T. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Herbert, G. H. Hernandez, C. M. Hernandez Jimenez, Y. Herrberg, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hofmann, J. I. Hohlfeld, M. Holmgren, S. O. Holzbauer, J. L. Hong, T. M. van Huysduynen, L. Hooft Hostachy, J-Y Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S-C Hu, D. Hubacek, Z. Hubaut, F. Huegging, F. Huettmann, A. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikematsu, K. Ikeno, M. Iliadis, D. Ilic, N. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Jantsch, A. Janus, M. Jared, R. C. Jarlskog, G. Jeanty, L. Jeng, G-Y Jen-La Plante, I. Jennens, D. Jenni, P. Jeske, C. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Joram, C. Jorge, P. M. Joshi, K. D. Jovicevic, J. Jovin, T. Ju, X. Jung, C. A. Jungst, R. M. Jussel, P. Juste Rozas, A. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalinin, S. Kama, S. Kanaya, N. Kaneda, M. Kaneti, S. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karnevskiy, M. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Keener, P. T. Kehoe, R. Keil, M. Keller, J. S. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kitamura, T. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Kluge, E-E Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koenig, S. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Koeneke, K. Koenig, A. C. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotv, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretzschmar, J. Kreutzfeldt, K. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. K. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Lablak, S. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laier, H. Laisne, E. Lambourne, L. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larner, A. Lassnig, M. Laurelli, P. Lavorini, V. Lavrijsen, W. Laycock, P. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Lepold, F. Leroy, C. Lessard, J-R Lester, C. G. Lester, C. M. Leveque, J. Levin, D. Levinson, L. J. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, S. Li, X. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, D. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Lukas, W. Luminari, L. Lund, E. Lundberg, B. Lundberg, J. Lundberg, O. Lund-Jensen, B. Lundquist, J. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Macina, D. Mackeprang, R. Madar, R. Madaras, R. J. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, M. Maeno, T. Magnoni, L. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. Malyukov, S. Mamuzic, J. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Manhaes de Andrade Filho, L. Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marroquim, F. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, J. P. Martin, T. A. Martin, V. J. Latour, B. Martin dit Martinez, H. Martinez, M. Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Matsunaga, H. Matsushita, T. Maettig, P. Maettig, S. Mattravers, C. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazur, M. Mazzaferro, L. Mazzanti, M. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meehan, S. Meera-Lebbai, R. Meguro, T. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Navas, L. Mendoza Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P Meyer, J. Meyer, J. Michal, S. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano Moya, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Mjoernmark, J. U. Moa, T. Moeller, V. Mohapatra, S. Mohr, W. Moles-Valls, R. Molfetas, A. Moenig, K. Monini, C. Monk, J. Monnier, E. Montejo Berlingen, J. Monticelli, F. Monzani, S. Moore, R. W. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Moreno, D. Moreno Llacer, M. Morettini, P. Morgenstern, M. Morii, M. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moeser, N. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Mueller, T. Muenstermann, D. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Napier, A. Narayan, R. Nash, M. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neusiedl, A. Neves, R. M. Nevski, P. Newcomer, F. M. Newman, P. R. Nguyen, D. H. Hong, V. Nguyen Thi Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Niedercorn, F. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Novakova, J. Nozaki, M. Nozka, L. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. O'Brien, B. J. O'Neil, D. C. O'Shea, V. Oakes, L. B. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Ochoa, M. I. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Ouyang, Q. Ovcharoya, A. Owen, M. Owen, S. Ozcan, V. E. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Paleari, C. P. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Papadelis, A. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pashapour, S. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedersen, M. Pedraza Lopez, S. Morales, M. I. Pedraza Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penson, A. Penwell, J. Cavalcanti, T. Perez Codina, E. Perez Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Piec, S. M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pizio, C. Pleier, M-A Pleskot, V. Plotnikova, E. Plucinski, P. Poblaguev, A. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Polychronakos, V. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Portell Bueso, X. Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Prabhu, R. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Prudent, X. Przybycien, M. Przysiezniak, H. Psoroulas, S. Ptacek, E. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Quadt, A. Quarrie, D. R. Quayle, W. B. Quilty, D. Raas, M. Radeka, V. Radescu, V. Radloff, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Rammes, M. Randle-Conde, A. S. Randrianarivony, K. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reinsch, A. Reisinger, I. Relich, M. Rembser, C. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richter, R. Richter-Was, E. Ridel, M. Rieck, P. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Ritsch, E. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Roe, A. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romeo, G. Romero Adam, E. Rompotis, N. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosenbaum, G. A. Rosendahl, P. L. Rosenthal, O. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Ruckstuhl, N. Rud, V. I. Rudoph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rumyantsev, L. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ruzicka, P. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Saddique, A. Sadeh, I. Sadrozinski, H. F-W Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salek, D. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarrazin, B. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, Y. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Sawyer, C. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaelicke, A. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schultens, M. J. Schultes, J. Schultz-Coulon, H-C Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwartzman, A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, R. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Sherwood, P. Shimizu, S. Shimojima, M. Shin, T. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sidoti, A. Siegert, F. Sijacki, Dj Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjoelin, J. Sjursen, T. B. Skinnari, L. A. Skottowe, H. P. Skovpen, K. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snow, J. Snyder, S. Sobie, R. Sodomka, J. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Solovyev, V. Soni, N. Sood, A. Sopko, V. Sopko, B. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. South, D. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Staude, A. Stavina, P. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoerig, K. Stoicea, G. Stonjek, S. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Styles, N. A. Su, D. Subramania, H. S. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. Tam, J. Y. C. Tamsett, M. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tani, K. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teinturier, M. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Tonoyan, A. Topfel, C. Topilin, N. D. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Triplett, N. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J-W Tsuno, S. Tsybychev, D. Tua, A. Tudorache, A. Tudorache, V. Tuggle, J. M. Tuna, A. N. Turala, M. Turecek, D. Cakir, I. Turk Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Urbaniec, D. Urquijo, P. Usai, G. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. Van Berg, R. Van der Deijl, P. C. van der Geer, R. van der Graaf, H. Van der Leeuw, R. van der Ster, D. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. Vanadia, M. Vandelli, W. Vaniachine, A. Vankov, P. Vannucci, F. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Schroeder, T. Vazquez Veloso, F. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, W. Wagner, P. Wahlen, H. Wahrmund, S. Wakabayashi, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watanabe, I. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, M. S. Webster, J. S. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Wetter, J. Whalen, K. White, A. White, M. J. White, R. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, R. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Williams, S. Willis, W. Willocq, S. Wilson, J. A. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wittig, T. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wong, W. C. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wraight, K. Wright, M. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wuf, E. Wynne, B. M. Xella, S. Xiao, M. Xie, S. Xu, C. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamaguchi, Y. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, U. K. Yang, Y. Yang, Z. Yanush, S. Yao, L. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yen, A. L. Yildirim, E. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. Yu, D. R. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zambito, S. Zanello, L. Zanzi, D. Zaytsev, A. Zeitnitz, C. Zeman, M. Zemla, A. Zenin, O. Zenis, T. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, H. Zhang, J. Zhang, L. Zhang, X. Zhang, Z. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhuravlov, V. Zibell, A. Zieminska, D. Zimin, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Measurement with the ATLAS detector of multi-particle azimuthal correlations in p plus Pb collisions at root s(NN)=5.02 TeV SO PHYSICS LETTERS B LA English DT Article ID PROTON-PROTON COLLISIONS; ANGULAR-CORRELATIONS; PPB COLLISIONS; ELLIPTIC FLOW; LONG-RANGE; SIDE; LHC AB In order to study further the long-range correlations ("ridge") observed recently in p + Pb collisions at root s(NN) = 5.02 TeV, the second-order azimuthal anisotropy parameter of charged particles, v(2), has been measured with the cumulant method using the ATLAS detector at the LHC. In a data sample corresponding to an integrated luminosity of approximately 1 mu b(-1), the parameter v(2) has been obtained using two- and four-particle cumulants over the pseudorapidity range vertical bar eta vertical bar < 2.5. The results are presented as a function of transverse momentum and the event activity, defined in terms of the transverse energy summed over 3.1 < eta < 4.9 in the direction of the Pb beam. They show features characteristic of collective anisotropic flow, similar to that observed in Pb + Pb collisions. A comparison is made to results obtained using two-particle correlation methods, and to predictions from hydrodynamic models of p + Pb collisions. Despite the small transverse spatial extent of the p + Pb collision system, the large magnitude of v(2) and its similarity to hydrodynamic predictions provide additional evidence for the importance of final-state effects in p + Pb reactions. (C) 2013 CERN. Published by Elsevier B.V. All rights reserved. C1 [Jackson, P.; Soni, N.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA, Australia. [Edson, W.; Ernst, J.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Chan, K.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Sbrizzi, A.; Subramania, H. S.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Maeno, M.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Zitoun, R.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Maeno, M.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Zitoun, R.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Feng, E. J.; Fernando, W.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Loch, P.; Paleari, C. P.; Ruehr, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Hernandez, C. M.; Nilsson, P.; Ozturk, N.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Huseynov, N.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Portell Bueso, X.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Portell Bueso, X.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Portell Bueso, X.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.] ICREA, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Sijacki, Dj; Simic, Lj] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Cirkovic, P.; Jovin, T.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Bach, A. M.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Cerri, A.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Ovcharoya, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Bach, A. M.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Cerri, A.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Ovcharoya, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Aliev, M.; Kuutmann, E. Bergeaas; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Nikiforov, A.; Rieck, P.; Schulz, H.; Wendland, D.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Ancu, L. S.; Battaglia, A.; Borer, C.; Cervelli, A.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Sciacca, F. G.; Topfel, C.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Ancu, L. S.; Battaglia, A.; Borer, C.; Cervelli, A.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Sciacca, F. G.; Topfel, C.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Collins, N. J.; Curtis, C. J.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Mahout, G.; Mclaughlan, T.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, E.; Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Bellagamba, L.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Giacobbe, B.; Grafstroem, P.; Jha, M. K.; Mengarelli, A.; Monzani, S.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bindi, M.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Grafstroem, P.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Romano, M.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, Bologna, Italy. [Abajyan, T.; Arutinov, D.; Backhaus, M.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch; Glatzer, J.; Gonella, L.; Haefner, P.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Liebal, J.; Limbach, C.; Loddenkoetter, T.; Mazur, M.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Pohl, D.; Psoroulas, S.; Sarrazin, B.; Schaepe, S.; Schmieden, K.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Stillings, J. A.; Therhaag, J.; Tsung, J-W; Uchida, K.; Uhlenbrock, M.; Urquijo, P.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, R.; Wiik-Fuchs, L. A. M.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Daya-Ishmukhametova, R. K.; Fitzgerald, E. A.; Gozpinar, S.; Pomeroy, D.; Sciolla, G.; Zambito, S.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Amaral Coutinho, Y.; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Fed Univ Juiz de Fora UFJF, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Debbe, R.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Metcalfe, J.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M-A; Poblaguev, A.; Polychronakos, V.; Pravahan, R.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Sircar, A.; Snyder, S.; Steinberg, P.; Stumer, I.; Subramaniam, R.; Takai, H.; Tamsett, M. C.; Triplett, N.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.; Zaytsev, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C-M; Dinut, F.; Dita, P.; Dita, S.; Olariu, A.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Mueller, T.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Koffas, T.; Lacey, J.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Anastopoulos, C.; Andari, N.; Anghinolfi, F.; Avolio, G.; Baak, M. A.; Banfi, D.; Battistin, M.; Bellomo, M.; Beltramello, O.; Berge, D.; Bianchi, R. M.; Bogaerts, J. A.; Boyd, J.; Bremer, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Barajas, C. A. Chavez; Childers, J. T.; Chromek-Burckhart, D.; Cote, D.; Danielsson, H. O.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dopke, J.; Dudarev, A.; Duehrssen, M.; Ellis, N.; Elsing, M.; Fabre, C.; Facini, G.; Farthouat, P.; Fassnacht, P.; Franchino, S.; Francis, D.; Franz, S.; Froidevaux, D.; Gabaldon, C.; Garonne, V.; Gianotti, F.; Gibson, S. M.; Gillberg, D.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Haas, S.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jansen, H.; Jenni, P.; Joram, C.; Jungst, R. M.; Kaneda, M.; Klioutchnikova, T.; Koeneke, K.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mapelli, L.; Martin, B.; Messina, A.; Meyer, J.; Michal, S.; Molfetas, A.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Petersen, J.; Pommes, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salek, D.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Spiwoks, R.; Stewart, G. A.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; Vandelli, W.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Boveia, A.; Canelli, F.; Cheng, Y.; Choudalakis, G.; Fiascaris, M.; Gardner, R. W.; Jen-La Plante, I.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Tuggle, J. M.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Cottin, G.; Diaz, M. A.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ruan, X.; Shan, L. Y.; Wang, J.; Xu, D.; Yao, L.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Li, B.; Li, S.; Liu, J. B.; Liu, K.; Liu, M.; Liu, Y.; Peng, H.; Xu, C.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Clermont Univ, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Photochim Mol & Macromol Lab, CNRS, IN2P3, F-63177 Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Dodd, J.; Guo, J.; Hu, D.; Hughes, E. W.; Nikiforou, N.; Parsons, J. A.; Penson, A.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wuf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Boelaert, N.; Dam, M.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Loevschall-Jensen, A. E.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Monk, J.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa; Malecki, P.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Cao, T.; Yagci, K. Dindar; Firan, A.; Hoffman, J.; Joffe, D.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Rios, R. R.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Izen, J. M.; Lou, X.; Namasivayam, H.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Bloch, I.; Borroni, S.; Dassoulas, J. A.; Dietrich, J.; Ferrara, V.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Grahn, K-J; Gregor, I. M.; Grohsjean, A.; Hiller, K. H.; Huettmann, A.; Belenguer, M. Jimenez; Johnert, S.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lisovyi, M.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Peters, R. F. Y.; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.; Zhu, H.] DESY, Hamburg, Germany. [Argyropoulos, S.; Bloch, I.; Borroni, S.; Dassoulas, J. A.; Dietrich, J.; Ferrara, V.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Grahn, K-J; Gregor, I. M.; Grohsjean, A.; Hiller, K. H.; Huettmann, A.; Belenguer, M. Jimenez; Johnert, S.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lisovyi, M.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Peters, R. F. Y.; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Esch, H.; Goessling, C.; Jung, C. A.; Klingenberg, R.; Reisinger, I.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Czodrowski, P.; Friedrich, F.; Grohs, J. P.; Kobel, M.; Leonhardt, K.; Mader, W. F.; Morgenstern, M.; Prudent, X.; Rudoph, C.; Schnoor, U.; Seifert, R.; Steinbach, P.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B.; Ebenstein, W. L.; Finelli, K. D.; Ko, B. R.; Kotwal, A.; Kruse, M. K.; Oh, S. H.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; Debenedetti, C.; Walls, F. M. Garay; Harrington, R. D.; Korn, A.; Martin, V. J.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Schaelicke, A.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Aad, G.; Ahles, F.; Amoroso, S.; Barber, T.; Bernhard, R.; Boehler, M.; Bruneliere, R.; Christov, A.; Consorti, V.; Fehling-Kaschek, M.; Flechl, M.; Giuliani, C.; Hartert, J.; Herten, G.; Jakobs, K.; Janus, M.; Kononov, A. I.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Madar, R.; Mahboubi, K.; Mohr, W.; Parzefall, U.; Rammensee, M.; Rave, T. C.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Ungaro, F. C.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; Bucci, F.; Toro, R. Camacho; Clark, A.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Iacobucci, G.; La Rosa, A.; Latour, B. Martin dit; Mermod, P.; Herrera, C. Mora; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Pasztor, G.; Picazio, A.; Pohl, M.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Caso, C.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Kar, D.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Blumenschein, U.; Brandt, O.; Evangelakou, D.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Hensel, C.; Kawamura, G.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Meyer, J.; Morel, J.; Nackenhorst, O.; Pashapour, S.; Peters, R. F. Y.; Quadt, A.; Roe, A.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Schroeder, T. Vazquez; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Sun, X.; Trocme, B.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Sun, X.; Trocme, B.] CNRS, IN2P3, Grenoble, France. [Albrand, S.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Sun, X.; Trocme, B.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Jeanty, L.; Kagan, M.; Mateos, D. Lopez; Mercurio, K. M.; Mills, C.; Morii, M.; Skottowe, H. P.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Andrei, V.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Geweniger, C.; Hanke, P.; Henke, M.; Hofmann, J. I.; Khomich, A.; Kluge, E-E; Laier, H.; Lang, V. S.; Lendermann, V.; Lepold, F.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H-C; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Kugel, A.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Evans, H.; Gagnon, P.; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Price, D.; Whittington, D.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Lukas, W.; Ritsch, E.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Cinca, D.; Gandrajula, R. P.; Halladjian, G.; Limper, M.; Mallik, U.; Mandrysch, R.; Morange, N.; Pylypchenko, Y.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Ruiz-Martinez, A.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Huseynov, N.; Kazarinov, M. Y.; Kharchenko, D.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimin, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Hayakawa, T.; King, M.; Kishimoto, T.; Kitamura, T.; Kurashige, H.; Matsushita, T.; Ochi, A.; Suzuki, Y.; Takeda, H.; Tani, K.; Watanabe, I.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Allison, L. J.; Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Gorini, E.; Grancagnolo, F.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Bianco, M.; Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Salamanna, G.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Brooks, T.; Cantrill, R.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Vazquez, J. G. Panduro; Pastore, Fr; Rose, M.; Spano, F.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Chislett, R. T.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dobson, E.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Lambourne, L.; Nash, M.; Nurse, E.; Ochoa, M. I.; Prabhu, R.; Sherwood, P.; Simmons, B.; Taylor, C.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Rangel-Smith, C.; Ridel, M.; Roos, L.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Jarlskog, G.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Smirnova, O.; Wielers, M.] Lund Univ, Fysiska Inst, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Llorente Merino, J.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Arnaez, O.; Blum, W.; Buescher, V.; Caputo, R.; Eckweiler, S.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Goeringer, C.; Handel, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Huelsing, T. A.; Ji, W.; Karnevskiy, M.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Moritz, S.; Mueller, T.; Neusiedl, A.; Poettgen, R.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Forti, A.; Howarth, J.; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marx, M.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Robinson, J. E. M.; Tomlinson, L.; Watts, S.; Woudstra, M. J.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Barbero, M.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Maurer, J.; Monnier, E.; Nagai, Y.; Odier, J.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Barbero, M.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Maurer, J.; Monnier, E.; Nagai, Y.; Odier, J.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dufour, M-A; Klemetti, M.; Mantifel, R.; Robertson, S. H.; Schram, M.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davidson, N.; Diglio, S.; Hamano, K.; Jennens, D.; Kubota, T.; Limosani, A.; Hanninger, G. Nunes; Phan, A.; Shao, Q. T.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, L.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Qian, J.; Scheirich, D.; Searcy, J.; Thun, R. P.; Walch, S.; Wilson, A.; Wooden, G.; Wu, Y.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Hauser, R.; Holzbauer, J. L.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; True, P.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Mandelli, L.; Mazzanti, M.; Meloni, F.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Volpini, G.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Andreazza, A.; Besana, M. I.; Carminati, L.; Consonni, S. M.; Fanti, M.; Favareto, A.; Meloni, F.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Simoniello, R.; Turra, R.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F; Asbah, N.; Azuelos, G.; Banerjee, P.; Bouchami, J.; Dallaire, F.; Davies, M.; Gauthier, L.; Giunta, M.; Leroy, C.; Martin, J. P.; Rezvani, R.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Beale, S.; Becker, S.; Biebel, O.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Heller, C.; Hertenberger, R.; Legger, F.; Lorenz, J.; Mann, A.; Meineck, C.; Nunnemann, T.; Oakes, L. B.; Rauscher, F.; Reznicek, P.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Schmitt, C.; Staude, A.; Vladoiu, D.; Walker, R.; Will, J. Z.; Wittkowski, J.; Zibell, A.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bittner, B.; Bronner, J.; Capriotti, D.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Giovannini, P.; Ince, T.; Jantsch, A.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotv, S.; Kroha, H.; Macchiolo, A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Oberlack, H.; Pahl, C.; Pospelov, G. E.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Stern, S.; Stonjek, S.; Vanadia, M.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.; Zhuravlov, V.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Shimizu, S.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Shimizu, S.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Sanchez, A.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; della Volpe, D.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Sanchez, A.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Chelstowska, M. A.; Dao, V.; De Groot, N.; Filthaut, E.; Klok, P. F.; Koetsveld, F.; Koenig, A. C.; Raas, M.; Salvucci, A.] Radboud Univ Nijmegen, Nikhef, Inst Math Astrophys & Particle Phys, NL-6525 ED Nijmegen, Netherlands. [Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Valencic, N.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Nikhef Natl Inst Subatom Phys, Amsterdam, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Valencic, N.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; Cole, S.; de Lima, J. G. Rocha; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A.; Beloborodova, O.; Bobrovnikov, V. S.; Bogdanchikov, A.; Kazanin, V. F.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Haas, A.; van Huysduynen, L. Hooft; Kaplan, B.; Konoplich, R.; Krasznahorkay, A.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.] NYU, Dept Phys, New York, NY 10003 USA. [Fisher, M. J.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Strang, M.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Hrabovsky, M.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Radloff, P.; Reinsch, A.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Auge, E.; Binet, S.; Bourdarios, C.; De la Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J-F; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Auge, E.; Binet, S.; Bourdarios, C.; De la Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J-F; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Meguro, T.; Nomachi, M.; Okamura, W.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Gramstad, E.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Smestad, L.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Boddy, C. R.; Brandt, G.; Buchanan, J.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Dafinca, A.; Davies, E.; Gallas, E. J.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; King, R. S. B.; Kogan, L. A.; Larner, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Mattravers, C.; Nickerson, R. B.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C-L; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Young, C. J. S.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Colombo, T.; Conta, C.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Colombo, T.; Conta, C.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Degenhardt, J.; Fratina, S.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Keener, P. T.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Marshall, Z.; Newcomer, F. M.; Olivito, D.; Ospanov, R.; Reece, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Van Berg, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Savinov, V.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Anjos, N.; Carvalho, T. J.; Castro, N. F.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Do Valle Wemans, A.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Maio, A.; Maneira, J.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Bohm, J.; Chudoba, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Gunther, J.; Jakubek, J.; Kohout, Z.; Kral, V.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Torregrosa, E. Fullana; Kodys, P.; Kupco, A.; Leitner, R.; Novakova, J.; Pleskot, V.; Rybar, M.; Spousta, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Ivashin, A. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Burke, S.; Davies, E.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Haywood, S. J.; Kirk, J.; Mattravers, C.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Dionisi, C.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Rossi, E.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vari, R.; Veneziano, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Artoni, G.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Zorzi, G.; Dionisi, C.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Messina, A.; Rossi, E.; Camillocci, E. Solfaroli; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Liberti, B.; Marchese, F.; Mazzaferro, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Marchese, F.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Branchini, P.; Ceradini, F.; Di Luise, S.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Stanescu, C.; Trovatelli, M.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Luise, S.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Trovatelli, M.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA, Marrakech, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [Cherkaoui El Moursli, R.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Abreu, H.; Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J-B; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Legendre, M.; Maiani, C.; Mal, P.; Ramos, J. A. Manjarres; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J-P; Mijovic, L.; Mountricha, E.; Hong, V. Nguyen Thi; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Resende, B.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.; Xu, C.] CEA Saclay Commissariat Energie Atom & Energies A, DSM IRFU Inst Rech Lois Fondamentales Univers, Gif Sur Yvette, France. [Damiani, D. S.; Grillo, A. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S-C; Keller, J. S.; Lubatti, H. J.; Rompotis, N.; Rothberg, J.; Verducci, M.; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mcfayden, J. A.; Miyagawa, P. S.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tua, A.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Ibragimov, I.; Ikematsu, K.; Rammes, M.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Dawe, E.; Godfrey, J.; Kvita, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Trottier-McDonald, M.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Hansson, P.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Batkova, L.; Blazek, T.; Federic, P.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Aurousseau, M.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, T. M.; Carrillo-Montoya, G. D.; Hamilton, A.; Leney, K. J. C.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Asman, B.; Bendtz, K.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Papadelis, A.; Petridis, A.; Plucinski, P.; Silverstein, S. B.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaiti, Y.; Asman, B.; Bendtz, K.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Petridis, A.; Plucinski, P.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Arfaoui, S.; DeWilde, B.; Engelmann, R.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Puldon, D.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Ahmad, A.; Arfaoui, S.; DeWilde, B.; Engelmann, R.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Puldon, D.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Castillo, I. Santoyo; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Bangert, A.; Black, C. W.; Cuthbert, C.; Jeng, G-Y; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, J.; Wang, S. M.; Weng, Z.; Zhang, L.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Di Mattia, A.; Kajomovitz, E.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkialas, I.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Ishitsuka, M.; Jinnouchi, O.; Kanno, T.; Kuze, M.; Nagai, R.; Nobe, T.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Bailey, D. C.; Brelier, B.; Cheung, S. L.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Ilic, N.; Keung, J.; Krieger, P.; Orr, R. S.; Polifka, R.; Rosenbaum, G. A.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Spreitzer, T.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Koutsman, A.; Losty, M. J.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Bustos, A. C. Florez; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hanawa, K.; Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Navas, L. Mendoza; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Farrell, S.; Gerbaudo, D.; Eschrich, I. Gough; Lankford, A. J.; Magnoni, L.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Pinamonti, M.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Grp Collegato Udine, Udine, Italy. [Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Shaw, K.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Pelikan, D.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Minano Moya, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] CSIC, Valencia, Spain. [Axen, D.; Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Loh, C. W.; Mills, W. J.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R; Marino, C. P.; Martyniuk, A. C.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Farrington, S. M.; Jeske, C.; Jones, G.; Martin, T. A.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Castillo, L. R. Flores; Gutzwiller, O.; Hard, A. S.; Jared, R. C.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ma, L. L.; Garcia, B. R. Mellado; Ming, Y.; Pan, Y. B.; Morales, M. I. Pedraza; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Redelbach, A.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Barisonzi, M.; Becker, K.; Becks, K. H.; Beermann, T. A.; Boek, J.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Fischer, J.; Fleischmann, S.; Flick, T.; Gerlach, P.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Maettig, P.; Mechtel, M.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Schultes, J.; Sturm, P.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, CFNUL, P-1699 Lisbon, Portugal. [Bawa, H. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beloborodova, O.; Maximov, D. A.; Talyshev, A.; Tikhonov, Y. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Carvalho, T. J.; Fiolhais, M. C. N.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Do Valle Wemans, A.] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dep Fis, Caparica, Portugal. [Do Valle Wemans, A.] Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal. [Gkialas, I.; Papageorgiou, K.] Univ Aegean, Dept Financial & Management Engn, Chios, Greece. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Kono, T.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Park, W.; Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Pinamonti, M.] SISSA, Int Sch Adv Studies, I-34014 Trieste, Italy. [Smirnova, L. N.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Spousta, M.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. RP Aad, G (reprint author), Univ Adelaide, Sch Chem & Phys, Adelaide, SA, Australia. RI Tikhomirov, Vladimir/M-6194-2015; Yang, Haijun/O-1055-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; Andreazza, Attilio/E-5642-2011; Mashinistov, Ruslan/M-8356-2015; Buttar, Craig/D-3706-2011; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Mir, Lluisa-Maria/G-7212-2015; Garcia, Jose /H-6339-2015; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Akimov, Andrey/N-1769-2015; Peleganchuk, Sergey/J-6722-2014; Bosman, Martine/J-9917-2014; Wemans, Andre/A-6738-2012; Demirkoz, Bilge/C-8179-2014; Gutierrez, Phillip/C-1161-2011; Ventura, Andrea/A-9544-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; White, Ryan/E-2979-2015; Joergensen, Morten/E-6847-2015; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Nemecek, Stanislav/G-5931-2014; Kepka, Oldrich/G-6375-2014; Lokajicek, Milos/G-7800-2014; Jakoubek, Tomas/G-8644-2014; Staroba, Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; de Groot, Nicolo/A-2675-2009; Marcisovsky, Michal/H-1533-2014; Mikestikova, Marcela/H-1996-2014; Lysak, Roman/H-2995-2014; Kuday, Sinan/C-8528-2014; Tomasek, Lukas/G-6370-2014; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Castro, Nuno/D-5260-2011; Wolters, Helmut/M-4154-2013; De, Kaushik/N-1953-2013; Snesarev, Andrey/H-5090-2013; Warburton, Andreas/N-8028-2013; Sukharev, Andrey/A-6470-2014; Lee, Jason/B-9701-2014; Robson, Aidan/G-1087-2011; Smirnova, Oxana/A-4401-2013; Zimmermann, Claus/E-9598-2014; Fabbri, Laura/H-3442-2012; Villa, Mauro/C-9883-2009; Nozka, Libor/G-5550-2014; Moraes, Arthur/F-6478-2010; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Ferrando, James/A-9192-2012; Brooks, William/C-8636-2013; Tudorache, Alexandra/L-3557-2013; Tudorache, Valentina/D-2743-2012; Doyle, Anthony/C-5889-2009; Marti-Garcia, Salvador/F-3085-2011; Shabalina, Elizaveta/M-2227-2013; Boyko, Igor/J-3659-2013; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; Gauzzi, Paolo/D-2615-2009; Gerbaudo, Davide/J-4536-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Martinez, Mario /I-3549-2015; Monzani, Simone/D-6328-2017; Jones, Roger/H-5578-2011; Pacheco Pages, Andres/C-5353-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Olshevskiy, Alexander/I-1580-2016; BESSON, NATHALIE/L-6250-2015; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Gabrielli, Alessandro/H-4931-2012 OI Tikhomirov, Vladimir/0000-0002-9634-0581; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; Andreazza, Attilio/0000-0001-5161-5759; Mashinistov, Ruslan/0000-0001-7925-4676; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Mir, Lluisa-Maria/0000-0002-4276-715X; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Camarri, Paolo/0000-0002-5732-5645; Peleganchuk, Sergey/0000-0003-0907-7592; Bosman, Martine/0000-0002-7290-643X; Wemans, Andre/0000-0002-9669-9500; Ventura, Andrea/0000-0002-3368-3413; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; White, Ryan/0000-0003-3589-5900; Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582; Mikestikova, Marcela/0000-0003-1277-2596; Kuday, Sinan/0000-0002-0116-5494; Tomasek, Lukas/0000-0002-5224-1936; Svatos, Michal/0000-0002-7199-3383; Castro, Nuno/0000-0001-8491-4376; Wolters, Helmut/0000-0002-9588-1773; De, Kaushik/0000-0002-5647-4489; Warburton, Andreas/0000-0002-2298-7315; Lee, Jason/0000-0002-2153-1519; Smirnova, Oxana/0000-0003-2517-531X; Fabbri, Laura/0000-0002-4002-8353; Villa, Mauro/0000-0002-9181-8048; Moraes, Arthur/0000-0002-5157-5686; Kuleshov, Sergey/0000-0002-3065-326X; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Ferrando, James/0000-0002-1007-7816; Brooks, William/0000-0001-6161-3570; Doyle, Anthony/0000-0001-6322-6195; Boyko, Igor/0000-0002-3355-4662; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; Gauzzi, Paolo/0000-0003-4841-5822; Gerbaudo, Davide/0000-0002-4463-0878; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Jones, Roger/0000-0002-6427-3513; Pacheco Pages, Andres/0000-0001-8210-1734; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672; Olshevskiy, Alexander/0000-0002-8902-1793; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Gabrielli, Alessandro/0000-0001-5346-7841 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq; FAPESP, Brazil; NSERC; NRC; CFI, Canada; CERN; CONICYT, Chile; CAS; MOST; NSFC, China; COLCIENCIAS, Colombia; MSMT CR; MPO CR; VSC CR, Czech Republic; DNRF; DNSRC; Lundbeck Foundation, Denmark; EPLANET; ERC; NSRF; European Union; IN2P3-CNRS; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF; DFG; HGF; MPG; AvH Foundation, Germany; GSRT; NSRF, Greece; ISF; MINERVA; GIF; DIP; Benoziyo Center, Israel; INFN, Italy; MEXT; JSPS, Japan; CNRST, Morocco; FOM; NWO, Netherlands; BRF; RCN, Norway; MNiSW, Poland; GRICES; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC; Wallenberg Foundation, Sweden; SER; SNSF; Cantons of Bern; Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC; Royal Society; Leverhulme Trust, United Kingdom; DOE; NSF, United States FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States. NR 41 TC 95 Z9 95 U1 10 U2 207 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD AUG 9 PY 2013 VL 725 IS 1-3 BP 60 EP 78 DI 10.1016/j.physletb.2013.06.057 PG 19 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 194BU UT WOS:000322606800006 ER PT J AU Tassin, P Koschny, T Soukoulis, CM AF Tassin, Philippe Koschny, Thomas Soukoulis, Costas M. TI Graphene for Terahertz Applications SO SCIENCE LA English DT Editorial Material ID PLASMONICS; DEVICES C1 [Tassin, Philippe; Koschny, Thomas; Soukoulis, Costas M.] US DOE, Ames Lab, Ames, IA 50011 USA. [Tassin, Philippe; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Soukoulis, Costas M.] FORTH, IESL, Iraklion 71110, Crete, Greece. RP Tassin, P (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM soukoulis@ameslab.gov RI Tassin, Philippe/B-7152-2008; Soukoulis, Costas/A-5295-2008 NR 14 TC 79 Z9 79 U1 12 U2 209 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD AUG 9 PY 2013 VL 341 IS 6146 BP 620 EP 621 DI 10.1126/science.1242253 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 197XC UT WOS:000322884800024 PM 23929971 ER PT J AU Glatzmaier, MJ Mantry, S Ramsey-Musolf, MJ AF Glatzmaier, Michael J. Mantry, Sonny Ramsey-Musolf, Michael J. TI Higher twist in electroproduction: Flavor nonsinglet QCD evolution SO PHYSICAL REVIEW C LA English DT Article ID DEEP-INELASTIC-SCATTERING; FREE GAUGE-THEORIES; ELECTRON-SCATTERING; 4-QUARK OPERATORS; LOCAL DUALITY; NUCLEON; DISTRIBUTIONS; RESONANCES; BEHAVIOR; MOMENTS AB We present results for the one-loop anomalous dimension matrix of flavor nonsinglet twist-4 operators of lowest spin that contribute to the leading moment of the F-2 structure function in deep inelastic electron-nucleon scattering. We analyze the flavor structure of the anomalous dimension matrix and decompose the leading moment of F-2 into separate flavor channels. In addition to building on previous work with higher-twist operators, these results can provide a benchmark for future work that generalizes to include the higher moments as well. We include non-perturbative input from the lattice and phenomenological estimates of the twist-4 matrix elements and estimate the twist-4 contributions to the leading moment of F-2. The results suggest that the overall twist-4 contribution may be suppressed due to either cancellations among the twist-4 terms or inherently small twist-4 matrix elements. C1 [Glatzmaier, Michael J.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. [Mantry, Sonny] Argonne Natl Lab, High Energy Div, Argonne, IL 60439 USA. [Mantry, Sonny] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Ramsey-Musolf, Michael J.] Univ Madison Wisconsin, Madison, WI 53706 USA. RP Glatzmaier, MJ (reprint author), Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. EM michael.glatzmaier@gmail.com; mantry147@gmail.com; mjrm@physics.wisc.edu FU U.S. Department of Energy [DE-FG02-08ER41531, De-Fg05-84Er40154]; Wisconsin Alumni Research Foundation; U.S. National Science Foundation [NSF-PHY-0705682] FX The authors thank A. Belitksy, H. Patel, and P. McGuirk for valuable discussions and helpful comments during the course of this work. The research is partially supported by U.S. Department of Energy contract no. DE-FG02-08ER41531 (M.J.R.M.) and the Wisconsin Alumni Research Foundation (M.J.R.M.), the U.S. National Science Foundation under grant no. NSF-PHY-0705682 (S. M.), and the U.S. Department of Energy under grant no. De-Fg05-84Er40154 (M.J.G.). NR 43 TC 2 Z9 2 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG 9 PY 2013 VL 88 IS 2 AR 025202 DI 10.1103/PhysRevC.88.025202 PG 23 WC Physics, Nuclear SC Physics GA 198DG UT WOS:000322901500001 ER PT J AU Aytug, T Simpson, JT Lupini, AR Trejo, RM Jellison, GE Ivanov, IN Pennycook, SJ Hillesheim, DA Winter, KO Christen, DK Hunter, SR Haynes, JA AF Aytug, Tolga Simpson, John T. Lupini, Andrew R. Trejo, Rosa M. Jellison, Gerald E. Ivanov, Ilia N. Pennycook, Stephen J. Hillesheim, Daniel A. Winter, Kyle O. Christen, David K. Hunter, Scott R. Haynes, J. Allen TI Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films SO NANOTECHNOLOGY LA English DT Article ID ANTIREFLECTION COATINGS; SILICA FILMS; BROAD-BAND; WATER; FABRICATION; WETTABILITY; MORPHOLOGY; ROUGHNESS; CRYSTALS AB We describe the formation and properties of atomically bonded, optical quality, nanostructured thin glass film coatings on glass plates, utilizing phase separation by spinodal decomposition in a sodium borosilicate glass system. Following deposition via magnetron sputtering, thermal processing and differential etching, these coatings are structurally superhydrophilic (i.e., display anti-fogging functionality) and demonstrate robust mechanical properties and superior abrasion resistance. After appropriate chemical surface modification, the surfaces display a stable, non-wetting Cassie-Baxter state and exhibit exceptional superhydrophobic performance, with water droplet contact angles as large as 172 degrees. As an added benefit, in both superhydrophobic and superhydrophilic states these nanostructured surfaces can block ultraviolet radiation and can be engineered to be anti-reflective with broadband and omnidirectional transparency. Thus, the present approach could be tailored toward distinct coatings for numerous markets, such as residential windows, windshields, specialty optics, goggles, electronic and photovoltaic cover glasses, and optical components used throughout the US military. C1 [Aytug, Tolga; Simpson, John T.; Lupini, Andrew R.; Trejo, Rosa M.; Jellison, Gerald E.; Ivanov, Ilia N.; Pennycook, Stephen J.; Hillesheim, Daniel A.; Winter, Kyle O.; Christen, David K.; Hunter, Scott R.; Haynes, J. Allen] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Aytug, T (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM aytugt@ornl.gov RI ivanov, ilia/D-3402-2015 OI ivanov, ilia/0000-0002-6726-2502 FU Corrosion Prevention and Control (CPAC) Program of the United States Marine Corps; Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; US Department of Energy (DOE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division; Scientific User Facilities Division, Office of Energy Efficiency and Renewable Energy, US DOE; Scientific User Facilities Division, Office of BES, US DOE FX This work was in part supported by the Corrosion Prevention and Control (CPAC) Program of the United States Marine Corps (Matt Koch, Program Manager) and in part by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC for the US Department of Energy. STEM research was supported by the US Department of Energy (DOE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division. Mechanical Property research was conducted at High Temperature Material Laboratory, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Energy Efficiency and Renewable Energy, US DOE. Other portions of this research were conducted at the Center for Nanophase Materials Sciences (CNMS) and Shared Research Equipment (SHaRE), which are sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of BES, US DOE. NR 49 TC 16 Z9 17 U1 5 U2 181 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD AUG 9 PY 2013 VL 24 IS 31 AR 315602 DI 10.1088/0957-4484/24/31/315602 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 185EK UT WOS:000321948000013 PM 23857991 ER PT J AU Ortega, JM AF Ortega, J. M. TI A porous media model for blood flow within reticulated foam SO CHEMICAL ENGINEERING SCIENCE LA English DT Article DE Porous media; Non-Newtonian fluid; Blood; Foam; Computational fluid dynamics; Biomedical engineering ID VISCOUS-FLUID-FLOW; MEMORY POLYMER FOAM; PRESSURE-DROP; FIXED-BEDS; MULTIPARTICLE SYSTEMS; UNSTRUCTURED MESHES; TRANSPORT PHENOMENA; PARTICLES; VISCOSITY; RHEOLOGY AB A porous media model is developed for non-Newtonian blood flow through reticulated foam at Reynolds numbers ranging from 10(-8) to 10. This empirical model effectively divides the pressure gradient versus flow speed curve into three regimes, in which either the non-Newtonian viscous forces, the Newtonian viscous forces, or the inertial fluid forces are most prevalent. When compared to simulation data of blood flow through two reticulated foam geometries, the model adequately captures the pressure gradient within all three regimes, especially that within the Newtonian regime where blood transitions from a power-law to a constant viscosity fluid. (C) 2013 Elsevier Ltd. All rights reserved. C1 Lawrence Livermore Natl Lab, Computat Engn Div, Livermore, CA 94551 USA. RP Ortega, JM (reprint author), Lawrence Livermore Natl Lab, Computat Engn Div, POB 808,L-090, Livermore, CA 94551 USA. EM ortega17@llnl.gov FU National Institutes of Health/National Institute of Biomedical Imaging and Bioengineering [R01EB000462]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344. LLNL-JRNL-617022] FX The authors thank R. Cook, W. Small, and T.S. Wilson of Lawrence Livermore National Laboratory and DJ. Maitland and J.N. Rodriguez of Texas A&M University for their assistance in this study. This work was supported by the National Institutes of Health/National Institute of Biomedical Imaging and Bioengineering Grant no. R01EB000462 and partially performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-JRNL-617022. NR 58 TC 2 Z9 2 U1 1 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0009-2509 J9 CHEM ENG SCI JI Chem. Eng. Sci. PD AUG 9 PY 2013 VL 99 BP 59 EP 66 DI 10.1016/j.ces.2013.05.025 PG 8 WC Engineering, Chemical SC Engineering GA 185JU UT WOS:000321964700007 PM 24031095 ER PT J AU Cervini-Silva, J Palacios, E Munoz, MD Del Angel, P Montoya, JA Ramos, E Lopez, F Pacheco, AR AF Cervini-Silva, Javiera Palacios, Eduardo De Lourdes Munoz, Maria Del Angel, Paz Ascencion Montoya, Jose Ramos, Eduardo Lopez, Fanny Romano Pacheco, Arturo TI Cinnabar-Preserved Bone Structures from Primary Osteogenesis and Fungal Signatures in Ancient Human Remains SO GEOMICROBIOLOGY JOURNAL LA English DT Article DE collagen fibers networks; high-resolution microdiffraction and microscopic analyses; long-term antibacterial activity; Maya civilization; Pakal ID TURKEY LEG TENDONS; MERCURY; PHOSPHATE; CALCIUM; BIOMINERALIZATION; CARBONATE; COLLAGEN; COMPLEX; SULFATE; LEAD AB The Red Queen remains (700 A.C.) found at Palenque, Mexico, are examples of cinnabar (HgS) application to royal remains during pre-Hispanic times. The Red Queen remains are those of a ca. 3035-yr-old female and present a striking similarity to the remains of another Mayan woman found at Copan, Honduras. Thus, covering the remains of royal women with HgS may have been a common practice in the Mayan civilization. High resolution microdiffraction and microscopic analysis of the Red Queen remains showed the presence of nanotubular organic minerals comparable in composition and molecular dimensions to collagen fibrils, and in spatial ordering to collagen fiber networks. Fungal structures are rare in the geological record because of poor preservation potential. Micrographs revealed the preservation of fungal signatures, with morphology comparable to parasitic fungal-coral matrix associations, consistent with the idea that fungal remains can be preserved in environments which contain high Hg concentrations. The well-preserved signatures of fungus-animal interactions and primary osteogenesis in the Red Queen remains are attributed to the long-term antibacterial activity of HgS and the association of sulfur components with nanotubular structures. C1 [Cervini-Silva, Javiera] Univ Autonoma Metropolitana, Dept Proc & Tecnol, Unidad Cuajimalpa, Mexico City, DF, Mexico. [Cervini-Silva, Javiera] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Palacios, Eduardo; Del Angel, Paz; Ascencion Montoya, Jose] Inst Mexicano Petr, Direcc Invest & Posgrad, Mexico City 07730, DF, Mexico. [De Lourdes Munoz, Maria] Ctr Invest & Estudios Avanzados, Dept Genet & Biol Mol, Mexico City, DF, Mexico. [Ramos, Eduardo; Lopez, Fanny] Inst Nacl Antropol Hist, Mexico City, DF, Mexico. [Romano Pacheco, Arturo] Univ Claustro Sor Juana, Ctr Hist, Mexico City, DF, Mexico. RP Cervini-Silva, J (reprint author), Univ Autonoma Metropolitan, Dept Proc & Tecnol, Unidad Cuajimalpa, Artificios 40,6 Piso, Mexico City 01120, DF, Mexico. EM jcervini@correo.cua.uam.mx FU UAM-C; Mexican Institute of Oil (Instituto Mexicano del Petroleo, IMP) FX The work would not have been possible without the assistance of librarians M. R. Galindo Ortega and M. I. Escalante Vargas (Universidad Autonoma Metropolitana Unidad Cuajimalpa, UAM-C). The authors are grateful to Mauro Lopez-Armenta (PhD. Student, Universidad Autonoma de la Ciudad de Mexico and Department of Genetics and Molecular Biology, CINVESTAV-IPN) for providing Figure 2. The comments of two anonymous reviewers contributed significantly to improve the original version of this manuscript. The project was supported by a grant from UAM-C and the Mexican Institute of Oil (Instituto Mexicano del Petroleo, IMP). NR 53 TC 5 Z9 5 U1 4 U2 21 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0149-0451 J9 GEOMICROBIOL J JI Geomicrobiol. J. PD AUG 9 PY 2013 VL 30 IS 7 BP 566 EP 577 DI 10.1080/01490451.2012.737090 PG 12 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 149MM UT WOS:000319324100002 ER PT J AU Santillan, EU Kirk, MF Altman, SJ Bennett, PC AF Santillan, Eugenio U. Kirk, Matthew F. Altman, Susan J. Bennett, Philip C. TI Mineral Influence on Microbial Survival During Carbon Sequestration SO GEOMICROBIOLOGY JOURNAL LA English DT Article DE biofilm; carbon dioxide; carbon sequestration; Shewanella oneidensis MR-1; subsurface microbiology ID SHEWANELLA-ONEIDENSIS MR-1; ESCHERICHIA-COLI; METAL REDUCTION; DEEP SUBSURFACE; CO2; DIOXIDE; INACTIVATION; PRESSURE; STORAGE; INJECTION AB Geologic carbon sequestration involves the injection of supercritical carbon dioxide into deep saline aquifers. Some of the CO2 dissolves into the brines, perturbing water chemistry and water-rock interactions, and impacting microbial habitat and survival. In this study 3 model organisms were tested for their ability to survive high pressures of CO2 exposure in batch cultures: the gram-negative Shewanella oneidensis (SO) strain MR-1, the gram-positive Geobacillus stearothermophilus (GS), and the methanogenic archaeon Methanothermobacter thermoautitrophicus (MT). Results indicate that GS can survive the highest pressures of CO2 for the longest periods of time while SO is the most sensitive to CO2 toxicity. Survival was then evaluated for SO with various minerals and rocks representative of deep saline aquifers to determine if minerals enhanced survival. Cultures were exposed to 25 bar of CO2 for 2 to 8h and were plated for viable cell counts. Results show that biofilm formation on the mineral surface is important in protecting SO from the harmful effects of CO2 with quartz sandstones providing the best protection. The release of toxic metals like Al or As from minerals such as clays and feldspars, in contrast, may enhance microbial death under CO2 stress. C1 [Santillan, Eugenio U.; Bennett, Philip C.] Univ Texas Austin, Austin, TX 78712 USA. [Kirk, Matthew F.; Altman, Susan J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Santillan, EU (reprint author), Univ Texas Austin, Dept Geol Sci, Jackson Sch Geosci, 1 Univ Stn C1100, Austin, TX 78712 USA. EM efu.santillan@utexas.edu RI Kirk, Matthew/A-3274-2013 FU Centers for Frontiers in Subsurface Energy Security, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001114] FX This material is based upon work supported as part of the Centers for Frontiers in Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. We thank the assistance of Kim Gilbert, Megan Franks, Will Wolfe, and Chris Omelon for help in this research. NR 61 TC 7 Z9 7 U1 2 U2 44 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0149-0451 EI 1521-0529 J9 GEOMICROBIOL J JI Geomicrobiol. J. PD AUG 9 PY 2013 VL 30 IS 7 BP 578 EP 592 DI 10.1080/01490451.2013.767396 PG 15 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 149MM UT WOS:000319324100003 ER PT J AU Kamadurai, HB Qiu, Y Deng, A Harrison, JS MacDonald, C Actis, M Rodrigues, P Miller, DJ Souphron, J Lewis, SM Kurinov, I Fujii, N Hammel, M Piper, R Kuhlman, B Schulman, BA AF Kamadurai, Hari B. Qiu, Yu Deng, Alan Harrison, Joseph S. MacDonald, Chris Actis, Marcelo Rodrigues, Patrick Miller, Darcie J. Souphron, Judith Lewis, Steven M. Kurinov, Igor Fujii, Naoaki Hammel, Michal Piper, Robert Kuhlman, Brian Schulman, Brenda A. TI Mechanism of ubiquitin ligation and lysine prioritization by a HECT E3 SO ELIFE LA English DT Article ID CHAIN ELONGATION; STRUCTURAL BASIS; LIGASE ACTIVITY; MOLECULAR-BASIS; PROTEIN LIGASE; DIRECT BINDING; FLUID-PHASE; COMPLEX; DOMAIN; RSP5 AB Ubiquitination by HECT E3 enzymes regulates myriad processes, including tumor suppression, transcription, protein trafficking, and degradation. HECT E3s use a two-step mechanism to ligate ubiquitin to target proteins. The first step is guided by interactions between the catalytic HECT domain and the E2 similar to ubiquitin intermediate, which promote formation of a transient, thioester-bonded HECT similar to ubiquitin intermediate. Here we report that the second step of ligation is mediated by a distinct catalytic architecture established by both the HECT E3 and its covalently linked ubiquitin. The structure of a chemically trapped proxy for an E3 similar to ubiquitin-substrate intermediate reveals three-way interactions between ubiquitin and the bilobal HECT domain orienting the E3 similar to ubiquitin thioester bond for ligation, and restricting the location of the substrate-binding domain to prioritize target lysines for ubiquitination. The data allow visualization of an E2-to-E3-to-substrate ubiquitin transfer cascade, and show how HECT-specific ubiquitin interactions driving multiple reactions are repurposed by a major E3 conformational change to promote ligation. C1 [Kamadurai, Hari B.; Qiu, Yu; Deng, Alan; Miller, Darcie J.; Schulman, Brenda A.] St Jude Childrens Res Hosp, Dept Biol Struct, Memphis, TN 38105 USA. [Harrison, Joseph S.; Lewis, Steven M.; Kuhlman, Brian] Univ N Carolina, Dept Biochem & Biophys, Chapel Hill, NC USA. [Harrison, Joseph S.] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA. [MacDonald, Chris; Piper, Robert] Univ Iowa, Dept Mol Physiol & Biophys, Iowa City, IA USA. [Actis, Marcelo; Fujii, Naoaki] St Jude Childrens Res Hosp, Dept Chem Biol & Therapeut, Memphis, TN 38105 USA. [Rodrigues, Patrick] St Jude Childrens Res Hosp, Hartwell Ctr Bioinformat & Biotechnol, Memphis, TN 38105 USA. [Souphron, Judith] Univ Paris 11, INSERM, CNRS, Inst Curie,UMR 3306,U1005, F-91405 Orsay, France. [Kurinov, Igor] Cornell Univ, Dept Chem & Chem Biol, Argonne, IL USA. [Hammel, Michal] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Schulman, Brenda A.] St Jude Childrens Res Hosp, Howard Hughes Med Inst, Memphis, TN 38105 USA. RP Kamadurai, HB (reprint author), St Jude Childrens Res Hosp, Dept Biol Struct, 332 N Lauderdale St, Memphis, TN 38105 USA. EM hari.kamadurai@stjude.org; brenda.schulman@stjude.org RI Fujii, Naoaki/I-6423-2013; Kamadurai, Hari/K-4056-2013; OI Kamadurai, Hari/0000-0001-8218-7777; MacDonald, Chris/0000-0002-7450-600X FU Howard Hughes Medical Institute [045102]; National Institutes of Health [R01GM069530, 5P30CA021765, R01GM073960, 5P41RR015301-10, 8P41 GM103403-10, 5R01 GM058202]; ALSAC; DOE [DE-AC02-06CH11357]; American Heart Association FX Howard Hughes Medical Institute 045102 Brenda A Schulman; National Institutes of Health R01GM069530 Brenda A Schulman; National Institutes of Health 5P30CA021765 Brenda A Schulman; ALSAC Brenda A Schulman; National Institutes of Health R01GM073960 Brian Kuhlman; National Institutes of Health 5P41RR015301-10 Igor Kurinov; National Institutes of Health 8P41 GM103403-10 Igor Kurinov; DOE DE-AC02-06CH11357 Igor Kurinov; National Institutes of Health 5R01 GM058202 Robert Piper; American Heart Association Hari B Kamadurai NR 59 TC 45 Z9 45 U1 1 U2 14 PU ELIFE SCIENCES PUBLICATIONS LTD PI CAMBRIDGE PA SHERATON HOUSE, CASTLE PARK, CAMBRIDGE, CB3 0AX, ENGLAND SN 2050-084X J9 ELIFE JI eLife PD AUG 8 PY 2013 VL 2 AR e00828 DI 10.7554/eLife.00828 PG 26 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 274RE UT WOS:000328623000001 PM 23936628 ER PT J AU Khistyaev, K Golan, A Bravaya, KB Orms, N Krylov, AI Ahmed, M AF Khistyaev, Kirin Golan, Amir Bravaya, Ksenia B. Orms, Natalie Krylov, Anna I. Ahmed, Musahid TI Proton Transfer in Nucleobases is Mediated by Water SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID ACID-BASE REACTIONS; IONIZATION ENERGIES; THYMINE; WIRE; 7-HYDROXYQUINOLINE; MICROHYDRATION; MIGRATION; HYDRATION; DYNAMICS; CLUSTERS AB Water plays a central role in chemistry and biology by mediating the interactions between molecules, altering energy levels of solvated species, modifying potential energy profiles along reaction coordinates, and facilitating efficient proton transport through ion channels and interfaces. This study investigates proton transfer in a model system comprising dry and microhydrated clusters of nucleobases. With mass spectrometry and tunable vacuum ultraviolet synchrotron radiation, we show that water shuts down ionization-induced proton transfer between nucleobases, which is very efficient in dry clusters. Instead, a new pathway opens up in which protonated nucleobases are generated by proton transfer from the ionized water molecule and elimination of a hydroxyl radical. Electronic structure calculations reveal that the shape of the potential energy profile along the proton transfer coordinate depends strongly on the character of the molecular orbital from which the electron is removed; i.e., the proton transfer from water to nucleobases is barrierless when an ionized state localized on water is accessed. The computed energetics of proton transfer is in excellent agreement with the experimental appearance energies. Possible adiabatic passage on the ground electronic state of the ionized system, though energetically accessible at lower energies, is not efficient. Thus, proton transfer is controlled electronically, by the character of the ionized state, rather than statistically, by simple energy considerations. C1 [Khistyaev, Kirin; Bravaya, Ksenia B.; Orms, Natalie; Krylov, Anna I.] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA. [Golan, Amir; Ahmed, Musahid] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Krylov, AI (reprint author), Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA. RI Ahmed, Musahid/A-8733-2009 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy through the Chemical Sciences Division [DE-AC02-05CH11231]; Department of Energy [DE-FG02-05ER15685] FX A.G., M.A., and the ALS are supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, through the Chemical Sciences Division. A.I.K acknowledges support from the Department of Energy through the DE-FG02-05ER15685 grant. The authors acknowledge the contributions of Oleg Kostko in providing the thymine/water data and Qiao Ruan for mass spectra analysis. NR 45 TC 14 Z9 14 U1 1 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD AUG 8 PY 2013 VL 117 IS 31 BP 6789 EP 6797 DI 10.1021/jp406029p PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 200PT UT WOS:000323082000008 PM 23805987 ER PT J AU Delmau, LH Moine, J Mirzadeh, S Moyer, BA AF Delmau, Laetitia H. Moine, Jerome Mirzadeh, Saed Moyer, Bruce A. TI First Experimentally Determined Thermodynamic Values of Francium: Hydration Energy, Energy of Partitioning, and Thermodynamic Radius SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID ALKALI ATOMS; EXTRACTION; NITROBENZENE; SELECTIVITY; IONS AB The Gibbs energy of partitioning of Fr+ ion between water and nitrobenzene has been determined to be 14.5 +/- 0.6 kJ/mol at 25 degrees C, the first ever Gibbs energy of partitioning for francium in particular and the first ever solution thermodynamic quantity for francium in general. This value enabled the ionic radius and standard Gibbs energy of hydration for Fr+ to be estimated as 173 pm and -251 kJ/mol, respectively, the former value being significantly smaller than previously thought. A new experimental method was established using a cesium dicarbollide as a cation-exchange agent, overcoming problems inherent to the trace-level concentrations of francium. The methodology opens the door to the study of the partitioning behavior of francium to other water-immiscible solvents and the determination of complexation constants for francium binding by receptor molecules. C1 [Delmau, Laetitia H.; Moine, Jerome; Moyer, Bruce A.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Mirzadeh, Saed] Oak Ridge Natl Lab, Fuel Cycle & Isotopes Div, Oak Ridge, TN 37831 USA. RP Delmau, LH (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM delmaulh@ornl.gov RI Moyer, Bruce/L-2744-2016 OI Moyer, Bruce/0000-0001-7484-6277 FU Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy; Isotope Production/Distribution Program, Office of Nuclear Physics of the U.S. DOE FX This research was sponsored by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. Research was also supported in part by the Isotope Production/Distribution Program, Office of Nuclear Physics of the U.S. DOE. Authors acknowledge Dr. Rose Boll and Karen Murphy for the preparation of 225Ac for this research. NR 28 TC 0 Z9 0 U1 1 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD AUG 8 PY 2013 VL 117 IS 31 BP 9258 EP 9261 DI 10.1021/jp401880f PG 4 WC Chemistry, Physical SC Chemistry GA 200PU UT WOS:000323082200014 PM 23848436 ER PT J AU Crumlin, EJ Mutoro, E Hong, WT Biegalski, MD Christen, HM Liu, Z Bluhm, H Shao-Horn, Y AF Crumlin, Ethan J. Mutoro, Eva Hong, Wesley T. Biegalski, Michael D. Christen, Hans M. Liu, Zhi Bluhm, Hendrik Shao-Horn, Yang TI In Situ Ambient Pressure X-ray Photoelectron Spectroscopy of Cobalt Perovskite Surfaces under Cathodic Polarization at High Temperatures SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID OXIDE FUEL-CELLS; OXYGEN REDUCTION KINETICS; THIN-FILMS; ENHANCEMENT; XPS; EXCHANGE; (LA,SR)COO3/(LA,SR)(2)COO4; ADSORPTION; COVERAGE; COPPER AB Heterostructured oxide interfaces have demonstrated enhanced oxygen reduction reaction rates at elevated temperatures (similar to 500-800 degrees C); however, the physical origin underlying this enhancement is not well understood. By using synchrotron-based in situ ambient pressure X-ray photoelectron spectroscopy (APXPS), we focus on understanding the surface electronic structure, elemental composition, and chemical nature of epitaxial La0.8Sr0.2CoO3-delta (LSC113), (La0.5Sr0.5)(2)CoO4 +/-delta (LSC214), and LSC214-decorated LSC113 (LSC113/214) thin films as a function of applied electrical potentials (0 to -800 mV) at 520 degrees C and p(O-2) of 1 x 10(-3) atm. Shifts in the top of the valence band binding energy and changes in the Sr 3d and O 1s spectral components under applied bias reveal key differences among the film chemistries, most notably in the degree of Sr segregation to the surface and quantity of active oxygen sites in the perovskite termination layer. These differences help to identify important factors governing the enhanced activity of oxygen electrocatalysis observed for the LSC113/214 heterostructured surface. C1 [Crumlin, Ethan J.; Mutoro, Eva; Hong, Wesley T.; Shao-Horn, Yang] MIT, Electrochem Energy Lab, Cambridge, MA 02139 USA. [Biegalski, Michael D.; Christen, Hans M.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Liu, Zhi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Bluhm, Hendrik] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Shao-Horn, Y (reprint author), MIT, Electrochem Energy Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM shaohorn@mit.edu RI Hong, Wesley/H-1102-2014; Liu, Zhi/B-3642-2009; Christen, Hans/H-6551-2013 OI Liu, Zhi/0000-0002-8973-6561; Christen, Hans/0000-0001-8187-7469 FU DOE [SISGR DE-SC0002633]; King Abdullah University of Science and Technology; German Research Foundation (DFG); King Fahd University of Petroleum and Minerals in Dharam, Saudi Arabia through the Center for Clean Water and Clean Energy at MIT; KFUPM; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This work was supported in part by DOE (SISGR DE-SC0002633) and King Abdullah University of Science and Technology. E.M. is grateful for financial support from the German Research Foundation (DFG research scholarship). We would like to thank the King Fahd University of Petroleum and Minerals in Dharam, Saudi Arabia, for funding the research reported in this article through the Center for Clean Water and Clean Energy at MIT and KFUPM. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. The PLD preparation performed was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 41 TC 24 Z9 24 U1 3 U2 73 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 8 PY 2013 VL 117 IS 31 BP 16087 EP 16094 DI 10.1021/jp4051963 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 200PV UT WOS:000323082300027 ER PT J AU An, W Liu, P AF An, Wei Liu, Ping TI Size and Shape Effects of Pd@Pt Core-Shell Nanoparticles: Unique Role of Surface Contraction and Local Structural Flexibility SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID OXYGEN REDUCTION REACTION; PARTICLE-SIZE; PLATINUM NANOPARTICLES; ELECTRONIC-STRUCTURE; ALLOY CATALYSTS; ELECTROCATALYSTS; STABILITY; MONOLAYER; HYDROGENATION; NANOCRYSTALS AB In this article, we present a density functional theory (DFT) study of nanoparticles (NPs) using a more realistic particle model, which allows us to model Pd@Pt core-shell NPs in size of 1-3 nm (number of atoms: 35-405) and shape [tetrahedron (TH); sphere-like truncated octahedron (SP)] precisely. Our results show that the size and shape have significant effects on the stability and activity of a Pd@Pt NP toward the oxygen reduction reaction (ORR). More importantly it is found for the first time that the variation in activity with particle size is shape-dependent. In addition, under the ORR conditions the adsorbate-driven structural changes on the terraces of nanoparticles can occur, which is relevant for understanding the observed activity and stability. According to our DFT calculations, the catalytic behaviors of Pd@Pt nanoparticles associated with the surface contraction (compressive strain) and the local structural flexibility, which are strongly size- and shape-dependent. Our study demonstrates the importance of modeling more realistic catalysts and in situ study under reaction conditions to draw valid conclusions for nanocatalysts. C1 [An, Wei; Liu, Ping] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Liu, P (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM pingliu3@bnl.gov RI An, Wei/E-9270-2010 OI An, Wei/0000-0002-0760-1357 FU US Department of Energy, Division of Chemical Sciences [DE-AC02-98CH10886]; Office of Science of the U.S. DOE [DE-AC02-05CH11231] FX The research was carried out at Brookhaven National Laboratory under contract DE-AC02-98CH10886 with the US Department of Energy, Division of Chemical Sciences. The authors are grateful for the help from Dr. YongMan Choi in constructing the Pd NP model. The DFT calculations were performed using computational resources at the Center for Functional Nanomaterials, Brookhaven National Laboratory, and at the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. DOE under Contract No. DE-AC02-05CH11231. NR 43 TC 20 Z9 20 U1 14 U2 125 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 8 PY 2013 VL 117 IS 31 BP 16144 EP 16149 DI 10.1021/jp4057785 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 200PV UT WOS:000323082300033 ER PT J AU Stender, AS Wei, XZ Augspurger, AE Fang, N AF Stender, Anthony S. Wei, Xingzhan Augspurger, Ashley E. Fang, Ning TI Plasmonic Behavior of Single Gold Dumbbells and Simple Dumbbell Geometries SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID INTERFERENCE CONTRAST MICROSCOPY; ORIENTATION SENSORS; NANORODS; NANOPARTICLES; SPECTROSCOPY; GROWTH; SHAPE; NANODUMBBELLS; RESONANCES; REGIME AB Dumbbell-shaped nanoparticles are similar in size to their nanorod counterparts, but their optical properties have not been studied as extensively as the nanorod. In this paper, the spectra of a single dumbbell, several dumbbell dimers, and a pentamer were collected experimentally and compared with simulated spectra. Surface charge density plots were also obtained in order to elucidate the nature of the plasmonic modes. The dumbbell is shown to be a particle that acts as a transition from the nanorod to the nanosphere. Because the dumbbell shape allows adjacent particles to interlock like puzzle pieces, dumbbells can be thought of as optical building blocks that can combine into designs that are capable of supporting localized hot spots, Fano resonance, and tunable plasmon peaks. C1 [Stender, Anthony S.; Augspurger, Ashley E.; Fang, Ning] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Stender, Anthony S.; Augspurger, Ashley E.; Fang, Ning] US DOE, Ames Lab, Ames, IA 50011 USA. [Wei, Xingzhan] Univ Melbourne, Sch Chem, Melbourne, Vic 3010, Australia. [Wei, Xingzhan] Univ Melbourne, Inst Bio21, Melbourne, Vic 3010, Australia. RP Fang, N (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM nfang@iastate.edu FU Chemical Sciences, Geosciences, and Biosciences Division, Basic Energy Sciences, Office of Science, U.S. Department of Energy; U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358] FX This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division, Basic Energy Sciences, Office of Science, U.S. Department of Energy. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract #DE-AC02-07CH11358. The authors thank the following people at Iowa State University for the help they offered on this project: Charles Barnes and Dr. Jacob Petrich for supplying the Glan-polarizers and Fran Laabs and Matt Kramer for answering TEM-related questions. The authors also thank Dr. Paul Mulvaney for his assistance and for providing comments on the manuscript. NR 41 TC 5 Z9 5 U1 2 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 8 PY 2013 VL 117 IS 31 BP 16195 EP 16202 DI 10.1021/jp406064h PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 200PV UT WOS:000323082300040 ER PT J AU Williams, D Trimble, WL Shilts, M Meyer, F Ochman, H AF Williams, David Trimble, William L. Shilts, Meghan Meyer, Folker Ochman, Howard TI Rapid quantification of sequence repeats to resolve the size, structure and contents of bacterial genomes SO BMC GENOMICS LA English DT Article DE K-mer; Genome assembly; Repetitive elements; Bacterial evolution ID FEATURE FREQUENCY PROFILES; ESCHERICHIA-COLI; INSERTION SEQUENCES; DNA-SEQUENCES; L-TUPLES; K-MERS; EVOLUTION; ELEMENTS; REVEAL; FAMILY AB Background: The numerous classes of repeats often impede the assembly of genome sequences from the short reads provided by new sequencing technologies. We demonstrate a simple and rapid means to ascertain the repeat structure and total size of a bacterial or archaeal genome without the need for assembly by directly analyzing the abundances of distinct k-mers among reads. Results: The sensitivity of this procedure to resolve variation within a bacterial species is demonstrated: genome sizes and repeat structure of five environmental strains of E. coli from short Illumina reads were estimated by this method, and total genome sizes corresponded well with those obtained for the same strains by pulsed-field gel electrophoresis. In addition, this approach was applied to read-sets for completed genomes and shown to be accurate over a wide range of microbial genome sizes. Conclusions: Application of these procedures, based solely on k-mer abundances in short read data sets, allows aspects of genome structure to be resolved that are not apparent from conventional short read assemblies. This knowledge of the repetitive content of genomes provides insights into genome evolution and diversity. C1 [Williams, David; Shilts, Meghan; Ochman, Howard] Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT 06520 USA. [Trimble, William L.; Meyer, Folker] Univ Chicago, Inst Genom & Syst Biol, Chicago, IL 60637 USA. [Meyer, Folker] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Ochman, H (reprint author), Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT 06520 USA. EM howard.ochman@yale.edu OI Trimble, William L./0000-0001-7029-2676; Williams, David/0000-0002-6925-7408; Meyer, Folker/0000-0003-1112-2284 FU Templeton Foundation [23536]; Office of Science and Environmental Research of the US Department of Energy, as part of the DOE Systems Biology Knowledgebase [DE-AC02-06CH11357]; Office of Biological and Environmental Research of the US Department of Energy, as part of the DOE Systems Biology Knowledgebase [DE-AC02-06CH11357] FX The authors wish to thank Travis Harrison from the KBase development team for developing a wrapper for JELLYFISH. This work was supported by grant number 23536 from the Templeton Foundation to HO, and the Offices of Science and of Biological and Environmental Research of the US Department of Energy, as part of the DOE Systems Biology Knowledgebase (under Contract No. DE-AC02-06CH11357 to WT and FM). NR 45 TC 4 Z9 4 U1 1 U2 10 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD AUG 8 PY 2013 VL 14 AR 537 DI 10.1186/1471-2164-14-537 PG 11 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 201VP UT WOS:000323171400001 PM 23924250 ER PT J AU May, AF McGuire, MA Mitchell, JE Sefat, AS Sales, BC AF May, Andrew F. McGuire, Michael A. Mitchell, Jonathan E. Sefat, Athena S. Sales, Brian C. TI Influence of spin fluctuations on the thermal conductivity in superconducting Ba(Fe1-xCox)(2)As-2 SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; IRON ARSENIDE SUPERCONDUCTOR; UNCONVENTIONAL SUPERCONDUCTIVITY; SCATTERING; HEAT AB The thermal conductivity of electron-doped Ba(Fe1-xCox)(2)As-2 single crystals is investigated below 200 K, with an emphasis on the behavior near the magnetic and superconducting (T-c) transition temperatures. An enhancement of the in-plane thermal conductivity kappa(ab) is observed below T-c for all samples, with the greatest enhancement observed near optimal doping. The observed trends are consistent with the scattering of heat carriers by low-energy magnetic excitations. Upon entering the superconducting state, the formation of a spin gap leads to reduced scattering and an enhancement in kappa(T). Similarly, an enhancement of kappa is observed for polycrystalline BaFe2As2 below the magnetic transition, and qualitative differences in kappa(T) between single crystalline and polycrystalline BaFe2As2 are utilized to discuss anisotropic scattering. This study highlights how measuring kappa near T-c in novel superconductors can be useful as a means to probe the potential role of spin fluctuations. C1 [May, Andrew F.; McGuire, Michael A.; Mitchell, Jonathan E.; Sefat, Athena S.; Sales, Brian C.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP May, AF (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI McGuire, Michael/B-5453-2009; May, Andrew/E-5897-2011; Sefat, Athena/R-5457-2016 OI McGuire, Michael/0000-0003-1762-9406; May, Andrew/0000-0003-0777-8539; Sefat, Athena/0000-0002-5596-3504 FU U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division FX We thank A. D. Christianson for useful discussions. This research was supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division. NR 57 TC 4 Z9 4 U1 0 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD AUG 8 PY 2013 VL 88 IS 6 AR 064502 DI 10.1103/PhysRevB.88.064502 PG 7 WC Physics, Condensed Matter SC Physics GA 198GM UT WOS:000322910400003 ER PT J AU Meyers, D Middey, S Kareev, M van Veenendaal, M Moon, EJ Gray, BA Liu, J Freeland, JW Chakhalian, J AF Meyers, D. Middey, S. Kareev, M. van Veenendaal, M. Moon, E. J. Gray, B. A. Liu, Jian Freeland, J. W. Chakhalian, J. TI Strain-modulated Mott transition in EuNiO3 ultrathin films SO PHYSICAL REVIEW B LA English DT Article ID METAL-INSULATOR-TRANSITION; OXIDE INTERFACE; RARE-EARTH; THIN-FILMS; PEROVSKITES; FIELD; LA0.7CA0.3MNO3; PRESSURE; PRNIO3; NDNIO3 AB A series of ultrathin epitaxial films of EuNiO3 (ENO) were grown on a set of substrates traversing from compressive (-2.4%) to tensile (+2.5%) lattice mismatch. On moving from tensile to compressive strain, transport measurements demonstrate a successively suppressed Mott insulating behavior eventually resulting in a complete suppression of the insulating state at high compressive strain. Corroborating these findings, resonant soft x-ray absorption spectroscopy at the Ni L-3,L-2 edge reveals the presence of a strong multiplet splitting in the tensile strained samples that progressively weakens with increasing compressive strain. Combined with cluster calculations, the results show how cumulatively enhanced covalency (i.e., bandwidth) between Ni d and O p orbital derived states leads to the emergent metallic ground state not attainable in the bulk ENO. C1 [Meyers, D.; Middey, S.; Kareev, M.; Moon, E. J.; Gray, B. A.; Chakhalian, J.] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. [van Veenendaal, M.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Liu, Jian] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Liu, Jian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Freeland, J. W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Meyers, D (reprint author), Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. EM dmeyers@uark.edu RI Liu, Jian/I-6746-2013; Moon, Eun Ju/C-7856-2014; Chakhalian, Jak/F-2274-2015; Middey, Srimanta/D-9580-2013 OI Liu, Jian/0000-0001-7962-2547; Middey, Srimanta/0000-0001-5893-0946 FU DOD-ARO [W911NF-11-1-0200]; US Department of Energy, Office of Science [DEAC02-06CH11357] FX J.C. was supported by grants from DOD-ARO (W911NF-11-1-0200). Work at the Advanced Photon Source is supported by the US Department of Energy, Office of Science under Grant No. DEAC02-06CH11357. NR 57 TC 11 Z9 11 U1 3 U2 62 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 8 PY 2013 VL 88 IS 7 AR 075116 DI 10.1103/PhysRevB.88.075116 PG 6 WC Physics, Condensed Matter SC Physics GA 198GO UT WOS:000322910600001 ER PT J AU Adare, A Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Al-Bataineh, H Alexander, J Aoki, K Aphecetche, L Asai, J Atomssa, ET Averbeck, R Awes, TC Azmoun, B Babintsev, V Bai, M Baksay, G Baksay, L Baldisseri, A Barish, KN Barnes, PD Bassalleck, B Basye, AT Bathe, S Batsouli, S Baublis, V Baumann, C Bazilevsky, A Belikov, S Bennett, R Berdnikov, A Berdnikov, Y Bickley, AA Boissevain, JG Borel, H Boyle, K Brooks, ML Buesching, H Bumazhnov, V Bunce, G Butsyk, S Camacho, CM Campbell, S Chang, BS Chang, WC Charvet, JL Chernichenko, S Chi, CY Chiu, M Choi, IJ Choudhury, RK Chujo, T Chung, P Churyn, A Cianciolo, V Citron, Z Cole, BA Constantin, P Csanad, M Csorgo, T Dahms, T Dairaku, S Das, K David, G Denisov, A d'Enterria, D Deshpande, A Desmond, EJ Dietzsch, O Dion, A Donadelli, M Drapier, O Drees, A Drees, KA Dubey, AK Durum, A Dutta, D Dzhordzhadze, V Efremenko, YV Ellinghaus, F Engelmore, T Enokizono, A En'yo, H Esumi, S Eyser, KO Fadem, B Fields, DE Finger, M Finger, M Fleuret, F Fokin, SL Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fujiwara, K Fukao, Y Fusayasu, T Garishvili, I Glenn, A Gong, H Gonin, M Gosset, J Goto, Y de Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gunji, T Gustafsson, HA Henni, AH Haggerty, JS Hamagaki, H Han, R Hartouni, EP Haruna, K Haslum, E Hayano, R He, X Heffner, M Hemmick, TK Hester, T Hill, JC Hohlmann, M Holzmann, W Homma, K Hong, B Horaguchi, T Hornback, D Huang, S Ichihara, T Ichimiya, R Iinuma, H Ikeda, Y Imai, K Imrek, J Inaba, M Isenhower, D Ishihara, M Isobe, T Issah, M Isupov, A Ivanischev, D Jacak, BV Jia, J Jin, J Johnson, BM Joo, KS Jouan, D Kajihara, F Kametani, S Kamihara, N Kamin, J Kang, JH Kapustinsky, J Kawall, D Kazantsev, AV Kempel, T Khanzadeev, A Kijima, KM Kikuchi, J Kim, BI Kim, DH Kim, DJ Kim, E Kim, SH Kinney, E Kiriluk, K Kiss, A Kistenev, E Klay, J Klein-Boesing, C Kochenda, L Komkov, B Konno, M Koster, J Kozlov, A Kral, A Kravitz, A Kunde, GJ Kurita, K Kurosawa, M Kweon, MJ Kwon, Y Kyle, GS Lacey, R Lai, YS Lajoie, JG Layton, D Lebedev, A Lee, DM Lee, KB Lee, T Leitch, MJ Leite, MAL Lenzi, B Li, X Liebing, P Liska, T Litvinenko, A Liu, H Liu, MX Love, B Lynch, D Maguire, CF Makdisi, YI Malakhov, A Malik, MD Manko, VI Mannel, E Mao, Y Masek, L Masui, H Matathias, F McCumber, M McGaughey, PL Means, N Meredith, B Miake, Y Mikes, P Miki, K Milov, A Mishra, M Mitchell, JT Mohanty, AK Morino, Y Morreale, A Morrison, DP Moukhanova, TV Mukhopadhyay, D Murata, J Nagamiya, S Nagle, JL Naglis, M Nagy, MI Nakagawa, I Nakamiya, Y Nakamura, T Nakano, K Newby, J Nguyen, M Niida, T Nouicer, R Nyanin, AS O'Brien, E Oda, SX Ogilvie, CA Oka, M Okada, K Onuki, Y Oskarsson, A Ouchida, M Ozawa, K Pak, R Palounek, APT Pantuev, V Papavassiliou, V Park, J Park, WJ Pate, SF Pei, H Peng, JC Pereira, H Peresedov, V Peressounko, DY Pinkenburg, C Purschke, ML Purwar, AK Qu, H Rak, J Rakotozafindrabe, A Ravinovich, I Read, KF Rembeczki, S Reygers, K Riabov, V Riabov, Y Roach, D Roche, G Rolnick, SD Rosati, M Rosendahl, SSE Rosnet, P Rukoyatkin, P Ruzicka, P Rykov, VL Sahlmueller, B Saito, N Sakaguchi, T Sakai, S Sakashita, K Samsonov, V Sato, T Sawada, S Sedgwick, K Seele, J Seidl, R Semenov, AY Semenov, V Seto, R Sharma, D Shein, I Shibata, TA Shigaki, K Shimomura, M Shoji, K Shukla, P Sickles, A Silva, CL Silvermyr, D Silvestre, C Sim, KS Singh, BK Singh, CP Singh, V Slunecka, M Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Suire, C Sukhanov, A Sziklai, J Takagui, EM Taketani, A Tanabe, R Tanaka, Y Tanida, K Tannenbaum, MJ Taranenko, A Tarjan, P Themann, H Thomas, TL Togawa, M Toia, A Tomasek, L Tomita, Y Torii, H Towell, RS Tram, VN Tserruya, I Tsuchimoto, Y Vale, C Valle, H van Hecke, HW Veicht, A Velkovska, J Vertesi, R Vinogradov, AA Virius, M Vrba, V Vznuzdaev, E Wang, XR Watanabe, Y Wei, F Wessels, J White, SN Winter, D Woody, CL Wysocki, M Xie, W Yamaguchi, YL Yamaura, K Yang, R Yanovich, A Ying, J Yokkaichi, S Young, GR Younus, I Yushmanov, IE Zajc, WA Zaudtke, O Zhang, C Zhou, S Zolin, L AF Adare, A. Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Al-Bataineh, H. Alexander, J. Aoki, K. Aphecetche, L. Asai, J. Atomssa, E. T. Averbeck, R. Awes, T. C. Azmoun, B. Babintsev, V. Bai, M. Baksay, G. Baksay, L. Baldisseri, A. Barish, K. N. Barnes, P. D. Bassalleck, B. Basye, A. T. Bathe, S. Batsouli, S. Baublis, V. Baumann, C. Bazilevsky, A. Belikov, S. Bennett, R. Berdnikov, A. Berdnikov, Y. Bickley, A. A. Boissevain, J. G. Borel, H. Boyle, K. Brooks, M. L. Buesching, H. Bumazhnov, V. Bunce, G. Butsyk, S. Camacho, C. M. Campbell, S. Chang, B. S. Chang, W. C. Charvet, J. -L. Chernichenko, S. Chi, C. Y. Chiu, M. Choi, I. J. Choudhury, R. K. Chujo, T. Chung, P. Churyn, A. Cianciolo, V. Citron, Z. Cole, B. A. Constantin, P. Csanad, M. Csoergo, T. Dahms, T. Dairaku, S. Das, K. David, G. Denisov, A. d'Enterria, D. Deshpande, A. Desmond, E. J. Dietzsch, O. Dion, A. Donadelli, M. Drapier, O. Drees, A. Drees, K. A. Dubey, A. K. Durum, A. Dutta, D. Dzhordzhadze, V. Efremenko, Y. V. Ellinghaus, F. Engelmore, T. Enokizono, A. En'yo, H. Esumi, S. Eyser, K. O. Fadem, B. Fields, D. E. Finger, M. Finger, M., Jr. Fleuret, F. Fokin, S. L. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fujiwara, K. Fukao, Y. Fusayasu, T. Garishvili, I. Glenn, A. Gong, H. Gonin, M. Gosset, J. Goto, Y. de Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Gunji, T. Gustafsson, H. -A Henni, A. Hadj Haggerty, J. S. Hamagaki, H. Han, R. Hartouni, E. P. Haruna, K. Haslum, E. Hayano, R. He, X. Heffner, M. Hemmick, T. K. Hester, T. Hill, J. C. Hohlmann, M. Holzmann, W. Homma, K. Hong, B. Horaguchi, T. Hornback, D. Huang, S. Ichihara, T. Ichimiya, R. Iinuma, H. Ikeda, Y. Imai, K. Imrek, J. Inaba, M. Isenhower, D. Ishihara, M. Isobe, T. Issah, M. Isupov, A. Ivanischev, D. Jacak, B. V. Jia, J. Jin, J. Johnson, B. M. Joo, K. S. Jouan, D. Kajihara, F. Kametani, S. Kamihara, N. Kamin, J. Kang, J. H. Kapustinsky, J. Kawall, D. Kazantsev, A. V. Kempel, T. Khanzadeev, A. Kijima, K. M. Kikuchi, J. Kim, B. I. Kim, D. H. Kim, D. J. Kim, E. Kim, S. H. Kinney, E. Kiriluk, K. Kiss, A. Kistenev, E. Klay, J. Klein-Boesing, C. Kochenda, L. Komkov, B. Konno, M. Koster, J. Kozlov, A. Kral, A. Kravitz, A. Kunde, G. J. Kurita, K. Kurosawa, M. Kweon, M. J. Kwon, Y. Kyle, G. S. Lacey, R. Lai, Y. S. Lajoie, J. G. Layton, D. Lebedev, A. Lee, D. M. Lee, K. B. Lee, T. Leitch, M. J. Leite, M. A. L. Lenzi, B. Li, X. Liebing, P. Liska, T. Litvinenko, A. Liu, H. Liu, M. X. Love, B. Lynch, D. Maguire, C. F. Makdisi, Y. I. Malakhov, A. Malik, M. D. Manko, V. I. Mannel, E. Mao, Y. Masek, L. Masui, H. Matathias, F. McCumber, M. McGaughey, P. L. Means, N. Meredith, B. Miake, Y. Mikes, P. Miki, K. Milov, A. Mishra, M. Mitchell, J. T. Mohanty, A. K. Morino, Y. Morreale, A. Morrison, D. P. Moukhanova, T. V. Mukhopadhyay, D. Murata, J. Nagamiya, S. Nagle, J. L. Naglis, M. Nagy, M. I. Nakagawa, I. Nakamiya, Y. Nakamura, T. Nakano, K. Newby, J. Nguyen, M. Niida, T. Nouicer, R. Nyanin, A. S. O'Brien, E. Oda, S. X. Ogilvie, C. A. Oka, M. Okada, K. Onuki, Y. Oskarsson, A. Ouchida, M. Ozawa, K. Pak, R. Palounek, A. P. T. Pantuev, V. Papavassiliou, V. Park, J. Park, W. J. Pate, S. F. Pei, H. Peng, J. -C. Pereira, H. Peresedov, V. Peressounko, D. Yu. Pinkenburg, C. Purschke, M. L. Purwar, A. K. Qu, H. Rak, J. Rakotozafindrabe, A. Ravinovich, I. Read, K. F. Rembeczki, S. Reygers, K. Riabov, V. Riabov, Y. Roach, D. Roche, G. Rolnick, S. D. Rosati, M. Rosendahl, S. S. E. Rosnet, P. Rukoyatkin, P. Ruzicka, P. Rykov, V. L. Sahlmueller, B. Saito, N. Sakaguchi, T. Sakai, S. Sakashita, K. Samsonov, V. Sato, T. Sawada, S. Sedgwick, K. Seele, J. Seidl, R. Semenov, A. Yu. Semenov, V. Seto, R. Sharma, D. Shein, I. Shibata, T-A. Shigaki, K. Shimomura, M. Shoji, K. Shukla, P. Sickles, A. Silva, C. L. Silvermyr, D. Silvestre, C. Sim, K. S. Singh, B. K. Singh, C. P. Singh, V. Slunecka, M. Soldatov, A. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Staley, F. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Suire, C. Sukhanov, A. Sziklai, J. Takagui, E. M. Taketani, A. Tanabe, R. Tanaka, Y. Tanida, K. Tannenbaum, M. J. Taranenko, A. Tarjan, P. Themann, H. Thomas, T. L. Togawa, M. Toia, A. Tomasek, L. Tomita, Y. Torii, H. Towell, R. S. Tram, V-N. Tserruya, I. Tsuchimoto, Y. Vale, C. Valle, H. van Hecke, H. W. Veicht, A. Velkovska, J. Vertesi, R. Vinogradov, A. A. Virius, M. Vrba, V. Vznuzdaev, E. Wang, X. R. Watanabe, Y. Wei, F. Wessels, J. White, S. N. Winter, D. Woody, C. L. Wysocki, M. Xie, W. Yamaguchi, Y. L. Yamaura, K. Yang, R. Yanovich, A. Ying, J. Yokkaichi, S. Young, G. R. Younus, I. Yushmanov, I. E. Zajc, W. A. Zaudtke, O. Zhang, C. Zhou, S. Zolin, L. TI Inclusive cross section and single transverse spin asymmetry for very forward neutron production in polarized p plus p collisions at root s=200 GeV SO PHYSICAL REVIEW D LA English DT Article ID DEEP-INELASTIC SCATTERING; ELASTIC-SCATTERING; NUCLEON SEA; SPECTRA; REGION; ENERGY; HERA; ISR AB The energy dependence of the single-transverse-spin asymmetry, A(N), and the cross section for neutron production at very forward angles were measured in the PHENIX experiment at the Relativistic Heavy Ion Collider for polarized p + p collisions at root s = 200 GeV. The neutrons were observed in forward detectors covering an angular range of up to 2.2 mrad. We report results for neutrons with a momentum fraction of x(F) = 0.45 to 1.0. The energy dependence of the measured cross sections were consistent with x(F) scaling, compared to measurements by an experiment at the Intersecting Storage Ring, which measured neutron production in unpolarized p + p collisions at root s = 30.6-62.7 GeV. The cross sections for large x(F) neutron production for p + p collisions, as well as those in e + p collisions measured at the Hadron-Electron Ring Accelerator, are described by a pion exchange mechanism. The observed forward neutron asymmetries were large, reaching A(N) = -0.08 +/- 0.02 for x(F) = 0.8; the measured backward asymmetries, for negative x(F), were consistent with zero. The observed asymmetry for forward neutron production is discussed within the pion exchange framework, with interference between the spin-flip amplitude due to the pion exchange and nonflip amplitudes from all Reggeon exchanges. Within the pion exchange description, the measured neutron asymmetry is sensitive to the contribution of other Reggeon exchanges even for small amplitudes. C1 [Basye, A. T.; Isenhower, D.; Towell, R. S.] Abilene Christian Univ, Abilene, TX 79699 USA. [Chang, W. C.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Grau, N.] Augustana Coll, Dept Phys, Sioux Falls, SD 57197 USA. [Mishra, M.; Singh, B. K.; Singh, C. P.; Singh, V.] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. [Choudhury, R. K.; Dutta, D.; Mohanty, A. K.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Bathe, S.] CUNY, Baruch Coll, New York, NY 10010 USA. [Bai, M.; Drees, K. A.; Makdisi, Y. I.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Azmoun, B.; Bazilevsky, A.; Belikov, S.; Buesching, H.; Bunce, G.; David, G.; Desmond, E. J.; Franz, A.; Haggerty, J. S.; Johnson, B. M.; Kistenev, E.; Lynch, D.; Milov, A.; Mitchell, J. T.; Morrison, D. P.; Nouicer, R.; O'Brien, E.; Pak, R.; Pinkenburg, C.; Purschke, M. L.; Sakaguchi, T.; Sickles, A.; Sourikova, I. V.; Stoll, S. P.; Sukhanov, A.; Tannenbaum, M. J.; White, S. N.; Woody, C. L.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Barish, K. N.; Bathe, S.; Dzhordzhadze, V.; Eyser, K. O.; Hester, T.; Morreale, A.; Rolnick, S. D.; Sedgwick, K.; Seto, R.] Univ Calif Riverside, Riverside, CA 92521 USA. [Finger, M.; Finger, M., Jr.; Masek, L.; Slunecka, M.] Charles Univ Prague, CR-11636 Prague 1, Czech Republic. [Li, X.; Zhou, S.] China Inst Atom Energy, Sci & Technol Nucl Data Lab, Beijing 102413, Peoples R China. [Gunji, T.; Hamagaki, H.; Hayano, R.; Horaguchi, T.; Isobe, T.; Kajihara, F.; Morino, Y.; Oda, S. X.; Ozawa, K.] Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Bunkyo Ku, Tokyo 1130033, Japan. [Adare, A.; Bickley, A. A.; Ellinghaus, F.; Glenn, A.; Kinney, E.; Kiriluk, K.; Nagle, J. L.; Seele, J.; Wysocki, M.] Univ Colorado, Boulder, CO 80309 USA. [Chi, C. Y.; Cole, B. A.; Engelmore, T.; Grau, N.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. S.; Mannel, E.; Matathias, F.; Winter, D.; Zajc, W. A.] Columbia Univ, New York, NY 10027 USA. [Chi, C. Y.; Cole, B. A.; Engelmore, T.; Grau, N.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. S.; Mannel, E.; Matathias, F.; Winter, D.; Zajc, W. A.] Nevis Labs, Irvington, NY 10533 USA. [Liska, T.; Virius, M.] Czech Tech Univ, Prague 16636 6, Czech Republic. [Baldisseri, A.; Borel, H.; Charvet, J. -L.; Gosset, J.; Pereira, H.; Silvestre, C.; Staley, F.] CEA Saclay, Dapnia, F-91191 Gif Sur Yvette, France. [Imrek, J.; Tarjan, P.; Vertesi, R.] Univ Debrecen, H-4010 Debrecen, Hungary. [Csanad, M.; Kiss, A.; Nagy, M. I.] Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. [Baksay, G.; Baksay, L.; Hohlmann, M.; Rembeczki, S.] Florida Inst Technol, Melbourne, FL 32901 USA. [Das, K.; Frawley, A. D.] Florida State Univ, Tallahassee, FL 32306 USA. [He, X.; Qu, H.; Ying, J.] Georgia State Univ, Atlanta, GA 30303 USA. [Haruna, K.; Homma, K.; Kijima, K. M.; Nakamiya, Y.; Nakamura, T.; Ouchida, M.; Shigaki, K.; Sugitate, T.; Torii, H.; Tsuchimoto, Y.; Yamaura, K.] Hiroshima Univ, Higashihiroshima 7398526, Japan. [Babintsev, V.; Bumazhnov, V.; Chernichenko, S.; Churyn, A.; Denisov, A.; Durum, A.; Semenov, V.; Shein, I.; Soldatov, A.; Yanovich, A.] Inst High Energy Phys, State Res Ctr Russian Federat, IHEP Protvino, Protvino 142281, Russia. [Chiu, M.; Perdekamp, M. Grosse; Koster, J.; Layton, D.; Meredith, B.; Peng, J. -C.; Seidl, R.; Veicht, A.; Yang, R.] Univ Illinois, Urbana, IL 61801 USA. [Pantuev, V.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Masek, L.; Mikes, P.; Ruzicka, P.; Tomasek, L.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. [Hill, J. C.; Kempel, T.; Lajoie, J. G.; Lebedev, A.; Ogilvie, C. A.; Pei, H.; Rosati, M.; Semenov, A. Yu.; Vale, C.; Wei, F.] Iowa State Univ, Ames, IA 50011 USA. [Imai, K.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Naka, Ibaraki 3191195, Japan. [Afanasiev, S.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Zolin, L.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. [Nagamiya, S.; Sawada, S.] High Energy Accelerator Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Hong, B.; Kim, B. I.; Kweon, M. J.; Lee, K. B.; Park, W. J.; Sim, K. S.] Korea Univ, Seoul 136701, South Korea. [Fokin, S. L.; Kazantsev, A. V.; Manko, V. I.; Moukhanova, T. V.; Nyanin, A. S.; Peressounko, D. Yu.; Vinogradov, A. A.; Yushmanov, I. E.] Kurchatov Inst, Russian Res Ctr, Moscow 123098, Russia. [Aoki, K.; Dairaku, S.; Fukao, Y.; Iinuma, H.; Imai, K.; Saito, N.; Shoji, K.; Togawa, M.] Kyoto Univ, Kyoto 6068502, Japan. [Atomssa, E. T.; d'Enterria, D.; Drapier, O.; Fleuret, F.; Gonin, M.; de Cassagnac, R. Granier; Rakotozafindrabe, A.; Tram, V-N.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Younus, I.] Lahore Univ Management Sci, Dept Phys, Lahore, Pakistan. [Enokizono, A.; Hartouni, E. P.; Heffner, M.; Klay, J.; Newby, J.; Soltz, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Barnes, P. D.; Boissevain, J. G.; Brooks, M. L.; Butsyk, S.; Camacho, C. M.; Constantin, P.; Kapustinsky, J.; Kunde, G. J.; Lee, D. M.; Leitch, M. J.; Liu, M. X.; McGaughey, P. L.; Palounek, A. P. T.; Purwar, A. K.; Sondheim, W. E.; van Hecke, H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Roche, G.; Rosnet, P.] Univ Clermont Ferrand, LPC, CNRS IN2P3, F-63177 Aubiere, France. [Gustafsson, H. -A; Haslum, E.; Oskarsson, A.; Rosendahl, S. S. E.; Stenlund, E.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden. [Aidala, C.; Kawall, D.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Aidala, C.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Baumann, C.; Klein-Boesing, C.; Reygers, K.; Sahlmueller, B.; Wessels, J.; Zaudtke, O.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Fadem, B.] Muhlenberg Coll, Allentown, PA 18104 USA. [Joo, K. S.; Kim, D. H.] Myongji Univ, Yongin 449728, Kyonggido, South Korea. [Fusayasu, T.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Bassalleck, B.; Fields, D. E.; Malik, M. D.; Rak, J.; Thomas, T. L.; Younus, I.] Univ New Mexico, Albuquerque, NM 87131 USA. [Al-Bataineh, H.; Kyle, G. S.; Liu, H.; Papavassiliou, V.; Pate, S. F.; Stepanov, M.; Wang, X. R.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Frantz, J. E.] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. [Awes, T. C.; Batsouli, S.; Cianciolo, V.; Efremenko, Y. V.; Read, K. F.; Silvermyr, D.; Stankus, P. W.; Young, G. R.; Zhang, C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Jouan, D.; Suire, C.] Univ Paris 11, CNRS IN2P3, IPN Orsay, F-91406 Orsay, France. [Han, R.; Mao, Y.] Peking Univ, Beijing 100871, Peoples R China. [Baublis, V.; Ivanischev, D.; Khanzadeev, A.; Kochenda, L.; Komkov, B.; Riabov, V.; Riabov, Y.; Samsonov, V.; Vznuzdaev, E.] PNPI, Gatchina 188300, Leningrad Regio, Russia. [Akiba, Y.; Aoki, K.; Asai, J.; Dairaku, S.; En'yo, H.; Fujiwara, K.; Fukao, Y.; Goto, Y.; Horaguchi, T.; Ichihara, T.; Ichimiya, R.; Iinuma, H.; Imai, K.; Ishihara, M.; Isobe, T.; Kametani, S.; Kurita, K.; Kurosawa, M.; Mao, Y.; Murata, J.; Nakagawa, I.; Nakano, K.; Onuki, Y.; Rykov, V. L.; Saito, N.; Sakashita, K.; Shibata, T-A.; Shoji, K.; Taketani, A.; Tanida, K.; Togawa, M.; Torii, H.; Watanabe, Y.; Yokkaichi, S.] RIKEN, Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan. [Akiba, Y.; Bunce, G.; Deshpande, A.; En'yo, H.; Fields, D. E.; Goto, Y.; Perdekamp, M. Grosse; Ichihara, T.; Kamihara, N.; Kawall, D.; Liebing, P.; Nakagawa, I.; Okada, K.; Saito, N.; Taketani, A.; Tanida, K.; Watanabe, Y.; Xie, W.; Yokkaichi, S.] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. [Kurita, K.; Murata, J.] Rikkyo Univ, Dept Phys, Toshima Ku, Tokyo 1718501, Japan. [Berdnikov, A.; Berdnikov, Y.] St Petersburg State Polytech Univ, St Petersburg 195251, Russia. [Dietzsch, O.; Donadelli, M.; Leite, M. A. L.; Lenzi, B.; Silva, C. L.; Takagui, E. M.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Kim, E.; Lee, T.; Park, J.; Tanida, K.] Seoul Natl Univ, Seoul, South Korea. [Ajitanand, N. N.; Alexander, J.; Chung, P.; Holzmann, W.; Issah, M.; Lacey, R.; Taranenko, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Averbeck, R.; Bennett, R.; Boyle, K.; Campbell, S.; Citron, Z.; Dahms, T.; Deshpande, A.; Dion, A.; Drees, A.; Frantz, J. E.; Gong, H.; Hemmick, T. K.; Jacak, B. V.; Kamin, J.; McCumber, M.; Means, N.; Nguyen, M.; Pantuev, V.; Sahlmueller, B.; Themann, H.; Toia, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Aphecetche, L.; Henni, A. Hadj] Univ Nantes, Ecole Mines Nantes, CNRS IN2P3, SUBATECH, F-44307 Nantes, France. [Garishvili, I.; Hornback, D.; Kwon, Y.; Read, K. F.; Sorensen, S. P.] Univ Tennessee, Knoxville, TN 37996 USA. [Horaguchi, T.; Nakano, K.; Sakashita, K.; Shibata, T-A.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Chujo, T.; Esumi, S.; Ikeda, Y.; Inaba, M.; Masui, H.; Miake, Y.; Miki, K.; Niida, T.; Oka, M.; Sakai, S.; Sato, T.; Shimomura, M.; Tanabe, R.; Tomita, Y.] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. [Greene, S. V.; Huang, S.; Love, B.; Maguire, C. F.; Mukhopadhyay, D.; Roach, D.; Valle, H.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Kikuchi, J.; Yamaguchi, Y. L.] Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan. [Dubey, A. K.; Fraenkel, Z.; Kozlov, A.; Naglis, M.; Ravinovich, I.; Sharma, D.; Tserruya, I.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Csoergo, T.; Ster, A.; Sziklai, J.] Hungarian Acad Sci, Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Wigner RCP,RMKI, H-1525 Budapest, Hungary. [Chang, B. S.; Choi, I. J.; Kang, J. H.; Kim, D. J.; Kim, S. H.] Yonsei Univ, IPAP, Seoul 120749, South Korea. RP Adare, A (reprint author), Abilene Christian Univ, Abilene, TX 79699 USA. EM jacak@skipper.physics.sunysb.edu RI Tomasek, Lukas/G-6370-2014; En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017; Taketani, Atsushi/E-1803-2017; Semenov, Vitaliy/E-9584-2017 OI Tomasek, Lukas/0000-0002-5224-1936; Hayano, Ryugo/0000-0002-1214-7806; Sorensen, Soren /0000-0002-5595-5643; Taketani, Atsushi/0000-0002-4776-2315; FU Office of Nuclear Physics in the Office of Science of the Department of Energy; National Science Foundation; Renaissance Technologies LLC; Abilene Christian University Research Council; Research Foundation of SUNY; College of Arts and Sciences, Vanderbilt University (USA); Ministry of Education, Culture, Sports, Science, and Technology (Japan); Japan Society for the Promotion of Science (Japan); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (Brazil); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Brazil); Natural Science Foundation of China (People's Republic of China); Ministry of Education, Youth and Sports (Czech Republic); Centre National de la Recherche Scientifique (France); Commissariat a l'Energie Atomique (France); Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung (Germany); Deutscher Akademischer Austausch Dienst (Germany); Alexander von Humboldt Stiftung (Germany); Hungarian National Science Fund, OTKA (Hungary); Department of Atomic Energy (India); Department of Science and Technology (India); Israel Science Foundation (Israel); National Research Foundation of the Ministry Education Science and Technology (Korea); WCU program of the Ministry Education Science and Technology (Korea); Ministry of Education and Science (Russia); Russian Academy of Sciences (Russia); Federal Agency of Atomic Energy (Russia); VR (Sweden); Wallenberg Foundation (Sweden); U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union; US-Hungarian Fulbright Foundation for Educational Exchange; US-Israel Binational Science Foundation FX We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy; the National Science Foundation, a sponsored research grant from Renaissance Technologies LLC; Abilene Christian University Research Council; Research Foundation of SUNY; dean of the College of Arts and Sciences, Vanderbilt University (USA); Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Brazil); Natural Science Foundation of China (People's Republic of China); Ministry of Education, Youth and Sports (Czech Republic); Centre National de la Recherche Scientifique, Commissariat a l'Energie Atomique, and Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany); Hungarian National Science Fund, OTKA (Hungary); Department of Atomic Energy and Department of Science and Technology (India); Israel Science Foundation (Israel); National Research Foundation and WCU program of the Ministry Education Science and Technology (Korea); Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia); VR and Wallenberg Foundation (Sweden); the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union; the US-Hungarian Fulbright Foundation for Educational Exchange; and the US-Israel Binational Science Foundation. NR 24 TC 8 Z9 8 U1 6 U2 46 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD AUG 8 PY 2013 VL 88 IS 3 AR 032006 DI 10.1103/PhysRevD.88.032006 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 198IO UT WOS:000322916300002 ER PT J AU Lees, JP Poireau, V Tisserand, V Tico, JG Grauges, E Palano, A Eigen, G Stugu, B Brown, DN Kerth, LT Kolomensky, YG Lynch, G Koch, H Schroeder, T Asgeirsson, DJ Hearty, C Mattison, TS McKenna, JA So, RY Khan, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Yushkov, AN Bondioli, M Kirkby, D Lankford, AJ Mandelkern, M Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Campagnari, C Hong, TM Kovalskyi, D Richman, JD West, CA Eisner, AM Kroseberg, J Lockman, WS Martinez, AJ Schumm, BA Seiden, A Chao, DS Cheng, CH Echenard, B Flood, KT Hitlin, DG Ongmongkolkul, P Porter, FC Rakitin, AY Andreassen, R Huard, Z Meadows, BT Sokoloff, MD Sun, L Bloom, PC Ford, WT Gaz, A Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Spaan, B Schubert, KR Schwierz, R Bernard, D Verderi, M Clark, PJ Playfer, S Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Fioravanti, E Garzia, I Luppi, E Munerato, M Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Bhuyan, B Prasad, V Lee, CL Morii, M Edwards, AJ Adametz, A Uwer, U Lacker, HM Lueck, T Dauncey, PD Mallik, U Chen, C Cochran, J Meyer, WT Prell, S Rubin, AE Gritsan, AV Guo, ZJ Arnaud, N Davier, M Derkach, D Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Roudeau, P Schune, MH Stocchi, A Wormser, G Lange, DJ Wright, DM Chavez, CA Coleman, JP Fry, JR Gabathuler, E Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Sigamani, M Cowan, G Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Griessinger, K Hafner, A Prencipe, E Barlow, RJ Jackson, G Lafferty, GD Behn, E Cenci, R Hamilton, B Jawahery, A Roberts, DA Dallapiccola, C Cowan, R Dujmic, D Sciolla, G Cheaib, R Lindemann, D Patel, PM Robertson, SH Biassoni, P Neri, N Palombo, F Stracka, S Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Nguyen, X Simard, M Taras, P De Nardo, G Monorchio, D Onorato, G Sciacca, C Martinelli, M Raven, G Jessop, CP LoSecco, JM Wang, WF Honscheid, K Kass, R Brau, J Frey, R Sinev, NB Strom, D Torrence, E Feltresi, E Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simi, G Simonetto, F Stroili, R Akar, S Ben-Haim, E Bomben, M Bonneaud, GR Briand, H Calderini, G Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Sitt, S Biasini, M Manoni, E Pacetti, S Rossi, A Angelini, C Batignani, G Bettarini, S Carpinelli, M Casarosa, G Cervelli, A Forti, F Giorgi, MA Lusiani, A Oberhof, B Paoloni, E Perez, A Rizzo, G Walsh, JJ Pegna, DL Olsen, J Smith, AJS Telnov, AV Anulli, F Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Piredda, G Bunger, C Gruberg, O Hartmann, T Leddig, T Schroder, H Voss, C Waldi, R Adye, T Olaiya, EO Wilson, FF Emery, S de Monchenault, GH Vasseur, G Yeche, C Aston, D Bard, DJ Bartoldus, R Benitez, JF Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Ebert, M Field, RC Sevilla, MF Fulsom, BG Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Lewis, P Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Muller, DR Neal, H Nelson, S Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Snyder, A Su, D Sullivan, MK Va'vra, J Wagner, AP Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Young, CC Ziegler, V Park, W Purohit, MV White, RM Wilson, JR Randle-Conde, A Sekula, SJ Bellis, M Burchat, PR Miyashita, TS Alam, MS Ernst, JA Gorodeisky, R Guttman, N Peimer, DR Soffer, A Lund, P Spanier, SM Ritchie, JL Ruland, AM Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F Gamba, D Zambito, S Lanceri, L Vitale, L Martinez-Vidal, F Oyanguren, A Ahmed, H Albert, J Banerjee, S Bernlochner, FU Choi, HHF King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Tasneem, N Gershon, TJ Harrison, PF Latham, TE Puccio, EMT Band, HR Dasu, S Pan, Y Prepost, R Wu, SL AF Lees, J. P. Poireau, V. Tisserand, V. Garra Tico, J. Grauges, E. Palano, A. Eigen, G. Stugu, B. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Koch, H. Schroeder, T. Asgeirsson, D. J. Hearty, C. Mattison, T. S. McKenna, J. A. So, R. Y. Khan, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Kravchenko, E. A. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Yushkov, A. N. Bondioli, M. Kirkby, D. Lankford, A. J. Mandelkern, M. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Campagnari, C. Hong, T. M. Kovalskyi, D. Richman, J. D. West, C. A. Eisner, A. M. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schumm, B. A. Seiden, A. Chao, D. S. Cheng, C. H. Echenard, B. Flood, K. T. Hitlin, D. G. Ongmongkolkul, P. Porter, F. C. Rakitin, A. Y. Andreassen, R. Huard, Z. Meadows, B. T. Sokoloff, M. D. Sun, L. Bloom, P. C. Ford, W. T. Gaz, A. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Spaan, B. Schubert, K. R. Schwierz, R. Bernard, D. Verderi, M. Clark, P. J. Playfer, S. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Fioravanti, E. Garzia, I. Luppi, E. Munerato, M. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Bhuyan, B. Prasad, V. Lee, C. L. Morii, M. Edwards, A. J. Adametz, A. Uwer, U. Lacker, H. M. Lueck, T. Dauncey, P. D. Mallik, U. Chen, C. Cochran, J. Meyer, W. T. Prell, S. Rubin, A. E. Gritsan, A. V. Guo, Z. J. Arnaud, N. Davier, M. Derkach, D. Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Roudeau, P. Schune, M. H. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Chavez, C. A. Coleman, J. P. Fry, J. R. Gabathuler, E. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Griessinger, K. Hafner, A. Prencipe, E. Barlow, R. J. Jackson, G. Lafferty, G. D. Behn, E. Cenci, R. Hamilton, B. Jawahery, A. Roberts, D. A. Dallapiccola, C. Cowan, R. Dujmic, D. Sciolla, G. Cheaib, R. Lindemann, D. Patel, P. M. Robertson, S. H. Biassoni, P. Neri, N. Palombo, F. Stracka, S. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Nguyen, X. Simard, M. Taras, P. De Nardo, G. Monorchio, D. Onorato, G. Sciacca, C. Martinelli, M. Raven, G. Jessop, C. P. LoSecco, J. M. Wang, W. F. Honscheid, K. Kass, R. Brau, J. Frey, R. Sinev, N. B. Strom, D. Torrence, E. Feltresi, E. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simi, G. Simonetto, F. Stroili, R. Akar, S. Ben-Haim, E. Bomben, M. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Sitt, S. Biasini, M. Manoni, E. Pacetti, S. Rossi, A. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Oberhof, B. Paoloni, E. Perez, A. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Piredda, G. Buenger, C. Gruenberg, O. Hartmann, T. Leddig, T. Schroeder, H. Voss, C. Waldi, R. Adye, T. Olaiya, E. O. Wilson, F. F. Emery, S. de Monchenault, G. Hamel Vasseur, G. Yeche, Ch. Aston, D. Bard, D. J. Bartoldus, R. Benitez, J. F. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Ebert, M. Field, R. C. Sevilla, M. Franco Fulsom, B. G. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kelsey, M. H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Lewis, P. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Muller, D. R. Neal, H. Nelson, S. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Snyder, A. Su, D. Sullivan, M. K. Va'vra, J. Wagner, A. P. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Young, C. C. Ziegler, V. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Randle-Conde, A. Sekula, S. J. Bellis, M. Burchat, P. R. Miyashita, T. S. Alam, M. S. Ernst, J. A. Gorodeisky, R. Guttman, N. Peimer, D. R. Soffer, A. Lund, P. Spanier, S. M. Ritchie, J. L. Ruland, A. M. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Zambito, S. Lanceri, L. Vitale, L. Martinez-Vidal, F. Oyanguren, A. Ahmed, H. Albert, J. Banerjee, Sw Bernlochner, F. U. Choi, H. H. F. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Tasneem, N. Gershon, T. J. Harrison, P. F. Latham, T. E. Puccio, E. M. T. Band, H. R. Dasu, S. Pan, Y. Prepost, R. Wu, S. L. TI Evidence of B+ -> tau(+)nu decays with hadronic B tags SO PHYSICAL REVIEW D LA English DT Article AB We present a search for the decay B+ -> tau(+)nu using 467.8 x 10(6) B (B) over bar pairs collected at the Upsilon(4S) resonance with the BABAR detector at the SLAC PEP-II B-Factory. We select a sample of events with one completely reconstructed B- in the hadronic decay mode (B- -> D-(*X-)0(-) and B- -> J/psi X-). We examine the rest of the event to search for a B+ -> tau(+)nu decay. We identify the tau(+) lepton in the following modes: tau(+) -> e(+)nu(nu) over bar, tau(+) -> mu(+)nu(nu) over bar, tau(+) -> pi(+)(nu) over bar and tau(+) -> rho(+)(nu) over bar. We find an excess of events with respect to the expected background, which excludes the null signal hypothesis at the level of 3.8 sigma (including systematic uncertainties) and corresponds to a branching fraction value of B(B+ -> tau(+)nu) = (1.83(-0.49)(+0.53)(stat) +/- 0.24(syst)) x 10(-4). C1 [Lees, J. P.; Poireau, V.; Tisserand, V.] Univ Savoie, CNRS IN2P3, Lab Annecy le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Palano, A.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Palano, A.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Huard, Z.; Meadows, B. T.; Sokoloff, M. D.; Sun, L.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Spaan, B.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Munerato, M.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Munerato, M.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.; Prasad, V.] Ind Technol Inst, Gauhati 781039, Assam, India. [Lee, C. L.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Edwards, A. J.] Harvey Mudd Coll, Claremont, CA 91711 USA. [Adametz, A.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Lacker, H. M.; Lueck, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Meyer, W. T.; Prell, S.; Rubin, A. E.; Gritsan, A. V.] Iowa State Univ, Ames, IA 50011 USA. [Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wormser, G.] Univ Paris Sud 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.] Univ Louisville, Louisville, KY 40292 USA. [Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Prencipe, E.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Barlow, R. J.; Jackson, G.; Lafferty, G. D.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Behn, E.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Sciolla, G.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Cheaib, R.; Lindemann, D.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Neri, N.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Martinelli, M.; Raven, G.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Honscheid, K.; Kass, R.] Ohio State Univ, Columbus, OH 43210 USA. [Brau, J.; Frey, R.; Sinev, N. B.; Strom, D.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simi, G.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Feltresi, E.; Gagliardi, N.; Margoni, M.; Simi, G.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Sitt, S.] Univ Denis Diderot Paris7, Univ Pierre & Marie Curie Paris6, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Oberhof, B.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Faccini, R.; Ferroni, F.; Gaspero, M.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Buenger, C.; Gruenberg, O.; Hartmann, T.; Leddig, T.; Schroeder, H.; Voss, C.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch.] CEA, Irfu, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wagner, A. P.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Natl Accelerator Lab, Stanford, CA 94309 USA. [Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Randle-Conde, A.; Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Alam, M. S.; Ernst, J. A.] SUNY Albany, Albany, NY 12222 USA. [Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Lund, P.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Ritchie, J. L.; Ruland, A. M.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Zambito, S.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Zambito, S.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Martinez-Vidal, F.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Ahmed, H.; Albert, J.; Banerjee, Sw; Bernlochner, F. U.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. RP Lees, JP (reprint author), Univ Savoie, CNRS IN2P3, Lab Annecy le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France. RI Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Lusiani, Alberto/N-2976-2015; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Forti, Francesco/H-3035-2011; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Kravchenko, Evgeniy/F-5457-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012 OI Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Lusiani, Alberto/0000-0002-6876-3288; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Forti, Francesco/0000-0001-6535-7965; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480 FU SLAC; U.S. Department of Energy; National Science Foundation; Natural Sciences and Engineering Research Council (Canada); Commissariat a l'Energie Atomique (France); Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung (Germany); Deutsche Forschungsgemeinschaft (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (The Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation; Ministerio de Ciencia e Innovacion (Spain); Science and Technology Facilities Council (United Kingdom); Marie-Curie IEF program (European Union); A. P. Sloan Foundation (USA); Binational Science Foundation (USA-Israel) FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the U.S. Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovacion (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union), the A. P. Sloan Foundation (USA) and the Binational Science Foundation (USA-Israel). NR 21 TC 71 Z9 71 U1 1 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 8 PY 2013 VL 88 IS 3 AR 031102 DI 10.1103/PhysRevD.88.031102 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 198IO UT WOS:000322916300001 ER PT J AU Sun, P Yuan, F AF Sun, Peng Yuan, Feng TI Energy evolution for the Sivers asymmetries in hard processes SO PHYSICAL REVIEW D LA English DT Article ID TRANSVERSE-SPIN ASYMMETRIES; DEEP-INELASTIC SCATTERING; DRELL-YAN PROCESSES; STATE INTERACTIONS; BOSON PRODUCTION; MOMENTUM; COLLINS; DIS AB We investigate the energy evolution of the azimuthal spin asymmetries in semi-inclusive hadron production in deep inelastic scattering (SIDIS) and Drell-Yan lepton pair production in pp collisions. The scale dependence is evaluated by applying an approximate solution to the Collins-Soper-Sterman evolution equation at one-loop order, which is adequate for moderate Q(2) variations. This describes well the unpolarized cross sections for the SIDIS and Drell-Yan process in the Q(2) range of 2: 4-100 GeV2. A combined analysis of the Sivers asymmetries in SIDIS from HERMES and COMPASS experiments and the predictions for the Drell-Yan process at RHIC at root S = 200 GeV are presented. We further extend to the Collins asymmetries and find, for the first time, a consistent description for HERMES/COMPASS and BELLE experiments with the evolution effects. We emphasize an important test of the evolution effects by studying di-hadron azimuthal asymmetry in e(+)e(-) annihilation at moderate energy range, such as at BEPC at root S = 4.6 GeV. C1 [Sun, Peng; Yuan, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Sun, P (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RI Yuan, Feng/N-4175-2013 FU U.S. Department of Energy [DE-AC02-05CH11231] FX We thank J. Collins for many stimulating discussions, suggestions, and critical comments during the process of this project. We thank M. Anselmino, D. Boer, J. Qiu, A. Prokudin, T. Rogers, W. Vogelsang, and A. Vossen for comments and correspondence. We also thank Paul Hoyer for bringing to our attention Ref. [26]. This work was partially supported by the U.S. Department of Energy via Grant No. DE-AC02-05CH11231. NR 33 TC 36 Z9 36 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 8 PY 2013 VL 88 IS 3 AR 034016 DI 10.1103/PhysRevD.88.034016 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 198IO UT WOS:000322916300007 ER PT J AU Liu, L Yu, PY Chen, XB Mao, SS Shen, DZ AF Liu, Lei Yu, Peter Y. Chen, Xiaobo Mao, Samuel S. Shen, D. Z. TI Hydrogenation and Disorder in Engineered Black TiO2 SO PHYSICAL REVIEW LETTERS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; TITANIUM-DIOXIDE; ANATASE TIO2; PHOTOCATALYSIS; GAP; NANOCRYSTALS; ABSORPTION; EFFICIENCY; DYNAMICS AB A new form of TiO2 which is black in color has been shown to exhibit high efficiency for photocatalytic reactions under solar radiation [X. Chen, L. Liu, P. Y. Yu, and S. S. Mao, Science 331, 746 (2011)]. However, the mechanism behind this disorder-engineering process is not fully understood. In this Letter, based on density functional theory, we describe the role of hydrogen in producing lattice disorder in the anatase nanocrystals. We clarify further that the highly localized nature of the midgap states results in spatial separation of photoexcited electrons and holes in black TiO2, and that accounts for its high photocatalytic efficiency. C1 [Liu, Lei; Shen, D. Z.] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, State Key Lab Luminescence & Applicat, Changchun 130033, Peoples R China. [Yu, Peter Y.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Chen, Xiaobo] Univ Missouri, Dept Chem, Kansas City, MO 64110 USA. [Mao, Samuel S.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Mao, Samuel S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Energy Technol Dept, EETD, Berkeley, CA 94720 USA. RP Liu, L (reprint author), Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, State Key Lab Luminescence & Applicat, 3888 Dongnanhu Rd, Changchun 130033, Peoples R China. FU National Natural Science Foundation of China [11174273]; Chinese Academy of Sciences; College of Arts and Sciences, University of Missouri-Kansas City; University of Missouri Research Board; Dow Kokam FX L. L. acknowledges the support of the National Natural Science Foundation of China (No. 11174273) and the 100 Talents Program of the Chinese Academy of Sciences. X. C. thanks the College of Arts and Sciences, University of Missouri-Kansas City; the University of Missouri Research Board; and Dow Kokam for their support. NR 25 TC 72 Z9 72 U1 17 U2 278 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 8 PY 2013 VL 111 IS 6 AR 065505 DI 10.1103/PhysRevLett.111.065505 PG 5 WC Physics, Multidisciplinary SC Physics GA 198KI UT WOS:000322921200011 PM 23971586 ER PT J AU Chambers, SA Gu, M Sushko, PV Yang, H Wang, CM Browning, ND AF Chambers, Scott A. Gu, Meng Sushko, Peter V. Yang, Hao Wang, Chongmin Browning, Nigel D. TI Ultralow Contact Resistance at an Epitaxial Metal/Oxide Heterojunction Through Interstitial Site Doping SO ADVANCED MATERIALS LA English DT Article DE metal; oxide interfaces; ohmic contacts; scanning transmission electron microscopy; x-ray and ultraviolet photoemission; first-principles modeling ID CR CLUSTERS; FILMS; OXIDE; SRTIO3(100); SURFACES; GROWTH C1 [Chambers, Scott A.; Browning, Nigel D.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Gu, Meng; Wang, Chongmin] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Yang, Hao] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Sushko, Peter V.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Sushko, Peter V.] UCL, London Ctr Nanotechnol, London WC1E 6BT, England. RP Chambers, SA (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM sa.chambers@pnnl.gov RI Sushko, Peter/F-5171-2013; Gu, Meng/B-8258-2013; Foundry, Molecular/G-9968-2014; OI Sushko, Peter/0000-0001-7338-4146; Browning, Nigel/0000-0003-0491-251X FU U.S. Department of Energy, Office of Science, Division of Materials Sciences and Engineering [10122]; DOE's Office of Biological and Environmental Research; DOE [DE-AC05-76RLO1830, DE-AC02-05CH11231]; Royal Society and EPSRC [EP/I009973/1] FX This work was supported by the U.S. Department of Energy, Office of Science, Division of Materials Sciences and Engineering under Award #10122. The work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RLO1830. Some of the STEM/EELS was performed at the National Center for Electron Microscopy (NCEM) at Lawrence Berkeley National Laboratory, which is supported by DOE under Contract No. DE-AC02-05CH11231. PVS acknowledges the Royal Society and EPSRC grant EP/I009973/1. NR 30 TC 12 Z9 12 U1 3 U2 44 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD AUG 7 PY 2013 VL 25 IS 29 BP 4001 EP 4005 DI 10.1002/adma.201301030 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 261VJ UT WOS:000327692400011 PM 23649872 ER PT J AU Bohlin, A Kliewer, CJ AF Bohlin, Alexis Kliewer, Christopher J. TI Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot (vol 138, 221101, 2013) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Correction C1 [Bohlin, Alexis; Kliewer, Christopher J.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Kliewer, CJ (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. EM cjkliew@sandia.gov RI Kliewer, Christopher/E-4070-2010; Bohlin, Alexis/L-8973-2015 OI Kliewer, Christopher/0000-0002-2661-1753; Bohlin, Alexis/0000-0003-4383-8332 NR 1 TC 0 Z9 0 U1 0 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD AUG 7 PY 2013 VL 139 IS 5 AR 059901 DI 10.1063/1.4815927 PG 1 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 198VL UT WOS:000322950500057 ER PT J AU Gai, LL Vogel, T Maerzke, KA Iacovella, CR Landau, DP Cummings, PT McCabe, C AF Gai, Lili Vogel, Thomas Maerzke, Katie A. Iacovella, Christopher R. Landau, David P. Cummings, Peter T. McCabe, Clare TI Examining the phase transition behavior of amphiphilic lipids in solution using statistical temperature molecular dynamics and replica-exchange Wang-Landau methods SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID COARSE-GRAINED MODEL; MONTE-CARLO; COMPUTER-SIMULATIONS; ALGORITHM; BILAYERS AB Two different techniques - replica-exchange Wang-Landau (REWL) and statistical temperature molecular dynamics (STMD) - were applied to systematically study the phase transition behavior of self-assembling lipids as a function of temperature using an off-lattice lipid model. Both methods allow the direct calculation of the density of states with improved efficiency compared to the original Wang-Landau method. A 3-segment model of amphiphilic lipids solvated in water has been studied with varied particle interaction energies (e) and lipid concentrations. The phase behavior of the lipid molecules with respect to bilayer formation has been characterized through the calculation of the heat capacity as a function of temperature, in addition to various order parameters and general visual inspection. The simulations conducted by both methods can go to very low temperatures with the whole system exhibiting well-ordered structures. With optimized parameters, several bilayer phases are observed within the temperature range studied, including gel phase bilayers with frozen water, mixed water (i.e., frozen and liquid water), and liquid water, and a more fluid bilayer with liquid water. The results obtained from both methods, STMD and REWL, are consistently in excellent agreement with each other, thereby validating both the methods and the results. (C) 2013 AIP Publishing LLC. C1 [Gai, Lili; Maerzke, Katie A.; Iacovella, Christopher R.; Cummings, Peter T.; McCabe, Clare] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37235 USA. [Vogel, Thomas; Landau, David P.] Univ Georgia, Ctr Simulat Phys, Athens, GA 30602 USA. [Cummings, Peter T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [McCabe, Clare] Vanderbilt Univ, Dept Chem, Nashville, TN 37235 USA. RP McCabe, C (reprint author), Vanderbilt Univ, Dept Chem & Biomol Engn, 221 Kirkland Hall, Nashville, TN 37235 USA. EM c.mccabe@vanderbilt.edu RI Iacovella, Christopher/D-2050-2011; Vogel, Thomas/A-7570-2014; McCabe, Clare/I-8017-2012 OI Vogel, Thomas/0000-0003-0205-3205; McCabe, Clare/0000-0002-8552-9135 FU National Science Foundation (NSF) [OCI-0904879]; National Institute of Arthritis and Muscoskeletal and Skin Diseases [R01 AR057886-01]; Texas Advanced Computing Center under XSEDE [PHY130009] FX This work is supported by the National Science Foundation (NSF) under Grant No. OCI-0904879. C. R. I. and C. M. also acknowledges support from Grant No. R01 AR057886-01 from the National Institute of Arthritis and Muscoskeletal and Skin Diseases. Supercomputer time was partially provided by the Georgia Advanced Computing Resource Center and the Texas Advanced Computing Center under XSEDE Grant No. PHY130009, and Hoomd GPU time by Advanced Computing Center for Research and Education (ACCRE) at Vanderbilt University. NR 48 TC 11 Z9 11 U1 1 U2 26 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD AUG 7 PY 2013 VL 139 IS 5 AR 054505 DI 10.1063/1.4816520 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 198VL UT WOS:000322950500033 PM 23927268 ER PT J AU Mandadapu, KK Templeton, JA Lee, JW AF Mandadapu, Kranthi K. Templeton, Jeremy A. Lee, Jonathan W. TI Polarization as a field variable from molecular dynamics simulations SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID POISSON-BOLTZMANN EQUATION; EWALD SUMMATION; WATER AB A theoretical and computational framework for systematically calculating the macroscopic polarization density as a field variable from molecular dynamics simulations is presented. This is done by extending the celebrated Irving and Kirkwood [J. Chem. Phys. 18, 817 (1950)] procedure, which expresses macroscopic stresses and heat fluxes in terms of the atomic variables, to the case of electrostatics. The resultant macroscopic polarization density contains molecular dipole, quadrupole, and higher-order moments, and can be calculated to a desired accuracy depending on the degree of the coarse-graining function used to connect the molecular and continuum scales. The theoretical and computational framework is verified by recovering the dielectric constant of bulk water. Finally, the theory is applied to calculate the spatial variation of the polarization vector in the electrical double layer of a 1: 1 electrolyte solution. Here, an intermediate asymptotic length scale is revealed in a specific region, which validates the application of mean field Poisson-Boltzmann theory to describe this region. Also, using the existence of this asymptotic length scale, the lengths of the diffuse and condensed/Stern layers are identified accurately, demonstrating that this framework may be used to characterize electrical double layers over a wide range of concentrations of solutions and surface charges. (C) 2013 AIP Publishing LLC. C1 [Mandadapu, Kranthi K.; Templeton, Jeremy A.; Lee, Jonathan W.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Templeton, JA (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM jatempl@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. The authors are grateful to Dr. Jonathan Zimmerman for helpful discussions in formulating the theory, and to Dr. Jeremy Lechman for helpful comments on a draft of this manuscript. The authors thank an anonymous reviewer for suggesting the calculations of quadrupole moments of water close to the interface in Sec. IV A. NR 30 TC 3 Z9 3 U1 2 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD AUG 7 PY 2013 VL 139 IS 5 AR 054115 DI 10.1063/1.4817004 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 198VL UT WOS:000322950500016 PM 23927251 ER PT J AU Savee, JD Lockyear, JF Borkar, S Eskola, AJ Welz, O Taatjes, CA Osborn, DL AF Savee, John D. Lockyear, Jessica F. Borkar, Sampada Eskola, Arkke J. Welz, Oliver Taatjes, Craig A. Osborn, David L. TI Note: Absolute photoionization cross-section of the vinyl radical SO JOURNAL OF CHEMICAL PHYSICS LA English DT Editorial Material ID COMBUSTION CHEMISTRY; METHYL C1 [Savee, John D.; Eskola, Arkke J.; Welz, Oliver; Taatjes, Craig A.; Osborn, David L.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Lockyear, Jessica F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Borkar, Sampada] Univ Pacific, Dept Chem, Stockton, CA 95211 USA. RP Savee, JD (reprint author), Sandia Natl Labs, Combust Res Facil, Mail Stop 9055, Livermore, CA 94551 USA. EM jdsavee@sandia.gov; dlosbor@sandia.gov RI Welz, Oliver/C-1165-2013 OI Welz, Oliver/0000-0003-1978-2412 NR 15 TC 2 Z9 2 U1 4 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD AUG 7 PY 2013 VL 139 IS 5 AR 056101 DI 10.1063/1.4817320 PG 2 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 198VL UT WOS:000322950500056 PM 23927291 ER PT J AU Khan, EH Langford, SC Dickinson, JT Boatner, LA AF Khan, Enamul H. Langford, S. C. Dickinson, J. T. Boatner, L. A. TI The interaction of 193 nm excimer laser radiation with single-crystal zinc oxide: Neutral atomic zinc and oxygen emission SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID GAS-DYNAMICS; BAND-GAP; BULK ZNO; IRRADIATION; DESORPTION; DEPOSITION; SURFACES; COPPER; NANO3 AB We report mass-resolved time-of-flight measurements of neutral particles from the (10 (1) over bar0) surface of single-crystal ZnO during pulsed 193-nm irradiation at laser fluences below the threshold for avalanche breakdown. The major species emitted are atomic Zn and O. We examine the emissions of atomic Zn as a function of laser fluence and laser exposure. Defects at the ZnO surface appear necessary for the detection of these emissions. Our results suggest that the production of defects is necessary to explain intense sustained emissions at higher fluence. Rapid, clean surface etching and high atomic zinc kinetic energies seen at higher laser fluences are also discussed. (C) 2013 AIP Publishing LLC. C1 [Khan, Enamul H.; Langford, S. C.; Dickinson, J. T.] Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA. [Boatner, L. A.] Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. RP Dickinson, JT (reprint author), Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA. EM jtd@wsu.edu RI Boatner, Lynn/I-6428-2013 OI Boatner, Lynn/0000-0002-0235-7594 FU US Department of Energy [DE-FG02-04ER-15618]; U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division FX This work was supported by the US Department of Energy under Contract No. DE-FG02-04ER-15618. Research at the Oak Ridge National Laboratory (LAB) was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. We thank Dr. Marc Weber, Washington State University, for the acquisition of positron annihilation spectra and Dr. Matthew McCluskey for useful discussions. NR 44 TC 2 Z9 2 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD AUG 7 PY 2013 VL 114 IS 5 AR 053511 DI 10.1063/1.4816270 PG 12 WC Physics, Applied SC Physics GA 198HK UT WOS:000322912900023 ER PT J AU Knudson, MD Lemke, RW AF Knudson, M. D. Lemke, R. W. TI Shock response of low-density silica aerogel in the multi-Mbar regime SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID COHERENT EXPANDED AEROGELS; ALUMINUM AB Low-density silica aerogels have found several applications in high-pressure research due to the ability for aerogel to be made over a wide range of initial densities with very small and uniform pore sizes. Here, we present plate-impact, shock wave experiments on nominally 110 and 200 mg/cc silica aerogel over the pressure range of similar to 30-100 and similar to 30-200 GPa, respectively. Direct measurement of the shock velocity in the aerogel using velocity interferometry enabled the Hugoniot to be inferred with very high precision, more than an order of magnitude improvement with respect to previously reported data for similar density silica aerogel. These results establish aerogel as a useful low impedance shock wave standard and provide data at high-entropy, high-pressure, and relatively low-density states to aid in the development of wide range equations of state for silica, a major constituent in the Earth's crust and mantle. Such models are crucial for accurate simulations of high-velocity giant impacts that are thought to be prevalent in the final stages of terrestrial planet formation. (C) 2013 AIP Publishing LLC. C1 [Knudson, M. D.; Lemke, R. W.] Sandia Natl Labs, Albuquerque, NM 87125 USA. RP Knudson, MD (reprint author), Sandia Natl Labs, Albuquerque, NM 87125 USA. EM mdknuds@sandia.gov FU U.S. Department of Energys National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank the large team at Sandia that contributed to the design and fabrication of the flyer-plate loads and the fielding of the shock diagnostics. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energys National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 27 TC 11 Z9 12 U1 0 U2 25 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD AUG 7 PY 2013 VL 114 IS 5 AR 053510 DI 10.1063/1.4817433 PG 7 WC Physics, Applied SC Physics GA 198HK UT WOS:000322912900022 ER PT J AU Moore, NW Brown-Shaklee, HJ Rodriguez, MA Brennecka, GL AF Moore, Nathan W. Brown-Shaklee, Harlan J. Rodriguez, Mark A. Brennecka, Geoff L. TI Optical anisotropy near the relaxor-ferroelectric phase transition in lanthanum lead zirconate titanate SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID DOMAIN-STRUCTURE; PLZT CERAMICS; ROTATION; CRYSTALS AB We examine the optical activity, birefringence, and transparency of Lanthanum-doped, lead zirconate titanate (PLZT 7/65/35) bulk ceramic wafer sections over visible and near-IR spectra and on heating. Optical transitions are compared to both crystallographic (rhombohedral-cubic) and domain (relaxor-ferroelectric) transitions identified with x-ray diffraction, dielectric, and calorimetry measurements. Optical activity and birefringence are shown to be enhanced for disordered domains near room temperature, to attenuate above the relaxor-ferroelectric transition and to gradually decay above the Curie point regardless of the initial poling state. The results are interpreted in light of the change of crystallographic symmetry due to the local strains induced by ferroelectric architecture. The heterogeneous local strains more strongly influence the optical properties than the macro-scale structure of the polycrystalline PLZT ceramic. This mechanism is significant for understanding optical rotation and birefringence in polycrystalline systems. Finally, the specific rotation (up to 350 degrees/mm) lies among the highest reported for crystalline materials. Along with strong poling contrast and comparatively small dispersion for the unpoled state, these properties are promising for electro-optics applications. (C) 2013 AIP Publishing LLC. C1 [Moore, Nathan W.; Brown-Shaklee, Harlan J.; Rodriguez, Mark A.; Brennecka, Geoff L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Moore, NW (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM nwmoore@sandia.gov RI Brennecka, Geoff/J-9367-2012 OI Brennecka, Geoff/0000-0002-4476-7655 FU Laboratory Directed Research and Development program at Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank Bruce Tuttle, Scott C. Jones, and Michael B. Sinclair for fruitful discussions, and James I. Greenwoll and Craig Ginn for experimental support. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 35 TC 1 Z9 1 U1 0 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD AUG 7 PY 2013 VL 114 IS 5 AR 053515 DI 10.1063/1.4817515 PG 7 WC Physics, Applied SC Physics GA 198HK UT WOS:000322912900027 ER PT J AU Riviere, J Renaud, G Guyer, RA Johnson, PA AF Riviere, J. Renaud, G. Guyer, R. A. Johnson, P. A. TI Pump and probe waves in dynamic acousto-elasticity: Comprehensive description and comparison with nonlinear elastic theories SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID 3-PHONON INTERACTIONS; BEREA SANDSTONE; SLOW DYNAMICS; PROPAGATION; SOLIDS; MEDIA; SOUND; SCATTERING; STRAIN AB Standard nonlinear ultrasonic methods such as wave frequency mixing or resonance based measurements allow one to extract average, bulk variations of modulus and attenuation versus strain level. In contrast, dynamic acousto-elasticity (DAE) provides the elastic behavior over the entire dynamic cycle including hysteresis and memory effects, detailing the full nonlinear behavior under tension and compression. In this work, we address experimental difficulties and apply new processing methods, illustrating them with a Berea sandstone sample. A projection procedure is used to analyze the complex nonlinear signatures and extract the harmonic content. Amplitude dependences of the harmonic content are compared with existing models. We show that a combination of classical and hysteretic nonlinear models capture most of the observed phenomena. Some differences between existing models and experimental data are highlighted, however. A progressive decrease of the power-law amplitude dependence is found for harmonics larger than the second and for strains larger than 10(-6). This observation is related to the phenomenon of acoustic conditioning that brings the material to a metastable state for each new excitation amplitude. Analysis of the steady-state regime provides additional information regarding acoustic conditioning, i.e., a progressive decrease of the amplitude of odd harmonics during excitation time with a log(t)-dependence. This observation confirms that the harmonic content is affected by the conditioning. Experimental challenges addressed include the fact that the compressional mode used for DAE can be affected by bending/torsion modes: their influence is evaluated, and guidances are given to minimize effects. (C) 2013 AIP Publishing LLC. C1 [Riviere, J.; Guyer, R. A.; Johnson, P. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Renaud, G.] Erasmus MC, Dept Biomech Engn, ThoraxCtr, NL-3000 CA Rotterdam, Netherlands. [Guyer, R. A.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. RP Riviere, J (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM riviere_jacques@yahoo.fr OI Johnson, Paul/0000-0002-0927-4003 FU US Department of Energy, Office of Basic Energy Sciences FX We thank P.-Y. Le Bas, T. J. Ulrich, J. A. TenCate, C. Larmat, B. E. Anderson, K. Van Den Abeele and M. Scalerandi, T. Gallot, and S. Haupert for helpful discussions. This work was supported by the US Department of Energy, Office of Basic Energy Sciences. NR 39 TC 28 Z9 28 U1 0 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD AUG 7 PY 2013 VL 114 IS 5 AR 054905 DI 10.1063/1.4816395 PG 19 WC Physics, Applied SC Physics GA 198HK UT WOS:000322912900086 ER PT J AU Singh, A Katakam, S Ilavsky, J Dahotre, NB Harimkar, SP AF Singh, Ashish Katakam, Shravana Ilavsky, Jan Dahotre, Narendra B. Harimkar, Sandip P. TI Nanocrystallization in spark plasma sintered Fe48Cr15Mo14Y2C15B6 bulk amorphous alloy SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID METALLIC-GLASS; NEUTRON-SCATTERING; CRYSTALLIZATION; BEHAVIOR; EVOLUTION; DEVITRIFICATION; MICROSTRUCTURE; COATINGS; POWDERS; FIELD AB Spark plasma sintering (SPS) is evolving as an attractive process for the processing of multicomponent Fe-based bulk amorphous alloys and their in-situ nanocomposites with controlled primary nanocrystallization. Extended Q-range small angle neutron scattering (EQ-SANS) analysis, complemented by x-ray diffraction and transmission electron microscopy, was performed to characterize nanocrystallization behavior of SPS sintered Fe-based bulk amorphous alloys. The SANS experiments show significant scattering for the samples sintered in the supercooled region indicating local structural/compositional changes associated with the profuse nucleation of nanoclusters (similar to 4 nm). For the samples spark plasma sintered near and above crystallization temperature (>653 degrees C), the SANS data show the formation of interference maximum indicating the formation and growth of (Fe,Cr)(23)C-6 crystallites. The SANS data also indicate the evolution of bimodal crystallite distribution at higher sintering temperatures (above T-x1). The growth of primary nanocrystallites results in impingement of concentration gradient fields (soft impingement effect), leading to non-random nucleation of crystallites near the primary crystallization. (C) 2013 AIP Publishing LLC. C1 [Singh, Ashish; Harimkar, Sandip P.] Oklahoma State Univ, Sch Mech & Aerosp Engn, Stillwater, OK 74078 USA. [Katakam, Shravana; Dahotre, Narendra B.] Univ N Texas, Dept Mat Sci & Engn, Denton, TX 76203 USA. [Ilavsky, Jan] Argonne Natl Lab, Adv Photon Source, Chicago, IL 60439 USA. RP Harimkar, SP (reprint author), Oklahoma State Univ, Sch Mech & Aerosp Engn, Stillwater, OK 74078 USA. EM sandip.harimkar@okstate.edu RI USAXS, APS/D-4198-2013; OI katakam, shravana/0000-0001-7210-0121 FU National Science Foundation [CMMI 0969255, CMMI 0969249]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX The authors, S.P.H. and N.B.D., would like to acknowledge the financial support from the National Science Foundation (CMMI 0969255 and CMMI 0969249). S.P.H. would like to thank the instrument scientists, Dr. Jinkui K. Zhao and Dr. William T. Heller, for providing support during neutron scattering experiments on BL-6 of EQ-SANS instrument. These experiments conducted at ORNL's Spallation Neutron Source were sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. N.B.D. and S.K. acknowledge the Center for Advanced Research and Technology (CART) for providing an access for TEM work. NR 42 TC 5 Z9 5 U1 2 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD AUG 7 PY 2013 VL 114 IS 5 AR 054903 DI 10.1063/1.4817379 PG 7 WC Physics, Applied SC Physics GA 198HK UT WOS:000322912900084 ER PT J AU Stojilovic, N Dordevic, SV Hu, RW Petrovic, C AF Stojilovic, N. Dordevic, S. V. Hu, Rongwei Petrovic, C. TI Effect of carbon doping on electronic transitions in Mn5Ge3 SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID HALF-METALLIC FERROMAGNET; SPIN POLARIZATION; ELECTRODYNAMICS AB Mn5Ge3 is a ferromagnetic compound with high Curie temperature (T-c = 293 K), high spin polarization, and a good lattice match to germanium. Doping Mn5Ge3 with carbon increases T-c above room temperature and makes these compounds promising candidates for spin injectors for potential spintronics applications. The resistivity and magnetic susceptibility measurements show anisotropic behavior of these compounds. Optical spectroscopy is employed to measure near-normal reflectance of Mn5Ge3C0.89 in the frequency range from far-infrared to ultraviolet at three different temperatures (10, 200, and 300 K), and results are compared with those on pure Mn5Ge3. Both Mn5Ge3 and Mn5Ge3C0.89 have weak temperature dependence of the optical properties in the 10-300K range, and both have similar electrodynamics responses with similar temperature trends. However, important differences in the region of interband transitions, indicating the electronic nature of the increased ferromagnetic stability of carbon doped compound, are observed. (C) 2013 AIP Publishing LLC. C1 [Stojilovic, N.] Univ Wisconsin, Dept Phys & Astron, Oshkosh, WI 54901 USA. [Dordevic, S. V.] Univ Akron, Dept Phys, Akron, OH 44325 USA. [Hu, Rongwei; Petrovic, C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Stojilovic, N (reprint author), Univ Wisconsin, Dept Phys & Astron, Oshkosh, WI 54901 USA. EM stojilovicn@uwosh.edu RI Petrovic, Cedomir/A-8789-2009 OI Petrovic, Cedomir/0000-0001-6063-1881 FU U.S. Department of Energy [DE-AC02-98CH10886] FX We thank Dr. R. D. Ramsier for the access to his FTIR system. Part of this work is supported by U.S. Department of Energy (Grant No. DE-AC02-98CH10886). N.S. acknowledges UW Oshkosh Faculty Development grant. NR 17 TC 1 Z9 1 U1 3 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD AUG 7 PY 2013 VL 114 IS 5 AR 053708 DI 10.1063/1.4817429 PG 5 WC Physics, Applied SC Physics GA 198HK UT WOS:000322912900041 ER PT J AU Cashman, DJ Ortega, DR Zhulin, IB Baudry, J AF Cashman, Derek J. Ortega, Davi R. Zhulin, Igor B. Baudry, Jerome TI Homology Modeling of the CheW Coupling Protein of the Chemotaxis Signaling Complex SO PLOS ONE LA English DT Article ID BACTERIAL CHEMORECEPTOR ARRAYS; ESCHERICHIA-COLI; MOLECULAR-DYNAMICS; INTERACTION SURFACES; COMPUTER-SIMULATION; BINDING; CELL; TRANSDUCTION; FLUCTUATIONS; ARCHITECTURE AB Homology models of the E. coli and T. maritima chemotaxis protein CheW were constructed to assess the quality of structural predictions and their applicability in chemotaxis research: i) a model of E. coli CheW was constructed using the T. maritima CheW NMR structure as a template, and ii) a model of T. maritima CheW was constructed using the E. coli CheW NMR structure as a template. The conformational space accessible to the homology models and to the NMR structures was investigated using molecular dynamics and Monte Carlo simulations. The results show that even though static homology models of CheW may be partially structurally different from their corresponding experimentally determined structures, the conformational space they can access through their dynamic variations can be similar, for specific regions of the protein, to that of the experimental NMR structures. When CheW homology models are allowed to explore their local accessible conformational space, modeling can provide a rational path to predicting CheW interactions with the MCP and CheA proteins of the chemotaxis complex. Homology models of CheW (and potentially, of other chemotaxis proteins) should be seen as snapshots of an otherwise larger ensemble of accessible conformational space. C1 [Cashman, Derek J.; Baudry, Jerome] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. [Cashman, Derek J.; Baudry, Jerome] Univ Tennessee, UT ORNL Ctr Mol Biophys, Knoxville, TN USA. [Ortega, Davi R.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. [Ortega, Davi R.; Zhulin, Igor B.] Oak Ridge Natl Lab, Joint Inst Computat Sci, Oak Ridge, TN USA. [Zhulin, Igor B.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. RP Baudry, J (reprint author), Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. EM jbaudry@utk.edu RI Zhulin, Igor/A-2308-2012 OI Zhulin, Igor/0000-0002-6708-5323 FU National Institutes of Health [GM072285] FX This work was supported by National Institutes of Health grant GM072285. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 48 TC 2 Z9 2 U1 3 U2 20 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD AUG 7 PY 2013 VL 8 IS 8 AR e70705 DI 10.1371/journal.pone.0070705 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 200ZE UT WOS:000323109700046 PM 23950985 ER PT J AU Perdereau, AC Douglas, GC Hodkinson, TR Kelleher, CT AF Perdereau, Aude C. Douglas, Gerry C. Hodkinson, Trevor R. Kelleher, Colin T. TI High levels of variation in Salix lignocellulose genes revealed using poplar genomic resources SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Cellulose; Diversity; Lignin; Populus; Salix; SNPs; Cloning ID SINAPYL ALCOHOL-DEHYDROGENASE; POPULUS-TRICHOCARPA; LIGNIN BIOSYNTHESIS; NUCLEOTIDE POLYMORPHISM; BLACK COTTONWOOD; BIOMASS WILLOWS; RUST RESISTANCE; ENERGY CROPS; DNA; SEQUENCE AB Background: Little is known about the levels of variation in lignin or other wood related genes in Salix, a genus that is being increasingly used for biomass and biofuel production. The lignin biosynthesis pathway is well characterized in a number of species, including the model tree Populus. We aimed to transfer the genomic resources already available in Populus to its sister genus Salix to assess levels of variation within genes involved in wood formation. Results: Amplification trials for 27 gene regions were undertaken in 40 Salix taxa. Twelve of these regions were sequenced. Alignment searches of the resulting sequences against reference databases, combined with phylogenetic analyses, showed the close similarity of these Salix sequences to Populus, confirming homology of the primer regions and indicating a high level of conservation within the wood formation genes. However, all sequences were found to vary considerably among Salix species, mainly as SNPs with a smaller number of insertions-deletions. Between 25 and 176 SNPs per kbp per gene region (in predicted exons) were discovered within Salix. Conclusions: The variation found is sizeable but not unexpected as it is based on interspecific and not intraspecific comparison; it is comparable to interspecific variation in Populus. The characterisation of genetic variation is a key process in pre-breeding and for the conservation and exploitation of genetic resources in Salix. This study characterises the variation in several lignocellulose gene markers for such purposes. C1 [Perdereau, Aude C.; Douglas, Gerry C.] TEAGASC, Agr & Food Dev Author, Kinsealy Res Ctr, Dublin, Ireland. [Perdereau, Aude C.; Hodkinson, Trevor R.] Univ Dublin Trinity Coll, Sch Nat Sci, Dublin 2, Ireland. [Kelleher, Colin T.] Natl Bot Garden, DBN Plant Mol Lab, Dublin, Ireland. [Perdereau, Aude C.; Hodkinson, Trevor R.] Univ Dublin Trinity Coll, Trinity Ctr Biodivers Res, Dublin 2, Ireland. RP Perdereau, AC (reprint author), TEAGASC, Agr & Food Dev Author, Kinsealy Res Ctr, Malahide Rd,D17, Dublin, Ireland. EM perderea@tcd.ie RI Hodkinson, Trevor/F-6850-2014 OI Hodkinson, Trevor/0000-0003-1384-7270 FU Walsh Fellowship PhD Grant from Teagasc, The Irish Agriculture and Food Development Authority FX We thank Dr. Matthew Jebb, Director of the National Botanic Gardens, Glasnevin, Ireland for sampling help. We also thank Patricia Coughlan, Siobhan McNamee and Prof. Desmond Higgins (University College Dublin) for technical support. We thank Dr Emmanuelle Graciet, Kamila Kwasniewska and Katarzyna Ma Hanczaryk for help with the cloning (Trinity College Dublin). We also thank Joe Hogan for freely giving us samples of material. The research is supported by a Walsh Fellowship PhD Grant from Teagasc, The Irish Agriculture and Food Development Authority. NR 54 TC 2 Z9 2 U1 1 U2 20 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD AUG 7 PY 2013 VL 6 AR 114 DI 10.1186/1754-6834-6-114 PG 15 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 200GZ UT WOS:000323057400001 PM 23924375 ER PT J AU Hallenbeck, AP Kitchin, JR AF Hallenbeck, Alexander P. Kitchin, John R. TI Effects of O-2 and SO2 on the Capture Capacity of a Primary-Amine Based Polymeric CO2 Sorbent SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID FLUE-GAS; OXIDATIVE-DEGRADATION; MESOPOROUS SILICA; ACTIVATED CARBON; SOLID SORBENTS; ADSORBENTS; ADSORPTION; REGENERATION AB Postcombustion CO2 capture is most commonly carried out using an amine solution that results in a high parasitic energy cost in the stripper unit due to the need to heat the water, which comprises a majority of the amine solution. It is also well-known that amine solvents suffer from stability issues due to amine leaching and poisoning by flue gas impurities. Solid sorbents provide an alternative to solvent systems that would potentially reduce the energy penalty of carbon capture. However, the cost of using a particular sorbent is greatly affected by the usable lifetime of the sorbent. This work investigated the stability of a primary amine-functionalized ion-exchange resin in the presence of O-2 and SO2, both of which are constituents of flue gas that have been shown to cause degradation of various amines in solvent processes. The CO2 capture capacity was measured over multiple capture cycles under continuous exposure to two simulated flue gas streams, one containing 12 vol % CO2, 4% O-2, 8496 N-2, and the other containing 12.5 vol % CO2, 4% 02, 431 ppm SO2, balance N-2 using a custom-built packed bed reactor. The resin maintained its CO2 capture capacity of 1.31 mol/kg over 17 capture cycles in the presence of O-2 without SO2. However, the CO2 capture capacity of the resin decreased rapidly under exposure to SO2 by an amount of 1.3 mol/kg over 9 capture cycles. Elemental analysis revealed the resin adsorbed 1.0 mol/kg of SO2. Thermal regeneration was determined to not be possible. The poisoned resin was however, partially regenerated with exposure to 1.5 M NaOH for 3 days resulting in a 43% removal of sulfur, determined through elemental analysis, and a 35% recovery of CO2 capture capacity. Evidence was also found for amine loss upon prolonged (7 days) continuous exposure to high temperatures (120 degrees C) in air. It is concluded that desulfurization of the flue gas stream prior to CO2 capture will greatly improve the economic viability of using this solid sorbent in a postcombustion CO2 capture process. C1 [Hallenbeck, Alexander P.; Kitchin, John R.] RUA, NETL, Pittsburgh, PA 15236 USA. [Hallenbeck, Alexander P.; Kitchin, John R.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. RP Kitchin, JR (reprint author), RUA, NETL, Pittsburgh, PA 15236 USA. EM jkitchin@cmu.edu RI Kitchin, John/A-2363-2010; OI Kitchin, John/0000-0003-2625-9232; Hallenbeck, Alexander/0000-0002-1085-6553 FU RES [DE-FE0004000]; Department of Energy, National Energy Technology Laboratory, an agency of the United States Government through URS Energy & Construction Inc. FX We gratefully acknowledge Lanxess for providing us with the samples of OC 1065 used in this work. As part of the National Energy Technology Laboratory's Regional University Alliance (NETL-RUA), a collaborative initiative of the NETL, this technical effort was performed under the RES Contract DE-FE0004000. This project was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government through a support contract with URS Energy & Construction Inc. Neither the United States Government nor any agency thereof, nor any of their employees, nor URS Energy & Construction, Inc., nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 26 TC 18 Z9 18 U1 6 U2 52 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD AUG 7 PY 2013 VL 52 IS 31 BP 10788 EP 10794 DI 10.1021/ie400582a PG 7 WC Engineering, Chemical SC Engineering GA 199TQ UT WOS:000323018800049 ER PT J AU Zhang, JH Schmalian, J Li, TQ Wang, JG AF Zhang, Junhua Schmalian, Joerg Li, Tianqi Wang, Jigang TI Transient charge and energy balance in graphene induced by ultrafast photoexcitation SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID EPITAXIAL GRAPHENE; GRAPHITE FILMS AB Ultrafast optical pump-probe spectroscopy measurements on monolayer graphene reveal significant optical nonlinearities. We show that strongly photoexcited graphene monolayers with 35 fs pulses quasi-instantaneously build up a broadband, inverted Dirac-fermion population. Optical gain emerges and directly manifests itself via a negative conductivity at the near-infrared region for the first 200 fs, where stimulated emission completely compensates for absorption loss in the graphene layer. To quantitatively investigate this transient, extremely dense photoexcited Dirac-fermion state, we construct a two-chemical-potential model, in addition to a time-dependent transient carrier temperature above the lattice temperature, to describe the population inverted electronic state metastable on the time scale of tens of femtoseconds generated by a strong exciting pulse. The calculated transient optical conductivity reveals a complete bleaching of absorption, which sets the saturation density during the pulse propagation. In particular, the model calculation reproduces the negative optical conductivity at lower frequencies in the states close to saturation, corroborating the observed femtosecond stimulated emission and optical gain in the wide near-infrared window. C1 [Zhang, Junhua] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Schmalian, Joerg] Karlsruhe Inst Technol, Inst Theory Condensed Matter, D-76128 Karlsruhe, Germany. [Schmalian, Joerg] Karlsruhe Inst Technol, Ctr Funct Nanostruct, D-76128 Karlsruhe, Germany. [Li, Tianqi; Wang, Jigang] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Li, Tianqi; Wang, Jigang] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Zhang, JH (reprint author), Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. EM jgwang@iastate.edu RI Schmalian, Joerg/H-2313-2011; Li, Tianqi/C-5142-2014 OI Li, Tianqi/0000-0002-5238-8540 FU Jeffress Memorial Trust [J-1033]; National Science Foundation [DMR-1055352]; US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; US Department of Energy by Iowa State University [DE-AC02-07CH11358] FX We thank Myron Hupalo and Michael Tringides for discussions. JZ acknowledges support by the Jeffress Memorial Trust, Grant No. J-1033. JS thanks the DFG Center for Functional Nanostructures. JW and TL acknowledge support by the National Science Foundation (contract no. DMR-1055352). Work at Ames Laboratory was partially supported by the US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering (Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358). NR 40 TC 2 Z9 2 U1 2 U2 43 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD AUG 7 PY 2013 VL 25 IS 31 AR 314201 DI 10.1088/0953-8984/25/31/314201 PG 14 WC Physics, Condensed Matter SC Physics GA 185CY UT WOS:000321944000003 PM 23860304 ER PT J AU Mock, MT Chen, ST O'Hagan, M Rousseau, R Dougherty, WG Kassel, WS Bullock, RM AF Mock, Michael T. Chen, Shentan O'Hagan, Molly Rousseau, Roger Dougherty, William G. Kassel, W. Scott Bullock, R. Morris TI Dinitrogen Reduction by a Chromium(0) Complex Supported by a 16-Membered Phosphorus Macrocycle SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID RAY CRYSTAL-STRUCTURES; NITROGEN-FIXATION; COORDINATED DINITROGEN; METAL-COMPLEXES; LIGAND; PROTONATION; MOLYBDENUM; CHEMISTRY; AMMONIA; CRH4(DMPE)2 AB We report a rare example of a Cr-N-2 complex supported by a 16-membered phosphorus macrocycle containing pendant amine bases. Reactivity with acid afforded hydrazinium and ammonium, representing the first example of N-2 reduction by a Cr-N-2 complex. Computational analysis examined the thermodynamically favored protonation steps of N-2 reduction with Cr leading to the formation of hydrazine. C1 [Mock, Michael T.; Chen, Shentan; O'Hagan, Molly; Rousseau, Roger; Bullock, R. Morris] Pacific NW Natl Lab, Ctr Mol Electrocatalysis, Richland, WA 99352 USA. [Dougherty, William G.; Kassel, W. Scott] Villanova Univ, Dept Chem, Villanova, PA 19085 USA. RP Mock, MT (reprint author), Pacific NW Natl Lab, Ctr Mol Electrocatalysis, POB 999, Richland, WA 99352 USA. EM michael.mock@pnnl.gov RI Rousseau, Roger/C-3703-2014; Bullock, R. Morris/L-6802-2016 OI Bullock, R. Morris/0000-0001-6306-4851 FU Center for Molecular Electrocatalysis, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX We thank Dr. Charles Windisch for assistance with Raman experiments and Dr. Daniel DuBois for helpful discussions. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Computational resources are provided by the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. Pacific Northwest National Laboratory is operated by Battelle for the DOE. NR 36 TC 28 Z9 28 U1 3 U2 54 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD AUG 7 PY 2013 VL 135 IS 31 BP 11493 EP 11496 DI 10.1021/ja405668u PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 199TW UT WOS:000323019400021 PM 23865433 ER PT J AU Son, HJ Prasittichai, C Mondloch, JE Luo, LL Wu, JS Kim, DW Farha, OK Hupp, JT AF Son, Ho-Jin Prasittichai, Chaiya Mondloch, Joseph E. Luo, Langli Wu, Jinsong Kim, Dong Wook Farha, Omar K. Hupp, Joseph T. TI Dye Stabilization and Enhanced Photoelectrode Wettability in Water-Based Dye-Sensitized Solar Cells through Post-assembly Atomic Layer Deposition of TiO2 SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID LIGHT HARVESTERS; INTERFACE; DEVICES; AL2O3 AB Detachment (desorption) of molecular dyes from photoelectrodes is one of the major limitations for the long-term operation of dye-sensitized solar cells. Here we demonstrate a method to greatly inhibit this loss by growing a transparent metal oxide (TiO2) on the dye-coated photoelectrode via atomic layer deposition (ALD). TiO2-enshrouded sensitizers largely resist detachment, even in pH 10.7 ethanol, a standard solution for intentional removal of molecular dyes from photoelectrodes. Additionally, the ALD post-treatment renders the otherwise hydrophobic dye-coated surface hydrophilic, thereby enhancing photoelectrode pore-filling with aqueous solution. C1 [Son, Ho-Jin; Prasittichai, Chaiya; Mondloch, Joseph E.; Kim, Dong Wook; Farha, Omar K.; Hupp, Joseph T.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Son, Ho-Jin; Prasittichai, Chaiya; Mondloch, Joseph E.; Kim, Dong Wook; Farha, Omar K.; Hupp, Joseph T.] Northwestern Univ, Argonne Northwestern Solar Energy Res ANSER Ctr, Evanston, IL 60208 USA. [Luo, Langli; Wu, Jinsong] Northwestern Univ, NUANCE Ctr, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Hupp, Joseph T.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Farha, OK (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM o-farha@northwestern.edu; j-hupp@northwestern.edu RI Luo, Langli/B-5239-2013; OI Luo, Langli/0000-0002-6311-051X FU ANSER Center, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001059]; Thailand's Commission on Higher Education; DOE EERE; DOE [E-AC05-060R23100] FX This work was supported as part of the ANSER Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award DE-SC0001059. We acknowledge the Thailand's Commission on Higher Education for providing partial graduate support for CP through its program on Strategic Fellowships for Frontier Research Networks. This research was supported in part by the DOE EERE Postdoctoral Research Awards, EERE Fuel Cell Technologies Program, administered by ORISE for DOE. ORISE is managed by ORAU under DOE contract DE-AC05-060R23100 (J.E.M.). The electron microscopy work was performed in the electron instrumentation center (EPIC) facility of NUANCE center (supported by NSF-NSEC, NSF-MRSEC, Keck Foundation, and the state of Illinois) at Northwestern University. NR 26 TC 33 Z9 33 U1 0 U2 122 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD AUG 7 PY 2013 VL 135 IS 31 BP 11529 EP 11532 DI 10.1021/ja406538a PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 199TW UT WOS:000323019400030 PM 23876134 ER PT J AU Jeletic, MS Mock, MT Appel, AM Linehan, JC AF Jeletic, Matthew S. Mock, Michael T. Appel, Aaron M. Linehan, John C. TI A Cobalt-Based Catalyst for the Hydrogenation of CO2 under Ambient Conditions SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID TRANSITION-METAL HYDRIDES; AB-INITIO CALCULATIONS; CARBON-DIOXIDE; HOMOGENEOUS HYDROGENATION; COMPLEXES; ACETONITRILE; STORAGE; REDUCTION; OXIDATION; FORMATE AB Because of the continually rising levels of CO2 in the atmosphere, research for the conversion of CO2 into fuels using carbon-neutral energy is an important and current topic in catalysis. Recent research on molecular catalysts has led to improved rates for conversion of CO2 to formate, but the catalysts are based on precious metals such as iridium, ruthenium and rhodium and require high temperatures and high pressures. Using established thermodynamic properties of hydricity (Delta G(H)(-)) and acidity (pK(a)), we designed a cobalt-based catalyst system for the production of formate from CO2 and H-2. The complex Co(dmpe)(2)H (dmpe is 1,2-bis(dimethylphosphino)ethane) catalyzes the hydrogenation of CO2, with a turnover frequency of 3400 h(-1) at room temperature and 1 atm of 1:1 CO2:H-2 (74 000 h(-1) at 20 atm) in tetrahydrofuran. These results highlight the value of fundamental thermodynamic properties in the rational design of catalysts. C1 [Jeletic, Matthew S.; Mock, Michael T.; Appel, Aaron M.; Linehan, John C.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Linehan, JC (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM john.linehan@pnnl.gov OI Appel, Aaron/0000-0002-5604-1253 FU US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences FX This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. NR 31 TC 113 Z9 114 U1 20 U2 326 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD AUG 7 PY 2013 VL 135 IS 31 BP 11533 EP 11536 DI 10.1021/ja406601v PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 199TW UT WOS:000323019400031 PM 23869651 ER PT J AU Zhang, CJ Yu, Y Grass, ME Dejoie, C Ding, WC Gaskell, K Jabeen, N Hong, YP Shayorskiy, A Bluhrn, H Li, WX Jackson, GS Hussain, Z Liu, Z Eichhorn, BW AF Zhang, Chunjuan Yu, Yi Grass, Michael E. Dejoie, Catherine Ding, Wuchen Gaskell, Karen Jabeen, Naila Hong, Young Pyo Shayorskiy, Andrey Bluhrn, Hendrik Li, Wei-Xue Jackson, Gregory S. Hussain, Zahid Liu, Zhi Eichhorn, Bryan W. TI Mechanistic Studies of Water Electrolysis and Hydrogen Electro-Oxidation on High Temperature Ceria-Based Solid Oxide Electrochemical Cells SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID RAY PHOTOELECTRON-SPECTROSCOPY; INITIO MOLECULAR-DYNAMICS; OXYGEN VACANCIES; SURFACE SCIENCE; FUEL-CELLS; TRANSITION; CHEMISTRY; METAL; OXIDATION; PRESSURE AB Through the use of ambient pressure X-ray photoelectron spectroscopy (APXPS) and a single-sided solid oxide electrochemical cell (SOC), we have studied the mechanism of electrocatalytic splitting of water (H2O + 2e(-) -> H-2 + O2-) and electro-oxidation of hydrogen (H-2 + O2- -> H2O + 2e(-)) at similar to 700 degrees C in 0.5 Torr of H-2/H2O on ceria (CeO2-x) electrodes. The experiments reveal a transient build-up of surface intermediates (OH- and Ce3+) and show the separation of charge at the gas solid interface exclusively in the electrochemically active region of the SOC. During water electrolysis on ceria, the increase in surface potentials of the adsorbed OH- and incorporated O2- differ by 0.25 eV in the active regions. For hydrogen electro-oxidation on ceria, the surface concentrations of OH- and O2- shift significantly from their equilibrium values. These data suggest that the same charge transfer step (H2O + Ce3+ double left right arrow Ce4+ + OH- + H-center dot) is rate limiting in both the forward (water electrolysis) and reverse (H-2 electrooxidation) reactions. This separation of potentials reflects an induced surface dipole layer on the ceria surface and represents the effective electrochemical double layer at a gas-solid interface. The in situ XPS data and DFT calculations show that the chemical origin of the OH-/O2- potential separation resides in the reduced polarization of the Ce-OH bond due to the increase of Ce3+ on the electrode surface. These results provide a graphical illustration of the electrochemically driven surface charge transfer processes under relevant and nonultrahigh vacuum conditions. C1 [Zhang, Chunjuan; Yu, Yi; Gaskell, Karen; Jackson, Gregory S.; Eichhorn, Bryan W.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Zhang, Chunjuan; Yu, Yi; Gaskell, Karen; Jackson, Gregory S.; Eichhorn, Bryan W.] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA. [Grass, Michael E.; Dejoie, Catherine; Jabeen, Naila; Hong, Young Pyo; Shayorskiy, Andrey; Bluhrn, Hendrik; Hussain, Zahid; Liu, Zhi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ding, Wuchen; Li, Wei-Xue] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China. [Liu, Zhi] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 200031, Peoples R China. RP Liu, Z (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM zliu2@lbl.gov; eichhorn@umd.edu RI Gaskell, Karen/H-8270-2014; Liu, Zhi/B-3642-2009; Jackson, Gregory/N-9919-2014 OI Liu, Zhi/0000-0002-8973-6561; Jackson, Gregory/0000-0002-8928-2459 FU ONR [N000141110121]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; University of Maryland Nanocenter; University of Maryland Energy Research Center (UMERC); National Natural Science Foundation of China [21173210, 21225315] FX This work was funded by the ONR through Contract N000141110121. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. We thank the University of Maryland Nanocenter and the University of Maryland Energy Research Center (UMERC) and the National Natural Science Foundation of China (Grants 21173210, 21225315) for support. NR 49 TC 30 Z9 30 U1 6 U2 201 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD AUG 7 PY 2013 VL 135 IS 31 BP 11572 EP 11579 DI 10.1021/ja402604u PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 199TW UT WOS:000323019400036 PM 23822749 ER PT J AU Guttormsen, M Jurado, B Wilson, JN Aiche, M Bernstein, LA Ducasse, Q Giacoppo, F Gorgen, A Gunsing, F Hagen, TW Larsen, AC Lebois, M Leniau, B Renstrom, T Rose, SJ Siem, S Tornyi, T Tveten, GM Wiedeking, M AF Guttormsen, M. Jurado, B. Wilson, J. N. Aiche, M. Bernstein, L. A. Ducasse, Q. Giacoppo, F. Goergen, A. Gunsing, F. Hagen, T. W. Larsen, A. C. Lebois, M. Leniau, B. Renstrom, T. Rose, S. J. Siem, S. Tornyi, T. Tveten, G. M. Wiedeking, M. TI Constant-temperature level densities in the quasicontinuum of Th and U isotopes SO PHYSICAL REVIEW C LA English DT Article ID NEGATIVE HEAT-CAPACITY; NUCLEAR; TRANSITION; FORMULA; SPECTRA; CLUSTER AB Particle-gamma coincidences have been measured to obtain gamma-ray spectra as a function of excitation energy for Th231-233 and U237-239. The level densities, which were extracted using the Oslo method, show a constant temperature behavior. The isotopes display very similar temperatures in the quasicontinuum, however, the even-odd isotopes reveal a constant entropy increase Delta S compared to their even-even neighbors. The entropy excess depends on available orbitals for the last unpaired valence neutron of the heated nuclear system. Also, experimental microcanonical temperature and heat capacity have been extracted. Several poles in the heat capacity curve support the idea that an almost continuous melting of Cooper pairs is responsible for the constant-temperature behavior. C1 [Guttormsen, M.; Giacoppo, F.; Goergen, A.; Hagen, T. W.; Larsen, A. C.; Renstrom, T.; Rose, S. J.; Siem, S.; Tornyi, T.; Tveten, G. M.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway. [Jurado, B.; Aiche, M.; Ducasse, Q.] Univ Bordeaux 1, CNRS IN2P3, CENBG, F-33175 Gradignan, France. [Wilson, J. N.; Lebois, M.; Leniau, B.] Inst Phys Nucl, F-91406 Orsay, France. [Bernstein, L. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Gunsing, F.] CEA Saclay, DSM Irfu SPhN, F-91191 Gif Sur Yvette, France. [Wiedeking, M.] iThemba LABS, ZA-7129 Somerset West, South Africa. RP Guttormsen, M (reprint author), Univ Oslo, Dept Phys, POB 1048, N-0316 Oslo, Norway. EM magne.guttormsen@fys.uio.no RI Larsen, Ann-Cecilie/C-8742-2014; OI Larsen, Ann-Cecilie/0000-0002-2188-3709; Tveten, Gry Merete/0000-0002-6942-8254; Gorgen, Andreas/0000-0003-1916-9941 FU Research Council of Norway (NFR); French national research programme GEDEPEON; US Department of Energy [DE-AC52-07NA27344]; National Research Foundation of South Africa; European Commission [269499]; European Atomic Energy Community's 7th Framework Programme [FP7-249671 (ANDES)] FX We would like to thank J. Muller, E. A. Olsen, A. Semchenkov, and J. Wikne at the Oslo Cyclotron Laboratory for providing the stable and high-quality deuterium and 3He beams during the experiment, the Lawrence Livermore National Laboratory for providing the 232Th target and the GSI Target Laboratory for the production of the 238U target. This work was supported by the Research Council of Norway (NFR), the French national research programme GEDEPEON, the US Department of Energy under Contract No. DE-AC52-07NA27344, the National Research Foundation of South Africa, the European Commission within the 7th Framework Programme through Fission-2010-ERINDA(Project No. 269499), and by the European Atomic Energy Community's 7th Framework Programme under grant agreement no. FP7-249671 (ANDES). NR 26 TC 24 Z9 24 U1 1 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG 7 PY 2013 VL 88 IS 2 AR 024307 DI 10.1103/PhysRevC.88.024307 PG 8 WC Physics, Nuclear SC Physics GA 196YX UT WOS:000322814400003 ER PT J AU Sibidanov, A Varvell, KE Adachi, I Aihara, H Asner, DM Aulchenko, V Aushev, T Bakich, AM Bala, A Bozek, A Bracko, M Browder, TE Chekelian, V Chen, P Cheon, BG Chilikin, K Chistov, R Cho, IS Cho, K Chobanova, V Choi, Y Cinabro, D Dalseno, J Danilov, M Dingfelder, J Dolezal, Z Drasal, Z Drutskoy, A Dutta, D Eidelman, S Epifanov, D Farhat, H Fast, JE Ferber, T Frey, A Gaur, V Ganguly, S Gillard, R Goh, YM Golob, B Haba, J Hayashii, H Hoshi, Y Hou, WS Hyun, HJ Iijima, T Ishikawa, A Itoh, R Iwasaki, Y Julius, T Kah, DH Kang, JH Kawasaki, T Kiesling, C Kim, DY Kim, HJ Kim, JB Kim, JH Kim, KT Kim, YJ Klucar, J Ko, BR Kodys, P Korpar, S Krizan, P Krokovny, P Kronenbitter, B Kuhr, T Kuzmin, A Kwon, YJ Lee, SH Li, J Li, Y Libby, J Liu, Y Liventsev, D Lukin, P Matvienko, D Miyabayashi, K Miyata, H Mohanty, GB Moll, A Mussa, R Nagasaka, Y Nakano, E Nakao, M Natkaniec, Z Nayak, M Nedelkovska, E Ng, C Nisar, NK Nishida, S Nitoh, O Nozaki, T Ogawa, S Okuno, S Olsen, SL Oswald, C Park, H Park, HK Pedlar, TK Pestotnik, R Petric, M Piilonen, LE Ritter, M Rohrken, M Rostomyan, A Ryu, S Sahoo, H Saito, T Sakai, Y Sandilya, S Santelj, L Sanuki, T Sato, Y Savinov, V Schneider, O Schnell, G Schwanda, C Senyo, K Seon, O Sevior, ME Shapkin, M Shebalin, V Shen, CP Shibata, TA Shiu, JG Simon, F Smerkol, P Sohn, YS Solovieva, E Stanic, S Staric, M Steder, M Sumihama, M Sumisawa, K Sumiyoshi, T Tatishvili, G Teramoto, Y Trabelsi, K Tsuboyama, T Uchida, M Uehara, S Uglov, T Unno, Y Uno, S Urquijo, P Ushiroda, Y Vahsen, SE Van Hulse, C Vanhoefer, P Varner, G Vorobyev, V Wagner, MN Wang, CH Wang, P Watanabe, M Watanabe, Y Williams, KM Won, E Yabsley, BD Yamashita, Y Yashchenko, S Yook, Y Zhang, ZP Zhilich, V Zhulanov, V Zupanc, A AF Sibidanov, A. Varvell, K. E. Adachi, I. Aihara, H. Asner, D. M. Aulchenko, V. Aushev, T. Bakich, A. M. Bala, A. Bozek, A. Bracko, M. Browder, T. E. Chekelian, V. Chen, P. Cheon, B. G. Chilikin, K. Chistov, R. Cho, I. -S. Cho, K. Chobanova, V. Choi, Y. Cinabro, D. Dalseno, J. Danilov, M. Dingfelder, J. Dolezal, Z. Drasal, Z. Drutskoy, A. Dutta, D. Eidelman, S. Epifanov, D. Farhat, H. Fast, J. E. Ferber, T. Frey, A. Gaur, V. Ganguly, S. Gillard, R. Goh, Y. M. Golob, B. Haba, J. Hayashii, H. Hoshi, Y. Hou, W. -S. Hyun, H. J. Iijima, T. Ishikawa, A. Itoh, R. Iwasaki, Y. Julius, T. Kah, D. H. Kang, J. H. Kawasaki, T. Kiesling, C. Kim, D. Y. Kim, H. J. Kim, J. B. Kim, J. H. Kim, K. T. Kim, Y. J. Klucar, J. Ko, B. R. Kodys, P. Korpar, S. Krizan, P. Krokovny, P. Kronenbitter, B. Kuhr, T. Kuzmin, A. Kwon, Y. -J. Lee, S. -H. Li, J. Li, Y. Libby, J. Liu, Y. Liventsev, D. Lukin, P. Matvienko, D. Miyabayashi, K. Miyata, H. Mohanty, G. B. Moll, A. Mussa, R. Nagasaka, Y. Nakano, E. Nakao, M. Natkaniec, Z. Nayak, M. Nedelkovska, E. Ng, C. Nisar, N. K. Nishida, S. Nitoh, O. Nozaki, T. Ogawa, S. Okuno, S. Olsen, S. L. Oswald, C. Park, H. Park, H. K. Pedlar, T. K. Pestotnik, R. Petric, M. Piilonen, L. E. Ritter, M. Roehrken, M. Rostomyan, A. Ryu, S. Sahoo, H. Saito, T. Sakai, Y. Sandilya, S. Santelj, L. Sanuki, T. Sato, Y. Savinov, V. Schneider, O. Schnell, G. Schwanda, C. Senyo, K. Seon, O. Sevior, M. E. Shapkin, M. Shebalin, V. Shen, C. P. Shibata, T. -A. Shiu, J. -G. Simon, F. Smerkol, P. Sohn, Y. -S. Solovieva, E. Stanic, S. Staric, M. Steder, M. Sumihama, M. Sumisawa, K. Sumiyoshi, T. Tatishvili, G. Teramoto, Y. Trabelsi, K. Tsuboyama, T. Uchida, M. Uehara, S. Uglov, T. Unno, Y. Uno, S. Urquijo, P. Ushiroda, Y. Vahsen, S. E. Van Hulse, C. Vanhoefer, P. Varner, G. Vorobyev, V. Wagner, M. N. Wang, C. H. Wang, P. Watanabe, M. Watanabe, Y. Williams, K. M. Won, E. Yabsley, B. D. Yamashita, Y. Yashchenko, S. Yook, Y. Zhang, Z. P. Zhilich, V. Zhulanov, V. Zupanc, A. CA Belle Collaboration TI Study of exclusive B -> X(u)lv decays and extraction of vertical bar V-ub vertical bar using full reconstruction tagging at the Belle experiment SO PHYSICAL REVIEW D LA English DT Article ID MONTE-CARLO; QUARK-MODEL; IDENTIFICATION; DETECTOR; KEKB AB We report the results of a study of the exclusive semileptonic decays B- -> pi(0)l(-)(v) over bar (l), (B) over bar (0) -> pi(+)l(-)(v) over bar (l), B- -> rho(0)l(-)(v) over bar (l), (B) over bar (0) -> rho+l(-)(v) over bar (l) and B- -> omega l(-)(v) over bar (l), where l represents an electron or a muon. The events are tagged by fully reconstructing a second B meson in the event in a hadronic decay mode. The measured branching fractions are 'B(B- -> pi(0)l(-)(v) over bar (l)) = (0.80 +/- 0.08 +/- 0.04 x 10(-4), B((B) over bar (0) -> pi(0)l(-)(v) over bar (l)) = (1.49 +/- 0.09 +/- 0.07) x 10(-4), B(B- -> rho(0)l(-)(v) over bar (l)) = 1.83 +/- 0.10 +/- 0.10 x 10(-4), B((B) over bar (0) -> rho(0)l(-)(v) over bar (l) 3.22 +/- 0.27 +/- 0.24) x 10(-4), and B(B- -> omega l(-)(v) over bar (l)) = 1.07 +/- 0.16 +/- 0.07) x 10(-4), where the first error is statistical and the second one is systematic. The obtained branching fractions are inclusive of soft photon emission. We also determine the branching fractions as a function of the 4-momentum transfer squared to the leptonic system q(2) = (p(l) + p(v))(2), where p(l) and p(v) are the lepton and neutrino 4-momenta, respectively. Using the pion modes, a recent light cone sum rule calculation, latticeQCDresults and a model-independent description of the hadronic form factor, a value of the Cabibbo-Kobayashi-Maskawa matrix element vertical bar V-ub vertical bar (3.52 +/- 0.29) x 10(-3) is extracted. A structure in the two-pion invariant mass distribution near 1.3 GeV/c(2), which might be dominated by the decay B- -> f(2)(1270)l(-)(v) over bar (l), f(2) -> pi(+)pi(-), is seen. These results are obtained from a 711 fb(-1) data sample that contains 772 x 10(6) B (B) over bar pairs, collected near the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e(+)e(-) collider. C1 [Schnell, G.; Van Hulse, C.] Univ Basque Country UPV EHU, Bilbao 48080, Spain. [Dingfelder, J.; Oswald, C.; Urquijo, P.] Univ Bonn, D-53115 Bonn, Germany. [Aulchenko, V.; Eidelman, S.; Krokovny, P.; Kuzmin, A.; Lukin, P.; Matvienko, D.; Shebalin, V.; Vorobyev, V.; Zhilich, V.; Zhulanov, V.] Budker Inst Nucl Phys SB RAS, Novosibirsk 630090, Russia. [Aulchenko, V.; Eidelman, S.; Krokovny, P.; Kuzmin, A.; Lukin, P.; Matvienko, D.; Shebalin, V.; Vorobyev, V.; Zhilich, V.; Zhulanov, V.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Dolezal, Z.; Drasal, Z.; Kodys, P.] Charles Univ Prague, Fac Math & Phys, Prague 12116, Czech Republic. [Liu, Y.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Ferber, T.; Rostomyan, A.; Steder, M.; Yashchenko, S.] Deutsch Elekt Synchrotron, D-22607 Hamburg, Germany. [Wagner, M. N.] Univ Giessen, D-35392 Giessen, Germany. [Sumihama, M.] Gifu Univ, Gifu 5011193, Japan. [Cheon, B. G.; Goh, Y. M.; Unno, Y.] Hanyang Univ, Seoul 133791, South Korea. [Browder, T. E.; Sahoo, H.; Vahsen, S. E.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Adachi, I.; Haba, J.; Itoh, R.; Iwasaki, Y.; Liventsev, D.; Nakao, M.; Nishida, S.; Nozaki, T.; Sakai, Y.; Sumisawa, K.; Trabelsi, K.; Tsuboyama, T.; Uehara, S.; Uno, S.; Ushiroda, Y.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Hiroshima 7315193, Japan. [Schnell, G.] Ikerbasque, Bilbao 48011, Spain. [Dutta, D.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Libby, J.; Nayak, M.] Indian Inst Technol Madras, Chennai 600036, Tamil Nadu, India. [Wang, P.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Schwanda, C.] Inst High Energy Phys, A-1050 Vienna, Austria. [Shapkin, M.] Inst High Energy Phys, Protvino 142281, Russia. [Mussa, R.] INFN Sez Torino, I-10125 Turin, Italy. [Aushev, T.; Chilikin, K.; Chistov, R.; Danilov, M.; Drutskoy, A.; Solovieva, E.; Uglov, T.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Bracko, M.; Golob, B.; Klucar, J.; Korpar, S.; Krizan, P.; Pestotnik, R.; Petric, M.; Santelj, L.; Smerkol, P.; Staric, M.] J Stefan Inst, Ljubljana 1000, Slovenia. [Okuno, S.; Watanabe, Y.] Kanagawa Univ, Yokohama, Kanagawa 2218686, Japan. [Kronenbitter, B.; Kuhr, T.; Roehrken, M.; Zupanc, A.] Karlsruhe Inst Technol, Inst Expt Phys, D-76131 Karlsruhe, Germany. [Cho, K.; Kim, J. H.; Kim, Y. J.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Ishikawa, A.; Kim, J. B.; Kim, K. T.; Ko, B. R.; Lee, S. -H.; Won, E.] Korea Univ, Seoul 136713, South Korea. [Hyun, H. J.; Kah, D. H.; Kim, H. J.; Park, H.; Park, H. K.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Schneider, O.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Golob, B.; Krizan, P.] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. [Pedlar, T. K.] Luther Coll, Decorah, IA 52101 USA. [Bracko, M.; Korpar, S.] Univ Maribor, Maribor 2000, Slovenia. [Chekelian, V.; Chobanova, V.; Dalseno, J.; Kiesling, C.; Moll, A.; Nedelkovska, E.; Ritter, M.; Simon, F.; Vanhoefer, P.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Julius, T.; Sevior, M. E.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Danilov, M.; Drutskoy, A.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Uglov, T.] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia. [Iijima, T.; Seon, O.; Shen, C. P.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648602, Japan. [Iijima, T.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648602, Japan. [Hayashii, H.; Miyabayashi, K.] Nara Womens Univ, Nara 6308506, Japan. [Wang, C. H.] Natl United Univ, Miaoli 36003, Taiwan. [Chen, P.; Hou, W. -S.; Shiu, J. -G.] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. [Bozek, A.; Natkaniec, Z.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Yamashita, Y.] Nippon Dent Univ, Niigata 9518580, Japan. [Kawasaki, T.; Miyata, H.; Watanabe, M.] Niigata Univ, Niigata 9502181, Japan. [Stanic, S.] Univ Nova Gor, Nova Gorica 5000, Slovenia. [Nakano, E.; Teramoto, Y.] Osaka City Univ, Osaka 5588585, Japan. [Asner, D. M.; Fast, J. E.; Tatishvili, G.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Bala, A.] Panjab Univ, Chandigarh 160014, India. [Savinov, V.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Li, J.; Olsen, S. L.; Ryu, S.] Seoul Natl Univ, Seoul 151742, South Korea. [Kim, D. Y.] Soongsil Univ, Seoul 156743, South Korea. [Choi, Y.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Sibidanov, A.; Varvell, K. E.; Bakich, A. M.; Yabsley, B. D.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Gaur, V.; Mohanty, G. B.; Nisar, N. K.; Sandilya, S.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Dalseno, J.; Moll, A.; Simon, F.] Tech Univ Munich, D-85748 Garching, Germany. [Ogawa, S.] Toho Univ, Funabashi, Chiba 2748510, Japan. [Hoshi, Y.] Tohoku Gakuin Univ, Tagajo, Miyagi 9858537, Japan. [Ishikawa, A.; Saito, T.; Sanuki, T.; Sato, Y.] Tohoku Univ, Sendai, Miyagi 980, Japan. [Aihara, H.; Epifanov, D.; Ng, C.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Shibata, T. -A.; Uchida, M.] Tokyo Inst Technol, Tokyo 1528550, Japan. [Sumiyoshi, T.] Tokyo Metropolitan Univ, Tokyo 1920397, Japan. [Nitoh, O.] Tokyo Univ Agr & Technol, Tokyo 1848588, Japan. [Li, Y.; Piilonen, L. E.; Williams, K. M.] Virginia Polytech Inst & State Univ, CNP, Blacksburg, VA 24061 USA. [Cinabro, D.; Farhat, H.; Ganguly, S.; Gillard, R.] Wayne State Univ, Detroit, MI 48202 USA. [Senyo, K.] Yamagata Univ, Yamagata 9908560, Japan. [Cho, I. -S.; Kang, J. H.; Kwon, Y. -J.; Sohn, Y. -S.; Yook, Y.] Yonsei Univ, Seoul 120749, South Korea. [Frey, A.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. RP Sibidanov, A (reprint author), Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. RI Aihara, Hiroaki/F-3854-2010; Nitoh, Osamu/C-3522-2013; Ishikawa, Akimasa/G-6916-2012; Uglov, Timofey/B-2406-2014; Danilov, Mikhail/C-5380-2014; Krokovny, Pavel/G-4421-2016; Chilikin, Kirill/B-4402-2014; Chistov, Ruslan/B-4893-2014; Drutskoy, Alexey/C-8833-2016; Solovieva, Elena/B-2449-2014 OI Aihara, Hiroaki/0000-0002-1907-5964; Uglov, Timofey/0000-0002-4944-1830; Danilov, Mikhail/0000-0001-9227-5164; Krokovny, Pavel/0000-0002-1236-4667; Chilikin, Kirill/0000-0001-7620-2053; Chistov, Ruslan/0000-0003-1439-8390; Drutskoy, Alexey/0000-0003-4524-0422; Solovieva, Elena/0000-0002-5735-4059 FU Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan; Japan Society for the Promotion of Science (JSPS); Tau-Lepton Physics Research Center of Nagoya University; Australian Research Council; Australian Department of Industry, Innovation, Science and Research; Austrian Science Fund [P 22742-N16]; National Natural Science Foundation of China [10575109, 10775142, 10875115, 10825524]; Ministry of Education, Youth and Sports of the Czech Republic [MSM0021620859]; Carl Zeiss Foundation; Deutsche Forschungsgemeinschaft; VolkswagenStiftung; Department of Science and Technology of India; Istituto Nazionale di Fisica Nucleare of Italy; WCU program of the Ministry of Education, Science and Technology, National Research Foundation of Korea [2010-0021174, 2011-0029457, 2012-0008143, 2012R1A1A2008330]; BRL program; NRF [KRF-2011-0020333]; GSDC of the Korea Institute of Science and Technology Information; Polish Ministry of Science and Higher Education; National Science Center; Ministry of Education and Science of the Russian Federation; Russian Federal Agency for Atomic Energy; Slovenian Research Agency; Basque Foundation for Science (IKERBASQUE); UPV/EHU [11/55]; Swiss National Science Foundation; National Science Council; Ministry of Education of Taiwan; U.S. Department of Energy; National Science Foundation FX We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, the National Institute of Informatics, and the PNNL/EMSL computing group for valuable computing and SINET4 network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council and the Australian Department of Industry, Innovation, Science and Research; Austrian Science Fund under Grant No. P 22742-N16; the National Natural Science Foundation of China under Contracts No. 10575109, No. 10775142, No. 10875115 and No. 10825524; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. MSM0021620859; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft and the VolkswagenStiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; The BK21 and WCU program of the Ministry of Education, Science and Technology, National Research Foundation of Korea Grants No. 2010-0021174, No. 2011-0029457, No. 2012-0008143, and No. 2012R1A1A2008330, the BRL program under NRF Grant No. KRF-2011-0020333, and GSDC of the Korea Institute of Science and Technology Information; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Education and Science of the Russian Federation and the Russian Federal Agency for Atomic Energy; the Slovenian Research Agency; the Basque Foundation for Science (IKERBASQUE) and the UPV/EHU under program UFI 11/55; the Swiss National Science Foundation; the National Science Council and the Ministry of Education of Taiwan; and the U.S. Department of Energy and the National Science Foundation. This work is supported by a Grant-in-Aid from MEXT for Science Research in a Priority Area ("New Development of Flavor Physics''), and from JSPS for Creative Scientific Research ("Evolution of Tau-lepton Physics''). NR 42 TC 44 Z9 44 U1 0 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 7 PY 2013 VL 88 IS 3 AR 032005 DI 10.1103/PhysRevD.88.032005 PG 25 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 196ZB UT WOS:000322814800001 ER PT J AU Ma, J Kuciauskas, D Albin, D Bhattacharya, R Reese, M Barnes, T Li, JV Gessert, T Wei, SH AF Ma, Jie Kuciauskas, Darius Albin, David Bhattacharya, Raghu Reese, Matthew Barnes, Teresa Li, Jian V. Gessert, Timothy Wei, Su-Huai TI Dependence of the Minority-Carrier Lifetime on the Stoichiometry of CdTe Using Time-Resolved Photoluminescence and First-Principles Calculations SO PHYSICAL REVIEW LETTERS LA English DT Article ID SOLAR-CELLS; ENERGY-GAP; SEMICONDUCTORS AB CdTe is one of the most promising materials for thin-film solar cells. However, further improvement of its performance is hindered by its relatively short minority-carrier lifetime. Combining theoretical calculations and experimental measurements, we find that for both intrinsic CdTe and CdTe solar cell devices, longer minority-carrier lifetimes can be achieved under Cd-rich conditions, in contrast to the previous belief that Te-rich conditions are more beneficial. First-principles calculations suggest that the dominant recombination centers limiting the minority-carrier lifetime are the Te antisite and Te interstitial. Therefore, we propose that to optimize the solar cell performance, extrinsic p-type doping (e.g., N, P, or As substitution on Te sites) in CdTe under Cd-rich conditions should be a good approach to simultaneously increase both the minority-carrier lifetime and hole concentration. C1 [Ma, Jie; Kuciauskas, Darius; Albin, David; Bhattacharya, Raghu; Reese, Matthew; Barnes, Teresa; Li, Jian V.; Gessert, Timothy; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Ma, J (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Li, Jian/B-1627-2016 FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX The authors are grateful to Glenn Bindley and Bob Redden at Redlen Technologies for providing the CdTe materials with controlled stoichiometry used in this work, and to Pat Dippo for photoluminescence measurements. The authors further acknowledge the support of the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 39 TC 50 Z9 50 U1 7 U2 86 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 7 PY 2013 VL 111 IS 6 AR UNSP 067402 DI 10.1103/PhysRevLett.111.067402 PG 5 WC Physics, Multidisciplinary SC Physics GA 196XT UT WOS:000322811400014 PM 23971610 ER PT J AU Robey, HF Moody, JD Celliers, PM Ross, JS Ralph, J Le Pape, S Hopkins, LB Parham, T Sater, J Mapoles, ER Holunga, DM Walters, CF Haid, BJ Kozioziemski, BJ Dylla-Spears, RJ Krauter, KG Frieders, G Ross, G Bowers, MW Strozzi, DJ Yoxall, BE Hamza, AV Dzenitis, B Bhandarkar, SD Young, B Van Wonterghem, BM Atherton, LJ Landen, OL Edwards, MJ Boehly, TR AF Robey, H. F. Moody, J. D. Celliers, P. M. Ross, J. S. Ralph, J. Le Pape, S. Hopkins, L. Berzak Parham, T. Sater, J. Mapoles, E. R. Holunga, D. M. Walters, C. F. Haid, B. J. Kozioziemski, B. J. Dylla-Spears, R. J. Krauter, K. G. Frieders, G. Ross, G. Bowers, M. W. Strozzi, D. J. Yoxall, B. E. Hamza, A. V. Dzenitis, B. Bhandarkar, S. D. Young, B. Van Wonterghem, B. M. Atherton, L. J. Landen, O. L. Edwards, M. J. Boehly, T. R. TI Measurement of High-Pressure Shock Waves in Cryogenic Deuterium-Tritium Ice Layered Capsule Implosions on NIF SO PHYSICAL REVIEW LETTERS LA English DT Article ID NATIONAL IGNITION FACILITY; TARGETS AB The first measurements of multiple, high-pressure shock waves in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility have been performed. The strength and relative timing of these shocks must be adjusted to very high precision in order to keep the DT fuel entropy low and compressibility high. All previous measurements of shock timing in inertial confinement fusion implosions [T. R. Boehly et al., Phys. Rev. Lett. 106, 195005 (2011), H. F. Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] have been performed in surrogate targets, where the solid DT ice shell and central DT gas regions were replaced with a continuous liquid deuterium (D2) fill. This report presents the first experimental validation of the assumptions underlying this surrogate technique. C1 [Robey, H. F.; Moody, J. D.; Celliers, P. M.; Ross, J. S.; Ralph, J.; Le Pape, S.; Hopkins, L. Berzak; Parham, T.; Sater, J.; Mapoles, E. R.; Holunga, D. M.; Walters, C. F.; Haid, B. J.; Kozioziemski, B. J.; Dylla-Spears, R. J.; Krauter, K. G.; Frieders, G.; Ross, G.; Bowers, M. W.; Strozzi, D. J.; Yoxall, B. E.; Hamza, A. V.; Dzenitis, B.; Bhandarkar, S. D.; Young, B.; Van Wonterghem, B. M.; Atherton, L. J.; Landen, O. L.; Edwards, M. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Boehly, T. R.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. RP Robey, HF (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM robey1@llnl.gov RI lepape, sebastien/J-3010-2015; OI Strozzi, David/0000-0001-8814-3791 FU Lawrence Livermore National Security, LLC, (LLNS) [DE-AC52-07NA27344] FX This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344. NR 15 TC 15 Z9 15 U1 1 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 7 PY 2013 VL 111 IS 6 AR 065003 DI 10.1103/PhysRevLett.111.065003 PG 5 WC Physics, Multidisciplinary SC Physics GA 196XT UT WOS:000322811400012 PM 23971581 ER PT J AU Strachan, JP Yang, JJ Montoro, LA Ospina, CA Ramirez, AJ Kilcoyne, ALD Medeiros-Ribeiro, G Williams, RS AF Strachan, John Paul Yang, J. Joshua Montoro, L. A. Ospina, C. A. Ramirez, A. J. Kilcoyne, A. L. D. Medeiros-Ribeiro, Gilberto Williams, R. Stanley TI Characterization of electroforming-free titanium dioxide memristors SO BEILSTEIN JOURNAL OF NANOTECHNOLOGY LA English DT Article DE electron microscopy; memristor; resistance switching; transition-metal oxide; X-ray spectroscopy ID X-RAY-ABSORPTION; RESISTANCE; MEMORY; DEVICES; SRTIO3; FILMS; TIO2 AB Metal-insulator-metal (MIM) structures based on titanium dioxide have demonstrated reversible and non-volatile resistance-switching behavior and have been identified with the concept of the memristor. Microphysical studies suggest that the development of sub-oxide phases in the material drives the resistance changes. The creation of these phases, however, has a number of negative effects such as requiring an elevated voltage, increasing the device-to-device variability, damaging the electrodes due to oxygen evolution, and ultimately limiting the device lifetime. In this work we show that the deliberate inclusion of a sub-oxide layer in the MIM structure maintains the favorable switching properties of the device, while eliminating many of the negative effects. Electrical and microphysical characterization of the resulting structures was performed, utilizing X-ray and electron spectroscopy and microscopy. In contrast to structures which are not engineered with a sub-oxide layer, we observed dramatically reduced microphysical changes after electrical operation. C1 [Strachan, John Paul; Yang, J. Joshua; Medeiros-Ribeiro, Gilberto; Williams, R. Stanley] HP Labs, NanoElect Res Grp, Palo Alto, CA 94304 USA. [Montoro, L. A.; Ospina, C. A.; Ramirez, A. J.] Brazilian Nanotechnol Natl Lab, BR-13083970 Campinas, SP, Brazil. [Montoro, L. A.; Medeiros-Ribeiro, Gilberto] Univ Fed Minas Gerais, BR-31270901 Belo Horizonte, MG, Brazil. [Kilcoyne, A. L. D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Ramirez, AJ (reprint author), Brazilian Nanotechnol Natl Lab, CP 6192, BR-13083970 Campinas, SP, Brazil. EM antonio.ramirez@lnnano.cnpem.br; stan.williams@hp.com RI medeiros ribeiro, gilberto/E-1835-2012; Yang, Jianhua/B-3358-2010; Ospina, Carlos/F-5893-2012; Williams, R. Stanley/A-8281-2009; Montoro, Luciano/D-9150-2012; Kilcoyne, David/I-1465-2013 OI Williams, R. Stanley/0000-0003-0213-4259; FU U.S. Government's Nano-Enabled Technology Initiative; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX Work at HP was partially supported by the U.S. Government's Nano-Enabled Technology Initiative. Work at the Advanced Light Source at Lawrence Berkeley National Laboratory is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We acknowledge the Brazilian Nanotechnology National Laboratory and Brazilian Center for Research in Energy and Materials for use of the electron microscopy facilities. NR 38 TC 21 Z9 21 U1 0 U2 70 PU BEILSTEIN-INSTITUT PI FRANKFURT AM MAIN PA TRAKEHNER STRASSE 7-9, FRANKFURT AM MAIN, 60487, GERMANY SN 2190-4286 J9 BEILSTEIN J NANOTECH JI Beilstein J. Nanotechnol. PD AUG 7 PY 2013 VL 4 BP 467 EP 473 DI 10.3762/bjnano.4.55 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 196PU UT WOS:000322788700001 PM 23946916 ER PT J AU Zhang, Y Gong, YG AF Zhang, Yi Gong, Yungui TI Testing the effects from dark radiation SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article ID PROBE WMAP OBSERVATIONS; BARYON ACOUSTIC-OSCILLATIONS; HUBBLE-SPACE-TELESCOPE; SOUTH-POLE TELESCOPE; HIGH-REDSHIFT SUPERNOVAE; DIGITAL SKY SURVEY; COSMOLOGICAL PARAMETERS; LEGACY SURVEY; CONSTRAINTS; CONSTANT AB In this paper, the effects of dark radiation (DR) are tested. Theoretically, the phase-space analysis method is applied to check whether the model is consist with the history of our universe which shows positive results. Observationally, by using the observational data (SuperNovae Legacy Survey (SNLS), Wilkinson Microwave Anisotropy Probe 9 Years Result (WMAP9), Planck First Data Release (PLANCK), baryon acoustic oscillations (BAO), Hubble parameter data (H(z)) and Big Bang nucleosynthesis (BBN)), the DR is found to have the effect of wiping out the tension between the SNLS data and the other data in a flat Lambda CDM model. The effects of DR also make the best fit value of N-eff slightly larger than 3.04. C1 [Zhang, Yi] Chongqing Inst Posts & Telecommun, Coll Math & Phys, Chongqing 400065, Peoples R China. [Zhang, Yi] Argonne Natl Lab, Div High Energy Phys, Lemont, IL 60439 USA. [Zhang, Yi; Gong, Yungui] Chinese Acad Sci, Inst Theoret Phys, Beijing 100190, Peoples R China. [Gong, Yungui] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Peoples R China. RP Zhang, Y (reprint author), Chongqing Inst Posts & Telecommun, Coll Math & Phys, Chongqing 400065, Peoples R China. EM zhangyia@cqupt.edu.cn; yggong@mail.hust.edu.cn RI Gong, Yungui/K-7261-2012 OI Gong, Yungui/0000-0001-5065-2259 FU Ministry of Science and Technology of China [2010CB833004]; National Natural Science Foundation of China [11175270, 11005164, 11073005, 10935013]; CQ CSTC [2010BB0408]; CQ MEC [KJTD201016]; U.S. Department of Energy [DE-AC02-06CH11357]; DOE [W-7405-ENG-36] FX We are grateful to the anonymous referee for useful suggestions. YZ acknowledges the useful discussion with Dr Hao Wang, Dr Hongbo Zhang, Dr Yu Pan and professor Nana Pan. This work was supported by the Ministry of Science and Technology of China national basic science program (973 Project) under grant no. 2010CB833004, the National Natural Science Foundation of China project under grant nos 11175270, 11005164, 11073005 and 10935013, CQ CSTC under grant no. 2010BB0408, and CQ MEC under grant no. KJTD201016. Part of this research was supported under the U.S. Department of Energy contract DE-AC02-06CH11357 and by the DOE under contract W-7405-ENG-36. NR 66 TC 0 Z9 0 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 EI 1361-6382 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD AUG 7 PY 2013 VL 30 IS 15 AR 155017 DI 10.1088/0264-9381/30/15/155017 PG 13 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 181TY UT WOS:000321692600018 ER PT J AU Hoffert, WA Mock, MT Appel, AM Yang, JY AF Hoffert, Wesley A. Mock, Michael T. Appel, Aaron M. Yang, Jenny Y. TI Incorporation of Hydrogen-Bonding Functionalities into the Second Coordination Sphere of Iron-Based Water-Oxidation Catalysts SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Article DE Homogeneous catalysis; Water splitting; Iron; Ligand effects; Proton transport ID PHOTOSYSTEM-II; OXYGEN EXCHANGE; COMPLEXES; REDUCTION; MODEL; ELECTROCATALYST; MECHANISM; PERIODATE; LIGAND; NMR AB Energy storage and conversion schemes based on environmentally benign chemical fuels will require the discovery of faster, cheaper, and more robust catalysts for the oxygen-evolution reaction (OER). Although the incorporation of pendant bases into molecular catalysts for hydrogen production and utilization has led to enhanced turnover frequencies, the analogous incorporation of pendant bases into molecular catalysts for water oxidation has received little attention. Herein, the syntheses, structures, and catalytic activities of new iron complexes with pendant bases are reported. Of these new complexes, [Fe(L-1)](2+) {L-1 = N,N-dimethyl-N,N-bis(pyridazin-3-ylmethyl)ethane-1,2-diamine} is the most active catalyst. Initial turnover frequencies of 141 and 24 h(-1) were measured by using ceric ammonium nitrate at pH 0.7 and sodium periodate at pH 4.7, respectively. These results suggest that the incorporation of pendant bases into molecular catalysts for water oxidation might be an effective strategy that can be considered in the development of new catalysts for the OER, but will require the careful balance of many factors. C1 [Hoffert, Wesley A.; Mock, Michael T.; Appel, Aaron M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Yang, Jenny Y.] CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA. RP Yang, JY (reprint author), Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. OI Appel, Aaron/0000-0002-5604-1253 FU Laboratory Directed Research and Development program at Pacific Northwest National Laboratory (PNNL); Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX This work was supported by the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory (PNNL). M. T. M. was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. PNNL is operated by Battelle for the US Department of Energy. NR 35 TC 26 Z9 27 U1 3 U2 41 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1434-1948 EI 1099-0682 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD AUG 6 PY 2013 VL 2013 IS 22-23 SI SI BP 3846 EP 3857 DI 10.1002/ejic.201201499 PG 12 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 282UU UT WOS:000329199900014 ER PT J AU Kraft, SJ Hu, B Zhang, GH Miller, JT Hock, AS AF Kraft, Steven J. Hu, Bo Zhang, Guanghui Miller, Jeffrey T. Hock, Adam S. TI In Situ X-ray Absorption Spectroscopy and Nonclassical Catalytic Hydrogenation with an Iron(II) Catecholate Immobilized on a Porous Organic Polymer SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Article DE Heterogeneous catalysis; Hydrogenation; Porous organic polymers; Catechol; Iron ID TRANSITION-METAL-COMPLEXES; ACTIVE LIGAND COMPLEX; RUTHENIUM COMPLEXES; OXIDATIVE ADDITION; REACTIVITY; HYDRIDE; ACTIVATION; DIOXYGEN; KETONES; SIDEROPHORE AB The oxidation state and coordination number of immobilized iron catecholate EtO2Fe(CAT-POP) were determined by X-ray absorption spectroscopy (XAS) under a variety of conditions. We find the as-prepared material to be three-coordinate Fe2+ that readily oxidizes to Fe3+ upon exposure to air but remains three-coordinate. Both the reduced and oxidized Fe(CAT-POP) catalyze olefin hydrogenation in batch and flow reactors. We determined the catalytic rates for both species and also observed by means of XAS that the oxidation state of the iron centers does not change in hydrogen at the reaction temperature. Therefore, we postulate that the mechanism of hydrogenation by Fe(CAT-POP) proceeds through one of several possible nonclassical mechanisms, which are discussed. C1 [Kraft, Steven J.; Zhang, Guanghui; Miller, Jeffrey T.; Hock, Adam S.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Hu, Bo; Hock, Adam S.] IIT, Dept Biol & Chem Sci, Chicago, IL 60616 USA. RP Hock, AS (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ahock@iit.edu RI BM, MRCAT/G-7576-2011; ID, MRCAT/G-7586-2011; Zhang, Guanghui/C-4747-2008; Hock, Adam/D-7660-2012 OI Zhang, Guanghui/0000-0002-5854-6909; Hock, Adam/0000-0003-1440-1473 FU U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Science and Engineering Division [DE-AC-02-06CH11357]; Illinois Institute of Technology; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Materials Research Collaborative Access Team (MRCAT) [10 ID]; Department of Energy; MRCAT member institutions FX The work at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Science and Engineering Division under Contract DE-AC-02-06CH11357. B. H. and A. S. H. would like to thank the Illinois Institute of Technology for a Starr-Fieldhouse Fellowship (B. H.) and startup funding support. The use of the Advanced Photon Source (APS) was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Materials Research Collaborative Access Team (MRCAT, Sector 10 ID) operations are supported by the Department of Energy and the MRCAT member institutions. NR 37 TC 4 Z9 4 U1 0 U2 13 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1434-1948 EI 1099-0682 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD AUG 6 PY 2013 VL 2013 IS 22-23 SI SI BP 3972 EP 3977 DI 10.1002/ejic.201300528 PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 282UU UT WOS:000329199900028 ER PT J AU Wang, CC Lee, CS Smith, RD Tang, KQ AF Wang, Chenchen Lee, Cheng S. Smith, Richard D. Tang, Keqi TI Capillary lsotachophoresis-Nanoelectrospray Ionization-Selected Reaction Monitoring MS via a Novel Sheath less Interface for High Sensitivity Sample Quantification SO ANALYTICAL CHEMISTRY LA English DT Article ID ELECTROPHORESIS-MASS-SPECTROMETRY; ZONE-ELECTROPHORESIS; PEPTIDE ANALYSIS; CE-MS; POROUS TIP; ELECTROSPRAY; ISOTACHOPHORESIS; IDENTIFICATION; PROTEINS; ESI AB A novel sheathless capillary isotachophoresis (CITP/CZE) mass spectrometry (MS) interface featuring a large inner diameter (i.d.) separation capillary, and a detachable small i.d. porous electrospray ionization (ESI) emitter was developed in this study to simultaneously achieve large sample loading capacity and stable nanoESI operation. Crucial operating parameters, including sample loading volume, flow rate, and separation window, were systematically investigated to attain optimum CITP/CZE separation efficiency and MS detection sensitivity. The performance of CITP/CZEnanoESI-MS using the new sheathless interface was evaluated for its achievable low limit of quantification (LOQ) by analyzing targeted peptides, leu-enkephalin and angiotensin spiked in a BSA tryptic digest matrix at different concentrations. A linear dynamic range spanning 4.5 orders of magnitude and a 10 pM LOQ with measurement reproducibility of the CV < 22% were obtained experimentally for both targeted peptides, representing a 5-fold sensitivity improvement as compared to using the sheath liquid interface developed previously. C1 [Wang, Chenchen; Lee, Cheng S.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Smith, Richard D.; Tang, Keqi] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Tang, KQ (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM keqi.tang@pnnl.gov RI Smith, Richard/J-3664-2012; wang, chenchen/B-5838-2015 OI Smith, Richard/0000-0002-2381-2349; FU National Institutes of Health: National Cancer Institute [1R33CA155252]; National Institute of General Medical Sciences [8 P41 GM103493-10]; National Cancer Institute [R21 CA143177]; National Institute of General Medical Science [R21 GM103536]; DOE [DE-ACOS-76RL01830] FX This work was partially supported by grants from the National Institutes of Health: National Cancer Institute (Grant 1R33CA155252), National Institute of General Medical Sciences (Grant 8 P41 GM103493-10), National Cancer Institute (Grant R21 CA143177), and National Institute of General Medical Science (Grant R21 GM103536). All the experiments were performed in the Environmental Molecular Sciences Laboratory, a U.S. DOE national scientific user facility located at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington. PNNL is a multiprogram national laboratory operated by Battelle for the DOE under Contract DE-ACOS-76RL01830. NR 39 TC 20 Z9 20 U1 4 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD AUG 6 PY 2013 VL 85 IS 15 BP 7308 EP 7315 DI 10.1021/ac401202c PG 8 WC Chemistry, Analytical SC Chemistry GA 199RW UT WOS:000323014000047 PM 23789856 ER PT J AU Wambaugh, JF Setzer, RW Reif, DM Gangwal, S Mitchell-Blackwood, J Arnot, JA Joliet, O Frame, A Rabinowitz, J Knudsen, TB Judson, RS Egeghy, P Vallero, D Hubal, EAC AF Wambaugh, John F. Setzer, R. Woodrow Reif, David M. Gangwal, Sumit Mitchell-Blackwood, Jade Arnot, Jon A. Joliet, Olivier Frame, Alicia Rabinowitz, James Knudsen, Thomas B. Judson, Richard S. Egeghy, Peter Vallero, Daniel Hubal, Elaine A. Cohen TI High-Throughput Models for Exposure-Based Chemical Prioritization in the Expo Cast Project SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID RISK-ASSESSMENT; MANUFACTURED CHEMICALS; ORGANIC-COMPOUNDS; TOXCAST PROGRAM; INTAKE FRACTION; TOXICITY; HAZARD; INITIATIVES; INFORMATION; PERFORMANCE AB The United States Environmental Protection Agency (U.S. EPA) must characterize potential risks to human health and the environment associated with manufacture and use of thousands of chemicals. High-throughput screening (HTS) for biological activity allows the ToxCast research program to prioritize chemical inventories for potential hazard. Similar capabilities for estimating exposure potential would support rapid risk-based prioritization for chemicals with limited information; here, we propose a framework for high-throughput exposure assessment. To demonstrate application, an analysis was conducted that predicts human exposure potential for chemicals and estimates uncertainty in these predictions by comparison to biomonitoring data. We evaluated 1936 chemicals using far-field mass balance human exposure models (USEtox and RAIDAR) and an indicator for indoor and/or consumer use. These predictions were compared to exposures inferred by Bayesian analysis from urine concentrations for 82 chemicals reported in the National Health and Nutrition Examination Survey (NHANES). Joint regression on all factors provided a calibrated consensus prediction, the variance of which serves as an empirical determination of uncertainty for prioritization on absolute exposure potential. Information on use was found to be most predictive; generally, chemicals above the limit of detection in NHANES had consumer/indoor use. Coupled with hazard HTS, exposure HTS can place risk earlier in decision processes. High-priority chemicals become targets for further data collection. C1 [Wambaugh, John F.; Setzer, R. Woodrow; Reif, David M.; Gangwal, Sumit; Frame, Alicia; Rabinowitz, James; Knudsen, Thomas B.; Judson, Richard S.; Hubal, Elaine A. Cohen] US EPA, Natl Ctr Computat Toxicol, Res Triangle Pk, NC 27711 USA. [Mitchell-Blackwood, Jade; Egeghy, Peter; Vallero, Daniel] US EPA, Natl Exposure Res Lab, Off Res & Dev, Res Triangle Pk, NC 27711 USA. [Arnot, Jon A.] ARC, Toronto, ON M4M 1W4, Canada. [Arnot, Jon A.] Univ Toronto Scarborough, Dept Phys & Environm Sci, Toronto, ON M1C 1A4, Canada. [Joliet, Olivier] Univ Michigan, Sch Publ Heath, Ann Arbor, MI 48109 USA. [Frame, Alicia] ORISE, Oak Ridge, TN 37830 USA. RP Wambaugh, JF (reprint author), US EPA, Natl Ctr Computat Toxicol, Res Triangle Pk, NC 27711 USA. EM wambaugh.john@epa.gov OI Judson, Richard/0000-0002-2348-9633; Wambaugh, John/0000-0002-4024-534X; Reif, David/0000-0001-7815-6767 NR 41 TC 54 Z9 55 U1 7 U2 66 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD AUG 6 PY 2013 VL 47 IS 15 BP 8479 EP 8488 DI 10.1021/es400482g PG 10 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 199RR UT WOS:000323013400050 PM 23758710 ER PT J AU Tidwell, VC Malczynski, LA Kobos, PH Klise, GT Shuster, E AF Tidwell, Vincent C. Malczynski, Leonard A. Kobos, Peter H. Klise, Geoffrey T. Shuster, Erik TI Potential Impacts of Electric Power Production Utilizing Natural Gas, Renewables and Carbon Capture and Sequestration on US Freshwater Resources SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID CO2 CAPTURE AB Carbon capture and sequestration (CCS) has important implications relative to future thermoelectric water use. A bounding analysis is performed using past greenhouse gas emission policy proposals and assumes either all effected capacity retires (lower water use bound) or is retrofitted (upper bound). The analysis is performed in the context of recent trends in electric power generation expansion, namely high penetration of natural gas and renewables along with constrained cooling system options. Results indicate thermoelectric freshwater withdrawals nationwide could increase by roughly 1% or decrease by up to 60% relative to 2009 levels, while consumption could increase as much as 21% or decrease as much as 28%. To identify where changes in freshwater use might be problematic at a regional level, electric power production has been mapped onto watersheds with limited water availability (where consumption exceeds 70% of gauged streamflow). Results suggest that between 0.44 and 0.96 Mm(3)/d of new thermoelectric freshwater consumption could occur in watersheds with limited water availability, while power plant retirements in these watersheds could yield 0.90 to 1.0 Mm(3)/d of water savings. C1 [Tidwell, Vincent C.; Malczynski, Leonard A.; Kobos, Peter H.; Klise, Geoffrey T.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Shuster, Erik] Natl Energy Technol Lab Pittsburgh, Pittsburgh, PA 15236 USA. RP Tidwell, VC (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. EM vctidwe@sandia.gov OI Klise, Geoffrey/0000-0001-7461-2737 FU DOE's Office of Policy and International Affairs through the National Energy Technology Laboratory; Lockheed Martin Corporation; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We express our appreciation to three anonymous reviews for their helpful and insightful comments. Support for this project was derived through DOE's Office of Policy and International Affairs and through the National Energy Technology Laboratory. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 27 TC 11 Z9 11 U1 0 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD AUG 6 PY 2013 VL 47 IS 15 BP 8940 EP 8947 DI 10.1021/es3052284 PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 199RR UT WOS:000323013400104 PM 23789965 ER PT J AU Li, S Han, KS Feng, G Hagaman, EW Vlcek, L Cummings, PT AF Li, Song Han, Kee Sung Feng, Guang Hagaman, Edward W. Vlcek, Lukas Cummings, Peter T. TI Dynamic and Structural Properties of Room-Temperature Ionic Liquids near Silica and Carbon Surfaces SO LANGMUIR LA English DT Article ID ELECTRICAL DOUBLE-LAYERS; MOLECULAR-DYNAMICS; MELTING-POINT; FORCE-FIELD; CAPACITORS; DIFFUSION; ELECTROLYTES; SIMULATION; VISCOSITY; SOLVENTS AB The dynamic and structural properties of a room. temperature ionic liquid (RTIL) 1-butyl-3-methyl-imidazolium-(trifluoromethanesulfonimide) ([C(4)mim][Tf2N]) confined in silica and carbon mesopores were investigated by molecular dynamics (MD) simulations and nuclear magnetic resonance (NMR) experiments. The complex interfacial microstructures of confined [C(4)mim] [Tf2N] are attributed to the distinctive surface features of the silica mesopore. The temperature-dependent diffusion coefficients of [C(4)mim][Tf2N] confined in the silica or carbon mesopore exhibit divergent behavior. The loading fraction (f = 1.0, 0.5, and 0.25) has a large effect on the magnitude of the diffusion coefficient in the silica pore and displays weaker temperature dependence as the loading fraction decreases. The diffusion coefficients of mesoporous carbon-confined [C(4)mim][Tf2N] are relatively insensitive to the loading faction and exhibit a temperature dependence that is similar to the bulk dependence at all loading levels. Such phenomena can be attributed to the unique surface heterogeneity, dissimilar interfacial microstructures, and interaction potential profile of RTILs near silica and carbon walls. C1 [Li, Song; Feng, Guang; Cummings, Peter T.] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37235 USA. [Han, Kee Sung; Hagaman, Edward W.; Vlcek, Lukas] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Cummings, Peter T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Feng, G (reprint author), Vanderbilt Univ, Dept Chem & Biomol Engn, 221 Kirkland Hall, Nashville, TN 37235 USA. EM guang.feng@vanderbilt.edu RI Feng, Guang/D-8989-2011; Vlcek, Lukas/N-7090-2013; Li, Song/D-1026-2013; OI Vlcek, Lukas/0000-0003-4782-7702; Feng, Guang/0000-0001-6659-9181; Han, Kee Sung/0000-0002-3535-1818 FU Fluid Interface Reactions, Structures, and Transport (FIRST) Center, an Energy Frontier Research Center; Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy; Oak Ridge National Laboratory FIRST; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported as part of the Fluid Interface Reactions, Structures, and Transport (FIRST) Center, an Energy Frontier Research Center funded by the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. We acknowledge Oleg Borodin for graciously providing the exp-6 force field parameters used in this work. Computations for silica-confined ILs were performed on the Oak Ridge National Laboratory FIRST-funded cluster and at the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract DE-AC02-05CH11231. Guang Feng appreciates the Palmetto duster at Clemson University for providing computer time. NR 46 TC 20 Z9 20 U1 9 U2 109 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD AUG 6 PY 2013 VL 29 IS 31 BP 9744 EP 9749 DI 10.1021/la401172z PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 199RY UT WOS:000323014200017 PM 23845079 ER PT J AU Li, FH Fabbri, JD Yurchenko, RI Mileshkin, AN Hohman, JN Yan, H Yuan, HY Tran, IC Willey, TM Bagge-Hansen, M Dahl, JEP Carlson, RMK Fokin, AA Schreiner, PR Shen, ZX Melosh, NA AF Li, Fei Hua Fabbri, Jason D. Yurchenko, Raisa I. Mileshkin, Alexander N. Hohman, J. Nathan Yan, Hao Yuan, Hongyuan Tran, Ich C. Willey, Trevor M. Bagge-Hansen, Michael Dahl, Jeremy E. P. Carlson, Robert M. K. Fokin, Andrey A. Schreiner, Peter R. Shen, Zhi-Xun Melosh, Nicolas A. TI Covalent Attachment of Diamondoid Phosphonic Acid Dichlorides to Tungsten Oxide Surfaces SO LANGMUIR LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; THERMAL-STABILITY; DISPLACEMENT; GOLD; HYDROXYAPATITE; NANODIAMONDS; SPECTROSCOPY; ADAMANTANE; MOLECULES; TITANIUM AB Diamondoids (nanometer-sized diamond-like hydrocarbons) are a novel class of carbon nanomaterials that exhibit negative electron affinity (NEA) and strong electron phonon scattering. Surface-bound diamondoid monolayers exhibit monochromatic photoemission, a unique property that makes them ideal electron sources for electron-beam lithography and high-resolution electron microscopy. However, these applications are limited by the stability of the chemical bonding of diamondoids on surfaces. Here we demonstrate the stable covalent attachment of diamantane phosphonic dichloride on tungsten/tungsten oxide surfaces. Xray photoelectron spectroscopy (XPS) and Fourier-transform infrared (FTIR) spectroscopy revealed that diamondoid-functionalized tungsten oxide films were stable up to 300-350 degrees C, a substantial improvement over conventional diamondoid thiolate monolayers on gold, which dissociate at 100-200 degrees C. Extreme ultraviolet (EUV) light stimulated photoemission from these diamondoid phosphonate monolayers exhibited a characteristic monochromatic NEA peak with 0.2 eV full width at half-maximum (fwhm) at room temperature, showing that the unique monochromatization property of diamondoids remained intact after attachment. Our results demonstrate that phosphonic dichloride functionality is a promising approach for forming stable diamondoid monolayers for elevated temperature and high-current applications such as electron emission and coatings in micro/nano electromechanical systems (MEMS/NEMS). C1 [Li, Fei Hua; Fabbri, Jason D.; Hohman, J. Nathan; Yan, Hao; Yuan, Hongyuan; Dahl, Jeremy E. P.; Carlson, Robert M. K.; Shen, Zhi-Xun; Melosh, Nicolas A.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Yurchenko, Raisa I.; Mileshkin, Alexander N.; Fokin, Andrey A.] Kiev Polytech Inst, Dept Organ Chem, UA-03056 Kiev, Ukraine. [Tran, Ich C.; Willey, Trevor M.; Bagge-Hansen, Michael] Lawrence Livermore Natl Lab, Mat Sci & Technol Div, Livermore, CA 94550 USA. [Fokin, Andrey A.; Schreiner, Peter R.] Univ Giessen, Inst Organ Chem, D-35392 Giessen, Germany. RP Melosh, NA (reprint author), Stanford Univ, Geballe Lab Adv Mat, 476 Lomita Mall, Stanford, CA 94305 USA. EM nmelosh@stanford.edu RI Tran, Ich/C-9869-2014; Willey, Trevor/A-8778-2011; OI Willey, Trevor/0000-0002-9667-8830; Fokin, Andrey/0000-0002-6381-8948; Schreiner, Peter Richard/0000-0002-3608-5515 FU DOE Office of Basic Energy Sciences, Division of Materials Sciences; NSERC Postgraduate Scholarship FX This work was supported by the DOE Office of Basic Energy Sciences, Division of Materials Sciences and NSERC Postgraduate Scholarship. SSRL/SLAC is a user facility within the Office of Science operated for the U.S. Department of Energy Office of Science by Stanford University. NR 60 TC 9 Z9 9 U1 6 U2 74 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD AUG 6 PY 2013 VL 29 IS 31 BP 9790 EP 9797 DI 10.1021/la401781e PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 199RY UT WOS:000323014200022 PM 23855923 ER PT J AU Smoligovets, AA Smith, AW Groves, JT AF Smoligovets, Alexander A. Smith, Adam W. Groves, Jay T. TI Ratiometric Imaging of the T-Cell Actin Cytoskeleton Reveals the Nature of Receptor-Induced Cytoskeletal Enrichment SO BIOPHYSICAL JOURNAL LA English DT Article ID IMMUNOLOGICAL SYNAPSE; MICROCLUSTERS; ACTIVATION; CLUSTER AB The T-cell actin cytoskeleton mediates adaptive immune system responses to peptide antigens by physically directing the motion and clustering of T-cell receptors (TCRs) on the cell surface. When TCR movement is impeded by externally applied physical barriers, the actin network exhibits transient enrichment near the trapped receptors. The coordinated nature of the actin density fluctuations suggests that they are composed of filamentous actin, but it has not been possible to eliminate de novo polymerization at TOR-associated actin polymerizing factors as an alternative cause. Here, we use a dual-probe cytoskeleton labeling strategy to distinguish between stable and polymerizing pools of actin. Our results suggest that TCR-associated actin consists of a relatively high proportion of the stable cytoskeletal fraction and extends away from the cell membrane into the cell. This implies that actin enrichment at mechanically trapped TCRs results from three-dimensional bunching of the existing filamentous actin network. C1 [Smoligovets, Alexander A.; Smith, Adam W.; Groves, Jay T.] Univ Calif Berkeley, Dept Chem, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Smoligovets, Alexander A.; Smith, Adam W.; Groves, Jay T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Smoligovets, Alexander A.; Smith, Adam W.; Groves, Jay T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Smoligovets, Alexander A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. RP Groves, JT (reprint author), Univ Calif Berkeley, Dept Chem, Howard Hughes Med Inst, Berkeley, CA 94720 USA. EM jtgroves@lbl.gov RI Smith, Adam/B-7156-2016 OI Smith, Adam/0000-0001-5216-9017 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. NR 20 TC 5 Z9 5 U1 0 U2 6 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD AUG 6 PY 2013 VL 105 IS 3 BP L11 EP L13 DI 10.1016/j.bpj.2013.06.031 PG 3 WC Biophysics SC Biophysics GA 201KS UT WOS:000323141100001 PM 23931330 ER PT J AU Zhang, L Vinogradov, N Preobrajenski, A Butorin, S Zhu, JF Guo, JH AF Zhang, Liang Vinogradov, Nikolay Preobrajenski, Alexei Butorin, Sergei Zhu, Junfa Guo, Jinghua TI Probing substrate-induced perturbations on the band structure of graphene on Ni(111) by soft X-ray emission spectroscopy SO CHEMICAL PHYSICS LETTERS LA English DT Article ID ELECTRONIC-STRUCTURE; GRAPHITE; FLUORESCENCE; EDGE; ABSORPTION; SCATTERING; CU(111); DEFECTS; FILMS; FOILS AB The influence of substrate-induced perturbations on the band structure of graphene has been investigated by soft X-ray emission spectroscopy (XES) for graphene on Ni(111). The band-dispersion features of graphene on Ni(111) are different from those of HOPG and 'quasi-freestanding' graphene (graphene/Cu) because of the strong interfacial interaction. By comparing the XES spectra excited with energy at the pi* resonance of HOPG, graphene/Cu and graphene/Ni in detail, we find that the spectral shape change can be directly related to the different electronic states hybridization strength of graphene on metal substrates, supplying a feasible way for investigating the graphene-metal bonding strength. (C) 2013 Elsevier B.V. All rights reserved. C1 [Zhang, Liang; Zhu, Junfa] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Peoples R China. [Zhang, Liang; Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Vinogradov, Nikolay; Preobrajenski, Alexei] Lund Univ, MAX Lab, S-22100 Lund, Sweden. [Butorin, Sergei] Uppsala Univ, Dept Phys, S-75121 Uppsala, Sweden. RP Zhu, JF (reprint author), Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Peoples R China. EM jfzhu@ustc.edu.cn; jguo@lbl.gov RI Preobrajenski, Alexei/A-3150-2009; Zhu, Junfa/E-4020-2010; Vinogradov, Nikolay/J-7287-2016 OI Zhu, Junfa/0000-0003-0888-4261; Vinogradov, Nikolay/0000-0002-1477-853X FU National Natural Science Foundation of China [21173200]; National Basic Research Program of China [2010CB923302, 2013CB834605]; Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) of Ministry of Education [20113402110029]; Ministry of Education of China; U.S. Department of Energy [DE-AC02-05CH11231] FX J.F.Z gratefully acknowledges the financial supports from the National Natural Science Foundation of China (Grant No. 21173200), National Basic Research Program of China (2010CB923302, 2013CB834605), and the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) of Ministry of Education (Grant No. 20113402110029). L.Z. acknowledges the finical support from the Scholarship Award for Excellent Doctoral Student Granted by the Ministry of Education of China. The Advanced Light Source is supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 32 TC 2 Z9 2 U1 1 U2 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD AUG 6 PY 2013 VL 580 BP 43 EP 47 DI 10.1016/j.cplett.2013.06.054 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 199TG UT WOS:000323017800008 ER PT J AU Theis, T Blanchard, JW Butler, MC Ledbetter, MP Budker, D Pines, A AF Theis, Thomas Blanchard, John W. Butler, Mark C. Ledbetter, Micah P. Budker, Dmitry Pines, Alexander TI Chemical analysis using J-coupling multiplets in zero-field NMR SO CHEMICAL PHYSICS LETTERS LA English DT Article ID NUCLEAR-MAGNETIC-RESONANCE; LIQUID-STATE NMR; SPECTROSCOPY; PARAHYDROGEN; SPECTRA; SYSTEMS AB Zero-field nuclear magnetic resonance (NMR) spectroscopy is emerging as a new, potentially portable, and cost-effective NMR modality with the ability to provide information-rich, high-resolution spectra. We present simple rules for analysis of zero-field NMR spectra based on first-order perturbation theory and the addition of angular momenta. These rules allow for the prediction of observed spectral lines without numerical simulation. Results are presented for a few small organic molecules with characteristic spin topologies, demonstrating unambiguous assignment of peaks, highlighting the potential of zero-field NMR as a tool for chemical identification. (C) 2013 Elsevier B.V. All rights reserved. C1 [Theis, Thomas; Blanchard, John W.; Butler, Mark C.; Pines, Alexander] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Theis, Thomas; Blanchard, John W.; Butler, Mark C.; Pines, Alexander] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Ledbetter, Micah P.; Budker, Dmitry] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Budker, Dmitry] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Theis, T (reprint author), Duke Univ, Dept Chem, French Family Sci Ctr, 124 Sci Dr,Room 2303, Durham, NC 27708 USA. EM tho.theis@gmail.com; pines@berkeley.edu RI Butler, Mark/L-6906-2013; Theis, Thomas/J-2304-2014; Budker, Dmitry/F-7580-2016; OI Butler, Mark/0000-0002-1273-5771; Theis, Thomas/0000-0001-6779-9978; Budker, Dmitry/0000-0002-7356-4814; Blanchard, John/0000-0002-1621-6637 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-05CH11231]; National Science Foundation [DGE-1106400] FX Research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-05CH11231. Additionally, J.W. Blanchard is supported by a National Science Foundation Graduate Research Fellowship under Grant No. DGE-1106400. The mentioned sponsors had no involvement in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. NR 26 TC 6 Z9 7 U1 1 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD AUG 6 PY 2013 VL 580 BP 160 EP 165 DI 10.1016/j.cplett.2013.06.042 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 199TG UT WOS:000323017800030 ER PT J AU Pasini, JM Corgnale, C van Hassel, BA Motyka, T Kumar, S Simmons, KL AF Pasini, Jose Miguel Corgnale, Claudio van Hassel, Bart A. Motyka, Theodore Kumar, Sudarshan Simmons, Kevin L. TI Metal hydride material requirements for automotive hydrogen storage systems SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen storage; Light-duty vehicle; System modeling; Metal hydride; Fuel cell ID HEAT-EXCHANGER DESIGN; PRESSURE; METHODOLOGY; TANK AB The United States Department of Energy (DOE) has published a progression of technical targets to be satisfied by on-board rechargeable hydrogen storage systems in light-duty vehicles. By combining simplified storage system and vehicle models with interpolated data from metal hydride databases, we obtain material-level requirements for metal hydrides that can be assembled into systems that satisfy the DOE targets for 2017. We assume minimal balance-of-plant components for systems with and without a hydrogen combustion loop for supplemental heating. Tank weight and volume are driven by the stringent requirements for refueling time. The resulting requirements suggest that, at least for this specific application, no current on-board rechargeable metal hydride satisfies these requirements. Copyright (C) 2012, United Technologies Research Center and Elsevier Ltd. Published by Elsevier Ltd. All rights reserved. C1 [Pasini, Jose Miguel; van Hassel, Bart A.] United Technol Res Ctr, E Hartford, CT 06108 USA. [Corgnale, Claudio; Motyka, Theodore] Savannah River Natl Lab, Aiken, SC 29808 USA. [Kumar, Sudarshan] Gen Motors Global R&D, Chem Sci & Mat Syst Lab, Warren, MI 48090 USA. [Simmons, Kevin L.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Pasini, JM (reprint author), United Technol Res Ctr, 411 Silver Lane, E Hartford, CT 06108 USA. EM pasinijm@utrc.utc.com RI Van Hassel, Bart/F-2676-2016; OI Van Hassel, Bart/0000-0001-6551-7025; van Hassel, Bart/0000-0001-6129-4880 FU United States Department of Energy [DE-FC36-09GO19006, DE-AC09-08SR22470, DE-FC36-09GO19003, DE-AC06-76RLO1830] FX This paper was prepared as an account of work supported by the United States Department of Energy under Contracts No. DE-FC36-09GO19006 (UTRC), DE-AC09-08SR22470 (SRNS), DE-FC36-09GO19003 (GM), and DE-AC06-76RLO1830 (PNNL). Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 32 TC 21 Z9 21 U1 1 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD AUG 6 PY 2013 VL 38 IS 23 BP 9755 EP 9765 DI 10.1016/j.ijhydene.2012.08.112 PG 11 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 192QQ UT WOS:000322500800016 ER PT J AU Ni, CB Wegrzyn, JE Zhou, WM Celebi, Y Graetz, J AF Ni, Chengbao Wegrzyn, James E. Zhou, Weimin Celebi, Yusuf Graetz, Jason TI N-alkylpiperidine alane compounds and their applications in alane regeneration SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen storage; Energy storage; Metal hydride; Alane regeneration; Aluminum hydride; N-alkylpiperidine-alane ID TERTIARY PHOSPHINE ADDUCTS; ALUMINUM NANOPARTICLES; ENERGY APPLICATIONS; MIXED-DONOR; COMPLEXES; HYDRIDES; SOLVENTS; BASICITY; GALLIUM; GALLANE AB The synthesis, characterization, and detailed thermal properties of N-alkylpiperidine.alane compounds are described. Direct reaction of 1 equiv of N-alkylpiperidine (NMPi or NEPi, NMPi = N-methylpiperidine, NEPi = N-ethylpiperidine) with 1 equiv of gamma-AlH3 readily gives the 1:1 adduct NMPi.AlH3 (or NEPi.AlH3) in good yields and purity. Attempts to prepare the related 2:1 complexes were unsuccessful; however, in situ studies by infrared spectroscopy showed the formation of (NMPi)(2).AlH3 when a large excess of NMPi was present, whereas no (NEPi)(2).AlH3 was observed under similar conditions. Such difference in reactivity is due to the steric effect of the ethyl group in NEPi. Under heat and vacuum, both NMPi.AlH3 and NEPi.AlH3 react with 1 equiv of LiH to form non-solvated LiAlH4 in nearly quantitative yields. However, they display dramatically different decomposition pathways without LiH or with a catalytic amount of LiH. While NMPi.AlH3 decomposes to Al metal directly, NEPi. AlH3 can be selectively decomposed to form AlH3 under certain conditions. Moreover, the transamination of (NMPy)(2).AlH3 (NMPy = N-methylpyrrolidine) with NEPi has been shown to give NEPi.AlH3 in good yields. Compared to Et3N, NEPi not only extends the scope of the transamination to include a wide range of amine.alane adducts, but also improves the yield, selectivity, and energy-efficiency of the process. Combining these results with the formation of (NMPy)(2).AlH3 via hydrogenation, we have established an improved regeneration pathway for AlH3 using NMPy, NEPi, and Al metal. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Ni, Chengbao; Wegrzyn, James E.; Zhou, Weimin; Celebi, Yusuf; Graetz, Jason] Brookhaven Natl Lab, Sustainable Energy Technol Dept, Upton, NY 11973 USA. RP Ni, CB (reprint author), Brookhaven Natl Lab, Sustainable Energy Technol Dept, Upton, NY 11973 USA. EM cni@bnl.gov FU Brookhaven National Laboratory (BNL); U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX We thank Liu Yang, James T. Muckerman, and John Johnson for helpful discussions. C.N. acknowledges financial support from the Goldhaber Distinguished Fellowship at Brookhaven National Laboratory (BNL). We also thank the BNL Chemistry Department for access to the NMR spectrometer. This work was carried out at BNL under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Office of Basic Energy Sciences. NR 37 TC 2 Z9 2 U1 2 U2 36 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD AUG 6 PY 2013 VL 38 IS 23 BP 9779 EP 9785 DI 10.1016/j.ijhydene.2013.05.148 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 192QQ UT WOS:000322500800019 ER PT J AU Aad, G Abajyan, T Abbott, B Abdallah, J Khalek, SA Abdelalim, AA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Acerbi, E Acharya, BS Adamczyk, L Adams, DL Addy, TN Adelman, J Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Agustoni, M Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Aring;kesson, TPA Akimoto, G Akimov, AV Alam, MS Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Allbrooke, BMM Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alonso, F Gonzalez, BA Alviggi, MG Amako, K Amelung, C Ammosov, VV Amorim, A Amram, N Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Anger, P Angerami, A Anghinolfi, F Anisenkov, A Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Aring;sman, B Asquith, L Assamagan, K Astbury, A Atkinson, M Aubert, B Auge, E Augsten, K Aurousseau, M Avolio, G Avramidou, R Axen, D Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Backes, M Backhaus, M Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, V Basye, A Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Bauer, F Bawa, HS Beale, S Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, AK Becker, S Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Begel, M Harpaz, SB Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernat, P Bernhard, R Bernius, C Berry, T Bertella, C Bertin, A Bertolucci, F Besana, MI Besjes, GJ Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bittner, B Black, KM Blair, RE Blanchard, JB Blanchot, G Blazek, T Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VB Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boelaert, N Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Bolnet, NM Bomben, M Bona, M Boonekamp, M Booth, CN Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borri, M Borroni, S Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Bouchami, J Boudreau, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Branchini, P Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Bremer, J Brendlinger, K Brenner, R Bressler, S Britton, D Brochu, FM Brock, I Brock, R Broggi, F Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brown, G Brown, H de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Buat, Q Bucci, F Buchanan, J Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buscher, V Bugge, L Bulekov, O Bundock, AC Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Cantrill, R Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Carquin, E Montoya, GDC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chan, K Chang, P Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, X Chen, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocca, C Ciocio, A Cirilli, M Cirkovic, P Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, B Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Cogan, JG Coggeshall, J Cogneras, E Colas, J Cole, S Colijn, AP Collins, NJ Collins-Tooth, C Collot, J Colombo, T Colon, G Muino, PC Coniavitis, E Conidi, MC Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crepe-Renaudin, S Cuciuc, CM Almenar, CC Donszelmann, TC Curatolo, M Curtis, CJ Cuthbert, C Cwetanski, P Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dallapiccola, C Dam, M Dameri, M Damiani, DS Danielsson, HO Dao, V Darbo, G Darlea, GL Dassoulas, JA Davey, W Davidek, T Davidson, N Davidson, R Davies, E Davies, M Davignon, O Davison, AR Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K De Asmundis, R De Castro, S De Cecco, S de Graat, J De Groot, N de Jong, P De La Taille, C De la Torre, H De Lorenzi, F de Mora, L De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD De Zorzi, G Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Degenhardt, J Del Papa, C Del Peso, J Del Prete, T Delemontex, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dinut, F Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T Do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dodd, J Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donini, J Dopke, J Doria, A Dos Anjos, A Dotti, A Dova, MT Doxiadis, AD Doyle, AT Dris, M Dubbert, J Dube, S Duchovni, E Duckeck, G Duda, D Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Duguid, L Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dydak, F Duren, M Ebke, J Eckweiler, S Edmonds, K Edson, W Edwards, CA Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Epp, B Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Curull, X Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Feng, C Feng, EJ Fenyuk, AB Ferencei, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fisher, MJ Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Martin, TF Formica, A Forti, A Fortin, D Fournier, D Fox, H Francavilla, P Franchini, M Franchino, S Francis, D Frank, T Franz, S Fraternali, M Fratina, S French, ST Friedrich, C Friedrich, F Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallo, V Gallop, BJ Gallus, P Gan, KK Gao, YS Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Goddard, JR Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Goldfarb, S Golling, T Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L Gonzalez, S de la Hoz, SG Parra, GG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gosdzik, B Goshaw, AT Gosselink, M Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabowska-Bold, I Grafstrom, P Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenshaw, T Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guest, D Guicheney, C Guindon, S Gul, U Guler, H Gunther, J Guo, B Guo, J Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Hall, D Haller, J Hamacher, K Hamal, P Hamer, M Hamilton, A Hamilton, S Han, L Hanagaki, K Hanawa, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hawkins, D Hayakawa, T Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Henss, T Hernandez, CM Jimenez, YH Herrberg, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Higon-Rodriguez, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmgren, SO Holy, T Holzbauer, JL Hong, TM van Huysduynen, LH Horner, S Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hristova, I Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Hu, D Hubacek, Z Hubaut, F Huegging, F Huelsing, TA Huettmann, A Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikeno, M Iliadis, D Ilic, N Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jana, DK Jansen, E Jansen, H Jantsch, A Janus, M Jarlskog, G Jeanty, L Plante, IJL Jennens, D Jenni, P Loevschall-Jensen, AE Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Joram, C Jorge, PM Joshi, KD Jovicevic, J Jovin, T Ju, X Jung, CA Jungst, RM Juranek, V Jussel, P Rozas, AJ Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kaneti, S Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagounis, M Karakostas, K Karnevskiy, M Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazama, S Kazanin, VA Kazarinov, MY Keeler, R Kehoe, R Keil, M Kekelidze, GD Keller, JS Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kitamura, T Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Knecht, NS Kneringer, E Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kodys, P Koneke, K Koenig, AC Koenig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohn, F Kohout, Z Kohriki, T Koi, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollefrath, M Komar, AA Komori, Y Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Koperny, S Korcyl, K Kordas, K Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, JK Kreiss, S Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lablak, S Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lambourne, L Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lane, JL Lang, VS Lange, C Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Larner, A Lassnig, M Laurelli, P Lavorini, V Lavrijsen, W Laycock, P Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leite, MAL Leitner, R Lellouch, D Lemmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Lepold, F Leroy, C Lessard, JR Lester, CG Lester, CM Leveque, J Levin, D Levinson, LJ Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, H Li, S Li, X Liang, Z Liao, H Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, L Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, RE Lopes, L Mateos, DL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lukas, W Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundberg, O Lundquist, J Lungwitz, M Lynn, D Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macek, B Miguens, J Mackeprang, R Madaras, RJ Maddocks, HJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Magnoni, L Magradze, E Mahboubi, K Mahmoud, S Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A Mangeard, PS de Andrade, LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marroquim, F Marshall, Z Martens, FK Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, JP Martin, TA Martin, VJ Latour, BMD Martin-Haugh, S Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massaro, G Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Matricon, P Matsunaga, H Matsushita, T Mattravers, C Maurer, J Maxfield, SJ Mayne, A Mazini, R Mazur, M Mazzaferro, L Mazzanti, M Mc Donald, J Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meirose, B Melachrinos, C Garcia, BRM Meloni, F Navas, LM Meng, Z Mengarelli, A Menke, S Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Miao, J Michal, S Micu, L Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Moya, MM Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitrevski, J Mitsou, VA Mitsui, S Miyagawa, PS Mjornmark, JU Moa, T Moeller, V Monig, K Moser, N Mohapatra, S Mohr, W Moles-Valls, R Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mueller, F Mueller, J Mueller, K Muller, TA Mueller, T Muenstermann, D Munwes, Y Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagai, R Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Nanava, G Napier, A Narayan, R Nash, M Nattermann, T Naumann, T Navarro, G Neal, HA Nechaeva, PY Neep, TJ Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neusiedl, A Neves, RM Nevski, P Newman, PR Hong, VNT Nickerson, RB Nicolaidou, R Nicquevert, B Niedercorn, F Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Norton, PR Novakova, J Nozaki, M Nozka, L Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E O'Brien, BJ O'Neale, SW O'Neil, DC O'Shea, V Oakes, LB Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Orlov, I Barrera, CO Orr, RS Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Ouyang, Q Ovcharova, A Owen, M Owen, S Ozcan, VE Ozturk, N Pages, AP Aranda, CP Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Paleari, CP Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Pani, P Panikashvili, N Panitkin, S Pantea, D Papadelis, A Papadopoulou, TD Paramonov, A Hernandez, DP Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pashapour, S Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Lopez, SP Morales, MIP Peleganchuk, SV Pelikan, D Peng, H Penning, B Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Peshekhonov, VD Peters, K Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, PW Piacquadio, G Picazio, A Piccaro, E Piccinini, M Piec, SM Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pinto, B Pizio, C Plamondon, M Pleier, MA Plotnikova, E Poblaguev, A Poddar, S Podlyski, F Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Prabhu, R Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Pretzl, K Price, D Price, J Price, LE Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przybycien, M Przysiezniak, H Psoroulas, S Ptacek, E Pueschel, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radescu, V Radloff, P Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Randle-Conde, AS Randrianarivony, K Rauscher, F Rave, TC Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reinherz-Aronis, E Reinsch, A Reisinger, I Rembser, C Ren, ZL Renaud, A Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richter, R Richter-Was, E Ridel, M Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A de Lima, JGR Roda, C Dos Santos, DR Roe, A Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Romeo, G Adam, ER Rompotis, N Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosenthal, O Rosselet, L Rossetti, V Rossi, E Rossi, LP Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Ruckstuhl, N Rud, VI Rudolph, C Rudolph, G Ruhr, F Ruiz-Martinez, A Rumyantsev, L Rurikova, Z Rusakovich, NA Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Rybar, YFRM Rybkin, G Ryder, NC Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salek, D Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sanchez, A Martinez, VS Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasaki, Y Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scannicchio, DA Scarcella, M Schaarschmidt, J Schacht, P Schaefer, D Schafer, U Schaepe, S Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schmitz, M Schneider, B Schnoor, U Schoening, A Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schultens, MJ Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Schwindt, T Schwoerer, M Sciolla, G Scott, WG Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Serkin, L Seuster, R Severini, H Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Sherman, D Sherwood, P Shibata, A Shimizu, S Shimojima, M Shin, T Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Sicho, P Sidoti, A Siegert, F Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skottowe, HP Skovpen, K Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snyder, S Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Solovyev, V Soni, N Sopko, V Sopko, B Sosebee, M Soualah, R Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Staude, A Stavina, P Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Stupak, J Sturm, P Styles, NA Soh, DA Su, D Subramania, HS Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Suzuki, Y Svatos, M Swedish, S Sykora, I Sykora, T Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tani, K Tannoury, N Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teinturier, M Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tic, T Tikhomirov, VO Tikhonov, YA Timoshenko, S Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Triplett, N Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tudorache, A Tudorache, V Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Undrus, A Unel, G Unno, Y Urbaniec, D Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valenta, J Valentinetti, S Valero, A Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Der Deijl, PC van der Geer, R van der Graaf, H Van Der Leeuw, R van der Poel, E van der Ster, D van Eldik, N van Gemmeren, P van Vulpen, I Vanadia, M Vandelli, W Vaniachine, A Vankov, P Vannucci, F Vari, R Varol, T Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Schroeder, TV Vegni, G Veillet, JJ Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Virzi, J Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wahrmund, S Wakabayashi, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, H Wang, H Wang, J Wang, J Wang, R Wang, SM Wang, T Warburton, A Ward, CP Warsinsky, M Washbrook, A Wasicki, C Watanabe, I Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, MS Weber, P Weidberg, AR Weigell, P Weingarten, J Weiser, C Wellenstein, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Wetter, J Weydert, C Whalen, K Wheeler-Ellis, SJ White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wollstadt, SJ Wolter, MW Wolters, H Wong, WC Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wraight, K Wright, M Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wynne, BM Xella, S Xiao, M Xie, S Xu, C Xu, D Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Z Yanush, S Yao, L Yao, Y Yasu, Y Smit, GVY Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Young, CJ Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zabinski, B Zaidan, R Zaitsev, AM Zajacova, Z Zanello, L Zanzi, D Zaytsev, A Zeitnitz, C Zeman, M Zemla, A Zendler, C Zenin, O Zenis, T Zinonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zimin, NI Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abajyan, T. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdelalim, A. A. Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Acerbi, E. Acharya, B. S. Adamczyk, L. Adams, D. L. Addy, T. N. Adelman, J. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Agustoni, M. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alam, M. S. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Allbrooke, B. M. M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alonso, F. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Amelung, C. Ammosov, V. V. Amorim, A. Amram, N. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Arfaoui, S. Arguin, J-F. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Atkinson, M. Aubert, B. Auge, E. Augsten, K. Aurousseau, M. Avolio, G. Avramidou, R. Axen, D. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, V. Basye, A. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Bauer, F. Bawa, H. S. Beale, S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, A. K. Becker, S. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Begel, M. Harpaz, S. Behar Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertella, C. Bertin, A. Bertolucci, F. Besana, M. I. Besjes, G. J. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bittner, B. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blazek, T. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. B. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bomben, M. Bona, M. Boonekamp, M. Booth, C. N. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borri, M. Borroni, S. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Branchini, P. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Bremer, J. Brendlinger, K. Brenner, R. Bressler, S. Britton, D. Brochu, F. M. Brock, I. Brock, R. Broggi, F. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brown, G. Brown, H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Buat, Q. Bucci, F. Buchanan, J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Bulekov, O. Bundock, A. C. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byszewski, M. Urban, S. Cabrera Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cameron, D. Caminada, L. M. Caminal Armadans, R. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Cantrill, R. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Carquin, E. Montoya, G. D. Carrillo Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Castaneda Hernandez, A. M. Castaneda-Miranda, E. Gimenez, V. Castillo Castro, N. F. Cataldi, G. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavaliere, V. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chan, K. Chang, P. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Barajas, C. A. Chavez Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, X. Chen, Y. Cheplakov, A. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocca, C. Ciocio, A. Cirilli, M. Cirkovic, P. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Cogan, J. G. Coggeshall, J. Cogneras, E. Colas, J. Cole, S. Colijn, A. P. Collins, N. J. Collins-Tooth, C. Collot, J. Colombo, T. Colon, G. Muino, P. Conde Coniavitis, E. Conidi, M. C. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crepe-Renaudin, S. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Curatolo, M. Curtis, C. J. Cuthbert, C. Cwetanski, P. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dallapiccola, C. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dao, V. Darbo, G. Darlea, G. L. Dassoulas, J. A. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. De Asmundis, R. De Castro, S. De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De La Taille, C. De la Torre, H. De Lorenzi, F. de Mora, L. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie De Zorzi, G. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Degenhardt, J. Del Papa, C. Del Peso, J. Del Prete, T. Delemontex, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dinut, F. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Do Vale, M. A. B. Do Valle Wemans, A. Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dodd, J. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dotti, A. Dova, M. T. Doxiadis, A. D. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Duchovni, E. Duckeck, G. Duda, D. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M-A. Duguid, L. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dueren, M. Ebke, J. Eckweiler, S. Edmonds, K. Edson, W. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Espinal Curull, X. Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fisher, M. J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Martin, T. Fonseca Formica, A. Forti, A. Fortin, D. Fournier, D. Fox, H. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Frank, T. Franz, S. Fraternali, M. Fratina, S. French, S. T. Friedrich, C. Friedrich, F. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Gan, K. K. Gao, Y. S. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Navarro, J. E. Garcia Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Goddard, J. R. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goldfarb, S. Golling, T. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonzalez, S. de la Hoz, S. Gonzalez Gonzalez Parra, G. Silva, M. L. Gonzalez Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gosdzik, B. Goshaw, A. T. Gosselink, M. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabowska-Bold, I. Grafstroem, P. Grahn, K-J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenshaw, T. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guest, D. Guicheney, C. Guindon, S. Gul, U. Guler, H. Gunther, J. Guo, B. Guo, J. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Hall, D. Haller, J. Hamacher, K. Hamal, P. Hamer, M. Hamilton, A. Hamilton, S. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hawkins, D. Hayakawa, T. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Henss, T. Hernandez, C. M. Jimenez, Y. Hernandez Herrberg, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Higon-Rodriguez, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmgren, S. O. Holy, T. Holzbauer, J. L. Hong, T. M. van Huysduynen, L. Hooft Horner, S. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Hu, D. Hubacek, Z. Hubaut, F. Huegging, F. Huelsing, T. A. Huettmann, A. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Iliadis, D. Ilic, N. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jana, D. K. Jansen, E. Jansen, H. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Plante, I. Jen-La Jennens, D. Jenni, P. Loevschall-Jensen, A. E. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Joram, C. Jorge, P. M. Joshi, K. D. Jovicevic, J. Jovin, T. Ju, X. Jung, C. A. Jungst, R. M. Juranek, V. Jussel, P. Juste Rozas, A. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kaneti, S. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagounis, M. Karakostas, K. Karnevskiy, M. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazama, S. Kazanin, V. A. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Keller, J. S. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kitamura, T. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Knecht, N. S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koeneke, K. Konig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollefrath, M. Komar, A. A. Komori, Y. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Koperny, S. Korcyl, K. Kordas, K. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kreiss, S. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lablak, S. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lambourne, L. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lane, J. L. Lang, V. S. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larner, A. Lassnig, M. Laurelli, P. Lavorini, V. Lavrijsen, W. Laycock, P. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Lepold, F. Leroy, C. Lessard, J-R. Lester, C. G. Lester, C. M. Leveque, J. Levin, D. Levinson, L. J. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, S. Li, X. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, L. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lukas, W. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundberg, O. Lundquist, J. Lungwitz, M. Lynn, D. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Mackeprang, R. Madaras, R. J. Maddocks, H. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Magnoni, L. Magradze, E. Mahboubi, K. Mahmoud, S. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Mangeard, P. S. Manhaes de Andrade Filho, L. Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marroquim, F. Marshall, Z. Martens, F. K. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, J. P. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martin-Haugh, S. Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massaro, G. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Matricon, P. Matsunaga, H. Matsushita, T. Mattravers, C. Maurer, J. Maxfield, S. J. Mayne, A. Mazini, R. Mazur, M. Mazzaferro, L. Mazzanti, M. Mc Donald, J. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Navas, L. Mendoza Meng, Z. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Meyer, T. C. Miao, J. Michal, S. Micu, L. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Moya, M. Minano Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Mjoernmark, J. U. Moa, T. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohr, W. Moles-Valls, R. Monk, J. Monnier, E. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morgenstern, M. Morii, M. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Mueller, T. Muenstermann, D. Munwes, Y. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagai, R. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Nanava, G. Napier, A. Narayan, R. Nash, M. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neusiedl, A. Neves, R. M. Nevski, P. Newman, P. R. Hong, V. Nguyen Thi Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Niedercorn, F. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Norton, P. R. Novakova, J. Nozaki, M. Nozka, L. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. O'Brien, B. J. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakes, L. B. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Olivares Pino, S. A. Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Orlov, I. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Ouyang, Q. Ovcharova, A. Owen, M. Owen, S. Ozcan, V. E. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Paleari, C. P. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Hernandez, D. Paredes Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pashapour, S. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Pedraza Lopez, S. Morales, M. I. Pedraza Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penson, A. Penwell, J. Perantoni, M. Perez, K. Cavalcanti, T. Perez Codina, E. Perez Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Peshekhonov, V. D. Peters, K. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, P. W. Piacquadio, G. Picazio, A. Piccaro, E. Piccinini, M. Piec, S. M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pinto, B. Pizio, C. Plamondon, M. Pleier, M. -A. Plotnikova, E. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Prabhu, R. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przybycien, M. Przysiezniak, H. Psoroulas, S. Ptacek, E. Pueschel, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radescu, V. Radloff, P. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Randle-Conde, A. S. Randrianarivony, K. Rauscher, F. Rave, T. C. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Rembser, C. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richter, R. Richter-Was, E. Ridel, M. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Roe, A. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romeo, G. Romero Adam, E. Rompotis, N. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosenthal, O. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Ruckstuhl, N. Rud, V. I. Rudolph, C. Rudolph, G. Ruehr, F. Ruiz-Martinez, A. Rumyantsev, L. Rurikova, Z. Rusakovich, N. A. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salek, D. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sanchez, A. Sanchez Martinez, V. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, Y. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, U. Schaepe, S. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, M. Schneider, B. Schnoor, U. Schoening, A. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schultens, M. J. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciolla, G. Scott, W. G. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Seuster, R. Severini, H. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shimizu, S. Shimojima, M. Shin, T. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sidoti, A. Siegert, F. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjoelin, J. Sjursen, T. B. Skinnari, L. A. Skottowe, H. P. Skovpen, K. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snyder, S. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Solovyev, V. Soni, N. Sopko, V. Sopko, B. Sosebee, M. Soualah, R. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Staude, A. Stavina, P. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Styles, N. A. Soh, D. A. Su, D. Subramania, H. S. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Suzuki, Y. Svatos, M. Swedish, S. Sykora, I. Sykora, T. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tani, K. Tannoury, N. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teinturier, M. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timoshenko, S. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Triplett, N. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tudorache, A. Tudorache, V. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valenta, J. Valentinetti, S. Valero, A. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. Van Der Deijl, P. C. van der Geer, R. van der Graaf, H. Van Der Leeuw, R. van der Poel, E. van der Ster, D. van Eldik, N. van Gemmeren, P. van Vulpen, I. Vanadia, M. Vandelli, W. Vaniachine, A. Vankov, P. Vannucci, F. Vari, R. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Schroeder, T. Vazquez Vegni, G. Veillet, J. J. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wahrmund, S. Wakabayashi, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, R. Wang, S. M. Wang, T. Warburton, A. Ward, C. P. Warsinsky, M. Washbrook, A. Wasicki, C. Watanabe, I. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, M. S. Weber, P. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Wetter, J. Weydert, C. Whalen, K. Wheeler-Ellis, S. J. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wong, W. C. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wraight, K. Wright, M. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wynne, B. M. Xella, S. Xiao, M. Xie, S. Xu, C. Xu, D. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Z. Yanush, S. Yao, L. Yao, Y. Yasu, Y. Smit, G. V. Ybeles Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Young, C. J. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zanello, L. Zanzi, D. Zaytsev, A. Zeitnitz, C. Zeman, M. Zemla, A. Zendler, C. Zenin, O. Zenis, T. Zinonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zimin, N. I. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Measurement of charged-particle event shape variables in inclusive root(s)=7 TeV proton-proton interactions with the ATLAS detector SO PHYSICAL REVIEW D LA English DT Article ID DEEP-INELASTIC SCATTERING; PARTON DISTRIBUTIONS; E(+)E(-) ANNIHILATION; TRANSVERSE ENERGY; COLLIDER; ALPHA(S); HERA; LHC; QCD AB The measurement of charged-particle event shape variables is presented in inclusive inelastic pp collisions at a center-of-mass energy of 7 TeV using the ATLAS detector at the LHC. The observables studied are the transverse thrust, thrust minor, and transverse sphericity, each defined using the final-state charged particles' momentum components perpendicular to the beam direction. Events with at least six charged particles are selected by a minimum-bias trigger. In addition to the differential distributions, the evolution of each event shape variable as a function of the leading charged-particle transverse momentum, charged-particle multiplicity, and summed transverse momentum is presented. Predictions from several Monte Carlo models show significant deviations from data. C1 [Corriveau, F.; Jackson, P.; Sobie, R.; Soni, N.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5000, Australia. [Alam, M. S.; Edson, W.; Ernst, J.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Bahinipati, S.; Chan, K.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Subramania, H. S.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Fellmann, D.; Feng, E. J.; Fernando, W.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Paleari, C. P.; Ruehr, F.; Rutherfoord, J. P.; Shupe, M. A.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Brown, H.; De, K.; Evans, H.; Farbin, A.; Griffiths, J.; Heelan, L.; Hernandez, C. M.; Nilsson, P.; Ozturk, N.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Huseynov, N.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] ICREA, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Cirkovic, P.; Jovin, T.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Ruwiedel, C.; Shapiro, M.; Skinnari, L. A.; Tatarkhanov, M.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Ruwiedel, C.; Shapiro, M.; Skinnari, L. A.; Tatarkhanov, M.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Aliev, M.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Schulz, H.; Wendland, D.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Topfel, C.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Topfel, C.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Collins, N. J.; Curtis, C. J.; Hadley, D. R.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; Nikolopoulos, K.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Akdogan, T.; Arik, E.; Arik, M.; Istin, S.; Ozcan, V. E.; Rador, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Grafstroem, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] INFN Sez Bologna, Bologna, Italy. [Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Grafstroem, P.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartmento Fis, Bologna, Italy. [Abajyan, T.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Ince, T.; Karagounis, M.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mazur, M.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Pohl, D.; Psoroulas, S.; Schaepe, S.; Schmieden, K.; Schmitz, M.; Schultens, M. J.; Schwindt, T.; Stillings, J. A.; Therhaag, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Daya-Ishmukhametova, R. K.; Gozpinar, S.; Pomeroy, D.; Sciolla, G.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio De Janeiro COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Fed Univ Juiz de Fora UFJF, Juiz De Fora, Brazil. [Do Vale, M. A. B.] Fed Univ Juiz de Fora UFJF, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Debbe, R.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Klimentov, A.; Lanni, F.; Limper, M.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Metcalfe, J.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Pravahan, R.; Protopopescu, S.; Purohit, M.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Sircar, A.; Snyder, S.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Triplett, N.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.; Zaytsev, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dinut, F.; Dita, P.; Dita, S.; Micu, L.; Olariu, A.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Silva, M. L. Gonzalez; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Gillberg, D.; Koffas, T.; Liu, C.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Anastopoulos, C.; Anghinolfi, F.; Baak, M. A.; Bachas, K.; Banfi, D.; Battistin, M.; Bellina, F.; Bellomo, M.; Beltramello, O.; Berge, D.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Bremer, J.; Burckhart, H.; Byszewski, M.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cerri, A.; Barajas, C. A. Chavez; Childers, J. T.; Chromek-Burckhart, D.; Cote, D.; Danielsson, H. O.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobinson, R.; Dobos, D.; Dobson, E.; Dopke, J.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Garelli, N.; Garonne, V.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Haas, S.; Hahn, F.; Haider, S.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Jaekel, M. R.; Jansen, H.; Jenni, P.; Joram, C.; Jungst, R. M.; Kaneda, M.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Koeneke, K.; Lamanna, M.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Malaescu, B.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marshall, Z.; Martin, B.; Messina, A.; Meyer, T. C.; Michal, S.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pommes, K.; Poppleton, A.; Bueso, X. Portell; Poulard, G.; Prasad, S.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salek, D.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Sfyrla, A.; Spigo, G.; Spiwoks, R.; Stewart, G. A.; Teischinger, F. A.; Ten Kate, H.; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; Vandelli, W.; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zwalinski, L.] CERN, Geneva, Switzerland. [Anderson, K. J.; Boveia, A.; Canelli, F.; Choudalakis, G.; Fiascaris, M.; Gardner, R. W.; Plante, I. Jen-La; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Tuggle, J. M.; Vukotic, I.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Olivares Pino, S. A.; Quinonez, F.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ruan, X.; Shan, L. Y.; Yao, L.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Li, S.; Liu, M.; Liu, Y.; Peng, H.; Wang, H.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; He, M.; Li, H.; Meng, Z.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Aubiere, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Vazeille, F.] Univ Clermont Ferrand, Aubiere, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Febbraro, R.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Vazeille, F.] CNRS IN2P3, Aubiere, France. [Andeen, T.; Angerami, A.; Brooijmans, G.; Chen, Y.; Dodd, J.; Grau, N.; Guo, J.; Hu, D.; Hughes, E. W.; Nikiforou, N.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Scherzer, M. I.; Spousta, M.; Thompson, E. N.; Tian, F.; Tsionou, D.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, New York, NY USA. [Boelaert, N.; Dam, M.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Loevschall-Jensen, A. E.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Simonyan, M.; Thomsen, L. A.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN Grp Collegato Cosenza, Milan, Italy. [Capua, M.; Crosetti, G.; Fazio, S.; Lavorini, V.; Mastroberardino, A.; Morello, G.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Yagci, K. Dindar; Firan, A.; Hadavand, H. K.; Hoffman, J.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Rios, R. R.; Sekula, S. J.; Stroynowski, R.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Izen, J. M.; Lou, X.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Kuutmann, E. Bergeaas; Dassoulas, J. A.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Huettmann, A.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Medinnis, M.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; Stanescu-Bellu, M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Zhu, H.] DESY, Hamburg, Germany. [Kuutmann, E. Bergeaas; Dassoulas, J. A.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Huettmann, A.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Medinnis, M.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; Stanescu-Bellu, M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Esch, H.; Goessling, C.; Hirsch, F.; Jung, C. A.; Klingenberg, R.; Reisinger, I.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Czodrowski, P.; Friedrich, F.; Goepfert, T.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Morgenstern, M.; Prudent, X.; Rudolph, C.; Schnoor, U.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ko, B. R.; Kotwal, A.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; Debenedetti, C.; Harrington, R. D.; Martin, V. J.; O'Brien, B. J.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.] INFN Lab Nazl Frascati, Frascati, Italy. [Aad, G.; Ahles, F.; Barber, T.; Bernhard, R.; Boehler, M.; Bruneliere, R.; Christov, A.; Consorti, V.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Janus, M.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Mahboubi, K.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Rave, T. C.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik-Fuchs, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Iacobucci, G.; La Rosa, A.; Lister, A.; Latour, B. Martin Dit; Mermod, P.; Herrera, C. Mora; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Pasztor, G.; Picazio, A.; Pohl, M.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Caso, C.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] INFN Sez Genova, Genoa, Italy. [Barberis, D.; Caso, C.; Dameri, M.; Parodi, A. Ferretto; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Tskhadadze, E. G.] Tbilisi State Univ, E Andronikashvili Inst Phys, GE-380086 Tbilisi, Rep of Georgia. [Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Kar, D.; Kenyon, M.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Blumenschein, U.; Brandt, O.; Erdmann, J.; George, M.; Grosse-Knetter, J.; Guindon, S.; Haller, J.; Hamer, M.; Henrichs, A.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mann, A.; Meyer, J.; Morel, J.; Pashapour, S.; Quadt, A.; Roe, A.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Uhrmacher, M.; Schroeder, T. Vazquez; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] CNRS IN2P3, Grenoble, France. [Albrand, S.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Wang, J.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Catastini, P.; Conti, G.; Huth, J.; Jeanty, L.; Kagan, M.; Mateos, D. Lopez; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Morii, M.; Skottowe, H. P.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Andrei, V.; Davygora, Y.; Dietzsch, T. A.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lang, V. S.; Lendermann, V.; Lepold, F.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Gagnon, P.; Jain, V.; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Price, D.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Lukas, W.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Mallik, U.; Pylypchenko, Y.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khramov, E.; Kolesnikov, V.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Pozdnyakov, V.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimin, N. I.] Joint Inst Nucl Res Dubna, Dubna, Russia. [Ahmad, A.; Aloisio, A.; Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Nagano, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Hayakawa, T.; King, M.; Kishimoto, T.; Kitamura, T.; Kurashige, H.; Matsushita, T.; Ochi, A.; Suzuki, Y.; Takeda, H.; Tani, K.; Watanabe, I.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.; Sumida, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Argentina. [Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Davidson, R.; de Mora, L.; Dearnaley, W. J.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Gorini, E.; Grancagnolo, F.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] INFN Sez Lecce, Lecce, Italy. [Bianco, M.; Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Goddard, J. R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Castanheira, M. Teixeira Dias; Wiglesworth, C.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Brooks, T.; Cantrill, R.; Cowan, G.; Duguid, L.; George, S.; Goncalo, R.; Hayden, D.; Pastore, Fr.; Rose, M.; Spano, F.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Chislett, R. T.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dobson, E.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Lambourne, L.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Sherwood, P.; Simmons, B.; Taylor, C.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] CNRS IN2P3, Paris, France. [Akesson, T. P. A.; Alonso, A.; Bocchetta, S. S.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Jarlskog, G.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Smirnova, O.] Lund Univ, Inst Fys, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; Llorente Merino, J.; March, L.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Blum, W.; Buescher, V.; Caputo, R.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Hsu, P. J.; Huelsing, T. A.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Maettig, S.; Masetti, L.; Meyer, C.; Moreno, D.; Mueller, T.; Neusiedl, A.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Howarth, J.; Ibbotson, M.; Joshi, K. D.; Klinger, J. A.; Lane, J. L.; Loebinger, F. K.; Marx, M.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Robinson, J. E. M.; Schwanenberger, C.; Snow, S. W.; Watts, S.; Woudstra, M. J.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aoun, S.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Maurer, J.; Monnier, E.; Odier, J.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aoun, S.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Maurer, J.; Monnier, E.; Odier, J.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Caron, B.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M-A.; Guler, H.; Klemetti, M.; Mc Donald, J.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Stockton, M. C.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Quebec City, PQ, Canada. [Barberio, E. L.; Davidson, N.; Diglio, S.; Jennens, D.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Hanninger, G. Nunes; Phan, A.; Shao, Q. T.; Taylor, G. N.; Thong, W. M.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Borroni, S.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Liu, L.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Walch, S.; Wilson, A.; Wooden, G.; Wu, Y.; Yang, H.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Acerbi, E.; Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Evangelakou, D.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Mandelli, L.; Mazzanti, M.; Meloni, F.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] INFN Sez Milano, Milan, Italy. [Acerbi, E.; Andreazza, A.; Besana, M. I.; Carminati, L.; Consonni, S. M.; Evangelakou, D.; Fanti, M.; Favareto, A.; Meloni, F.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Simoniello, R.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Giunta, M.; Guler, H.; Leroy, C.; Martin, J. P.; Mehdiyev, R.] Univ Montreal, Grp Particle Phys, Quebec City, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Edwards, C. A.; Kantserov, V. A.; Khodinov, A.; Kotov, V. M.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Beale, S.; Becker, S.; Biebel, O.; Calfayan, P.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Heller, C.; Hertenberger, R.; Kummer, C.; Legger, F.; Lichtnecker, M.; Lorenz, J.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Oakes, L. B.; Rauscher, F.; Reznicek, P.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Vladoiu, D.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Beimforde, M.; Bethke, S.; Bittner, B.; Bronner, J.; Capriotti, D.; Cortiana, G.; Dubbert, J.; Flowerdew, M. J.; Giovannini, P.; Jantsch, A.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Macchiolo, A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Oberlack, H.; Pahl, C.; Pospelov, G. E.; Potrap, I. N.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Seuster, R.; Stern, S.; Stonjek, S.; Vanadia, M.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.; Zhuravlov, V.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Shimizu, S.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Shimizu, S.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Chiefari, G.; Conventi, F.; De Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Sanchez, A.; Sekhniaidze, G.] INFN Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Chiefari, G.; della Volpe, D.; Giordano, R.; Merola, L.; Musto, E.; Patricelli, S.; Sanchez, A.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Chelstowska, M. A.; De Groot, N.; Filthaut, F.; Klok, P. F.; Konig, A. C.; Koetsveld, F.; Raas, M.; Salvucci, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Rijpstra, M.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Turlay, E.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van der Poel, E.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Rijpstra, M.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Turlay, E.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van der Poel, E.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; Cole, S.; de Lima, J. G. Rocha; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A.; Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; van Huysduynen, L. Hooft; Kaplan, B.; Konoplich, R.; Krasznahorkay, A.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Radloff, P.; Reinsch, A.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Wicek, F.; Zerwas, D.; Zhang, Z.] CNRS IN2P3, Orsay, France. [Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Lund, E.; Pajchel, K.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Boddy, C. R.; Brandt, G.; Buchanan, J.; Buckingham, R. M.; Coniavitis, E.; Cooper-Sarkar, A. M.; Dafinca, A.; Davies, E.; Gallas, E. J.; Gwenlan, C.; Hall, D.; Hays, C. P.; Howard, J.; Huffman, T. B.; Issever, C.; King, R. S. B.; Kogan, L. A.; Korn, A.; Larner, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Mattravers, C.; Nickerson, R. B.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Young, C. J.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Ahmad, A.; Colombo, T.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] INFN Sez Pavia, Pavia, Italy. [Colombo, T.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Alison, J.; Brendlinger, K.; Degenhardt, J.; Fratina, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Olivito, D.; Ospanov, R.; Reece, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] INFN Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Savinov, V.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; Da Cunha Sargedas De Sousa, M. J.; Do Valle Wemans, A.; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Maio, A.; Maneira, J.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Bohm, J.; Chudoba, J.; Gallus, P.; Gunther, J.; Jakoubek, T.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.; Zeman, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Ivashin, A. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Burke, S.; Davies, E.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Haywood, S. J.; Kirk, J.; Mattravers, C.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Dionisi, C.; Etienvre, A. I.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Marzano, F.; Messina, A.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Rossi, E.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vari, R.; Veneziano, S.; Zanello, L.] INFN Sez Roma I, Rome, Italy. [Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Zorzi, G.; Dionisi, C.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Rossi, E.; Camillocci, E. Solfaroli; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Liberti, B.; Marchese, F.; Mazzaferro, L.; Salamon, A.; Santonico, R.] INFN Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Simone, A.; Marchese, F.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Stanescu, C.] INFN Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, Marrakech, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Abreu, H.; Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Legendre, M.; Maiani, C.; Mal, P.; Ramos, J. A. Manjarres; Mansoulie, B.; Meyer, J-P.; Mijovic, L.; Morange, N.; Mountricha, E.; Hong, V. Nguyen Thi; Nicolaidou, R.; Ouraou, A.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.; Simard, O.; Virchaux, M.; Vranjes, N.; Xiao, M.; Xu, C.] CEA Saclay Commissariat Energie Atomique, DSM IRFU Inst Rech Lois Fondament Univ, Gif Sur Yvette, France. [Ahmad, A.; Chouridou, S.; Damiani, D. S.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Keller, J. S.; Lubatti, H. J.; Rompotis, N.; Rothberg, J.; Verducci, M.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Booth, C. N.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Miyagawa, P. S.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Dawe, E.; Godfrey, J.; Kvita, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Blazek, T.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Aurousseau, M.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Hamilton, A.; Leney, K. J. C.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bendtz, K.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Papadelis, A.; Sellden, B.; Silverstein, S. B.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Asman, B.; Bendtz, K.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Arfaoui, S.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Phys, Stony Brook, NY 11794 USA. [Ahmad, A.; Arfaoui, S.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Mastrandrea, P.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.] SUNY Stony Brook, Dept Astron & Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Bangert, A.; Cuthbert, C.; Patel, N.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, H.; Wang, J.; Wang, S. M.; Weng, Z.; Zhang, D.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Harpaz, S. Behar; Kajomovitz, E.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Ishitsuka, M.; Jinnouchi, O.; Kanno, T.; Kuze, M.; Nagai, R.; Nobe, T.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Bailey, D. C.; Bain, T.; Brelier, B.; Cheu, E.; Cheung, S. L.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Ilic, N.; Keung, J.; Knecht, N. S.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Koutsman, A.; Losty, M. J.; Nugent, I. M.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schouten, D.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hanawa, K.; Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.; Wetter, J.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Navas, L. Mendoza; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Avolio, G.; Deng, J.; Farrell, S.; Eschrich, I. Gough; Hawkins, D.; Lankford, A. J.; Magnoni, L.; Mete, A. S.; Nelson, A.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.; Soualah, R.] INFN Grp Collegato Udine, Udine, Italy. [Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Del Papa, C.; Giordani, M. P.; Pinamonti, M.; Shaw, K.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Pelikan, D.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Ahmad, A.; Aloisio, A.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Dept Fis Atom Mol Nucl, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.] CSIC, Valencia, Spain. [Axen, D.; Gay, C.; Gecse, Z.; Loh, C. W.; Mills, W. J.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; Marino, C. P.; Martyniuk, A. C.; McPherson, R. A.; Ouellette, E. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Farrington, S. M.; Jones, G.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Bressler, S.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Banerjee, Sw.; Montoya, G. D. Carrillo; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Chen, X.; Di Mattia, A.; Dos Anjos, A.; Etzion, E.; Fang, Y.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Ji, H.; Ju, X.; Kashif, L.; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Ming, Y.; Pan, Y. B.; Morales, M. I. Pedraza; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Siragusa, G.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Barisonzi, M.; Becker, A. K.; Becks, K. H.; Boek, J.; Braun, H. M.; Cornelissen, T.; Duda, D.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lantzsch, K.; Lenzen, G.; Maettig, P.; Mechtel, M.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Schultes, J.; Sturm, P.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich C Phys, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Czyczula, Z.; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Lee, L.; Loginov, A.; Sherman, D.; Tipton, P.; Wall, R.; Walsh, B.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Ould-Saada, F.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] Ctr Calcul CNRS IN2P3, Villeurbanne, France. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amorim, A.; Gomes, A.; Maio, A.; Pina, J.] Univ Lisbon, CFNUL, P-1699 Lisbon, Portugal. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beloborodova, O.; Talyshev, A.; Tikhonov, Y. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Canelli, F.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Carvalho, J.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Castaneda Hernandez, A. M.] UASLP, Dept Phys, San Luis Potosi, Mexico. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Do Valle Wemans, A.] Univ Nova Lisboa, Dep Fis, Caparica, Portugal. [Do Valle Wemans, A.] Univ Nova Lisboa, CEFITEC Fac Ciencias & Tecnol, Caparica, Portugal. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Kono, T.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Park, W.; Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. RP Aad, G (reprint author), Univ Adelaide, Sch Chem & Phys, North Terrace Campus, Adelaide, SA 5000, Australia. RI Tartarelli, Giuseppe Francesco/A-5629-2016; Fassi, Farida/F-3571-2016; la rotonda, laura/B-4028-2016; Grancagnolo, Francesco/K-2857-2015; Korol, Aleksandr/A-6244-2014; Karyukhin, Andrey/J-3904-2014; Capua, Marcella/A-8549-2015; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Goncalo, Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Martinez, Mario /I-3549-2015; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Olshevskiy, Alexander/I-1580-2016; BESSON, NATHALIE/L-6250-2015; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Akimov, Andrey/N-1769-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; Andreazza, Attilio/E-5642-2011; Mashinistov, Ruslan/M-8356-2015; Booth, Christopher/B-5263-2016; Buttar, Craig/D-3706-2011; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Joergensen, Morten/E-6847-2015; Riu, Imma/L-7385-2014; Mir, Lluisa-Maria/G-7212-2015; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Tomasek, Lukas/G-6370-2014; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Moorhead, Gareth/B-6634-2009; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Lei, Xiaowen/O-4348-2014; Wemans, Andre/A-6738-2012; Demirkoz, Bilge/C-8179-2014; Gutierrez, Phillip/C-1161-2011; Ventura, Andrea/A-9544-2015; Villa, Mauro/C-9883-2009; Carvalho, Joao/M-4060-2013; Nozka, Libor/G-5550-2014; Kepka, Oldrich/G-6375-2014; Nemecek, Stanislav/G-5931-2014; Lokajicek, Milos/G-7800-2014; Jakoubek, Tomas/G-8644-2014; Staroba, Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; de Groot, Nicolo/A-2675-2009; Marcisovsky, Michal/H-1533-2014; Mikestikova, Marcela/H-1996-2014; Kuday, Sinan/C-8528-2014; Marti-Garcia, Salvador/F-3085-2011; Shabalina, Elizaveta/M-2227-2013; Castro, Nuno/D-5260-2011; Wolters, Helmut/M-4154-2013; De, Kaushik/N-1953-2013; Snesarev, Andrey/H-5090-2013; Warburton, Andreas/N-8028-2013; Sukharev, Andrey/A-6470-2014; Fazio, Salvatore /G-5156-2010; Lee, Jason/B-9701-2014; Robson, Aidan/G-1087-2011; Smirnova, Oxana/A-4401-2013; Fabbri, Laura/H-3442-2012; Conde Muino, Patricia/F-7696-2011; Boyko, Igor/J-3659-2013; Moraes, Arthur/F-6478-2010; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Ferrando, James/A-9192-2012; Brooks, William/C-8636-2013; Tudorache, Alexandra/L-3557-2013; Tudorache, Valentina/D-2743-2012; Doyle, Anthony/C-5889-2009 OI Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Doria, Alessandra/0000-0002-5381-2649; Veloso, Filipe/0000-0002-5956-4244; Gomes, Agostinho/0000-0002-5940-9893; Fassi, Farida/0000-0002-6423-7213; la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Santos, Helena/0000-0003-1710-9291; Coccaro, Andrea/0000-0003-2368-4559; Grancagnolo, Francesco/0000-0002-9367-3380; Korol, Aleksandr/0000-0001-8448-218X; Maio, Amelia/0000-0001-9099-0009; Fiolhais, Miguel/0000-0001-9035-0335; Karyukhin, Andrey/0000-0001-9087-4315; Anjos, Nuno/0000-0002-0018-0633; Giordani, Mario/0000-0002-0792-6039; Abdelalim, Ahmed Ali/0000-0002-2056-7894; Capua, Marcella/0000-0002-2443-6525; Di Micco, Biagio/0000-0002-4067-1592; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Gauzzi, Paolo/0000-0003-4841-5822; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Camarri, Paolo/0000-0002-5732-5645; Tikhomirov, Vladimir/0000-0002-9634-0581; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; Andreazza, Attilio/0000-0001-5161-5759; Mashinistov, Ruslan/0000-0001-7925-4676; Booth, Christopher/0000-0002-6051-2847; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582; Mir, Lluisa-Maria/0000-0002-4276-715X; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Tomasek, Lukas/0000-0002-5224-1936; Svatos, Michal/0000-0002-7199-3383; Moorhead, Gareth/0000-0002-9299-9549; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Lei, Xiaowen/0000-0002-2564-8351; Wemans, Andre/0000-0002-9669-9500; Ventura, Andrea/0000-0002-3368-3413; Villa, Mauro/0000-0002-9181-8048; Carvalho, Joao/0000-0002-3015-7821; Mikestikova, Marcela/0000-0003-1277-2596; Kuday, Sinan/0000-0002-0116-5494; Castro, Nuno/0000-0001-8491-4376; Wolters, Helmut/0000-0002-9588-1773; De, Kaushik/0000-0002-5647-4489; Warburton, Andreas/0000-0002-2298-7315; Lee, Jason/0000-0002-2153-1519; Smirnova, Oxana/0000-0003-2517-531X; Fabbri, Laura/0000-0002-4002-8353; Conde Muino, Patricia/0000-0002-9187-7478; Boyko, Igor/0000-0002-3355-4662; Moraes, Arthur/0000-0002-5157-5686; Kuleshov, Sergey/0000-0002-3065-326X; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Ferrando, James/0000-0002-1007-7816; Brooks, William/0000-0001-6161-3570; Doyle, Anthony/0000-0001-6322-6195 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq; FAPESP, Brazil; NSERC; NRC; CFI, Canada; CERN; CONICYT, Chile; CAS; MOST; NSFC, China; COLCIENCIAS, Colombia; MSMT CR; MPO CR; VSC CR, Czech Republic; DNRF; DNSRC; Lundbeck Foundation, Denmark; EPLANET; ERC; European Union; IN2P3-CNRS; CEA-DSM/IRFU, France; GNAS, Georgia; BMBF; DFG; HGF; MPG; AvH Foundation, Germany; GSRT, Greece; ISF; MINERVA; GIF; DIP; Benoziyo Center, Israel; INFN, Italy; MEXT; JSPS, Japan; CNRST, Morocco; FOM; NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM; Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC; Wallenberg Foundation, Sweden; SER; SNSF; Cantons of Bern; Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC; Royal Society; Leverhulme Trust; United Kingdom; DOE; NSF, United States of America FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide. NR 44 TC 5 Z9 5 U1 9 U2 165 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD AUG 6 PY 2013 VL 88 IS 3 AR UNSP 032004 DI 10.1103/PhysRevD.88.032004 PG 25 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 196OQ UT WOS:000322785400002 ER PT J AU Bicudo, P Pisarski, RD Seel, E AF Bicudo, P. Pisarski, Robert D. Seel, E. TI Matrix model for deconfinement in a SU(2) gauge theory in 2+1 dimensions SO PHYSICAL REVIEW D LA English DT Article ID FINITE-TEMPERATURE; INTERFACE TENSION; PHASE-TRANSITION; SU(N); THERMODYNAMICS; QCD AB We use matrix models to characterize deconfinement at a nonzero temperature T for an SU(2) gauge theory in three spacetime dimensions. At one- loop order, the potential for a constant vector potential A(0) is similar to T-3 times a trilogarithm function of A(0)/T. In addition, we add various nonperturbative terms to model deconfinement. The parameters of the model are adjusted by fitting the lattice results for the pressure. The nonperturbative terms are dominated by a constant term similar to(TTd)-T-2, where T-d is the temperature for deconfinement. Besides this constant, we add terms which are nontrivial functions of A(0)/T, both similar to(TTd)-T-2 and similar to TTd2. There is only a mild sensitivity to the details of these nonconstant terms. Overall we find a good agreement with the lattice results. For the pressure, the conformal anomaly, and the Polyakov loop the nonconstant terms are relevant only in a narrow region below similar to 1.2T(d). We also compute the 't Hooft loop, and find that the details of the nonconstant terms enter in a much wider region, up to similar to 4T(d). C1 [Bicudo, P.] Univ Tecn Lisboa, Inst Super Tecn, CFTP, Dept Fis, P-1049001 Lisbon, Portugal. [Pisarski, Robert D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Pisarski, Robert D.] Brookhaven Natl Lab, RIKEN BNL, Upton, NY 11973 USA. [Seel, E.] Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany. RP Bicudo, P (reprint author), Univ Tecn Lisboa, Inst Super Tecn, CFTP, Dept Fis, Ave Rovisco Pais, P-1049001 Lisbon, Portugal. RI Bicudo, Pedro/N-3462-2013 OI Bicudo, Pedro/0000-0003-1556-0580 FU U.S. Department of Energy [DE-AC02-98CH10886]; CFTP Grant [PEST-OE/FIS/UI0777/2011]; FCT [CERN/FP/123612/2011]; CRUP/DAAD [exchange A10/10] FX The authors would like to thank Marco Panero for kindly sharing the lattice data of Ref. [10]. We also thank Dirk H. Rischke, Nuno Cardoso, and Marco Panero for valuable discussions. The research of R.D.P. is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886. E.S. thanks the hospitality of RIKEN/BNL and CFTP. The research of P.B. is supported by the CFTP Grant No. PEST-OE/FIS/UI0777/2011, the FCT Grant No. CERN/FP/123612/2011, and the CRUP/DAAD exchange A10/10. NR 42 TC 4 Z9 4 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 6 PY 2013 VL 88 IS 3 AR 034007 DI 10.1103/PhysRevD.88.034007 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 196OQ UT WOS:000322785400003 ER PT J AU Dawson, S Gupta, SK Valencia, G AF Dawson, Sally Gupta, Sudhir Kumar Valencia, German TI CP violating anomalous couplings in W gamma and Z gamma production at the LHC SO PHYSICAL REVIEW D LA English DT Article ID TEVATRON AB The ATLAS and CMS Collaborations have recently published new limits on CP-conserving anomalous couplings from the W gamma and Z gamma production processes. We study the corresponding limits that can be placed on the CP-violating anomalous couplings (k) over tilde (gamma) and h(gamma,Z)(1) at the LHC. We find that the process pp -> W gamma at 14 TeV can place the 95% C.L. limit vertical bar(k) over tilde (gamma)vertical bar <= 0.05 with 10 fb(-1), which is comparable to the existing LHC bound on the CP-conserving anomalous couplings k(gamma). Similarly, the process pp -> Z gamma can place the 95% C.L. limits vertical bar h(z)(1)vertical bar less than or similar to 20 and vertical bar h(Z)(1)vertical bar less than or similar to 40, respectively. None of these limits is derived from a truly CP-odd observable, so it is not possible to separate the effects of the CP-violating anomalous couplings from the rest. C1 [Dawson, Sally] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Gupta, Sudhir Kumar] Monash Univ, Sch Phys, ARC Ctr Excellence Particle Phys Terascale, Melbourne, Vic 3800, Australia. [Valencia, German] Iowa State Univ, Dept Phys, Ames, IA 50011 USA. RP Dawson, S (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM dawson@bnl.gov; sudhir.gupta@monash.edu; valencia@iastate.edu OI Dawson, Sally/0000-0002-5598-695X FU DOE [DE-FG02-01ER41155, DE-AC02-98CH10886]; ARC Centre of Excellence for Particle Physics at the Tera-scale FX The work of G. V. (S. D.) was supported in part by the DOE under Contract No. DE-FG02-01ER41155 (DE-AC02-98CH10886). The work of S. K. G. was supported in part by the ARC Centre of Excellence for Particle Physics at the Tera-scale. The use of Monash University Sun Grid, a high-performance computing facility, is gratefully acknowledged. We thank A. Goshaw for useful discussions. NR 26 TC 6 Z9 6 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 6 PY 2013 VL 88 IS 3 AR 035008 DI 10.1103/PhysRevD.88.035008 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 196OQ UT WOS:000322785400008 ER PT J AU Lees, JP Poireau, V Tisserand, V Grauges, E Palano, A Eigen, G Stugu, B Brown, DN Kerth, LT Kolomensky, YG Lee, MJ Lynch, G Koch, H Schroeder, T Hearty, C Mattison, TS McKenna, JA So, RY Khan, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Yushkov, AN Kirkby, D Lankford, AJ Mandelkern, M Dey, B Gary, JW Long, O Vitug, GM Campagnari, C Sevilla, MF Hong, TM Kovalskyi, D Richman, JD West, CA Eisner, AM Lockman, WS Schumm, BA Seiden, A Chao, DS Cheng, CH Echenard, B Flood, KT Hitlin, DG Ongmongkolkul, P Porter, FC Andreassen, R Huard, Z Meadows, BT Pushpawela, BG Sokoloff, MD Sun, L Bloom, PC Ford, WT Gaz, A Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Spaan, B Schwierz, R Bernard, D Verderi, M Playfer, S Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Fioravanti, E Garzia, I Luppi, E Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Martellotti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Bhuyan, B Prasad, V Morii, M Adametz, A Uwer, U Lacker, HM Dauncey, PD Mallik, U Chen, C Cochran, J Meyer, WT Prell, S Gritsan, AV Arnaud, N Davier, M Derkach, D Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Roudeau, P Stocchi, A Wormser, G Lange, DJ Wright, DM Coleman, JP Fry, JR Gabathuler, E Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Cowan, G Bougher, J Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Griessinger, K Hafner, A Prencipe, E Schubert, K Barlow, RJ Lafferty, GD Behn, E Cenci, R Hamilton, B Jawahery, A Roberts, DA Cowan, R Dujmic, D Sciolla, G Cheaib, R Patel, PM Robertson, SH Biassoni, P Neri, N Palombo, F Cremaldi, L Godang, R Sonnek, P Summers, DJ Simard, M Taras, P De Nardo, G Monorchio, D Onorato, G Sciacca, C Martinelli, M Raven, G Jessop, CP LoSecco, JM Honscheid, K Kass, R Brau, J Frey, R Sinev, NB Strom, D Torrence, E Feltresi, E Margoni, M Morandin, M Posocco, M Rotondo, M Simi, G Simonetto, F Stroili, R Akar, S Ben-Haim, E Bomben, M Bonneaud, GR Briand, H Calderini, G Chauveau, J Leruste, P Marchiori, G Ocariz, J Sitt, S Biasini, M Manoni, E Pacetti, S Rossi, A Angelini, C Batignani, G Bettarini, S Carpinel, M Casarosa, G Cervelli, A Forti, F Giorgi, MA Lusiani, A Oberhof, B Paoloni, E Perez, A Rizzo, G Walsh, JJ Pegna, DL Olsen, J Smith, AJS Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Piredda, G Bunger, C Grunberg, O Hartmann, T Leddig, T Voss, C Waldi, R Adye, T Olaiya, EO Wilson, FF Emery, S de Monchenault, GH Vasseur, G Yeche, C Anulli, F Aston, D Bard, DJ Benitez, JF Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Ebert, M Field, RC Fulsom, BG Gabareen, AM Graham, MT Hast, C Innes, WR Kim, P Kocian, ML Leith, DWGS Lewis, P Lindemann, D Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Muller, DR Neal, H Nelson, S Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Snyder, A Su, D Sullivan, MK Va'vra, J Wagner, AP Wang, WF Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Ziegler, V Park, W Purohit, MV White, RM Wilson, JR Randle-Conde, A Sekula, SJ Bellis, M Burchat, PR Miyashita, TS Puccio, EMT Alam, MS Ernst, JA Gorodeisky, R Guttman, N Peimer, DR Soffer, A Spanier, SM Ritchie, JL Ruland, AM Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F De Mori, F Filippi, A Gamba, D Zambito, S Lanceri, L Vitale, L Martinez-Vidal, F Oyanguren, A Villanueva-Perez, P Ahmed, H Albert, J Banerjee, S Bernlochner, FU Choi, HHF King, GJ Kowalewski, R Lewczuk, MJ Lueck, T Nugent, IM Roney, JM Sobie, RJ Tasneem, N Gershon, TJ Harrison, PF Latham, TE Band, HR Dasu, S Pan, Y Prepost, R Wu, SL AF Lees, J. P. Poireau, V. Tisserand, V. Grauges, E. Palano, A. Eigen, G. Stugu, B. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lee, M. J. Lynch, G. Koch, H. Schroeder, T. Hearty, C. Mattison, T. S. McKenna, J. A. So, R. Y. Khan, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Kravchenko, E. A. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Yushkov, A. N. Kirkby, D. Lankford, A. J. Mandelkern, M. Dey, B. Gary, J. W. Long, O. Vitug, G. M. Campagnari, C. Sevilla, M. Franco Hong, T. M. Kovalskyi, D. Richman, J. D. West, C. A. Eisner, A. M. Lockman, W. S. Schumm, B. A. Seiden, A. Chao, D. S. Cheng, C. H. Echenard, B. Flood, K. T. Hitlin, D. G. Ongmongkolkul, P. Porter, F. C. Andreassen, R. Huard, Z. Meadows, B. T. Pushpawela, B. G. Sokoloff, M. D. Sun, L. Bloom, P. C. Ford, W. T. Gaz, A. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Spaan, B. Schwierz, R. Bernard, D. Verderi, M. Playfer, S. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Fioravanti, E. Garzia, I. Luppi, E. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Martellotti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Bhuyan, B. Prasad, V. Morii, M. Adametz, A. Uwer, U. Lacker, H. M. Dauncey, P. D. Mallik, U. Chen, C. Cochran, J. Meyer, W. T. Prell, S. Gritsan, A. V. Arnaud, N. Davier, M. Derkach, D. Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Roudeau, P. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Coleman, J. P. Fry, J. R. Gabathuler, E. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Cowan, G. Bougher, J. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Griessinger, K. Hafner, A. Prencipe, E. Schubert, K. Barlow, R. J. Lafferty, G. D. Behn, E. Cenci, R. Hamilton, B. Jawahery, A. Roberts, D. A. Cowan, R. Dujmic, D. Sciolla, G. Cheaib, R. Patel, P. M. Robertson, S. H. Biassoni, P. Neri, N. Palombo, F. Cremaldi, L. Godang, R. Sonnek, P. Summers, D. J. Simard, M. Taras, P. De Nardo, G. Monorchio, D. Onorato, G. Sciacca, C. Martinelli, M. Raven, G. Jessop, C. P. LoSecco, J. M. Honscheid, K. Kass, R. Brau, J. Frey, R. Sinev, N. B. Strom, D. Torrence, E. Feltresi, E. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simi, G. Simonetto, F. Stroili, R. Akar, S. Ben-Haim, E. Bomben, M. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Leruste, Ph. Marchiori, G. Ocariz, J. Sitt, S. Biasini, M. Manoni, E. Pacetti, S. Rossi, A. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Oberhof, B. Paoloni, E. Perez, A. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Olsen, J. Smith, A. J. S. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Piredda, G. Buenger, C. Gruenberg, O. Hartmann, T. Leddig, T. Voss, C. Waldi, R. Adye, T. Olaiya, E. O. Wilson, F. F. Emery, S. de Monchenault, G. Hamel Vasseur, G. Yeche, Ch. Anulli, F. Aston, D. Bard, D. J. Benitez, J. F. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Ebert, M. Field, R. C. Fulsom, B. G. Gabareen, A. M. Graham, M. T. Hast, C. Innes, W. R. Kim, P. Kocian, M. L. Leith, D. W. G. S. Lewis, P. Lindemann, D. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Muller, D. R. Neal, H. Nelson, S. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Snyder, A. Su, D. Sullivan, M. K. Va'vra, J. Wagner, A. P. Wang, W. F. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Ziegler, V. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Randle-Conde, A. Sekula, S. J. Bellis, M. Burchat, P. R. Miyashita, T. S. Puccio, E. M. T. Alam, M. S. Ernst, J. A. Gorodeisky, R. Guttman, N. Peimer, D. R. Soffer, A. Spanier, S. M. Ritchie, J. L. Ruland, A. M. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. De Mori, F. Filippi, A. Gamba, D. Zambito, S. Lanceri, L. Vitale, L. Martinez-Vidal, F. Oyanguren, A. Villanueva-Perez, P. Ahmed, H. Albert, J. Banerjee, Sw. Bernlochner, F. U. Choi, H. H. F. King, G. J. Kowalewski, R. Lewczuk, M. J. Lueck, T. Nugent, I. M. Roney, J. M. Sobie, R. J. Tasneem, N. Gershon, T. J. Harrison, P. F. Latham, T. E. Band, H. R. Dasu, S. Pan, Y. Prepost, R. Wu, S. L. CA BaBar Collaboration TI Search for a light Higgs boson decaying to two gluons or s(s)over-bar in the radiative decays of Upsilon(1S) SO PHYSICAL REVIEW D LA English DT Article AB We search for the decay Upsilon(1S) -> A(0), A(0) -> gg or s (s) over bar, where A(0) is the pseudoscalar light Higgs boson predicted by the next-to-minimal supersymmetric Standard Model. We use a sample of (17.6 +/- 0.3) x 10(6) Upsilon(1S) mesons produced in the BABAR experiment via e(+)e(-) -> Upsilon(2S) -> pi(+)pi(-)Upsilon(1S). We see no significant signal and set 90%-confidence-level upper limits on the product branching fraction B(Upsilon(1S) -> gamma A(0)) . B(A(0) -> gg or s (s) over bar ranging from 10(-6) to 10(-2) for A(0) masses in the range 0.5-9.0 GeV/c(2). C1 [Lees, J. P.; Poireau, V.; Tisserand, V.] Univ Savoie, CNRS, LAPP, IN2P3, F-74941 Annecy Le Vieux, France. [Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Palano, A.] INFN Sez Bari, I-70126 Bari, Italy. [Palano, A.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lee, M. J.; Lynch, G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lee, M. J.; Lynch, G.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.] Budker Inst Nucl Phys SB RAS, Novosibirsk 630090, Russia. [Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Blinov, V. E.; Onuchin, A. P.] Novosibirsk State Tech Univ, Novosibirsk 630092, Russia. [Kirkby, D.; Lankford, A. J.; Mandelkern, M.] Univ Calif Irvine, Irvine, CA 92697 USA. [Dey, B.; Gary, J. W.; Long, O.; Vitug, G. M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Campagnari, C.; Sevilla, M. Franco; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Lockman, W. S.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Huard, Z.; Meadows, B. T.; Pushpawela, B. G.; Sokoloff, M. D.; Sun, L.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Spaan, B.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Playfer, S.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Piemontese, L.; Santoro, V.] INFN Sez Ferrara, I-44122 Ferrara, Italy. [Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Luth, V.] INFN Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.] INFN Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.; Prasad, V.] Indian Inst Technol, Gauhati 781039, Assam, India. [Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Meyer, W. T.; Prell, S.] Iowa State Univ, Ames, IA 50011 USA. [Gritsan, A. V.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Ctr Sci Orsay, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Stocchi, A.; Wormser, G.] Univ Paris 11, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.] Univ London, London E1 4NS, England. [Cowan, G.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Bougher, J.; Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Prencipe, E.; Schubert, K.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Barlow, R. J.; Lafferty, G. D.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Behn, E.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.] Univ Maryland, College Pk, MD 20742 USA. [Cowan, R.; Dujmic, D.; Sciolla, G.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Cheaib, R.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Neri, N.; Palombo, F.] INFN Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Sonnek, P.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] INFN Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Martinelli, M.; Raven, G.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Honscheid, K.; Kass, R.] Ohio State Univ, Columbus, OH 43210 USA. [Brau, J.; Frey, R.; Sinev, N. B.; Strom, D.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Feltresi, E.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simi, G.; Simonetto, F.; Stroili, R.] INFN Sez Padova, I-35131 Padua, Italy. [Feltresi, E.; Margoni, M.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.] INFN Sez Perugia, I-06123 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Pacetti, S.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.] INFN Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Oberhof, B.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Olsen, J.; Smith, A. J. S.] Princeton Univ, Princeton, NJ 08544 USA. [Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Piredda, G.; Anulli, F.] INFN Sez Roma, I-00185 Rome, Italy. [Faccini, R.; Ferroni, F.; Gaspero, M.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Buenger, C.; Gruenberg, O.; Hartmann, T.; Leddig, T.; Voss, C.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch.] CEA, Ctr Saclay, SPP, Irfu, F-91191 Gif Sur Yvette, France. [Anulli, F.; Aston, D.; Bard, D. J.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Hast, C.; Innes, W. R.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Lindemann, D.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wagner, A. P.; Wang, W. F.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Randle-Conde, A.; Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Miyashita, T. S.; Puccio, E. M. T.] Stanford Univ, Stanford, CA 94305 USA. [Alam, M. S.; Ernst, J. A.] SUNY Albany, Albany, NY 12222 USA. [Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Ritchie, J. L.; Ruland, A. M.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.; Zambito, S.] INFN Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; De Mori, F.; Gamba, D.; Zambito, S.] Univ Turin, Dipartimento Fis, I-10125 Turin, Italy. [Lanceri, L.; Vitale, L.] INFN Sez Trieste, I-34127 Trieste, Italy. [Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Martinez-Vidal, F.; Oyanguren, A.; Villanueva-Perez, P.] Univ Valencia CSIC, IFIC, E-46071 Valencia, Spain. [Ahmed, H.; Albert, J.; Banerjee, Sw.; Bernlochner, F. U.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lueck, T.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Latham, T. E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Malaescu, B.] CNRS, IN2P3, Lab Phys Nucl & Hautes Energies, Paris, France. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Lees, JP (reprint author), Univ Savoie, CNRS, LAPP, IN2P3, F-74941 Annecy Le Vieux, France. RI Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Forti, Francesco/H-3035-2011; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Kravchenko, Evgeniy/F-5457-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014 OI Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Forti, Francesco/0000-0001-6535-7965; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035 FU DOE; NSF (USA); NSERC (Canada); IHEP (China); CEA; CNRS-IN2P3 (France); BMBF; DFG (Germany); INFN (Italy); FOM (Netherlands); NFR (Norway); MIST (Russia); PPARC (United Kingdom); CONACyT (Mexico); A.P. Sloan Foundation; Research Corporation; Alexander von Humboldt Foundation FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation. NR 22 TC 14 Z9 14 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 6 PY 2013 VL 88 IS 3 AR UNSP 031701 DI 10.1103/PhysRevD.88.031701 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 196OQ UT WOS:000322785400001 ER PT J AU Leefer, N Weber, CTM Cingoz, A Torgerson, JR Budker, D AF Leefer, N. Weber, C. T. M. Cingoez, A. Torgerson, J. R. Budker, D. TI New Limits on Variation of the Fine-Structure Constant Using Atomic Dysprosium SO PHYSICAL REVIEW LETTERS LA English DT Article ID FUNDAMENTAL CONSTANTS; SEARCH; CLOCKS AB We report on the spectroscopy of radio-frequency transitions between nearly degenerate, opposite-parity excited states in atomic dysprosium (Dy). Theoretical calculations predict that these states are very sensitive to variation of the fine-structure constant alpha owing to large relativistic corrections of opposite sign for the opposite-parity levels. The near degeneracy reduces the relative precision necessary to place constraints on variation of alpha, competitive with results obtained from the best atomic clocks in the world. Additionally, the existence of several abundant isotopes of Dy allows isotopic comparisons that suppress common-mode systematic errors. The frequencies of the 754-MHz transition in Dy-164 and 235-MHz transition in Dy-162 are measured over the span of two years. The linear variation of alpha is (alpha) over dot/alpha = (-5.8 +/- 6.9([1 sigma])) x 10(-17) yr(-1), consistent with zero. The same data are used to constrain the dimensionless parameter k(alpha) characterizing a possible coupling of alpha to a changing gravitational potential. We find that k(alpha) = (-5.5 +/- 5.2([1 sigma])) x 10(-7), essentially consistent with zero and the best constraint to date. C1 [Leefer, N.; Budker, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Weber, C. T. M.] Tech Univ Berlin, D-10623 Berlin, Germany. [Cingoez, A.] AOSense, Sunnyvale, CA 94085 USA. [Torgerson, J. R.] Quantel USA, Bozeman, MT 59715 USA. [Budker, D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Leefer, N (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Budker, Dmitry/F-7580-2016; OI Budker, Dmitry/0000-0002-7356-4814; Leefer, Nathan/0000-0002-4940-8432 FU Foundational Questions Institute; National Science Foundation Grant [PHY-1068875]; Miller Institute for Basic Research in Science FX The authors are grateful to A. Lapierre, A.-T. Nguyen, S. K. Lamoreaux, Uttam Paudel, and V. V. Yacschuk for crucial contributions to the earlier stages of the experiment, V. A. Dzuba and V. V. Flambaum for supporting atomic structure calculations and discussions, and D. English and M. Hohensee for many invaluable discussions. D. B. acknowledges support from the Miller Institute for Basic Research in Science. This research has been supported by the Foundational Questions Institute and the National Science Foundation Grant No. PHY-1068875. NR 35 TC 34 Z9 34 U1 1 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 6 PY 2013 VL 111 IS 6 AR 060801 DI 10.1103/PhysRevLett.111.060801 PG 5 WC Physics, Multidisciplinary SC Physics GA 196PA UT WOS:000322786500002 PM 23971546 ER PT J AU Leitgab, M Seidl, R Perdekamp, MG Vossen, A Adachi, I Aihara, H Asner, DM Aulchenko, V Aushev, T Bakich, AM Bhuyan, B Bondar, A Bozek, A Bracko, M Brodzicka, J Browder, TE Chekelian, V Chen, A Chen, P Cheon, BG Chilikin, K Cho, K Chobanova, V Choi, Y Cinabro, D Dalseno, J Drasal, Z Dutta, D Eidelman, S Epifanov, D Farhat, H Fast, JE Gaur, V Gabyshev, N Gillard, R Giordano, F Goh, YM Golob, B Haba, J Hayasaka, K Hayashii, H Hoshi, Y Hou, WS Hsiung, YB Hyun, HJ Iijima, T Ishikawa, A Itoh, R Jacobs, WW Julius, T Kang, JH Kapusta, P Kato, E Kawasaki, T Kim, HJ Kim, HO Kim, JB Kim, JH Kim, MJ Klucar, J Ko, BR Kodys, P Kouzes, RT Krizan, P Krokovny, P Kumar, R Kumita, T Kwon, YJ Lange, JS Lee, SH Li, Y Liu, ZQ Liventsev, D Matvienko, D Miyabayashi, K Miyata, H Mizuk, R Moll, A Muramatsu, N Nakano, E Nakao, M Natkaniec, Z Nayak, M Nedelkovska, E Ng, C Nisar, NK Nitoh, O Ogawa, A Ogawa, S Ohshima, T Okuno, S Olsen, SL Oswald, C Pakhlov, P Park, H Park, HK Pedlar, TK Pestotnik, R Petric, M Piilonen, LE Rohrken, M Sahoo, H Sakai, Y Sandilya, S Santelj, L Sanuki, T Sato, Y Schneider, O Schnell, G Schwanda, C Senyo, K Seon, O Sevior, ME Shapkin, M Shen, CP Shibata, TA Shiu, JG Shwartz, B Sibidanov, A Simon, F Smerkol, P Sohn, YS Sokolov, A Solovieva, E Staric, M Sumihama, M Sumiyoshi, T Tatishvili, G Teramoto, Y Tsuboyama, T Uchida, M Uglov, T Unno, Y Uno, S Usov, Y Van Hulse, C Varner, G Vorobyev, V Wagner, MN Wang, CH Wang, J Wang, MZ Wang, P Watanabe, M Watanabe, Y Williams, KM Won, E Yamashita, Y Zhilich, V Zhulanov, V AF Leitgab, M. Seidl, R. Perdekamp, M. Grosse Vossen, A. Adachi, I. Aihara, H. Asner, D. M. Aulchenko, V. Aushev, T. Bakich, A. M. Bhuyan, B. Bondar, A. Bozek, A. Bracko, M. Brodzicka, J. Browder, T. E. Chekelian, V. Chen, A. Chen, P. Cheon, B. G. Chilikin, K. Cho, K. Chobanova, V. Choi, Y. Cinabro, D. Dalseno, J. Drasal, Z. Dutta, D. Eidelman, S. Epifanov, D. Farhat, H. Fast, J. E. Gaur, V. Gabyshev, N. Gillard, R. Giordano, F. Goh, Y. M. Golob, B. Haba, J. Hayasaka, K. Hayashii, H. Hoshi, Y. Hou, W. -S. Hsiung, Y. B. Hyun, H. J. Iijima, T. Ishikawa, A. Itoh, R. Jacobs, W. W. Julius, T. Kang, J. H. Kapusta, P. Kato, E. Kawasaki, T. Kim, H. J. Kim, H. O. Kim, J. B. Kim, J. H. Kim, M. J. Klucar, J. Ko, B. R. Kodys, P. Kouzes, R. T. Krizan, P. Krokovny, P. Kumar, R. Kumita, T. Kwon, Y. -J. Lange, J. S. Lee, S. -H. Li, Y. Liu, Z. Q. Liventsev, D. Matvienko, D. Miyabayashi, K. Miyata, H. Mizuk, R. Moll, A. Muramatsu, N. Nakano, E. Nakao, M. Natkaniec, Z. Nayak, M. Nedelkovska, E. Ng, C. Nisar, N. K. Nitoh, O. Ogawa, A. Ogawa, S. Ohshima, T. Okuno, S. Olsen, S. L. Oswald, C. Pakhlov, P. Park, H. Park, H. K. Pedlar, T. K. Pestotnik, R. Petric, M. Piilonen, L. E. Roehrken, M. Sahoo, H. Sakai, Y. Sandilya, S. Santelj, L. Sanuki, T. Sato, Y. Schneider, O. Schnell, G. Schwanda, C. Senyo, K. Seon, O. Sevior, M. E. Shapkin, M. Shen, C. P. Shibata, T. -A. Shiu, J. -G. Shwartz, B. Sibidanov, A. Simon, F. Smerkol, P. Sohn, Y. -S. Sokolov, A. Solovieva, E. Staric, M. Sumihama, M. Sumiyoshi, T. Tatishvili, G. Teramoto, Y. Tsuboyama, T. Uchida, M. Uglov, T. Unno, Y. Uno, S. Usov, Y. Van Hulse, C. Varner, G. Vorobyev, V. Wagner, M. N. Wang, C. H. Wang, J. Wang, M. -Z. Wang, P. Watanabe, M. Watanabe, Y. Williams, K. M. Won, E. Yamashita, Y. Zhilich, V. Zhulanov, V. CA Belle Collaboration TI Precision Measurement of Charged Pion and Kaon Differential Cross Sections in e(+)e(-) Annihilation at root s=10.52 GeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID E+E-ANNIHILATION; HADRON-PRODUCTION; UPSILON DECAYS; ENERGY AB Measurements of inclusive differential cross sections for charged pion and kaon production in e(+)e(-) annihilation have been carried out at a center-of-mass energy of root s = 10.52 GeV. The measurements were performed with the Belle detector at the KEKB e(+)e(-) collider using a data sample containing 113 X 10(6) e(+)e(-) -> q (q) over bar events, where q = {u, d, s, c}. We present charge-integrated differential cross sections d sigma(h+)/dz for h(+/-) = {pi(+/-), K-+/-} as a function of the relative hadron energy z = 2E(h)/root s from 0.2 to 0.98. The combined statistical and systematic uncertainties for pi(+/-) (K-+/-) are 4% (4%) at z similar to 0.6 and 15% (24%) at z similar to 0.9. The cross sections are the first measurements of the z dependence of pion and kaon production for z > 0.7 as well as the first precision cross section measurements at a center-of-mass energy far below the Z(0) resonance used by the experiments at LEP and SLC. C1 [Schnell, G.; Van Hulse, C.] Univ Basque Country UPV EHU, Bilbao 48080, Spain. [Oswald, C.] Univ Bonn, D-53115 Bonn, Germany. [Aulchenko, V.; Bondar, A.; Eidelman, S.; Gabyshev, N.; Krokovny, P.; Matvienko, D.; Shwartz, B.; Usov, Y.; Vorobyev, V.; Zhilich, V.; Zhulanov, V.] Budker Inst Nucl Phys SB RAS, Novosibirsk 630090, Russia. [Aulchenko, V.; Bondar, A.; Eidelman, S.; Gabyshev, N.; Krokovny, P.; Matvienko, D.; Shwartz, B.; Usov, Y.; Vorobyev, V.; Zhilich, V.; Zhulanov, V.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Drasal, Z.; Kodys, P.] Charles Univ Prague, Fac Math & Phys, CR-12116 Prague, Czech Republic. [Lange, J. S.; Wagner, M. N.] Univ Giessen, D-35392 Giessen, Germany. [Sumihama, M.] Gifu Univ, Gifu 5011193, Japan. [Cheon, B. G.; Goh, Y. M.; Unno, Y.] Hanyang Univ, Seoul 133791, South Korea. [Browder, T. E.; Sahoo, H.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Adachi, I.; Haba, J.; Itoh, R.; Liventsev, D.; Nakao, M.; Sakai, Y.; Tsuboyama, T.; Uno, S.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Schnell, G.] Ikerbasque, Bilbao 48011, Spain. [Leitgab, M.; Perdekamp, M. Grosse; Giordano, F.] Univ Illinois, Urbana, IL 61801 USA. [Bhuyan, B.; Dutta, D.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Vossen, A.; Jacobs, W. W.] Indiana Univ, Bloomington, IN 47408 USA. [Liu, Z. Q.; Wang, P.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Schwanda, C.] Inst High Energy Phys, A-1050 Vienna, Austria. [Shapkin, M.; Sokolov, A.] Inst High Energy Phys, Protvino 142281, Russia. [Aushev, T.; Chilikin, K.; Mizuk, R.; Pakhlov, P.; Solovieva, E.; Uglov, T.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Bracko, M.; Golob, B.; Klucar, J.; Krizan, P.; Pestotnik, R.; Petric, M.; Santelj, L.; Smerkol, P.; Staric, M.] Jozef Stefan Inst, Ljubljana 1000, Slovenia. [Okuno, S.; Watanabe, Y.] Kanagawa Univ, Yokohama, Kanagawa 2218686, Japan. [Roehrken, M.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Cho, K.; Kim, J. H.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Kim, J. B.; Ko, B. R.; Lee, S. -H.; Won, E.] Korea Univ, Seoul 136713, South Korea. [Hyun, H. J.; Kim, H. J.; Kim, H. O.; Kim, M. J.; Park, H.; Park, H. K.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Schneider, O.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Golob, B.; Krizan, P.] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. [Pedlar, T. K.] Luther Coll, Decorah, IA 52101 USA. [Bracko, M.] Univ Maribor, SLO-2000 Maribor, Slovenia. [Chekelian, V.; Chobanova, V.; Dalseno, J.; Moll, A.; Nedelkovska, E.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Julius, T.; Sevior, M. E.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Mizuk, R.; Pakhlov, P.] Moscow Phys Engn Inst, Moscow 115409, Russia. [Uglov, T.] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia. [Iijima, T.; Ohshima, T.; Seon, O.; Shen, C. P.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648602, Japan. [Hayasaka, K.; Iijima, T.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648602, Japan. [Hayashii, H.; Miyabayashi, K.] Nara Womens Univ, Nara 6308506, Japan. [Chen, A.] Natl Cent Univ, Chungli 32054, Taiwan. [Wang, C. H.] Natl United Univ, Miaoli 36003, Taiwan. [Chen, P.; Hou, W. -S.; Hsiung, Y. B.; Shiu, J. -G.; Wang, M. -Z.] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. [Bozek, A.; Brodzicka, J.; Kapusta, P.; Natkaniec, Z.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Yamashita, Y.] Nippon Dent Univ, Niigata 9518580, Japan. [Kawasaki, T.; Miyata, H.; Watanabe, M.] Niigata Univ, Niigata 9502181, Japan. [Nakano, E.; Teramoto, Y.] Osaka City Univ, Osaka 5588585, Japan. [Asner, D. M.; Fast, J. E.; Kouzes, R. T.; Tatishvili, G.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Wang, J.] Peking Univ, Beijing 100871, Peoples R China. [Kumar, R.] Punjab Agr Univ, Ludhiana 141004, Punjab, India. [Muramatsu, N.] Tohoku Univ, Res Ctr Electron Photon Sci, Sendai, Miyagi 9808578, Japan. [Leitgab, M.; Seidl, R.; Perdekamp, M. Grosse; Ogawa, A.] RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Olsen, S. L.] Seoul Natl Univ, Seoul 151742, South Korea. [Choi, Y.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Bakich, A. M.; Sibidanov, A.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Gaur, V.; Nisar, N. K.; Sandilya, S.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Dalseno, J.; Moll, A.; Simon, F.] Tech Univ Munich, Excellence Cluster Universe, D-85748 Garching, Germany. [Ogawa, S.] Toho Univ, Funabashi, Chiba 2748510, Japan. [Hoshi, Y.] Tohoku Gakuin Univ, Tagajo, Miyagi 9858537, Japan. [Ishikawa, A.; Kato, E.; Sanuki, T.; Sato, Y.] Tohoku Univ, Sendai, Miyagi 9808578, Japan. [Aihara, H.; Epifanov, D.; Ng, C.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Shibata, T. -A.; Uchida, M.] Tokyo Inst Technol, Tokyo 1528550, Japan. [Kumita, T.; Sumiyoshi, T.] Tokyo Metropolitan Univ, Tokyo 1920397, Japan. [Nitoh, O.] Tokyo Univ Agr & Technol, Koganei, Tokyo 1848588, Japan. [Li, Y.; Piilonen, L. E.; Williams, K. M.] Virginia Polytech Inst & State Univ, CNP, Blacksburg, VA 24061 USA. [Cinabro, D.; Farhat, H.; Gillard, R.] Wayne State Univ, Detroit, MI 48202 USA. [Senyo, K.] Yamagata Univ, Yamagata 9908560, Japan. [Kang, J. H.; Kwon, Y. -J.; Sohn, Y. -S.] Yonsei Univ, Seoul 120749, South Korea. [Nayak, M.] Indian Inst Technol, Madras 600036, Tamil Nadu, India. RP Leitgab, M (reprint author), Univ Illinois, Urbana, IL 61801 USA. RI Pakhlov, Pavel/K-2158-2013; Uglov, Timofey/B-2406-2014; Mizuk, Roman/B-3751-2014; Krokovny, Pavel/G-4421-2016; Aihara, Hiroaki/F-3854-2010; Nitoh, Osamu/C-3522-2013; Chilikin, Kirill/B-4402-2014; Solovieva, Elena/B-2449-2014; Ishikawa, Akimasa/G-6916-2012 OI Pakhlov, Pavel/0000-0001-7426-4824; Uglov, Timofey/0000-0002-4944-1830; Krokovny, Pavel/0000-0002-1236-4667; Aihara, Hiroaki/0000-0002-1907-5964; Chilikin, Kirill/0000-0001-7620-2053; Solovieva, Elena/0000-0002-5735-4059; FU MEXT (Japan); JSPS (Japan); Nagoya's TLPRC (Japan); ARC (Australia); DIISR (Australia); NSFC (China); MSMT (Czechia); DST (India); INFN (Italy); MEST (Korea); NRF (Korea); GSDC of KISTI (Korea); WCU (Korea); MNiSW (Poland); NCN (Poland); MES (Russia); RFAAE (Russia); ARRS (Slovenia); IKERBASQUE (Spain); UPV/EHU (Spain); SNSF (Switzerland); NSC (Taiwan); MOE (Taiwan); DOE (U.S.); NSF (U.S.) FX The authors would like to thank M. Stratmann, D. de Florian, R. Sassot, S. Kumano, F. Jegerlehner, S. Jadach, and H. Czyz for valuable discussions and suggestions. We thank the KEKB group for excellent operation of the accelerator; the KEK cryogenics group for efficient solenoid operations, and the KEK computer group, the NII, and PNNL/EMSL for valuable computing and SINET4 network support. We acknowledge support from MEXT, JSPS, and Nagoya's TLPRC (Japan); ARC and DIISR (Australia); NSFC (China); MSMT (Czechia); DST (India); INFN (Italy); MEST, NRF, GSDC of KISTI, and WCU (Korea); MNiSW and NCN (Poland); MES and RFAAE (Russia); ARRS (Slovenia); IKERBASQUE and UPV/EHU (Spain); SNSF (Switzerland); NSC and MOE (Taiwan); and DOE and NSF (U.S.). NR 27 TC 24 Z9 24 U1 0 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 6 PY 2013 VL 111 IS 6 AR 062002 DI 10.1103/PhysRevLett.111.062002 PG 7 WC Physics, Multidisciplinary SC Physics GA 196PA UT WOS:000322786500006 PM 23971562 ER PT J AU Li, FX Pershin, YV Slipko, VA Sinitsyn, NA AF Li, Fuxiang Pershin, Yuriy V. Slipko, Valeriy A. Sinitsyn, N. A. TI Nonequilibrium Spin Noise Spectroscopy SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUANTUM DOTS AB Spin noise spectroscopy is an experimental approach to obtain correlators of mesoscopic spin fluctuations in time by purely optical means. We explore the information that this technique can provide when it is applied to a weakly nonequilibrium regime when an electric current is driven through a sample by an electric field. We find that the noise power spectrum of conducting electrons experiences a shift, which is proportional to the strength of the spin-orbit coupling for electrons moving along the electric field direction. We propose applications of this effect to measurements of spin-orbit coupling anisotropy and separation of spin noise of conducting and localized electrons. C1 [Li, Fuxiang] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Li, Fuxiang] Texas A&M Univ, Dept Phys, College Stn, TX 77845 USA. [Pershin, Yuriy V.; Slipko, Valeriy A.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Slipko, Valeriy A.] Kharkov Natl Univ, Dept Phys & Technol, UA-61077 Kharkov, Ukraine. [Sinitsyn, N. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Li, FX (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, POB 1663, Los Alamos, NM 87545 USA. EM nsinitsyn@lanl.gov RI Li, Fuxiang/O-9132-2015 FU DOE [DE-AC52-06NA25396] FX The authors thank S. Crooker, D. Smith, A. Saxena, and Yan Li for useful discussions. This work was funded by the DOE under Contract No. DE-AC52-06NA25396. NR 40 TC 16 Z9 16 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 6 PY 2013 VL 111 IS 6 AR 067201 DI 10.1103/PhysRevLett.111.067201 PG 5 WC Physics, Multidisciplinary SC Physics GA 196PA UT WOS:000322786500017 PM 23971605 ER PT J AU Rossi, M Tkatchenko, A Rempe, SB Varma, S AF Rossi, Mariana Tkatchenko, Alexandre Rempe, Susan B. Varma, Sameer TI Role of methyl-induced polarization in ion binding SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE dispersion; ion channels; methylation; quantum chemistry; density-functional theory ID DENSITY-FUNCTIONAL THEORY; POTASSIUM CHANNELS; K+ CHANNEL; SELECTIVITY FILTER; BA2+ BLOCK; COORDINATION; BARIUM; WATER; KCSA; CONDUCTION AB The chemical property of methyl groups that renders them indispensable to biomolecules is their hydrophobicity. Quantum mechanical studies undertaken here to understand the effect of point substitutions on potassium (K-) channels illustrate quantitatively how methyl-induced polarization also contributes to biomolecular function. K- channels regulate transmembrane salt concentration gradients by transporting K+ ions selectively. One of the K+ binding sites in the channel's selectivity filter, the S4 site, also binds Ba2+ ions, which blocks K+ transport. This inhibitory property of Ba2+ ions has been vital in understanding K-channel mechanism. In most K-channels, the S4 site is composed of four threonine amino acids. The K channels that carry serine instead of threonine are significantly less susceptible to Ba2+ block and have reduced stabilities. We find that these differences can be explained by the lower polarizability of serine compared with threonine, because serine carries one less branched methyl group than threonine. A T -> S substitution in the S4 site reduces its polarizability, which, in turn, reduces ion binding by several kilocalories per mole. Although the loss in binding affinity is high for Ba2+, the loss in K+ binding affinity is also significant thermodynamically, which reduces channel stability. These results highlight, in general, how biomolecular function can rely on the polarization induced by methyl groups, especially those that are proximal to charged moieties, including ions, titratable amino acids, sulfates, phosphates, and nucleotides. C1 [Rossi, Mariana; Tkatchenko, Alexandre] Max Planck Gesell, Fritz Haber Inst, Theory Dept, D-14195 Berlin, Germany. [Rempe, Susan B.; Varma, Sameer] Sandia Natl Labs, Biol & Mat Sci Ctr, Albuquerque, NM 87185 USA. [Varma, Sameer] Univ S Florida, Dept Cell Biol Microbiol & Mol Biol, Tampa, FL 33620 USA. [Varma, Sameer] Univ S Florida, Dept Phys, Tampa, FL 33620 USA. RP Varma, S (reprint author), Sandia Natl Labs, Biol & Mat Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. EM svarma@usf.edu RI Tkatchenko, Alexandre/E-7148-2011; Rossi, Mariana/E-4398-2012 OI Tkatchenko, Alexandre/0000-0002-1012-4854; FU Office of Science of the US Department of Energy (DOE) [DE-AC02-06CH11357]; Sandia's Laboratory Directed Research and Development program; US DOE's National Nuclear Security Administration [DE AC04-94AL85000]; Institute of Pure and Applied Mathematics at the University of California Los Angeles FX We thank Daniel L. Minor, Jr. and Carsten Baldauf for stimulating discussions. M.R. and A.T. acknowledge computational time from the Argonne Leadership Computing Facility (Argonne National Laboratory), which is supported by the Office of Science of the US Department of Energy (DOE) under Contract DE-AC02-06CH11357. S.B.R. acknowledges funding from Sandia's Laboratory Directed Research and Development program. Sandia National Laboratories is managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US DOE's National Nuclear Security Administration under Contract DE AC04-94AL85000. A.T. and S.V. also acknowledge support from the Spring 2011 long program of the Institute of Pure and Applied Mathematics at the University of California Los Angeles. NR 61 TC 15 Z9 15 U1 4 U2 24 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD AUG 6 PY 2013 VL 110 IS 32 BP 12978 EP 12983 DI 10.1073/pnas.1302757110 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 196JQ UT WOS:000322771100041 PM 23878238 ER EF